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Abstract	
	

Syntactic parsing is one of the fundamental tasks of Natural Language Processing (NLP). 

However, few studies have explored syntactic parsing in the medical domain. This 

dissertation systematically investigated different methods to improve the performance of 

syntactic parsing of clinical text, including (1) Constructing two clinical treebanks of 

discharge summaries and progress notes by developing annotation guidelines that handle 

missing elements in clinical sentences; (2) Retraining four state-of-the-art parsers, 

including the Stanford parser, Berkeley parser, Charniak parser, and Bikel parser, using 

clinical treebanks, and comparing their performance to identify better parsing 

approaches; and (3) Developing new methods to reduce syntactic ambiguity caused by 

Prepositional Phrase (PP) attachment and coordination using semantic information. 

 

Our evaluation showed that clinical treebanks greatly improved the performance of 

existing parsers. The Berkeley parser achieved the best F-1 score of 86.39% on the 

MiPACQ treebank. For PP attachment, our proposed methods improved the accuracies of 

PP attachment by 2.35% on the MiPACQ corpus and 1.77% on the I2b2 corpus. For 

coordination, our method achieved a precision of 94.9% and a precision of 90.3% for the 

MiPACQ and i2b2 corpus, respectively. To further demonstrate the effectiveness of the 

improved parsing approaches, we applied outputs of our parsers to two external NLP 

tasks: semantic role labeling and temporal relation extraction. The experimental results 

showed that performance of both tasks’ was improved by using the parse tree information 



	

from our optimized parsers, with an improvement of 3.26% in F-measure for semantic 

role labelling and an improvement of 1.5% in F-measure for temporal relation extraction.  
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Chapter	1:		Introduction	
	
Electronic Health Records (EHRs), an important source of observational data, have been 

widely used to facilitate clinical and translational research. EHRs often contain large 

amounts of unstructured textual data, which provide valuable information about patients 

and often serve as a good complement to structured data. To unlock useful information 

from the clinical narratives, many Natural Language Processing (NLP) methods and tools 

have been developed [1-4]. Recently, more research has focused on extracting 

comprehensive information from clinical text (e.g. temporal information of clinical 

events, relations between clinical events), in addition to simple identification of entities 

of interest[5-7]. This continues to drive the development of more sophisticated and 

advanced NLP methods in the medical domain.  

 

Syntactic parsing that generates full syntactic structures of a sentence is a crucial NLP 

task mediating between linguistic expression and meaning. It is an effective way to 

generate relations among constituents in the sentence, which can be used for other NLP 

tasks such as relation extraction. Although syntactic parsing has been widely studied in 

the open domain, there are very limited studies focusing on parsing clinical text. 

Moreover, according to sub-language theory[8], clinical text has more restricted semantic 

patterns compared with general English. Therefore, it may be necessary to leverage 

clinical domain knowledge to improve syntactic parsing of clinical text. 

 

This dissertation research investigated how to use clinical domain knowledge to improve 

syntactic parsing performance on clinical corpora. To the best of my knowledge, even 



	

though there are many studies working on semantic parsing of clinical corpora[1-3], there 

is lack of research focussed on improving the performance of syntactic parsing on clinical 

corpora.  In this dissertation, I systematically investigated four aspects of parsing clinical 

text: 1) Corpora development - I developed annotation guidelines for annotating parse 

trees of clinical sentences and built two clinical treebanks (Chapter 2); 2) Parser 

comparison – four state-of-the-art parsers from the open domain were retrained using 

clinical treebanks and their performance were evaluated carefully (Chapter 3); 3) 

Ambiguity resolution – semantic information was integrated to revolve syntactic 

ambiguity from prepositional phrases (PP) and coordinations (Chapter 4); and 4) External 

validation – to further demonstrate the effectiveness of our parsing approaches, I applied 

syntactic information generated by our parsers to two external NLP tasks: semantic role 

labeling and temporal relation extraction from clinical text (Chapter 5).   

 

This chapter provides a review of relevant literature. The recent work of clinical NLP 

research and the existing work on syntactic parsing in the open and biomedical domains 

are introduced first. Then, existing research on resolving PP and coordination ambiguities 

in the open domain is also provided. 

1.1 Natural	language	processing	in	the	medical	domain	
NLP, as an effective way to convert free text to structure form, has been widely used in 

the open domain. In the medical domain, many clinical NLP application have been 

developed to unlock valuable information from clinical text to facilitate clinical studies 

such as disease phenotypes and patient cohort identification[9, 10], drug repurposing[11] 

and decision support[12].  Among all the NLP tasks, the most common tasks in the 



	

medical domain include Named Entity Recognition (NER), clinical concept encoding and 

relation extraction. 

	
Named Entity Recognition (NER) is a fundamental task for information extraction. In the 

medical domain, NER identifies clinical concepts in clinical text and assigns them to pre-

defined categories (e.g. disease, medication, lab test, etc.). In the early stages, most of the 

NER systems in the medical domain used rule-based approaches [1]. However, the 

maintainability and scalability (human expertise is required to develop and maintain the 

rule base) of these approaches remain problematic. In 2010, i2b2, a NIH-funded National 

Center for Biomedical Computing based at Partners HealthCare System, organized a 

NER challenge to identify three types of named entities including “problem”, “treatment” 

and “test” on clinical notes from four different institutions. The challenge provided an 

annotated dataset which contain 837 notes including discharge summaries from Partners 

Healthcare, Beth Israel Deaconess Medical Center, and the University of Pittsburgh 

Medical Center and progress notes from the University of Pittsburgh Medical Center. 

Using this data set, many high-performance machine learning based NER systems have 

been developed and evaluated [13-15].  

   

However, even once accurately identified, named entities in clinical text are still not easy 

to use in clinical studies due to high variability of the lexicon of entities. Therefore, some 

NLP systems, including MedLEE  [1, 16], MetaMap [4], cTAKES [2], KnowledgeMap 

[17], and CLAMP map named entities to concepts in the controlled vocabularies of the 

Unified Medical Language System (UMLS) . MedLEE, developed by Friedman et al. in 

the 1990s at Columbia University, is mainly a semantic rule-based system. It was initially 



	

designed to extract clinical attributes from radiological reports [18], and then extended to 

mammography [19], discharge summaries [20, 21] and pathology [22]. MetaMap 

implemented an algorithm of concept encoding which includes several steps such as 

partial parsing, variant generation, candidate retrieval, candidate evaluation, and mapping 

construction. It was developed initially for biomedical literature mining and has recently 

also been used for clinical note processing. cTAKES combines both rule-based and 

machine learning techniques under the IBM UIMA framework. The KnowledgeMap, 

developed by Denny et al. [17, 23] at Vanderbilt University, is another clinical NLP 

system built to extract clinical concepts with their section headers (by SecTag [24]) and 

negation status (by NegEx [25]) in documents and map them to UMLS concept unique 

identifiers.  CLAMP is a graphical user interface (GUI) based NLP toolkit recently 

developed by Xu et al. at the University of Texas Health Science Center at Houston.  

CLAMP provides multiple existing NLP pipelines that build on a set of high performance 

NLP components proven in several clinical NLP challenges such as I2b2, ShARe/CLEF, 

and SemEVAL. Besides, users can easily customize their own pipelines and build 

annotation for machine learning algorithm by using the CLAMP interface. 

 

Beyond concept normalization, the attributes of a named entity (e.g. assertion, anatomical 

location of a disease process, temporal information of clinical events, etc.) and the 

relation between them are also required for most of clinical research. Therefore, many 

existing NLP systems include such components [2, 26, 27]. For example, for each 

identified clinical concept, cTAKES also provides the functionality to identify multiple 

attributes of each identified clinical concept including negation, assertion etc. Aside from 



	

the assertion related attributes, CLAMP includes a pipeline to generate clinically related 

attributes such as body location of disease, lab value of test etc. Moreover, CLAMP also 

provides a relation extraction module to generate the relation between clinical concepts 

(e.g. relation between diseases, relation between disease and medication etc.). Extracting 

relations between entities often requires deeper levels of information about the sentence, 

such as syntactic structure, to resolve ambiguities in the relations. Therefore, syntactic 

parsing is the subject of increasing attention from clinical NLP researchers. 

 

1.2	Syntactic	parsing	in	the	open	domain	
	
Parsing, or formal syntactic analysis, is a fundamental subject in the study of natural 

language.  As an essential prerequisite step to truly understanding the sentential meaning, 

parsing is performed to represent the structure of a sentence by annotating the relations 

among its components. There are two major paradigms in syntactic analysis: constituency 

(phrase structure) parsing and dependency parsing.  The paradigms are complementary in 

terms of expressiveness, and automated methods are available for conversion of one to 

the other [20]. The constituency paradigm is relatively popular in English, with a huge 

amount of annotations accumulated over more than a decade (e.g., the Penn Treebank). 

An example parse in the Treebank style is illustrated in Figure 1, following its latest 

guideline[28]. The innermost layer of brackets denotes the part-of-speech (POS) tags, 

which are lexical classes of the tokens and are usually obtained from a separate pre-

processor before parsing. On top of the POS tags are the actual phrase-level constituent 

labels, which represent syntactic roles and imply the semantic scope of each role via the 



	

nested bracketing. The rich information in such sentential structure empowers NLP to 

perform various useful relation-based information extraction and inference tasks. 

	

	
Figure 1. Example of parse tree 

	
Syntactic parsing is a central task in natural language processing because of its 

importance in mediating between linguistic expression and meaning. Much work has 

shown the usefulness of syntactic representations for subsequent NLP tasks [29] such as 

relation extraction, semantic role labeling and paraphrase detection [30]. In the general 

English domain, early studies of syntactic parsing often relied on symbolic parsing 

approaches that used manually created deterministic grammars to generate parse trees 

[31, 32]. Since 1990, statistical approaches have been widely used for syntactic parsing 

and have shown exceptional performance. 

	
In 1995, Magerman [33] developed one of the first parsers which showed that high-

performance parsing could be achieved using only the Treebank based corpora. In his 



	

approach, he used the decision-tree learning technique to construct a parse tree of every 

sentence. In the evaluation, he divided the WSJ corpus from Penn Treebank into 25 

sections, numbered 00-24. The parser was trained on sections 02-21 and tested on the 00 

section.  Moreover, most of subsequent parsers keep using the same data sets in the 

evaluation when they report the performance on WSJ corpus. The evaluation showed an 

F-measure of 84.7%. In 1999, Collins [34] demonstrated the use of generative models in 

syntactic parsing. He extended his probabilistic parser developed in 1996 with three 

generative models to calculate all probabilities of parse tree head nodes including 

adjunct/complement distinction and wh-movement. Evaluation showed that these models 

surpassed Megerman’s as well as his own previous parsers and achieved a highest F-

measure of 87.8%. In 2004, Bikel [35] used an Expectation-Maximization Model to 

estimate some feature space parameters in the Collins model. The Bikel parser improved 

the performance of the Collins’ parser and achieved better F-measure on average with all 

the parameters that he used, demonstrating that his parser was robust and a reliable 

emulation of the Collins parser. Charniak and Johnson [36] presented a discriminative re-

ranking method for constructing high-performance statistical parsers. Based on a coarse-

to-fine generative parser, they constructed sets of 50-best parse trees and used them as 

input into a Maximum Entropy re-ranker, which then selected the best parse. Their parser 

outperformed all previous generative models and achieved an F-measure of 91.0%. More 

recently, McClosky et al. [37] presented a two-phase parser that consisted of the 

Charniak parser and a bootstrapping method for self-training on raw sentences. The 

McClosky parser boosted performance of the one-phase Charniak parser with an increase 

of 0.8% in F-measure.  



	

 

Besides the lexicalized parsers described above, the Stanford parser [38], which was 

initially developed based on un-lexicalized probabilistic context-free grammar (PCFG) 

technology, has also shown strong performance and has been widely used across different 

domains. In addition, Petrov and Klein [39] developed the Berkeley parser, which also 

implements un-lexicalized technologies by introducing hierarchical coarse-to-fine 

parsing. It reached an F-measure of 90.1% on the Penn Treebank. 

 

Recently, several studies have focused on using deep learning methods to implement 

high-performance and efficient syntactic parsers. In 2011, Collobert [40] proposed a new 

fast discriminative parser, which is based on a recurrent convolutional graph transformer 

network (GTN). Using only a few basic text features, the parser achieved results 

comparable to existing state-of-the-art parsers. In 2013, Socher [41] introduced 

Compositional Vector Grammar (CVG), which combined PCFG with a syntactically 

united recursive neural network (SU-RNN). The CVG combine the advantage of standard 

probabilistic context free grammars (PCFG) with those of recursive neural networks 

(RNNs). PCFG can categorize phrases into specific syntactic categories, while RNN can 

capture fine-grained syntactic and compositional-semantic information of phrases and 

words. Furthermore, the CVG approach generalizes the RNN that uses the same weight at 

all nodes to one with syntactically untied weights, resulting in weights at each node that 

are conditionally dependent on the categories of the child constituents. As a result, the 

CVG approach improved the PCFG of the Stanford parser by 3.8% to obtain the F-1 

score of 90.4%.  



	

	

1.3	Syntactic	parsing	in	the	biomedical	domain	
The state-of-the-art parsers have also been applied to the biological domain. For example, 

Lease and Charniak [42] extended the Charniak parser to process the GENIA corpus [43] 

generated from MEDLINE abstracts, by leveraging existing domain-specific lexical 

resources to augment training with the Penn Treebank. More recently, Clegg and 

Shepherd [44] developed an evaluation method using dependency graphs as an 

intermediate representation and compared four parsers (Collins parser [34], Bikel parser 

[35], Stanford parser [38], and Charniak-Lease parser [42]) on the GENIA corpus. Their 

results showed that the Bikel and Charniak-Lease parsers achieved better performance 

than the others; but the overall performance of all the parsers dropped when compared to 

results from the Penn Treebank.  

