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Alexander Michael Vetterl

Summary

Today’s Internet connects billions of physical devices. These devices are often immature

and insecure, and share common vulnerabilities. The predominant form of attacks relies

on recent advances in Internet-wide scanning and device discovery. The speed at which

(vulnerable) devices can be discovered, and the device monoculture, mean that a single

exploit, potentially trivial, can affect millions of devices across brands and continents.

In an attempt to detect and profile the growing threat of autonomous and Internet-scale

attacks against the Internet of Things, we revisit honeypots, resources that appear to be

legitimate systems. We show that this endeavour was previously limited by a fundamentally

flawed generation of honeypots and associated misconceptions.

We show with two one-year-long studies that the display of warning messages has no

deterrent effect in an attacked computer system. Previous research assumed that they

would measure individual behaviour, but we find that the number of human attackers is

orders of magnitude lower than previously assumed.

Turning to the current generation of low- and medium-interaction honeypots, we

demonstrate that their architecture is fatally flawed. The use of off-the-shelf libraries to

provide the transport layer means that the protocols are implemented subtly differently

from the systems being impersonated. We developed a generic technique which can find any

such honeypot at Internet scale with just one packet for an established TCP connection.

We then applied our technique and conducted several Internet-wide scans over a one-

year period. By logging in to two SSH honeypots and sending specific commands, we not

only revealed their configuration and patch status, but also found that many of them were

not up to date. As we were the first to knowingly authenticate to honeypots, we provide a

detailed legal analysis and an extended ethical justification for our research to show why

we did not infringe computer-misuse laws.

Lastly, we present honware, a honeypot framework for rapid implementation and

deployment of high-interaction honeypots. Honware automatically processes a standard

firmware image and can emulate a wide range of devices without any access to the manu-

facturers’ hardware. We believe that honware is a major contribution towards re-balancing

the economics of attackers and defenders by reducing the period in which attackers can

exploit vulnerabilities at Internet scale in a world of ubiquitous networked ‘things’.
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Chapter 1

Introduction

The Internet is transforming from a global network of computers to a heterogeneous

mixture of everyday devices (‘things’). The Internet of Things (IoT) market is growing

rapidly, creating pressure on manufacturers to ship feature-complete devices as soon as

possible, avoiding time-consuming maturity and security considerations. The emphasis on

automation and the nature of the devices themselves mean that vulnerabilities and exploits

not affecting device functionality are likely to remain unnoticed by owners. This lack of

incentive and visibility results in a growing number of vulnerable and compromised devices.

This is most obvious in the growth of IoT-based botnets, a collection of Internet-connected

devices controlled by a common type of malware. More than 20 years after the first

Distributed Denial of Service (DDoS) attack was documented, botnet-based DDoS attacks

remain ubiquitous. It is not uncommon to see botnets with more than a hundred thousand

devices and accounts of DDoS attacks reaching several hundred gigabits per second (Gbps).

At the same time, we are starting to connect critical infrastructure, including the

water and power grid, financial, and communications systems to ease their operation

and maintenance. These systems are particularly valuable as targets for disruption and

ransom, in addition to the possibility of their use in standard botnets. Telecommunication

providers are also making significant progress in deploying 5G-enabled networks. Thus it is

reasonable to expect a further significant up-take of Internet-connected devices, especially

in areas where fixed-line broadband is currently unavailable. While the wider adoption of

IPv6 is progressing slowly, it has become feasible to scan the whole IPv4 address space for

vulnerable devices with modest investment. This gives attackers a crucial advantage: once

an exploit is found for one technology, device, or specific implementation, attackers can

easily find devices with that vulnerability and instantly scale the exploit.

This economic shift in favour of the attackers means that it is economic for attackers

to exploit any vulnerability independent of its spread, threat and potential impact, as the

only substantive cost is detecting the vulnerability itself. Previously, attackers might find

a vulnerability, but it would take considerable effort to capitalise on it since vulnerable
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devices may not be permanently connected to an accessible network or otherwise easy to

detect. Also, the speed with which exploits can be deployed increases drastically in the

absence of the need for a complex and time-consuming search for victims. It is therefore

harder to defend against such universal attacks and react with patches within a reasonable

time frame.

This means that vulnerable Customer Premise Equipment (CPE), a generic term

for home networking devices that are connected to the telecommunication provider’s

networks, and IoT devices are a constant threat to the Internet itself and society at

large. Many regulators have started to look for opportunities to improve IoT security by

means of stricter standardisation and certification regulations. However, responsibilities

are dispersed, coordination is non-trivial, and technology is advancing rapidly. Thus the

early detection of new attacks on these devices is increasingly important in contemporary

approaches to improving Internet security. Traditionally, most of the efforts in network

security have focused on controlling network flow. Firewalls are designed to block certain

types of incoming traffic and intrusion detection systems use attack signatures to detect

suspected intrusions. To capture and better understand these attacks instead of simply

blocking them, honeypots, resources that appear to be legitimate systems, need to be

revisited. Once an attack has been captured by a honeypot, the attack vector can be

analysed, and future attacks can be prevented.

For the last decade, honeypot research has received limited attention, with efforts

mainly focused on monitoring the activity of human attackers. But as attack patterns

change, honeypots should emulate what is actually targeted. The Mirai botnet, the first

large botnet to recruit a variety of IoT devices, uses an automated and pseudo-random

scanning process to find and infect new targets. This means that the provision of a realistic

environment for humans to interact with is of declining importance. Instead, honeypots

should focus on correctly implementing low-level protocol interactions with automated

scripts. While it is also feasible to build a custom honeypot to monitor Mirai, for example

by sending appropriate strings in response to the automated scanning tools, this approach

only allows the monitoring of attacks similar to those we already know.

So we need to create better honeypots for CPE and IoT devices, and to this end we

investigate state-of-the-art honeypots and demonstrate their severe limitations. First,

we investigate the effects of previous researchers’ assumption that their honeypots were

interacting with individuals, while in reality they were capturing the activities of bots.

We show that warning banners in an attacked computer system have no deterrent effect

and, as a result, previous research not only drew wrong conclusions, but also gave wrong

policy advice. Second, we present a ‘class break’ by demonstrating that the architecture

of the current generation of honeypots is fundamentally flawed. Their architectures

use off-the-shelf libraries to implement protocols, making it trivial to fingerprint a large
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number of different honeypots because there are numerous differences on-the-wire between

entirely standards-compliant implementations. Third, having identified thousands of such

honeypots on the Internet, we found that many are not kept up-to-date and demonstrate

that honeypot operators largely believe that they are dealing with näıve human adversaries.

Fourth, we developed a virtual honeypot framework that is capable of rapid deployment

to emulate devices and thereby capture the real attacks along with malware samples.

The framework uses the original code base without incurring significant overhead. In

particular, different patch level and software versions can be efficiently emulated allowing

the monitoring of the many attackers who are now going after a wide range of devices

with automated tools. Our framework will help to detect when criminals have identified

vulnerabilities in (IoT) devices that might otherwise be exploited for considerable periods

of time without anyone noticing.

For too long in this arms race, the defenders’ costs were magnitudes higher than the

attackers. Our work significantly contributes to re-balancing this cost asymmetry by

reducing the period in which attackers can exploit vulnerabilities at Internet scale – in a

world of universal attacks an endeavour previously limited by a fatally flawed generation

of honeypots.

1.1 Chapter outline

• Chapter 2 establishes the background of CPE and IoT devices and discusses common

characteristics and vulnerabilities. It outlines prevalent threats and targeted protocols

and discusses the evolution of honeypots. We particularly focus on honeypots for IoT

and the ease with which they can be fingerprinted in the age of universal attacks.

• Chapter 3 presents a detailed study in which we use honeypots to show that

warning banners in an attacked computer system have no deterrent effects and that

honeypot data has been misinterpreted by previous research. We find that honeypots

mainly capture automated activities and that the number of human trespassers is

orders of magnitude lower than previously assumed. (We did attempt to understand

the motivation and psychological traits of the few criminals interacting with our

honeypots, but none of the trespassers was willing to take part in our survey.)

• Chapter 4 highlights the weaknesses of the current generation of low- and medium-

interaction honeypots. The use of standard libraries to implement the protocols

means that we can easily fingerprint any such honeypot solely based on their protocol

implementations. We present a ‘class break’ for systematically generating probes

that can find these honeypots with just one or two packets at Internet scale. Our

technique means that even if honeypot developers fix single protocol fingerprints,

thousands more fingerprints can be found. Instead of focusing on the monitoring of
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human activity and the provision of a realistic environment for humans to interact

with, a new generation of honeypots should put more emphasis on the verisimilitude

in the lower levels of the networking stack.

• Chapter 5 provides a detailed analysis of honeypot deployments and deployment

practices. Based on the architectural flaws described in Chapter 4, we conduct

several Internet-wide scans in a one-year period. To determine which particular

versions of honeypots are being run on the Internet, we logged in to them and issued

a small set of shell commands. As we are the first to knowingly authenticate to

honeypots, we give an extended legal analysis explaining why we did not infringe

computer-misuse laws. Our analysis shows that many systems were not up-to-date.

Since developers track the commands that adversaries use and continually add new

features to make honeypots more covert, not updating a honeypot increases the

chances that it may be fingerprinted (using traditional techniques) and thus limits

its value in detecting new attack vectors. We further found that many honeypot

operators are relying on standardised deployment scripts and rarely change set-up

options or the honeypots’ authentication configuration.

• In Chapter 6, we present honware, a virtual honeypot framework that processes a

standard firmware image of CPE and IoT devices, customises their filesystem and

runs them with a special pre-built Linux kernel. We show that our framework is better

than previous approaches in providing networking functionality and in emulating

the devices’ firmware applications. It emulates devices much more accurately than

traditional honeypots and is not susceptible to trivial fingerprinting based on timing

attacks. Honware is a major contribution towards re-balancing the economics of

attackers and defenders by reducing the period in which attackers can exploit zero

days at Internet scale.

• Chapter 7 summaries our work and outlines future research directions towards

better honeypots in the age of universal attacks and ubiquitous networked devices.

1.2 Publications and contributions

Parts of the research described in this thesis have been published in peer reviewed confer-

ences and workshops. I list below the contributions of my co-authors to the publications

that are included in this thesis. I further list acknowledgements of funding and feedback.

1. Alexander Vetterl and Richard Clayton, “Bitter harvest: Systematically fingerprint-

ing low- and medium-interaction honeypots at Internet scale”, in 12th USENIX

Workshop on Offensive Technologies (WOOT ‘18), Baltimore, MD: USENIX Associ-

ation, 2018

a) This publication forms the basis of Chapter 4 of this dissertation.
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b) Richard Clayton provided valuable feedback to direct this research away from

manual techniques to fingerprint honeypots to a generic technique to systemati-

cally identify protocol deviations.

c) I am grateful to Ross Anderson, Alastair R. Beresford, Alice Hutchings, Daniel

R. Thomas and Sergio Pastrana for helpful comments on the WOOT paper.

d) This work was supported by the EPSRC [grant number EP/M020320/1] and a

Premium Research Studentship from the Department of Computer Science and

Technology, University of Cambridge.

2. Alexander Vetterl, Richard Clayton and Ian Walden, “Counting outdated honeypots:

Legal and useful”, in 4th International Workshop on Traffic Measurements for

Cybersecurity (WTMC ‘19), San Francisco, CA: IEEE, 2019

a) This publication forms the basis of Chapter 5 of this dissertation.

b) Richard Clayton and Ian Walden (Solicitor of the Senior Courts of England and

Wales, and Professor of Information and Communications Law, Queen Mary,

University of London) provided the legal analysis and the statutory texts for

unauthorized access.

c) I am grateful to Alastair R. Beresford, Alice Hutchings and Daniel R. Thomas

for helpful comments on the WTMC paper.

d) This work was supported by the EPSRC [grant number EP/M020320/1].

3. Alexander Vetterl and Richard Clayton, “Honware: A virtual honeypot framework

for capturing CPE and IoT zero days”, in 14th APWG Symposium on Electronic

Crime Research (eCrime ‘19), Pittsburgh, PA: IEEE, 2019

a) This publication forms the basis of Chapter 6 of this dissertation.

b) Richard Clayton provided ideas on how the kernel can be modified and helped

to better understand the attacks observed.

c) I am grateful to Ross Anderson, Alastair R. Beresford, Alice Hutchings, Robert

N. M. Watson, Daniel R. Thomas and Michael Dodson for helpful comments

and discussions on the paper.

d) This work was supported by the EPSRC [grant number EP/M020320/1] and a

Premium Research Studentship from the Department of Computer Science and

Technology, University of Cambridge.

4. Alexander Vetterl, Alice Hutchings, Richard Clayton, Michel Cukier, David Modic,

Bertrand Sobesto, “Revisited: Restrictive deterrent effects of a warning banner in

an attacked computer system”, preparing for submission, n/a, 2019

17



a) Bertrand Sobesto and Michel Cukier provided and maintained the infrastructure

to host the honeypots.

b) I am grateful to Ross Anderson and Daniel R. Thomas for helpful comments

and discussions on the paper.

c) This work was supported by the EPSRC [grant number EP/M020320/1].

1.3 Statement on research ethics

All the experiments reported in this dissertation followed our institution’s ethical research

policy. This research has been approved by the Ethics Committee of the University

of Cambridge, Department of Computer Science and Technology (ref: 417 and 450).

Where appropriate, we discuss the particular ethical considerations and procedures in each

Chapter individually.

18



Chapter 2

Background

In this Chapter, we introduce common characteristics of CPE and IoT devices. In

particular, we discuss the system monoculture which is the result of a dominant operating

system (Linux) and the market concentration of available chipsets. We focus on the devices’

protocols and outline common vulnerabilities that resulted in various large-scale attacks

in recent years.

We then discuss recent advances in device discovery and Internet-wide scanning, which

are the basis of contemporary universal attacks – attacks that use potentially trivial

exploits, but can affect millions of devices across manufacturers and geographical regions.

Attackers can instantly deploy exploits without needing a complex and time-consuming

search for victims. We discuss how compromised devices are used to conduct further

criminal activities, such as denial of service attacks, permanently destroying devices or

using them to proxy malicious traffic such as spam.

Honeypots are used in an attempt to detect such attacks at an early stage, so we

discuss the different types of honeypots and how they have evolved over time. We discuss

the emerging trend towards virtualisation and honeypots for the IoT, moving away from

the traditional approach of honeypots attempting to provide a realistic looking shell for

humans to interact with. In particular, we focus on fingerprinting, a technique whereby an

attacker determines whether an apparently vulnerable machine is real or a decoy. This is

a major shortcoming of honeypots in the age of universal attacks. Designing honeypots to

be fingerprint resistant is not straightforward, since the increasing complexity of protocols

and applications means that honeypots have to emulate ever more complex systems.

2.1 CPE and IoT devices

‘Customer-premises equipment’ (CPE) is a generic term for xDSL modems, routers, switches

and other home networking devices that are connected to telecommunication providers’

networks. Since 2001, the number of fixed-broadband subscriptions has been steadily
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increasing and in 2018, 14.1% of the world’s population accessed the Internet through a

broadband line.1 An increasing number of everyday physical ‘things’ are connected to the

Internet, and are commonly referred to as the Internet of Things (IoT). In particular home

appliances are continually sensing and collecting vast amounts of data, so the term IoT

includes devices such as security surveillance systems, thermostats, digital video recorders

and smart TVs. In fact, the first Internet-connected ‘thing’ was a vending machine at

Carnegie Mellon University.2 As of 2019, more than 25 billion IoT devices are connected

to the Internet and the number of IoT devices is expected to surpass 75 billion by 2025.3

Besides the ubiquitousness of IoT devices, CPE is particularly important within the

IoT ecosystem as they serve as an entry point into a home or office network. Furthermore,

CPE ensures inter-device connectivity, manages quality of service, handles phone calls

via VoIP and is a choke point for all traffic to any device. Thus, once it is compromised,

attackers may be able to connect to further devices at that location and so particular

emphasis should be put on its security.

2.1.1 Common characteristics

Chipset monoculture: For many consumer devices, the hardware comes in the form of a

system on a chip (SoC) that integrates essential features such as CPU, memory and storage.

Most of today’s SoCs for CPE are manufactured by Broadcom, Qualcomm, Atheros and

MediaTek and are then used by device manufacturers such as Netgear, TP-Link, D-Link

and Linksys. We can further split SoCs based on their Instruction Set Architecture (ISA):

the ARM and MIPS architectures are the most used ISAs for networked devices [32, 26].

Furthermore, chipset manufacturers not only provide the raw silicon, but also write

drivers and applications for their devices. This lack of diversity means that once a

vulnerability is found in parts which the chipset manufactures controls, the exploit will

potentially affect multiple devices and vendors in various geographical regions. Furthermore,

the number of versions of each chipset vendor’s code makes it increasingly hard to provide

updates in a timely manner as multiple players are involved in the release management

process. Thus the CPE and IoT environment is having similar problems as other technology

platforms such as the Android operating system: a fragmented market4 with no clear

responsibilities and no incentives for manufactures to provide regular updates [1].

Operating systems derived from Linux: The vast majority of operating systems

for consumer devices are derived from Linux, typically supplemented with custom kernel

modules and drivers to provide device-specific functionality [160]. An increasing number of

routers are also capable of running alternative Linux-based firmware like Tomato, OpenWrt

1https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
2https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/
3https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
4https://developer.android.com/about/dashboards
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or DD-WRT. DD-WRT can be customised extensively and as of 2019, is supported by

more than 80 vendors.5 In contrast, Tomato and OpenWrt support fewer devices and

claim to be more user-friendly. OpenWrt is also the only distribution which does not

include non-free binaries and so fewer devices are supported. All three distributions are

fairly lightweight; for example, OpenWrt recommends devices which have just 8 Mbyte of

flash storage and 64 Mbyte of RAM.6

Tailored specifically for the IoT, Baccelli et al. developed RIOT OS, a stripped down

version of Linux designed for low-power IoT devices [8]. Similar, Ubuntu offers Ubuntu

Core, a minimal Linux image with 10 years of guaranteed security updates and support for

the ARM and x86 architectures.7 Lastly, Microsoft announced in 2018 that Azure Sphere,

Microsoft’s IoT operating system, will be based on Linux.8

Firmware for CPEs is almost invariably available for download and an increasing

number of manufacturers also publish the source code of their firmware as GPL-Code, in

particular to support ongoing projects such as OpenWrt [106].

Lack of (automated) patching capabilities: In 2014, the SANS Institute con-

ducted a study9 among businesses and found that 31% of participants considered the

difficulty of patching ‘things’ as the biggest threat to the IoT over the next five years, with

another 25% being concerned that IoT devices would end up distributing malware.

Hampton and Szewczyk analysed various routers including routers from the brands

D-Link, Netgear and TP-LINK, and found that the firmware images use libraries and

executables with an average age between three and ten years, and are often bundled

together with outdated kernel versions [63] . Similar, Costin et al. analysed 32 356

firmware images for CPE and IoT devices and found that many firmware images included

outdated software and kernel versions, including the use of kernels and binaries that were

built up to ten years after their initial release [32].

Nakajima et al. analysed the patch management of vendors for Consumer IoT devices

and found that five of six manufacturers have been releasing patches in a timely manner

[99]. However, even if a patch is available on the companies’ websites, customers do

often not update their devices. Asking 2000 end-users, Canonical found that only 31%

of consumers update their IoT devices as soon as an update becomes available, 40% of

consumers have never updated their device since they purchased it, and 8% did not know

what firmware was [24]. Nakajima et al. further found that vendors often implicitly

announce End-of-Support for devices in certain regional areas while the same device is

still supported in other regions, effectively shortening the support period [99].

5https://wiki.dd-wrt.com/wiki/index.php/Supported Devices
6https://openwrt.org/toh/recommended routers
7https://ubuntu.com/core
8https://azure.microsoft.com/en-us/services/azure-sphere/
9https://www.sans.org/reading-room/whitepapers/covert/paper/34785
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To this end and to better educate consumers, Morgner et al. [95] proposed a scheme

in which devices are given mandatory security update labels. In their user study they

found that (timely) update guarantees for certain product categories are more important

than product attributes for making purchase decisions. Similar, Emami-Naeini et al. [47]

found that privacy and security attributes of products are amongst the most important in

purchase decisions, but were ranked after product features and price. Thus they concluded

that consumers are not prepared to pay a premium for security, especially because security

remains hard to measure, particularly for consumer devices.

2.1.2 Protocols and services

In Chapter 4 and 5, we will use protocol deviations to fingerprint honeypots at Internet

scale, and in Chapter 6, we will develop a honeypot framework for CPE and IoT devices.

Here we briefly introduce the general characteristics of the most used communication

protocols in CPE and IoT devices, which are emulated in honeypots.

Secure Shell (SSH) is a cryptographic network protocol that transparently encrypts

and decrypts network connections between server and client [10]. It is the de facto standard

for secure login to remote devices. The current SSH version 2.0 has been standardised

by the Internet Engineering Task Force (IETF). The transport protocol (RFC4253 [158])

specifies that SSH listens on port 22 by default. After the TCP three-way handshake, the

server sends a version string to the client and the client responds with its own version

string. The string is sent in the form SSH-protoversion-softwareversion SP comments

\r\n where SP is a space, \r is a carriage return and \n is a line feed. After the version

number exchange, the key exchange begins by sending, amongst other things, name-lists

of supported encryption algorithms, MAC algorithms and compression algorithms. After

the SSH2 MSG KEXINIT packet exchange, the key exchange algorithm is run.

Telnet provides a bi-directional, unencrypted communication channel for interaction

with remote terminals. It was first standardised by the IETF in 1983 by RFC854 [107]

and subsequently updated by RFC5198 [74] in 2008. Both client and server may negotiate

various terminal options specified in a number of different RFCs [108], including line

mode, echo and terminal type. In general, the negotiation starts with an IAC (Interpret as

Command) escape character followed by one of the option codes WILL, WON’T, DO, DON’T

and the desired terminal option. The other party then accepts or rejects the requested

state using the same syntax.

Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol

used for accessing resources on web servers. It was initially standardised by the IETF in

1996 with RFC1945 [15] and subsequently updated; the latest 2.0 version is defined in

RFC7540 [14]. In HTTP, the client uses a variety of methods such as GET, HEAD, DELETE

and TRACE to request services from remote servers, each of them defined in various RFCs.
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Web servers interpret the incoming requests and respond dynamically. The RFCs leave

much freedom as to how servers implement the methods. For example, RFC7231 [52]

states that when the server receives a request that is unrecognised or not implemented,

the server ‘should’ respond with an 501 error code (‘Not implemented’). However, this is

not mandatory and may differ by implementation.

Universal Plug and Play (UPnP) enables the control, data transfer and inter-

connection of networked devices without manual configuration [54]. It runs on top the

Internet Protocol (IP) and uses HTTP to exchange messages. By default, UPnP works on

port 1900 (UDP) and initially, each connected device attempts to obtain an IP address

via DHCP. Subsequently, the devices will automatically advertise their services, the device

type, an unique identifier, and a URL where more information can be obtained (UPnP

description). The UPnP description uses the XML syntax and is typically a URL that

contains a device description and one or more service descriptions [91]. The service de-

scriptions include actions to which the service can respond. These actions can be triggered

by sending a crafted message to the URL of that service, again using the XML format

and HTTP requests [54].

2.1.3 Common vulnerabilities

The rapidly growing IoT market demands shortened product life cycles and shorter time-to-

market [141]. Products are often immature, insecure and because of the limited diversity of

available chipsets (Section 2.1.1), may share common vulnerabilities and attack vectors [4].

Internet-connected: A wide range of CPE and IoT devices have publicly accessible

services. This is mainly the result of bad default configurations and the use of UPnP to

reduce the configuration burden for consumers of setting up networking for each individual

device.

To ensure that IoT devices can communicate with remote services, such as a mobile

application, they either send data to a central server or use peer-to-peer (P2P) connections.

To establish a P2P connection with the IoT device, which is typically located behind

a router, the device has to overcome Network Address Translation (NAT). To do so,

UPnP-enabled devices set and change port forwarding rules in the router.

Kumar et al. published the first large-scale study to use user-initiated network scans

followed by an Internet-wide scan to measure how many households have publicly accessible

services [80]. Using data on 16 million households, they found that 3.4% of households

expose HTTP, followed by FTP (0.8%), Telnet (0.7%) and SSH (0.8%). They further

found that 67.5% of IoT devices run at least one network-based service and that UPnP

(46.2%) is the most popular protocol for device discovery, followed by HTTP (45.7%) for

device administration.
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Weak authentication: The most used protocols to administer devices are Telnet,

SSH and HTTP(S). However, many devices are shipped with default passwords that can

be easily guessed or found in device manuals.

In 2010, Cuin and Stolfo performed Internet-wide scans with a default credential

scanner [36]. The scanner will, after having received a response from an Internet-connected

networking device, attempt to authenticate using a list of default credentials. In total,

they found more than 540 000 publicly accessible devices that were configured with the

factory root passwords. Similar, Costin et al. analysed 32 356 firmware images for CPE

and IoT devices and found hard-coded passwords in 681 of them [32]. Their Internet-

wide scan revealed hard-coded credentials for Telnet affecting at least 2k devices and

hard-coded web-login credentials affecting at least 101k devices. In 2019, the European

Telecommunications Standards Institute (ETSI) released a technical specification which

recommends banning universal default passwords for IoT devices.10

Backdoors are closely linked to weak authentication. For simplicity, manufactures

put default credentials or cryptographic keys in their firmware so they can connect to

the device easily and debug device failures. However, these access mechanisms are often

undocumented and not immediately obvious. In 2013, Heffner found a backdoor in

various D-Link routers which is activated by setting the user-agent header to xmlset -

roodkcableoj28840ybtide.11 Doing so allowed anyone to send any HTTP request,

without authentication, to the device, alter the configuration, and ultimately control it

remotely. Similarly, devices of various types and brands such as routers from Zyxel12 and

Cisco13, Digital Video Recorders (DVRs) from Raysharp14, and security cameras from

Hangzhou Xiongmai15 were using hard-coded passwords which cannot be changed by users.

Programming errors include but are not limited to improper input validation,

improper use of cryptographic protocols, improper memory initialisation and ignoring the

bounds of a memory buffer. These vulnerabilities are not unique to IoT devices but are

a common consequence of careless software development. However, the rapidly-growing

IoT market causes manufacturers to focus on shipping feature-complete devices as soon

as possible rather than making them more mature and secure. As outlined in Section

2.1.1, many devices are based on (old) Linux kernels; the associated applications are

often outdated, insecure and do not conform with security best practice. Recent examples

include a format string vulnerability in the Broadcom UPnP software [71], a buffer overflow

in appGet.cgi for ASUS routers16, and a flaw in the algorithms to generate unique device

10https://www.etsi.org/deliver/etsi ts/103600 103699/103645/01.01.01 60/ts 103645v010101p.pdf
11https://nvd.nist.gov/vuln/detail/CVE-2013-6026
12https://nvd.nist.gov/vuln/detail/CVE-2016-10401
13https://www.tomshardware.com/news/cisco-backdoor-hardcoded-accounts-software,37480.html
14https://nvd.nist.gov/vuln/detail/CVE-2015-8286
15https://nvd.nist.gov/vuln/detail/CVE-2018-17919
16https://nvd.nist.gov/vuln/detail/CVE-2018-14712
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IDs.17 The latter vulnerability allows remote attackers to predict IDs and to establish

direct connections to arbitrary devices, affecting more than 2m devices of the Chinese

manufacturer Shenzhen Yunni Technology.

2.2 Universal attacks

Before we introduce the concept of honeypots and their contribution to mitigating the

consequences of insecure CPE and IoT devices, we first briefly explain how vulnerable

devices are discovered and then discuss recent attacks.

The existence of specialised search engines to discover CPE and IoT devices and the

modern ability to perform Internet-wide scans in minutes together mean that suitable

exploits can be used almost instantly and leave little time for vendors to deploy appropriate

defenses. This is especially problematic because, as explained in Section 2.1.1, many devices

– even though they are sold by different companies – use identical chipsets and software.

Thus a single exploit can affect millions of devices across brands and continents.

