
Leipzig University
Faculty of Mathematics & Computer Science

Department of Computer Science
Database Group

Comparing Anomaly-Based

Network Intrusion Detection

Approaches Under Practical

Aspects

Bachelor's Thesis

Presented in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science

Author
Daniel Helmrich

Supervisor
Martin Grimmer, M.Sc.

Second Reviewer
Prof. Dr. Erhard Rahm

Leipzig, 9 April 2021

Abstract

English

While many of the currently used network intrusion detection systems (NIDS) employ signature-
based approaches, there is an increasing research interest in the examination of anomaly-based
detection methods, which seem to be more suited for recognizing zero-day attacks. Nevertheless,
requirements for their practical deployment, as well as objective and reproducible evaluation meth-
ods, are hereby often neglected. The following thesis defines aspects that are crucial for a practical
evaluation of anomaly-based NIDS, such as the focus on modern attack types, the restriction to
one-class classification methods, the exclusion of known attacks from the training phase, a low false
detection rate, and consideration of the runtime efficiency. Based on those principles, a framework
dedicated to developing, testing and evaluating models for the detection of network anomalies is
proposed. It is applied to two datasets featuring modern traffic, namely the UNSW-NB15 and the
CIC-IDS-2017 datasets, in order to compare and evaluate commonly-used network intrusion detec-
tion methods. The implemented approaches include, among others, a highly configurable network
flow generator, a payload analyser, a one-hot encoder, a one-class support vector machine, and
an autoencoder. The results show a significant difference between the two chosen datasets: While
for the UNSW-NB15 dataset several reasonably well performing model combinations for both the
autoencoder and the one-class SVM can be found, most of them yield unsatisfying results when
the CIC-IDS-2017 dataset is used.

German

Obwohl viele der derzeit genutzten Systeme zur Erkennung von Netzwerkangriffen (engl. NIDS)
signaturbasierte Ansätze verwenden, gibt es ein wachsendes Forschungsinteresse an der Unter-
suchung von anomaliebasierten Erkennungsmethoden, welche zur Identifikation von Zero-Day-
Angriffen geeigneter erscheinen. Gleichwohl werden hierbei Bedingungen für deren praktischen
Einsatz oft vernachlässigt, ebenso wie objektive und reproduzierbare Evaluationsmethoden. Die
folgende Arbeit definiert Aspekte, die für eine praxisorientierte Evaluation unabdingbar sind. Dazu
zählen ein Schwerpunkt auf modernen Angriffstypen, die Beschränkung auf One-Class Classifi-
cation Methoden, der Ausschluss von bereits bekannten Angriffen aus dem Trainingsdatensatz,
niedrige Falscherkennungsraten sowie die Berücksichtigung der Laufzeiteffizienz. Basierend auf
diesen Prinzipien wird ein Rahmenkonzept vorgeschlagen, das für das Entwickeln, Testen und
Evaluieren von Modellen zur Erkennung von Netzwerkanomalien bestimmt ist. Dieses wird auf zwei
Datensätze mit modernem Netzwerkverkehr, namentlich auf den UNSW-NB15 und den CIC-IDS-
2017 Datensatz, angewendet, um häufig genutzte NIDS-Methoden zu vergleichen und zu evaluieren.
Die für diese Arbeit implementierten Ansätze beinhalten, neben anderen, einen weit konfigurier-
baren Netzwerkflussgenerator, einen Nutzdatenanalysierer, einen One-Hot-Encoder, eine One-Class
Support Vector Machine sowie einen Autoencoder. Die Resultate zeigen einen großen Unterschied
zwischen den beiden ausgewählten Datensätzen: Während für den UNSW-NB15 Datensatz ver-
schiedene angemessen gut funktionierende Modellkombinationen, sowohl für den Autoencoder als
auch für die One-Class SVM, gefunden werden können, bringen diese für den CIC-IDS-2017 Daten-
satz meist unbefriedigende Ergebnisse.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Goals . 2
1.3. Thesis Structure . 3

2. Background 4
2.1. Network Traffic . 4

2.1.1. Relevant Network Protocols . 4
2.1.2. Network Flows . 6

2.2. Network Vulnerabilities and Attacks . 6
2.2.1. Definitions . 6
2.2.2. Types of Network Attacks . 7
2.2.3. Zero-Day Attacks . 8

2.3. Anomaly-Based Network Intrusion Detection . 8
2.3.1. Types of Anomalies . 8
2.3.2. Components of Anomaly-Based NIDS . 9
2.3.3. Comparing Learning Methods for Network Traffic Anomaly Detection . . . 10
2.3.4. One-Class Support Vector Machines . 14
2.3.5. Autoencoders . 15

2.4. Evaluation of Anomaly-Based NIDS . 17
2.4.1. Binary Classification . 17
2.4.2. Relevant Measurements . 17

2.5. Datasets for Network Intrusion Detection . 19
2.5.1. Dataset Requirements . 19
2.5.2. CIC-IDS-2017 and CSE-CIC-IDS-2018 . 20
2.5.3. UNSW-NB15 . 21
2.5.4. CIC DoS . 21
2.5.5. Outdated Datasets . 21

3. Related Work 22
3.1. Usage of One-Class Support Vector Machines . 22
3.2. Usage of Autoencoders . 23
3.3. Payload Analysis . 23
3.4. Comparative Experiments . 25

4. Concept 26
4.1. Overview . 26
4.2. Preprocessing . 26
4.3. Model Components and Training . 28
4.4. Classification of Unknown Network Traffic . 31
4.5. Evaluation . 32
4.6. Hyperparameter Search . 33

5. Implementation 35
5.1. General Overview and Utilized Technologies . 35
5.2. Dataset Preprocessing . 36

5.2.1. Assigning Packets to Flows . 36
5.2.2. Occurring Problems . 39
5.2.3. Preprocessing Result and Validation . 40

5.3. Feature Extraction . 42
5.3.1. Network Flow Generation . 42
5.3.2. Flow-Based Payload Analysis . 44

5.4. Feature Transformation . 46
5.4.1. Min-Max-Scaling . 46
5.4.2. Standardization . 47
5.4.3. One-Hot Encoding . 47
5.4.4. Principal Component Analysis . 48

5.5. Decision Engines . 48
5.5.1. One-Class SVM . 48
5.5.2. Autoencoder . 49

6. Experiments 50
6.1. Overview and Experiment Setup . 50
6.2. Results . 51

6.2.1. One-Class SVM . 51
6.2.2. Autoencoder . 52
6.2.3. Flow Feature Extractor . 53
6.2.4. Payload Analysis . 54
6.2.5. Unclean Training Data . 54
6.2.6. Bigger Subsets for the UNSW-NB15 Dataset 54

7. Conclusion 55
7.1. Summary . 55
7.2. Future Work . 56

A. Bibliography i

B. List of Figures vi

C. List of Tables vii

D. Tables ix

Chapter 1 | Introduction

1.1. Motivation

As nowadays more and more of daily life and communication is connected by networks like the
Internet, there is an increasing demand for protection and security. Not only private persons,
but also all kinds of companies and organizations are steadily digitalizing parts of their daily
routines and processes and are therefore relying on web services and data that is sent via networks.
Thereby, the risk of getting exposed to security vulnerabilities is growing, and at the same time
the potential loss of personal data, business secrets, or money. The German business association
Bitkom concluded in a report that 7 out of 10 interviewed companies faced damage through digital
attacks in 2017 or 2018 [3, p. 14]. Moreover, the number of attacks was reported to increase in
74% of the companies compared with the years before [3, p. 16] and in total, damage of roughly
205 billion euro was determined to be caused. This sum arose from different domains, such as
blackmailing, losses in sales due to plagiarism, and costs for lawsuits, investigations, or for the
acquisition of compensating measures [3, p. 23]. An even more drastic consequence had an attack
on a German hospital, which reportedly caused delays in the treatment of patients and presumably
resulted in the death of a woman [39].

