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Abstract

Background: Independent data sources can be used to augment post-marketing drug safety signal detection. The
vast amount of publicly available biomedical literature contains rich side effect information for drugs at all clinical
stages. In this study, we present a large-scale signal boosting approach that combines over 4 million records in the US
Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and over 21 million biomedical articles.

Results: The datasets are comprised of 4,285,097 records from FAERS and 21,354,075 MEDLINE articles. We first
extracted all drug-side effect (SE) pairs from FAERS. Our study implemented a total of seven signal ranking algorithms.
We then compared these different ranking algorithms before and after they were boosted with signals from MEDLINE
sentences or abstracts. Finally, we manually curated all drug-cardiovascular (CV) pairs that appeared in both data
sources and investigated whether our approach can detect many true signals that have not been included in FDA
drug labels. We extracted a total of 2,787,797 drug-SE pairs from FAERS with a low initial precision of 0.025. The
ranking algorithm combined signals from both FAERS and MEDLINE, significantly improving the precision from 0.025
to 0.371 for top-ranked pairs, representing a 13.8 fold elevation in precision. We showed by manual curation that
drug-SE pairs that appeared in both data sources were highly enriched with true signals, many of which have not yet
been included in FDA drug labels.

Conclusions: We have developed an efficient and effective drug safety signal ranking and strengthening approach
We demonstrate that large-scale combining information from FAERS and biomedical literature can significantly
contribute to drug safety surveillance.

Introduction
Post-marketing drug safety signal detection from spon-
taneous reporting systems is challenging, demands new
types of data, and calls for new avenues for advancing
the state-of-the-art in data mining approaches. Mining
drug-side effect (drug-SE) associations from the promi-
nent spontaneous reporting system, the US Food and
Drug Administration (FDA) Adverse Event Reporting Sys-
tem (FAERS), is a highly active research area. Statis-
tical data mining algorithms such as disproportionality
analysis, correlation analysis, and multivariate regression
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have been developed to detect adverse drug signals from
FAERS [1-4]. Currently, domain-specific signal prioritiz-
ing and filtering approaches have recently been developed
in detecting post-marketing cardiovascular events associ-
ated with targeted cancer drugs from FAERS [5]. However,
current signal detectionmethods often suffer from a range
of limitations including biased reporting and misattribu-
tion of causality in drug-SE combinations [6]. Therefore,
it is important to develop robust signal detection meth-
ods to identify drug-related adverse events from FAERS.
Studies show that complementary data sources such as
patient health record (EHR) data can be leveraged upon
to improve signal detection from FAERS [4]. In this study,
we used over 21 million published biomedical articles to
systematically improve signal detection from FAERS. Our
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study is based on the key assumption that if a drug and
a SE co-occur in both FAERS and MEDLINE, it is likely
that a true semantic relationship exists between them. A
semantic relationship can be, for example, “drug CAUSE
SE”, “drug TREAT disease”, or others. In addition, if the
pair appears frequently in FAERS, which is a drug adverse
events reporting system, then it is more likely to be a “drug
CAUSE SE” pair than other relations. We hypothesized
that a systematic approach that combined drug safety sig-
nals from both biomedical literature and FAERS could
augment the discovery of unknown drug-SE association
from FAERS.
The main contributions of our study are as follows: (1)

We systematically extracted all drug-SE pairs with pres-
ence in both FAERS and MEDLINE and showed that
these pairs had significantly higher precisions, therefore
could be leveraged upon to facilitate signal detection from
FAERS; (2) We implemented and compared a total of
seven ranking algorithms. We showed that by combining
drug safety signals from both FAERS and biomedical liter-
ature, some of these algorithms had significantly improved
performance; and (3) We have made publicly available a
dataset of 269,040 candidate drug-SE pairs that have sup-
porting evidences in both FAERS and MEDLINE. These
pairs are highly enriched with true signals that have not
been captured in FDA drug labeling to date. Compared to
analyses of other data sources such as EHRs or the web,
our study used a large amount of published biomedical lit-
erature. This data is of high quality, publicly available, and
comprised of high quality results from millions of inde-
pendent scientific studies. To the best of our knowledge,
our study is the first large-scale approach to systemati-
cally combine data from FAERS and published biomedical
literature to facilitate safety signal detection for all drug
adverse events reported in FAERS.