Once devices are compromised at scale, they typically become part of a botnet, a

collection of devices that are under the control of some malicious actor.18 Botnets are

used in various ways including malware distribution, cryptocurrency mining, proxying

malicious traffic and to conduct DoS attacks [113].

2.2.1 Device discovery and Internet-wide scanning

One key metric of CPE and IoT malware is its attack potency, which is largely determined

by the overall number of vulnerable devices.

With open-source tools such as Zmap [45] it is possible to perform Internet-wide scans

in minutes. Zmap can perform TCP SYN scans or can be used to send UDP probes.

ZMap can further be extended with various modules such as ZGrab and ZBrowse. Zgrab

is an application layer scanner which can, after the initial TCP handshake, send further

probes to remote servers to obtain information such as the servers’ application versions.

These scans are repeatedly performed for various ports, including SSH, Telnet and UPnP,

and the information is then made available rapidly via specialised search engines such as

Shodan19, Censys20 and Thingful21.

In addition to publicly available information, the propagation of IoT malware has

significantly improved with the rise of the Mirai botnet. What makes the Mirai malware

unique is its implementation of a fast, stateless scanning module. By default, Mirai sends

17https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-11219
18https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
19https://www.shodan.io
20https://censys.io
21https://www.thingful.net/
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160 TCP SYN probes per second to a pseudo-randomly chosen IPv4 address on port 23

(every tenth packet is sent to port 2323) [7]. Mirai further sets the Initial Sequence number

(ISN) – normally a random 32 bit integer – the same as the destination IPv4 address.

After Mirai has identified a victim, it uses up to 10 username and password combinations

which are randomly chosen from a list of 62 credentials [76]. In fact, Mirai uses 61 unique

combinations as the list of 62 credentials includes one duplicate (guest/12345). If a login

is successful, the IP address will be sent to a report server, which will then inform a loader.

The loader uses the credentials and issues a sequence of commands to download a Mirai

binary for the specific architecture from a malware server. Mirai will then run, start the

scanning process and kill all other processes listening on port 23 and port 22 so that

competing malware cannot compromise the device.

The speed of modern Internet-wide scanning and the available open-source code of

Mirai with its stateless scanning module together mean that malware spreads rapidly. As

a consequence, suitable exploits can be used almost instantly at Internet scale and leave

little time for vendors to deploy defenses.

2.2.2 Denial of service attacks

(Distributed) denial of service attacks (DDoS) were first widely discussed and

studied after such attacks hit various big companies including Amazon, Yahoo! and CNN

in 2000 [81]. However, already in 1996 a flood of SYN packets resulted in the temporarily

shut down of Panix, an American-based ISP [23]. DDoS attacks aim to make computer

systems unresponsive and unavailable by means of excess connections or data requests.

Volumetric attacks are typically measured in Gbps as their only aim is to send as much

traffic as possible to the victim to overwhelm victim bandwidth capacity. DDoS attacks

may also target particularly expensive parts of applications, for example by sending

specifically crafted database requests or search API calls. By attempting to respond to

all the incoming data, the victim machine is overloaded and cannot handle legitimate

user requests. Distributed attacks are characterised in that requests are sent by multiple

machines which may be in dispersed geographical locations.

To recruit a large number of machines, attackers either target the administrative

ports such as Telnet and SSH across a wide range of devices, or find a vulnerable service

which can be fooled to forward data. The latter can be effective if a server’s response is

disproportionate to the request sent, i.e. the size of the request is significantly smaller

than the response triggered (the ‘amplification factor’). A particularly problematic factor

is that most UDP protocols have no authentication, enabling traffic to be sent to the

victim on the attacker’s behalf [118].

Donno et al. provide an extensive overview of thirteen IoT malware families with

DDoS capabilities from 2008 to 2016 [39]. Most of the IoT malware is available for both
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MIPS and ARM as the most prevalent architectures. However, only for four IoT malware

families has the source code become publicly available – Linux.Hydra (2008), Zendran

(2012), BASHLITE/Gafgyt (2014) and Mirai (2016).

Mirai has been primarily used to conduct DDoS attacks on various websites and

Internet services such as Krebs on Security, OVH and DynDNS. To carry out the attack on

OVH, 145k IoT devices were used and the resulting traffic topped out at 1TBs, according

to their own telemetry. The attack on Brian Krebs was significantly smaller with a peak

of 623 Gbps.22 In total, Mirai has compromised over 600k devices.22

In the aftermath of Mirai, we have seen the rise of the Hajime botnet. In contrast to

Mirai, Hajime also targets a variety of other ports including ports 80 and 7547 (TR-064).

Herwig et al. analysed it and found that it uses a peer-to-peer infrastructure instead of

centralised loaders and Command & Control servers; they estimated that it infected up to

95k devices [65]. Costin and Zaddach estimate that it controls significantly more; they

found that it has infected between 130k and 300k devices [31].

Permanent denial of service attacks (PDoS) are another form of attack which

have emerged in 2016 by the name of ‘Brickerbot’. It is different from DDoS attacks as

the aim is to make the device permanently unusable [76]. The author of Brickerbot claims

in an interview to have destroyed over 10m devices23 before he retired the malware in

December 2017. However, there is no independent evidence that supports his claim. The

malware itself uses a set of credentials to login to insecure devices, primarily via Telnet.

It then issues a set of commands to rewrite the device’s flash storage, often including

configurations necessary for the device to boot. Thus, after the devices were rebooted or

powered off, they were dysfunctional.

In 2019, Akamai found related malware called ‘Silexbot’ which destroyed about 4,000

devices.24 To compromise devices, Silexbot uses a set of known credentials to login via

Telnet. Once compromised, it reads /dev/random and then writes the data to any mounted

flash storage.

2.2.3 Proxying malicious traffic

Proxying traffic through compromised devices is useful for attackers because the proxy

makes it harder to trace back their actions, counter and/or blacklist machines, and to

shut down malicious hosts. The device’s functionality is often retained so that its owner is

not aware that their device is used as a proxy. In one of the first studies, Steding-Jessen

deployed ten honeypots at volunteers’ homes to capture email spam, so the IPs appeared

22https://elie.net/blog/security/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
23https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-

bricked-over-10-million-iot-devices/
24https://blogs.akamai.com/sitr/2019/06/sirt-advisory-silexbot-bricking-systems-with-known-default-

login-credentials.html
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to be standard ADSL home connections [129]. The honeypots emulated an open SMTP

relay server, and in 15 months they captured more than 500m emails from more than 216k

unique IP addresses. In 2017, a new malware botnet called Linux.ProxyM appeared which

specifically targets IoT devices, again with a set of pre-defined credentials, and uses them

as a proxy to send spam. Costin and Zaddach estimate that the botnet consists of at least

10k devices and that each device sends about 400 emails per day [31]. In 2018, the FBI

issued a warning that “cyber actors are using compromised IoT devices as proxies” to,

amongst other things, send spam e-mails, maintain anonymity, obfuscate network traffic

and generate click-fraud activities.25

2.3 Honeypots

The term ‘honeypot’ was first used by Spitzner in 2001 who described a honeypot as

a “security resource whose value lies in being probed, attacked or compromised” [127,

p. 40]. However, the concept was introduced more than ten years before in 1989 when

Stoll described a fake system environment with no production value that was used

solely for the purpose of monitoring incoming connections and tracking attackers [132].

Shortly afterwards, in 1990/91, Cheswick described how he created a fake environment

after someone had fetched the /etc/passwd file via ftp in order to monitor attackers’

activities [28].

In the early 2000s, honeypots focused on deception and on increasing the attacker’s

workload, exhausting the attacker’s resources and increasing the sophistication required

to undertake an attack [29]. Since then, they have evolved and the term encompasses a

variety of different concepts and types which are outlined in Section 2.3.1. Most notably,

the SANS Institute defines honeypots as “fake computer systems, set up as a ‘decoy’, that

are used to collect data on intruders” [119, p. 2]. Also, their focus has shifted from a tool

of deception and frustrating attackers, to a tool that can capture and analyse attacks, act

as remote sensors and provide early warning [94]. Thus, honeypots complement traditional

security tools such as firewalls, intrusion detection systems and Virtual Private Networks

(VPNs). Firewalls rely on rules and anti-virus software relies on updates; both primarily

protect against known vulnerabilities and attack vectors. In contrast, honeypots may

detect and offer a way to detect the yet unknown attacks including ‘zero-days’ [125].

Han et al. categorised deception techniques in four dimensions: goal, unit, layer and

deployment [64]. First, the goal of deception can be to lure attackers into a sandbox where

their attacks can be studied or to mitigate the harm they do by redirecting them to a

sinkhole. Second, the unit of deception refers to the actual decoy. Decoys are variable,

from a simple warning banner or a full emulation of an industrial control system. Third,

25https://www.ic3.gov/media/2018/180802.aspx
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the layer of deception refers to the layer it’s applied. Lastly, the deployment of deception

refers to the actual implementation technique. Deception may come built-in or be triggered

by certain actions.

2.3.1 Types of honeypots

In the last 20 years, several attempts to classify honeypots have been made. First and

foremost, honeypots are distinguished according to the direction of interaction [122, 100].

Throughout this thesis, we focus on server honeypots which are decoy environments that

wait for attackers passively. In contrast, client honeypots actively connect to a host to

evaluate whether the remote service is malicious and does not behave as intended. Most of

the client honeypots are web browsers that interact with a remote web server to determine

if it tries to load malicious content. Some client-side honeypots such as PhoneyC [101]

can also emulate certain vulnerabilities and monitor their abuse. With the increase of

malicious cryptocurrency miners [49], client honeypots such as Thug [133], which uses the

Googles V8 JavaScript Engine, have been revisited and become increasingly popular.

Second, honeypots are classified as research or production [126]. Research honeypots

are typically connected to the Internet and aim to get a comprehensive understanding

of the threat landscape. By contrast, production honeypots are used in organisations,

typically with limited network connectivity, and aim to improve the level of security

of production systems directly by absorbing attack traffic. This also means that any

activity within the honeypot is considered malicious. These honeypots tend to require

high maintenance, and are difficult to deploy [100].

Third, honeypots are classified by whether the level of interaction is low, medium

or high; this is also commonly described as ‘level of fidelity’ [29, 110, 50, 38]. As with

the first classification (research/product), this scheme is ambiguous as there are no clear

criteria for each category. At the lowest level, these honeypots may be simple scripts that

serve one specific purpose, such as logging authentication attempts or emulating specific

network protocols. In contrast, high-interaction honeypots should share state with the

actual systems as any deviation from the real system’s behaviour reduces the level and

fidelity of interaction, for example by limiting outbound traffic [110]. Most commonly, the

level of fidelity relates to the layer of emulation. Honeypots can be software artefacts, a

virtualisation of a system, or exhibit full system behaviour [50]. In Figure 2.1, we not only

show the evolution of server honeypots, but also classify them according to their layer

of emulation. As shown, we see an emerging trend towards virtualisation and the use of

physical devices. This is because the increasing complexity of protocols and applications

means that honeypots have to emulate ever more complex systems.

The level of fidelity has also direct implications on maintainability and associated risks.

As high-interaction honeypots allow full access to a real system, they need to be tightly
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monitored and maintained. They have significant value, but many people are unable to

accept the risk that they may be used for DDoS attacks, to distribute malware or send

email spam. This is when low- and medium-interaction honeypots have proven effective

as they are easy to deploy and to maintain, while their potential for harm is minimised.

They are especially useful in collecting quantitative data about large-scale attacks.

More recently, Fan [50] proposed a new taxonomy based on two categories, the features

of the decoy and the purpose of the security program. In this scheme, the level of fidelity

(low-/medium/high-interaction) is only one feature of the decoy, next to seven other

categories: scalability, adaptability, role, physicality, deployment strategy and resource

type. The purpose of the security program is classified as attack monitoring, prevention,

detection, response or profiling. However, even this more detailed taxonomy does not

use objective factors to distinguish, for example, between low-,medium-, high interaction

honeypots or at what point the honeypot is considered scalable.

2.3.2 Evolution of honeypots

As outlined in Section 2.3.1, this thesis focuses on server honeypots. The first server

honeypot was Deception Toolkit (DTK), published by Cohen in 1997.26 DTK emulates a

Unix system with many known vulnerabilities for various services including SSH, FTP and

DNS. The DTK is purely a software honeypot and is written in C and Perl. Following the

success of DTK, two commercial honeypot solutions have emerged, Specter and CyberCop

String. Both emulate various network services, but their level of interaction is limited

and none offers full operating system interaction. CyberCob Sting was also the first

honeypot to introduce the concept of having multiple systems bound together in a so

called honeynet [94].

26http://www.all.net/dtk/
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The first major step forward was HoneyD [127]. HoneyD was the first widely adopted

open source solution and offers two major improvements. First, it listens on any TCP port

and regardless of the level of emulation for each port, it logs attackers’ traffic. Second, its

open source code means that HoneyD is customisable. If an attack is recognised on one

port that is not yet properly emulated, the honeypot operator can change the source code

to implement the needed service [127].

Following the success of HoneyD, Kreibich and Crowcroft developed honeycomb, an

extension to HoneyD which analyses the honeypot traffic and automatically generates

intrusion detection signatures [79]. Potemkin, the first scalable honeypot platform based

on virtualisation, appeared next [148]; it re-directs traffic flows to special, virtualised

machines based on Xen. To set up new VMs rapidly, they use delta virtualisation and

flash cloning. They demonstrated that within a 10-minute period, over 2,100 VMs could

be created in response to incoming packets.

Two years after HoneyD, Baecher et al. proposed Nepenthes, a new platform for rapid

emulation for a wide range of vulnerabilities [9]. Their platform requires a priori knowledge

of attackers and attack vectors, but was the first honeypot that specifically separates

honeypot modules, i.e. the exploitation, payload analysis, de-duplication of malware URLs

and downloading the respective binaries. Dionaea, the successor of Nepenthes, continued

to focus on emulating vulnerabilities to capture malware samples, but supports the Session

Initiation Protocol (SIP), IPv6 and TLS [25].

As protocol complexity increased, the development of honeypots changed its focus

yet again. Between 2005 and 2014 a large number of protocol-specific honeypots were

developed: Kojoney [75], one of the first SSH honeypots, was followed by Kippo [73]

in 2009. The development of Kippo ceased in 2015 and the author now recommends a

fork called Cowrie [104]. Cowrie not only supports SSH, but added support for Telnet,

and is still based on the same foundation and protocol libraries of Kojoney and Kippo.

Glastopf [115] was one of the first HTTP specific honeypots, followed by the successors

Snare [116] and DorkPot [111]. Specific to Industrial Control systems (ICSs), Conpot has

been developed to emulate a variety of protocols including Modbus, S7 and Bacnet.

As mentioned in Chapter 2.2.2, UDP-based DDoS attacks remain ubiquitous. To

monitor these attacks, honeypots such as AmpPot [77] and Hopscotch [136] pretend to

be vulnerable services with particularly high amplification factors. For each incoming

request, Hopscotch reflects the first packets so the systems appears to be a legitimate

vulnerable service. However, once the honeypot receives “more than a handful of packets

with the same source IP address”, it will stop forwarding attack traffic to the victim on

the attacker’s behalf, but capture the exact details of the attacks [136, p. 3].

A 2012 report for the European Network and Information Security Agency (ENISA)

evaluated the vast majority of available honeypots, including high-interaction honeypots.
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The authors recommend using the medium-interaction honeypots Kippo for SSH, Glastopf

for HTTP and Dionaea for the remaining protocols [59]. Honeypots that supported Telnet

‘out of the box’ were not widely available at the time of that study.

In 2015, Minn et al. developed one of the first generic high-interaction honeypots

tailored to impersonate CPE and IoT devices. To return appropriate messages to attackers,

they collected banners from the Internet for port 23. For each incoming connection, the

honeypot will return with a previously obtained conversation; if the interaction/command

is unknown, it tries to run the command in a generic sandboxed environment (‘IoTBOX’)

to infer the appropriate return string(s). IoTBOX itself uses the OpenWrt Linux operating

system and QEMU, an open-source emulator that performs hardware virtualisation.

With the rise of the Mirai botnet, IoTPot has inspired many other honeypots, most

notably SIPHON [60]. The platform exposes physical devices, such as networked video

recorders and security cameras, on a range of IP addresses. More recently, U-Pot [62] uses

the UPnP device description documents, typically a .XML file, and the gupnp library to

emulate a UPnP device.

Overall, we see an emerging trend towards virtualisation, the use of physical devices,

and protocol-specific honeypots. This is for two main reasons. First, as protocols become

increasingly complex it is hard to develop a honeypot which can handle multiple protocols

faithfully with a high level of interaction. Second, attack vectors are also increasing in

their complexity. While the first honeypots were only concerned with logging brute-force

attempts and file access, the increased use of smart devices had led to both vulnerabilities

and their exploitation becoming ever more complex. To exploit vulnerabilities several

protocol exchanges, payloads and device specific interactions may be performed.

This issue can be avoided if we use the actual physical device, or a virtualised version

of it, as the original software implementation is used. However, honeypots using physical

devices are limited in their scalability as there are tens of thousands of different devices

to protect. Furthermore, physical devices with their original kernel and applications do

not have the capability to actually log an attack, so it is only possible to intercept and

monitor incoming traffic. With the use of encryption (e.g. HTTPs and SSH), this becomes

an ever more complex task as it would be necessary to man-in-the-middle the traffic. But

then the attacker does not interact with the vulnerable device directly, but with a different

implementation that might not be vulnerable to an attack of interest. It also means that

sophisticated attackers may be able to detect the MITM, perhaps from differences in

protocol interactions or timing discrepancies.

2.3.3 Fingerprinting honeypots

Fingerprinting is a concern for honeypot developers and operators. Once a honeypot

can be identified by attackers, its value in detecting new attack vectors and monitoring
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attack traffic may drastically decrease. Hosts running honeypots may be blacklisted by

attackers so that their honeypots have to be moved [37]. Thus honeypots should not be

easily detected. As explained in Section 2.3.1, high-interaction honeypots should ideally

share state with the actual system. However, even the slightest modification to the real

system, for example adding logging capabilities – which are essential for honeypots to be

of any use – means that the honeypot and the real system are not identical.

Chen et al. were the first to establish a taxonomy of fingerprinting by classifying

common malware anti-virtualisation techniques into hardware, environment, application

and behaviour [156]. Uitto et al. categorised honeypot fingerprinting into the four

dimensions temporal, operational, hardware and environment [139]. Both taxonomies are

similar as the classification behavioural of Chen et al.’s taxonomy captures only timing

differences, namely the temporal issues in Uitto et al.’s classification. Similarly, the category

application captures the extent to which applications are installed and can be executed.

In Chen et al.’s model, the category operational includes applications, but also considers

the way how applications can communicate, e.g. whether applications are allowed to send

and forward traffic or even participate in attacks. Thus we will adopt the classification of

Uitto et al. and focus on fingerprinting techniques specific to honeypots.

Temporal: Garfinkel et al. demonstrated that virtualisation induces anomalies,

such as timing discrepancies and that these anomalies can be used to detect virtualised

environments [55]. Similar, Holz and Raynal showed that the execution time of commands

provides an efficient way to detect honeypots because emulation will typically result in

longer execution and response time [67]. In the same vein, Mukkamala et al. demonstrate

that honeypots within virtual environments respond slower to ICMP echo requests than

real systems [98]. However, they also found that for Internet-connected honeypots this

metric may not be useful because it depends on network load, routing and emulation

technology. In Chapter 6, we evaluate if the timing of our new virtualised honeypot is

indistinguishable from real devices connected to the Internet.

Operational is the extent to which the honeypot communicates. Wang et al. proposed

to detect honeypots based on the assumption that honeypots cannot take part in real

attacks and therefore honeypots do not allow certain applications to be run or installed [152].

To detect honeypots based on these constraints, they propose to set up sensors which act

as honeypot detectors. These sensors under the botmasters’ control are periodically hit to

verify that the compromised machine is still actively participating in attacks. For example,

in the case of proxying spam emails, emails might be send to an email address under the

botmaster’s control to detect honeypot sinkholes. To this end, Krawetz developed a tool

called Honeypot Hunter which tests if emails sent through the compromised system were

actually delivered [78]. Similar, Zou and Cunningham proposed fingerprinting honeypots

based on their limited willingness to participate in real attacks and to execute malicious
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activities, such as continuously requesting content from web servers that are under the

botmasters control [162].

Hardware: Honeypots often do not run on bare-metal hardware, but in some con-

strained environment, such as virtual machines or containers with limited resources.

Inevitably, virtual machines have to create hardware devices and use specific drivers for

the guest operating to function. Related to the detection of (high-interaction) honeypots

are malware sandboxes. Sandboxes are used to run malware binaries in a controlled

environment to gain insights how the malware operates [159].

Chen et al. analysed 6 222 malware samples and found that 95.3% of the samples

have the same behaviour in a VM as running on bare-metal hardware [156]. Yokoyama

et al. analysed 20 malware analysis services by submitting a custom Windows 32-bit

binary with the aim of fingerprinting sandboxes based on a set of features, including

display resolution, display width, RAM size, system uptime and time of last login [159].

To train their classifier and to establish ‘ground truth’, they used 50 Windows PCs. They

found that hardware features are among the most distinctive features, as sandboxes are

typically single-core and use little RAM with small disk sizes. While this is a problem

for malware targeting PCs with ample resources, CPE and IoT devices themselves have

limited resources and thus these features are likely to be less useful.

Environment: Environment includes the operating system, file system and the current

state of the machine, such as running applications. Morishita et al. built upon our work

in Chapter 4 and showed that many honeypots do not blend into the type of service

they emulate and reveal themselves by a unique configuration [96]. They analysed 14

open-source honeypots and found 19 208 honeypots across 637 Autonomous Systems (ASs)

which failed to take “even the most basic precautions against detection by attackers”.

Similar, Sysman et al. pointed out that default configurations for a variety of honeypots,

including Glastopf, Kippo and Dionaea, allow them to be fingerprinted with minimal effort

[19]. For example, Glastopf serves a distinct default webpage which can be found by a

basic search on search engines. We add to this body of literature in that we developed an

automated technique to fingerprint honeypots based on packet-level protocol interactions,

identifying honeypots at Internet scale with trivial probes (Chapter 4).

2.4 Summary

This Chapter briefly summarised the background required for the rest of the dissertation.

It introduced three common characteristics of CPE and IoT devices: chipset monoculture,

the use of operating systems derived from Linux and the lack of automated patching.

Together with basic security failures such as weak authentication, these factors are the

basis for universal attacks targeting CPE and IoT devices. The predominant attacks rely
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on Internet-wide scanning for device discovery. These factors mean that a single exploit

can affect millions of devices across brands and continents.

We introduced honeypots as a mean of detecting such attacks quickly. We discussed

how they have evolved over time to adjust to the ever-changing threat landscape. This will

form the basis for Chapter 3 in which we show that warning banners have no deterrent effect

and that honeypots mainly capture the behaviour of bots rather than human activities. We

discussed the trend towards virtualisation and the shortcomings of the current generation

of honeypots. In particular, fingerprinting was discussed in more detail to provide the

necessary background for Chapter 4 which presents an automated technique to fingerprint

honeypots based on packet-level protocol interactions at Internet scale.
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Chapter 3

Revisiting the effect of warning

messages on attackers’ behaviour

The use and analysis of survey and interview data is common among criminologists and

offers an avenue for better understanding crime. With the increase of cybercrime, the use of

honeypot data becomes increasingly important to better understand deviant behaviour [20].

However, there have been doubts about the validity and generalisability of studies using

honeypot data. In particular, concerns have been raised that honeypots do not capture

individual criminals, but automated activities [134] and that “incorrect assumptions about

the actors” are made as honeypots do not collect data on demographics, motivations and

rationales [66, p. 740].

We are the first to empirically confirm with two independent studies that warning

banners have no deterrent effect and that previous research has wrongly assumed that

they would affect human behaviour. We find that the number of human trespassers is

orders of magnitude lower than previously assumed, and that previous research measured

the behaviour of automated scripts. These scripts are only programmed to evaluate the

systems’ usefulness by looking for a pre-defined set of characters such as indications of a

shell prompt. In the presence of a (lengthy) warning banner, they either fail to correctly

parse the unexpected message or completely ignore it.

3.1 Introduction

Accessing computer systems without authorisation, also referred to as ‘system trespassing’

in Criminology, is one of the most prevalent forms of cybercrime. In an attempt to deter

attackers, the use of warning banners has been proposed.1 These banners aim to convey to

trespassers that the use of the system is monitored, unauthorised and subject to criminal

and civil penalties. In general, deterrence theory argues that individuals do not engage in

1https://nvd.nist.gov/800-53/Rev4/control/AC-8
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criminal activities if the punishment is severe and costly. Thus when the costs of deviant

behaviour outweigh the benefits, humans are less likely to proceed with their action [57].

Examining the effects of such warning banners in an attacked computer system has

received extensive attention over the last couple of years. In 2014, Maimon et al. [90]

conducted two experiments in which target computers, i.e. honeypots, were set up either

to display or not display a warning banner after attackers gained access to the system

via SSH. The authors found that displaying warning messages that the system is under

surveillance after attackers successfully logged in significantly reduces the probability that

attackers will issue commands and shortens the duration of sessions.

Several studies repeated their experiment and support their findings. First, Stockman

et al. [131] found that the mean duration of system trespassing incidents for incidents

on systems showing a warning banners is significantly shorter (15.29 seconds) than of

those without (23.45 seconds). Second, Testa et al. [134] found that system trespassers

with non-administrative privileges navigate through the filesystem and change file system

permissions significantly less often on computers with warning banners than on computers

without. Similar, Wilson et al. [153] found evidence that the presence of a warning banner

significantly reduces the probability that commands are typed in the system. Third, Jones

[70] argues that both the display of a standard legal threat and an ambiguous threat that

explicitly mentions that there will not be any consequences, increases the early use of

reconnaissance commands – commands that are used to gain more information about the

system such as uname and update. Their results were not statistically significant, but

in the anticipated direction, i.e. displaying either warning message results in the earlier

examination of the targeted computer than on the control group.

Steinmetz [130] was one of the first scholars to point out several methodological

concerns in the research design of Testa et al. [134]. He criticises that in the 30 days the

target computers were deployed, the computers might have been comprised by completely

different criminals with the same cracking tools, each of whom could respond differently to

warning banners, and the research design fails to take account of that. Second, he argues

that the study is unable to distinguish between human actors and bots. Therefore, we

cannot be confident in any inferences we make about user behaviour. Recently, Udhani

et al. [138] used 423 days of SSH honeypot data with more than 500 million connection

attempts to identify common traits of attackers which can be used to differentiate between

humans and bots. Not surprisingly, they find that attackers are more likely to be a human

if the number of password attempts is less than ten per minute and if less than three

characters per second are typed. More importantly, they find that the vast majority of

observations are the results of bots interacting with the SSH honeypot and not humans.

Although Wilson et al. [153] found that showing warning banners significantly reduces the

probability that commands are typed in the system, they also concluded that warning
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banners do not lead to a reduction in the volume and probability of repeated system

trespassing. Adding to the criticisms, Bossler [20, p. 685] argues that data from honeypots

may have severe limitations and biases: “the reality is that most attacks are automated”

so honeypots are not measuring humans, but automated scripts.

We add to the debate [89, 20] by adapting the study from Maimon et al. [90] by

including a third treatment option with ‘nonsense’ text of the same length as the warning

message. We further implemented additional logging mechanisms, so we were able to record

which (SSH) options were requested. Options include a shell, purposely not requesting a

shell, and the execution of a single command. We ran our study for 365 days on the same

University network that was used for Maimon et al.’s research (except for the additional

treatment, the experimental set up was identical).

In a second experiment that also ran for 365 days, we deployed a CAPTCHA (Com-

pletely Automated Public Turing test to tell Computers and Humans Apart) [147]. The

CAPTCHA was displayed after login credentials have been successfully guessed, but before

any message was shown. This allowed us to reliably distinguish between humans and

automated scripts as the latter would fail to solve the CAPTCHA.