To cope with such dangers, network intrusion detection systems (NIDS) are being developed. Their
purpose is to identify malicious behaviour in networks and to raise alerts when suspicious events
occur. In contrast to this exist Host Intrusion Detection Systems, which monitor the internals of
a single machine.

There are two main types of NIDS, based on their underlying detection mechanism: signature-
based and anomaly-based NIDS. The first can only recognize already known behaviour, whereas
the latter aim to distinguish all network traffic that differs from what is considered normal. Nowa-
days the most used NIDS are signature-based, with the tool snort being a prominent open-source
representative. It relies on rule sets that contain the necessary information for detecting a great
number of present-day network attacks. While having success with protecting networks in real-
world scenarios, a downside of this approach is the inability to detect yet unknown attacks (zero-day
attacks), since there is no rule available for them yet.

For recognizing malicious activities without having prior knowledge of their characteristics, anomaly-
based NIDS are better suited. They create a profile of normal behaviour in the network and then
thereby can detect anomalies (or outliers) that indicate an ongoing attack. In theory, this makes
zero-day attack detection possible. Albeit, a typical problem is a high false alarm rate and a pre-
diction accuracy that underlies those of signature-based systems when encountering already known
attacks. Despite such problems, the practical significance of detecting new attacks is constantly
increasing, as a recent report of the German Federal Office for Information Security1 shows: 117.4
million new malware variations could be identified within a one-year-long period between 2019
and 2020 [11]. One of the more notorious malicious programs in recent times was Emotet, which
combines several intrusion techniques to infect and spy out victim systems, so that the attackers

1in German: Bundesamt für Sicherheit in der Informationstechnik (BSI)

1

1.2. GOALS

are able to execute ransomware on systems that appear profitable to them. The victim’s system
or data thereby gets decrypted and a ransom demand is sent, which is reported to be of the order
of tens of millions in some cases. Until January 2021, when Emotet servers were reported to be
put out of operation [20], it infected various systems of organizations worldwide, among them the
Lithuanian healthcare system [22] and a German university [49].

While there is a lot of recent research on this type of NIDS, most of it does not go into detail
about the suitability for being used in a real-world setup. The following necessities for evaluating
anomaly-based NIDS under practical aspects can be identified:

Independence from a specific network setup, or dataset: Most models in research are only
tested on one dataset, which makes comparing results for inferring their practical significance
difficult.

No reliance on the availability of an already-labelled dataset: The existence of network
data together with the complete information about present attacks in it is unrealistic in a practical
setup. This restriction also influences the range of choices for the learning methods that are used
for the classification of network traffic. In some research papers, the models are trained in a
supervised manner and rather learn the signature of the attacks. Such experiments, however,
give little information about its zero-day attack detection abilities.

Detection of modern types of network attacks: The NIDS must be able to detect contem-
porary network attacks. Some works use outdated datasets which do not contain attacks that
can be observed nowadays.

Analysis of the network traffic in real-time, with high runtime efficiency: The NIDS
is required to detect network attacks as fast as possible. Therefore it must read the traffic of a
network with a low delay and be able to scale adequately if the traffic volume grows.

High detection accuracy and a low false detection rate: Being a typical flaw of anomaly-
based NIDS, special attention should be given to the false detection rate. A high false detection
rate would put the network administrator under too much work, which renders the system unus-
able in practical settings.

Interpretability of the system’s reasoning: The administrator should be able to understand
why the system classifies network traffic as benign or as an attack. [37, p. 23]

As described later in section 3.4, it is hard to find works that take most of the mentioned require-
ments for a practical anomaly-based NIDS into consideration, when comparing or evaluating them.
This founds the motivation of this thesis, whose goals are described in the following.

1.2. Goals

Motivated by the lack of adequate solutions, the goal of this bachelor’s thesis is to provide a
framework dedicated to objectively evaluating and comparing approaches to anomaly-based NIDS
under practical aspects. It should take into account some of the mentioned requirements, in
particular: (i) dataset independence, (ii) no reliance on the existence of class labels for the training
dataset, (iii) a focus on modern attack types, (iv) the evaluated systems’ runtime efficiency, and
(v) their false detection rates (alongside other performance measurements). An important step in
preparation for this is creating comparability between already-existing datasets that can be used
for evaluating NIDS. Furthermore, the architecture of such systems must be characterized in a
generalized way. With the usage of the developed framework, some commonly used methods for
anomaly-based NIDS are then implemented and analysed.

2

1.3. THESIS STRUCTURE

Despite interpretability being an important issue for real-world usage, it should not be included
in the scope of the thesis, and rather serve as a starting point for further work on this topic.
Furthermore, domain-specific knowledge about network protocols is not incorporated to a great
extent: Except for IP and TCP, most protocols that are highly relevant in practice are not handled
extraordinarily in this thesis, such as HTTP, FTP, or SMTP. This aims to provide a general-
applicable way for comparing NIDS methods, without relying too much on specific protocol details.

1.3. Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 starts with theoretical background
information about network traffic and attacks. It then discusses traits of anomaly-based NIDS
and directs particular emphasis on different learning methods for them, before going into detail
about one-class support vector machines and autoencoders, two frequently used methods for the
detection of network anomalies. Afterwards, the chapter lists measurements for the evaluation of
such systems and selection criteria for datasets suited for it. Based on those, some of the publicly
available datasets are discussed, resulting in the choice of two (CIC-IDS-2017 and UNSW-NB15),
which are used in the following chapters.

Chapter 3 then summarizes the current state of research on anomaly-based NIDS employing au-
toencoders and one-class support vector machines, as well as on the utilization of traffic payload
analysis for anomaly detection. It ends with a short overview of other works that have a similar goal
as the present thesis (i.e. comparative experiments with different approaches to anomaly-based
NIDS), albeit mostly with some kind of shortcoming.

Chapter 4 proposes an evaluation framework that fulfils the aforementioned goals. After defining
requirements for creating comparability between different datasets, it shows a generalized archi-
tecture for anomaly-based NIDS and discusses each of the phases (training, classification and
evaluation) such systems need to run through in order to compare them.

The proposed concept is then made concrete in chapter 5, where specific implementations for the
components of anomaly-based NIDS (called feature extractors, feature transformers, and decision
engines) are presented. It also goes into detail about the preprocessing of the chosen datasets and
problems that occur there.

Afterwards, the described approaches are compared against each other in chapter 6. It contains a
description of the experiments that were run as part of this thesis and a discussion of their results.
Finally, chapter 7 ends with a summary of the thesis and recommendations for further work.

3

Chapter 2 | Background

2.1. Network Traffic

2.1.1. Relevant Network Protocols

Communication over networks is based on a set of commonly established protocols. With the
Internet Protocol Stack, they can be grouped into five layers, which are shown in figure 2.1:
the physical layer2, the link layer, the network layer, the transport layer, and the application
layer [35, p. 50]. Due to their practical relevance, the Internet Protocol (IP), the Transmission
Control Protocol (TCP), and the User Datagram Protocol (UDP) are explained more deeply in the
following.3

Figure 2.1.: The Internet Protocol Stack with examples for each layer.