Background
Post-marketing drug adverse events are a major pub-
lic health problem, accounting for up to 5% of hospital
admissions, 28% of emergency visits, and 5% of hos-
pital deaths [7,8], with associated costs of $75 billion
annually [9]. Therefore, timely and accurate detection
of drug adverse events in real-world patients is criti-
cal in improving patients’ quality of life and reducing
healthcare costs. Drug safety surveillance has relied pre-
dominantly on spontaneous reporting systems, which are
composed of both voluntary and mandatory reporting of
suspected drug adverse events from health-care profes-
sionals, consumers, and pharmaceutical companies. The
US Food and Drug Administration (FDA) Adverse Event
Reporting System (FAERS) is one of the most promi-
nent spontaneous reporting systems. Mining drug-side
effect (drug-SE) relationships from FAERS is a highly
active research area. Harpaz et al. recently reviewed the

data mining and machine learning approaches to discov-
ering adverse drug events from FAERS [2]. Data mining
algorithms such as disproportionality analysis, correlation
analysis, and multivariate regression have been developed
to detect adverse drug signals from FAERS [1-4]. Recently,
researchers began to use other data sources for mining
drug-SE associations. For example, patient EHRs have
emerged as a promising resource for post-marketing drug
adverse event discovery [10-15]. Health information avail-
able on the web and web search log data can also provide
valuable information on drug side effects [16,17].
Another important information source of drug-SE asso-

ciations is the vast amount of published biomedical liter-
ature. Currently, more than 22 million biomedical records
are publicly available on MEDLINE, making it a rich
side effect information source for drugs at all clinical
stages, including drugs in pre-marketing clinical trials,
post-marketing clinical case reports and clinical trials, and
many failed drugs. In fact, drug safety researchers have
regularly used biomedical literature to evaluate initial sig-
nals detected from FAERS [18]. There are several unique
advantages to using published biomedical literature for
drug safety signal detection over other data sources. First,
the number of articles is large (22 million) and included
many clinical trials (732,526) and clinical case reports
(1,651,631). Second, unlike patient EHRs, biomedical lit-
erature is publicly available (all abstracts and many full
text articles). Third, in comparison with data collected
from the web, the information contained in published
biomedical articles is of higher quality. Fourth, unlike
information from both EHRs and the web,MEDLINE arti-
cles include adverse events information for drugs at all
different clinical stages, including investigational, com-
mercial, and even failed drugs. There have been research
efforts in mining drug-SE associations from MEDLINE.
Shetty et al. applied information mining to discover asso-
ciations between 35 drugs and 55 SEs from MEDLINE
and demonstrated the Vioxx-myocardial infarction asso-
ciations had been reported in the literature before its
withdrawal in 2002 [19]. Gurulingappa et al. trained and
tested a supervised machine learning classifier to classify
drug-condition pairs in a set of 2972 manually annotated
case reports [20]. Both studies focused on a limited set
of drugs, side effects or specific article types. It is unclear
how these approaches can be scaled up to the wholeMED-
LINE. In one of our recent studies, we developed an auto-
matic approach to extract anticancer drug-specific side
effects from MEDLINE through the development of spe-
cific filtering and ranking schemes and demonstrated that
the corpus of published biomedical literature contains
rich side effect information for cancer drugs [21].
Recently, Harpaz et al. proposed a signal-detection strat-

egy that combined FAERS and EHRs in order to improve
the accuracy of signal detection by requiring signaling



Xu and Wang BMC Bioinformatics 2014, 15:17 Page 3 of 10
http://www.biomedcentral.com/1471-2105/15/17

appeared in both sources [4]. The researchers showed
that the approach of combining two large, independent,
complementary data sources generated a highly selective
ranked set of candidate signals and improved accuracy
of signal detection. The researchers used well-established
statistical mining approaches to first generate signals from
each source. The study focused on signals correspond-
ing to only three adverse reactions (rhabdomyolysis, acute
pancreatitis, and QT prolongation).

Approach
In this study, we systematically combined over 21 mil-
lion biomedical articles with over 4 million records from
FAERS to improve signal detection from FAERS. Our
approach was based on the following observations: (1)
Drug-SE (or disease) pairs appearing in MEDLINE often
have some true semantic relationships such as “drug
CAUSE SE”, or “drug TREAT disease” and others. The
key issue in extracting drug-SE pairs from literature is to
differentiate “drug CAUSE SE” pairs from “drug TREAT
disease” pairs, which are dominant in the literature; (2)
The majority of the millions of drug-SE associations in
FAERS don’t have direct semantic relationship. The key in
detecting true signals from FAERS is to differentiate “drug
CAUSE SE” pairs from spurious co-occurrence pairs; (3)
If a drug-SE pair appears in both MEDLINE and FAERS
database, then this pair likely has a true semantic rela-
tionship (as determined by its MEDLINE presence). In
addition, if this pair also appears in FAERS many times,
then the probability of it being a true “drug CAUSE SE”
pair is high. Hence, in this study, we implemented a total
of seven signal detection approaches, including five cur-
rently the most widely used approaches for automated
signal detection in FAERS.We also applied the state-of-art
adaptive data-driven approach that controlled confound-
ing factors inherent in spontaneous reporting systems
[22]. We systematically boosted drug-SE pairs’ original
signals in FAERS (as determined by the seven signal detec-
tion approaches) by incorporating the information about
their MEDLINE presences. Compared to previous stud-
ies focused on specific sets of drugs or side effects, our
task of processing more than 4 million records from
FAERS and 21million biomedical articles fromMEDLINE
for millions of drug-SE associations of all drugs and all
side effects was more challenging in terms of achieving
efficiency, effectiveness, and generalizability.