 

However, few syntactic parsing studies have been done on clinical text from electronic 

health records (EHRs). Over the past two decades, there has been a growing interest in 

developing high performance NLP systems for the medical domain. Much detailed 

patient information is embedded in narratives in EHRs and NLP provides a means to 

unlock this information for other computerized clinical applications. Early clinical NLP 

systems such as the Linguistic String Project (LSP)[45, 46] and Medical Language 

Extraction and Encoding system (MedLEE) [1] are inspired by sublanguage theory, and 

rely on the relatively restricted semantic constraints of medical language to process text 

[47]. Despite the success of existing clinical NLP systems on various information 

extraction tasks [2-4, 17, 45, 46, 48-51], few of them have implemented full syntactic 

parsing functionality. Some studies extended the general English parsers such as the 



	

Stanford Parser using a medical lexicon for clinical text processing [52], but no formal 

evaluation of syntactic parsing has been done for these parsers. Fortunately, recent 

initiatives in the clinical NLP community have led to generation of detailed annotation 

guidelines, as well as richly annotated corpora. For example, the MiPACQ corpus, which 

contains pathology and other clinical notes from the Mayo Clinic, has multiple layers of 

annotations, including named entities, syntactic parse trees, dependency parse trees, and 

semantic role labeling on 13,091 sentences [53]. It was used to retrain a dependency 

parser and achieved a highest labelled attachment score of 0.836. Additionally, in 2015, 

Yan [54] extended Stanford parser’s grammar with the SPECIALIST lexicon and 

statistics collected from an operative notes corpus to achieve the F-score of 89.90% of 

syntactic parsing on operation notes.   

	

1.4	Resolving	ambiguity	of	Prepositional	Phrase	attachment		
The error of prepositional phrase (PP) attachment is one of the common issues in 

syntactic parsing. It refers to the problem of determining the correct attachment site for a 

PP, conventionally in structures such as “V NP PP” [55, 56]. For instance, in the sentence 

“I ate a pizza with a fork”, the PP “with a fork” could attach either to the verb “ate” or to 

the noun phrase “a pizza”. In this case, the verb is the correct attachment site (as the fork 

is involved in the act of eating). For the sentence “I ate a pizza with tomato sauce”, on the 

other hand, the noun phrase (“a pizza”) is the correct attachment site (as the tomato sauce 

is applied to the pizza). PP attachment is a structural ambiguity problem, which is a 

common issue when parsing a sentence. 

 
In the general domain, many studies have been conducted to resolve the PP attachment 

ambiguity and they generally can be divided into two categories: supervised vs. 



	

unsupervised approaches. Supervised approaches leverage thesauri to group words into 

semantic classes, to address the problem of data sparseness. Brill and Resnik (1994) [56] 

developed a supervised transformation-based learning method with lexical and 

conceptual classes derived from Word-Net, achieving a precision of 82% on 500 

randomly selected ambiguous prepositional phrases examples. Ratnaparkhi et al. [56] 

created a benchmark dataset of 27,937 quadruples (v,n1,p,n2), extracted from the Wall 

Street Journal. Based on this dataset, they trained a maximum entropy model and a binary 

hierarchy of word classes derived by mutual information, achieving a precision of 81.6%. 

Collins and Brooks (1995) [56] used a supervised back-off model and reported a 

precision of  84.5% on the Ratnaparkhi test set. Stetina and Makoto (1997) [57] used a 

supervised method with a decision tree and WordNet classes to achieve a precision of 

88.1% on the same test set. Toutanova et al. [58] adopted a supervised method that makes 

use of morphological and syntactic analysis and WordNet synsets, yielding 87.5% 

accuracy. 

 

For unsupervised approaches, the attachment decision depends largely on co-occurrence 

statistics drawn from text collections. The pioneering work in this area was conducted by 

Hindle and Rooth (1993) [59]. Using a partially parsed corpus, they calculated and 

compared lexical associations over subsets of the tuple (v, n1, p), ignoring n2, and 

achieved 80% precision and 80% recall. Ratnaparkhi [60] developed an unsupervised 

method that collected statistics from text annotated with part-of-speech tags and 

morphological base forms and they achieve a precision of 81.9% on the Ratnaparkhi test 

set. Pantel and Lin [60] described an unsupervised method that used a collocation 



	

database, a thesaurus, a dependency parser, and a large corpus (125M words), achieving a 

precision of 84.3% on the Ratnaparkhi test set. Using simple combinations of web-based 

n-grams, Lapata and Keller [60] achieved less impressive results, with precision in the  

low 70’s  range.  

 

Even though there are some studies aiming to resolve PP attachment ambiguities in the 

open domain, there is a lack of studies on resolving PP attachment in clinical text.  

1.5	Resolving	ambiguity	of	coordination		
Coordination error is another common issue for syntactic parsing. Coordination is a 

procedure that links two sentence elements called conjuncts, and it is very common in 

language. Conjoined structures may be globally or temporarily ambiguous because it is 

grammatically permissible to conjoin any type of constituent as long as the conjuncts are 

from the same syntactic category. For example, the sentence of “She is not having any 

incontinence or suggestion of infection at this time.” can be interpreted into two ways: 1) 

“incontinence” and “suggestion” are conjoined phrases; 2) “incontinence” and 

“suggestion of infection” are conjoined phrases.  

 

In the general English domain, most previous attempts to resolve coordination ambiguity 

have focused on a particular type of NP coordination. Both Resnik [61] and Nakov and 

Hearst [62] considered NP coordinations of the form “n1 and n2 n3” where two structural 

analyses are possible: ((n1 and n2) n3) and ((n1) and (n2 n3)). To resolve such ambiguity, 

Resnik combined number agreement information of candidate conjoined nouns, an 

information theoretic measure of semantic similarity, and a measure of the 

appropriateness of noun-noun modification. Nakov and Hearst’s [62] disambiguation 



	

method is to combine Web-based statistics on headword co-occurrences with other 

mainly heuristic information sources. A probabilistic approach was presented in 

(Goldberg, 1999)[63], where an unsupervised maximum entropy statistical model was 

used to disambiguate coordinate noun phrases of the form n1 preposition n2 cc n3.  

 

In the medical domain, as with PP attachment, there is no prior research work focused on 

resolving coordination ambiguities in clinical text.  

 

1.6 Summary 

In this chapter, relevant literature focussed on syntactic parsing in both open domain and 

the medical domain was reviewed. As discussed in the above sections, syntactic parsing 

is a critical task of NLP and has been extensively studied in open domain. However, 

limited work has been done regarding the methods of syntactic parsing in the medical 

domain. Moreover, few annotated clinical corpora of parse trees are available for 

developing and evaluating syntactic parsing methods in the medical domain. Therefore, 

there is a need for further research to create clinical treebanks and develop customized 

syntactic parsing approaches for clinical text, with the aim to improve other NLP tasks 

using extracted syntactic information. My hypothesis is that by leveraging clinical 

corpora and domain specific semantic knowledge, existing open-domain parsers’ 

performance on processing clinical text can be improved. To validate the hypothesis, I 

propose the following specific aims: 

Aim 1 – Annotation of clinical treebanks  

Aim 2 – Evaluation and extension of the state-of-the-art parsers using clinical treebanks 



	

Aim 3 – Using semantic information to reduce PP attachment and coordination 

ambiguities in the parsed result 

Aim 4 - Validation of the effectiveness of the optimized parsers in clinical NLP tasks 

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

Chapter	2.	Develop	treebanks	of	the	clinical	text		

2.1	Introduction		
One of the main reasons for the paucity of studies on syntactic parsing in the medical 

domain is the resource-intensive nature of establishing an infrastructure to support the 

development of clinical text parsers. Two challenges in particular are: 

1) Limited availability of raw and annotated clinical texts and standards for annotation 

(Chapman [64] et al.), with the downstream effect of limiting reproducibility and 

collaboration. In contrast, general English parsers have achieved accuracies in the high 

80’s, benefiting from abundantly annotated data and well-documented guidelines. 

 

 For example, the Penn Treebank project [65] syntactically annotated sentences in the 

over one million word Wall Street Journal (WSJ) corpus and released the annotation 

guidelines to the public. Both the corpus and the guidelines have subsequently served as 

the basis for an enormous amount of research in parser development as well as annotation 

of new corpora.  

 

The clinical NLP community, while being aware of the benefits of high-accuracy parsers 

and moving generally in this direction, has focused mostly on semantic or even higher 

level annotation for specific applications [66-68]. One formal initiative that addresses this 

issue is the Strategic Health IT Advanced Research Projects (SHARP) by Mayo Clinic 

and its collaborating institutions[69], which have developed a MiPACQ (Multi-source 

Integrated Platform for Answering Clinical Questions) clinical corpus with layered 

annotations including syntactic parse trees and shared their guidelines [53, 70]. However, 

there does not appear to be any existing approach that has adequately addressed the 



	

challenges in syntactic representation for ill-formed sentences, which are especially 

common in clinical text [64].  

 

2) The intrinsic properties of medical sublanguage [47, 70] make linguistic annotation 

extremely knowledge-intensive, therefore, placing a high bar on the annotation. Many 

clinical sentences are telegraphic, with missing subjects and/or verbs. As a result, these 

sentences make interpretation difficult due to the frequent ambiguities found in clinical 

text and pose a challenge to existing parsers that are modelled on well-formed sentences. 

Filling in the gaps in such cases requires appropriate domain knowledge, without which 

the process of analysing the syntactic structure and interpreting the meaning would be 

highly error-prone. Therefore, it is difficult to apply a general annotation guideline to 

clinical corpus annotation. 

 

Based on the challenges summarized above, it is clear that it is extremely valuable to 

develop syntactically annotated corpora for the medical domain, by following 

linguistically sound annotation guidelines. Ideally, the annotations/guidelines should be 

compatible with some commonly accepted style of syntactic annotation for general 

English (e.g., that of the Penn Treebank) so that a great number of existing methods/tools 

can be reused. At the same time, it should also address unique characteristics of the 

medical language itself.  



	

2.2	Methods	

2.2.1	Develop	a	parse	tree	annotation	guideline	using	progress	notes	

2.2.1.1	Data	selection	and	preprocess	
First, we used progress notes from the University of Pittsburgh Medical Center (UPMC) 

distributed in the 2010 i2b2/VA Clinical NLP Challenge. A physician manually reviewed 

the progress notes and selected 25 of them by identifying those concerning general 

medicine and excluding those that apparently contained copy-pasted redundant 

information. To eliminate confounding errors in steps prior to parsing, a linguist 

performed manual tokenization and POS tagging for the 25 notes, consulting a physician 

on cases that required domain knowledge. Based on the gold standard tokenization, we 

automatically sampled sentences with at least 3 tokens of length for this study. Before 

distributing the notes for manual parsing, we pre-parsed them using the Stanford Parser 

with the general English PCFG model that was provided in the official package. 

	

2.2.1.2	Annotation	guideline	and	progress	notes	Treebank	development	
Four major stages were included in developing our annotation guidelines along with 

iterative refining of the deliverable corpus (see Figure 2 for flow chart): 

	

Figure 2.  Stages of developing annotation guidelines 
	
 

Based on the manual analysis of institution-specific notes other than the 25 notes selected 

for this study, a linguist drafted a preliminary set of clinical parsing guidelines adapted 



	

from the Penn Treebank [65]. We applied the error handling strategy introduced by 

Foster [71] and found that specifically inserting null elements for ignored (or missing) 

words was helpful in restoring the proper syntax of ungrammatical clinical sentences. 

The guideline creation was not only knowledge-driven but also involved annotating real 

clinical text. We used the application WordFreak [72] for performing our manual 

annotation. There were two teams involved in the development of the annotation 

guideline, including one from Kaiser Permanente and one from Vanderbilt University . In 

the initial batch, both teams annotated 6 of the 25 notes (with consulting physicians for 

domain-specific interpretation) and discussed/reconciled any disagreements. After each 

round, the draft guidelines were revised accordingly to address the issues discovered. 

 

In the second stage, we performed three more rounds of annotation to train two human 

annotators and to fine-tune the guidelines. For each round, we randomly sampled 150 

sentences from the remaining 19 notes (not used in the first stage) and had both the 

linguist and a non-linguist annotate them by following the guidelines and consulting 

physicians whenever needed. The Evalb program (the version that came with the 

Stanford Parser) was used to compute the inter-annotator agreement rate based on the F-1 

measure. The annotators met after assessing the agreement rate to reconcile and discuss 

applicability of the guidelines. These three rounds with 450 sentences were meant to 

facilitate convergence among the annotators and the guidelines (by revising any 

instructions that were considered problematic). 

 



	

To test the learnability/stability of our guidelines, we randomly sampled another 216 

sentences (intended to round up the deliverable corpus to 1,100 sentences) from the 19 

notes and had both annotators annotate them. An agreement rate was computed to 

evaluate whether the annotators could generate consistent annotations by following the 

latest guidelines. Additionally, to investigate the potential bias introduced by pre-parsing 

with the Stanford Parser, we had the linguist annotate two of the six stage-one notes 

(interrupted with a wash-out period of a half year) directly from the POS-tagged 

sentences. The linguist’s self-agreement rate (between her annotations using the pre-

parsed vs. those using only the POS-tagged) was computed to evaluate whether the 

consistency can be achieved with/without the factor of pre-parsing. 

 

After the agreement rates were assessed to be satisfactory in the last round, the annotators 

met to discuss/resolve any remaining disagreements and then the linguist applied the 

latest guidelines in preparing a final version of the deliverable corpus.  

2.2.2.	Extend	the	guideline	to	create	a	Treebank	of	discharge	summaries	
We applied the guideline to annotating discharge summaries contained in the 2010 I2b2 

clinical NLP challenge, a total of 237 documents. Every sentence in these discharge 

summaries was pre-processed by the Stanford parser and a researcher in clinical NLP 

manually reviewed each parse tree generated by the Stanford parser and corrected it 

based on the annotation guideline. When there was any question about a parse tree, a 

linguist and a physician were consulted for correct annotation.  

 



	

2.2	Results	

2.2.1	Annotation	guideline	development	
Inter-annotator agreement rates were computed to measure the consistency between 

institutions in following the guidelines. Table 1 shows the progressive rates from the 

three iterations of guideline tuning to the final independent testing. We can see the 

agreement rates climbed steadily over the tuning iterations and culminated at 0.930 in the 

final testing phase. The intra-annotator agreement rate of the linguist in annotating from 

Stanford Parser pre-parsed sentences versus from POS-tagged sentences only was 0.948, 

with 0.791 perfectly self-agreed parse trees. These results indicate that the annotators 

were able to perform syntactic parsing with acceptable consistency by following the 

guidelines. 