The Internet Protocol (IP) is part of the network layer and handles the exchange of packets
between two hosts [35, p. 308]. Hosts are identified by IP addresses. With them, it is possible
to transfer data globally to other connected hosts. In practice, however, these addresses are not
uniquely assigned: The actual host that is identified by a particular address depends on the subnet.
The task of directing network data to the targeted host inside a subnet or to another subnet is
done by routers. The network of hosts connected via the Internet Protocol is called the Internet.

There are two versions of IP in use, the older IPv4 and the more recent IPv6 which is meant to
replace the former, providing a bigger set of possible addresses. The segments of an IPv4 packet

2Some authors omit the physical layer completely, which makes the protocol stack have only four layers. Here, the
model as described in [35] is referred to. In fact, most of the technologies used in the link layer provide protocols
for the physical layer, which is why a clear differentiation is not possible.

3As application layer protocols, such as HTTP or DNS, are not focused on later in this thesis, they are not described
in this section. The same applies to protocols of the physical and the link layer, which are here only needed as
a means of transporting IP packets.

4

2.1. NETWORK TRAFFIC

Name Length Description

Version 4 bits the version of the IP packet

Header Length 4 bits the number of 32-bit segments in the packet’s header

Type of Service (TOS) 8 bits information about the type of the packet’s data; used to
distinguish real-time and non-real-time traffic

Datagram Length 16 bits total length of the IP datagram

Identifiers 16 bits used for identifying connected fragments of one IP packet

Flags 3 bits control options that are used for fragmentation

Fragmentation Offset 13 bits used for reassembling multiple fragments of an IP packet

Time-to-live 8 bits a counter that gets decremented by one each time the packet
passes a router in the network; to prevent endless circula-
tion inside a network, the packet is dropped when this value
reaches zero

Protocol 8 bits uniquely identifies the transport-layer protocol of the IP
packet’s payload (e.g.: 6 for TCP and 17 for UDP)

Header Checksum 16 bit computed by using 1s complement arithmetic; helps to de-
tect bit errors in the header

Source IP address 32 bit IP address of the sender

Destination IP address 32 bit IP address of the recipient

Options variable placeholder for rarely-used options

Data / Payload variable the transport-layer data that is to be delivered by the IP
packet

Table 2.1.: IP packet segments in IPv4

are shown in table 2.1 (cf. [35, p. 333f.]). All of the segments displayed there, except the payload,
belong to the IP header.

The User Datagram Protocol (UDP) uses IP packets for transporting data in a connection-less
and unreliable way (i.e. there is no guarantee that a message is delivered). Nevertheless, it provides
a simple integrity verification for the sent data and the specification of source and destination
ports, which allows the association of a message to a process at the respective host. Altogether,
UDP adds a very small header overhead of only 8 bytes to the packet. It is therefore often used
for multimedia streaming, internet telephony, and for routing protocols [35, p. 198ff.].

Another frequently-used transport layer protocol is the Transmission Control Protocol (TCP).
In contrast to UDP, it is considered reliable, which means that it ensures that messages are correctly
delivered by using error detection, retransmissions and header fields for sequence and acknowledge-
ment numbers. Furthermore, it is connection-oriented, i.e. before the actual message is sent, both
communicating hosts are performing a three-way handshake in order to open a connection. This is
done by alternately sending TCP packets between the two communicating hosts which have certain
header bytes (“flags”) set. More precisely, the initiating host sends a packet with the SYN flag set,
to which the targeted host answers with a packet with the ACK flag, indicating that it has received
the packet. The first host then sends a packet with both the SYN and ACK flag (“SYN-ACK”), which
indicates that the connection is established on both sides. Later it can be ended with the FIN flag,
or be reset using the RST flag.

TCP has a bigger header overhead than UDP and is used for many application-layer protocols,
such as SMTP, HTTP, and FTP.

5

2.2. NETWORK VULNERABILITIES AND ATTACKS

2.1.2. Network Flows

It is often desirable to have insight into the characteristics of a network, e.g. for ensuring its well-
functioning, for describing its utilization or for detecting malicious behaviour. To achieve this,
the network traffic can be monitored. There are two main strategies for doing so: (1) capturing
the raw packets or (2) the identification of network flows [54, p. 2]. When capturing the full
packets, all information of a traffic record is saved, in particular the packet’s payload. Tools like
tcpdump4 or Wireshark5 are able to do this. They store the traffic information in the so-called
PCAP or PCAP-NG formats.

For network flows on the contrary, multiple packets are grouped. A flow aggregates IP packets
that lie close together time-wise and have the same set of attributes, like source and destination
port, IP addresses, and protocol type. For performance reasons, network flows might disregard a
packet’s payload, and instead identify other, statistical, characteristics of the whole flow (like the
total numbers of packets or the overall flow duration, i.e. the time between the first and last packet
of a flow). Flows can be either uni-directional or bi-directional, according to whether the packets
are directed only from host A to B, or also from B to A [48, p. 3].

One of the first mechanisms of this type was NetFlow, which was introduced to Cisco routers in
1996. Here, the ending of a flow is based on: (i) the existence of TCP flags which indicate the end
of a connection (FIN and RST), (ii) a flow timeout of 15 seconds, (iii) a maximum flow time of 30
minutes, and (iv) the size of a router’s flow cache [19, p. 2]. For capturing the traffic information,
it is monitored in multiple points of the network. The observed information is then transmitted
via UDP to a central machine that handles the flow creation and analysis. Open-source tools such
as argus6, zeek7 and CICFlowMeter8 provide similar functionalities.

It is possible to generate network flows from raw packet data by grouping the stored packets based
on their attributes. The reverse direction, i.e. determining which packets belong to a flow, is more
complicated and requires the full packet information to be existent in either the network flows or
as an additional data source (e.g. a PCAP file).

2.2. Network Vulnerabilities and Attacks

2.2.1. Definitions

Network vulnerabilities are “inherent weaknesses in the design, implementation and manage-
ment of a networked system” [6, p. 46]. A network attack is a “sequence of operations that puts
the security of a network or computer system at risk” [6, p. 52], by exploiting a vulnerability. It
should be noted that it is not always possible to differentiate between accidental malfunction due to
software bugs or human misconduct on the one side, and intentional network attacks on the other
side, as they might appear similar on a technical level (e.g. when network packets are observed).
Network attacks are usually conducted with the goal of compromising a system’s availability, con-
fidentiality, or integrity. They can roughly be divided into passive and active attacks, based on
the behaviour of the attacking subject [18, p. 18]. An attempt at a more detailed classification is
shown in the next section.

4https://www.tcpdump.org/
5https://www.wireshark.org/
6https://openargus.org/argus-ids
7formerly named bro-ids, https://zeek.org/
8https://github.com/ahlashkari/CICFlowMeter, [13]

6

https://www.tcpdump.org/
https://www.wireshark.org/
https://openargus.org/argus-ids
https://zeek.org/
https://github.com/ahlashkari/CICFlowMeter

2.2. NETWORK VULNERABILITIES AND ATTACKS

2.2.2. Types of Network Attacks

By classifying network attacks and defining a taxonomy, it is aimed to find a consistent way for
specifying relationships between different attacks and for deciding which attacks share similari-
ties or are different from each other (cf. [6, p. 52]). However, there are various network attack
taxonomies proposed in literature [27, p. 3], and most attacks cannot clearly be put only into
one category, which complicates the idea of a hierarchical structuring. The following attack cate-
gories are selected from the taxonomies described by Hansman [26], Bhuyan et al. [7, p. 44] and
Bhattacharyya et al. [6, p. 52].