We could not find any support for the deterrent effects of warning banners and conclude

that previous research has misinterpreted honeypot data. First, we find that displaying

a warning banner in an attacked computer system is not positively associated with the

hazard of first system trespassing incident termination and therefore does not result in

shorter duration of first trespassing incidents. Consistent with the original work, the

term ‘first system trespassing incident’ describes the first recorded event of unauthorised

access (‘trespassing incident’) on each target computer. Second, a warning banner does not

increase the probability of trespassing session termination and therefore does not reduce

the duration of system trespassing incidents. Third, the majority of requested sessions

were non-interactive. This means that the assumptions of previous research was wrong –

what previous research has measured was the behaviour of automated scripts rather than

the behaviour of humans. The second experiment confirmed this observation and we find

that the number of humans is magnitudes lower than previously assumed. Thus, if we

want to measure the effects of a warning banner, we need to carefully design experiments

which solely target humans and do not capture the behaviour of automated scripts.

We further believe that inter-disciplinary research including experts from the field of

information security, psychology and criminology is necessary to understand the complex

nature of deception in cyber space and cybercrime more generally. It is important to

understand how honeypot data is collected and to have expert knowledge about the current

cybercriminal landscape, including technical capabilities, attack vectors and tools to draw

reasonable conclusions. By not doing so, we risk drawing at best inconclusive or, at worst,

wrong conclusions which may directly impact (deterrence) policy making in cyberspace.
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3.2 Maimon et al.’s original study

To examine the effects of a warning banner on the frequency and duration of system

trespassing incidents, Maimon et al. [90] used 80 public IP addresses that belong to an

American university. The honeypots are high-interaction in that attackers are given full

access to the compromised machines. The experimental set up is done with a combination of

Sebek [109], an established tool to log user interactions, and OpenVZ hosts and containers

to quickly re-deploy target computers after 30 days have passed. The experiment ran for

a period of 2 months from April 1 to May 30, 2011. In this period, 86 target computers

were successfully compromised, and 971 trespass incidents were logged. The authors also

evaluated the effects of different system configurations, i.e. they explored whether RAM

size and bandwidth capacity influence the duration or frequency of trespass incidents.

For this experiment, 300 public IP addresses were used and 502 target computers were

successfully compromised in a six-month period from October 4, 2011 to April 3, 2012.

In both of their experiments, most of the target computers recorded repeated trespass

incidents. Looking at the effects of warning banners, they found that “a warning banner

reduces the duration of system trespassing incidents [...] but that the hazard of first system

trespassing incident termination is not conditioned by the computing configurations of

the target computer” (p. 16). The second experiment confirmed that “a warning banner

produces more deterrence and shorter duration of system trespassing incidents on target

computers with a low bandwidth” (p. 18) and that RAM size has no effect on the hazard

of system trespassing incident termination.

3.3 Experiment 1: The deterrent effects of warning

banners

Based on the original work, we replicated Maimon et al.’s. [90] original study, but we

added a second treatment option, the presentation of Lorem Ipsum text. To this end, we

present the findings and results in a comparable way and where appropriate, used the

identical statistical methods and terminology.

We hypothesise that the effects seen in the original work when presenting the warning

banner were due to the interaction with automated scripts rather than the semantics of

the warning banner or anything else. In particular, the hypothesis is that there is no

difference between the effectiveness of the warning message and the Lorem Ipsum text.

These scripts do not understand the semantics of the messages, but read all responses

solely to look for the shell prompt in order to evaluate the ‘usefulness’ of the compromised

computer. This evaluation may further fail because these scripts only read responses up

to a certain length, typically the length of a buffer.
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1 static int consume_pass_prompt(struct scanner_connection *conn)

2 {

3 char *pch;

4 int i, prompt_ending = -1;

5

6 for (i = conn ->rdbuf_pos - 1; i > 0; i--)

7 {

8 if (conn ->rdbuf[i] == ':' || conn ->rdbuf[i] == '>' || conn ->rdbuf[i] == '$' || conn ->rdbuf[i] == '#')
9 {

10 prompt_ending = i + 1;

11 break;

12 }

13 }

14

15 if (prompt_ending == -1)

16 {

17 int tmp;

18

19 if ((tmp = util_memsearch(conn ->rdbuf , conn ->rdbuf_pos , "assword", 7)) != -1)

20 prompt_ending = tmp;

21 }

22

23 if (prompt_ending == -1)

24 return 0;

25 else

26 return prompt_ending;

27 }

Listing 3.1: Original Mirai source code to check the clients’ responses for the

password prompt. Mirai determines standard password prompts with the characters

:, >, $, and # and if not found, looks for ‘assword’ in the buffer.

1 while (TRUE)

2 {

3 int ret;

4 [...]

5 if (conn ->rdbuf_pos == SCANNER_RDBUF_SIZE)

6 {

7 memmove(conn ->rdbuf , conn ->rdbuf + SCANNER_HACK_DRAIN , SCANNER_RDBUF_SIZE - SCANNER_HACK_DRAIN);

8 conn ->rdbuf_pos -= SCANNER_HACK_DRAIN;

9 }

10 [...]

11 ret = recv_strip_null(conn ->fd, conn ->rdbuf + conn ->rdbuf_pos , SCANNER_RDBUF_SIZE - conn ->rdbuf_pos ,

MSG_NOSIGNAL);

12 conn ->rdbuf_pos += ret;

13 [...]

14 }

Listing 3.2: Original Mirai source code to read clients’ responses into a fixed length

buffer of 256 bytes (SCANNER RDBUF SIZE). If the buffer is full, Mirai drops the

first 64 characters of the buffer, moves the remaining 192 bytes along and adds 64

new bytes from the incoming stream of data to the end of the buffer.

This behaviour has been observed repeatedly in the past. The Mirai malware, one of the

few malware types for which the source code has been leaked, is an indicative example of

the challenges to evaluate the usefulness of the compromised system. Mirai automatically

determines the underlying system environment with a combination of protocol exchanges,

issued commands, and subsequently examining the responses [7]. It stores these responses

in a buffer that can hold up to 256 bytes. If the buffer does not contain the desired

response, the malware will not proceed, for example with trying passwords or downloading
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a binary to infect the device. To check the content of the buffer, Mirai implements a

two-step process as indicated exemplary in Listing 3.1 for verifying the password prompts:

initially, it looks for standard password prompts with the characters :, >, $, and # which

often indicate a shell environment, identical to SSH. If one of these characters is found, it

returns to the position after the prompt and continues to brute-force passwords.

The second part handles cases in which the routine could not find a standard prompt

in the buffer. In this case, the function util memsearch sequentially looks for “assword”

in the buffer (the character P/p is skipped intentionally to ignore lower and upper case).

If any 7 sequential characters of the buffer are equal to “assword”, the function will return

a match. However, it is important to note that the buffer is limited to 256 bytes. If it

is full, Mirai drops the first 64 characters, moves the remaining content along, reads 64

additional bytes from the queue and adds them to the end of the buffer. This procedure is

implemented in a loop so that all bytes of the incoming responses are consumed.

So Mirai is solely focused on finding the password prompt and simply ignores any

other characters sent. This has three implications. First, any character or string in the

buffer that is not of interest will be ignored. Second, their hard-coded characters and

strings mean that if Mirai sees any use of these character sequences before the prompt,

Mirai will wrongly believe that it has found a password prompt, return the wrong position

to input the password, and be unable to infect the host. Third, any code that does not

correctly drain the buffer, but for simplicity, just reads responses into the fixed length

buffer, will inevitably cut off responses and thus not find the relevant information. This

example demonstrates that reading inputs is not trivial and that it is often done in a way

convenient for specific use-cases.

3.3.1 Design

In our experiment, we used 100 public IP addresses that belong to the same American

university as for the original study. The target computers were set up with a standard

Linux Ubuntu operating system. To gain access to them, trespassers had to break into them

successfully through Internet-wide scanning and guessing the authentication credentials.

3.3.2 Procedures

In line with the original work, we did not advertise our honeypots or actively recruit

subjects to participate in our experiment. Instead, we deployed our target computers on

the identical university network for a period of 365 days (June 6, 2018 to June 5, 2019)

and waited for system trespassers to find them. The targets were modified to reject login

attempts by system trespassers until a predefined number of attempts. As Maimon’s

experimental design, this predefined threshold was a random number between 150 and
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Table 3.1: Overview: Original work and this study

Maimon et al. 2014 [90] This study

Result 1 A warning banner in the target computer does
not lead to immediate termination of a system
trespassing incident i.e. the proportion of first
system trespassing incidents that were
terminated on the warning target computers up
to 5 seconds after a trespassing incident had
started is almost identical to the proportion of
incidents that were terminated in the same
period on the no-warning computers.

Result confirmed – The warning
banner and the Lorem Ipsum text do
not lead to immediate termination of
a system trespassing incident.

Result 2 -
Cox
model 1

A warning banner in the target computer is
positively associated with the hazard of first
system trespassing incident termination, i.e. a
warning banner more than doubles the rate of
first system trespassing incident termination
and results in shorter duration of first
trespassing incidents.

Result not confirmed – A warning
banner and the Lorem Ipsum text in
an attacked computer system are not
positively associated with the hazard
of first system trespassing incident
termination.

Result 3 -
Cox
model 2

A warning banner increases the probability of
trespassing session termination by 29 percent
and demonstrates that a warning banner
reduces the duration of system trespassing
incidents on the attacked systems.

Result not confirmed – A warning
banner does not increase the
probability of trespassing session
termination. We further find no
evidence that a warning banner
reduces the duration of system
trespassing incidents.

Result 4 A warning banner does not reduce the volume
of repeated system trespassing incidents on the
target computer.

Result confirmed – The warning
banner and the Lorem Ipsum text
are not associated with an reduction
in the volume of repeated systems
trespassing incidents.

200. While we are aware that this high number means that successful attacks are likely

performed by automated scripts, we did not want to change the original design to ensure

comparability between the original study and ours. When the threshold of 150 to 200

attempts was reached, the target computer was ‘successfully’ compromised in that it

allowed the attacker access to the system by creating a new user with the latest credentials

attempted by the system trespasser.2

Once access to our target computer had been granted, trespassers were randomly

assigned to either a no-warning, a warning or a computer displaying the Lorem Ipsum

message and initiated a system trespassing incident. When assigned to a warning condition,

the following message appeared on the screen immediately after the intruder gained access:

The actual or attempted unauthorized access, use, or modification of this system

is strictly prohibited. Unauthorized users are subject to institutional disciplinary

proceedings and/or criminal and civil penalties under state, federal, or other applicable

2One IP address was not allowed to compromise more than one target in any 30-day period.
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domestic and foreign laws. The use of this system is monitored and recorded for

administrative and security reasons. Anyone accessing this system expressly consents

to such monitoring and is advised that if monitoring reveals possible evidence of

criminal activity, the Institution may provide the evidence of such activity to law

enforcement officials.

When assigned to the Lorem Ipsum computer, the following message appeared on the

screen of the intruder:

Aliquam ut odio sapien. Morbi in est sed lectus consequat mollis. Fusce id risus

eros. Ut eget lacinia elit. Aliquam condimentum libero iaculis viverra imperdiet.

Nulla sit amet purus leo. Praesent auctor ac nunc non laoreet. Morbi justo purus,

volutpat non velit a, dictum mollis tellus. Cras eget mi risus. Nam pulvinar ut odio

sit amet venenatis. Aenean feugiat tincidunt ante, ac sollicitudin lacus convallis

quis. Sed ut consectetur diam, ut condimentum libero. Nunc pulvinar, elit hendrerit

commodo suscipit, orci mi luctus purus, eget viverra mauris enim eget orci. Curabitur

sed condimentum orci amet.

Both messages have 609 characters including spaces so that reading the characters into

buffers and processing the information should take identical time. When assigned to a

no-warning target computer, no message appeared on the screen of the intruder.

In line with the original work, we allowed system trespassers to use the target computers

and initiate repeated system trespassing incidents for a period of 30 days, which might

include sharing credentials with third parties. To ensure that the honeypots are not a

threat to our own computer networks, all honeypots were actively monitored. Using Sebek

as keylogger, we recorded each trespassing incident.

In an extension to the original work, we added further logging to differentiate between

interactive and non-interactive sessions3, and which commands were issued. This allows us

to infer whether the observed activities are more likely to originate from automated scripts

or humans. Typically users would request a shell to interact with the remote machine

using a text interface. However, SSH also supports the execution of commands without

requesting a shell. In this case, the server will only return the outcome of the executed

command, but no further information, i.e. no shell prompt or any other additional text

will be displayed. Thus the remote party has no means of seeing the warning message or

the Lorem Ipsum text. We further log every command that is sent to the shell as well

as every keystroke pressed. Both additional logging mechanisms allow us to potentially

differentiate between automated scripts and humans based on the nature of the session

and the associated timings of activities within a session. After 30 days have passed, the

access to the target computer was revoked and a new target computer was redeployed.

3The RFC4254 defines the term session as “a remote execution of a program. The program may be a
shell, an application, a system command, or some built-in subsystem.”

44



During the 365 days of the experimental period, 410 target computers were compromised

and infiltrated by system trespassers (144 of the computers had a warning banner installed,

133 showed the Lorem Ipsum text and 133 had no warning message, but the standard

operating systems welcome message), and 3 795 system trespassing incidents were recorded;

1 024 (27%) of the system trespassing incidents were recorded on the no-warning computers,

1 102 (29%) sessions were recorded on the warning computers and 1 669 (44%) sessions

were recorded on the computers which showed the Lorem Ipsum text. Importantly, most

of the target computers experienced repeated system trespassing incidents.

To explore our research hypotheses, we first run our analyses using data on the first

system trespassing incidents only (n = 410 trespassing sessions), and then we employ

data on the entire poll of trespassing incidents recorded during the experimental period

(n = 3 795 sessions).

An overview of the original work and its findings is presented in Table 3.1.

3.3.3 Outcome measures

As in the original work, we measured the time between the start and end of each trespassing

session and calculated its duration. We then created two dependent measures. The first

measure, immediate incident cessation, is a dummy measure (1 = immediate incident

cessation) indicating the termination of a trespassing incident within a period of five

seconds from its start.4 The second measure, incident duration, is a continuous measure of

the elapsed time (in seconds) between the beginning and the end of a trespassing incident.

3.3.4 Results

3.3.4.1 First trespassing incidents

We begin with analysing the first trespassing incidents recorded on each target computer,

and we test for an association between the text message (no warning, warning banner,

Lorem Ipsum) and immediate incident cessation as a dependent variable (1 or 0) using a

Chi-Square Test. As shown in Figure 3.1, the results revealed no association between the

type of text message and immediate incident cessation (X2(2) = 1.549, p = .461).

Second, we test if a warning banners influences the survival time of system trespassing

incidents. Identical to the original work, we employ event history analysis techniques

because of the right-skewed distribution of the survival time of trespassing incidents. This

analysis allows for estimating and comparing the proportion of sessions surviving an event,

as well as a prediction of the rate at which duration end [90, 21].

4In line with the original work, we chose 5 seconds as a cut-off threshold so that attackers have
sufficient time to see and read the banner.
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To this end, we use standard life table methods to examine the effects of the warning

and the Lorem Ipsum text on the time until system trespassing incidents terminate.

To determine whether either treatment condition influences the time until termination,

we compare the survival distribution of first trespassing incidents observed on all these

target computers with the corresponding survival distribution of first trespassing incidents

recorded on computers with no warning message. As indicated in Figure 3.2, overall the

proportion of first trespassing incidents that survived longer periods of time is higher on

the no-warning and Lorem Ipsum text computers than on the warning computers. Sessions

that display the warning message are terminated faster within the first 5 seconds of the

session, but after 5 seconds, the proportion of terminated sessions is similar across all

target computers.

Consistent with the original work, we test whether the effect of a warning on the

duration of system trespassing incidents is significant, by generating a dummy variable

indicating whether a system trespassing incident was recorded on a warning, Lorem Ipsum

or a no-warning target computer and estimating a Cox proportional-hazard regression [21].

The Cox model aims to explore the relationships between dependent and independent

variables, but focuses on the independent measures that may be associated with the

quantity of time (Box-Steffensmeier and Jones, 2004). The results from the estimated Cox

model are presented in Table 3.2, model 1.

Table 3.2: System trespassing incident duration regressed over Warning configurations

Variables Model 1 Model 2

First Observed Incidents > 0 seconds All Observed Incidents > 0 seconds

Cox Regression, x = 410 Frailty Model, n = 3795

Coefficient P-Value Hazard Ratio (HR) Coefficient P-Value Hazard Ratio (HR)
(SE) (95% CI for HR) (SE) (95% CI for HR)

Warning banner 0.149 0.217 1.161 0.321 0.27 1.379
Lorem Ipsum text 0.056 0.652 1.057 0.407 0.15 1.502
Log likelihood −24 833.13

ABBREVIATION: SE = standard error.

Contrary to the original work, we find that displaying a warning banner in the

target computer is not positively associated with the hazard of first system trespassing

incident termination. Similarly, displaying the Lorem Ipsum text is also not positively

associated with the hazard of first system trespassing incident termination. Specifically,

the results are statistically insignificant with p values of .652 for the Lorem Ipsum text

and .217 for the warning banner. The finding is consistent with results obtained from

log-rank tests for comparing the differences between the survival curves of warning vs.

no-warning computers (Z = 1.266, p = 0.206) and Lorem Ipsum vs. no warning computers

(Z = −0.465, p = 0.642).
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Figure 3.1: First trespassing incidents – Immediate incident cessation

3.3.4.2 All trespassing incidents recorded

To analyse the effect of a warning banner on the volume of repeated trespassing incidents,

we use all 3 795 recorded trespassing incidents, and we estimate whether the mean number

of repeated trespassing incidents recorded on the warning or Lorem Ipsum computers is

significantly different than the mean number of repeated trespassing incidents observed on

the no-warning computers. The results from an ANOVA indicate a non significant effect of

the type of text message on the volume of repeated trespassing incidents at the p < .05 level

for the three conditions [F (2, 407) = .740, p = .478]. Post hoc comparisons using the LSD

test indicated that the mean score for the Lorem Ipsum condition (M = 12.6, SD = 56.7)

was not significantly different than the no warning text (M = 7.7, SD = 26.2) and the

warning text (M = 7.7, SD = 22.2).

We then compare the survival distributions of all system trespassing incidents recorded

on the warning, the no-warning and the Lorem Ipsum computers. Figure 3.3 presents

results from this comparison. We find that the proportion of trespassing incidents that

survived longer periods of time is smaller on the Lorem Ipsum and warning computers

than on the no-warning computers. To quantify the effect of a warning banner, we use

shared-frailty models (or random-effect models). These models are used because they

account for the heterogeneity and dependence issues generated by repeated observations

[21, 85]. The results from the random-effect model are reported in Table 3.2, model 2. We

47



10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Duration in seconds

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

su
rv

iv
in

g
No Warning
Warning
Lorem Ipsum

(a) Time to system trespassing incident termination – First trespassing incidents (n=410)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Duration in seconds

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
su

rv
iv

in
g

No Warning
Warning
Lorem Ipsum

(b) Time to system trespassing incident termination – First trespassing incidents > 5 seconds
(n=129)

Figure 3.2: First trespassing incidents
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find that the effect of a warning banner in the target computers is insignificant on the

hazard of trespassing session termination (p value of .27). The same observation can be

made for the effect of the Lorem Ipsum text with a p-value of .15. These findings confirm

that neither the warning banner nor the Lorem Ipsum text positively or negatively affects

the probability of trespassing session termination and that we find no evidence that a

warning banner reduces the duration of system trespassing incidents.

3.3.4.3 Session types recorded and commands issued

In addition to the re-evaluation of the original work, we further analysed the requested

session types (Section 3.3.2). In line with our previous findings, we found that 3 619

of 3 795 sessions were non-interactive and the remaining 176 sessions were interactive,

i.e. keystrokes have been recorded. We further find that in 109 of 3 619 non-interactive

sessions commands had been issued to download additional software so that we cannot

be certain that the intruders were completely unaware of the warning banner or Lorem

Ipsum text. The additional scripts and/or software could have been used to transmit

further information about the systems status and its configuration once the machines

have been compromised. However, as we have not recorded any keystroke information, we

are confident that in these cases our machines did not interact with humans, but with

automated scripts.

Overall, 1 690 commands have been issued and in 308 cases additional software was

downloaded. The top three commands were uname -a, wget and curl. The command

uname -a returns additional information of the comprised machine such as its hostname,

operating system and current patch level. The latter two commands wget and curl are

used to download additional software which is subsequently executed. We further found

999 sessions in which commands to delete the shell’s history were issued. This is in line

with previous research which has found that in about one third of attacks the shell history

is deleted, in an attempt to cover the intrusion [2].

We further find, that the 176 interactive sessions were initiated from only 25 different

IP addresses. This strongly suggests that, despite having the experiment designed in a way

to ensure that any login attempt from an IP address that had already taken over a target

computer in the previous 30 days was rejected, the design could not block distributed

scanning and did not block subsequent logins to different target computers from the same

IP address. This means that we are potentially dealing with fewer attackers/individuals

than anticipated. Unfortunately, this also means that we cannot repeat the statistical

analysis for interactive sessions only. Cox regressions are best used with a minimum sample

size of 10 events per variable [146], but as we only have 25 unique observations (in this

case IP addresses) for 3 variables, this requirement is not met.

For three computers we observed that the same command was entered hundreds of
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Table 3.3: Descriptive statistic by experiment condition

Target Computer
Type

Target Computers
with System
Trespassing
Incidents

Trespassing
Incidents

Trespassing
Incidents with
Commands

Average
Trespassing
Incidents per
Target Computer

Average
Trespassing
Incidents with
Commands per
Target Computer

No warning banner 131 695 276 5.31 (10.56) 2.11 (2.38)

Warning banner 144 1102 324 7.65 (26.22) 2.25 (2.34)

Lorem Ipsum 132 1145 237 8.67 (35.02) 1.80 (1.92)

Total 407 2942 837 7.23 (25.99) 2.06 (2.19)

Note: In the analysis shown, three target computers with 524, 178 and 151 observed
commands are removed (see Section 3.3.4.3 for a detailed explanation). Standard deviations
are presented in parentheses where appropriate.

times: for the first instance, we recorded 524 commands from the same IP address in about

10 minute intervals with a median session length of 2.21 seconds. We observed similar

behaviour for two computers for which we recorded 151 and 178 commands with a median

session length of 0.548 and 1.158, respectively. These observations strongly suggest that

these computers have been abused by automated scripts beyond what possibly could be

the result of human interaction. As the fourth most popular honeypot deployment saw

16 commands entered, we consider these three deployments to be outliers for the next

analysis.

Turning to an investigation of the effect of a warning banner on the probability of

commands being typed in the target computers during system trespassing events, we

estimate whether the mean number of entered commands on the warning or Lorem Ipsum

computers is significantly different from the mean number of entered commands on the

no-warning computers. The results from an ANOVA indicate a non significant effect of

the type of text message on the number of entered commands at the p < .05 level for the

three conditions [F (2, 404) = 1.537, p = .216]. Post hoc comparisons using the LSD test

indicated that the mean score for the Lorem Ipsum condition (M = 1.8, SD = 1.9) was

not significantly different than the no warning text (M = 2.1, SD = 2.4) and the warning

text (M = 2.3, SD = 2.3).

3.4 Experiment 2: Surveying system trespassers

The goals of the second experiment are twofold. First, we wanted to study the prevalence of

human trespassers by supplementing the SSH password authentication with a CAPTCHA.

The CAPTCHA allows us to distinguish between humans and bots as the latter should

not be able to solve it. Second, to better understand the motivation and psychological
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traits of system trespassers, we designed a survey which is aimed at those that attempt to

access University computers without legitimate access.

We intended to get some indications about the size and nature of the market, explore

participants’ notions relating to the legality of the actions undertaken and obtain some

understanding of who accesses computer systems without authorisation. In particular, we

aimed to understand why they have chosen to access our computer systems, and their

views about unauthorised access more generally.

This research was approved by Ethics Committee of the University of Cambridge,

Department of Computer Science and Technology (ref: 450). The main risks associated

with this experiment relate to the confidentiality and anonymity of the participants,

particularly as in some jurisdictions, there may be legal issues relating to the unauthorised

access of computer systems. Therefore, all survey responses were de-identified upon receipt,

and no information that may identify participants, such as the participants’ IP address or

email address, was retained with the survey responses.

3.4.1 Recruitment

To undertake this research, we ran a modified version of OpenSSH version 7.2 on 50 public

IPv4 addresses that belong to the University of Cambridge. We deployed the honeypots

for a period of 365 days (October 26, 2017 to October 25, 2018). We did not advertise the

deployed computers or their assigned IP addresses, but waited for attackers to find and

attempt to compromise them.

To gain access to our computers, the attackers must guess credentials of ‘legitimate’

users – typically with the help of toolkits. We set up ten credentials for legitimate

users with common username/password combinations such as admin/admin, root/123456

and raspberry/pi. After the correct credentials have been entered and a SSH2 MSG -

USERAUTH SUCCESS packet has been sent, indicating the credentials are valid, a

CAPTCHA is sent.

The CAPTCHA stated that “if you want to access this host, please type the following

one digit number: 5” and thus is easily solved by humans. After the CAPTCHA is solved,

we presented a welcome message and told the attacker that they have logged in to a

honeypot and asked them to take part in our survey. The complete sequence of events is

shown in Figure 3.4.

The displayed welcome message assured potential participants that the survey is for

research purposes only. It further stated that, if compelled to disclose information such as

by subpoena, the data cannot be linked to participants as it will be de-identified.
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Figure 3.4: Surveying system trespassers – Sequence of events

3.4.2 Survey design

The survey used LimeSurvey and contained 44 questions and takes approximately 30

minutes to complete. Due to the nature of the activities and the notion of automation,

we did not anticipate a large response rate. Therefore, the survey was a mix of open and

closed response options and was structured in two parts.

The first part was aimed to ask questions about their background, methods to locate

and to gain access to computer systems, views about law enforcement, selection of targets,

and income. In the second part, we offered them the possibility to respond to three

psychometric tests – HEXACO personality scale, Susceptibility to Persuasion (StP-II) and

Dark Triad (DT). For all tests, we provided results at the end of the survey and all results

were automatically generated based on their answers.

All survey responses were de-identified upon receipt, and no information that may

identify participants was retained with the survey responses. Participants were advised

that they were free to withdraw from the study at any time, and can opt not to answer

any of the questions they are asked.

3.4.3 Results

In the 365 days study period, we logged 23.3m connections, more than 64k a day. As

discussed in Section 3.4.1, we ignored automated scripts that interacted with our honeypots

53



and we would only ask humans to complete the survey. For 78 493 of the 23.3m connections,

one of the ten valid credentials was used and the CAPTCHA was displayed. In 99 cases

(0.13%) the CAPTCHA had been solved and as expected, all such sessions were interactive,

i.e. our honeypots encountered less than 100 human interactions in a period of 365 days.

Unfortunately, only 4 of the 99 individuals to whom we showed the welcome message,

used the URL to view the survey and none of them completed the survey. As we de-

identified all information such as IP addresses upon receipt, we do not have any information

who accessed our computer systems.

3.5 Discussion

Our study is the first to use empirical data to challenge the findings of Maimon et al. [90].

We find that the display of a warning banner in an attacked computer system does not

increase the probability of trespassing session termination and does not result in shorter

session duration. The vast majority of observed interactions in both our experiments were

automated scripts and only two dozen IP addresses initiated all interactive sessions in

the one year study period (experiment 1). We confirmed this hypothesis with a second

experiment in which we used a CAPTCHA to tell humans and bots apart, and found that

human interactions are magnitudes lower than assumed by Maimon et al.

Maimon et al. assumed that “system trespassers [to] find [out] systems and employ

special software cracking tools to break into them” [90, p. 40] and subsequently humans

read the shell prompt, including the warning banner. However, we find that the whole

process – from finding computer systems, trying user credentials and evaluating the systems

usefulness – is mainly automated and performed by automated scripts. Thus, warning

banners are not seen by any human and what has been measured is the deterrent effect of

warning banners for automated scripts, which evaluate the system’s usefulness by reading

characters into buffers and comparing the content with a pre-defined set of features.