Data andmethods
The datasets and experiment flow chart are depicted in
Figure 1. The two large data sources for drug-SE extrac-
tion are 4,285,094 records from FAERS and 21,354,075
MEDLINE records. The process included: (1) drug-SE
pair extraction from FAERS; (2) Ranking extracted pairs
using both frequency and six commonly used statistical

signal detection approaches, and boosting the rankings
by pairs’ MEDLINE presence; and (3) manual curation
of all targeted anticancer drug-associated cardiovascular
events that appeared in both FAERS and MEDLINE and
compared them to those captured in FDA drug labeling.

Data
FDA Adverse Event Reporting System (FAERS)
A total of 4,285,097 records were downloaded from
FAERS for the time period from the years 2004 through
2012 were downloaded [23]. Among the downloaded files,
files DRUGyyQq.TXT contained drug information asso-
ciated with reported adverse event. Files REACyyQq.TXT
contained all “Medical Dictionary for Regulatory Activ-
ities” (MedDRA) terms coded for adverse events. Files
DRUGyyQq.TXT and REACyyQq.TXT were the sources
for drug-SE association extraction.

MEDLINE data and local MEDLINE search engine
We downloaded a total of 21,354,075 MEDLINE records
(119,085,682 sentences) published between 1965 and
2012 from the U.S. National Library of Medicine (http://
mbr.nlm.nih.gov/Download/index.shtml). Each sentence
was syntactically parsed with Stanford Parser [24] using
the Amazon Cloud computing service (a total of 3,500
instance-hours with High-CPU Extra Large Instance were
used).We used the publicly available information retrieval
library Lucene (http://lucene.apache.org) to create a local
MEDLINE search engine with indices created on both
sentences, their corresponding parse trees and abstracts.

Methods
Extract drug-SE pairs from FAERS
Both high quality drug lexicon and SE lexicon are the
prerequisite for subsequent drug-SE pair extraction from
FAERS.We built a comprehensive drug lexicon by pooling
drug terms (a total of 294,109) from the Unified Medical
Language Systems (UMLS 2011AB version). We manually
removed many overly general drug names as well as mis-
classified drug terms. This drug lexicon has been recently
used in our study of extracting drug-disease treatment
relationships fromMEDLINE [25].
We manually created a clean side effect (SE) lexi-

con from MedDRA, the terminology used in encoding
adverse events in FAERS. Many terms in MedDRA are
not SE terms themselves. For instance, the MedDRA lex-
icon contains thousands of medical procedure or lab test
terms such as “abdomen scan” and “allergy test”. These
terms by themselves are not SE terms. In addition, the
MedDRA lexicon includes overly general terms such as
“adverse events” and ambiguous terms such as “adhen-
sion”. We manually removed these terms from MedDRA.
After manual curation, the final clean SE lexicon consisted
of 49,625 terms, a significant 29% reduction from the

http://mbr.nlm.nih.gov/Download/index.shtml
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Figure 1 Data and experimental flowchart. The two large data sources for drug-SE extraction are 4,285,094 records from FAERS and 21,354,075
MEDLINE records. The process included: (1) drug-SE pair extraction from FAERS; (2) Ranking extracted pairs using six commonly used statistical
signal detection approaches, and boosting the rankings by pairs’ MEDLINE presence; and (3) manual curation of all targeted anticancer drug
associated cardiovascular events that appeared in both FAERS and MEDLINE and compared them to those captured in FDA drug labeling.

original 70,177 terms. Drug-SE pairs extracted based on
this clean SE lexicon should have significantly improved
precisions.
We first extracted drug-SE pairs by linking DRU-

GyyQq.TXTwith REACyyQq.TXT through patient report
ID numbers. We then cleaned up the extracted pairs as
following: (1) Drug entity recognition and mapping: drug
names used in DRUGyyQq.TXT often consisted of drug
trade names, generic names, or both. In addition, many
drug strings were in free text form. We recognized drug
entities (both trade names and generic names) from drug
strings through a dictionary-based approach. We then
mapped all trade names to their corresponding generic
names; (2) SE entity recognition: SE entities were recog-
nized from adverse event strings using the clean SE lexi-
con. After these two steps, we obtained a total of 2,787,797
drug-SE pairs, representing 2,603 drugs and 13,413 SEs.