Denial-of-Service (DoS) Attacks: A DoS attack tries to make a network service unavailable
for its legitimate users. This can be done, for instance, by deliberately causing the victim’s
system to crash, e.g. by exploiting a buffer overflow vulnerability (such as done by the Ping of
Death attack) or by overwhelming its resources (TCP SYN flood). In the case that the attack is
performed from multiple unique IP addresses, it is called a Distributed DoS Attack (DDoS).
An ongoing DDoS attack therefore cannot be stopped by simply blocking a single IP address.

Password Attacks: Here, an attacker aims to obtain credentials, by trying several user-password
combinations. Commonly used approaches are dictionary attacks or brute-force guessing. For
instance, the attacks can target website accounts or SSH logins. A password attack often is used
for gaining access to a remote system, and then can also be called a Remote to Local Attack
(R2L) [6, p. 54].

Network-Based Attacks: Attacks in this group have in common that they are carried out
foremostly on the network infrastructure, especially on its underlying protocols [26, p. 19].
Examples are spoofing and session hijacking. Attacks against services on the application
layer of the TCP/IP stack are called web application attacks. The most famous of those are
SQL injections: By injecting SQL statements in data-driven services, code with malicious intent
will be involuntarily executed [26, p. 21f.].

Infection Attacks: Such attacks aim to install malicious programs on the target’s system, such
as worms, viruses, or trojans. The first-mentioned both are self-replicating programs, which
can cause harm by themselves or carry out other attacks. By replicating themselves, they carry
out additional infection attacks. The main difference between the two is that worms can function
independently, whereas viruses need a host program to run. Trojans are trustworthy-looking
programs which in reality serve a malicious use case, like the collection of personal information.

User to Root (U2R): In this scenario, the attacker already has remote access to a system, but
only limited. By exploiting an additional vulnerability, they are able to gain more permissions
on the system than they are supposed to have. [6, p. 54]

Information Gathering Attacks: These attacks are supposed to collect information about a
system or its data, without causing any direct harm. An example is scanning a host for open ports
(probing). Another way to obtain information are passive attacks, by sniffing or eavesdrop-
ping: Here, the network layer is attacked and afterwards, the data sent on it can be intercepted
passively.

Attacks from one or more categories are often combined into a blended attack. As an example,
Code Red is a worm that accomplishes a DoS attack by carrying out a buffer overflow attack [26,
p. 25].

7

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

2.2.3. Zero-Day Attacks

Zero-day attacks are network attacks exploiting a vulnerability that has not been disclosed publicly
yet [9, p. 1]. A study by Bilge and Dumitras concluded that zero-day attacks are far more common
than usually believed: More than half of the vulnerabilities that were identified in their work were
yet unknown [9, p. 3]. Public disclosure of a network vulnerability is either done by the vendor
of the affected system or by individuals. Usually, the vulnerability is then incorporated into the
database of the Common Vulnerabilities and Exposures (CVE) consortium9. Once a signature for
a signature-based NIDS is released, the attack can then also be detected by such systems, often
in a much more targeted way than by anomaly-based ones. Before such a signature is released,
however, a signature-based NIDS will likely fail to recognize the attack; this makes an anomaly-
based approach the more promising detection method for the time between the attack’s first launch
and the release of a signature matching it. Figure 2.2 shows typical events that occur after a new
vulnerability is introduced.

Figure 2.2.: Typical timeline of a vulnerability, adapted from [9, p. 3].
A signature-based detection mechanism is effective for t ≥ ts. For te ≤ t < ts an anomaly-based

approach can be expected to have more success in detecting a zero-day attack in general.

2.3. Anomaly-Based Network Intrusion

Detection

2.3.1. Types of Anomalies

Network anomalies are instances of network traffic that do not conform with an acceptable notion
of what is considered normal behaviour (cf. [6, p. 45]). It is important to point out that not all
anomalies are caused by network attacks, but might arise due to different reasons, like a network
overload or misconfiguration. The objective of an effective anomaly detection mechanism in NIDS
must therefore be to only find malicious anomalies. However, as the intent of network traffic is
not always accurately determinable, this goal might not be completely achievable in practice. In
general, anomalies are classified into three principal groups [1, p. 22]:

Point Anomalies: This category contains anomalous instances in respect of the rest of the data.
For example, a single login attempt to an online banking account can be classified as a point
anomaly if the requested user name contains suspicious keywords (like SHOW or return), but
normally would consist of the customer’s ID number.

Contextual Anomalies: Some instances are only anomalous within their context (e.g. within a

9https://cve.mitre.org

8

https://cve.mitre.org

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

certain time range). An example is a high traffic load in a company network at 2 a.m., which is
an anomaly for this particular time, but would be normal during working hours or in the evening.

Collective Anomalies: The third category are groups of instances that collectively behave
anomalous, with respect to the rest of the data. One example of this is a botnet consisting
of different hosts with distinguishable IP addresses, performing a DDoS attack. Another reason
for a collective anomaly could be legitimate web users with uncommon browsers that result in an
anomalous HTTP user agent. This is also an example of a non-malicious, i.e. benign, anomaly.

2.3.2. Components of Anomaly-Based NIDS

As mentioned earlier, an anomaly-based NIDS aims to identify anomalies within a network in order
to detect attacks. Moustafa et al. identify four components of such systems (cf. [43, p. 37f.]):

Data Source: The NIDS must be able to read traffic from one or more network devices or have
similar access to their data (like reading captured PCAP files). In addition, for the system’s
evaluation it must be possible to read from a dataset for which the ground truth (i.e. the
information whether a traffic record is an attack or not) is known (see section 2.5).

Data Preprocessing: The aim of this step is to provide a numeric representation of the input
data that can be used by the subsequent decision engine. Feature creation, feature reduction,
feature conversion, and feature normalisation are the main parts of this stage:

• Feature creation describes the generation of numeric data instances on the basis of the
raw network traffic. This can imply the creation of contextual aggregations, in particular
network flows (see section 2.1). The created data aims to describe certain traits (features)
of the observed traffic.

• Feature reduction is the task of lowering the dimensionality of the feature space (i.e.
the number of features), for example by compression or by removing irrelevant features, so
that a better classification performance can be achieved. This can be achieved manually
or by running a series of tests with different subsets for the features and analysing their
impact.

• Feature conversion is the mapping of features from one data type to another type.
Features can often be found in either numerical or categorical (symbolic) form, whereas
many decision engines work with numerical data only. Therefore, categorical features (e.g.
the protocol type of a network packet) must be converted to a numerical representation.

• Feature normalisation means to apply a function on the data instances for scaling
their features into a confidence interval (e.g. [0, 1] or [−1, 1]). It is used for removing a
potential bias from the captured network data. Moustafa et al. name the z-score and linear
transformation as common functions that are utilized in this step.

Decision Engine: The term decision engine refers to the module that is responsible for classi-
fying traffic into benign behaviour and attacks. There are two phases that the decision engine
runs through: In the training phase, a normal profile is established, which is then used in the
classification phase10 in order to recognize attacks within new network traffic. There are sev-
eral approaches to designing an anomaly-based decision engine. They can be categorised into
classification-based, clustering-based, deep learning-based, knowledge-based, combination-based,
and statistical-based approaches.

Response Mechanism: Based on the use case of the NIDS, an attack detection should cause
an alert that can be viewed by a security administrator or initiate automatic defence measures.

10also called testing phase

9

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

Moreover, the NIDS should provide an interface that allows reading the classifications it made.