Since the research first appeared in 2014, two additional studies appeared which support

Maimon et al.’s findings.

First, Stockman et al. [131] developed a custom honeypot solution in which they used

bridge servers to forward SSH traffic to 27 honeypot hosts. To do so, they used HonSSH,

a man-in-the-middle proxy for SSH. HonSSH accepts incoming connections from attackers

and transparently forwards them to the target machines. In a period of 25 days, the

authors collected data of 238 sessions which showed a warning banner and 284 for which

no warning banner was displayed. The mean duration for those sessions with a warning

banner was 15.29 seconds and without a warning banner 24.35. Interestingly, sessions

without a warning banner have an eightfold higher variance (535.28 to 4767.59 seconds).

This huge variance indicates, just as with the results we observed, that the scripts were
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puzzled about the usefulness of the system and either immediately determined that the

system is useless (or in fact a honeypot) and therefore disconnected immediately, or were

waiting for the shell prompt. Furthermore, their honeypots were set up so that logins with

the username admin had a ten percent chance to log in to the system, regardless of what

password was used. Unfortunately they did not give any justification why this arbitrary

number was chosen. However, their set-up means that automated scripts are favoured as

a substantial number of attempts is necessary to break into the system.

Second, Testa et al. [134] used the identical University network and experimental

set up as Maimon et al., including the identical warning message and found that system

trespassers with non-administrative privileges navigate through the filesystem and change

file system permissions significantly less often on computers with warning banners than on

normal computers. Interestingly, they acknowledge that they “could not fully distinguish

between human-driven and bot-based attacks” [134, p. 718]. In fact, they do not discuss

and did not make any attempt to distinguish between both. Furthermore, they argue that

the high number of 150 to 200 attempts “limits the ability of human users to break into

the system [and that] it prioritises the use of brute force toolkits by system trespassers”

[134, p. 699]. Similar to Maimon et al. and Stockman et al., the arbitrary high number of

150 probes inevitably means that this task is likely performed by scripts. Testa et al. and

Maimon et al. acknowledged the possibility that this might happen, but they assumed

that a human would evaluate the shell prompt and take action while in reality, this process

is completely automated.

One might argue that the level of automation has increased since the original data was

collected in 2012. However, even if the level of automation in 2012 was lower than it is in

2019, one should not assume that all system trespassing incidents in 2012 were interactive

human sessions. Already in 2011, Nicomette et al. [102] deployed a high-interaction

honeypot for 419 days and logged 552 333 connection attempts and found that only 153

sessions are likely to be human. To distinguish between humans and bots they considered

(1) typos and (2) the way how data is transmitted between the user and the honeypot, i.e.

character by character or in blocks. In 2016, Barron and Nikiforakis [11, p. 395] deployed

102 SSH honeypots over a four-month period and conclude that “one must expect that

the majority of break-ins will originate from bots which will not necessarily be followed by

a human attacker [and] that if one is interested in studying the attack patterns of humans

(what they do once they break into a machine) they will have to deploy a large number of

honeypots and use filters to remove automated bot-related activity”.

In the attempt to distinguish between human behaviour and bots, we further find a

small number of malicious actors (IP addresses) who logged in to our target computers

using interactive sessions. In our first experiment, we logged 176 interactive sessions which

were initiated from only 25 different IP addresses. Similarly, in our second experiment, we
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logged 99 interactive sessions in a one year study period. This indicates that only a very

small number of interactions are performed by humans and that vulnerable machines are

primarily found through distributed scanning, i.e. the initial system trespassing is done

from a different machine than subsequent logins with interactive sessions. Overall, the

numbers of potential human trespassers are magnitudes lower than previously assumed.

We further find that about one quarter of connections are long-lived connections with

session durations of 80 000 seconds or more. While for first trespassing incidents, even

though not reaching statistical significance, the warning banner results in shorter session

duration, we cannot conclude that this is because of the semantic properties of the warning

banner, but it is more likely the effect of pre-defined connection timeouts. In particular,

we see an increase of dropped connection around 80 000 seconds, about 24 hours after the

connection has been established. Looking at all trespassing incidents, we find that the

Lorem Ipsum text results in shorter session durations, but again, not reaching statistical

significance. In both instances however, the standard operating system (Ubuntu) message

resulted in the longest sessions.

Our results further showed that the experimental design needs to be adjusted: many

criminals share the same tools or obtain tools from specialised marketplaces. Thus simply

rejecting login attempts until a random number between 150 and 200 does not “present a

more genuine environment” as argued by Maimon et al. [90], but means that the scripts

are likely to choose a password which appears between the 150th and 200th place on their

brute-force lists. In fact, we find that in our first experiment 154 honeypots (37.6%) were

deployed with a password either starting with the number 1 or with the letter a. First, this

indicates that the dictionaries used by the attackers are sorted alphanumerically. Second,

the dictionaries seemed to be fairly big as the number 1 and the letter a are at least within

the first 150 passwords. Some might argue that for future studies a higher number of

random attempts should be used to represent a more genuine environment so that the

number of passwords starting with characters on top of a sorted alphanumerical dictionary

are not that frequently used. However, attackers with the same dictionary will still share

honeypots. Consequently, the current experimental set-up may not be successful at all in

measuring the deterrent effects of warning banners.

One avenue might be to deliberately make log-in details of honeypots with different

treatment conditions publicly available, for example, by posting them on appropriate

forums and marketplaces. This will further increase the likelihood that honeypots interact

with humans and not with bots. Of course, one might have to think about the ethical

and legal implications of this work, but advertising honeypots on various underground

forums has been done in the past. Most recently, Onaolapo et al. [103] posted GoogleMail

credentials on underground forums to better understand how compromised email accounts

are used and monetised.
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3.6 Conclusion

We challenge the findings of Maimon et al. and two subsequent studies and find that the

display of warning banners has no deterrent effect in an attacked computer system. Our

third treatment condition, a Lorem Ipsum text, led to similar results and no significant

difference between computers that showed the warning banner and those that showed

the Lorem Ipsum text can be found. The vast majority of observed interactions with our

honeypots were automated scripts and only two dozen IP addresses initiated all interactive

sessions in the one year study period. The original study completely ignored automated

scripts and believed that all observed session interactions were humans. However, we show

that only a tiny fraction of sessions were interactive.

We will need a better experimental design with more focus on the technical aspects of

honeypot deployment and the threat landscape. Mechanisms such as CAPTCHAS instead

of a predefined number of authentication attempts or the advertisement of honeypots on

underground forums could help to study human behaviour only and thus measure if warning

have a deterrent effect. However, even if warning messages are found to have a deterrent

effect, they will only affect a small number of trespassing incidents as most trespassing

incidents are fully automated. We further believe that more interdisciplinary research is

necessary to better understand the technological implications of certain methodical choices

as well the current threat landscape including criminal actors, tools and their motivations.
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Chapter 4

Fingerprinting honeypots at Internet

scale

The current generation of low- and medium-interaction honeypots uses off-the-shelf libraries

to provide the transport layer. We show that this architecture is fatally flawed because

the protocols are implemented subtly differently from the systems being impersonated.

We present a generic technique for systematically fingerprinting such honeypots at

Internet scale with just one packet (in addition to the initial TCP three-way handshake)

and an ERR (Equal Error Rate) of 0.0183. We conduct Internet-wide scans and identify

7 605 honeypot instances across nine different honeypot implementations for the most

important network protocols SSH, Telnet, and HTTP. The nature of our techniques means

that the logs kept by these honeypots will not show indisputable evidence that adversaries

are actively fingerprinting the honeypot. We believe our findings to be a class break in

that trivial patches cannot address the issue.

The work presented in this Chapter was published in the 12th USENIX Workshop on

Offensive Technologies (WOOT ‘18) [143], and is in collaboration with Richard Clayton.

This work was also presented at the 31st Annual FIRST Conference on Computer Security

Incident Handling (FIRST ‘19).

4.1 Introduction

Attackers have a strong motivation to detect honeypots at an early stage as they do not

want to disclose their methods, exploits and tools [67]. In Chapter 2, we discussed various

methods of fingerprinting, including timing discrepancies and differences in application

behaviour. Attackers have attempted to distinguish Telnet and SSH honeypots by executing

commands within the login shell (or the impersonation of the login shell) and examining

the responses. This has led to an arms race as attackers develop new distinguishers and

honeypot authors improve the verisimilitude of their system.
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However, if a honeypot can be detected at the transport level, for example without

completing the SSH handshake or Telnet options negotiation, the honeypot’s value will

be minimal and efforts to impersonate the service will be in vain [78]. This aspect of

the detection arms race is especially challenging because modern protocols such as SSH

must handle a variety of versions, key exchange mechanisms, ciphers and service requests.

Similarly, in Telnet the client and server can negotiate numerous settings such as line

mode, echo and terminal type. As the RFCs do not mandate every aspect of a network

protocol, two implementations of a complex protocol may deal with ambiguities differently,

and this may reveal the presence of a honeypot.

We are the first to observe that there is a generic weakness in the current generation of

low- and medium-interaction honeypots because of their reliance on off-the-shelf libraries

to implement large parts of the transport layer. These libraries are used for their conve-

nience, but they were never intended to provide identical behaviour to ‘real’ servers. We

systematically identify these differences by constructing distinguishing probes and show

that they allow us to locate a large variety of honeypots by Internet-scale scanning. From

the servers’ responses we are further able to determine which implementation it is and

also the exact software version.

We believe this to be a class break in that patches to the current generation of honeypots

cannot solve the problem. Until these honeypots are given a new architecture, anyone

with moderate capabilities has a lot of extremely quick and simple methods of identifying

that a honeypot is running on a particular IPv4 address.

Overall, we make three main contributions:

• We present a generic and accurate technique for systematically fingerprinting low-

and medium interaction honeypots by constructing distinguishing probes at the

transport layer. We identified thousands of deviations between honeypots and the

services they are impersonating.

• We use this technique to perform Internet-wide scans for 9 different honeypots for the

most important network protocols SSH, Telnet and HTTP. We find 7 605 honeypot

instances residing on 6 125 IPv4 addresses: 2 779 honeypot instances for SSH, 1 166

for Telnet and 3 660 for HTTP.

• We provide insights into how honeypots are configured and deployed in practice. We

discover that only 39% of the honeypots were updated within the previous 7 months.

Furthermore, we find that 546 (72%) of the 758 Kippo honeypots are still (44 months

after our last scan) vulnerable to a known fingerprinting technique that was first

disclosed in 2014.
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Table 4.1: Honeypots in this study

Updated Language Library

SSH
Kippo May 15 Python TwistedConch
Cowrie May 18 Python TwistedConch

Telnet
TPwd Feb 16 C custom
MTPot Mar 17 Python telnetsrv
TIoT May 17 Python custom
Cowrie May 18 Python TwistedConch

HTTP/Web
Dionaea Sep 16 Python custom
Glastopf Oct 16 Python BaseHTTPServer
Conpot Mar 18 Python BaseHTTPServer

4.2 Background

Table 4.1 provides an overview of the honeypots that we considered in our study, which

we now discuss in detail.

SSH Honeypots: In this work we consider SSH honeypots emulating generic servers

running OpenSSH whose login credentials can be guessed and commands issued within

an operating system shell such as bash. OpenSSH is the most widely used SSH protocol

suite, and is installed on approximately 77% of all SSH servers listening on port 22 [46].

Many SSH honeypots have been developed over the years and one of the first SSH

honeypots was Kojoney [75] but active development ceased around 2006. Kojoney uses the

TwistedConch library which dates back to 2002 and is the de facto standard implementation

of SSHv2 for Python2/3. Kojoney inspired Kippo [73] which was developed from 2009 to

2015 but the Kippo author now recommends people use a forked project called Cowrie [104].

Cowrie has added more extensive logging and support for Telnet, and it remains under

active development. The project’s philosophy is to only implement shell commands that

are being used by attackers and so as of January 2018, Cowrie (partly) emulated 34

commands [35]. In 2015, Deutsche Telekom included Kippo in T-Pot, a multi-honeypot

platform “based on well-established honeypots” [40]. T-Pot combines different honeypots

for network services with an intrusion detection system and a monitoring and reporting

engine. As of March 2016, Kippo was replaced by Cowrie “since it offers huge improvements

over Kippo” [41].

Telnet Honeypots: Since mid-2016, and the rise of the Mirai botnet, there has been

an increasing interest in Telnet honeypots. In this work we consider four recent systems:

MTPot, Telnet-IoT-Honeypot (TIoT), Telnet-Password-Honeypot (TPwd) and Cowrie

(which can act as a Telnet honeypot as well as an SSH honeypot).

MTPot, developed by Cymmetria Research, a company focusing on cyber deception, is

designed to catch Mirai binaries. It is written in Python 2.x and uses the telnetsrv library
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for its Telnet protocol implementation. TIoT also aims to catch IoT malware and is also

written in Python 2.x, but with a custom implementation of the Telnet protocol. TPwd is

written in C and also has its own implementation of the Telnet protocol.

HTTP/Web Honeypots: There are many web application honeypots available –

some focusing on emulating WordPress or various login interfaces to obtain credential

guesses, while others are full web application honeypots. We focus on three honeypots of

this second type: Conpot, Dionaea and Glastopf – all implemented in Python.

Conpot is a honeypot designed to emulate industrial control systems and by default it

listens on ports 80, 102, 161 and 502. Dionaea supports almost all protocols and provides

templates for each of them, including HTTP. Glastopf specifically focuses on HTTP

and uses the BaseHTTPServer library to implement the protocol. Glastopf is the most

highly recommended honeypot for HTTP, including in the ENISA report we mentioned in

Chapter 2. Glastopf is also included within the latest versions of T-Pot.

4.3 Systematically fingerprinting honeypots

We present a new generic technique to systematically identify low- and medium-interaction

honeypots based on protocol deviations and before any authentication takes place, i.e. our

technique does not require log-in credentials. We find probes that result in distinctive

protocol responses. This has resulted in the identification of thousands of deviations

between honeypots and the services they are impersonating.

4.3.1 Efficient detection of deviations

Given a set of implementations of a network protocol I = {I1, I2, ..., Ix}, we send a set of

probes P = {P1, P2, ..., Pn} to I and record the set of responses RP . We then calculate the

cosine similarity coefficients C for all responses RPi
. The aim is to find the ‘best’ Pi where

the sum of C is the lowest, i.e. the responses RPi
for Ij are overall the least similar. In

other words, we try to find the probe that results in the most distinctive response across

all the protocol implementations.

Probes (P) Implementation (I)
send

output

Responses (RP)Cosine similarity
coefficients (C)

calculate

Figure 4.1: Steps to identify probes with distinctive responses, which can then be used for
Internet-wide scans.
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Cosine similarity is an established technique for comparing sets of information, com-

monly used to measure text semantic similarity. It has also proven useful in traffic analysis

to find abnormalities [157] and to measure domain similarity [88, 154]. We represent our

responses RP as a vector of features appropriate to the network protocol. For example, in

the case of Telnet, each individual terminal option character is treated as a feature. The

resulting cosine similarity coefficient is a normalized value between 0 and 1. The higher

the coefficient, the more similar the two items under comparison. The overall approach is

outlined in Figure 4.1.

We fingerprinted the responses from widely deployed systems that support SSH, Telnet

or HTTP along with the protocol libraries commonly used in building honeypots for

these protocols. To obtain the ‘ground truth’ for each of the honeypots and reference

implementations, we compiled and ran them locally. To trigger responses, the probe

generation followed the syntax of the respective protocol RFCs, but we altered individual

parts as subsequently outlined in each Section. As honeypot developers supplement their

chosen protocol library with custom code to emulate reference implementations, it is

reasonable to expect to be able to generate unique fingerprints and so it proved. We

then used the probe that resulted in the most distinctive responses for each protocol and

sent it to every host on the Internet. From the responses we are able to determine the

implementation (possibly a honeypot) and also the software version that is running on

each host.

The key point of our technique is that we are able to rapidly identify honeypots because

of the way in which they have been implemented (using a particular protocol library)

rather than having to consider how they respond when interacted with at length.

4.3.2 Protocol 1: SSH

We look for deviations in responses to a client version string and a SSH2 MSG KEXINIT

packet. For this comparison, we use five OpenSSH versions (6.6, 6.7, 6.8, 7.2, 7.5), the SSH

server example supplied with TwistedConch and eight versions of the honeypots Kippo1

and Cowrie2, four for each honeypot. We include multiple versions of Kippo and Cowrie

as both honeypots have undergone substantial modifications over the years.

First, we create a set of client version strings: SSH-protoversion-swversion SP

comment crlf. Our probes follow this syntax, but we alter individual parts – expecting

this to result in differing responses. We start with ‘ssh’ and ‘SSH’, we use 12 different

protoversions ranging from 0.0 to 3.2, swversion (which identifies the software) we set

OpenSSH or an empty string, comment we set to FreeBSD or an empty string, and the

terminating crlf we set to either \r\n or an empty string. In short, we construct 192 client

1Commits 0d03635, 40b6527, 4999618 and 9645e50 on https://github.com/desaster/kippo
2Commits 96ca2ba, dc45961, dbe88ed and fd801d1 on https://github.com/micheloosterhof/cowrie
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version strings: [SSH, ssh]-[0.0, 0.1, 0.2, 1.0, 1.1, 1.2, 2.0, 2.1, 2.2, 3.0,

3.1, 3.2]-[OpenSSH, ""] SP[FreeBSD, ""][\r\n, ""].

Second, we create SSH2 MSG KEXINIT packets using the algorithms defined in RFC 4250

[83] and its intended update [12]. Together these give 16 key-exchange algorithms, 2

host key algorithms, 15 encryption algorithms, 5 MAC algorithms and 3 compression

algorithms. We supplement each of them with an empty string and do not include any

supported languages in our packets. We populate the 16 byte cookie with random bytes

and correctly pad the packet. This leads to the generation of 19 584 correctly formed

packets where each packet offers just one algorithm of each type. In addition to these

correctly formed packets, we create a variant with incorrect padding (mod 13 instead of

mod 8) and another variant for which we omit the packet and padding length.

In total, we generate 58 752 different packets; in combination with the client versions,

we issue 157 925 376 probes, 11 280 384 to determine how each of our 14 implementations

will respond.

We record every character the servers send in response, including random content such

as the cookie or the padding. Thus for SSH, we do not expect a cosine similarity of 1.0.

In fact, including random parts has proven very valuable as we find that OpenSSH uses

NULL characters to pad packets, but the honeypots use random bytes for padding (see

Section 4.5.1).

Table 4.2: Average similarity measures across all tested SSH implementations based on
their responses (n=157 925 376)

A B C D E F G H I J K L M N

OpenSSH 6.6 A X 0.98 0.98 0.94 0.94 0.42 0.75 0.75 0.75 0.66 0.78 0.79 0.79 0.79
OpenSSH 6.7 B X 0.98 0.98 0.98 0.41 0.76 0.76 0.76 0.68 0.80 0.81 0.81 0.80
OpenSSH 6.8 C X 0.96 0.96 0.42 0.76 0.76 0.76 0.76 0.78 0.79 0.79 0.79
OpenSSH 7.2 D X 0.98 0.42 0.76 0.76 0.76 0.68 0.80 0.80 0.80 0.80
OpenSSH 7.5 E X 0.41 0.80 0.80 0.80 0.71 0.78 0.79 0.79 0.79

Twisted 15.2.1 F X 0.46 0.46 0.46 0.45 0.50 0.51 0.51 0.52

Kippo 0d03635 G X 0.99 0.99 0.92 0.88 0.88 0.88 0.88
Kippo 40b6527 H X 0.99 0.92 0.88 0.88 0.88 0.88
Kippo 4999618 I X 0.92 0.88 0.88 0.88 0.88
Kippo 9645e50 J X 0.83 0.83 0.83 0.83

Cowrie 96ca2ba K X 0.98 0.98 0.98
Cowrie dc45961 L X 0.99 0.99
Cowrie dbe88ed M X 0.99
Cowrie fd801d1 N X

Table 4.2 gives the average similarity scores across all of the implementations. Overall,

Kippo and Cowrie respond similarly to OpenSSH, with an average cosine similarity measure

ranging from 0.66 to 0.81, but in no case do they manage to be identical across all probes.

After calculating all the cosine similarity coefficients, as outlined in Section 4.3.1, we

find that SSH-2.2-OpenSSH \r\n as version string and the SSH2 MSG KEXINIT packet

including ecdh-sha2-nistp521 as key-exchange algorithm, ssh-dss as host key algorithm,

blowfish-cbc as encryption algorithm, hmac-sha1 as mac algorithm and zlib@openssh.com
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as compression algorithm, with the wrong padding, is the probe with the lowest cosine

similarity coefficient C and will be used in our scans because it is the best distinguisher

between honeypots and non-honeypot SSH servers.

4.3.3 Protocol 2: Telnet

For Telnet we look for deviations in responses to our negotiation requests. For this

comparison, we use Busybox versions 1.6.1, 1.7.2, 1.8.0, 1.9.0, 2.0.0, 2.1.1, 2.4.0, 2.6.2,

Ubuntu-telnetd 0.17.4, FreeBSD 11.1 telnetd and the honeypots MTPot3, Cowrie4, TPwd5

and TIoT6.

Given the IAC escape character, four option codes WILL, WON’T, DO, DON’T and 40

Telnet options7, we create 160 different negotiation requests (n).

The Telnet protocol specifies that an arbitrary number of requests (r) can be sent

at any time. To get the most exhaustive coverage we test all 160 negotiation requests

(n = 160), but limit the maximum number of negotiation requests per connection to two

(r = 2). As we do not want to send the same requests twice, we generate 160!
(160−2)!

= 25 440

probes for each Telnet implementation. In total we generate 356 160 responses, 25 440 for

each of our 14 implementations. The responses will contain the negotiation options that

the server sends initially, along with the response it makes to our probe.

Table 4.3: Average similarity measures across all tested Telnet implementations based on
their responses (n=356 160)

A B C D E F G H I J K L M N

Busybox 1.6.1 A X 1 1 1 1 1 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 1.7.2 B X 1 1 1 1 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 1.8.0 C X 1 1 1 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 1.9.0 D X 1 1 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 2.0.0 E X 1 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 2.1.1 F X 1 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 2.4.0 G X 0.99 0.89 0.83 0.89 0.85 0.85 0.88
Busybox 2.6.2 H X 0.89 0.83 0.89 0.85 0.85 0.88

MTPot I X 0.90 0.99 0.84 0.89 0.86
Cowrie J X 0.88 0.95 0.97 0.94
TPwd K X 0.83 0.87 0.85
TIoT L X 0.94 0.96

FreeBSD 11.1 telnetd M X 0.96
Ubuntu-telnetd 0.17.4 N X

Table 4.3 gives the average similarity scores across all of the implementations. Again,

the honeypots respond in a similar way to other systems, but in no case do they manage

to be identical across all probes. Cowrie responds most similarly to Ubuntu telnetd with

3https://github.com/Cymmetria/MTPot/commit/c32d433e
4https://github.com/micheloosterhof/cowrie/commit/ffe669f
5https://git.zx2c4.com/telnet-password-honeypot/commit/0f9b0c
6https://github.com/Phype/telnet-iot-honeypot/commit/15343df9
7We only use the main options from 0 to 39 [68]
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an average cosine similarity measure of 0.94 followed by MTPot with 0.89. Interest-

ingly, Busybox versions 1.6.0 to 2.4.0 have identical behaviour. After calculating all the

coefficients, we find that \xff\xfb\x00\xff\xfb\x12, i.e. IAC WILL BINARY IAC WILL

LOGOUT is the probe with the lowest cosine similarity coefficient C and will be used in our

Internet-wide scan to find honeypot implementations.

4.3.4 Protocol 3: HTTP/Web

For HTTP we look for deviations in responses to HTTP method requests. For this

comparison, we use Apache versions 2.0.50, 2.2.34, 2.4.27, nginx versions 1.0.15, 1.4.7, 1.12.1,

python3.5.2-aiohttp version 2.2.0, python2.7-simplehttpserver, python2.7-basehttpserver,

Glastopf8, Conpot9, and Dionaea 0.610.

Our probes follow the syntax of HTTP requests and are formed as follows: method

char version. When considering the responses we omitted the semantics of the date

and time information that is included in the header, but not the syntax. This prevents

region/language configuration differences from affecting our results.

We use the 43 different request methods defined in RFC2616 [53] and RFC2518 [58]

(including Webdav methods), the 123 non-alphanumeric ASCII characters with a preceding

/ as the path and 9 different HTTP versions ranging from version HTTP/0.0 to HTTP/2.2

to create our set of probes. In total, we sent 571 212 probes, 47 601 for each of our 12

implementations.

Table 4.4: Average similarity measures across all tested HTTP implementations based on
their responses (n=571 212)

A B C D E F G H I J K L

Apache 2.0.50 A X 0.74 0.74 0.23 0.23 0.03 0.39 0.27 0.29 0.02 0.10 0.19
Apache 2.2.34 B X 0.97 0.26 0.26 0.04 0.50 0.31 0.32 0.01 0.09 0.20
Apache 2.4.27 C X 0.26 0.26 0.04 0.51 0.31 0.32 <0.01 0.09 0.20

python2-basehttpsevr D X 0.64 0.01 0.17 0.08 0.08 0.11 0.02 0.08
python2-simplehttpsvr E X 0.01 0.17 0.08 0.08 0.11 0.02 0.08

python3-aiohttp F X 0.04 0.02 0.02 <0.01 <0.01 0.01
nginx 1.12.1 G X 0.57 0.57 <0.01 0.04 0.17
nginx 1.4.7 H X 0.57 <0.01 0.02 0.10

nginx 1.0.15 I X <0.01 0.02 0.11
Glastopf J X <0.01 <0.01
Conpot K X 0.02

Dionaea 0.6.0 L X

Table 4.4 gives the average similarity scores. Again, no honeypot behaves identically to

any of the systems we tested. Compared with our SSH and Telnet results, the similarity

measures are much lower and the web server implementations respond far more distinctively.

We find that Dionaea outperforms all the other honeypots we tested and is the most

8https://github.com/mushorg/glastopf/commit/bcbcebe
9https://github.com/mushorg/conpot/commit/74699fc

10https://github.com/DinoTools/dionaea/commit/02492e2b
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identical to Apache and nginx with average similarity measures ranging from 0.10 for

nginx 1.4.7 to 0.20 for Apache 2.4.27. As expected, Glastopf most resembles python2-

basehttpserver and python2-simplehttpserver – the underlying libraries used to provide its

transport layer. We then identified the probe with the lowest coefficient C and we use

GET /. HTTP/0.0\r\n\r\n for the Internet-wide scan.

4.4 Internet-wide scanning

We use the probes we identified to perform six scans, two scans each for SSH, Telnet and

HTTP honeypots, to find honeypots at Internet scale. Table 4.5 summarises these scans and

gives the number of detected honeypots. All our scanning is performed from a dedicated

host within our University network and in accordance with the ethical considerations

outlined in Section 4.7.

First, we use ZMap and perform a one-packet scan sending TCP SYN packets to the

respective ports 22, 23 and 80 using the exclusion list maintained by DNS-OARC [43]. In

total we scanned 3 336m IPv4 addresses, 78% of the IPv4 address space. We configured

ZMap to scan at 30mbps and determined which IPv4 addresses responded successfully

with a SYN-ACK packet.

Second, responsive IPv4 addresses were visited by a custom scanner which connects on

the appropriate port and sends probes to identify honeypots. For each responsive IPv4

address we only try to connect once, with a socket timeout of six seconds.

For SSH, we only consider servers which appear to be running OpenSSH configured

for SSHv2, i.e. when we connect to them on port 22 they send the server version string

SSH-2.0-OpenSSH *, where * is the OpenSSH version (number). We then determine

whether the server behaves identically to OpenSSH.