Extract drug-SE pairs that appeared in both FAERS and in
MEDLINE
We used each of the 2,787,797 drug-SE pairs extracted
from FAERS as a search query to the local MEDLINE
search engine. Sentences, their associated parse trees, and
abstracts that contained the pair were retrieved. MED-
LINE sentence-level drug-SE pairs are those with both
drug and SE terms co-occur in the same sentences. MED-
LINE abstract-level drug-SE pairs are those with both
drug and SE terms co-occur in the same abstracts. Drug-
SE pairs in abstract-level include pairs i sentence-level.
Instead of simply retrieving a pair’s co-occurrence count
from the search engine, we added the extra restriction that
both drug and SE termsmust be noun phrases in retrieved
parse trees. This additional restriction was to prevent
the extraction of incorrect drug-SE pairs from sentences.

For example, the drug-SE pair “baclofen-decreased activ-
ity” appeared in FAERS 19 times. It also appeared in
MEDLINE in the following sentence “Although baclofen
decreased activity during a 30-min period after dos-
ing...”(PMID 2819919). However, the substring “decreased
activity” in this sentence is not an SE term. This work in
extracting drug-SE pairs that appeared in both FAERS and
MEDLINE was computationally intensive and was done
using Amazon Elastic Cloud (Amazon EC2) with 1000
parallel instances.

Ranking drug-SE pairs by combining signals from both
MEDLINE and FAERS
Based on our hypothesis that if a drug-SE pair appeared in
bothMEDLINE and FAERS, then this pair may have some
true semantic relationship. In addition, if the pair also
appeared many times in FAERS, a data source mainly for
drug adverse events, then the true semantic relationship
was more likely to be “drug CAUSE SE” than others. We
implemented several signal ranking algorithms, including
ranking by pairs’ frequency counts (FREQ) in FAERS, and
five commonly used Disproportionality Analysis (DPA)
statistical signal detection approaches: relative reporting
ration (RRR), proportional reporting ratio (PRR), report-
ing odds ratio (ROR), phi coefficient (PhiCorr), and infor-
mation component (IC). The five DPAs are currently the
most widely used approaches for automated signal detec-
tion in FAERS [2]. All these DPA methods are based
on frequency analysis of 2x2 contingency tables to esti-
mate statistical association between drugs and SEs and
it intends to quantify the degree to which a drug-SE
pair co-occurs disproportionally in the database. These
five DPA methods differ by the statistical adjustments
they apply to account for low counts. As shown in the
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Results section, these five DPA methods performed sim-
ilarly in our study, but had inferior performance than the
FREQ-based approach.
It has been demonstrated that DPA approaches may

introduce confounding factors that are causing false pos-
itives and false negatives [22]. Recently, Tatonetti et al.
constructed a dataset called OffSides in which drug
side effect associations have confounders partly excluded.
We downloaded OffSides at http://www.pharmgkb.org
and obtained a total of 438,801 drug-SE pairs from the
database. We then ranked these pairs based on values
provided in the dataset.
For drug-SE pairs that appeared in both FAERS and

MEDLINE, we boosted their ranking scores to the square
of their original signals (FREQ, PRR, RRR, ROR, PhiCorr,
IC, and OffSides) from FAERS. For drug-SE pairs that
appeared in FAERS only, ranks were determined by their
original signals in FAERS.
In order to compare different ranking methods, we

used the 11-point interpolated average precision, which
is commonly used to evaluate retrieved ranked lists for
search engines [26]. For each ranked list, the interpo-
lated precision was measured at the 11 recall levels of
0.0, 0.1, 0.2, ..., 1.0. At each recall level, we calculated the
arithmetic mean of the interpolated precision. A com-
posite precision-recall curve showing 11 points was then
graphed.
In order to compare these seven ranking approaches

in ranking known true signals highly among all drug-
SE pairs, we used drug-SE pairs from FDA drug
labels as the evaluation dataset. Note this evalua-
tion dataset was not used to calculate the true pre-
cisions and recalls, but to compare different ranking
approaches in prioritize true signals. We used a total
of 100,049 drug-SE pairs from the Side Effect Resource
(SIDER) [27], a side effect resource compiled from
FDA package inserts using text-mining methods, as gold
standard.

Manual evaluation using evidence fromMEDLINE
To demonstrate that drug-SE pairs appearing in both
MEDLINE and FAERS are often highly enriched with
true signals and that many of these true signals have
not been captured in FDA drug labels, we manually
curated a subset of the drug-SE pairs that appeared in
both FAERS and in MEDLINE: all cardiovascular events
(CVs) associated with targeted anticancer drugs. A list
of 45 targeted cancer drugs was obtained from the
National Cancer Institute (NCI) (http://www.cancer.gov/
cancertopics/factsheet/Therapy/targeted). A list of 1,172
CVs was selected from the clean MedDRA-based SE lex-
icon by finding all leaf nodes with the ancestor “vascular
disorders” or “cardiac disorders”.We filtered drug-SE pairs
that appeared in both FAERS and MEDLINE sentences

with these two lexicons and obtained a total of 617 drug-
CV pairs. We used the local MEDLINE search engine to
retrieve all the sentences (3,628 in total) wherein these
pairs appeared. We then manually classified these 617
drug-CV pairs into three classes (CAUSE, TREAT, and
NONE) using the sentences (and abstracts when neces-
sary) as evidence. Three curators with graduate degrees
in biomedical sciences performed the curation. Majority
vote was used to decide the final classification of each
drug-CV pair. Even though the selection of this subset of
drug-SE events had certain limitations (i.e. not totally ran-
dom), however it includedmany drugs (45 targeted cancer
drugs) and many SE terms (1,712 CV terms). In addition,
our approach did not favor towards these drug-CV pairs.