2.3.3. Comparing Learning Methods for Network Traffic Anomaly

Detection

As described in the last section, for automatically distinguishing attacks from benign traffic, a
decision engine must be trained. Before delving into different approaches to it in the later sections,
the following discusses which training paradigm should be followed. In literature, learning methods
are often classified in supervised, unsupervised, and semi-supervised approaches [6, p. 123f.].
For anomaly detection however, usually one-class classification (OCC) methods are proposed,
which cannot exactly be put in one of those categories. The most notable difference between
the aforementioned is, that algorithms of the first three categories are usually used for two-class
classification, which means that they use both attacks and benign traffic in the training phase,
whereas OCC approaches only have access to benign (“normal”) instances. To show that the latter
is in fact the only plausible paradigm for the detection of arbitrary novel attacks, the differences
between the four mentioned concepts and their applicability in practical settings are discussed in
the following.

Figure 2.3.: Schematic representation of a training dataset for a supervised learning algorithm
It is known to the classifier whether a flow belongs to an attack (diamond symbol) or represents normal
traffic (circle). The black line outlines a possible classifier that divides the dataset into two classes. The
features depicted here base on a grouping of the observed packets into flows (cf. 2.1.2) and represent the

transmitted bytes and the duration of each flow. The most benign data instances (B1-B10) can be
roughly described by a linear function; however, there are three benign outliers within the dataset: BF

origins from a transfer of a big file (which transmits a big amount of data in a short time), BA1 and BA2,
on the other hand, could result from technical anomalies, which causes the loss of packets and a delay in
time. The attack flows A1-A4 could be distributed flooding attacks, causing a flow to be of long duration

but not transmitting much data.

Supervised learning refers to machine learning algorithms that have access to the ground truth,
i.e. the correct class labels, during their training phase. For NIDS, such approaches would therefore
require the existence of a labelling, which determines whether a portion of network traffic belongs
to an attack or is of benign nature. Creating accurate class labels is a difficult task [6, p. 193] and
requires a big amount of human resources, which makes such methods infeasible from a practical
point of view. Fig. 2.3 shows a supervised classifier for a two-dimensional (and for illustration
purposes strongly simplified) feature space.

Unsupervised learning on the contrary does not require already-labelled data for the training
phase. Instead, its goal is to find existent classes or patterns in it independently. Examples of
unsupervised algorithms are k-means or hierarchical clustering and the local outlier factor. In

10

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

Figure 2.4.: Training dataset for an unsupervised learning algorithm
The ground truth is not known to the classifier (depicted as crosses), therefore it may classify benign
outliers as attacks. The pictured boundary is only one of the possible solutions, whose determination

here is not as clear as in a supervised setup: For example, an unsupervised algorithm could also label the
right instances as a benign group, leaving only one outlier in the upper left corner.

general, these methods are designed for data that contains two or more classes, and therefore, in
the scope of this thesis, the term unsupervised refers to such approaches. For the case of detecting
patterns in a training dataset with only one class, one-class classification is used, which is explained
below.

A problem with unsupervised methods is that they have to distinguish attacks and normal network
traffic within the data autonomously, in order to detect incoming attacks. As shown in figure
2.4, this process can be error-prone if the only heuristic for recognizing attacks is their level of
abnormality, in particular, if the classifier is trained with traffic data that contains attacks.

Semi-supervised learning can be seen as a mixture of both supervised and unsupervised learning.
It incorporates a few labelled and much more unlabelled instances in the training process [66, p.
3], as shown in figure 2.5. This reflects practical circumstances where the labelling of a few network
traffic records can be done manually. It should be noted that the term semi-supervised is sometimes
also used for one-class classification, which is explained below [6, p. 123].

As a consequence of having access to attack instances, the paradigms described so far more easily
learn the characteristics of attacks included in the dataset (especially when those are labelled
as such). While this could be a desired effect for signature-based NIDS, it negatively affects
the system’s ability of detecting unknown attacks, as stated by Zhao et al. [65, p. 2]. As the
characteristics of zero-day attacks cannot be known in advance, neither can be predestined their
distribution in the feature space. Attacks that are included in the training set must therefore
not necessarily be similar to novel attacks.11 In fact, the opposite could be true, as the following
example illustrates: If a classifier learns to only identify UDP flood attacks (a subtype of DoS
attacks), it can be expected to not recognize a SQL injection that exploits a vulnerable login mask

11However, there are approaches that apply transfer learning methods for detecting zero-day attacks based on their
resemblance to known attacks [65]. It can be argued though, that such methods introduce a bias, which decreases
the system’s performance for detecting attacks that are not similar to the observed ones.

11

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

Figure 2.5.: Training dataset for a semi-supervised learning algorithm
The ground truth is only known partially: known labels are represented by circles (benign) or diamonds
(attacks), unknown instances by crosses. The black line shows a possible classifier operating on such a

dataset. The benign flows BA1 and BA2 are miss-classified due to their labels not being known and being
close to the attacks A3 and A2.

on a website. UDP flood attacks can be identified by a large number of sent UDP packets, whereas
the malicious part of the SQL injection could be contained in the payload of one single packet. To
the classifier, it therefore appears more similar to other, benign traffic (like a normal login attempt
to the website), than to the already known UDP flood attacks.

To avoid such problems, one-class classification (OCC) can be used. It is also referred to as
outlier detection, novelty detection, concept learning or data description [56, p. 13f.]. In contrast
to the former methods, OCC algorithms are designed for datasets with exactly one class: In the
domain of network intrusion detection, the training set consists of benign traffic only (cf. 2.6).
By imposing the condition on the training dataset to only consist of benign traffic, the classifier
will, in theory, not involuntarily learn the characteristics of any attacks. One-class classification
algorithms don’t focus on recognizing patterns of already known attacks (as those are not present
in the training phase), but rather on characterizing the behaviour of benign traffic. Attacks are
later reported by finding anomalous behaviour in reference to the normal profile.

In practice, this should facilitate the dataset’s creation compared to supervised methods, because
benign traffic is expected to be present more frequently. Whether or not it can be assured that
no attacks are included in the training set depends on the network and available resources or
manpower. However, keeping in mind certain practical circumstances that result in inaccurate
data, it is possible that attack traffic still gets included in the training set. In this case, the OCC
algorithm should still assume that it deals with pure benign traffic. An important question is then
how well the classifier performs both on unseen attacks and on such that are similar to the ones
included in the training set. On the other side, the algorithm must also handle atypical, but benign
instances.

12

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

Figure 2.6.: Training dataset and possible boundary for a one-class classification learning algorithm
It only consists of normal traffic, and this information is known to the classifier. All instances that are on

the right side of the boundary will be determined as anomalies in the classification phase.

Training Set

Training Method Benign Traffic Attacks Labelled

Unsupervised Yes Yes No

Supervised Yes Yes Yes

Semi-Supervised Yes Maybe Partly
One-Class

Classification
Yes No

Only benign traffic
(implicitly labelled)

Table 2.2.: Relationships between learning methods and requirements for their training dataset

Furthermore, an issue OCC methods must handle is the proper generalization of the training data.
This means that it must be decided which features are best-suited for separating benign from
normal traffic and how close the boundary should fit the observed instances. Another problem
that OCC methods face is the curse of dimensionality [56, p. 15]. It describes the phenomenon
that a classifier’s accuracy might decrease in a high-dimensional feature space. This is due to the
feature space volume growing exponentially in the number of features, which makes the training
data more sparse and the classifier more prone to overfitting [10, p. 33ff.].

Popular OCC approaches to anomaly-based network intrusion detection are isolation forests, one-
class support vector machines, and autoencoders, of which the latter two are described in the
following sections.