Table 4.5: Results of the Internet-wide scan. *Scan 1 (SSH) was performed with the
techniques outlined in Section 4.5

Date #ACKs Sum Kippo Cowrie

Scan 1 (SSH)* 2017-09 18,196k 2844 906 1938
Scan 2 (SSH) 2018-01 20,586k 2779 758 2021

Date #ACKs Sum Dionaea Glastopf Conpot

Scan 1 (HTTP) 2017-10 58,775k 2616 139 2390 87
Scan 2 (HTTP) 2018-01 67,615k 3660 202 3371 87

Date #ACKs Sum TPwd MTPot TIoT Cowrie

Scan 1 (Telnet) 2017-09 8,290k 1430 1 388 22 1019
Scan 2 (Telnet) 2018-01 8,169k 1166 1 216 11 938

67



0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

1000

2000

3000

4000

5000

6000

# 
of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

OpenSSH_7_5
OpenSSH_7_2
OpenSSH_6_8
OpenSSH_6_7
OpenSSH_6_6
Twisted_15_2_1
Cowrie
Kippo

(a) SSH implementations

0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

200

400

600

800

1000

1200

# 
of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

Busybox 2.6.2
Busybox 1.6-2.4
FreeBSD 11.1 telnetd
Ubuntu-telnetd 0.17.4
TPwd
TIoT
MTPot
Cowrie

(b) Telnet implementations

0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

5000

10000

15000

20000

25000

# 
of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

nginx 1.12.1
nginx 1.4.7
nginx 1.0.15
Apache 2.4.27
Apache 2.2.34
Apache 2.0.5
Dionaea 0.6
Conpot
Glastopf
python2-simplehttp
python2-basehttp
python3-aiohttp

(c) HTTP implementations

Figure 4.2: Similarity of SSH, Telnet and HTTP implementations in the Internet-wide
scan based on their responses to our probes. Results are based on the latest scans for each
protocol.

4.4.1 Results

As shown in Figure 4.2a, we find that most SSH implementations are similar to OpenSSH

6.6 and 7.2. Only when we look for a cosine similarity score of 0.9 and higher does the

number of hosts classified as OpenSSH significantly decrease. As we do not exclude the

‘random’ parts of the servers’ responses (Section 4.3.2) we have no easy way of defining

a threshold of cosine similarity at which we should accept the hypothesis that responses

originate from SSH honeypots. We discuss how we overcome this with a detailed analysis

of false positive and false negative rates in Section 4.4.2 below. Doing so, we classify

758 honeypots as Kippo and the remaining 2 021 are Cowrie honeypots (Scan 2). As

Kippo and Cowrie respond very similarly to our probes, we differentiate them based on

the disconnection messages (see Section 4.5.2).

The very first scan predated our systematic method of fingerprinting honeypots and

was performed by sending a non-compliant SSH2 MSG KEXINIT packet to each responsive
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IPv4 address (Section 4.5.2). In that first scan, we found 2 844 honeypot instances, 1 938

instances of Cowrie and 906 of Kippo.

By design, Telnet servers do not advertise their implementation or version, so there

are no deployment statistics available; we are the first to fill this gap. As shown in Figure

4.2b, a significant number of hosts are similar to Busybox versions 1.6 to 2.4, but as the

similarity measure increases, the number of hosts we can definitively identify significantly

decreases. We also find about 400k Telnet servers that are identical to Ubuntu telnetd.

When identifying honeypots we only consider exact matches (a cosine similarity score of

1.0) and we find that there are 1 430 Telnet honeypots deployed. The vast majority of

these are Cowrie (1 019) followed by MTPot (388), ToIT (22) and TPwd (1). In our second

scan three months later we find 1 116 Telnet honeypots and again, the vast majority are

Cowrie honeypots (938) followed by MTpot (216), TIoT (11) and TPwd (1).

As shown in Figure 4.2c, most HTTP implementations resemble nginx 1.12.1 and

Apache 2.2.34. We further observe that the number of implementations that are at all

similar to one of the honeypots or the plain library implementations is minimal. In total,

we find 2 616 instances of HTTP honeypots in our first scan and 3 660 in the second scan.

Glastopf is the most widely used honeypot with 3 371 instances followed by Dionaea (202)

and Conpot (87). Differences between scans not only reflect changes to the honeypot

population but also of course whether temporary Internet glitches meant that SYN-ACKs

were not returned to ZMap.

4.4.2 Validation

The nature of honeypots means that there is no publicly available list of honeypot IP

addresses so we looked for ways to cross-validate our method.

The Telnet and HTTP Honeypots in our study do not include randomized content

in their responses. Thus we can classify hosts as honeypots only when there is an exact

match (cosine similarity score 1.0). We then used the second-best distinguishing probe

for these honeypots to confirm the initial hypothesis that the servers’ response is unique

to the specific honeypot implementation. Doing so, we find that 1 136 of 1 166 (97.4%)

Telnet honeypots, and 3 549 of 3 660 HTTP (97.0%) honeypots respond to these probes as

expected (cosine similarity score of 1.0 for both probes). Manual inspection shows that all

the discrepancies are caused by incomplete responses.

For SSH we first considered all responses classified as honeypots with a cosine similarity

of 0.80 or more (9 607). We then remove the packet length, padding length, cookie and the

random padding. This results in the identification of 2 779 instances of SSH honeypots

which now had a cosine similarity score of 1.0. We find a significant difference in the

original cosine similarity scores between what we now know to be Cowrie honeypots

(2 021), Kippo honeypots (758), and all the other responses which we initially classified
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Figure 4.3: We validate our method by removing the random parts in the servers’ responses
and sending the second-best distinguishing probe to each potential honeypot.

as not being a honeypot (6 828); Kruskal-Wallis, p = 0.001 with a mean rank of 8 245

(median = 0.981) for Cowrie honeypots, 8 057 (median = 0, 972) for Kippo and 3 424

(median = 0.857) for Non-honeypots (see Figure 4.3a).

We further send the second-best probe to all of the 9 607 implementations that were

initially been classified as SSH honeypots. As can be seen in Figure 4.3b, for all of the

2 779 fingerprinted honeypots the cosine similarity score for both, the initial probe and

the confirmation probe (including the random parts), is 0.90 or higher.

In summary, the cosine similarity of 1.0 for payloads makes us certain that we have

found 2 779 SSH honeypots. Furthermore, the resulting cosine similarity values of the

second-best probe are effectively identical to the initial probe, 0.90 and higher.
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4.4.3 Accuracy

Evaluating our method further, it is essential to report false positive rates (FPR) and

false negative rate (FNR). The FPR indicates how often our method identifies hosts as

honeypots when they aren’t and the FNR is the likelihood that our method fails to identify

hosts as honeypots when they are. Assuming that the ground truth is 2 779 honeypots, we

get an Equal Error Rate (ERR) of 0.0183 using the threshold (t) of 0.9235 and the best

probe (see Figure 4.3c). In other words, at this point we falsely accept and at the same

time fail to identify 51 honeypots.

When using both the best probe and the second-best probe, we achieve a slightly

better ERR of 0.0132. This is a minor improvement and in most situations not worth

the additional overhead of sending twice the number of packets. Arguably a real attacker

would choose a higher FPR so they can be certain not to touch a honeypot at the expense

of excluding potential targets.

4.4.4 Honeypot deployment

Update behaviour of SSH honeypots: Based on the honeypots’ responses, we split

the SSH honeypots into four groups according to their patch level. The results are shown

in Table 4.6. In the first scan we found that 695 (24%) of the Kippo honeypots were more

than 40 months out of date and hence would fall to a well-known fingerprinting technique

first disclosed on 2014-05-28. Even by the second scan three months later, 546 had still

not been updated (72.0% of a reduced population).

Kippo has not been actively developed since 2015, but the people running Cowrie are

also failing to keep their deployments up to date. Our figures from the second scan show

that only 1 071 (53%) of these honeypots had incorporated improvements from 7 months

earlier. Since developers track the commands that adversaries use and continually add new

features to make honeypots more covert, not updating a honeypot increases the chances

that it may be fingerprinted (using traditional techniques) and thus limits its value in

detecting new attack vectors.

Mass deployment of honeypots: We scanned for all three types of honeypots

independently, but we now consider what we learn by linking them by IPv4 address.

The 7 605 honeypot instances of our second scan reside on 6 125 IPv4 addresses. Thus a

significant number of honeypot operators deploy several honeypots on a single host. We

find 714 IPv4 addresses run Cowrie on port 22 (SSH) and simultaneously Glastopf on port

80 (HTTP); there are also 550 instances of Cowrie being run on both port 22 (SSH) and

port 23 (Telnet). The risk here is that fingerprinting one honeypot instance may reveal

the presence of other honeypots on the same host.

We also fetched the SSH host keys, which are intended to be unique, of all the honeypots
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that we had identified. We find that only 1 838 of the 2 844 SSH honeypots (65%) in

the first scan have a unique host key. The remaining 1 006 honeypots have 71 host keys

between them with a median of 5 honeypots per host key. For the second scan only 2 193

of the 2 779 honeypots (78.9%) have unique host keys. It follows that a substantial number

of honeypot operators deploy more than one honeypot and while doing so exercise little

caution. It is likely that honeypot operators use deployment scripts, docker containers or

simply copy and paste the source files, including the same host key, to all their honeypots.

We determine which hosting companies honeypot operators use; we list the Top 10 ASs

for all the honeypots that our scans identified in Table 4.7. We find that the honeypots

are hosted in 82 countries, with the majority being located at well-known cloud providers

in the USA. As low- and medium-interaction honeypots are not very resource-intensive

the main criteria for honeypot operators will be reliability and cheap hosting with the

ability to quickly re-set or re-deploy a (compromised) honeypot. Thus, it is not surprising

that honeypot operators mainly locate their honeypots at well-known cloud providers.

4.5 SSH: Implementation flaws

We now explore some sources of divergence for the SSH protocol and show that there are

numerous differences ‘on-the-wire’ between entirely standards compliant implementations;

each of which gives attackers a quick and easy way of identifying honeypots at Internet

scale.

4.5.1 SSH Binary Packet Protocol

We find that Kippo and Cowrie use random bytes for the SSH2 MSG KEXINIT packet, but

OpenSSH uses NULL characters for padding. The Binary Packet Protocol (BPP) of SSH is

defined in RFC4253. Each packet consists of the packet length itself, the padding length,

a payload, random padding and the Message Authentication Code (MAC). The BPP uses

random padding to ensure that the total length of the packet TLp is a multiple of the

cipher block size (or of 8, whichever is larger). Section 6 of the RFC further states that

the padding MUST consist of at least 4 bytes and these bytes SHOULD be random.

We corresponded with the OpenSSH authors who told us that long ago they used

random values but have changed to null padding bytes because this has no security

implications either way [105]. This difference means that observing just one SSH2 MSG -

KEXINIT packet is enough to distinguish OpenSSH from TwistedConch and hence determine

if Kippo or Cowrie is responding.
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Figure 4.4: Structure of SSH2 Disconnection Message

4.5.2 Disconnection messages

A large source of divergences are the result of disconnection messages at various stages of

the protocol exchange. We list six differences, each of which can serve as a distinguisher,

and explain its origin.

The general structure of an SSH2 disconnection message is shown in Figure 4.4 and

is defined in RFC4253 Section 11.1. It consists of one byte indicating the message type,

a reason code ranging from 1-15 followed by descriptive text and a tag indicating the

language being used. OpenSSH 7.5 implements more than 51 different disconnection

messages and many of them are dynamically generated. Earlier versions of SSH are

essentially similar.

Bad versions 1.0: After the TCP three-way handshake, the client sends its SSH

version string. We find that changing the protocol version from 2.0 to 1.0, e.g. sending SSH-

1.0-OpenSSH FreeBSD\r\n as the client version, results in TwistedConch terminating

the connection with the disconnection message “bad version 1.0”. In contrast, OpenSSH

terminates the connection with “Protocol major versions differ.\n”.

Bad versions 2.2: We observe that changing the protocol version from 2.0 to 2.2

results in the disconnection message “bad version 2.2” for TwistedConch, but OpenSSH

does not raise an error and continues the protocol sequence by sending its SSH2 MSG -

KEXINIT packet.

Missing mandatory key exchange algorithm: We find that if we complete the

KEXINIT negotiation by sending our own (client) SSH2 MSG KEXINIT packet offering only

diffie-hellman-group14-sha1 as a key exchange method that the earlier versions of

TwistedConch disconnect with the message “couldn’t match all kex parts”. In contrast,

OpenSSH servers proceed with the key exchange, the connection is not closed and no

error message is sent. According to RFC4253 Section 6.5 diffie-hellman-group14-

sha1 is mandatory and OpenSSH is compliant. However, it has only been supported by

TwistedConch since version 15.5 (2015-11).

Non-compliant SSH2 MSG KEXINIT packet: We find that we can trigger

disconnection messages by sending SSH2 MSG KEXINIT packets that are not compliant

with the SSH transport layer protocol. By omitting the packet and padding length, we

force the SSH server to close the connection. Based on the disconnection message, we
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Table 4.6: Update Statistics for Kippo and Cowrie

Scan 1 (SSH) Scan 2 (SSH)

Kippo <2014-05-28 695 (24.4%) 546 (19.6%)
Kippo <2015-05-24 211 (7.4%) 212 (7.6%)

Cowrie <2017-06-06 1228 (43.2%) 950 (34.2%)
Cowrie ≤date of scan 710 (25.0%) 1071 (38.6%)

differentiate between Kippo (“bad packet length *”, “Protocol mismatch.\n”), Cowrie

(“Packet corrupt\n”) and OpenSSH (“Packet corrupt\x00”). OpenSSH does have a similar

error message to Kippo, but with a capital B, i.e. (“Bad packet length *”), where * is the

packet length.

This intersects with a previously reported issue where eight carriage returns are sent

as the client version string. Kippo returned the disconnection message “bad packet length

168430090” instead of replying with “Protocol mismatch” [97], but this was patched on

2014-05-28. However, the implementation of the patch catches all bad packet length errors,

regardless of the current stage of the protocol exchange and thus also our non-compliant

packet which has been sent after the version exchange.

Non-compliant packet: If we violate the specification of the BPP and construct

a SSH2 MSG KEXINIT packet so that TLp (mod 8) 6= 0, Kippo and Cowrie terminate the

connection with, for example, the error message “bad packet mod (244%8 = 4)” where

244 ≡ TLp. OpenSSH provides no detail but terminates the connection with the generic

reason “Packet corrupt”.

Authentication failures: Lastly, we find a previously undescribed deviation at

the authentication process. By default, OpenSSH limits the number of authentication

attempts permitted per connection to six. Once this number is reached, the connection is

closed. To do so, OpenSSH sends a disconnection message with the reason code 2 (SSH2 -

DISCONNECT PROTOCOL ERROR) and the description “Too many authentication failures”.

Kippo and Cowrie also send a disconnection message, but with reason code 14 and the

description “too many bad auths”. This divergence is particularly odd because reason

code 14 is not used in any of the OpenSSH versions we examined (3.6, 4.4, 4.9, 5.4, 6.6,

6.7, 6.8, 6.9, 7.5) and OpenSSH has never used the “too many bad auths” string.

4.6 Discussion

Previously, especially for SSH honeypots, the main goal was to provide a realistic-looking

shell for humans to interact with. But with the rise of botnets probing random servers

and fast Internet-wide scanning, almost everything a honeypot observes is generated by

automated scripts (see Chapter 3). Meanwhile, honeypot operators and developers have

put little emphasis on the underlying protocols, but have relied on off-the-shelf libraries.
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Table 4.7: Top 10 ASNs used to host honeypots (latest scans)

CO ASN Organisation Telnet SSH HTTP Total

US 16509 Amazon.com 140 520 506 1166
JP 2500 WIDE Project – – 490 490
US 14061 Digital Ocean 162 189 139 490
FR 16276 OVH SAS 117 202 122 441
TW 4662 GCNet 15 2 254 271
TW 18182 Sony Network 2 – 256 258
US 15169 Google LLC 45 139 46 230
TW 9924 Taiwan Fixed 1 74 146 221
US 14618 Amazon.com 12 70 110 192
RO 43443 DDNET Sol. 30 – 155 185

More emphasis needs to be placed on identically implementing the lower layers of the

networking stack. We have shown that no honeypot developer has implemented a protocol

the same way as the server they impersonate. The RFCs that define protocols do not

mandate every protocol detail and hence there are numerous differences ‘on-the-wire’

between entirely standards-compliant implementations. Ambiguities in RFCs are not the

only source of divergence because code also evolves over time. For example, OpenSSH

used random padding for its SSH2 MSG KEXINIT in version 3.6p1 and earlier, but now uses

clear padding with NULL characters. The developers of OpenSSH argue that the SSH2 -

MSG KEXINIT packet is unencrypted and so random padding does not offer cryptographic

benefits – but this change was missed by honeypot developers.

In the same vein honeypot operators need to carefully consider what Telnet terminal

options, HTTP response codes, SSH version and authentication settings are sent – and

far more care is needed with SSH host keys. Copying the same key to multiple machines

not only links honeypots together, but attackers need only see the same key returned by

multiple locations for suspicions to be raised.

4.6.1 Practical impact

The generic technique presented above allows the (automatic) generation of thousands of

probes, any of which could be used to identify that a honeypot is running on a particular

IPv4 address and thereby treat it differently than otherwise. Furthermore, we demonstrated

that by identifying a probe with the maximum discriminatory power we can then rapidly

scan the Internet to find thousands of honeypot instances. It will be easy to add scripts

using these techniques into tools such as Metasploit. Since the probes do not leave

meaningful log entries in any of our tested honeypots, operators will not be aware that

their honeypot has been detected.

Once a honeypot is identified, it must be expected that it will be blacklisted by

adversaries. Its value may drastically decrease, in particular in collecting data about

large-scale attacks. The honeypot will need to be moved to a new IP address, perhaps a
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new hosting provider. But so long as it can be trivially spotted, the only real remedy will

be to fix the flaw.

4.6.2 Countermeasures

Short term, honeypot operators will want to assess whether attackers have started to

identify them by carefully inspecting their logs and looking for incomplete connections

and repetitive disconnection messages. However, these messages commonly arise for other

reasons and without recourse to packet level logging this will not be unambiguous evidence

of fingerprinting. While not our current aim, our technique can be adapted to find and

subsequently filter probes that induce no or even less logging than the probes we used.

Medium term, the developers of honeypots and libraries such as TwistedConch (where

the SSH distinguishers we have identified reside) may mitigate some of the issues we have

identified. Cowrie has already implemented a fix to use NULL characters for padding.

Long term, the only robust fix is to develop a new generation of honeypots that

implement protocols using exactly the same code as the systems they set out to imper-

sonate. Otherwise, as attackers include our methods in their scripts, low- and medium-

interaction honeypots will have minimal value. This is undesirable because low- and

medium-interaction honeypots are an extremely useful source of information, and not ev-

eryone is prepared to run high-interaction honeypots as they need to be carefully operated

and maintained.

This new generation is not especially difficult to implement and we have already

developed a modified OpenSSH daemon (sshd-honeypot) to be used in conjunction with

Cowrie so there will be no difference in responses [142]. The daemon forwards all shell

interactions to Cowrie where all commands are interpreted. The respective outputs are

then returned to the client, appearing as if they originated from the daemon server itself.

The honeypot requires little changes to both the OpenSSH daemon and Cowrie, and can

be easily integrated in existing sensor networks. Cowrie remains the primary source where

all brute force attacks, shell interactions and malware samples are collected.

4.7 Ethical considerations

We followed our institution’s ethical research policy throughout, with appropriate authori-

sation at every stage.

We followed a strict responsible disclosure process and notified the relevant honeypot

developers of our findings. We initially notified the developer of Cowrie on 2017-03-01 and

subsequently the developers of the TwistedConch library used by Cowrie on 2017-03-14.

Development of Kippo has ceased. Once we could fingerprint Telnet and HTTP honeypots,

we also disclosed our results to the developers of TPwd, MTpot, TIoT, Cowrie, Dionaea,
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Glastopf and Conpot on 2017-10-16. As of June 2018, only one of the issues we have

identified in Cowrie has been resolved. TwistedConch acknowledges that honeypots are

an important use-case for their library, but they never promised byte-for-byte parity with

OpenSSH. Based on the responses from the developers of Cowrie and TwistedConch, we

are pessimistic that any further issues will be resolved.

The developer of Glastopf and Conpot agrees that fixes require a new architecture.

Cymetria Research, the maintainer of MTPot, classified our findings as vulnerabilities

as it is a “critical aspect of any honeypot” even though they say that some would argue

otherwise. However, their view is that MTPot was intended to capture Mirai binaries and

that it achieves that goal as Mirai does not try to fingerprint honeypots. The author of

TIoT is not concerned about transport layer issues as his honeypot can be identified solely

by its delivered content.

Before performing the Internet-wide scans to identify honeypot deployments, we

thoroughly tested our scanner. For all scans we used the exclusion list maintained by

DNS-OARC [43]. The host used for scanning runs a web page on port 80 so that people

who are scanned can determine the nature of our experiment and learn our contact details.

We also added reverse DNS entries to clarify the nature of the host. We ensured that local

CERTs were fully aware of our activity. We received two complaints and respected their

request to be excluded from further scanning.

4.8 Related work

Closest to this work is Bethencourt et al., who sent probes to ranges of IP addresses

and observed changes of activity within published reports of sensor networks such as the

SANS Internet Storm Center [17]. Thus, over time, they could enumerate all sensors for

particular systems. However, this approach requires that sensors make their data publicly

available; our technique does not require this.

Brumley et al. showed that by automatically building symbolic formulas from binaries

they could find deviations in the protocol implementations of HTTP and NTP [22].

Similarly, AUTOPROBE generates fingerprints of malicious C&C servers through binary

analysis [155]. Focusing on protocol reverse engineering, Comparetti et al. developed

Prospex, a system to extract protocol specific information, but it may also be used to

identify protocol deviations [30]. Our approach differs from all of them in that it is scalable

to a variety of implementations, that we do not rely on binary analysis, and that it works

at Internet scale.

Identifying vulnerabilities and characterizing network services by sending specifically

crafted packets to network hosts and analysing their response is a long established practice.

Popular tools include Nmap [87] and more recently ZMap [45]. Characterizing network
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hosts based on Internet-wide scanning has been previously performed for Industrial Control

Systems (ICSs) and continuously for SSH. Censys.io performs weekly scans for all major

protocols and grabs all publicly available information [46]. Similarly. Feng et al. performed

an Internet-wide scan to characterize ICSs and their usage [51]. To get more accurate

results, they trained a probability model and use a heuristic algorithm to exclude ICS

honeypots. To do so, they use four characteristics including the number of open ports and

HTTP configuration.

Focusing on SSH, Althouse et al. developed JA3, a technique for creating SSL/TLS

client fingerprints based on SSL negotiation packets [5]. This allows JA3 to fingerprint

known malware and client applications such as Trickbot, Emotet and the standard Tor

client. To this end, Albrecht et al. present multiple vulnerabilities in SSH and perform an

Internet-wide scan to obtain deployment statistics and estimate the impact of their new

attacks [3]. Similarly, Gasser et al. showed that the rate of software updates for SSH is

slow and that many SSH keys are reused on different hosts [56]. While our results will not

explain all the hundred thousand duplicate keys they found, some belong to honeypots

and not ‘real’ systems.

There has been a long arms race between finding ways to detect honeypots and

camouflaging their presence [44, 120]. Successful attempts to fingerprint Kippo have been

made by sending eight carriage returns as the SSH client version as previous versions

of Kippo return the error message “bad packet length 168430090” instead of replying

with “Protocol mismatch” [97]. In 2014, the SANS Technology Institute [120] reported

that attackers issue the command file /sbin/init that returns dynamic content to

fingerprint Kippo. In 2015, Cymmetria Research summarised such known cases for a

variety of honeypots and outlined a list of recommendations [19]. However, unlike our

automated and generic approach, these are individual findings affecting single honeypot

implementations.

More recently, Shodan provides an online tool [123] that allows anyone to check whether

a host is running a honeypot or a real industrial control system (ICS). While Shodan’s

effort is still work-in-progress and mainly targets ICSs, we find that all of the honeypots’

IPs that we identified are believed by Shodan to be real systems.

4.9 Conclusion

We have presented a generic approach for systematically generating probes that can be

used to find low and medium-interaction honeypots with just one or two packets, leaving

minimal clues in the logging. Our technique is not only applicable to the SSH, Telnet and

HTTP honeypots we discussed, but to a wide range of other protocols including SMTP,

FTP, Modbus, S7 and SIP. We start by identifying a number of distinguishing probes and
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subsequently select the ‘best’ probe that minimises the effort to identify honeypots at

Internet scale. We then present a number of techniques to determine the patch level of

Kippo and Cowrie, the leading examples of medium interaction SSH honeypots.

The distinguishers we have identified result from design decisions to use off-the-shelf

libraries (or in some cases newly developed code) to handle the protocol implementation –

even though the libraries never promised byte-for-byte parity. This is a class break in

that we do not believe that patching the current generation of honeypots can fully solve

the problems we have identified. The potential damage is worrying. We will need a new

generation of honeypots with new architectures – and those new honeypots will need to

be installed on new IP addresses with new settings and with far more attention paid to

the mechanics of deployment so that honeypot collections cannot be linked together.

Our impression is that honeypot authors believe that they are dealing with näıve

human adversaries, but with the rise of fast Internet-wide scanning and the dominance

of automated scripts probing servers, much more emphasis has to be put on ensuring

that there is complete accuracy in the lower levels of the networking stack rather than

just ensuring that humans can be fooled. This is, however, not an argument for high-

interaction honeypots as many operators are unable to accept the risk that they pose or

the effort required to monitor them to prevent them from doing harm. We need low- and

medium-interaction honeypots too; we just need a new generation that is far less easy to

identify.
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Chapter 5

Counting outdated honeypots: legal

and useful

Honeypots are intended to be covert, so little is known about how many are deployed or

who is using them. We conducted several Internet-wide scans over a one year period to

determine which particular versions of Kippo and Cowrie honeypots are being run on the

Internet. By logging in to these SSH honeypots and sending specific commands, we not

only revealed their patch status, but also show that many systems were not up to date: a

quarter or more were not fully updated and by the time of our last scan 20% of honeypots

were still running Kippo, which had last been updated several years earlier.

We further provide a detailed legal analysis and an extended ethical justification for

our research to show why we did not infringe computer-misuse laws by accessing and

logging in to honeypots.

The work presented in this Chapter was published in the 4th International Workshop

on Traffic Measurements for Cybersecurity (WTMC ‘19) [145], and is in collaboration

with Richard Clayton and Ian Walden.

5.1 Introduction

In the previous Chapter 4 we showed that low- and medium-interaction honeypots are

almost invariably implemented as Python programs with the relevant Internet protocol

layer being provided by an off-the-shelf Python library. This architecture is fatally

flawed because the Python libraries have a large number of minor differences in their

implementation of the Internet protocols compared to a ‘real’ system – particularly when it

comes to the handling of errors [143]. This allowed us to develop an automated technique

to identify the most valuable differences and then send a small number of malformed

packets to a system and determine from the responses whether it was a real system or

merely a honeypot. By sending our malformed packets to every host on the Internet, we
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were able to count how many medium-interaction honeypots are currently deployed for

the SSH, Telnet, and HTTP protocols.

We extend the work presented in Chapter 4 as not only did we count the SSH honeypots

that are deployed but we also ‘logged into’ them and issued commands to determine what

version of software they were running. Even though the honeypots are generally operated

by security professionals we found that a high proportion of them were significantly out of

date and many had been deployed in a way that would leak that they were a honeypot.

Failing to run the latest version means that a proportion of attackers will rapidly determine

that they are interacting with a honeypot, so its value will drastically decrease.

The reason we have not previously reported the configuration and updating issues was

that in order to obtain detailed information it was necessary to login and issue a small

set of shell commands. Our original work explaining our methodology and results was

rejected by a leading conference on the basis that our interaction with the honeypots was

illegal and hence our research was unethical. Leaving aside whether the one necessarily

follows from the other, in this Chapter we start by exploring in detail the legal situation

when accessing honeypot machines, where we firmly believe we have not broken the law,

and then we set out why performing our research was also ethical. Having done that, we

report our results.

5.2 Unauthorised access to computers

There is significant uniformity when it comes to legislation about ‘cybercrime’ because the

statutes are less than 35 years old, there has been a tendency to replicate the wording of

statutes from certain leading jurisdictions and there have been significant international

harmonisation initiatives, primarily the Council of Europe Convention on Cybercrime

(2001) [34]. So the usual caveats that ‘your jurisdiction may vary’ tend to be less relevant

in this area.