Results
Named entity recognition (NER) for SEs and drugs
Name entity recognition (NER) for both SEs and drugs
is important for the subsequent drug-SE extraction and
rankings. For evaluating SE NER, we randomly selected
100 (distinct) SE strings from FAERS and we created a
gold standard dataset by manually curated these strings.
We compared SE NER on these SE strings using two dif-
ferent SE lexicons: original MedDRA-based lexicon and a
manually curated MedDRA-based lexicon (the one used
in this study).We show that the precision of NER using the
original MedDRA-based lexicon is 0.84, and the precision
using the clean lexicon is 1.000. Note that the recalls are
1.000 for both NERs since SE terms in FAERS are encoded
with MedDRA terminology. Example errors introduced
by using the original MedDRA lexicon are: abdomen scan,
adoption, aldolase, colostomy, condom, and thyroid oper-
ation. This demonstrated that the manually cleaned SE
lexicon significantly contributed to the overall precisions
of NER and the subsequent drug-SE pair extraction.
The target of NER is to map drug entities specified in

FAERS drug strings (i.e. “erbitux 100 mg imclone /bms”)
to their corresponding generic names specified in UMLS
(i.e. “cetuximab”). For evaluating drug NER (including
both drug name recognition and mapping drug trade
names to their generic names), we randomly selected 100
drug strings andmanually curated these strings using both
UMLS and the web for evidence.We then performed NER
on these strings and evaluated the performance. For these
100 drug strings, we correctly mapped 95 of them, and
obtained an accuracy of 0.95. The five missed ones are:
thiovalone, zoraxin, dianeal, idroplurivit, andUK-427857.
Among the five missed ones, four are not included in
UMLS (thiovalone, zoraxin, dianeal, idroplurivit). The
other one (UK-427857) is defined in UMLS, but not
included in our drug lexicon since it has the semantic
type of “Organic Chemical”. We did not include terms
with the semantic type “Organic Chemical” in our drug
lexicon because many organic chemicals are not clinical

http://www.pharmgkb.org
http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted
http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted
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drugs. A total of 39 out of the 100 strings contain no drug
entities, majority of which are due to spelling errors. Mis-
spelling examples include: wrfarin (warfarin), fluorouracl
(fluorouracil), ditiazem (diltiazem), cozaril (clozaril), car-
dine (cardene), and glucosamin (glucosamine). Our NER
did not try to recognize drug entities frommisspelled drug
strings. Many of these drug strings that contain spelling
errors occur very rarely in FAERS, therefore ignoring
them (not trying to identify drug entities from them) will
not adversely affect the subsequent signal detection in
large degree. The high accuracy of NER for drugs demon-
strated that our drug name recognition and mapping
approaches are quite effective and contributed signifi-
cantly to the overall performance of subsequent drug-SE
pair extraction from FAERS.

Drug-SE pairs that appeared in both FAERS andMEDLINE
have significantly higher precisions
We extracted a total of 2,787,797 drug-SE pairs from
FAERS, among which 125,101 pairs appeared in MED-
LINE sentences, and 269,040 pairs appeared in MED-
LINE abstracts. We then compared the precisions, recalls,
and F1 scores using the known drug-SE pairs from
SIDER as the gold standard. Note that this gold stan-
dard was not used to measure the actual precisions
and recalls. Instead, we use it to demonstrate that pairs
appeared in both FAERS and MEDLINE had improved
precisions.
As shown in Table 1, drug-SE pairs extracted from

FAERS had a recall of 0.507. However, the precision was
as low as 0.025. At least two factors may have accounted
for this low precision. First, the low precision may be
partly caused by false negatives. The gold standard mostly
contains drug adverse events reported in controlled clin-
ical trials, therefore could have greatly underestimated
the true precision of drug-SE pairs extracted from the
post-marketing FAERS. Second, this low precision may
have been partly caused by true negatives. The drug-SE
pairs were extracted by linking DRUGyyQq. TXT with
REACyyQq. TXT through patient report ID numbers. If a
patient took m drugs and reported n events, then a total
of m x n drug-SE pairs were extracted, many of which may
be true negatives.

