1,403 research outputs found

    A characteristic-based visual analytics approach to detect subtle attacks from NetFlow records

    Get PDF
    Security is essentially important for any enterprise networks. Denial of service, port scanning, and data exfiltration are among of the most common network intrusions. It\u27s urgent for network administrators to detect such attacks effectively and efficiently from network traffic. Though there are many intrusion detection systems (IDSs) and approaches, Visual Analytics (VA) provides a human-friendly approach to detect network intrusions with situational awareness functionality. Overview visualization is the first and most important step in a VA approach. However, many VA systems cannot effectively identify subtle attacks from massive traffic data because of the incapability of overview visualizations. In this work, we developed two overviews and tried to identify subtle attacks directly from these two overviews. Moreover, zoomed-in visualizations were also provided for further investigation. The primary data source was NetFlow and we evaluated the VA system with datasets from Mini Challenge 3 of VAST challenge 2013. Evaluation results indicated that the VA system can detect all the labeled intrusions (denial of service, port scanning and data exfiltration) with very few false alerts

    A critical review of intrusion detection systems in the internet of things : techniques, deployment strategy, validation strategy, attacks, public datasets and challenges

    Get PDF
    The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack on the end nodes. To this end, Numerous IoT intrusion detection Systems (IDS) have been proposed in the literature to tackle attacks on the IoT ecosystem, which can be broadly classified based on detection technique, validation strategy, and deployment strategy. This survey paper presents a comprehensive review of contemporary IoT IDS and an overview of techniques, deployment Strategy, validation strategy and datasets that are commonly applied for building IDS. We also review how existing IoT IDS detect intrusive attacks and secure communications on the IoT. It also presents the classification of IoT attacks and discusses future research challenges to counter such IoT attacks to make IoT more secure. These purposes help IoT security researchers by uniting, contrasting, and compiling scattered research efforts. Consequently, we provide a unique IoT IDS taxonomy, which sheds light on IoT IDS techniques, their advantages and disadvantages, IoT attacks that exploit IoT communication systems, corresponding advanced IDS and detection capabilities to detect IoT attacks. © 2021, The Author(s)

    AIDIS: Detecting and Classifying Anomalous Behavior in UbiquitousKernel Processes

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Targeted attacks on IT systems are a rising threat against the confidentiality, integrity, and availability of critical information and infrastructures. With the rising prominence of advanced persistent threats (APTs), identifying and under-standing such attacks has become increasingly important. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst.In this article we propose AIDIS, an Advanced Intrusion Detection and Interpretation System capable to explain anomalous behavior within a network-enabled user session by considering kernel event anomalies identified through their deviation from a set of baseline process graphs. For this purpose we adapt star-structures, a bipartite representation used to approximate the edit distance be-tween two graphs. Baseline templates are generated automatically and adapt to the nature of the respective operating system process.We prototypically implemented smart anomaly classification through a set of competency questions applied to graph template deviations and evaluated the approach using both Random Forest and linear kernel support vector machines.The determined attack classes are ultimately mapped to a dedicated APT at-tacker/defender meta model that considers actions, actors, as well as assets and mitigating controls, thereby enabling decision support and contextual interpretation of ongoing attack

    INTRUSION PREDICTION SYSTEM FOR CLOUD COMPUTING AND NETWORK BASED SYSTEMS

    Get PDF
    Cloud computing offers cost effective computational and storage services with on-demand scalable capacities according to the customers’ needs. These properties encourage organisations and individuals to migrate from classical computing to cloud computing from different disciplines. Although cloud computing is a trendy technology that opens the horizons for many businesses, it is a new paradigm that exploits already existing computing technologies in new framework rather than being a novel technology. This means that cloud computing inherited classical computing problems that are still challenging. Cloud computing security is considered one of the major problems, which require strong security systems to protect the system, and the valuable data stored and processed in it. Intrusion detection systems are one of the important security components and defence layer that detect cyber-attacks and malicious activities in cloud and non-cloud environments. However, there are some limitations such as attacks were detected at the time that the damage of the attack was already done. In recent years, cyber-attacks have increased rapidly in volume and diversity. In 2013, for example, over 552 million customers’ identities and crucial information were revealed through data breaches worldwide [3]. These growing threats are further demonstrated in the 50,000 daily attacks on the London Stock Exchange [4]. It has been predicted that the economic impact of cyber-attacks will cost the global economy $3 trillion on aggregate by 2020 [5]. This thesis focused on proposing an Intrusion Prediction System that is capable of sensing an attack before it happens in cloud or non-cloud environments. The proposed solution is based on assessing the host system vulnerabilities and monitoring the network traffic for attacks preparations. It has three main modules. The monitoring module observes the network for any intrusion preparations. This thesis proposes a new dynamic-selective statistical algorithm for detecting scan activities, which is part of reconnaissance that represents an essential step in network attack preparation. The proposed method performs a statistical selective analysis for network traffic searching for an attack or intrusion indications. This is achieved by exploring and applying different statistical and probabilistic methods that deal with scan detection. The second module of the prediction system is vulnerabilities assessment that evaluates the weaknesses and faults of the system and measures the probability of the system to fall victim to cyber-attack. Finally, the third module is the prediction module that combines the output of the two modules and performs risk assessments of the system security from intrusions prediction. The results of the conducted experiments showed that the suggested system outperforms the analogous methods in regards to performance of network scan detection, which means accordingly a significant improvement to the security of the targeted system. The scanning detection algorithm has achieved high detection accuracy with 0% false negative and 50% false positive. In term of performance, the detection algorithm consumed only 23% of the data needed for analysis compared to the best performed rival detection method