5.2.1 Statutory text

Our conduct described in this Chapter can be broadly divided into two kinds: scanning

for honeypots, and interacting with them. Scanning for identification purposes is a subset

of the latter, but should be distinguished because it involves interaction with a broad

range of systems, not only honeypots. In both cases, our conduct might appear to be

‘unauthorised’ or ‘illegal’ access – a form of computer integrity offence [149].

Under UK law, unauthorised access is an offence under the Computer Misuse Act 1990

(as amended). S. 1(1) states that a person is guilty of an offence if–

a) he causes a computer to perform any function with intent to secure access to any

program or data held in any computer, or to enable any such access to be secured;
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b) the access he intends to secure, or to enable to be secured, is unauthorised; and

c) he knows at the time when he causes the computer to perform the function that that

is the case.

It is clear that element (a) is made out, so the issues to be determined are whether the

access we intend to secure is ‘unauthorised’ and whether we have the requisite knowledge

that our access is unauthorised. Element (b) primarily concerns the conduct of the person

operating the honeypot (as ‘victim’); while element (c) looks to our state of mind when

accessing the honeypot (as ‘perpetrator’). The statute sets out in s17(5) the meaning of

unauthorised access: access of any kind by any person to any program or data held in a

computer is unauthorised if–

a) he is not himself entitled to control access of the kind in question to the program or

data; and

b) he does not have consent to access by him of the kind in question to the program or

data from any person who is so entitled.

This interpretive subsection has been considered by the courts, focusing on the controller

of the ‘victim’ system. In Bow Street Magistrate and Allison (AP), ex parte US Government

(HL(E)) [1999] 4 All ER 1, it was held that access of the ‘kind in question’ can be refined

considerably by the system controller, such that authority to view data may not extend to

authority to alter data. Additionally, in DPP v Lennon [2006] EWHC 1201 (Admin), the

court held that a system controller’s consent can “be implied from his conduct in relation

to the computer”.

In the USA the federal offence comes under ‘18 U.S. Code §1030 – Fraud and related

activity in connection with computers’. This was originally enacted as the Computer

Fraud and Abuse Act in 1986 but has been amended several times:

(a) Whoever . . . (2) intentionally accesses a computer without authorization or exceeds

authorized access, and thereby obtains . . . (C) information from any protected computer;

So again, the issue is authorisation, but the question of whether the person obtaining

access knew their access was unauthorised is implicit rather than explicit as in the UK.

Even in Mexico and Taiwan – relevant because they appear to host many honeypots [96]

– the applicable legislation follows a similar pattern to that of the UK and US. Under

Mexico’s Federal Penal Code, Article 211 bis 1, unauthorised access is only criminalised

where the system is “protected by a security mechanism”, which is itself an arguable

assertion when operating a honeypot. Likewise, in Taiwan, Article 358 of the Criminal

Code, provides that it is an offence to access a person’s computer ‘without reason’ by

‘breaking his computer protection’.

The 2001 Convention on Cybercrime (sometimes known as the Budapest Convention)

is intended to harmonise cybercrime laws across the world [34]. Article 2 – “Illegal access”

requires:
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Each Party shall adopt such legislative and other measures as may be necessary to

establish as criminal offences under its domestic law, when committed intentionally, the

access to the whole or any part of a computer system without right. A Party may require

that the offence be committed by infringing security measures, with the intent of obtaining

computer data or other dishonest intent, or in relation to a computer system that is

connected to another computer system.

Thus signatory states must have laws that forbid access ‘without right’, a concept

which is seen as either referring to a person having the positive authority to engage in

the conduct (e.g. granted by consent, contract or legislation) or a negative defence or

justification that is recognised in law. Without right is not a term of art in UK or USA

law, but “authorisation” is seen as being a comparable concept. Currently 62 states have

ratified the convention with 4 more having signed but not yet ratified.

There is a further obligation within the European Union under Directive 2013/40/EU

(Article 3: Illegal access to information systems): Member States shall take the necessary

measures to ensure that, when committed intentionally, the access without right, to the

whole or to any part of an information system, is punishable as a criminal offence where

committed by infringing a security measure, at least for cases which are not minor. Again

the terminology ‘without right’ is used, but the Directive permits member states to

criminalise behaviour only when it is “not minor” and where a “security measure” was

infringed.

To summarise the statutes, unauthorised access to computer systems is an offence in

many jurisdictions although it may be in some parts of the world that minor infringements

are not criminalised.

5.2.2 Implicit authorisation

Quite clearly, much authorisation of access to computer systems is implicit – web servers

expect visitors to fetch pages and fill in forms to customise the material shown. Anonymous

FTP servers provide access to files once a user has specified a username of ‘anonymous’

and provided (by convention only) their email address as a password. No-one suggests

that every visitor must first correspond with the system owner before viewing the front

page of a website.

We argue that, first, the identification stage of our analysis, i.e. scanning IPv4 addresses,

is lawful, primarily because the scanned systems implicitly authorise interaction by being

connected to the Internet; while the absence of intent on our behalf to access all but the

identified honeypots also avoids our conduct being considered illegal. Second, we think

that someone who places a medium-interaction honeypot on the Internet has done so

specifically because they wish people to send commands to it. In fact, they would be most

disappointed if no-one was to interact with their honeypot at all. Since, by using the
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techniques outlined in Chapter 4, we can be certain that we are interacting with particular

software implementations of medium interaction honeypots we are not accessing systems

without authorisation.

To labour the point, we are not arguing that we can attempt to log into any old

machine on the off-chance it might be a honeypot, but that our sure and certain knowledge

that we are communicating with a honeypot changes everything: we are no longer guessing

credentials in order to impersonate a legitimate user of the system but when presented with

the password prompt we are sending a standard value in the sure and certain knowledge

that the honeypot we are interacting with will present us with an impersonation of a shell

prompt in a pretence that we have ‘logged in’. Thus it makes no difference whether we

successfully gain access to the system with the first attempt or perhaps after a number of

iterations.

In terms of the statutory requirements outlined above, it would seem clear that our

access is not unauthorised because the controller of the honeypot has intentionally made

available a vulnerable system, implicitly permitting access of the ‘kind in question’, which

we know at the time we access the system. Taken together, our conduct cannot constitute

an offence of unauthorised access.

We have been unable to identify any earlier discussion of the exact issue we are

concerned with, but two decades ago when honeypots were first being widely employed

there was a belief (not borne out in practice) that people who accessed honeypots would

be routinely prosecuted. One question that arose was whether the use of honeypots might

be ‘entrapment’ – whether the deployment of a honeypot by a public law enforcement

agency would have caused an otherwise innocent person to commit a crime.

In 2003 Walden and Flanagan considered the entrapment issue in a comparative law

approach [150]. To summarise a lengthy analysis they concluded that operating honeypots

would not be entrapment because anyone who broke into them had not been inveigled

into doing so by anything more than being presented with the opportunity. This earlier

work did not consider the legal position of a person who accesses a honeypot knowing that

it was specifically designed to be so accessed.

5.3 Ethical analysis

Having established that our research was not illegal the question as to whether illegal

research is always unethical becomes moot. We would disagree, but we would accept that

there is a very high bar in such situations and that it would be essential to provide a detailed

analysis as to how the law was unethical before starting to consider the research itself.

We followed our institution’s ethics policy at all times and addressed some particular

concerns that were raised about data storage. Nonetheless, for completeness, and given

85



the history of trying to publish our results, we now set out the ethical justification for our

research at longer length than might normally be expected.

Our overall view was that the research was in the public interest because demonstrating

that it is possible to identify medium interaction honeypots rapidly at Internet scale should

serve as a wake-up call for the people who deploy these honeypots – they need to upgrade

to new implementations without the flaws. Accordingly we followed a responsible disclosure

policy to ensure that the authors of the various honeypots learnt of our discoveries well

before we made them public.

The first part of our research involved an Internet-wide scan to identify honeypot

deployments. Before doing this we thoroughly tested our scanner to ensure it was working

exactly as intended. For all of our scans we used the DNS-OARC exclusion list [43]. The

host used for scanning ran a web page on port 80 so that people who were scanned can

determine the nature of our experiment and learn our contact details. We also added

reverse DNS entries for this host to clarify its purpose. Whilst using our scanner we

ensured that local CERTs were fully aware of the nature of our activity. We received one

complaint and respected their request to be excluded from further scanning.

Honeypot software is updated all the time, to make it more secure in the sense of

removing distinguishing traits that criminals have identified in their efforts to determine

whether they are interacting with a honeypot. As these distinguishers are identified the

honeypot is extended so as not to be identifiable in that manner.

Our initial scan, sending very small numbers of packets, had already shown that some

honeypots were not being kept up to date. To refine our understanding we decided to

interact with the honeypot programs and issue a small number of shell commands, carefully

chosen after examination of the revision history, to tell us rather more exactly how out of

date the honeypot might be.

We were careful not to issue any commands that had the potential to impair the

operation of the honeypot, which could be a separate offence to that of illegal access. We

also took the ethical stance that we should not hide who we were – so we used a University

IP address, gave it an appropriate reverse DNS entry and ensured that local CERTs would

promptly pass on any reports to us so that we could explain what we were doing.

We believe that our contribution to the honeypots’ overall traffic is negligible. After all,

we send a minimum number of packets and honeypots are built to be probed, attacked and

tested. At no point did we download files or try to find or use remote code exploitation.

We were also concerned that honeypot operators might consider our interaction with

their systems to be worth their time investigating. So every successful SSH session was

started and ended with the ‘command’ “Cowrie fingerprinting experiment, please ignore

this session/connection”. We intended that, by looking at the honeypots’ logs, it would

become evident to the honeypot owner that an experiment was occurring and that they
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Table 5.1: Update statistics for Cowrie and Kippo

Scan 1: 2017-03 Scan 2: 2017-06 Scan 3: 2017-09 Scan 4: 2018-01

Kippo < 2014-05-28 1384 (42.5%) 1519 (42.8%) 695 (24.4%) 546 (19.6%)
Kippo < 2015-05-24 659 (20.3%) 285 (8.0%) 211 (7.4%) 212 (7.6%)
Cowrie < 2016-09-05 385 (11.8%) 392 (11.0%) 134 (4.7%) 147 (5.3%)
Cowrie < 2016-11-02 — — 556 (15.7%) 360 (12.7%) 422 (15.2%)
Cowrie < 2017-06-06 — — — — 734 (25.8%) 381 (13.7%)
Cowrie ≤ date of scan 827 (25.4%) 799 (22.5%) 710 (25.0%) 1071 (38.6%)

Total 3255 3551 2844 2779

need not view the activity as some new form of attack that they should spend effort on

understanding.

In retrospect this message was unnecessarily cryptic and caused some confusion to

honeypot operators, but since the responsible disclosure process was still in progress we

did not want to explain to every honeypot operator that we had an easy way of identifying

their system as a honeypot.

5.4 Fingerprinting SSH honeypots

Having disposed of the legal and ethical issues we can now move on to discussing what we

learnt by interacting with the SSH honeypots that we identified.

The previous Chapter sets out our observation that the architecture of medium-

interaction honeypots is invariably that of a specially written emulation program which

uses a general purpose library to provide the relevant protocol layer. We developed a

method of identifying the best ‘probe’ we could send to a server which would reveal

whether we were interacting with a library or a real system – and we reported on the

number of honeypots that we were able to identify in a series of scans of the Internet.

5.4.1 Identifying SSH honeypot patch levels

Note that for clarity of exposition within this section we will use terms such as login,

authentication and passwords, although when dealing with honeypots, as explained in

Section 5.2.2 above, we are merely just sending strings to a Python program that is

impersonating a vulnerable system with a view to having it change internal state and start

executing its impersonation of the ‘bash’ shell.

In Chapter 4, we showed that without authenticating to the honeypots, solely based

on the protocol interactions, we are able to get a estimate of the honeypots’ patch level.

However, to get more insights on how honeypots are actually configured, e.g. what

authorisation settings are used or what hostname is configured, the only viable option is

to login to the honeypots and issue commands.
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After the careful ethical considerations described in Section 5.3, we decided to authen-

ticate with a list of passwords to all of the Cowrie honeypots and to issue three simple

shell commands in order to better estimate the patch level of the host system (Table 5.1).

These commands were: uname -a, to get more information about the host system, ls

-d, added on 2016-09-05, and tftp, added on 2016-11-02. The command tftp is issued

without any arguments and solely to check if the command is implemented. After hearing

from us the developer of Cowrie implemented a fix to null pad packets on 2017-06-06

which is a useful intermediate date for determining the age of Cowrie honeypots. The

analysis of the version information we obtained is given in Section 5.5.

5.4.2 Measurement setup

We aimed to visit all SSH servers on the Internet with a custom scanner written in Python3

which would send probes to determine whether we had found an instance of Kippo or

Cowrie and if so which version was being run. We first used ZMap to perform a one-packet

scan at 30mbps sending TCP SYN packets to port 22 (the well-known port number for

SSH) using the IP address exclusion list maintained by DNS-OARC [43]. In total we

scanned 3 336m IPv4 addresses, 78% of the IPv4 address space. We determined which

IPv4 addresses responded successfully with a SYN-ACK packet and thereby efficiently

identified the presence of SSH servers.

We connected to the SSH servers and checked the version to determine if it was claiming

to run OpenSSH. We then checked whether the server behaved identically to OpenSSH

using the method outlined in Chapter 4. We did not only rely on a single probe, but also

sent the second-best probe, and removed the random padding, packet length and padding

length for both responses so that we unambiguously knew when we had identified an

instance of Kippo or Cowrie. As explained in further detail in Chapter 4, both probes are

sent before any authentication credentials are used. To ensure that we only authenticated

to machines that we had classified as honeypot, we checked the SSH host keys (’host

fingerprint’), which are intended to be unique, before each authentication attempt. This

ensures that we were not unintendedly authenticating to real systems, for example, because

of IP address churn. For the Cowrie machines (and only these machines), we used a custom

script written in Python3 to try to authenticate. Having done so we issued the commands

uname -a, ls -d and tftp. Note that Kippo does not implement these commands.

5.5 Results

5.5.1 Authentication configuration

The results of our authentication attempts are summarised in Table 5.2.
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Table 5.2: Authentication attempts for Cowrie honeypots

Outcome Scan 1: 2017-03 Scan 2: 2017-06 Scan 3: 2017-09 Scan 4: 2018-01
6 passwords 500 passwords 500 passwords 500 passwords 500 passwords

successful login 859 (70.9%) 794 (65.5%) 1165 (66.7%) 1347 (69.5%) 1578 (78.1%)
all passwords failed 110 (9.1%) 136 (11.2%) 187 (10.7%) 195 (10.1%) 223 (11.0%)
connection timed out 49 (4.0%) 110 (9.1%) 41 (2.4%) 43 (2.2%) 7 (0.3%)
other errors 194 (16.0%) 172 (14.2%) 354 (20.2%) 353 (18.2%) 213 (10.6%)

For the first run, conducted on 2017-03, we used the username root and just 6 pass-

words: 123456, root, admin, password, PASSWORD, cisco. For 859 of 1 212 Cowrie

honeypots (70.9%.) the authentication was successful and we received a SSH2 MSG USER-

AUTH SUCCESS packet indicating that the password was deemed correct.

We re-ran our script three weeks later, but instead of 6 passwords, we used the 500 most

common passwords seen in authentication attempts to our own research SSH honeypots.

For each connection, we kept trying passwords until we received a “too many bad auths”

disconnection message with reason code 14. We immediately reconnected and continued

down the list until we were logged in, had tried all 500 passwords, or received an error

message. In our second run, we successfully logged in to 794 of 1 212 Cowrie honeypots

(65.5%). For 136 (11.2%) of the honeypots, all 500 passwords were successfully attempted,

but failed. Table 5.2 reports the other outcomes. We repeated this measurement for the

Cowrie instances we identified in the second, third and fourth scans, but only using the

500 password approach. We observed that the number of successful logins remains fairly

stable as we were able to successfully login to 1 165 (66.7%) honeypots in the second scan,

1 347 (69.5%) honeypots in our third scan and to 1 578 (78.1%) in our fourth scan.

In all four scans, a significant number of honeypots rejected all the passwords we tried.

We conclude that around 10% of the honeypot operators are only interested in obtaining

password and username combinations, but not in providing a shell and in letting adversaries

execute commands; though it is possible that they are just being more selective about the

credentials they will accept. For a few honeypots (0.3% to 9.1%), the connection timed

out (after 6 seconds). For the remaining honeypots we received various error messages

including “Connection refused” and “Connection reset by peer”.

We cannot be sure why we managed to login to some honeypots but got no further.

It may be that firewalls or hosting providers interfered in the process of establishing a

connection. A more likely explanation is that, because one or more honeypots report

‘malicious’ activities they see to central databases this caused other honeypots to refuse

to communicate with us. In particular we found that the IP we used for scanning and

logging in to honeypots was added to various blocklists including blocklist.de which is

used by the intrusion prevention system fail2ban. This might also explain why trying

500 passwords yielded fewer successful logins than 6 passwords. The attempt using 500
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password was made three weeks after the initial attempt with 6 passwords, at which time

blocklists and intrusion prevention systems could have been updated to include our IPv4

address and blocked subsequent connections.

5.5.2 Set-up options of SSH honeypots

The first two options of the configuration file of both Kippo and Cowrie are the SSH server

version string and hostname. We find that honeypot operators seldom change default

configuration options.

Our first scan found 61 different SSH version strings, but in 83% of the cases it was a

default. The Kippo/Cowrie default value accounts for 2 046 (72%) of the honeypots, but

additionally, 312 (11%) Kippo honeypots report the version string SSH-2.0-OpenSSH -

5.5p1 Debian-4ubuntu5, which is the default set by the deployment script of the Modern

Honey Network [6], an open source honeynet management platform. We observed some

change in the second scan where 1 839 (66%) honeypots had default SSH version strings.

In particular advertising versions equal or greater than OpenSSH 7.2 are becoming more

popular.

In an attempt to further confirm our hypothesis that honeypot operators often use

standardised configurations we issued the command uname -a on all the Cowrie hon-

eypots to which we could successfully login in our first scan (see Section 5.5.1). By

default, Cowrie will return Linux [hostname] 3.2.0-4-amd64 #1 SMP Debian 3.2.68-

1+deb7u1 x86 64 GNU/Linux\r\n.

The default hostname Cowrie places into this string is svr04, but that hostname

is only configured for 64 (3.3%) of the honeypots and we find 171 different hostnames.

However, although the Cowrie default hostname is not being widely used, our hypothesis

about not changing defaults is in fact confirmed because we find that many hostnames

have been set in a default manner by deployment scripts. The most common hostname is

debnfwmgmt-02 (14.6%), followed by router (5.5%) and pos01 (5.3%).

What has occurred is that debnfwmgmt-02 was the default hostname for Cowrie when

it is used in T-Pot 16.03 whereas debnfwmgmt-01 was used for Kippo in T-Pot until it

was replaced by Cowrie.1 It follows that 296 of Cowrie honeypots are extremely likely to

be part of T-Pot (and hence T-Pot has a significant ‘market share’) – which in turn means

that it is quite likely that other servers hosted on the same IPv4 address are also (T-Pot

installed) honeypot instances.

1https://github.com/dtag-dev-sec/tpotce_archive
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5.6 Discussion

We found that many honeypot operators are relying on standardised deployment scripts,

docker containers or public configuration files. Since various aspects of the configuration

reveal that the system is a honeypot, this is clearly suboptimal. The fix is not, however,

to eschew the use of standardised deployment systems, but for those systems to be far

better engineered so that they do not allow honeypots to be fingerprinted or for IPs to be

linked together. In response to our findings, Deutsche Telekom acknowledged this issue

and rapidly changed how they configured the honeypots in their T-Pot collection.

We operate our own research SSH honeypots which are not based on Kippo or

Cowrie [142]. As of publication, we have not observed attackers using the techniques we

have developed to determine that they are interacting with a honeypot. However, we and

others do observe that the command uname -a is one of the most popular commands the

attackers’ scripts issue, presumably because they need information about the host system

and its architecture [112]. From that point of view T-Pot made an unwise choice because

any search engine will immediately reveal that debnfwmgmt is part of the hostname T-Pot

uses for Kippo and Cowrie honeypots.2

5.7 Conclusion

In Chapter 4, we showed how the use of off-the-shelf libraries in medium interaction

honeypots allows us to fingerprint SSH servers and unambiguously identify instances of

Kippo and Cowrie. In this Chapter, we have extended this analysis by determining which

versions of Kippo and Cowrie are being run at the time of our scans.

We were surprised to see how out-of-date many of the honeypot deployments were.

It is well-known that ‘ordinary users’ find it a challenge to keep their systems patched

up-to-date, but we would expect that the majority of honeypots are deployed by security

professionals and hence would be being actively looked after. In particular, most of the

reason for updates to these honeypots has been to counteract fingerprinting tricks by

criminals who wish to avoid interaction with honeypots. Failing to update makes the

honeypots much less useful.

Finally, we hope that our detailed account of some aspects of the legal and ethical

framework of interactions with honeypots will enable more research in the future.

2When we first saw this string we found that the only results returned to us by a Google search were
within the T-Pot source files.
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Chapter 6

Honware: A virtual honeypot

framework for capturing CPE and

IoT zero days

Existing solutions are ineffective in detecting zero day exploits targeting CPE and IoT

devices. In this chapter, we present honware, a high-interaction honeypot framework which

can emulate a wide range of devices without any access to the manufacturers’ hardware.

Honware automatically processes a standard firmware image (as is commonly provided

for updates), customises the filesystem and runs the system with a special pre-built Linux

kernel. It then logs attacker traffic and records which of their actions led to a compromise.

We show that our framework is better than existing emulation strategies which are limited

in their scalability, and that it is significantly better both in providing network functionality

and in emulating the devices’ firmware applications – a crucial aspect as vulnerabilities

are frequently exploited by attackers in ‘front-end’ functionalities such as web interfaces.

Honware’s design precludes most honeypot fingerprinting attacks, and as its performance

is comparable to that of real devices, fingerprinting with timing attacks can be made far

from trivial.

We provide four case studies in which we demonstrate that honware is capable of rapid

deployment to emulate devices much better than traditional honeypots, and thus capture

the exact details of attacks along with malware samples. In particular we identified a

previously unknown attack in which the default DNS for an ipTIME N604R wireless router

was changed. We believe that honware is a major contribution towards re-balancing the

economics of attackers and defenders by reducing the period in which attackers can exploit

zero days at Internet scale.

The work presented in this Chapter will appear in the 14th APWG Symposium on

Electronic Crime Research (eCrime ‘19) [144], and is in collaboration with Richard Clayton.
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6.1 Introduction

The emphasis on automation and the nature of CPE and IoT devices themselves together

mean that vulnerabilities and exploits not affecting device functionality are likely to

remain unnoticed by their owners. Recent DDoS attacks which used inadequately secured

devices [7, 137, 71] further highlight that existing defences are slow to detect zero day

exploits and capture attack traffic. This means that attackers have considerable periods

of time to find and compromise vulnerable devices before the attack vectors are well

understood and mitigation is in place [16].

Now that the Mirai source code has been leaked and is well understood, it is straight-

forward to build a honeypot that emulates a vulnerable device by sending appropriate

strings back to scanners. But without source code, or reverse engineering the malware

binaries, this type of honeypot is hard to construct. It is a significant challenge to monitor

large numbers of attackers who are going after a wide range of devices using different

attack techniques, some of which may be previously unknown ‘zero days’.

Meanwhile, it has become feasible to scan the whole IPv4 address space for vulnerable

devices with modest investment (Chapter 2). In 2003 Spitzner argued that honeypots

“get little traffic” and “collect small amounts of high-value data” [128]. However, this

observation was from a time when attacks were generally performed by humans. As shown

in Chapter 3, since the rise of botnets almost all activities that honeypots observe are

performed by automated scripts.

Previous research includes Firmadyne [26], an analysis system that runs embedded

firmware and subsequently provides dynamic analysis capabilities, and IoTPOT [92], one of

the first generic high-interaction honeypot tailored to impersonate IoT devices. It supports

eight architectures including ARM, MIPS and X86 and aims to return appropriate strings

to connections on port 23 (Telnet). If the command is unknown, it tries to run the

command in a generic sandboxed environment to infer the appropriate return string(s).

In 2017, Guarnizo et al. [60] presented a “scalable high-interaction” honeypot platform

called SIPHON which is based on physical devices. They exposed six security cameras,

one networked video recorder and one networked printer through a distributed architecture

on a range of IPv4 addresses.

All these approaches have critical shortcomings: Firmadyne is built for dynamic

analysis, but not to monitor a large number of attackers and thus not to be connected to

the Internet. IoTPot does not use firmware images of real devices and thus it is a generic

representation of a vulnerable platform which will fail to detect new attack patterns;

SIPHON needs physical devices connected to the Internet to capture attack traffic – an

expensive endeavour limited in its scalability.

We present honware, the first flexible and generic framework to efficiently and effectively

deploy honeypots for networked devices on the Internet to log attacker traffic and their
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actions. Instead of buying CPE or IoT devices and running them as honeypots, honware

utilises device firmware images (which are widely available for download) and a special

pre-built Linux kernel to emulate device behaviour within a virtual environment. In

particular, it is easy to deploy all the available firmware versions for a particular device so

as to understand which are vulnerable to a particular attack.

Overall, we make four main contributions:

• We present new techniques (and improve on existing work) to allow honware to run

standard firmware images without needing custom hardware.

• We show that honware is superior to existing emulation strategies, making significant

improvements in scalability, in the provision of network functionality, and in emulating

firmware applications.

• We perform extensive measurements to show that the performance of honware is

comparable to real devices and that honware is not susceptible to trivial fingerprinting

based on timing attacks.

• We present four examples to show the success of honware in identifying real-world

attacks which had been hard to capture with the traditional approach of low-/medium-

/high- interaction honeypots.

6.2 Virtual honeypot framework

Honware uses the firmware images provided by CPE and IoT manufacturers, employing

Quick Emulator (QEMU) to run code for different CPU architectures (x86-64 PCs, ARM,

MIPS and PowerPC) on a single host machine. Although parts of the firmware will be

closely linked to the hardware of a particular device, the Linux kernel and the device

driver APIs are substantially the same across many different devices. Honware decouples

the execution of the firmware from the underlying hardware by the use of a custom kernel.

Figure 6.1 shows the four main parts of honware: a host operating system and kernel,

QEMU, a custom kernel, and the firmware filesystem (extracted from the firmware image)

which contains applications such as Telnet and web servers.

QEMU is the de facto standard for full machine emulation and it provides the necessary

functionality to connect the honeypot to the Internet. However, QEMU cannot be used for

off-the-shelf emulation of CPE and IoT firmware images. The firmware, with its own kernel,

will try to communicate with the hardware, but its absence means that this communication

will fail. For example, any access to non-volatile memory (nvram) to read configuration

files or an attempt to retrieve the MAC address from hardware will fail. Thus we run

QEMU with our own customised kernel and the extracted filesystem on top of an host

operating system such as FreeBSD or Linux Ubuntu.
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Figure 6.1: Honware architecture overview: Honware consists of four main parts, a host
operating system and kernel, Quick Emulator (QEMU), a custom kernel, and the firmware
filesystem itself which contains specific applications such as Telnet and web servers.

Honware currently uses three custom kernels since these are sufficient for handling

very large numbers of firmware images. These are the Linux kernels 2.6.32.70 for MIPS

little endian (mipsel) and MIPS big endian (mipseb), and 4.1.52 for ARM. We purposely

used older kernels as these are most prevalent across CPE and IoT firmware images and

support for newer kernels is rarely required. The MIPS kernels are compiled with MIPS

Malta and with the MIPS32 CPU release version 2. MIPS Malta is particularly useful as

it supports the emulation of PCI and LAN functionalities that are inherently required for

the emulation of networked equipment. The ARM kernel is compiled with the architecture

Versatile Express and VIRT/MULTI V6 V7 as a dummy CPU architecture. As the Versatile

Express platform is meant for development and rapid prototyping, it provides a wide

range of hardware support. We further configure the kernel to support various networking

features such as VLAN and WLAN.