Table 1 Precisions, recalls, and F1 scores of drug-SE pairs
that appeared in FAERS alone (“FAERS”), in both FAERS
andMEDLINE sentences (“FAERS+sentence”), and in both
FAERS andMEDLINE abstracts (“FAERS+abstracts”)

Source Pairs (n) Precision Recall F1

FAERS 2,787,797 0.025 0.507 0.045

FAERS + sentence 125,101 0.140 0.138 0.139

FAERS + abstract 269,040 0.111 0.234 0.151

The 125,101 pairs that appeared in both FAERS and
MEDLINE sentences had a precision of 0.140, a significant
460% improvement compared to the precision of 0.025 for
pairs extracted from FAERS alone. While the recall was
lower, the overall F1 score of 0.139 represented a signifi-
cant 209% improvement. Similarly, the 269,040 pairs that
appeared in both FAERS andMEDLINE abstracts had sig-
nificantly higher precision (0.111 vs. 0.025) and F1 scores
(0.151 vs. 0.045). In summary, pairs extracted from FAERS
had high recall but low precision. On the other hand, pairs
that appeared in both FAERS and MEDLINE had signifi-
cantly better precisions and F1 scores, but lower recalls. In
the sections that follow, we present methods to prioritize
true signals from FAERS while at the same time keep-
ing their high recalls. Unlike the previous study by Hapaz,
we did not filter out drug-SE pairs that only appeared
in FAERS, which may have filtered out many true pos-
itives. Instead, we kept all drug-SE pairs while boosting
the signals of those pairs that appeared in both data
sources.

Ranking using signals from both FAERS andMEDLINE has
better performance in prioritizing true signals
We ranked the 2,787,797 drug-SE pairs extracted from
FAERS as follows: if a pair only appeared in FAERS,
its rank was its original signal in the FAERS database;
if a pair appeared in both FAERS and MEDLINE, its
signals was the square of its original signal in FAERS.
The ranked precision-recall curves for pairs ranked by
FAERS signals (“FREQ”, “PRR”, “OffSides”) alone, and by
FAERS signals augmented by pairs’ presence inMEDLINE
(“FREQ_boosted_sentence”, “FREQ_boosted_abstract”,
“PRR_boosted_sentence”, “PRR_boosted_abstract”, “Off-
Sides_boosted_sentence”, “OffSides_boosted_abstract”)
are shown in Figure 2. Rankings by RRR, ROR, IC and
PhiCorr had similar performance as that of ranking by
PRR (data not shown).
As shown in Figure 2, ranking by frequency (“FREQ”)

was effective in ranking known drug-SE pairs highly
among those on the list. The precision of top-ranked
pairs (at recall of 0.1) by frequency was 0.278, represent-
ing a 1,012% increase compared to the precision of 0.025
for all pairs. Ranking by all other six methods had no
effect on ranking known drug-SE pairs highly. In fact,
many known drug-SE pairs from FDA drug labels are
not significant based on PRR or OffSides database. For
example, the drug-SE pair “rofecoxib-myocardial infarc-
tion” appeared in FAERS a total of 17,306 times. Based on
this co-occurrence frequency number only, we are quite
certain that it is a true side effect association. However,
the same drug-SE pair “rofecoxib-myocardial infarction” is
not significant in the OffSides database, even though the
more specific pairs “rofecoxib-age indeterminate myocar-
dial infarction”, “rofecoxib-acute myocardial infarction”,
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Figure 2 Precision-recall curves of ranked drug-SE pairs. The ranked precision-recall curves for pairs ranked by FAERS signals (“FREQ”, “PRR”,
“OffSides”) alone, and ranked by FAERS signals augmented by pairs’ presence in MEDLINE (“FREQ_boosted_sentence”, “FREQ_boosted_abstract”,
“PRR_boosted_sentence”, “PRR_boosted_abstract”, “OffSides_boosted_sentence”, “OffSides_boosted_abstract”). Rankings by RRR, ROR, IC and
PhiCorr had similar performance as that of ranking by PRR (data not shown).

and “rofecoxib-silent myocardial infarction” are signifi-
cant in OffSides.
By leveraging on the signal of a pair’s MEDLINE

presence to augment its frequency signal from FAERS,
the precisions of drug-SE pairs from FAERS were fur-
ther improved upon at most of the recalls. For exam-
ple, when frequency counts of drug-SE pairs were
strengthened by their MEDLINE abstract presence
(“FREQ_boosted_abstract”), the precision at a recall of
0.1 was 0.371, representing a 33.4% increase as compared
to the precision of 0.278 for pairs ranked by frequency
alone (“FREQ”). The precision-recall curve for pairs with
boosted rankings from MEDLINE sentences has simi-
lar results. Note that only 9.6% of pairs (269,040 out of
2,787,797) from FAERS have ever appeared in MEDLINE
abstracts and 4.5% of pairs from FAERS have appeared in
MEDLINE sentences, therefore we could only boost the
signals of at most 9.6% of all FAERS pairs with their MED-
LINE presence. Nonetheless, we significantly improved
the precision of the top-ranked pairs by 33.4%. Boosting
pairs’ ranking signals of PRR or OffSides by their MED-
LINE presence had no effect in prioritizing true signals. In
summary, ranking by combining pairs’ frequency signals
from FAERS and their MEDLINE presence significantly
increased the precision of top-ranked pairs.
One of the main sources of false positives is the inclu-