	
Table 1. Inter-annotator agreement rates in guideline tuning and final testing 

 Tuning 1 Tuning 2 Tuning 3 Final testing 

Number of 
sentences 

150 150 150 216 

Agreement rate 0.872 0.887 0.903 0.930 
Proportion of 

perfectly agreed 
upon parse trees 

0.633 0.660 0.693 0.713 

	
 

Our annotation guidelines are based on the original Bracketing Guidelines for Treebank 

II Style [12], with modifications to accommodate the properties of medical sublanguage. 

Several noteworthy adaptations are summarized in the following: 

a) Insert missing elements: We adopted Foster’s[71] approach in annotating sentences 

with omitted words. We insert a null element 0-NONE- for the inferred missing word to 

restore the intended syntactic structure. 



	

b) Mark superfluous and redundant elements: Superfluous and redundant elements that 

cannot be accommodated in a sentence or phrase structure are annotated with the 

constituent “X”, including some punctuation marks, symbols, and words. 

c) Handle symbols with inferable syntactic roles: “Header: value” expressions occur 

frequently in clinical notes. Some of them can be legitimately annotated as complete 

sentences if the colon is interpreted as a verb. In such cases, the colon is allowed to 

precede a verb phrase while its POS tag should still remain “:”. 

d) Interpret syntactic roles of Latin abbreviations: instead of using FW (foreign word) for 

Latin abbreviations, we try to infer their functioning POS tags and syntactic roles.  

e) Respect domain-specific semantic structure of complex phrases. We try to accurately 

represent the internal semantic structure of medical expressions in annotating the 

constituents. When there are alternative grammatical parses, the one that better captures 

the intended meaning is preferred.   

2.2.2	Annotation	corpus	
The annotated corpus contains 1,100 sentences, with a median length of 8 tokens per 

sentence. Table 2 shows the distribution of syntactic constructs (constituents) in our 

annotated corpus, aligned side by side with that in an arbitrarily selected WSJ sub-corpus 

(the 00 section) of 1,921 sentences. Table 3 shows a list of those rules that involve 

restoration of missing elements by inserting a 0-NONE- node. For example, we can see 

the most frequent rule involving element restoration is VP ! -NONE- NP. 

	
Table 2. Constituent distribution in the annotated corpus with comparison to a general 
corpus 
Constituent label Constituent description % in our 

annotated clinical 
corpus 

% in a subset of 
WSJ corpus 

NP* Noun phrase 40.00 42.37 



	

VP* Verb phrase 16.85 19.68 
S Sentence 12.18 12.93 
PP* Prepositional phrase 8.56 12.74 
FRAG* Fragment 7.65 0.21 
ADJP* Adjective phrase 4.51 1.66 
ADVP Adverb phrase 2.87 2.57 
NX* Head in complex NP 2.14 0.26 
SBAR* Clause introduced by a 

subordinating conjunction 
1.42 3.93 

PRN* Parenthetical 1.41 0.50 
LST* List marker 0.78 0.03 
X* Unknown, uncertain, or 

unbracketable constituent 
0.58 0.01 

WHNP* Wh-noun phrase 0.44 0.99 
PRT* Particle 0.21 0.35 
UCP* Unlike-coordinated 

phrase 
0.17 0.04 

WHADVP Wh-adverb phrase 0.14 0.25 
QP* Quantifier phrase 0.06 0.91 
CONJP Conjunction phrase 0.02 0.04 
WHPP Wh-prepositional phrase 0.01 0.05 
SQ Inverted yes/no question, 

or main clause of a wh-
question 

0 0.04 

SINV* Inverted declarative 
sentence 

0 0.30 

SBARQ Direct question 
introduced by a wh-word 
or wh-phrase 

0 0.03 

RRC Reduced relative clause 0 0.02 
NAC* Not a constituent 0 0.08 
INTJ Interjection 0 0.01 
	

	

Table 3. Grammar rules involving restoration of missing elements in our annotated 
corpus 
Frequency Grammar rule 
159 VP ! -NONE- NP 
52 NP ! -NONE- 
41 VP ! -NONE- VP 
25 PP ! -NONE- NP 
21 VP ! -NONE- ADJP 
6 VP ! -NONE- PP 
3 VP ! -NONE- NP PP 
2 NP ! JJ -NONE- 



	

2 VP ! -NONE- SYM NP 
1 VP ! -NONE- ADVP VP 
1 VP ! -NONE- NP PRN 
1 VP ! -NONE- NP , NP , NP 
1 PP ! -NONE- NP ADVP 
1 VP ! -NONE- NP NP 
1 ADJP ! ADVP -NONE- 
	
	

2.3	Discussion	
The main purpose of this study was to develop/evaluate/share domain-customized parsing 

guidelines along with a real clinical corpus annotated accordingly. The promising inter-

annotator agreement rate (0.930) indicated reliability of the guidelines, and the accuracy 

(0.811) of a statistical parser retrained with the corpus demonstrated reasonable usability 

of the annotations. To our knowledge, the current work was the first to introduce Foster’s 

error-handling approach to ill-formed clinical sentences. We do not claim it to be the 

most suitable and final solution to annotating ungrammatical clinical sentences. Rather, 

the rationale was merely to perform solid experiments and share the results. It is hoped 

that the community will gradually converge to a common consensus by combining the 

advantages of different proposals. 

 

As mentioned in the Background section, the study was partly motivated towards 

addressing the limited interoperability in medical text parsers that involve proprietary 

semantic grammar. We believe our sharing of the standard-conforming corpus is critical 

in a data-driven, sustainable model that attracts constant pursuit of questions/solutions for 

research and development. However, it should be emphasized that a general syntactically 

annotated corpus is not contradictory to the value of any existing semantic approaches. If 

combined appropriately, syntax and semantics can in fact complement each other in 



	

forming robust parsing solution to clinical narratives. Specifically, when superimposed 

with semantic annotations on the same corpus, the Treebank constituents can facilitate 

automated derivation of a semantic grammar in flexible ways. 

 

As by-products, the study yielded interesting findings as well as research questions:  

1) The simple comparison of constituent distribution between the annotated corpus and a 

WSJ subset served as proof of concept that clinical text does differ syntactically from 

non-clinical English. However, it is an open question whether the progress note sample in 

this study is representative of clinical text. In other words, could syntactic composition 

differ considerably even among different clinical genres and also between clinical text 

that was dictated and versus typed? 

 

2) The number of iterations and amount of training notes provided a hint on the effort 

required to achieve reasonable annotation consistency. Our results suggest it would take 

at least three iterations of annotating/adjudicating on more than 500 sentences in total for 

the annotators to reach a higher than 0.9 agreement rate. However, there is a need for a 

larger scale comparative study to verify the generality of our findings. 

 

3) Combining clinical text with a certain amount of Treebank training sentences resulted 

in the most accurate parser model. A purely general English model achieved an accuracy 

of only 0.656, but the mixture boosted the purely clinical parser model's accuracy from 

0.769 to 0.811. One hypothesis is that the size of our corpus (1100 sentences) is still not 

sufficient to train a statistically robust parser, and therefore even off-domain annotations 



	

can help with a smoothing effect. The research question here is: How large should the 

clinical corpus be in order to independently train a parser? And before the sufficiency of 

domain-specific training data is achieved, how can we reliably estimate the optimal ratio 

to mix the heterogeneous corpora? 

 

2.4	Conclusion	
With an iterative approach, we developed syntactic parsing guidelines for clinical text 

and annotated a set of 1100 sentences in progress notes accordingly. The guidelines are 

compatible with the standard Penn Treebank syntactic annotation style and include 

special adaptations to accommodate clinical sublanguage properties. Two annotators (a 

linguist and a computer scientist) reached an agreement rate of 0.930 in the final 

independent evaluation, which indicates consistency in following the guidelines. As 

simple validation of usefulness, retraining a statistical parser with the annotated corpus 

achieved a best accuracy of 0.811 (by involving also some off-domain training 

sentences). 

 

 

 

 

 

 

 

 

 



	

Chapter	3.	Leveraging	clinical	treebanks	to	improve	state-of-the-
art	parsers	performance	on	clinical	corpora	
	
In the previous chapter, we developed an annotation guideline for clinical treebank and 

built two clinical corpora including a discharge summary treebank and a progress note 

treebank. Both Treebanks can be used to re-train existing parsers to recognize syntactic 

structures of sentences in clinical text. In this chapter, we re-trained several state-of-the-

art parsers in the open domain and evaluated their performance on different types of 

clinical notes, by using Treebanks developed by us and others. 

3.1	Introduction		
In the general domain, there are several state-of-the-art parsers that have achieved great 

performance in English corpora such as the Penn Treebank etc. 

3.1.1	The	Stanford	parser	
In 2003, Klein proposed an un-lexicalized parser, the Stanford parser. It achieved the 

bracket F-measure of 86.36%, which was better than the early lexicalized PCFG models. 

In the study, Klein described several simple, linguistically motivated annotations on both 

non-terminal and POS tagging level, which do much to close the gap between basic 

PCFG and state-of-the-art lexicalized models. In 2013, Socher proposed a deep learning 

based solution for Stanford parsers, which used a syntactically united recurrent neural 

network (SU-RNN) to combine PCFG generated from the treebank and semantic 

information from the pre-trained word embeddings. As a result, it increased the F-

measure to 90.4%.  

3.1.2	The	Bikel	parser	
In 1997, Collins proposed a new statistical parsing model, which is a generative model of 

lexicalized context-free grammar. Then he extended the model to include a probabilistic 



	

treatment of both sub-categorization and wh-movement. The model achieved the 

88.1/87.5% constituent precision/recall[34]. In 2004, Klein implemented the Bikel parser, 

which is based on the Collins parsing model. Additionally, Klein implemented a flexible 

constraint-satisfaction mechanism to build the model for unknown events in the training 

data. It used the Expectation-Maximization algorithm to estimate the feature space 

parameters in the Collins model [35].  

3.1.3	The	Charniak	parser	
In 2000, Charniak presented a new parser based on “maximum-entropy-inspired” model 

for conditioning and smoothing, which achieved a F-score of 90.1% for sentences of 

length 40 words and less, and a F-score of 89.5% for sentences of length 100 words and 

less. In 2005, Charniak used a simple yet novel method for constructing sets of 50-best 

parse trees based on a coarse-to-fine generative parser, then those 50-best parse trees 

were fed into a discriminative re-ranker which is based on Maximum Entropy model to 

select the best parse tree. As a result, it achieved an F-score of 91.0% on sentences of 

length 100 words or less [36].  

3.1.4	The	Berkeley	parser	
In 2007, Petrov introduced the Berkeley parser, which made several improvements to 

unlexicalized parsing with hierarchically state-split PCFGs. First, he presented a novel 

coarse-to-fine method in which a grammar’s own hierarchical projections are used for 

incremental pruning, including a method for efficiently computing projections of a 

grammar without a Treebank. Second, he compared various inference procedures for 

state-split PCFGs from the standpoint of risk minimization, paying particular attention to 

their practical tradeoffs. As a result, the Berkeley parser achieved F-score of 90.0% on an 

English corpus [39]. 



	

	

3.1.5	Application	of	parsing	in	the	medical	domain	
Recently, the research community has started applying existing parsing algorithms to 

clinical text. In 2011, Xu randomly selected 50 sentences in the clinical corpus from the 

2010 i2b2 NLP challenge and manually annotated them to create a gold standard of parse 

trees. In the study, the evaluation showed that the original Stanford Parser achieved a 

bracketing F-measure (BF) of 77% on the gold standard. Further, the study assessed the 

effect of part-of-speech (POS) tags on parsing and the results showed that manually 

corrected POS tags achieved a maximum BF of 81%. Also, it analysed parsing errors 

from the Stanford Parser and provided valuable insights for large-scale parse tree 

annotation for clinical text. In 2013, Daniel reported the performance of the OpenNLP 

constituency parser on a corpus combining general domain data and the MiPACQ data 

described in this manuscript., The parser achieved a labeled F1 score of 0.81 on a corpus 

consisting of clinical and pathology notes when tested on held-out data of clinical and 

pathology notes [53]. In 2015, Yan expanded Stanford parser’s grammar using the 

SPECIALIST lexicon and reported its performance on operative notes [54]. 

	

3.2.	Methods	

3.2.1	Choose	state-of-the-art	parsers	
Basically we wanted to follow Clegg and Shepherd’s study [44], which compared four 

parsers. However, we excluded the Collins parser because it lacks a simple way to re-

train the parser using a different corpus. Furthermore, the Berkeley parser, as a very 

popular parser in the English domain, has good potential for high performance on the 

cross domain. As a result, we included four parsers in the study: the Stanford parser [38], 

the Bikel parser [35], the Charniak parser [36] and the Berkeley parser [39]. In addition, 



	

we also included a compositional vector grammar based parser [73] as a deep learning 

based Stanford parser.  

3.2.2	Choose	clinical	treebanks	
We evaluated the performance of existing parsers on three clinical treebanks including 

two that was built previously: 1> The ProgressNotes treebank originated from the clinical 

notes from the 2010 I2b2 NLP challenge; 2> The DischargeSummaries treebank and the 

MiPACQ treebank, which consists of annotated clinical and pathology notes related to 

colon cancer from Mayo Clinics. When retraining our developed treebank, we removed 

the annotation for missing elements in this experiment. 

  

3.2.3	Strategy	of	parsing	
The parsing experiment included three steps: firstly, we ran four State-of-the-Art parsers 

with the default settings. Then we used 5-fold cross validation mechanisms to retrain the 

parsers on both treebanks. Finally, to test if combining treebank from clinical and other 

domain could achieve better results, we ran the parsers with each treebank combining the 

WSJ corpus from Penn Treebank respectively. For the deep learning based Stanford 

parser, when retraining on clinical corpus, we generated new word embedding vectors 

from clinical text in the MIMIC-III dataset[74] using continuous bag-of-words (CBOW) 

(context window size of 5, threshold for downsampling the frequent words of 1e-3) in 

Word2vec model and fed them into the deep neural network. 