The emulation of firmware images is performed in three stages and is fully automated:

A) extracting the filesystem from the firmware image, B) modifying the filesystem to

allow for virtualisation and C) running it in QEMU with one of our pre-compiled kernels.

Honware will typically process a firmware image (typically a .zip or .rar file) and have the

honeypot ready to run within one minute.

The focus of honware is not to advance state-of-the-art sandbox anti-evasion techniques,

but to develop a tool that enables the rapid construction of honeypots for a very wide range

of devices – and for those honeypots not to be susceptible to remote fingerprinting attacks

based on protocol deviations [142] or self-revealing properties [96]. It is not attempting to

prevent attackers with local access from determining whether the system is a honeypot or

a real device.
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6.2.1 Automated firmware extraction

Firmware images for routers, ADSL modems and IoT devices are widely available online

and many manufacturers provide regular updates on their websites. Honware uses these

images as input, usually in a compressed format, and extracts the firmware filesystem. Any

supplied kernel is ignored as running it within QEMU would not allow us to interfere with

the execution of the filesystems applications and services – a necessity to run the firmware

image as a honeypot and in fact, to decouple the firmware image from the underlying

hardware.

To extract the filesystem, we use binwalk [18] and recursively look for the Linux

filesystem structure. We identify Linux filesystems by determining whether a folder

contains the necessary root structure including bin, usr and proc. This has proven to

be challenging as not all firmware images are packed in the same way. Occasionally they

include multiple suitable filesystems such as one firmware image for the upgrade, one

for the previous version and one for a factory reset. We also found instances in which a

secondary filesystem is mounted during the boot process, for example to provide scratch

space. In such a case, we only consider the filesystem where the init process resides as

without this process, the firmware will not boot at all. Although extraction is intended to

be completely automatic, honware does allow manual selection of which filesystem to use

should this be needed.

We then use qemu-img to create a 2GB raw file, subsequently create an ext2 filesystem

and copy the root folder structure including all files and binaries. We infer the CPU

architecture by reading the ELF header of the biggest binary of the filesystem, typically

Busybox. We further extract all certificate (.pem) files from the firmware images so that we

can use tools such as Wireshark to decrypt, for example, HTTPS traffic to the web server.

It is more challenging to decrypt SSH traffic as the Diffie-Hellman key exchange uses

not only a static key, but also a session key. Retrieving the relevant session key is not

straightforward and requires locating a particular memory structure in guest memory. We

decided not to tackle this particular issue as we can log executed commands in our custom

kernel. However honeypot operators could consider SSLSNOOP [69] or related techniques

to collect the raw traffic.

6.2.2 Customised pre-built kernel

We now consider the various components of our customised Linux kernel and explain

how we have managed to improve on earlier systems such as Firmadyne. In particular,

previous work has ignored the kernel’s signal handler as way of ensuring that applications

continue running and do not terminate silently, and no previous attempts have been made

to support out-of-tree kernel modules. Furthermore, our kernel does not solely rely on the
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default configuration of the guest system to ensure network connectivity, but can force

a particular network configuration to be used. In addition, honware supports up to four

ethernet device for the ARM little-endian platform whereas Firmadyne only supports a

single ethernet device.

6.2.2.1 Honeypot logging and module loading

In order for honeypots to provide insights into how systems are attacked and to monitor

subsequent actions, it is essential to have extensive logging capabilities. To get details of

all executed programs and commands with the appropriate time stamps, process ids and

contexts, we modified the kernel function do execve. For each connection, we create a

new session id under which we log the invoked programs and their details. Commands

which are not associated with network connections are logged with the default session id 0.

This means that the boot process, cron jobs and other processes that are executed by the

firmware image itself can be clearly distinguished from actions triggered from the outside.

6.2.2.2 Signal interception

One central problem we encountered is that the init process and various applications

frequently terminate silently or with generic error messages. Applications may terminate

because of wrong or missing nvram values, incorrect hardware emulation or missing kernel

features. To mitigate the effects of this problem, we modified the signal handling in

the kernel to 1) not allow the kernel to terminate the process, for example by means

of the default signal handler and 2) not allow the program to terminate itself with, for

example, a SIGABRT signal. This means that applications and kernel modules continue

their execution irrespective of what signals are sent. To achieve this we modified the

kernel function get signal() which is called by do signal() and is responsible for signal

handling in the kernel.

It has proven particularly useful to intercept SIGNAL 6 (SIGABRT). We find that

SIGABRT is used to detect broken constraints, for example, to indicate missing license

keys or the absence of hardware modules. In particular, devices with Broadcom chips

look for a variety of settings in nvram to differentiate between hardware versions. If these

settings cannot be found, the init process or the calling application wants to terminate

itself to prevent further execution. In addition to SIGNAL 6, we also intercept SIGNAL

11 (SIGSEGV) and SIGNAL 7 (SIGFPE). The latter two mitigate the problems caused by

missing nvram values that are not absolutely necessary for running applications. SIGPFE

is typically sent for floating point errors such as when the application attempts to divide

by 0. We believe that the absence of nvram leads to the use of zero values and various

mathematical operations fail.
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For a small number of firmware images’ ignoring signals leads to indefinite loops and

very high CPU usage, however in many cases the programs appear to continue running

successfully. Thus intercepting signals is a trade-off between ignoring (some) values, while

at the same time making the emulation useful and viable.

6.2.2.3 Module loading

A number of firmware images are shipped with custom modules to implement device

specific functionality such as cryptographic operations or support for custom hardware.

To avoid undesired behaviour and kernel crashes, our customised kernel will not load

incompatible modules, even if instructed to (modprobe -f). However, the kernel will accept

modules with different vermagic strings and does not require exact matches. Vermagic

strings are typically used to ensure that the modules were built and configured for the

same kernel version, but as the vermagic strings greatly differ between manufacturers

and firmware versions, we ignore them. For example, if a module has the vermagic string

2.6.22-routeros our newer kernel with the version 2.6.32.71 will attempt to load it.

This problem could be avoided by re-compiling the kernel for every individual firmware

image with the correct vermagic string, but this would be a significant barrier to deploying

honeypots in a timely manner and we find that, in practice, our approach works very well.

6.2.2.4 NVRAM

To store and later retrieve device-specific configuration parameters, device manufacturers

often use non-volatile memory (nvram). Chen et al. [26] looked at 23 035 firmware images

and found that more than half of them accessed nvram, for example to handle configuration

information during the boot process. Typically firmware images set a variety of nvram

values during the boot process and subsequently read these nvram values with nvram get.

To emulate nvram, we use the approach first mentioned by Heffner and later developed by

Firmadyne: we set the environmental variable LD PRELOAD to the path of our own nvram

implementation, so that our file will be loaded before any other (firmware) library [42].

This means that we reliably intercept calls to nvram get and nvram set.

To extend Firmadyne’s approach, we implement a script that automatically reads the

kernel logs, detects missing nvram values, re-compiles the necessary shared library and

updates the filesystem for the next time the firmware is run. This can be an iterative

process as setting certain nvram values may cause other nvram values to be accessed and

those could also be missing. In our evaluation (in Section 6.3) which compares honware

with Firmadyne, we used static values and did not iteratively look for missing values.

However, as shown in Table 6.1 and 6.2, we achieve far better results than Firmadyne in

terms of correctly emulating the firmware, its applications and in inferring the network

configuration.
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6.2.2.5 Network configuration

Providing network functionality is a fundamental prerequisite for honware since without

it the emulation cannot be connected to the Internet and probed by attackers. To infer

the network configuration, honware parses the kernel logs for the initial configuration of

the bridge device, typically named br0 or ra0. It then looks for ifconfig commands

which configure the bridge, and for any addif command which adds one or multiple

network interfaces to that bridge. Subsequently, it extracts the IP address and creates a

tap interface in QEMU, and sets the associated route and iptables rules on the host to

forward all traffic to the inferred network interface.

If the network does not work with the inferred configuration, we re-run the emulation

and overwrite the firmware’s default network configuration with a custom configuration.

This is achieved by placing the configuration into /sbin/boot.sh which will be executed

by the kernel during the boot process. The custom configuration starts by shutting down

the network interfaces (eth x) and any wrongly configured bridges. Then it assigns

appropriate local static IP addresses and adds the network interfaces back on to the bridge,

setting up a route so that the guest network interface and the host’s network interface can

exchange packets. Finally, the script removes all firewall rules so that we can be certain

that traffic is not interfered with. If the network still does not respond to ICMP echo

request packets, we consider the firmware image not network reachable (and our attempt

to create a useful honeypot has been unsuccessful).

To fully test network reachability we use ping and nmap. In particular we use nmap1 to

do a port scan of the most common ports including port 22 (SSH), 23 (Telnet), 80 (HTTP),

443 (HTTPS) and 1900 (UPnP). The results of this evaluation with 8 387 firmware images

can be found in Section 6.3.1.

6.2.3 Filesystem modifications

After extracting the filesystem, we have to modify it for emulation. First, we add the

module for nvram emulation (Section 6.2.2.4). Second, we modify do execve to execute, if

present, /sbin/boot.sh through the kernel function call usermodehelper. This allows

us to execute custom scripts and commands for a particular firmware image without

having to change the pre-built kernel or perform complex modifications to the firmware

filesystem. This gives honeypot operators flexibility to, for example, specify additional

network interfaces, execute applications with particular configuration options or customise

the firewall to their needs.

Unsurprisingly, many emulated firmware images do not configure static IP addresses,

but use DHCP. As we choose not to emulate access to a DHCP server, attempts to obtain

1nmap -F -St -Su ipaddress
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an IP address would fail and the emulated firmware would not be reachable over the

network. To address this, we use busybox-static, a statically linked version of Busybox

which is available for mipseb, mipsel and ARM as well as for many other architectures.

We copy this Busybox binary into the guest filesystem and use it to set up a bridge, attach

one network interface to it, configure both appropriately, and set up a default route (see

Section 6.2.2.5). This approach yields considerably better results than relying on the

default configuration of the guest system itself, as was done, for example, by Firmadyne.

6.2.4 Emulation

After the extraction and preparation of the filesystem, honware invokes QEMU to start the

emulation. The honeypot is tested to see if it responds to ICMP echo request packets over

the local network. If this is successful the necessary interfaces, routes and host firewall

rules for connecting the honeypot to the Internet are created. We pre-route incoming

packets on the host ethernet interface to the QEMU tap interface and post-route packets

back to the host. By specifying which ports are handled this way, operators are able to

customise their honeypots and only expose ports to the Internet that are of interest.

Honware can be configured so that the firmware emulation only runs for a certain

period of time or forever, i.e. until stopped by the user. While honware is running it

outputs kernel log information, details of incoming network connections, and all invoked

commands with the relevant time information and writes this all to log files.

6.3 Evaluation

The evaluation of our framework is threefold. First, we compare honware with Firmadyne

[26] in terms of extracted firmware images, network reachability and number of emulated

services. We do this by obtaining and running the identical firmware images that they used.

Second, we provide four case studies where we demonstrate that honware is capable of

rapidly emulating devices to capture not only malware samples, but to emulate advanced

device behaviour which is not feasible with traditional honeypots. Third, we perform

extensive measurements to show that the performance of honware is comparable to real

devices and that honware is not susceptible to trivial fingerprinting based on timing

attacks.

6.3.1 Extraction, network reachability and services

To measure how well honware extracts firmware images, configures the network and

emulates services, we obtained the list of firmware images used in the evaluation of

Firmadyne and downloaded all images that are still accessible on the URLs provided. As
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of March 2019, 8 387 of 23 035 images (36.4%) can still be downloaded. The list includes a

variety of firmware images for CPE and IoT devices such as ADSL modems, routers, NAS

systems, web cameras and smart power plugs. Unfortunately the authors of Firmadyne lost

their database that would have allowed us to map the individual images to the outcomes

network reachable and listening services emulated, so we ran Firmadyne ourselves over the

8 387 remaining firmware images to be able to compare results.

6.3.1.1 Extraction

As shown in Table 6.1, honware appears better in extracting firmware images than

Firmadyne. In total, we successfully extracted 4 650 of 8 387 available images (55.4%)

compared to 2 920 for Firmadyne (34.8%). We both use binwalk (the de-facto standard

tool for firmware extraction) and for most manufacturers our results are very similar. Our

significantly better results for Synology are probably because we allow filesystems up to

2GB in size (1GB for Firmadyne) – Synology firmware images are quite large, compressed

to an average size of 133MB. That is, we suspect that Firmadyne failed to populate

the filesystem correctly because of space constraints. The firmware images for which

both Firmadyne and honware were unable to extract a filesystem are encrypted, have a

proprietary way of packaging images or are simply updates – and therefore important

folders and binaries are missing.

6.3.1.2 Network reachability

To measure network reachability, we prepared and ran all the successfully extracted

firmware images as outlined in Section 6.2.4 and sent them ICMP echo request packets.

As shown in Table 6.1, we achieve significantly better results than Firmadyne. From the

4 650 successfully extracted firmware images, 1 903 images (40.9%) respond to the ICMP

packets, compared to 460 images for Firmadyne (15.8% of the extracted images). For

OpenWrt we were able to ping 674 devices whereas for Firmadyne no firmware image was

reachable and this clearly increases our score. However, we find similar results for Zyxel

(69 to 20), TP-Link (147 to 95) and Netgear (384 to 187).

We believe honware performs better for two reasons. First, Firmadyne supports only

one ethernet device for their ARM little-endian platform whereas honware supports up

to four. This is particularly important as a network bridge has to have at least one

device attached (e.g. eth0) so that services are network reachable. Second, Firmadyne has

no (fallback) mechanisms to correct missing network configuration settings, for example,

because nvram could not be loaded in the absence of physical hardware. In contrast, as

outlined in Section 6.2.2.5, honware will automatically detect an initial failure and will set

up a bridge and an associated ethernet device.
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Table 6.1: Comparison between honware and Firmadyne: We obtained the list of firmware
images (23 035) used in the evaluation of Firmadyne (2016-02) and downloaded all that
remained accessible (8 387 in 2019-03). We used Firmadyne and honware to extract these
images and test their network reachability by sending them ICMP echo request packets.

# Brand Available Extracted Network reach.
(2019-03/2016-02/∆) (honw./firm./∆) (honw./firm./∆)

1 Actiontec 0/14 14↓ - - - -

2 Airlink101 0/15 15↓ - - - -

3 Apple 0/9 9↓ - - - -

4 Asus 1/3 2↓ 1/1 ← 1/0 1↑
5 AT&T 3/25 22↓ 0/2 2↓ - -

6 AVM 0/132 132↓ - - - -

7 Belkin 123/140 17↓ 49/49 ← 9/0 9↑
8 Buffalo 97/143 46↓ 6/7 1↓ 2/1 1↑
9 CenturyLink 13/31 18↓ 7/4 3↑ 7/0 7↑

10 Cerowrt 0/14 14↓ - - - -

11 Cisco 0/61 61↓ - - - -

12 D-Link 1443/4688 3245↓ 537/498 39↑ 272/115 157↑
13 Forceware 0/2 2↓ - - - -

14 Foscam 44/56 12↓ 5/5 ← - -

15 Haxorware 0/7 7↓ - - - -

16 Huawei 13/29 16↓ 0/3 3↓ - -

17 Inmarsat 0/47 47↓ - - - -

18 Iridium 0/17 17↓ - - - -

19 Linksys 32/126 94↓ 26/26 ← 15/1 14↑
20 MikroTik 4/13 9↓ - - - -

21 Netgear 1396/5280 3884↓ 639/629 10↑ 384/187 197↑
22 On Networks 0/28 28↓ - - - -

23 Open Wir. 0/1 1↓ - - - -

24 OpenWrt 756/1498 742↓ 714/705 9↑ 674/0 674↑
25 pfSense 214/256 42↓ - - - -

26 Polycom 612/644 32↓ 0/24 24↓ - -

27 QNAP 8/464 456↓ - - - -

28 RouterTech 0/12 12↓ - - - -

29 Seiki 0/16 16↓ - - - -

30 Supermicro 0/150 150↓ - - - -

31 Synology 1977/2094 117↓ 1866/239 1627↑ - -

32 Tenda 6/244 238↓ 4/3 1↑ 2/0 2↑
33 Tenvis 9/49 40↓ 6/6 ← 6/4 2↑
34 Thuraya 0/18 18↓ - - - -

35 Tomato 362/2942 2580↓ 362/362 ← 217/0 217↑
36 TP-Link 463/1072 609↓ 171/171 ← 147/95 52↑
37 TRENDnet 336/822 486↓ 134/100 34↑ 87/37 50↑
38 Ubiquiti 26/51 25↓ 20/19 1↑ 11/0 11↑
39 u-blox 0/16 16↓ - - - -

40 Verizon 0/37 37↓ - - - -

41 Western Dig. 0/1 1↓ - - - -

42 ZyXEL 449/1768 1319↓ 103/67 36↑ 69/20 49↑

Total 8387/23035 14648↓ 4650/2920 1730↑ 1903/460 1443↑
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Table 6.2: Comparing honware and Firmadyne: Top 15 listening services.

Prot. Port/Service Honware Firmadyne ∆

TCP 23/telnet 879 149 730↑
TCP 80/http 676 293 383↑
UDP 67/dhcp 316 160 156↑
UDP 1900/UPnP 239 128 111↑
UDP 53/various 239 174 65↑
TCP 3333/dec-notes 222 102 120↑
TCP 5555/freeciv 203 57 146↑
TCP 5431/UPnP 177 48 129↑
UDP 137/netbios 154 82 72↑
TCP 53/domain 139 73 66↑
TCP 443/https 107 105 2↑
UDP 5353/mdns 102 34 68↑
UDP 69/tftp 104 26 78↑
TCP 1900/UPnP 56 60 4↓
TCP 49152/UPnP 53 62 9↓

6.3.1.3 Services

The execution of firmware applications is critical for honeypots since most exploits target

these applications. If they do not function, then connecting firmware images to the Internet

is of limited value. As shown in Table 6.2, significantly more applications running under

honware respond on their listening ports than it is the case for Firmadyne. We find that

for Telnet, 879 firmware images respond to our nmap scan compared to 149 for Firmadyne.

HTTP on port 80 is the second most observed service with 676 firmware images responding

to our nmap scan, followed by port 67 (316) and port 1900 (239).

We attribute our significantly better results to our instrumented kernel which has

placed great emphasis on improved signal handling and on constructing a working network

configuration, by executing our custom /sbin/boot.sh script. This technique allows us

to very simply change default configurations, which is particularly important for firmware

images that try to obtain IP addresses with DHCP.

6.3.2 Honeypot deployments in the wild

To evaluate the effectiveness of honware, we deployed multiple honeypots on the Internet

including four brands of ADSL modems, TP-Link, D-Link, Eminent and ipTIME. We now

discuss four case studies which show that devices can be rapidly emulated, very much faster

than with previous approaches, and that honware can detect both known and previously

unknown attacks. In particular, whilst emulating a router from ipTIME, we observed an

unknown attack in which the default DNS setting in the router is changed to a rogue IP

address – which we subsequently found to affect not only ipTIME, but also other brands.
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6.3.2.1 Broadcom UPnPHunter

UPnPHunter is the name of a format string vulnerability in the Broadcom software for

Universal Plug and Play (UPnP) and affects various brands, including TP-Link, D-Link

and Netgear [71]. The vulnerability allows a remote adversary to cause the UPnP service

to crash or execute arbitrary code. The attack seen in the wild was unusual in that an

initial connection pre-qualified the devices as likely to be vulnerable before a second phase

of the attack was attempted. 360Netlab reported that it took them over a month to code a

custom honeypot to appropriately respond to each of the connections in turn [151]. With

honware, because all services were operational, we were able to observe the described

attack within 24 hours of connecting the honeypot to the Internet.

To capture the attack, we emulated an ADSL router modem (D-Link DSL-2741B with

firmware version 517b50, released on 2010-03-08). This router uses the MIPS architecture

(big endian) and by default has listening applications on ports 21/tcp, 22/tcp, 23/tcp,

80/tcp, 1028/tcp, 67/udp, 69/udp, and 5431/tcp. Before we connected the emulation to

the Internet, we used the proof of concept code [71] to test the exploit. The exploit uses

the functions SetConnectionType and GetConnectionTypeInfo on port 5431, the UPnP

SOAP service. The first function is used to set the format string and the latter one to

read the output. As expected, we managed to cause the UPnP daemon to crash, read

arbitrary memory and execute arbitrary code with root privileges, giving us full control of

the device.

On 2019-23-01 a machine from India connected to our honeypot on port 5431 and sent

<NewConnectionType>.%08X.%08X.</NewConnectionType> so as to exploit the vulnera-

bility. We sent <NewConnectionType> .7F8805AC.004332F0.</NewConnectionType> to

reveal the memory mapping. Subsequently a malware loader connected to our honeypot

from the same IP address as observed by 360Netlab [151].

Unfortunately, the loader failed to download malware and instead sent a single character

X. We are not sure why this happened: it may be that the attacker forgot to update a

placeholder and include some malware or shell code, or that the attacker does not have

shell code for the particular type of router that we used in our experiment.

Although we did not capture any malware, we have shown that we can, within a single

day, create a honeypot for a particular device and observe an attack upon it. There is clear

value in rapidly understanding complex attack vectors and shortening the time window in

which attackers can abuse vulnerabilities without anyone being able to precisely identify

their methods.

6.3.2.2 DNS hijack

We observed a previously unknown attack in which the default DNS server was changed

within one of our honeypots that emulates an ipTIME N604R wireless router with firmware
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<s:Envelope xmlns : s=” ht t p : // schemas . xmlsoap . org / soap / enve lope /” s : e n c o d i n g S t y l e=”
h t t p : // schemas . xmlsoap . org / soap / encoding /”>

<s:Body>
<u:AddPortMapping xmlns:u=” urn:schemas−upnp−org:service :WANIPConnect ion:1 ”>
<NewRemoteHost></NewRemoteHost>
<NewExternalPort>47359</NewExternalPort>
<NewProtocol>TCP</NewProtocol>
<NewInternalPort>135</ NewInternalPort>
<NewInterna lCl ient>1 9 2 . 1 6 8 . 8 . 1</ NewInterna lCl i ent>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>g a l l e t a s i l e n c i o s a</NewPortMappingDescription>
<NewLeaseDuration>0</NewLeaseDuration>
</u:AddPortMapping>
</s:Body>
</s:Envelope>

Figure 6.2: EternalSilence: Malicious port forwarding rule captured by honware

version 7.50 (released on 2011-01-31). This particular device is manufactured by EFM

networks and is primarily used in Korea where it is distributed by ipTIME.

By default, the router has listening applications on port 80/tcp, 113/tcp, and 68/udp.

In 2015, Kim [72] discovered a remote code exploitation vulnerability triggered by sending

a crafted DHCP request. We were running two instances of this firmware on two different

IP addresses located in Finland and Germany and were hoping to see this attack – instead

of which we recorded a previously unknown attack.

The attacker used the timepro.cgi script and the WAN setup menu to overwrite

the default DNS to a rogue IP address located in the Netherlands. This caused the

device to change the iptables rule as follows: /sbin/iptables -t nat -A PREROUTING -i

br0 -d 192.168.0.1 -p udp --dport 53 -j DNAT --to-destination X.X.X.X with

x.x.x.x being a DNS server controlled by the attacker. They also configured a second DNS

server to ensure that all DNS traffic went to their machines.

We experimentally resolved www.yahoo.com on the attacker’s DNS server and found

that it resolved to a machine in China on AS41718 (China Great Fire Wall Network

Limited Company). The resolved IP address has an unusual (self-signed) certificate which

makes it authoritative for a range of websites, many with a Korean connection, but also

www.paypal.com, www.yahoo.com, www.google.com.tw and many more. According to

Shodan, there are 39 other IP addresses with the same certificate spread across the world,

including Hong Kong, Taiwan and United States/California.

A search of online support forums showed that the same DNS servers were associated

with other attacks. Three users with TP-Link2 and Anderson3 devices had noticed that

their DNS settings had been changed. We reported our findings to a vetted community of

security professionals and law enforcement so they can take appropriate action.

2https://community.tp-link.com/en/home/forum/topic/158073?page=1&t=2019 and
https://trzepak.pl/viewtopic.php?f=20&t=61263

3https://eforum.idg.se/topic/358185-firefox-660-64-bit-quantum-säkerhetsvarnar-för-youtube-och-
s¨kmotorn-duckduckgo/
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6.3.2.3 UPnPProxy

EternalSilence is a newly discovered family of UPnPProxy forwarding malware [121].

EternalSilence adds port forwarding rules to devices to expose TCP ports 139 and 445

behind routers. Every rule is added with an identical description of “galleta silenciosa”

and can therefore be easily fingerprinted. The rules are persistently stored in the router’s

configuration so reboots will not clear them; victims have to explicitly delete them.

Using our framework, we set up an ADSL modem router (Eminent EM4544 with

firmware version 8.38, released 2013-05-30). This type of router uses the MIPS archi-

tecture (big endian) and by default has listening applications on port 280/tcp, 113/tcp,

68/udp and 5431/tcp. We set up the honeypot on 2019-01-04 and four days later on

2019-01-08 a machine from Bolivia issued a M-SEARCH request (M-SEARCH * HTTP/1.1)

followed by a GET request (GET /etc/linuxigd/gatedesc.xml HTTP/1.0) to retrieve

the device details. The response includes various device details such as deviceType,

manufacturer and modelnumber. Subsequently the attacker issues an AddPortMap-

ping request as shown in Figure 6.2. This rule triggers the miniupnp daemon to redi-

rect port 47359 to 192.168.8.1:135, an action which is appropriately logged as follows:

miniupnpd[202]: redirecting port 47359 to 192.168.8.1:135 protocol TCP

for: galleta silenciosa.

We successfully captured the alteration of the port forwarding rules, but along with

Akamai [121] who originally identified this attack, we saw no further attempt to exploit the

compromised devices. Nonetheless, honware is providing a mechanism to easily capture

any such attack traffic by pretending to be a vulnerable device. If the malicious firewall

rules are exploited in future, we will be able to observe this behaviour instantly and report

it appropriately.

6.3.2.4 Mirai variants

The Mirai source code is constantly evolving and recently a new variant called Yowai/Hakai

was found. This variant exploits a vulnerability in the invokeFunction of ThinkPhP [137]

and allows the execution of arbitrary code on the underlying server. ThinkPhP is a PHP

framework widely used by a variety of networked devices, particularly those manufactured

in China [135]. Once devices are infected, they do further scanning to find other vulnerable

devices. One advantage of ThinkPhP is that it does not compete with the original Mirai

malware as it targets the web server on port 80, not Telnet on port 23. Off-the-shelf Mirai

honeypots would not record such attacks as they look for Mirai traffic on the Telnet ports

23 and 2323 [104].

To capture attack traffic, we processed the firmware for the ADSL modem router

TP-Link TD-W8960N, released on 2011-11-08, with honware and set up a honeypot. By

default, this devices has listening ports on 21/tcp, 22/tcp, 23/tcp, 80/tcp, 67/udp, 69/udp,
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Table 6.3: ThinkPhP vulnerability: Top 15 Malware files observed within a 14-day period
emulating a TP-Link TD-W8960N

# Seen Filename Country First seen Detection ratio
Honware Virustotal Virustotal

52 Tsunami.x86 DE 2019-23-02 unknown 5/67
35 cayo4 DE 2019-28-02 2019-21-03 10/68
34 Tsunami.x86 RO 2019-19-02 unknown 5/67
8 X86 64 CA 2019-28-02 unknown 0/66
6 shiina US 2019-28-02 unknown 7/67
5 Tsunami.x86 US 2019-27-02 unknown 0/66
5 Tsunami.x86 US 2019-24-02 unknown 2/67
5 lessie.x86 NL 2019-26-03 2019-23-02 2/66
4 Tsunami.x86 ZA 2019-26-03 2019-01-03 13/71
4 Tsunami.x86 US 2019-18-02 unknown 4/67
3 Tsunami.x86 DE 2019-23-02 unknown 0/66
3 Tsunami.x86 US 2019-21-02 unknown 2/66
2 cayo4 NL 2019-22-02 unknown 0/66
2 x86 US 2019-19-02 unknown 0/66
2 Tsunami.x86 US 2019-27-02 unknown 1/66

1900/udp and 5431/tcp. Our honeypot ran from 2019-02-17 to 2019-03-01 (14 days) and

captured 566 attacks that tried to exploit the vulnerability in the ThinkPhP framework. In

total, 49 different URLs, i.e. malware instances, were captured with a median of 4 attacks

for each unique URL. One malware sample was associated with 70 of the attacks. We

checked with Virustotal and 16 (32.7%) of the 49 samples were entirely new. Of the rest,

over two thirds were captured by honware before they were first recorded by Virustotal;

and only 13 (26.5%) samples had been detected by someone else and uploaded to Virustotal

before honware. Across all 49 samples honware detected the malware a median of 9.7 days

before Virustotal had a copy. It appears that we are able to make malware available to

the defender community considerably faster than traditional honeypots.