At the end of this section, the presented training paradigms are compared regarding their conditions
for the selection of a training dataset. These relationships are illustrated in table 2.2 and should
be considered when choosing a dataset for the training of an attack detection model. Conversely,
the structure of already-existing data influences the criteria for a suitable classification algorithm.

13

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

2.3.4. One-Class Support Vector Machines

The application of support vector machines to one-class classification problems was proposed by
Tax et al. [56] under the name Support Vector Data Description (SVDD) and by Schölkopf et al.
using a ν-SVM [50]. SVDD attempts to find a hypersphere as a boundary around a set of training
points. Points lying on this boundary are called support vectors. The volume of the hypersphere is
minimized with the constraint that all or most of the points are inside the boundary. A ν-SVM on
the other hand tries to find a hyperplane that separates the points from the origin with maximum
margin [63, p. 75]. The tradeoff between the fraction of training errors and data points that lie
within the boundary can be influenced by a parameter, which is called ν (“nu”) for a ν-SVM [45,
p. 2].

As in general it cannot be expected that the training data is well-suited to fit into a hypersphere
(resp. is separable by a hyperplane), both of the mentioned methods establish a mapping φ(xi) of
a data point xi into a higher-dimensional feature space, where a better-fitting hypersphere (resp. a
hyperplane with a greater margin) can be found. However, the actual calculation of this mapping
is avoided; instead, the so-called kernel-trick is made use of. It describes the fact that only inner
products of the φ(xi)-mappings must be calculated, which can be replaced by a kernel function
that avoids cost-intensive calculations in the higher-dimensional feature space [56, p. 29].

K(xi, xj) = φ(xi) · φ(xj) (2.1)

The following kernel methods are available in the implementation of the python library scikit-learn

[51], which is also utilized in this thesis (cf. 5.5.1):

Gaussian kernel: The Gaussian kernel function, also called (Gaussian) radial basis function
(rbf), is defined by

K(xi, xj) = e−γ||xi−xj ||2 (2.2)

(whereby the parameter γ is sometimes expressed as the reciprocal of another parameter, e.g.
by 1

c [50, p. 4] or 1
s2 [56, p. 44]). ||xi − xj ||2 denotes the squared Euclidean distance between

two instances. This kernel has the advantage that its mappings are always separable from the
origin [50, p. 13] which is why it is widely used in practice. Furthermore, SVDD and ν-SVMs
are equivalent when the Gaussian kernel is used [63, p. 75].

Polynomial kernel: This kernel implicitly applies a polynomial function of degree n to the data
points and calculates their inner product as follows [56, p. 30]:

K(xi, xj) = (xi · xj + 1)n (2.3)

A more generalized formula is implemented by scikit-learn:

K(xi, xj) = (γ(xi · xj) + r)n (2.4)

where γ, r and n are free parameters.

Sigmoid kernel: The sigmoid kernel is defined by:

K(xi, xj) = tanh(γ(xi · xj) + r) (2.5)

with the free parameters γ and r.

Linear kernel: The linear kernel is the most simplest kernel and defined as:

K(xi, xj) = xi · xj (2.6)

A characteristic of the one-class SVM is that it does not take into account the density estimate of
the training data [56, p. 19]. Instead, it suffices to have an acceptable number of characteristic
points as part of the data which define the boundary.

14

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

2.3.5. Autoencoders

Autoencoders are feedforward neural networks12 with at least one hidden layer that are trained
to reconstruct the input layer. While the network is trained, a self-taught encoding emerges that
the network uses for transforming the input to the central hidden layer and to decode it reversely.
Accordingly, the layers of an autoencoder can be divided into an encoder and decoder. Training
the autoencoder is done by adjusting its weights w in order to minimize a loss function which
expresses the reconstruction error. An often-used metric for that is the mean squared error (MSE)
between the m training vectors xi and their reconstructed outputs f(xi, w) [25, p. 132]:

MSE =
1

m

m∑
i=1

||xi − f(xi, w)||2 (2.7)

Other metrics can take into account properties like the sparsity of the representation or robustness
to noise and missing inputs, in which case the term regularized autoencoders is used. It should
be noted that there are also variational autoencoders (VAE), which however do not reproduce the
input layer in the output layer and are in fact generative modelling approaches [25, p. 501]. Due
to this fundamental difference, they are not considered in this thesis when the term autoencoder
is used, even if they are reported to be useful for anomaly detection [2].

Being feedforward neural networks, autoencoders inherit their common traits and functionalities,
such as not having a circular architecture and being able to be trained with the back-propagation
algorithm [25, p. 200]. Furthermore, usually an autoencoder employs an activation function that is
applied to the input of each neuron. By using a non-linear activation function, the network is able
to calculate non-linear functions as well. Typical activations functions are listed in the following.

relu: The rectified linear unit x+ is a very simple non-linear function defined by

x+(x) = max{0, x}. (2.8)

It is a commonly chosen activation function due to being nearly linear, which makes the model’s
optimization easier with gradient-based methods and also lets it generalize better, according to
[25, p. 170f.].

softplus: This function produces a “smoothed” version of the relu [25, p. 66]:

ζ(x) = log(1 + ex). (2.9)

sigmoid: The logistic sigmoid function [25, p. 65] is defined as

σ(x) =
1

1 + e−x
. (2.10)

Notable characteristics of this function are that it outputs lie within the interval (0, 1) and that
it “saturates when its argument is very positive or very negative, meaning that the function
becomes very flat and insensitive to small changes in its input” [25, p. 66].

tanh: The hyperbolic tangent activation function is defined by

tanh(x) =
e2x − 1

e2x + 1
. (2.11)

It is related to the sigmoid function and is in fact reported to typically perform better than it, as
it is more similar to the identity function near the origin (tanh(0) = 0, wheras σ(0) = 0.5) and
facilitates the autoencoder’s training [25, p. 192].

12a.k.a. multilayer perceptrons or deep forward networks [25, p. 164]

15

2.3. ANOMALY-BASED NETWORK INTRUSION DETECTION

A common use case for autoencoders is dimensionality reduction of a large feature space. More
important for the anomaly detection domain however is the possibility to detect data that is
different to the training profile based on the reconstruction error the autoencoder is committing:
If the output is significantly different from the input, the assumption is made that the autoencoder
was not trained with this type of input. For determining when this case occurs, a threshold on the
reconstruction error can be defined [2, p. 4].

An important parameter that has to be determined for an autoencoder is its architecture, which
means its number of layers and the number of neurons for each layer. Based on this, autoencoders
can be grouped as follows (cf. [25, p. 500ff.]):

Undercomplete autoencoders: In this case, the learned feature representation (the code) has
a lower dimensionality than the input. The autoencoder therefore must learn an effective repre-
sentation of the input in order to reconstruct it properly. If only one hidden layer together with
MSE is used, the emerging encoding resembles the Principal Component Analysis (PCA) [56,
p. 78]. With an increasing number of hidden layers, which can model more complex non-linear
functions, a more powerful generalization of PCA can be found by the autoencoder [25, p. 501].

Overcomplete autoencoders: Here, the learned input representation has a higher dimension,
which is greater than in the input itself. A regularization for the code, e.g. regarding its sparsity,
is then needed, as described previously. When only using a loss function like MSE, it is not
guaranteed that the code contains anything useful about the input data distribution, as it can
simply copy the input, making the learned encoding function trivial.

Figure 2.7.: Schematic illustration of an overcomplete (on the left side) and undercomplete autoen-
coder (on the right side)

The central layer respectively contains the learned representation of the input data (code).