sion of known drug-disease treatment pairs. If a drug-
disease treatment pair was included in FAERS, this pair

will likely appear in the literature, which is a main
source of drug-disease treatment semantic relationships.
For example, the drug-disease treatment pair “irinotecan-
colorectal cancer” co-occurred in FAERS for 151 times.
This pair is highly significant based on all 5 DPA methods
as well as the OffSides database (rr= 2.75000000015865,
p value < 8.67518006759968e-22). Since this pair also
appears in the literature, its original signal will be further
boosted. In future studies, we plan to filter out known
drug-disease treatment pairs from FAERS database before
boosting. This will depend on the availability of a compre-
hensive and accurate drug-disease treatment relationship
database.

Literature boosting versus EHR boosting
Our study is different from Harpaz’s study [4] as follow-
ing: (1) while Harpaz’s study used one DPA approach,
we implemented a total of six signal ranking algorithms,
including ranking by pairs’ frequency counts (FREQ),
and five commonly used DPA statistical signal detection
approaches. We also used the OffSides database that con-
sists of significant drug-SE pairs with confounders partly
excluded.We then compared these approaches before and
after being boosted with signals from MEDLINE sen-
tences or abstracts; (2) compared to Hapaz’s study that
evaluated three side effects: pancreatitis, rhabdomyoly-
sis, and long QT syndrome, we systematically evaluated
our approaches using all drug-SE pairs derived from FDA
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drug labels; and (3) while Hapaz’s study used evidence
from EHR to boost signal detection from FAERS, we used
evidence fromMEDLINE.
In order to show how the knowledge from MEDLINE

overlaps with that from EHRs, we performed the fol-
lowing experiment: we obtained a reference standard
that consisted of 18 drug-SE pairs listed in one of the
tables in Harpaz’s paper. Among the 18 pairs, how-
ever, we can find only 16 of them in FAERS database.
For the two missed drug-SE pairs, we found no evi-
dence of associations from original FAERS records.
For example, in order to validate mesoridazine-long QT
syndrome pair that was included in the reference stan-
dard, we obtained all original FAERS records that con-
tain substring “mesoridazine” (no NERs for drugs and
SEs) and found only the following pairs with frequency
counts in FAERS: mesoridazine (mesoridazine)|mental
disorder|1.0, mesoridazine besylate|suicide attempt|1.0,
mesoridazine (mesoridazine)|agitation|1.0, mesoridazine
(mesoridazine)|tremor|1.0, and mesoridazine (mesori-
dazine)|schizophrenia|1.0. None of them indicate any
association between mesoridazine and long QT syn-
drome. Similarly, we obtained a total of 1,078 original
drug-SE pairs that contain substring “azacitidine”. Byman-
ual examination of these pairs, we found no connection
between azacitidine and rhabdomyolysis. Therefore, we
excluded these two pairs from the reference standard. Of
all 16 pairs in the reference standard, 15 pairs co-occurred
in MEDLINE sentences, and all 16 co-occurred in MED-
LINE abstracts. These results indicate that MEDLINE
covered all the pairs in the reference standard, therefore,
our approach can boost the signals of all these 16 pairs.
However, due to the lack of access to the EHR data, we
can not systematically compare the presence of all drug-
SE pairs in MEDLINE to that in EHRs. Based on these
comparisons, we are still uncertain how addition of EHR
data can further boot signal detection in FAERS in the
future.

Many of the drug-CV pairs that appeared in both FAERS
andMEDLINE are not included in the FDA drug labels
When evaluated using known pairs derived from FDA
drug labels as the gold standard, the drug-SE pairs that
appeared in both FAERS and MEDLINE had signifi-
cantly higher precisions (0.140 vs. 0.025). The question
remains as to what the actual precision of these pairs is
and how many of them have not been captured in FDA
labels.
We systematically curated all 617 targeted cancer drug-