6.3.3 Timing attacks to fingerprint honware

Honware is, by design, difficult to fingerprint at the network stack or application layer,

but timing attacks are a potential concern – the emulation may significantly affect the

speed of operation, so we evaluated this issue extremely carefully.

Emulation inevitably introduces overhead in terms of CPU usage, network latency and

I/O operations. However, many CPE and IoT devices have limited resources; for example,

the D-Link home router DIR 825 has a CPU clocked at 680 MHz and just 64MB of RAM.

Furthermore, it is typically used in residential networks with limited (upload) bandwidth.

In contrast, even the lowest tier virtual machines (VMs) offered by popular cloud providers

where honeypots might be deployed have a virtual CPU core clocked at several GHz, offer

1GB of RAM and have a 1Gbit connection. Hence, any timing issue is as likely to result

from running too fast as from running too slow.
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Figure 6.3: FTP Server: We initiate a connection and measure t1 and t2, the time the FTP
daemon takes to responds to the ACK tack and the carriage return tcr. Upon receiving the
ACK, the remote server will send the welcome message 220 Welcome to ASUS RT-AC52U

FTP service twelcome and the carriage return will cause the FTP server to present the
login prompt tlogin. In both cases, the RTT (trtt) is used to adjust the timing information
on the received and transmitted messages so that t1 = twelcome− trtt and t2 = tcrack − trtt/2
or t2 = tlogin − tcr − trtt

To compare our honeypots to real devices, we sought out self-identifying devices with

listening services on port 21, 23 and 443. We specifically chose 443 as encrypting traffic

needs more resources and thus may serve as a good distinguisher between our honeypot

and the real servers.

Unfortunately, most devices do not reveal their model and firmware version through

their listening services without further interaction, but using Shodan we were able to find

three suitable devices: The ASUS RT-AC52U Dual-Band AC750 wireless router (FTP

server on port 21), the Zyxel VMG1312-B Wireless N VDSL2 Gateway (Telnet server on

port 23) and the D-Link Wireless N Dual-Band Router DIR-825 (web server on port 443).

To identify the servers, we assume that every device that returns the string VMG1312-B10A

Login: when connected to on port 23 is the particular model in question, and Shodan

reports receiving that string from 120 devices. Likewise, we expect the string 220 Welcome

to ASUS RT-AC52U FTP service to be emitted only by ASUS RT-AC52U devices (74

devices) and the string HTTP/1.1 200 Ok Server: DIR-825 web server/v1.00 only

to be sent by D-Link DIR-825 models (127 devices).

Having identified three suitable devices, we set up 30 honeypots to emulate them,

ten for each, on two popular cloud providers with instances around the world including

Singapore, Canada, USA, Germany, India, Netherlands and the United Kingdom. Then

for each protocol (FTP, Telnet, HTTPS), we measure the time the application servers

take to respond to our requests both for the honeypots and for the real devices identified

via Shodan.
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For each measurement, the initial round trip time (RTT), the time between the SYN and

SYN-ACK packet, is calculated and is subsequently used to adjust the timing information

on received and transmitted messages. As an example, figure 6.3 shows the interaction

with the devices’ FTP servers and the adjustments we made. Hence our measurements

do not aim to identify network delays or Internet-induced latency, but solely to measure

the time the application servers need to generate the appropriate response to an incoming

probe.

When we connect to the FTP server on port 21, the remote server will send, upon

completing the TCP handshake, the welcome message 220 Welcome to ASUS RT-AC52U

FTP service at time twelcome. Similarly, after sending a further carriage return (tcr), the

FTP server will respond with 530 Please login with USER and PASS (tlogin). The time

it takes the application server to respond is therefore t1 = twelcome−trtt and t2 = tcrack−trtt/2

or t2 = tlogin− tcr− trtt. The Telnet and HTTP protocol are essentially similar, but instead

of sending a carriage return, we start and complete the TLS handshake and subsequently

ask the web server to send the main web page with a standard GET request. For Telnet

servers, we do not negotiate with the remote server or send any data other than the SYN

and ACK packets as by default, Telnet servers will start the negotiation process and

present a login prompt without further interaction.

As shown in Figure 6.4, the application servers’ response times do vary between the

real and emulated devices. Each line in Figure 6.4 represents the empirical cumulative

distribution function of one device in various locations as described above. For each of

these devices, we made 300 measurements over a one-day period to measure the response

time to our connections and resource requests. We find real systems that are faster than

our emulated devices, and systems that are slower – but with significant differences between

protocols.

For FTP, the welcome message is consistently sent faster on real devices than on

emulated ones. The latter need about 5ms to populate the welcome messages while the

real systems took about 1.8ms. Interestingly, the message in response to our carriage

return is not significantly slower on the emulated devices. We cannot be sure why this

is the case, but we speculate that the ASUS FTP server performs additional operations

for each initial FTP connection such as filesystem checks or initialising memory. These

operations are likely to be particularly fast on real devices as they are using flash memory

whereas the VMs use SSDs or even slower HDDs.

For Telnet, the emulated devices respond very much faster than real ones. We further

find that the response time for the latter is fairly variable with most Telnet servers

responding in about 60-75ms (adjusted for RTTs) whereas emulated devices consistently

took a few milliseconds. Similarly, the real devices need longer to present the login prompt.

For HTTPS we find the real devices and emulated devices respond in about the same
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time with most servers completing the TLS handshake in about 30ms. The time between

the start of the TLS handshake and the end of the application data transfer (web page) is

also comparable.

Overall, we find that emulation does not generally slow down application servers –

which we attribute to even the low-cost cloud instances we used having a far better

specification than most CPE and IoT devices. Where emulation is faster, it would be

possible to artificially slow honware responses.

It is of course true (and entirely expected) that in some instances it would be possible

to fingerprint honware. However, the differences can be made small enough that it would

take repeated measurements and a reference group (i.e. access to real devices) before

an attacker could reliably distinguish an emulation from a real device. Furthermore, the

Internet inherently introduces jitter, network delays and artefacts which all serve to further

increase the time and effort to mount such attacks – and in the case of HTTPS, where

honware is running at almost the same speed as the real devices – fingerprinting is going

to be extremely problematic.

6.4 Ethical considerations

We followed our institution’s ethics policy at all times with appropriate authorisation at

every stage. We reported the DNS hijack attack (Section 6.3.2.2) to a vetted community

of security professionals and law enforcement so they can take appropriate action.

Extracting firmware images to analyse their security properties locally, is long estab-

lished practice [161, 124, 33, 27]. It may be argued that honware is different because

we connect the firmware together with our custom kernel to the Internet where it is not

then analysed by us, but by unknown malicious entities. Our view is that our research

is in the public interest since being able to create honeypots rapidly for a variety of

Internet-connected devices enables not only security researchers, but also manufacturers,

to detect novel attack vectors and provide updates to patch vulnerabilities. Furthermore,

we only use firmware images that are publicly accessible on the companies’ websites and

do not require registration or license keys.

We avoided doing our own Internet-wide scans to identify suitable devices for our

timing measurements, but used Shodan instead. Our timing probe’s contribution to the

remote servers’ overall traffic is negligible as we only initiated 300 connections for each

device for a one-day period. Devices that have open ports on 21, 23 and 443 will typically

receive orders of magnitude more traffic, in particular from malware (e.g., Mirai on port

23) or from search engines that index the web continuously.

When running high-interaction honeypots there is always the potential for damage to

third parties, i.e. someone might use our emulated devices to conduct further attacks or
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resource request (carriage return) and login message
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(c) Zyxel VMG1312-B10A Telnet server: Time to
Telnet negotiation characters
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(d) Zyxel VMG1312-B10A Telnet server: Time to
Login message
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(e) D-Link DIR-825 HTTPS server: Time to com-
plete the TLS handshake
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(f) D-Link DIR-825 HTTPS server: Time between
ClientHello and resource received (web page)

Figure 6.4: We used three devices and protocols to measure the overhead of emulating
honeypots with honware. Each line represents the empirical cumulative distribution
function (ecdf) for one device. For each device, 300 measurements were made over a
one-day period to measure the time the application servers need to respond to our requests.
To do so, the timing information is adjusted to factor in Round Trip Time(s) (RTT).
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perform malicious activities. All our honeypots ran in virtual machines and we closely

monitored our honeypots and stopped abuse once it became substantial in volume or of

no further interest. We blocked all ports on the host machine which would typically not

be used by the device to reduce the attack surface. We further closely monitored our

honeypots including traffic sent and received, disk and cpu usage, and kernel log messages.

For example, using our devices as a proxy to send spam emails is expected, but after the

modus operandi, i.e. the attack vector, the attack itself and the consequences are well

understood, we blocked all outgoing traffic and reset the device. For one device we had to

block outgoing traffic as it was roped into a DDoS attack using the SSDP protocol.

Our approach is completely in line with traditional good practices when running

high-interaction honeypots. It should be noted that taking actions to block outgoing traffic

is a trade-off between understanding the attack scenario better and hiding from attackers

who want to identify honeypots. An extended discussion about these trade-offs can be

found in Nawrocki et al. [100].

6.5 Discussion

Honware is intended to identify attacks that cannot easily be captured with the traditional

approach of low-/medium-/high- interaction honeypots. It is not designed as a tool for

understanding large-scale, repetitive attacks, i.e. if a device is capable of being compromised

by Mirai we are only interested in the attack once, not in seeing that the same attack

occurs again and again every few minutes. After the attack vector is known, we need to

prevent further compromises, for example by blocking certain IPs or by recognising attack

traffic (for example, Mirai’s initial scanning sets the Initial Sequence Number to match

the destination IPv4 address). Once an attack is well-understood, medium-interaction

honeypots should be set up to collect more quantitative data about large-scale attacks,

reducing maintenance and minimising potential harm.

Honware’s real value is in its potential to rebalance the economics of attackers and

defenders. It has become feasible to scan all of IPv4 address space for vulnerable devices

with modest investment. Once an exploit is found for one technology, device, or specific

implementation, attackers can easily find devices with that vulnerability embedded – and

instantly benefit from that exploit. Using honware to identify the exact attack vector and

obtain copies of malware means that countermeasures can be deployed faster and with far

more precision.

We accept that honware can be fingerprinted by attackers who are prepared to perform

a significant amount of measurement work to identify small timing discrepancies or have

local access. In particular with local access, adversaries may be able to fingerprint the

honeypot based on differences in our pre-built kernel, the modified filesystem or application
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behaviour as a result of the changes made to the signal handling. However, honware

is not susceptible to remote fingerprinting attacks based on protocol deviations [142] or

self-revealing properties [96]. Our approach of exposing the real services to the Internet and

our use of the standard configuration files that are shipped by the manufacturers means

that our honeypots will be indistinguishable from real devices. Traditionally honeypots

were engaged in ‘Red Queen’s Race’ in which new fingerprinting attacks were countered by

updating the emulation code. Honware avoids this entirely, which is particularly important

as it has been show in Chapter 5 that honeypot operators rarely update their honeypots

or pay attention to how they are configured.

We envision honware being used at Internet scale, for example, by manufacturers

setting up honeypots for every one of their products and firmware versions. They will

learn whether known vulnerabilities are being actually exploited and they will learn of

previously unknown issues in an extremely timely manner. Currently the number of

potentially vulnerable devices listed on search engines such as Shodan is often used to

classify vulnerabilities as low-, medium- or high-impact. The framework will allow a much

better assessment of the risk of having (unpatched) devices connected to the Internet and

allows for a more thorough approach in determining the impact of vulnerabilities.

At present the honware framework focuses on CPE and IoT devices, but aims to

support a wide variety of these devices. Thus we made certain design decisions which may

not be optimal for a specific brand or device type. However, adjustments can be made

at any point, in particular a cooperating device manufacturer could assist in specifying

missing nvram values or by suggesting other configuration tweaks.

Currently honware is limited to Linux-based devices for ARM and MIPS architectures.

As other architectures become more prevalent, it is straightforward to compile the Linux

kernel with minimum effort. However, the emulation is still limited by the capabilities of

QEMU and its support for architectures and considerably more work would be needed to

support devices which are not based on Linux, but use proprietary operating systems.

6.6 Related work

IoTPOT was one of the first generic high-interaction honeypots tailored to impersonate

IoT devices [92]. It supports eight architectures including ARM, MIPS and x86 and aims

to return appropriate strings to connections on port 23. When the command is unknown, it

tries to run the command in a sandboxed environment based on OpenWRT and infers the

appropriate return string(s). Similarly, Conpot emulates industrial control systems based

on the protocols Modbox and SNMP. It supports the emulation of large infrastructures

so that adversaries may believe they are interacting with a complex industrial system

network.
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As IoTPOT and Conpot [114] do not use actual firmware to emulate devices and

therefore return static information, Litchfield et al. developed HoneyPhy [84]. This

framework tries to provide an appropriate simulation by taking a data feed from attached

physical devices. For example, if an attacker turns on the heating via a compromised

web-interface, the honeypot has to genuinely reflect these changes so that adversaries do

not become aware that they are interacting with a honeypot. However, IoTPOT, Conpot

and HoneyPhy only emulate specific application/ network layers and are not based on

actual firmware. Thus their behaviour is bound to differ from actual IoT devices.

The approach of IoTCandyJar [86] is more sophisticated. IoTCandyJar utilises publicly

available IoT devices on the Internet to collect responses for HTTP and then uses a Markov

decision process (MDP) to respond to attackers’ probes. They show that, after a learning

period scanning the Internet, they are able to send meaningful responses and capture

attack traffic. However, their technique only works for non-encrypted traffic and can only

capture responses before any login, i.e. router admin interfaces and similar cannot be

represented. They also rely on finding a significant number of publicly available devices,

which must also identify themselves, to provide meaningful responses.

In 2017 Guarnizo et al. presented a “scalable high-interaction” honeypot platform

based on physical devices [60]. They exposed six physical security cameras, one networked

video recorder and one networked printer through a distributed architecture on a range of

IPv4 addresses. In the two months of their study they found that attacks on IoT devices

are geographically spread ranging from 600 000 incoming TCP connections for popular

regions to only 50 000 in less popular areas.

In 2016, vendors and ISPs were caught off-guard by the TR-069 NewNTPServer exploit

which can be used to execute arbitrary commands on vulnerable routers [140]. TR-069

is an application layer protocol for remote management of end-user devices and custom

honeypots that monitor TR-069 protocol are now available [48]. Similarly, new designs for

programmable logic controller honeypots focusing on industrial control systems have been

presented [82].

Recent advances have also been made by scanning the Internet IPv4 address space for

vulnerable industrial control systems and identifying honeypots. Feng et al. use a heuristic

algorithm to determine the probability that the detected ICS device is a honeypot [51].

More recently, it has been shown that industrial control systems are increasingly deployed

around the world and that 60,000 thousand of these systems are publicly accessible [93].

Demonstrating the risk of IoT devices, Ronen et al. showed that Philips Hue smart

lamps can be used to spread malware [117]. In their example, the malware spreads from

one lamp to its neighbours and infects lamps located in the near vicinity. They estimate

that for a city the size of Paris, only 15 000 randomly located light bulbs are sufficient to

get every light bulb infected.
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Closest to the present work Chen et al. presented Firmadyne which dynamically anal-

yses Linux-based firmware images to find vulnerabilities [26]. They rely on a precompiled

Linux kernel and use QEMU [13] as a full system emulator. However, their approach is

not scalable as it requires constant manual effort and experts to classify failures during

the firmware extraction and emulation phases. It is intended to allow developers to find

vulnerabilities rather than to be deployed on the Internet to be probed by attackers.

Our honeypot framework is significantly better in configuring the networking aspects

of firmware images, in making the devices network reachable, and most importantly, in

running the listening applications such as web servers (see Section 6.3.1).

Gustafson et al. presented Pretender, a proof-of-concept system which records interac-

tions between the original hardware and the firmware so that it can then create models

of hardware, including devices, peripherals and CPU [61]. While the approach seems

promising, their system has only be tested with three different CPUs on development

hardware. Furthermore, their system requires access to physical hardware as they assume

that the memory layout of the target device is known.

Another project to focus on firmware images, Firmalice is a binary analysis framework

that aims to find authentication bypass vulnerabilities [124]. It supports inspecting the

codebase to find hardcoded credentials, hidden authentication interfaces and unintended

bugs which allow adversaries to skip authentication and perform privileged operations.

6.7 Conclusion

Honware is the first system that allows system designers, developers and security researchers

to efficiently and effectively deploy high verisimilitude, high interaction, honeypots for

networked devices. Instead of having to buy and set up physical devices as honeypots, the

framework facilitates the virtualisation of CPE and IoT devices merely by downloading

standard firmware images from manufacturers’ websites.

We demonstrate that honware can emulate a large variety of devices of many different

brands within a virtual environment, independent of the underlying hardware. Our

framework outperforms existing emulation strategies which are limited in their scalability,

and honware is significantly better than previous projects in providing network functionality

and in emulating the firmware applications – a crucial aspect as vulnerabilities are frequently

exploited by attackers in ‘front-end’ functionality such as web interfaces or UPnP daemons.

An increasing number of exploits use multiple protocols in different phases of the attack

and are targeted at very specific software implementations and devices. Generic honeypots

are ineffective in capturing these attacks as they do not return the appropriate traffic to

allow later parts of the attack to commence and so be recorded. Honware uses the original

firmware applications and their configurations which means that every phase of an attack
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can be monitored and fully understood. Furthermore, using the original applications

makes honware instances more fingerprint resistant and prevents fingerprinting attacks

based on protocol deviations or those that identify configurations specific to honeypots.

We further showed that the performance of honware is comparable to that of real devices

and that it is not susceptible to trivial fingerprinting based on timing attacks.

Our honeypot framework has huge potential in detecting vulnerabilities in CPE and

IoT devices that might otherwise be exploited for considerable periods of time without

anyone noticing. We presented four real world case studies showing the practical value

of our approach and in particular that within one day we were able to characterise

a sophisticated attack which had taken experts a month to identify using traditional

techniques. Additionally, while hoping to see an attack that had been reported to be

occurring, we identified a previously unknown DNS changing attacker associated with a

complex infrastructure.

Attackers are constantly scanning the Internet to find vulnerable devices. We believe

honware is a major step forward in rebalancing the economics of attackers and defenders by

cutting the attackers’ ability to exploit vulnerabilities, particularly ‘zero day’ vulnerabilities,

for considerable periods while defenders are unable to capture the details of the attack

and thereby start the process of mitigation.
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Chapter 7

Conclusion

The core aim of this work was creating effective honeypots to detect and profile the

growing threat of autonomous and Internet-scale attacks against the Internet of Things,

an endeavour previously limited by a fundamentally flawed generation of honeypots and

associated misconceptions of the threat landscape.

In Chapter 3, we challenged previous research findings and showed that warning banners

in an attacked computer system have no deterrent effects. In fact, we find that displaying

Lorem Ipsum text has the same effect as warning banners and a standard welcome message.

This is because the vast majority of system trespassing is performed autonomously and

so honeypots capture the behaviour of bots rather than humans. This study not only

informs honeypot developers, but also highlights that honeypot data used without careful

assessment of the threat landscape results in incorrect conclusions and policy advice.

Future research may want to survey the threat actors on underground forums to get

a better understanding of their motives and psychological traits – we attempted to do

this with honeypots but failed to convince the very few individuals interacting with our

honeypots to take part in our survey.

We then investigated state-of-the-art low- and medium-interaction honeypots and

presented a ‘class break’, showing that we can fingerprint a large number of low- and

medium-interaction honeypots at Internet scale solely based on their protocol implementa-

tion (Chapter 4). Their use of off-the-shelf libraries to implement protocols meant that we

were able to identify thousands of distinguishing probes. Because the RFCs that define the

protocols do not mandate every protocol detail, there are numerous differences on-the-wire

between entirely standards-compliant implementations. Using only a single probe sent

to every host on the Internet, we found more than 7 600 honeypots across nine different

honeypot implementations for the network protocols SSH, Telnet, and HTTP. In addition

to demonstrating the power of our discrimination, the technique also shows that even if

honeypot developers fix single protocol deviations, there are thousands more deviations

that could be used instead, suggesting that efforts to mimic a protocol implementation will
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always fail. It is also worrying that our technique can be easily implemented by adversaries

in malware to avoid interacting with and being detected by honeypots. Thus we need a

new generation of honeypots in which more emphasis is put on the accuracy of the lower

levels of the networking stack.

In Chapter 5, we characterised the honeypot landscape in that we use our technique

to find honeypot deployments at Internet-scale. Our goal was to count the number of

deployed honeypots, to better understand how and where honeypots are set up, and to

find out if honeypot operators are actively looking after them. To do so, we repeatedly

conducted Internet-wide scans in a one-year period and authenticated to all detected

honeypots. We found that a large number of honeypots are out of date and that many

honeypot operators are relying on standardised deployment scripts or public configuration

files, allowing their honeypots to be trivially fingerprinted.

We have been the first to knowingly authenticate to honeypots and this caused concern:

the paper reporting our results was rejected from a major conference because the Program

Committee thought our interactions with the honeypots were illegal and hence the research

was unethical. To this end, we give a detailed account and an extended legal analysis why

we did not infringe computer-misuse laws and why our research is ethical. Our access was

not ‘unauthorised’ because we did not impersonate a legitimate user of the system; we

knew that after sending a standard value, the system will present an impersonation of a

shell prompt under the pretence that we have logged in. Thus the controller of the honeypot

has intentionally made available a vulnerable system and invites access of the kind in

question, which we knew at the time we accessed the systems. We hope that this will

enable more research in this area and will help other researchers to publish related work.

In Chapter 6, we designed and implemented honware, a honeypot framework for

rapid implementation and deployment of high-interaction honeypots for CPE and IoT

devices. Honware automatically processes a standard firmware image and utilises a special

pre-built Linux kernel to emulate the device’s behaviour within a virtual environment.

Our proposed system is significantly better than existing systems at extracting firmware

images, and making sure applications within the image are network accessible. We outline

four case studies which demonstrate that honware is effective in detecting both known and

previously unknown attacks. We show that using the actual device firmware eliminates

the implementation vulnerabilities we exploited in Chapters 4 and 5, and that attempts

to fingerprint our system based on simple timing analysis cannot be done at scale. By

simplifying the process of deploying realistic honeypots at Internet scale, honware supports

the detection of malware types that often go unnoticed by users and manufactures. We hope

that honware, which is available by request, will be used at Internet scale by manufacturers

setting up honeypots for all of their products and firmware versions or by researchers

looking for new types of malware.
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Apart from the design challenges solved in this dissertation, future research may

want to investigate the use of micro virtual machines to speed up the process of booting

and isolating the firmware from the underlying host operating system. At the moment,

virtualisation projects such as Firecracker need a Linux kernel with version 4.14 or newer,

and Firecracker is not available for ARM and MIPS architectures. As newer devices

steadily use newer Linux kernels and MIPS is less prevalent, the use of such lightweight

virtualisation technologies may become increasingly important. We also can envision

a honeypot framework in which a listening service such as a web server is run in one

environment and another service (e.g. SSH) is run in another instance. This would allow

us to quickly reset the device and minimises maintenance efforts. Of course, a consistent

state across services must be maintained to avoid fingerprinting attacks.

The slow but steady up-take of IPv6 may also make it harder for attackers to find

vulnerable devices at Internet scale because scanning the complete IPv6 address space

seems infeasible. However, particular attention should be paid on how the available IPv6

space is utilised. If device default configurations or ISP deployment strategies prefer

predictable IPv6 address assignments, for example by choosing the first or last IPv6

address of the assigned IPv6 subnet, then the search space remains relatively small and

IPv6 would not yield any value over IPv4. But even with perfect deployment strategies

and sensible default configurations, passive IPv6 address leakages as side-effects of using

services such as DNS and NTP remain of concern. Attackers could use them to learn

about IPv6 addresses in use and potentially vulnerable devices.

It also remains a significant challenge to detect if attackers are actively using finger-

printing techniques. It may be that more sophisticated attacks such as ours remain unused

until the traditional method of fingerprinting, i.e. functionality-based distinction such as

examining commands, are no longer working because the defense community is gradually

improving existing honeypot solutions. However, what if fingerprinting honeypots becomes

the norm? Would it be possible to modify real systems to look like honeypots so that

attackers would avoid them? What are the (unintended) side-effects, if any?

We may also have to look further and find a way to incentivise manufacturers to

monitor and safeguard their products better. Do manufactures have a responsibility to

detect attacks targeting their devices or is that an unreasonable expectation? If so, for

how long? Would it be enough if they provide the necessary tools and firmware images to

allow others to run honeypots for their products?

Honeypots are an important cornerstone of today’s Internet security, but for too long

have been pretending to be a thing instead of the right thing. We hope that this thesis

will make a useful and practical contribution to combat the abuse of CPE and IoT devices

with a new generation of honeypots, and will serve as a foundation towards better threat

intelligence in a world of ubiquitous networked ‘things’.
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anatomic view to investigate honeypot systems: A survey. IEEE Systems Journal,

12(4):3906–3919, 2017.

[51] Xuan Feng, Qiang Li, and Haining Wang. Characterizing industrial control system

devices on the Internet. In Proceedings of the 24th IEEE International Conference

on Network Protocols (ICNP ‘16), pages 1–10, Singapore, SG, 2016. IEEE.

[52] R. Fielding and J. Reschke. RFC 7231 – Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, 2014.

127

http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
https://www.dns-oarc.net/oarc/services/dontprobe
https://www.dns-oarc.net/oarc/services/dontprobe
https://github.com/omererdem/honeything


[53] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1, 1999.

[54] UPnP Forum. UPnP device architecture 1.1, 2008. URL http://upnp.org/specs/

arch/UPnP-arch-DeviceArchitecture-v1.1.pdf.

[55] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility is

not transparency: VMM detection myths and realities. In Proceedings of the 11th

Workshop on HotTopics in Operating Systems (HotOS ‘07), San Diego, CA, 2007.

ACM.

[56] Oliver Gasser, Ralph Holz, and Georg Carle. A deeper understanding of SSH:

Results from Internet-wide scans. In Proceedings of the 14th Network Operations

and Management Symposium (NOMS ‘14), pages 1–9, Krakow, PL, 2014. IEEE.

[57] J.P. Gibbs. Crime, Punishment, and Deterrence. Elsevier, 1975.

[58] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. RFC 2518 – HTTP

Extensions for distributed authoring – WEBDAV, 1999.

[59] Thomas Grudziecki, Pawel Jacewicz, Lukasz Juszczyk, Piotr Kijewski,

and Pawel Pawlinski. Proactive detection of network security incidents.

Technical report, European Network and Security Information Agency

(ENISA), 2011. URL https://www.enisa.europa.eu/activities/cert/support/

proactive-detection/proactive-detection-report.

[60] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martin Ochoa, Nils Ole

Tippenhauer, Asaf Shabtai, and Yuval Elovici. SIPHON: Towards scalable high-

interaction physical honeypots. In Proceedings of the 3rd ACM Workshop on Cyber-

Physical System Security (CPSS ‘17), pages 57–68, Abu Dhabi, UAE, 2017. ACM.

[61] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Yanick
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