 

3.3	Results	
Table 4 shows the experimental results on the ProgressNotes treebank. The deep learning 

based Stanford parser achieved the best performance of 71.14% BF, with the default 



	

settings. Compared to the default setting, re-training on the clinical treebank improved 

the performance for three parsers, with the biggest boost achieved by the deep learning 

based Stanford parser (from a F-score of 71.14% to 78.15%). When the combined 

corpora of both progress notes and WSJ articles were used for training, the BF of the 

Berkeley parser and Charniak parser increased by 3.9% (from 71.87% to 75.77%) and 

3.52% (from 70.01% to 73.53%); however, both the Stanford and the Bikel parsers 

dropped slightly in their performance.  

 

Table 5 shows the results obtained using the DischargeSummaries treebank. With the 

default setting, the Stanford parser again achieved the best performance among all the 

parsers. Upon re-training on the MiPACQ Treebank alone, all the four parsers had a big 

leap in performance with the Berkeley parser showing the maximum increase (increased 

from a BF of 69.55% to 86.39%). Re-training on the combined treebanks of MiPACQ 

and WSJ led to marginal increases in performance for all the parsers. Among all the 

parsers, the Berkeley parser achieved the best BF of 86.05% when both MiPACQ and 

WSJ treebanks were used. 

 

Table 6 shows the results obtained using the MiPACQ treebank. With the default setting, 

the Berkeley parser again achieved the best performance among all the parsers. Upon re-

training on the MiPACQ treebank alone, all the four parsers had a big leap in 

performance with the Stanford parser showing the maximum increase (increased from a 

BF of 69.55% to 86.39%). Re-training on the combined treebanks of MiPACQ and WSJ 

led to marginal increases in performance for all the parsers. Among all the parsers, the 



	

Berkeley parser achieved the best BF of 86.05% when both MiPACQ and WSJ treebanks 

were used. 

 
 
Table 4. Results for four parsers on the ProgressNotes treebank 
 

Parser Training corpus BR (%) BP (%) BF (%) 

Stanford Default 70.31 70.27 70.29 
Clinical 76.22 71.31 73.68 
Clinical + WSJ 74.27 71.16 72.68 

Stanford  
(deep learning) 

Default 70.61 71.68 71.14 
Clinical 79.91 76.47 78.15 

Bikel Default 64.20 69.20 66.60 
Clinical 71.85 73.05 72.45 
Clinical + WSJ 70.85 73.92 72.35 

Charniak Default 62.91 75.03 68.44 
Clinical 65.82 74.78 70.01 
Clinical + WSJ 75.89 71.31 73.53 

Berkeley Default 66.63 65.08 65.85 
Clinical 77.24 67.19 71.87 
Clinical + WSJ 79.41 72.46 75.77 

 
Table 5. Results for four parsers on the DischargeSummaries treebank 
 

Parser Training corpus BR (%) BP (%) BF (%) 
Stanford Default 68.37 72.06 70.17 

Clinical 83.10 82.52 82.81 
Clinical + WSJ 77.76 80.57 79.14 

Stanford (deep 
learning) 

Default 68.50 69.78 69.13 
Clinical 84.07 83.58 83.82 

Bikel Default 65.14 72.48 68.61 
Clinical 76.32 77.86 77.08 
Clinical + WSJ 74.96 77.76 76.34 

Charniak Default 62.14 75.75 68.27 
Clinical 74.57 76.63 75.58 
Clinical + WSJ 74.56 83.15 78.62 

Berkeley Default 67.33 74.68 70.82 
Clinical 85.03 83.89 84.45 
Clinical + WSJ 82.41 84.56 83.47 

 
 
 
 
Table 6. Results for four parsers on the MiPACQ treebank 
 

Parser Training corpus BR (%) BP (%) BF (%) 



	

Stanford Default 75.54 74.41 74.97 
Clinical 84.35 85.45 84.90 
Clinical + WSJ 84.89 85.24 85.06 

Stanford (deep 
learning) 

Default 75.78 73.45 74.59 
Clinical 85.83 84.80 85.31 

Bikel Default 73.49 75.78 74.62 
Clinical 77.59 78.09 77.84 
Clinical + WSJ 77.43 78.63 78.03 

Charniak Default 70.63 78.11 74.18 
Clinical 80.88 86.39 83.54 
Clinical + WSJ 80.65 86.76 83.59 

Berkeley Default 66.30 73.14 69.55 
Clinical 85.94 86.85 86.39 
Clinical + WSJ 86.03 86.08 86.05 

 
 

3.4	Discussion	
Full syntactic parsing is an important area of clinical NLP research, but it has not been 

extensively explored so far. In this study, we conducted the first formal evaluation to 

compare the performance of four state-of-the-art English parsers on clinical notes using 

three clinical treebanks. When all three treebanks were retrained on the parsers, the 

highest average BFs of 86.39%, 84.45% and 78.15% were achieved by the Berkeley 

parser for the MiPACQ and DischargeSummaries corpus and the deep learning based 

Stanford parser for the ProgressNotes treebank respectively.  

 
As expected, existing parsers achieved lower performance on clinical text than previously 

reported results on general English text, when they were directly applied to clinical text. 

For instance, on the MiPACQ corpus, the Stanford parser showed a decrease of 11.35% 

in BF (from 86.32% to 74.97% in this study). When the existing parsers were re-trained 

on the clinical treebanks, their performance increased. For the progress notes treebank, 

there were 3.39%, 7.01%, 5.85%, 1.57% and 6.02% increases in BF for the Stanford, 

deep learning based Stanford, Bikel, Charniak and Berkeley parser, respectively. For the 



	

MiPACQ corpus, the increases were 8.93%, 10.72%, 3.22%, 9.36% and 16.84%, which 

were much higher than increases in the progress notes corpus, probably due to the larger 

sample size of the MiPACQ corpus (about 10 times larger than the progress notes corpus 

– 10,661 vs. 1,025 sentences). These findings suggest that re-training on clinical corpora 

is necessary for developing high-performance statistics-based parsers for clinical text. It 

also indicates the need for building annotated clinical treebanks.  

 

Although there is growing interest in building annotated clinical corpora, the sizes of 

these corpora are often limited due to the high cost of physician annotators. Large-scale 

corpora from other domains, such as the Penn Treebank, are available and should be 

leveraged for clinical parsing. That is the motivation of the combination approach 

proposed in this study. For progress notes, direct combination of the WSJ corpus and the 

clinical corpus showed varying results among the four parsers. It largely improved the 

performance of the Berkeley parser and Charniak parser; but reduced the performance of 

the Stanford parser and Bikel parser. The inconsistency may be due to the small sample 

size of the ProgressNotes treebank itself. For the DischargeSummaries corpus, direct 

combination of WSJ and clinical corpora lead to the decrease of the performance for all 

the four parsers except the Charniak parser. For the MiPACQ corpus, which is 10 times 

larger than the ProgressNotes corpus, direct combination of WSJ and clinical corpora 

marginally but consistently improved the performance for all the four parsers (increases 

of BF ranging from 0.05% -0.43%). These results suggest that it is possible to leverage 

existing corpora in the open domain to improve parsing of clinical text. However, instead 

of simply combining different corpora, sophisticated methods, such as domain adaptation 



	

techniques, should be investigated to improve parsing in the medical domain. 

Furthermore, we are also interested in semi-supervised learning methods such as co-

training, which may help build large-scale clinical corpus from unlabelled data.     

 

Compared to the default setting, the Stanford deep learning based parser outperformed 

the Stanford parser after retraining on clinical corpus. In the default setting, the deep 

learning based parser achieved a better BF than the Stanford parser on the progress notes 

treebank but a worse BF on the MiPACQ treebank. After retraining on clinical treebanks 

and generating word embedding vectors from a large clinical corpus, the deep learning 

based parser achieved better results than the Stanford parser on both clinical treebanks. 

More specifically, in the ProgressNotes treebank, retraining on the clinical treebank 

improved deep learning based parsers’ BF score by 7.01% on progress notes treebank and 

10.72% on MiPACQ treebank. In contrast, for the Stanford parser, the numbers were 

3.39% and 9.93%. For both parsers, the increase of the BF on MiPACQ corpus was 

comparable, however, the deep learning based parser had much more improvement on the 

progress notes corpus. These findings suggest that using the word embeddings generated 

from a large-scale clinical corpus has more effects on the progress notes than MiPACQ 

corpus in this study. 

 

When existing parsers were directly applied to clinical text, a main category of errors was 

the failure to recognize structures of clinical sentences. We also analysed errors from 

parsers re-trained on clinical corpora and categorized them into the following major 

groups:  



	

 
1) Ambiguity of coordination:  For example, in the sentence “Current medications are 

Keppra 1500 bid and Tegretol - XR 400 bid”,  “Keppra 1500 bid” and  “Tegretol - XR 

400 bid” are both drug with signatures and they should be coordinated. However, in the 

parsed result, “bid” and “Tegretol” are coordinated. 

 

2) Ambiguity of prepositional phrase (PP) attachment: For example, in the sentence “He 

denies any problem with chest pain, dyspnea on exertion at this time”, the parser did not 

identify the prepositional phrase ‘on exertion’ as a modifier to ‘dyspnea’.  Clinical 

knowledge will be useful for solving this type of ambiguity. 

 

3) Errors in the non-terminal symbol ‘NX’: NX was used to mark the head noun within a 

complicated noun phrase in the annotation guideline. However, parsers had trouble 

identifying them correctly.  

 

3.5	Conclusion		
In this study, we evaluated and compared four state-of-the-art parsers on two types of 

clinical treebanks. We found that training on the clinical treebank could largely improve 

the performance of the parsers on clinical text. Among all the parsers, the Berkeley parser 

achieved the best performance when it was retrained on the MiPACQ corpus. 	



	

Chapter	4.	Using	semantic	information	to	resolve	ambiguities	of	
PP	attachment	and	coordination	
 

In the previous chapter, annotated clinical treebanks were used to re-train the state-of-the-

art parsers for processing clinical sentences. Although the performance of parsers is 

improved through re-training on clinical corpora, there are still errors that could be 

further improved through more advanced methods. Based on the error analysis, two 

major groups of errors were identified: 1) ambiguity of PP attachment and 2) ambiguity 

of coordination. In this chapter, I describe our studies on developing new methods for 

resolving these two types of ambiguity for syntactic parsing of clinical text.   

4.1	Using	semantic	information	to	resolve	PP	attachment	ambiguity		

4.1.1	Introduction	
As described in Chapter 1, there are extensive studies on resolving PP attachment errors 

in the open domain. However, limited work has been conducted in the medical domain. 

In clinical text, PP attachment usually describes the relation between a clinical event and 

its attributes.  For example, in the sentence “Patient given lab results from 10-03-10”, PP 

“from 10-03-10” should attach to the noun phrase “lab results”, which means that the 

date of lab result is “10-03-10”. However, if PP attaches to the verb “given”, it will mean 

the action of “given” happens on “10-03-10”. Correctly understanding such relations (e.g. 

clinical event and its temporal information) is meaningful and highly desired in many 

clinical studies such as detecting adverse drug events, drug-drug associations etc.   

 
Semantic information has often been used to resolve PP attachment ambiguity in the open 

domain.  There, researchers mainly make use of word meanings to help resolve the 

ambiguity. However, it sometimes creates new noise as well due to the ambiguous word 



	

sense itself. According to the sub-language theory, medical text has more restricted 

semantic patterns, as compared to general English, making semantic information more 

effective to help resolve the ambiguity of sentence structures. Nevertheless, the 

annotation of semantic information is usually not available. Therefore ,automatic 

solutions to generate high-quality semantic information are also required. Fortunately, 

over the past decade, more and more clinical NLP systems have been developed and they 

can provide semantic information needed for resolving PP attachment. In this study, we 

report our first attempt to leverage semantic information to resolve PP attachment 

ambiguity in clinical text.  

	

4.1.2	Methods	

4.1.2.1	Data	sets	
In this study, two treebanks were used: 1) the MiPACQ treebank described in Albright et 

al. [25] and 2) the DischargeSummaries treebank developed locally (see Chapter 2). 

Sentences with less than 5 tokens from both clinical treebanks were excluded, because 

they are often section headers and do not require full parsing. After filtering, we retained 

10,661 sentences in the MiPACQ treebank and 4,594 sentences in the 

DischargeSummaries treebank. 

 

There are different types of PP attachment in clinical text. Following previous studies[16, 

56, 75], we limited the scope of this study to the most common scenario of PP attachment 

ambiguity - (V, N1, P, N2), where V stands the verb that precedes the prepositional 

phrase, P is the prepositional word (e.g. “of”, “in” etc.), N1 is the noun phrase that 

precedes the prepositional phrase, and N2 refers to the noun phrase in the prepositional 



	

phrase. So the ambiguity is that P can either attach to V or to N1. From the above corpora 

we identified 4,724 sentences in MIPACQ and 2,254 sentences in the 

DischargeSummaries corpus that contain the (V, N1, P, N2) structure. These sentences 

were used to develop and evaluate our PP attachment disambiguation methods.  

4.1.2.2		Experiments	
Because of its superior performance in our previous studies, we decided to use the 

Berkeley parser in this study. A five-fold cross validation method was used to develop 

and evaluate our proposed methods. At each round, four-fold of data were used to re-train 

the Berkeley parser and instances containing (V, N1, P, N2) within the 4-fold of data 

were used to train our PP attachment classifiers, and the remaining one-fold of data was 

used for evaluation. Accuracy of the PP attachment classifiers was calculated for each 

round and then its average reported. 

 

Two models including the Back-Off model used by Collins [56] and a newly developed 

machine learning based model were developed here and evaluated in this study. Effects 

of different features used for the classifiers were also evaluated and reported. Once errors 

of PP attachment were founded in the Berkeley parser, we automatically corrected them 

by following some rules. 

4.1.2.3	PP	attachment	classification		

Backed-Off	model	
In detecting errors of the PP attachment, we built a baseline system using the backed-off 

model, which is one of the most classical and popular methods in the English domain. 

However, we made a slight modification to Collins’ work [56], instead of using the 

headword of noun phrases to determine the attachment, we used the norm form of the 



	

headword. We normalized the headword in two different ways: 1) normalizing the 

headword to its semantic type as determined by our dictionary-based semantic tagger; 

and 2) if no semantic tag information was related to the headword, normalizing it into the 

root form using a stemming algorithm [76]. 