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric

    Comparing Anomaly-Based Network Intrusion Detection Approaches Under Practical Aspects

    Get PDF
    While many of the currently used network intrusion detection systems (NIDS) employ signature-based approaches, there is an increasing research interest in the examination of anomaly-based detection methods, which seem to be more suited for recognizing zero-day attacks. Nevertheless, requirements for their practical deployment, as well as objective and reproducible evaluation methods, are hereby often neglected. The following thesis defines aspects that are crucial for a practical evaluation of anomaly-based NIDS, such as the focus on modern attack types, the restriction to one-class classification methods, the exclusion of known attacks from the training phase, a low false detection rate, and consideration of the runtime efficiency. Based on those principles, a framework dedicated to developing, testing and evaluating models for the detection of network anomalies is proposed. It is applied to two datasets featuring modern traffic, namely the UNSW-NB15 and the CIC-IDS-2017 datasets, in order to compare and evaluate commonly-used network intrusion detection methods. The implemented approaches include, among others, a highly configurable network flow generator, a payload analyser, a one-hot encoder, a one-class support vector machine, and an autoencoder. The results show a significant difference between the two chosen datasets: While for the UNSW-NB15 dataset several reasonably well performing model combinations for both the autoencoder and the one-class SVM can be found, most of them yield unsatisfying results when the CIC-IDS-2017 dataset is used.Obwohl viele der derzeit genutzten Systeme zur Erkennung von Netzwerkangriffen (engl. NIDS) signaturbasierte Ansätze verwenden, gibt es ein wachsendes Forschungsinteresse an der Untersuchung von anomaliebasierten Erkennungsmethoden, welche zur Identifikation von Zero-Day-Angriffen geeigneter erscheinen. Gleichwohl werden hierbei Bedingungen für deren praktischen Einsatz oft vernachlässigt, ebenso wie objektive und reproduzierbare Evaluationsmethoden. Die folgende Arbeit definiert Aspekte, die für eine praxisorientierte Evaluation unabdingbar sind. Dazu zählen ein Schwerpunkt auf modernen Angriffstypen, die Beschränkung auf One-Class Classification Methoden, der Ausschluss von bereits bekannten Angriffen aus dem Trainingsdatensatz, niedrige Falscherkennungsraten sowie die Berücksichtigung der Laufzeiteffizienz. Basierend auf diesen Prinzipien wird ein Rahmenkonzept vorgeschlagen, das für das Entwickeln, Testen und Evaluieren von Modellen zur Erkennung von Netzwerkanomalien bestimmt ist. Dieses wird auf zwei Datensätze mit modernem Netzwerkverkehr, namentlich auf den UNSW-NB15 und den CIC-IDS- 2017 Datensatz, angewendet, um häufig genutzte NIDS-Methoden zu vergleichen und zu evaluieren. Die für diese Arbeit implementierten Ansätze beinhalten, neben anderen, einen weit konfigurierbaren Netzwerkflussgenerator, einen Nutzdatenanalysierer, einen One-Hot-Encoder, eine One-Class Support Vector Machine sowie einen Autoencoder. Die Resultate zeigen einen großen Unterschied zwischen den beiden ausgewählten Datensätzen: Während für den UNSW-NB15 Datensatz verschiedene angemessen gut funktionierende Modellkombinationen, sowohl für den Autoencoder als auch für die One-Class SVM, gefunden werden können, bringen diese für den CIC-IDS-2017 Datensatz meist unbefriedigende Ergebnisse
    • …
    corecore