Autoencoders are considered deep autoencoders in this thesis when they have three or more hid-
den layers. As opposed to this, networks with lower depth are called shallow. According to the
universal approximator theorem, already with one additional layer in the encoder and decoder
respectively (resulting in five layers total), an autoencoder can represent any decoding and en-
coding function arbitrarily well, given enough hidden units. An advantage of increased depth is
that the computational costs for some functions and the amount of data needed can be reduced
exponentially. Furthermore, the compressions observed in experiments are reported to be better
with deep autoencoders compared to shallow ones. [25, p. 505f.]

16

2.4. EVALUATION OF ANOMALY-BASED NIDS

2.4. Evaluation of Anomaly-Based NIDS

2.4.1. Binary Classification

The evaluation of an NIDS takes place after the decision engine’s normal profile was built and
trained. It is then faced with yet unseen traffic, whose true nature (i.e. the traffic labels) is only
known to the evaluating system. An anomaly-based system labels all anomalous instances that
are found as attacks, and all normal traffic as benign. By this equalization, the NIDS’ task can
be described as a binary classification problem and the following variables can then be determined
for describing its performance (cf. [6, p. 236f.]):

True Positives (TP): the number of correctly classified attack instances

False Positives (FP): the number of benign traffic instances which are incorrectly classified as
attacks

True Negatives (TN): the number of correctly classified benign traffic instances

False Negatives (FN): the number of attack instances that were incorrectly classified as benign
traffic

A confusion matrix as in 2.3 can illustrate the connection between actual attacks and benign traffic
and the classifications made by the NIDS.

Attack Traffic Benign Traffic

Classification as

Anomaly
TP FP

Classification as

Normal
FN TN

Table 2.3.: Confusion matrix of the underlying binary classification problem.

2.4.2. Relevant Measurements

Based on the confusion matrix variables, the following indicators for an NIDS’ performance can
be identified:

Recall is the portion of correctly classified attacks within all existent attacks:

Rc =
TP

TP + FN
(2.12)

It is also known as hit rate, detection rate, sensitivity or the true positive rate. Recall is important
if security matters highly, but on the other hand can be raised very easily by classifying all
instances as an attack (which would result in a recall of 100%). Recall alone is therefore no
sufficient indicator for an NIDS’ performance.

Precision is the portion of correct predictions within the instances that are classified as attacks:

Pr =
TP

TP + FP
(2.13)

It reflects the system’s confidence of attack detection [37, p. 12], and therefore has a higher
priority when efficiency is important.

17

2.4. EVALUATION OF ANOMALY-BASED NIDS

The False Detection Rate or False Discovery Rate reflects the portion of miss-classified benign
traffic within the instances that were classified as an attack.

FDR =
FP

TP + FP
= 1− Pr (2.14)

If this value is too high, a lot of false alarms are generated, which is an unwanted effect in practical
setups. A significant measure here is also the absolute number of falsely classified traffic instances
(i.e. the number of false positives) within a certain time range: a relatively low false-detection
rate of 1% could still be manageable for a rarely-visited website, but might already require too
many human resources in a university network. [29, p. 16]

The False Positive Rate is the portion of miss-classified benign traffic instances within all benign
traffic instances.

FPR =
FP

TN + FP
(2.15)

The True Negative Rate is the portion of correctly classified benign instances within all benign
instances.

TNR =
TN

TN + FP
(2.16)

Balanced Accuracy is an enhanced measurement for the model’s accuracy. Accuracy on its
own, which is a common metric defined by the portion of correctly classified instances, has the
disadvantage that it does not take into account imbalances of the evaluation dataset. For example,
an accuracy of 95% would be a desired value when the dataset consists equally of benign and
attack traffic, but when the fraction of attacks only amounts to 5%, the classifier would be no
better than a naive approach which labels all traffic as benign.

Therefore, instead of accuracy, balanced accuracy can be used. It is defined as the mean of the
recall and true negative rate:

BA =
Rc+ TNR

2
(2.17)

F-Measure o F1-Score is the harmonic mean of recall and precision [17, p. 5]:

F1 = 2× Pr ×Rc
Pr +Rc

(2.18)

It is often used for expressing an NIDS’ performance as a single numeric value. A potential
problem is that it does not depend on the number of true negatives (i.e. correctly classified
benign packets) and that it can be misleading for datasets with a big imbalance of attack traffic:
Here, a classifier that always classifies traffic as attacks can yield a high f1-score13. Although the
latter case is not very likely when evaluating an NIDS (because, usually, benign traffic is in the
majority, like in the datasets used later in this thesis), it cannot be completely ruled out.

Matthew’s Correlation Coefficient (MCC) is defined as (cf. [17, p. 5]):

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(2.19)

Its values are within [−1, 1], where MCC = 1 describes a perfect classifier and MCC = 0 indicates
random guessing. It is reported to not be misleading on imbalanced datasets, which makes it
preferable to f1-score and accuracy and which is why it is proposed as an replacement for them
[17, p. 11 5].

13For example, a dataset with 900 attack packets and 100 benign packets would result in a recall of 1 and a precision
of 90%, yielding a f1-score of approximately 94.7%.

18

2.5. DATASETS FOR NETWORK INTRUSION DETECTION

While f1-score being the most prominent single-score evaluation metric for the overall performance
of an NIDS, it might be useful to describe the correlation between two of the described metrics, in
subjection to a single modifiable parameter (e.g. a configurable threshold which affects the system’s
detection ability.). This is the use case for receiver operating characteristic (ROC) curves, which
illustrate the relation between the false positive rate and the recall. Considering the importance
of a low false detection rate, another possibility for visualizing the prediction performance is a
precision-recall curve. Precision can be seen as the reverse of the FDR, which therefore can be
concluded from it (cf. equation 2.14).

2.5. Datasets for Network Intrusion

Detection

2.5.1. Dataset Requirements

There are several datasets available that are dedicated to training and evaluating network intrusion
detection systems. However, it is often mentioned that many of them have characteristics that make
their usage for the evaluation of practical, anomaly-based NIDS problematic [4, p. 2]. Some of the
key challenges that such datasets face are listed in the following (cf. [57, p. 3]).

Realistic Network Traffic: Having real network traffic that is similar to such that can be ob-
served in production-type network setups is necessary for evaluating this type of NIDS. Many
datasets however use synthetic or emulated traffic (19 out of 34 examined NIDS datasets in a
survey by Ring et al. [48, p. 7]). Emulating traffic means that the dataset authors have control
over the traffic generation and capture it using a test bed, while synthetic traffic refers to datasets
that were generated artificially and not captured using a network device [48, p. 5]. One reason for
this is that self-generated traffic can be labelled more easily. While such datasets aim to simulate
real-world scenarios, it is not evident if they actually reflect this kind of traffic.

Modernity: For evaluating its usefulness in current practical setups, the NIDS must be tested
with modern, current-day attack types. In the following, the term modern refers to datasets that
were created in 2015 or thereafter.

Providing Network Packets: Many datasets already come with extracted features based on
network flows. This makes it difficult to compare the performance of one NIDS on different
datasets, because the underlying feature extraction methods are not consistent: Both flow gen-
eration and feature extraction rely on different parameters, like the chosen flow timeout. Packet
data (e.g. PCAP files) on the other hand assert that every dataset is presented in the same form
to the NIDS.

Completness and Validity: The attack scenarios must be complete and valid, i.e. all traffic
that belongs to an attack is captured and the included attacks are properly implemented. On the
other hand, no traffic records that are considered ”irrelevant” should be omitted in the dataset
because this creates a bias and results in a non-realistic dataset.