Machine	learning	based	model	
In our machine learning based method, given a 4-tuple of the form (V, N1, P, N2), the 

goal is to classify it as either adverbial attachment (attaching to V) or adjectival 

attachment (attaching to N1). The features we used include 1) V, P and headword of two 

noun phrases in each instance; 2) semantic tags of headwords for N1 and N2 based on a 

lexicon dictionary that was derived from a subset of semantic categories in UMLS (e.g. 

“DISORDER”, “THERPROCDEV” etc.) ;  3) semantic tags of headwords for N1 and N2 

based on MedNET system, which identifies three types of named entities including 

problem, treatment, and test [14]; and 4) the words surrounding N1 and N2 within the 

window size of 5. Table 7 shows examples of different types of features. The lib-linear 

SVM classifier was used here [77].  

 
 
Table 7.  An example of features in error detection classifier 
Sentence The patient has had a mild anemia for the last several years  . 
Headword feature Prepositional word: for 

Verb: had 
N1: anemia 
N2: years 

Dictionary based 
semantic feature 

Tag of N1 headword: DISORDER 
Tag of N2 headword : TIME 
 

Machine learning 
based semantic 
feature 

Tag for N1 headword:  problem 
Tag for N2 headword:  None  
 

Context words Context words for N1:  [Start] The patient has had + for the last 
several years 
Context words for N2:  had a mild anemia for + . [end] 



	

	
After a PP attachment error was detected, we automatically fixed it by removing the 

original attachment and attaching it to the correct constituents. For example, if the PP 

attached to the verb in the parsed result, we removed the attachment and attached the PP 

to the noun phrase and vice versa. Figure 3 shows a parsed result before and after fixing 

the PP attachment error. 

 

Figure 3. Before and after fixing PP attachment error 

 

4.1.3	Results	
Table 8 shows the accuracy of PP attachment for the original parsed results generated by 

the Berkeley parser, back-off model and different feature sets for the machine learning 

based model on the MiPACQ treebank and the DischargeSummaries treebank. The 

machine learning based model achieved better results than the original parser and the 

back-off model. For the MiPACQ treebank, the best precision was achieved by the 

machine learning based method with all features were used.  



	

Table 8. Accuracy of PP attachment 

Experiment MiPACQ DischargeSummaries 
Berkeley parser 0.7932 0.7607 
Backed-off model 0.7939 0.7586 
Head feature 0.7994 0.7617 
Head + dictionary based semantic  0.8082 0.7693 
Head + dictionary based semantic + machine 
learning based semantic 0.8105 0.7745 

Head + dictionary based semantic + machine 
learning based semantic + context words 0.8167 0.7784 

 

4.1.4	Discussion	
We conducted the first study to resolve the PP ambiguity when parsing clinical text. The 

results were promising. Our machine-learning based model that utilizes semantic features 

improved the Berkley parser’s performance on handling the (V, N1, P, N2) structures by 

2.35% on the MiPACQ treebank and 1.77% on the DischargeSummaries treebank 

respectively. 

 
Semantic information helps to resolve PP attachment ambiguity. The dictionary based 

semantic information increased the accuracy by 0.88% and 0.76% on two treebanks 

respectively. Moreover, adding the feature of semantic information generated from 

MedNET further increased the performance by 0.23% and 0.52%, probably due to the 

difference between semantic information extracted by terminologies and NLP systems. 

We also noticed that MedNET helps more on the DischargeSummaries treebank 

compared with the MiPACQ Treebank, probably because MedNET was trained on the 

i2b2 corpus.  

 
We also conducted additional experiments to assess the effect of resolving (V, N1, P, N2) 

ambiguity on the overall parsing performance. Our results show that there is an 



	

improvement, but very limited – an increase of 0.03% on the MiPACQ treebank and 

0.07% on the DischargeSummaries treebank. We noticed several reasons behind this 

finding. First of all, we only dealt with (V, N1, P, N2) ambiguity and ignored other types 

of PP attachment ambiguity. According to our analysis, about 44.3% MiPACQ sentences 

(4,724 instances in 10,661 sentences) and 49.0% i2b2 sentences (2,254 instances in 4594 

sentences) contain PP attachments.  We can potentially develop methods to improve 

other types of PP attachment ambiguity. In addition, the current measurement of parsing 

(F-1 score) is highly related to the length of the sentences. As the sentences containing 

(V, N1, P, N2) structure tend to be long sentence, the change of F-1 score on these 

sentences is relatively low. 

 

4.1.5	Conclusion	
In this section, by leveraging various types of semantic information, we developed a 

machine learning based solution to increase the accuracy of identifying PP attachment 

with the form of “V, N1, P, N2” in the parsed results and further improved the parsing 

result.  

 

4.2	Using	semantic	information	to	resolve	coordination	ambiguity	

4.2.1	Introduction	
Coordination ambiguity is another common issue when parsing clinical text. For 

example, the sentence “Current medications are Keppra 1500 bid and Tegretol - XR 400 

bid” describes a list of medication that includes names of drugs and their signature 

information, which is very often seen in the clinical text. However, such coordination 

structures are sometimes not easily recognized correctly by the syntactic parser. Figure 4 



	

shows one possible wrong parse tree of the above sentence. Another more complicated 

example of coordination ambiguity is the sentence “Past surgical history includes remote 

tonsillectomy; hemorrhoidectomy; appendectomy;  a  partial gastrectomy,  vagotomy,  

and cholecystectomy in1973; bilateral inguinal hernia repair;  penile prosthesis in 1984 ;  

and open reduction and internal fixation of right hip fracture in 1989.” , which contains a 

long list of clinical procedures and the syntactic parser has difficulty identifying the 

coordination structures .   

	
Figure 4. An example of a wrong parse tree of a sentence with coordination ambiguity. 

	
Semantic information, integrating abundant domain knowledge, can play an important 

role in resolving coordination ambiguities in the clinical corpus. For the above two 

examples, the main reason why a syntactic parser cannot correctly understand the 

coordination structure is due to lack of clinical knowledge. In the first example, if 

semantic information is provided as shown in Figure 5, such a coordination error can be 

avoided by the parser. Similarly, semantic information could also help identify the correct 

coordination structure in the second example.  



	

 

Figure 5. An example of how semantic information could help resolve coordination 
ambiguity in clinical text. 

 

To the best of our knowledge, no study has specifically focussed on resolving 

coordination ambiguity in clinical text.  In this section, we describe a new method that we 

have developed to resolve coordination ambiguity using semantic information. 

4.2.2	Methods	

4.2.2.1	Data	
The same two treebanks: MiPACQ and DischargeSummaries  (see more details described 

in section 4.2.1.1.) were used in this study.  For the MiPACQ treebank, we split it into a 

development dataset and a test dataset. The development corpus contained 5,000 

sentences and the test corpus contained 5,661 sentences. We reviewed the development 

corpus to generate rules for coordination error detection and fixing and then applied these 

rules to the test corpus and reported the evaluation results. Moreover, to test the 

generalizability of the rules, we also applied the rule-based coordination disambiguation 

system to the DischargeSummaries treebank and reported its performance.  



	

 

All coordination structures from two treebanks were identified by searching the part-of-

speech tag of “CC” in each sentence, which results in a collection of 4,529 sentences and 

2,116 sentences from the MIPACQ and the DischargeSummaries treebanks, respectively. 

As an initial attempt, we limited this study to a common type of coordination (N1 CC 

N2), where N1 denotes a noun phrase, CC denotes the conjunction word, and N2 refers to 

another noun phrase. Based on these criteria, we identified 2,545 sentences in the 

MiPACQ and 1,021 sentences in the DischargeSummaries respectively, for the proposed 

study.  

	

4.2.2.2		Experiments	
We used the Berkeley parser again to generate baseline parse trees for clinical sentences 

used in this study. The coordination disambiguation method that we developed is a rule-

based system that consists of two steps: 1) detecting potential errors of coordination 

structures generated by the Berkeley parser; and 2) fixing detected errors by searching 

top candidate alternative parse trees. Semantic information used in the specified rules was 

from a local clinical NLP system called CLAMP (http://clamp.uth.edu/), which identifies 

not only medical entities (e.g. “problem”, “treatment”, “test” etc.) but also their 

modifiers/attributes (e.g. “body location”, “drug form”, “lab test value” etc.).[14, 78]  

 

To evaluate the coordination error detection method, we manually reviewed errors that 

were detected by our system and reported accuracy. For the error fixing step, we 

evaluated the parse trees on identified sentences and reported F1-scores for both before 

and after fixing coordination errors.  



	

4.2.2.3	Coordination	disambiguation	system	
The first step was to identify potential errors in coordination following the (N1 CC N2) 

structure. Our assumption was simple: if the headwords of N1 and N2 share the same 

semantic type, N1 and N2 should be coordinated into a single element. Based on the 

outputs of CLAMP, we first checked whether N1 and N2 are same type of medical 

entities or attributes. If so, then we further checked if they are coordinated into one 

element in the parse tree – we f identified the lowest common ancestor of two noun 

phrases in the parsing tree and made sure that the path between the lowest common 

ancestor and the noun phrase contained NP only. For example, in Figure 6, both “colitis “ 

and “other bowel pathology” are tagged as “problem”, the lowest common ancestor of 

them is NP3, there is no node on the path between NP3 and NP4 and the node on the path 

between NP3 and NP6 is a noun phrase (NP5). Therefore these two noun phrases were 

correctly coordinated in the example.  

 

Figure 6. Example of demonstration on the rules to identify errors in coordination 



	

	
Fixing detected errors of coordination is not straightforward, as it involves re-generating 

the parse tree. We proposed a workaround by using a re-ranking-like approach. The 

traditional machine learning based re-ranking method is a process of using global features 

of a parsing tree to re-rank the top n-best parse trees to identify the most probable one. In 

our approach, we just searched the top 50-best parse trees and selected an alternative 

parse three that had the highest score but did not have the identified coordination error. If 

the coordination error occurred in all candidate parse trees, we kept the original parse 

tree.   

4.2.3	Results	
Table 9 shows the results of error detection. For the development corpus in the MiPACQ 

treebank, 34 errors of coordination attachment were detected and the accuracy was 100% 

according to our manual review. There were 34 errors found in the test corpus in the 

MiPACQ treebank and the accuracy was 94.9%. For the DischargeSummaries treebank, 

there were 62 errors detected and the accuracy was 90.4%.  

Table 10 shows the results of error fixing.  For the development corpus in MiPACQ 

treebank, among 34 errors detected, 28 were fixed and improved the F score of the 

identified sentences of parsing from 68.66% to 79.01%.  For the test corpus in MiPACQ 

Treebank, 34 out of 39 errors were fixed and the F1-score was increased from 74.35% to 

80.35%. For the DischargeSummaries treebank, 56 errors were fixed and the F1-score 

was increased from 70.96% to 74.54%.  

Table 9. Result of error detection on coordination 

 MiPACQ 
development 

MiPACQ test DischargeSummaries 

# of errors detected 34 39 62 
Accuracy 100% 94.9% 90.3% 



	

	
 

Table 10. Result of error fixing on coordination 

 MiPACQ 
development 

MiPACQ test DischargeSummaries 

# of errors detected 28 34 56 
Original F1-score of 
identified sentences 

68.66% 74.35% 70.96% 

Improved F1-score 
after fixing the error 

79.01% 80.35% 74.54% 

	

	

4.2.4	Discussion	
In this study, we conducted a study to resolve the coordination ambiguity when parsing 

clinical text. We developed a rule-based algorithm to detect one types of coordination 

errors and leveraged top n-best parse trees to fix identified errors. Our evaluation showed 

that the proposed approach can improve the parser’s performance of handling sentences 

with the specific type of coordination errors, even when applied to a different corpus (the 

DischargeSummaries dataset).  

 

In addition, we also evaluated the effect of this approach on the overall parsing 

performance. We found that the Berkley parser’s performance was increased from 

85.97% to 86.03% on the MiPACQ test corpus and from 84.45% to 84.51% on the entire 

DischargeSummaries corpus, after integrating our coordination disambiguation method. 

Although the improvement is small, which is expected as we focussed on one type of 

coordination errors only, it demonstrated its potential to further improve syntactic parsing 

of clinical text.  

	



	

The study conducted here was just a start to demonstrate the potential of coordination 

disambiguation. To provide further insights into the potential challenges, we conducted 

an additional analysis to group the coordination errors by 5 semantic types including 

disease, medication, procedure, lab test and body location. As Table 11 shows, for the 

MiPACQ test corpus, most of the detected errors were about clinical diseases, accounting 

for 61.5%. For the DischargeSummaries corpus, most of them were also about the 

clinical diseases, accounting for 51.6%.  

 

Table 11. Statistics on coordination errors by semantic types 

 All Disease Medication Procedure Lab test Body 
location 

MiPACQ test 39 24 
(61.5%) 

5 (12.8%) 4 (10.2%) 3 (7.7%) 3 (7.7%) 

DischargeSummaries 62 32 
(51.6%) 

4 (6.45%) 6 (9.68%) 8 
(12.9%) 

12 
(19.35%) 

	
 

We also conducted error analysis and found that the false positives of the error detection 

had several causes. One was related to wrong semantic tags: for example, as Figure 7 

shows, in the sentence of “he was started on Lasix for diuresis and his Captopril was 

increased for greater afterload reduction“, “diuresis” was wrongly identified as a 

treatment and “diuresis and his Captopril” was thus identified as a coordination structure.  

We also noticed coordinations at the clause level, which is not handled by the current 

approach. Figure 8 shows such an example, where “single phototherapy” is the object of 

the previous clause and “phototherapy” is the subject of the latter clause, in the sentence 

of “Infant decreased to single phototherapy and phototherapy was discontinued on day of 

life six  .”.  



	

	
Figure 7. Example of error semantic type 		

	
	

	
Figure 8. Example of sentence coordination 

	
	



	

4.2.5	Conclusion	
In this section, we developed a rule-based solution to identify one certain type of 

coordination error and we leveraged top n-best parse trees to fix the coordination error 

and further improved the parsing performance. 

	
	
	 	



	

Chapter	5.	Uses	of	improved	syntactic	parsers	on	other	NLP	tasks	
 

In the previous chapters, we demonstrated improved performance of syntactic parsers on 

clinical text. To further demonstrate the use of such improved syntactic parsers for other 

clinical NLP tasks, we describe our studies about applying our parsers to two additional 

NLP applications: 1) semantic role labeling; and 2) temporal relation extraction.   