CV pairs that appeared in both FAERS and MEDLINE
sentences. Targeted cancer drugs are often associated
with unexpectedly high cardiovascular toxicity. While
FDA drug labels have captured many of these events,
spontaneous reporting systems are a main source for

post-marketing drug safety surveillance in real-world
cancer patients. We retrieved and manually curated all
MEDLINE sentences (3,628 in total) where these drug-
CV pairs appear. Among the 617 drug-CV pairs that
appeared in both FAERS and MEDLINE sentences, 320
pairs were true positive (CAUSE) pairs (precision: 0.519),
demonstrating that if a drug-CV pair appears in both
FAERS and MEDLINE, it is highly likely to be a true sig-
nal. This precision of 0.519 is significantly higher than
the precision of 0.140 when known drug-SE pairs from
SIDER were used as the gold standard. This demon-
strates that using known drug-SE pairs from FDA drug
labels could have significantly underestimated the true
precision of pairs that appeared in both FAERS and
MEDLINE.
More significantly, among the 320 true positive pairs,

258 pairs (80.6%) have not been included in SIDER,
demonstrating that many true drug adverse events many
have not yet included in FDA drug labels even though
there exist copious documentation from both the lit-
erature and FAERS. Therefore, focusing on the pairs
that appear in both data sources may result in the dis-
covery of many unknown post-marketing drug adverse
events.
Among the 617 drug-CV pairs that appeared in both

FAERS and MEDLINE, 25.0% are in fact drug-disease
treatment pairs (“TREAT”). We examined the “TREAT”
pairs and found out that 20% of which are caused by
one drug: bevacizumab. Bevacizumab andmany other tar-
geted anticancer drugs work by blocking the growth of
blood vessels to tumors (angiogenesis). However, these
agents also have targets on normal cells, therefore caus-
ing many cardiovascular events. Exactly because of their
anti-angiogenesis nature, these targeted drugs have been
investigated to treat other diseases. For example, beva-
cizumab has been successfully used to inhibit abnor-
mal VEGF-mediated blood vessel growth around retina
in many eye diseases, including as age-related macular
degeneration and diabetic retinopathy. In summary, while
many targeted cancer drugs cause cardiovascular events
in cancer patients, they also are used to treat diseases
related to abnormal blood vessel growth. Therefore, these
pairs include not only drug-SE causal pairs but also drug-
disease treatment pairs. However, we still don’t know if
this is true for other types of drugs or side effects.
Among 617 drug-CV pairs, 23.1% have no obvious

direct semantic relationships (“drug NONE CV”). Our
speculation is that these cardiovascular events may be
caused by patients’ co-morbidities. Cancer prevalence is
higher in older patients than in younger patients. Older
patients also have higher prevalence of cardiovascular dis-
eases. Cardiovascular events in the mis-attributed drug-
CV pairs may be caused by cancer patients’ underlying
co-morbid cardiovascular diseases.
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Discussion
We presented a large-scale, effective approach to improve
signal detection from FAERS. We show that by combin-
ing signals from both FAERS and MEDLINE, we sig-
nificantly improved the drug side effect detection from
FAERS. Nonetheless, our study can be improved in several
ways. First, even though we used over 21 million MED-
LINE records, only about 9.6% of the pairs extracted from
FAERS have ever appeared in MEDLINE. Therefore, we
could only boost the signals of a small portion of all FAERS
pairs with their MEDLINE presence. In addition, we could
have further improved the performance if the full-text
articles are available and used. Second, corroborative evi-
dence from other data sources such as EHRs and the
web data, when combined with the corpus of published
biomedical literature, can be used to increase the power
of signal detection from FAERS. Our approach is gen-
eralizable and can be easily re-targeted to multiple data
sources. Third, we showed that the precision of drug-CV
pairs for the 45 targeted cancer drugs that have appeared
in both FAERS and MEDLINE is as high as 0.519. In
addition, more than 80% of them have not been included
in SIDER. However, the precisions for other drugs or
events may have different precisions and coverage in FDA
drug labels. For example, the coverage of adverse events
in FDA drug labels for commonly used drugs or drugs
in market for a long time may be higher than targeted
cancer drugs, many of which were brought to market
only in the last ten years. Due to the intense manual
curation effort, we were unable to systematically exam-
ine all drug-SE pairs that appeared in both FAERS and
MEDLINE.

Conclusions
We presented a large-scale, efficient, and effective
approach to improve signal detection from FAERS. Com-
pared to drug side effect detection using signals from
FAERS alone, our approach by combining signals from
both FAERS and MEDLINE significantly improved the
performance. We showed by manual curation that the
precisions of drug-SE pairs that appeared in both data
sources are highly enriched with true signals. In addition,
the majority of these true signals may have not yet been
captured in FDA drug labels, even though the supporting
evidence is documented in both MEDLINE and FAERS.
Our approach is efficient in processing over 4 million
records in FAERS and over 21 million articles on MED-
LINE. It is effective in ranking true signals highly. Our
approach is generalizable and can easily incorporate other
text sources such as patient electronic health records
(EHRs) or health-related web pages. We have made a
list of 179,458 candidate drug-SE pairs (with support-
ing evidences from both FAERS and MEDLINE) publicly
available.
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