	

5.1	Apply	syntactic	parsers	on	semantic	role	labeling	task	

5.1.1	Introduction	
In the biomedical domain, semantic relation extraction systems, such as LSP [46], 

MedLEE [1], MedEx [3] for clinical text and SemRep [79, 80] for biomedical literature, 

have shown good performance and been widely used in different applications. These 

early-stage systems were often based on manually extracted patterns, following the sub-

language theory [47]. Based on the sub-language theory, the language of a closed domain 

(e.g., medicine and biomedicine) has special syntactic patterns as well as a limited 

number of main semantic types. Therefore, possible semantic relations could be 

identified by restricted constraints of syntactic and/or semantic patterns [8]. However, a 

careful examination of syntactic alterations that express the same semantic relations in 

biomedical text revealed that even in a semantically restricted domain, syntactic 

variations are common and diverse [81]. Thus, the coverage and scalability of manually 

extracted patterns may not be sufficient for those syntactic variations. In recent years, 

promoted by increasing challenges held by different portals (e.g., BioCreative, BioNLP, 

I2b2 and SemEval), more and more automatic information extraction systems have been 

built for different biomedical subdomains using data-driven statistical methods, such as 



	

machine learning algorithms.  However, diverse syntactic variations still remain as an 

essential problem to extract semantic information from biomedical text, especially for 

clinical text, which contains more fragments and ill-formed grammars. 

	
Figure 9. A syntactic parse tree with semantic roles added (ARGs) 

	
One potential solution to this problem is semantic role labeling [82] (SRL) (also known 

as shallow semantic parsing), which focuses on unifying variations in the surface 

syntactic forms of semantic relations. Specifically, the task of SRL is to label shallow 

semantic relations in a sentence as predicate argument structures (PAS) [83]. A predicate 

usually refers to a word indicating an event or a relation, and arguments (ARGs) refer to 

syntactic constituents representing different semantic roles in the event or relation. For 

each predicate, arguments representing the most important semantic roles are labeled 

with numbers, usually from ARG0 to ARG5. In addition, arguments representing 

modifiers of events (i.e., location, time, manner, etc.) are labeled as ARGMs. Taking the 

sentence "She should decrease the prednisone by 1-mg weekly" in Figure 9 as an 

example, the verb phrase "decrease" is the predicate indicating the event; the noun phrase 



	

"She" represents the role of ARG0, indicating the initiator/executor of the action 

"decrease"; the noun phrase "the prednisone" represents the role of ARG1, indicating the 

receptor of the action “decrease” (i.e. the entity decreased); while the prepositional phrase 

"by 1-mg weekly" represents the manner of how to decrease the prednisone (ARGM-

Manner).  

 

Shallow semantic relations, or PASs are usually applied as features for machine learning 

algorithms, sentence structural representations in kernel-based models or inference rules 

in different applications, including question answering, text summarization and 

information extraction [84-87], etc. Specifically, PASs have been investigated in various 

biomedical sub-domains [88-90] and made positive contributions in semantic information 

extractions, such as extracting drug-drug interactions from biomedical literature[90] and 

temporal relations from clinical text [91]. 

 

Generally, a typical SRL system is built by using machine-learning methods based on 

annotated corpora. Since semantic roles are formed by syntactic constituents, two corpora 

are needed to build SRL systems, namely a corpus of syntactic parse trees and a 

corresponding corpus of semantic roles annotated on it. The most widely used large-scale 

corpora in the open domains are the Penn Treebank [92] and the SRL corpus 

PropBank[83] developed on it. Many state-of-the-art syntactic parsers [35, 38, 93] have 

been developed and applied to SRL in the open domains [94-96]. Some previous studies 

attempted to adapt these parsers (e.g., the Stanford Parser) to clinical text using medical 

lexicons [54, 97]. Recent years have also seen emerging efforts for syntactic annotation 



	

guidelines and corpora of clinical text [98]. For example, the MiPACQ corpus (a multi-

source integrated platform for answering clinical questions) annotated syntactic trees for 

13,091 sentences following the Penn Treebank Style. Furthermore, several SRL corpora 

were developed for clinical text following the PropBank Style. The available corpora 

were of different genres and note styles, including operative notes [99], radiology notes 

[100]  from the SHARP Area 4 project (Strategic Health IT Advanced Research 

Projects), colon cancer pathology and clinical notes from the MiPACQ corpus[53]  and 

the THYME corpus [100] (Temporal Histories of Your Medical Events). Based on those 

corpora, studies have been conducted to investigate SRL techniques for clinical text from 

EHRs. Albright et al. (2013) and Zhang et al. (2014) developed SRL systems on the 

MiPACQ corpus using dependency parse trees and constituent parse trees, respectively. 

Wang et al. (2014) built a SRL system on operative notes using an adapted parser.  

 

Given that semantic roles are formed by syntactic constituents in the sentence, an 

effective parser to first recognize those syntactic constituents is critical for developing a 

practical SRL system [101]. Furthermore, an effective feature set to describe the syntactic 

patterns between the predicate and the argument is also essential to SRL. Although 

previous work has compared different syntactic parsers and representations for 

biomedical event extraction from literature [101], there are no formal evaluations and 

comparisons of state-of-the-art parsers [38, 99, 102],  and features [53, 102],  for SRL in 

the medical domain. 

 



	

In this study, we evaluated the SRL performance of three state-of-the-art constituent 

syntactic parsers: the Stanford parser, the Charniak parser [93] and the Berkley parser 

[39], using the MiPACQ corpus. We focused on constituent parse trees here because they 

could be directly converted to dependency parse trees [103]. The purpose of this study 

was two-fold: (1) to evaluate the SRL performance of existing state-of-the-art English 

parsers on clinical text, both the original parsers developed on Penn Treebank and parsers 

retrained on the clinical Treebank; and (2) to validate the effectiveness of state-of-the-art 

syntactic features for SRL in the open domain [104] and the biomedical domain [105, 

106] on clinical text. To the best of our knowledge, this is the first comprehensive study 

that investigated the influence of syntactic parsing and features for SRL on clinical text 

using multiple state-of-the-art parsers. 

5.1.2	Methods	

5.1.2.1	Dataset	
This study used the MiPACQ dataset for SRL experiment. MiPACQ is built from 

randomly selected clinical notes and pathology notes of Mayo Clinic related to colon 

cancer [53]. Layered linguistic information is annotated in MiPACQ, including part of 

speech (POS) tags, syntactic Treebank, PASs for SRL, named entities, and semantic 

information from Unified Medical Language System. The syntactic Treebank annotations 

in MiPACQ follow the Penn Treebank guidelines, and the predicate-argument structure 

annotations for SRL follow PropBank guidelines. 13,091 sentences are annotated with 

syntactic trees. Among them, 6,145 sentences in MiPACQ are annotated for SRL, 

including 722 verb predicates with 9,780 PASs and 415 nominal predicates with 2,795 

PASs. 



	

5.1.2.2	The	basic	SRL	system	
 

 

 

Figure 10. Study design for semantic role labeling of clinical text 

 

Figure 10 shows the study design for SRL of clinical text. Basically, the SRL system can 

be partitioned into the training stage and the testing stage. In the training stage, gold-

standard syntactic trees of the training data set annotated in MiPACQ are used for feature 

extraction. A SRL task consists of two sub-tasks, the argument identification sub-task and 

the argument classification sub-task. First, a binary non-Argument vs. Argument 

classifier is built as the argument identifier on the entire dataset for all the predicates, 

instead of building one model per predicate. For argument classification, a multi-class 

classifier is built to assign semantic roles to arguments of all the predicates. In the testing 

stage, syntactic trees automatically generated by the syntactic parser are used for feature 

extraction. For each predicate, the argument candidates first go through the argument 

identifier. If one candidate is identified as an argument, it will go through the argument 

classifier that assigns the semantic role.  



	

5.1.2.3	Comparing	syntactic	parsers	and	features	
Three widely used state-of-the-art syntactic parsers, the Stanford parser [38], the 

Charniak parser[93], and the Berkley parser[39] were investigated for their influence on 

the SRL performance in our study. Moreover, state-of-the-art features, most of which are 

syntactic features, commonly used in the open domain and biomedical domain were 

extracted and compared for use with clinical text.  

Features		
Similar to previous work of SRL for biomedical literature and clinical text[102], we 

adopted the common features used in current state-of-the-art SRL systems. The features 

include baseline features from the original work of Gildea and Jurafsky (2002)[107], 

advanced features taken from Pradhan et al. (2005)[82] and feature combinations from 

Xue and Palmer (2004)[94].  

 

The features can be categorized into three major groups: (1) basic features include the 

lexical and syntactic features of the predicate and the argument; (2) context features 

include features of the surrounding syntactic nodes and the syntactic paths between the 

predicate and the argument; (3) feature combinations are feature tuples formed of two 

unitary features from the previous two groups. The complete feature set is described in 

Table 12.  Except for the lemmatization of the predicate word and the relative position 

between the argument and the predicate, all the rest of the features are at the syntactic 

level and need to be extracted from the parse tree. For clarity, Table 13 lists the specific 

features extracted for the argument candidate “1-mg weekly” of the predicate “decrease ” 

in the example sentence shown in Figure 9. 

 



	

Table 12. Feature list of semantic role labeling 

Feature Group Description 
basic features  

Predicate Lemmatization of the predicate word 
Voice of the verb predicate, i. e., active or passive 

Argument 

Syntactic head, first word, last word of the argument phrase 
and their POS tags 
Syntactic category of the argument node 
Whether the argument is a preposition phrase 
Enriched POS of prepositional argument nodes (e. g., PP-
for, PP-in) 

Relative position Relative position of the argument with respect to the 
predicate (before or after) 

Context features  
Production rule 
of predicate Production rule expanding the predicate parent node 

Syntactic 
category of 
argument 
neighbors  

Syntactic categories of the parent, left sister and right sister 
of the argument node 

Path Syntactic path linking the predicate and an argument 
No-direction path Like Path, but without traversal directions 

Partial path Path from the argument to the lowest common ancestor of 
the predicate and the argument 

Syntactic frame Position of the NPs surrounding the predicate 

Feature 
combinations 

Predicate and headword of the argument 
Predicate and Syntactic category of the argument 
Predicate and relative position 
Predicate and path 

 

Experiments	
PASs with at least one argument were used for the experiment. We used the open source 

toolkit Liblinear [77] as implementations of the support vector machine algorithm. For 

each implemented method, all parameters were tuned for optimal performance.  

Experiments and systematic analysis were conducted as follows:  

1) Evaluate SRL performance of parsers with their default settings: In this experiment, 

we directly applied the three parsers to process all sentences of the test dataset. All the 



	

parsers were invoked with their default settings and models, which had been trained on 

the Penn Treebank. 

 

Table 13. An example of features extracted for semantic role labeling 

Sentence: She should decrease the prednisone by 1-mg weekly 
Predicate: decrease    Argument candidate: 1-mg weekly 
Feature Group Feature value 
Basic features  

Predicate decrease 
active 

Argument 

hw_1-mg, hw_pos_NN, fw_by, fw_pos_IN, lw_weekly, 
lw_pos_RB  
PP 
Yes 
PP-by 

Relative position after 
Context features  
Subcategory of 
predicate VP→VB–NP–PP 

Syntactic 
category of 
argument 
neighbors 

scp_VP, scl_NP, scr_null 

Path PP↑VP↓VB 
No-direction path PP_VP_VB 
Partial path PP↑VP 
Syntactic frame Position of the NPs surrounding the predicate 

Feature 
combinations 

decrease_1-mg 
decrease_PP 
decrease_after 
decrease_VB↑VP↓PP 

 

2) Evaluate SRL performance of parsers re-trained on the clinical Treebank: To assess if 

the annotation of clinical Treebank could improve the performance of SRL, we applied 

three parsers retrained on the MiPACQ Treebank. We conducted ten-fold cross validation 

evaluation for each parser. The cross-validation involved dividing the clinical corpus 

equally into 10 parts, and training the parser on 9 parts with testing on the remaining part 



	

each time. We repeated the same procedure 10 times, one for each part, and then 

combined the results from the 10 parts to report the performance. 

 

3) Evaluate SRL performance of each syntactic feature: To validate if syntactic features 

commonly used in the open domain were effective for clinical text, we conducted 

multiple runs of experiments, adding one new syntactic feature into the feature set for 

each run. The experimental results were compared to check the effectiveness of each 

feature. 

Evaluation	
Precision (P), recall (R) and F1-measure (F1) were used as evaluation metrics for 

argument identification (AI) and combined SRL task. Precision measures the percentage 

of correct predictions of positive labels made by a classifier.  Recall measures the 

percentage of positive labels in the gold standard that were correctly predicted by the 

classifier. F1-measure is the harmonic mean of precision and recall. During the process 

of argument classification (AC), the boundaries of candidate arguments are already 

identified by the argument identification step. Therefore, the accuracy (Acc) of the 

classifier was used for evaluation, which is defined as the percentage of correct 

predictions with reference to the total number of candidate arguments correctly 

recognized in the argument identification step. Ten-fold cross validation was employed 

for performance evaluation. 

5.1.3	Results	
Table 14 illustrates the performance of semantic role labeling systems, which were 

trained on the gold standard syntactic trees and tested on the parsed results of Stanford, 

Charniak and Berkley, as well as the gold standard syntactic trees, respectively. For these 



	

experiments, the whole feature set described in Table 13 was used. The original parsers 

trained on the Penn Treebank produced relatively lower performance. Charniak got the 

lowest F1-measure of 61.40%, whereas Berkley outperformed the other two parsers with 

a F1-measure of 68.15%. After retraining on the clinical Treebank, the performance of all 

three parsers increased significantly, with the optimal F1-measure of 71.38% achieved by 

Berkley. Testing on the gold standard parse trees yielded a F1-measure of 82.13%. 

 

Table 14. Performance of semantic role labeling systems trained on the gold standard 
syntactic trees and tested on the parsed results of Stanford, Charniak and Berkley, and the 
gold standard syntactic trees, respectively (%) 

Parser Model 
AI AC AI+AC 
P R F1 Acc P R F1 

Stanford 
Default 70.4

2 
82.1
7 

75.8
4 

88.1
6 

62.0
9 

72.4
4 

66.8
6 Retrained 75.7

4 
85.2
7 

80.2
2 

88.0
2 

66.6
7 

75.0
5 

70.6
1 

Charniak 
Default 67.7

5 
74.5
4 

70.9
8 

86.5
1 

58.6
1 

64.4
9 

61.4
0 Retrained 74.2

0 
87.0
9 

80.1
2 

87.9
7 

65.2
7 

76.6
1 

70.4
8 

Berkley 
Default 72.8

8 
83.0
9 

77.6
4 

87.7
8 

63.9
7 

72.9
3 

68.1
5 Retrained 76.7

2 
85.3
7 

80.8
1 

88.3
3 

67.7
7 

75.4
0 

71.3
8 Gold Standard 91.4

1 
91.6
0 

91.5
1 

89.7
5 

82.0
4 

82.2
1 

82.1
3  

To investigate whether syntactic features commonly used in the open domain are also 

effective for clinical text, multiple experiments were conducted by adding one new 

syntactic feature incrementally for each run. Table 15 lists the SRL performance of both 

the gold standard corpus and the parse results of the retrained Berkley. As the baseline, 

the first run adopted all the basic features of predicate, argument and their relative 

position. Numbers in parenthesis show the changes to F1-measure of argument 

identification and accuracy of argument classification by adding each new feature. As 

illustrated in Table 15, all the syntactic features effective in the open domain were also 

helpful for argument identification of clinical text. The F1-measure was improved 



	

consistently from 20.07% and 17.47% to 89.75% and 88.33% for the gold standard 

corpus and the retrained Berkley parser, respectively. In addition to the basic features, 

phrase types of argument neighbours, and the three path features made the most 

contribution to argument identification. The In contrast, for argument classification, the 

basic features already yielded an accuracy of 86.74% for the gold standard corpus and an 

accuracy of 83.78% for the retrained Berkley. Since the path features between the 

predicate and an argument dropped the accuracy slightly, we conducted additional 

experiments by removing those features for argument classification, which improved the 

overall F1-measure of our SRL systems to 82.14% (vs. 82.13%) for the gold standard 

corpus and to 71.41% (vs. 71.38%) for the retrained Berkley parser.  

5.1.4	Discussion	
Effective syntactic parsers and features are critical to establishing a practical SRL system. 

This study undertook a formal evaluation and comparison of SRL performance on a 

clinical text corpus MiPACQ, using four state-of-the-art syntactic parsers and common 

syntactic features used in the open domain. Experimental results demonstrated that 

retraining parsers on clinical corpora could improve the SRL performance significantly, 

with an optimal F1-measure of 71.41% achieved by the Berkley parser. Despite the 

telegraphic type of clinical text, state-of-the-art syntactic features in the open domain also 

proved to be effective for clinical text. 

 

	

	

	



	

Table 15. Semantic role labeling performance of testing on the gold standard syntactic 
trees and parsed results of retrained Berkley by adding one new feature each time (%) 

 

In terms of SRL errors caused by syntactic parsers, a major category was that the parsers 

did not recognize a large number of syntactic constituents acting as arguments (Original 

Feature Group 
Test 
Corpu
s 

AI AC AI+AC 

P R F1 Acc P R F1 

Baseline - 
Predicate+Arg
ument+ 
Relative 
position 

Gold 60.57 12.0
4 20.07 86.74 54.8

3 10.94 18.23 

Auto-
parsed 57.56 10.3

0 17.47 83.78 52.9
7 9.48 16.07 

Production 
rule of 
predicate 

Gold  59.73 13.9
9 

22.67 
(+2.60) 

87.20 
(+0.46) 

54.5
4 

12.77 20.69 
(+2.46) 

Auto-
parsed 58.34 10.9

1 
18.38 
(+0.91) 

84.54 
(+0.76) 

53.4
9 10.00 16.85 

(+0.78) 

Phrase type of 
argument 
neighbors  

Gold  58.62 23.4
8 

33.52 
(+10.85
) 

87.70 
(+0.50) 

52.8
7 

21.17 30.22 
(+9.53) 

Auto-
parsed 51.20 20.7

3 
29.49 
(+11.11
) 

85.58 
(+1.04) 

46.1
1 18.67 26.56 

(+9.71) 

Path 
Gold  88.93 55.9

7 
68.70 
(+35.18
) 

87.66  
(-0.04) 

80.4
5 50.63 62.14 

(+31.92
) Auto-

parsed 75.24 57.1
0 

64.91 
(+35.42
) 

85.69 
(+0.11) 

66.2
0 50.24 57.11 

(+30.55
) 

No-direction 
path 

Gold  88.58 60.6
2 

71.97 
(+3.27) 

87.58  
(-0.08) 

79.6
6 54.51 64.72 

(+2.58) 
Auto-
parsed 74.38 61.0

9 
67.07 
(+2.16) 

85.44  
(-0.25) 

64.9
7 53.35 58.58 

(+1.47) 

Partial path 
Gold  91.13 91.1

9 
91.16 
(+19.19
) 

87.60 
(+0.02) 

79.8
5 

79.90 79.87 
(+15.15
) Auto-

parsed 76.87 84.9
2 

80.69 
(+13.62
) 

85.41  
(-0.03) 

65.6
0 72.47 68.86 

(+10.28
) 

Syntactic 
frame 

Gold  91.14 91.3
1 

91.22 
(+0.06) 

87.61 
(+0.01) 

79.8
1 

79.95 79.88 
(+0.01) 

Auto-
parsed 76.58 85.5

2 
80.80 
(+0.11) 

85.43 
(+0.02) 

65.4
2 73.07 69.03 

(+0.17) 

Feature 
combinations 

Gold  91.41 91.6
0 

91.51 
(+0.29) 

89.75 
(+2.14) 

82.0
4 82.21 82.13 

(+2.26) 
Auto-
parsed 

76.72 85.3
7 

80.81 
(+0.01) 

88.33 
(+2.92) 

67.7
7 

75.40 71.38 
(+2.35) 

 



	

Stanford: 1,175, Charniak: 1,377, Berkley: 1,262). Nevertheless, retraining parsers on the 

clinical Treebank reduced such errors greatly (Retrained Stanford: 887, Charniak: 973, 

Berkley: 816).  Another major type of syntactic problems that caused SRL errors was the 

essential syntactic structure ambiguities. For example, the sentence “He continues to note 

the sensation of bilateral leg numbness and pins and needle sensation with walking” 

contains conjunctive structures linking two phrases “the sensation of bilateral leg 

numbness”, and “pins and needle sensation”. It’s hard to determine if the prepositional 

phrase “with walking” only modifies the “pins and needle sensation” or both phrases. 

Despite the unique characteristics of clinical text, such as fragments and ill-formed 

grammars, all the state-of-the-art syntactic features in the open domain contributed 

positively to clinical text, except for path features that dropped the accuracy of argument 

classification slightly. One possible reason for this decreased performance is that the 

specific semantic role of an argument in clinical text is dependent not only on syntactic 

paths but also on the clinical lexicon and relations. As an example, in the phrase “an 

advanced breast cancer treated with radiation therapy”, “an advanced breast cancer” is 

annotated as ARG2 (illness or injury) in the gold standard. However, it was mistakenly 

labeled as ARG1, because the extracted syntactic path features were similar to those of 

ARG1 in the corpus.   

 

5.1.5	Conclusion	
In this section, we made a formal evaluation and comparison of SRL performance on a 

clinical text corpus, MiPACQ, using three state-of-the-art parsers, the Stanford parser, the 

Berkley parser, and the Charniak parser and state-of-the-art syntactic features from the 

open domain. Experimental results validated the effectiveness of retraining parsers with a 



	

clinical Treebank. The results also demonstrated that common syntactic features in open 

domain contribute positively to parser performance on the clinical text.  

5.2	Apply	syntactic	parsers	to	the	temporal	relation	extraction	task	
	

5.2.1	Introduction	
Temporal information extraction (TIE) is a challenging area in NLP research; but it is 

important for many NLP tasks, such as question answering, document summarization, 

and discourse analysis [108, 109].  For most clinical NLP systems, accurate recognition 

of the timing of medical events is important for many medical reasoning tasks. A clinical 

TIE system must be able to identify events, temporal expressions and temporal relations 

between them to create a complete timeline of medical events for a patient. Although 

much effort has been made to the representation, annotation, and extraction of temporal 

information in the general English domain (e.g., the TimeML framework [110]), the 

state-of-the-art TIE systems still don’t perform very well (F-measures around 60–70%) 

[111, 112]. Moreover, the telegraph style of clinical text made extracting temporal 

information from clinical text even more difficult than from general English texts.  

 

In the general English domain, many TIE studies are based on natural-language text 

corpora, such as newswires. TIE work started with temporal representation in the 1980s. 

A milestone was interval-based algebra for representing temporal information in natural 

language, proposed by Allen in 1983 [113]. Many early studies adopted Allen's 

representation, which promptly became a standard. In the 1990s, the widespread 

development of large annotated text corpora for NLP advanced TIE research rapidly. 

Community-wide information extraction tasks started to include TIE tasks. The message 



	

understanding conferences (MUCs) sponsored by the US government organized two 

consecutive temporal-related tasks: MUC-6 (1995) [114] and MUC-7 (1998) [115]. In 

MUC-6, extracting absolute time information (i.e., extracting exactly-specified times in 

the text) was a part of a general named entity recognition (NER) task. In MUC-7, the TIE 

task was expanded to include extraction of relative times. These two tasks defined the 

Timex tags, which interpret time expressions into a normalized ISO standard form 

through the TIDES Timex2 guidelines [116, 117]. In 2004, extracting and normalizing 

temporal expressions according to the Timex2 guidelines for both English and Chinese 

texts was part of the Time Expression Recognition and Normalization Evaluation 

challenge, sponsored by the Automatic Content Extraction program [118]. These tasks 

provided preliminary but valuable contributions to TIE research. 

 

In 2004, rapid development of TIE methods started with the work of TimeML [110], a 

robust specification language for events and temporal expressions in natural language. 

The TimeML schema mainly integrates two annotation schemes: TIDES (Translingual 

Information Detection, Extraction, and Summarization) TIMEX2 and STAG (Sheffield 

Temporal Annotation Guidelines) [119, 120]. It defined three elements of temporal 

information: events, temporal expressions, and temporal relations. Events, including 

verbs, adjectives, and nominals, corresponding to events and states are classified into 

different types, and have various attributes, including tense, aspect, and other features. 

Temporal expressions are token sequences that denote times with various attributes such 

as their normalized values. TimeML also represents temporal relations between 

events/times using an Allen-like format. It defines temporal relations using three types of 



	

links: TLinks (Temporal Links), SLinks (Subordination Links), and ALinks (Aspectual 

Links). TimeML has become an ISO standard for temporal annotation. Several TimeML-

based annotated corpora have been created. The popular corpora include TimeBank1.2, 

AQUAIN, TempEval, and TempEval2. Among them, the TempEval corpus, based on 

TimeBank1.2, was created for the temporal relation task at TempEval1 in 2007. For the 

Tempeval2 task in 2010, a multilingual corpus was created[112, 121]. Detailed 

information about these corpora can be found at 

http://www.timeml.org/site/timebank/timebank.html. Many TIE systems have been 

developed based on these available corpora [121]. 

 

In the general English domain, both machine learning and rule-based methods have been 

applied to TIE. Machine learning methods have been widely adopted, and demonstrated 

good performance on event extraction, including conditional random fields (CRFs) and 

supported vector machines (SVMs) [121]. For temporal expression extraction, both 

machine learning and rule-based methods were studied in TempEval2; in this test, rule-

based methods slightly outperformed machine learning based methods [121]. All systems 

in TempEval2 identified temporal expressions attributes using rule-based methods [121]. 

HeidelTime, an open source system for temporal expression extraction, is a 

representative rule-based system that performed well in TempEval2 [122]. Temporal 

relation extraction is typically divided into different sub-tasks. For example, in 

TempEval2, TLinks were divided into three different types: (1) TLinks between event 

and documentation time; (2) TLinks between events/times within the same sentence; and 

(3) TLinks between events/times across sentences. Both machine learning based or rule-



	

based methods were used for different sub-tasks in TempEval2. To date, performance of 

temporal relation extraction systems has been less than optimal—the best system in 

TimeEval2 competition achieved F-measures of 82%, 65%, and 58% on three types of 

TLinks [112]. More recently, researchers have investigated methods that can integrate 

constraints among TLinks from all sub-tasks to further improve TIE performance. For 

example, Naushad et al [123] used Markov Logic networks to model the constraints in all 

TLinks and showed improved performance. 

 

Temporal information is crucial and important for many medical applications. A number 

of studies [124] have addressed various topics of temporal representation and reasoning 

with medical data. Processing temporal events in medical text, however, has not been 

extensively studied. A few studies have developed different methods to extract temporal 

expressions from clinical narratives [124, 125]. For example, Reeves et al extended the 

open-source temporal awareness and reasoning systems for question interpretation 

(TARSQI) toolkit, originally developed from news reports, to extract temporal 

expressions from Veterans Affairs (VA) clinical text. They found that temporal 

expressions in clinic notes were very different from those in the newswire domain, and 

the out-of-the-box implementation of the TARSQI toolkit performed poorly[126]. Some 

existing clinical NLP systems, such as ConText [127] and MedLEE [1], also have the 

capability to recognize certain temporal expressions and link them to clinical concepts. 

More comprehensive systems such as developed by Zhou et al[124, 128] can not only 

extract temporal expressions associated with medical events, but also reason about 

temporal information in clinical narrative reports. For more details of studies in clinical 



	

TIE, see the review paper by Zhou and Hripcsak [129]. Nevertheless, very few studies 

have investigated the use of TimeML in the medical domain. Recent studies by Savova et 

al [2, 125] have annotated clinical text using TimeML. 

 

Organizers of the 2012 i2b2 clinical NLP challenge organized a clinical TIE competition 

in order to advance the TIE research in the medical domain. The 2012 i2b2 challenge 

consisted of three subtasks: (1) Event extraction: six types of clinical events were 

extracted for the i2b2 challenge, including medical problems, tests, treatments, clinical 

departments, evidentials, and occurrences. Every event also has two attributes: polarity 

and modality. The polarity attribute marks whether an event is positive or negative, and 

the modality attribute is used to describe whether an event actually occurred or not. (2) 

Temporal expression extraction: the TIMEX3 tag was used to annotate temporal 

expressions, which has three main attributes: type (date/time/duration/frequency), value 

(normalized value of the TIMEX3), and modifier of a value (more, less, approximate, and 

so on). (3) Temporal relation (TLink) extraction: in this task, systems identified relations 

between events and times, and determined the type of relation. Three relation types 

(before, overlap, and after) were used in this challenge, as a simplification of the 13 more 

detailed ones specified in TimeML (simultaneous, before, after, immediately before, 

immediately after, including, being included, during, beginning, begun by, ending, 

identity, set/subset). All TLinks were further divided into three categories: (1) TLinks 

between events and section times (e.g., admission or discharge time); (2) TLinks between 

events/times within one sentence; and (3) TLinks between events/time across sentences 

(e.g., co-referenced entities). 



	

 

The 2016 Clinical TempEval challenge is the most recent community challenge that 

addresses temporal information extraction from clinical notes. Following the 2015 

Clinical TempEval challenge, the 2016 challenge consists of six sub-tasks, each of which 

is to identify: (1) spans of event mentions, (2) spans of time expressions, (3) attributes of 

events, (4) attribute of times, (5) events’ temporal relations to the document creation 

times (DocTimeRel), and (6) narrative container relations among events and times. 440 

annotated clinical notes from Mayo Clinic, or the THYME corpus (Styler IV et al., 2014), 

were provided as the training data set, and 153 plain text clinical notes were provided as 

the test set. The participating systems were evaluated through two phases. In phase 1, the 

systems were evaluated on their results for all six sub-tasks given plain texts as inputs. In 

phase 2, system predictions on DocTimeRel and TLINK:Contains were evaluated given 

the gold-standard event annotations (EVENT) and time annotations (TIMEX3). 

	
In most TIE systems, parsed tree of the sentences (constituency and dependency parsed 

tree) have been widely used as an important source to generate features for classifying 

temporal relations. In this study, we validated our parsers’ improvement by applying 

them to a temporal information extraction task. 

5.2.2	Methods	

5.2.2.1	Dataset	
The dataset used in this study is from the 2012 i2b2 clinical NLP challenge. In the 

challenge, 310 discharge summaries from Partners Healthcare and the Beth Israel 

Deaconess Medical Center were annotated for temporal information, including clinical 

event, temporal expression, and temporal relation. Temporal relations (TLINK) indicate 



	

whether and how two clinical events, two temporal expressions, or a clinical event and a 

temporal expression related to each other in the clinical timeline. Possible TLINK types 

include BEFORE, AFTER, SIMULTANEOUS, OVERLAP, BEGUN_BY, ENDED_BY, 

DURING, and BEFORE_OVERLAP.  Identification of all such relations is a difficult 

task, as shown by the relatively low performance even of the top ranked system [130] in 

the challenge.   

 

To simplify the task and make it more feasible, in this study, we removed TLINK types 

and limited the task to identify relations between TIMEX and EVENT within the same 

sentence only. Figure 11 shows an example annotation, where “Fine needle aspiration” 

and “atypical cells” are two clinical events and both of them are linked to temporal 

expression “October 23, 1991”. We selected the 120 clinical notes from the test set of the 

challenge and re-annotated them according to these new criteria.  

 

Figure 11. An example sentence of temporal relation annotation  

 

5.2.2.3	Relation	extraction	systems	
In this study, the task was to classify if a temporal expression is  related to a clinical 

event, given the temporal expressions and clinical events in the sentence. We built a 

machine learning based classifier to solve this problem. The features we used included 

three categories: 1) Clinical event attributes; 2) Temporal expression attributes; 3) 

Dependency related features. Table 16 describes the complete feature set. For clarity, 

Table 17 lists the specific features extracted from the example sentence shown in Figure 



	

11. As for the classification algorithm, we used the open source toolkit, Lib-linear, as an 

implementation of the SVM algorithm. For each implemented method, all parameters 

were tuned for optimal performance via cross-validation. 

 

Table 16. Feature list of temporal relation extraction 

Feature Group Description 
Clinical events 
attributes  

Tag of event Problem, treatment or test 
Temporal 
expression 
attributes 

 

TIMEX CLASS Class of TIMEX including date, time, duration etc. 
Dependency 
feature   

Path Terminal nodes in the path of linking the clinical event and 
the temporal expression in the dependency parsed tree 

Ngram of Path 1gram and 2gram of Path 

Path POS Part-of-speech tags in the path of linking the clinical event 
and the temporal expression in the dependency parsed tree 

Ngram of Path 
POS 1gram and 2gram of Path POS 

 

 

Table 17. An example of features extracted for temporal relation extraction 

Sentence Fine needle aspiration on October 23, 1991 demonstrated 
atypical cells which occurred singly and in clusters 

Feature Group Description 
Clinical events 
attributes  

Tag of event Type of clinical events including problem, treatment or test 
Temporal 
expression 
attributes 

 

TIMEX CLASS Class of TIMEX including date, time, duration etc. 
Dependency  



	

feature  

Path Terminal nodes in the path of linking the clinical event and 
the temporal expression in the dependency parsed tree 

Ngram of Path 1gram and 2gram of Path 

Path POS Part-of-speech tags in the path of linking the clinical event 
and the temporal expression in the dependency parsed tree 

Ngram of Path 
POS 1gram and 2gram of Path POS 

 

5.2.2.4	Experiments	
We examined two widely used state-of-the-art syntactic parsers, the Stanford parser [38] 

and the Berkley parser [39] for their influence on the temporal relation extraction task, 

since these ranked as the top two parsers among all the four state-of-the-parsers that we 

studied in the Chapter 3.  Using 5-fold cross validation for evaluation, we compared 

different parsers in following settings:  

1) Evaluate temporal relation extraction performance based on the parsers with their 

default settings: In this experiment, we directly applied two parsers to process all 

sentences of the dataset. Both parsers were invoked with their default settings and 

models, which had been trained on the Penn Treebank. 

2) Evaluate temporal relation extraction performance based on parsers re-trained on the 

clinical Treebank: We applied both parsers retrained on the MiPACQ Treebank, to 

process all sentences in the dataset. 

3) Evaluate temporal relation extraction performance based on parsers re-trained on the 

clinical treebank and integrated with our PP attachment disambiguation model: To assess 

if PP attachment disambiguation could further improve the performance of temporal 

relation extraction, we applied our PP disambiguation approach described in Chapter 4 to 

the retrained parsers and processed all sentences in the dataset. 



	

 

5.2.3	Results	
Table 18 shows the performance of temporal relation extraction systems based on 

different parsers and settings. For the Berkeley parser, temporal relation extraction 

system achieved an F-1 score of 78.95%, when features generated from the default 

setting were used. The F-1 score was improved to 80.45% after using the improved 

Berkeley parser to generate features. For the Stanford parser, those two numbers were 

78.62% and 79.36%, respectively.  

	

Table 18. Two categories temporal relation classifier performance based on the Stanford 
parser and Berkeley parser  

Parser Mode Precision Recall F-1 

Berkeley	

Default 81.08% 76.93% 78.95% 
Retrained 83.27% 77.28% 80.16% 
Retrained + improved PP 
attachment 

83.48% 77.63% 80.45% 

Stanford	

Default 81.08% 76.31% 78.62% 
Retrained 81.72% 76.15% 78.83% 
Retrained + improved PP 
attachment 

81.99% 76.89% 79.36% 

	

5.2.4	Discussion	
Syntactic information from parse trees such as dependency relations is important for 

relation extraction tasks. In this study, we demonstrated the effectiveness of improved 

clinical parsers on temporal relation information extraction task. For both the Stanford 

parser and the Berkeley parser, we showed that by using the methods we introduced in 

Chapters 3 and 4, we can improve parsing performance, thus improving temporal relation 

extraction performance (an increase of 1.5% on F-1 score for the Berkeley parser and an 

increment of 0.74% for the Stanford Parser).  These results demonstrate the importance 

of syntactic parsing and its utility for other NLP tasks in the medical domain.   



	

5.2.5	Conclusion	
In this section, we validated the effectiveness of optimized parser for the temporal 

relation extraction task. The result showed that using the feature generated by optimized 

parsers could further improve the performance of temporal relation extraction. 

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	 	



	

Chapter	6.	Conclusion	
	

6.1	Summary	of	key	findings	
In this research, I systematically investigated different approaches to improve syntactic 

parsing of clinical text. The key findings from each chapter are summarized in the 

following paragraphs. 

 

In Chapter 1, I introduced syntactic parsing as a possible solution to address the challenge 

of information extraction in clinical studies. A literature review was conducted to show 

that state-of-the-art parsers have achieved great success in the open domain and 

researchers have also done some work on the evaluation of state-of-the-art parsers on 

both biomedical literature and clinical text. However, there is no comprehensive study 

that focuses on improving syntactic parsing using clinical domain knowledge. I also 

reviewed the literature on resolving PP and coordination ambiguities, which are 

important for improving parsing in the medical domain.  

 

In Chapter 2, I developed annotation guidelines for annotating parse trees of clinical 

sentences and built two clinical treebanks: one for progress notes and one for discharge 

summaries. Our annotation guidelines address several unique challenges for annotating 

clinical sentences, including missing elements and superfluous and redundant elements. 

The two clinical treebanks from this study serve as a great resource to train and evaluate 

existing syntactic parsers, thus making it easy to adapt them to the medical domain.  

 



	

In Chapter 3, I investigated the performance of four state-of-the-art parsers using 

different treebanks including both a general English treebank and several clinical 

treebanks. I found that retraining using clinical treebanks could greatly improve the 

performance of all parsers, just as expected. Among various experiments, the Berkeley 

parser achieved the best performance (an F-measure of 86.39%) when it was retrained on 

the MiPACQ corpus, which is comparable to its performance in the open domain.  

According to the error analysis, I found that a significant amount of errors were caused 

by the ambiguity of PP attachment and coordination.  

 

In Chapter 4, I leveraged semantic information generated by existing high-performance 

clinical information extraction tools to resolve the ambiguities of PP attachment and 

coordination in the parse trees. For PP attachment ambiguity, I built a machine learning 

based solution to automatically identify ambiguous PP attachments between verb and 

noun. After using semantic and other features, there are 2.35% and 1.77% increases in 

accuracy for identifying PP attachments in the MiPACQ treebank and the 

DischargeSummaries treebank, respectively. However, the improvement on the overall 

parsing performance was limited.  For coordination ambiguity, I developed a rule-based 

system to identify one certain type of coordination error and used top n-best parse trees to 

fix identified errors.  

 

In Chapter 5, I applied the improved parsers to two clinical NLP tasks: SRL and temporal 

relation extraction. Our results show that improved syntactic parsers could increase the 

SRL performance significantly (with an increase of F-measure from 3.31% to 9.0%). For 



	

the temporal relation extraction task, syntactic features from the improved Berkeley 

parser also significantly increased TIE systems’ performance (1.50% of F-1 score). These 

external validations demonstrate the importance and value of syntactic parsing 

approaches in other NLP applications in the medical domain.  

 

6.2	Innovations	and	contributions	

6.2.1	Innovations	
To the best of our knowledge, this is one of the first comprehensive studies on syntactic 

parsing of clinical text. I have addressed several important aspects of parsing in the 

medical domain, ranging from guideline and Treebank development to new methods 

handling PP attachment and coordination ambiguities in clinical text. More specifically, 

this work is innovative in following aspects: 

(1) New annotation guidelines for clinical treebanks were developed, with the 

capability to handle unique challenges presented in clinical text, such as missing 

elements, redundant constituents etc., which are not covered by the existing 

annotation guidelines for building general English treebanks.  

(2)  Following the annotation guidelines, two clinical treebanks were developed. 

They are among the first few clinical treebanks available for the community.  

(3) I performed the first comprehensive study to investigate state-of-the-art parsers’ 

performance on multiple types of clinical corpora.  

(4) I developed a machine learning based method to resolve the PP attachment 

ambiguity and a rule-based method to help detect coordination ambiguity. Both 

methods are new to syntactic parsing of clinical text.   

	



	

6.2.2	Contributions	

This dissertation study contributed to the areas of biomedical informatics, computer 

science, and healthcare. The major contribution of this dissertation work to biomedical 

informatics is that it develops a framework for syntactic parsing of clinical text, by 1) 

creating annotated guideline and corpora; 2) investigating the performance of state-of-

the-art parsers; 3) resolving PP attachment and coordination ambiguities in the parse 

trees; and 4) validating the effectiveness of optimized parser on semantic role labeling 

and temporal relation extraction. These will be valuable resources for method 

development in syntactic parsing on the clinical text. The initial attempt of resolving 

ambiguities in the parse trees provides insight for other researchers in the field. This 

study also contributes to computer and information science. It demonstrates that 

retraining on domain specific treebank is effective in closed domains such as medicine.  

Furthermore, this study also benefits healthcare. It proves the effectiveness of optimized 

parsers on other NLP tasks, thus making it possible to utilize optimized parsers to 

facilitate healthcare operation and clinical research. 

	

6.3	Future	work	
	
Although we have conducted multiple studies of syntactic parsing in the medical domain, 

there is a long way to go in order to achieve desirable performance in parsing clinical 

text. Several approaches that were proposed here are limited to particular problems in 

syntactic paring of clinical text. For example, for PP attachment and coordination 

ambiguities, we only proposed methods for very limited types of ambiguity. Much work 

is needed in order to completely resolve ambiguities in syntactic parsing. Furthermore, 

we conducted experiments on limited types of clinical notes including progress notes, 



	

discharge summaries and pathology notes. In the future, we plan to extend our studies to 

other types of clinical notes such as operative notes, to assess the generalizability of our 

methods. Another interesting research direction is to investigate more advanced 

algorithms for parsing, e.g., new deep learning architectures for syntactic parsing. 

 

6.4	Conclusion	
	
In this dissertation research, I systematically studied how to leverage clinical domain 

knowledge to improve the performance of state-of-the-art parsers on clinical corpora. The 

experimental results showed that the proposed methods remarkably improved state-of-

the-art parsers’ performance on clinical text, which subsequently improved the 

performance of other clinical NLP tasks. To the best of my knowledge, this is the first 

comprehensive study on syntactic parsing in the medical domain, building a solid basis 

for further research and applications.  
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