Existent and Correct Labelling: For evaluating an NIDS, labels are needed which indicate
whether a traffic record belongs to an attack or not. Furthermore, it should be ensured that the
class labels actually reflect the ground truth. This can be a problem if the ground truth is not
known, e.g. when real-world traffic is captured within a honeypot and it is uncertain when and
where attacks occur.

Diversity: For being able to assess an NIDS it should be challenged with a variety of different
attack types and traffic behaviour. This requirement does not necessarily apply if an NIDS should
only be able to identify a restricted set of attacks (e.g. only DDoS attacks), but it is needed

19

2.5. DATASETS FOR NETWORK INTRUSION DETECTION

Property Name Optimal Value(s) Required?

Year of Traffic Creation ≥ 2015 No

Public Availability on request, yes Yes

Normal Traffic yes Yes

Attack Traffic yes Yes

Format packet Yes

Anonymity none No

Kind of Traffic real No

Labeled indirect, yes Yes

Table 2.4.: Relevant properties of datasets dedicated to network intrusion detection

for the evaluation system being developed in this thesis: Its objective is to find a preferably
general method for zero-day attack detection. For the usage of one-class classification algorithms,
adequate existence of traffic that is both benign and rich in variety is required.

Reproducibility: It should be transparent how the dataset records, i.e. the normal behaviour and
attacks, and the extracted features (if existent), were created. This makes other researchers able
to adjust the dataset for their needs (e.g. to incorporate new, modern attacks), to fix contingent
inaccuracies or to justify its validity.

Privacy-Compliance, without Distortion through Anonymization: For making a dataset
public it is important for it to not contain any personal data, or making any kind of inference
to such information possible. The usage of anonymization techniques on the other hand could
affect the NIDS’ performance and should therefore be avoided. For the capturing of real-world
traffic this, can usually not be assured due to privacy-relevant information like IP addresses or
non-encrypted personal data.

Fulfilling all of those principles is a difficult task, as some contradict or complicate each other
(e.g. containing realistic data but being privacy-compliant). For the selection of a suiting dataset,
Ring et al. [48, p. 4] identify several dataset properties. A relevant selection of them is shown
in table 2.4, together with their optimal value based on the stated requirements above. These
eight requirements are not fulfilled by any of the 34 surveyed datasets by Ring et al., but three
datasets have accordance with seven of them: CIC-IDS-2017 [53], UNSW-NB15 [44], and CIC DoS
[31]. Those datasets are examined in the following sections. Thereafter other commonly-used, but
outdated, datasets are shortly looked at, such as DARPA98 and its successors.

2.5.2. CIC-IDS-2017 and CSE-CIC-IDS-2018

The CIC-IDS-2017 dataset [53] was established at the University of New Brunswick and the Cana-
dian Institute for Cybersecurity in 2017. The traffic was captured over a span of five workdays
(Monday to Friday) inside an emulated network environment and contains 3.1 Million network
flows. In addition to the labelled flows and raw packet data, it also contains 80 extracted features
that can be used for machine learning purposes. The flows and their features were extracted using
the tool CICFlowmeter (see section 2.1.2). Although the emulated character, the work especially
focuses on realistic background traffic. By using scripts it simulates the behaviour of 25 users and
uses a variety of protocols, such as HTTP, HTTPS, FTP, SSH, and email protocols. It contains
attack types like brute force (SSH and FTP), botnets, (distributed) denial-of-service, heartbleed,
infiltration, and web attacks. A characteristic that facilitates the training of one-class classification
algorithms is that the Monday split only contains benign traffic. The dataset is publicly available.

As mentioned, the dataset provides raw packet data, but no dedicated labelling for it. The packet-

20

2.5. DATASETS FOR NETWORK INTRUSION DETECTION

wise labelling must therefore be concluded from the flow labels, based on the packets’ IP addresses,
ports and timestamps.

The CSE-CIC-IDS-2018 dataset [14] is similar but created at a larger scale, resulting in a total
size of approximately 400 GB raw packet data. It isn’t used as much yet in other scientific works,
but in general seems to be suited equally, because it has the same structure as the CIC-IDS-2017
dataset.

2.5.3. UNSW-NB15

The UNSW-NB15 dataset was published by Moustafa et al. [44] at the University of New South
Wales in 2015. It aims to be a modern NIDS benchmark and consists of 2.530.044 traffic records
with the following attack types: Fuzzers, Analysis Attacks, Backdoors, Denial-of-Service, Exploits,
Worms, and Shellcode Attacks. For the dataset creation, a testbed was established and 100 GB
of emulated traffic was captured on two days, for a total time of 31 hours. The raw traffic (in
form of PCAP files) was analyzed with the tools Argus and Bro-IDS for creating network flows
and extracting features from them. Additional features were generated by applying self-written
algorithms. By that way, 49 features per record are available in the dataset, including the class
label that indicates whether or not the package belongs to an attack. The dataset is available to
the public.

The authors provide two subsets of the extracted features which can be used for training and
testing intrusion detection systems. However, the training set contains attack flows, which makes
the split inadequate for the anomaly-based methods in this thesis.

2.5.4. CIC DoS

The CIC DoS dataset [31] was created in 2017 for analysing application-layer based DoS attacks
at the Canadian Institute for Cybersecurity. Like UNSW-NB15 and CIC-IDS-2017, its traffic is
emulated. It partly consists of network traffic from a former dataset (ICSX 2012), but also newly-
generated attacks. It has a total time span of 24 hours and contains 4.6 GB of network packets.
Due to the limitation on DoS attacks and to some extent relying on older data, it is not further
considered here.

2.5.5. Outdated Datasets

Furthermore, there are other, nowadays rather outdated, datasets, which were and still are utilized
in many research papers. A popular instance of this is KDD’99. It was created in 1999 as an
updated version of a former dataset, called DARPA98 and contains different attack types, which
can be classified into the four groups DDoS, Probing, U2R, and R2L. Since its publishing, it was
widely used in research and still is. In fact, between 2010 and 2015, its usage was yet increasing
[67, p. 4] and between 2002 and 2018 it was utilized by 63.8% of NIDS-related papers [5, p. 21].
Despite this, the dataset is often criticized as it contains redundant data and there is an imbalance
between the training and testing sets. To resolve these shortcomings, the NSL-KDD dataset was
created as an enhancement, but it still lacks contemporary network traffic due to its age. [43, p.
38f.]

As there are enough dataset candidates that contain modern-day network traffic, those old datasets
are not considered within this thesis furthermore.

21

Chapter 3 | Related Work

3.1. Usage of One-Class Support Vector

Machines

Zhang et al. [64] used a one-class support vector machine to detect anomalies on the KDDCUP99
dataset and compared the performance to a probabilistic neural network and a conventional two-
class SVM. They reported high detection rates of almost 1 for DoS and probing attacks and overall
a high precision and f1-score for the one-class SVM.

Ghanem et al. [23] compared one-class SVMs that utilized linear and Gaussian kernels with two-
class SVMs. They created an own synthetic dataset based on wireless and Ethernet LAN traffic
with five attack types, of which three are HTTP attacks in wireless networks, one exploits the
IEEE 802.11 wireless protocol itself and the last one contains port scanning attacks. The generated
features for the Ethernet LAN network are not flow-based; instead, they measured certain metrics
like the current throughput or the number and distributions of open ports once per second. While
there are good results for the other attack types, the probing attacks only are recognized with a
detection rate of 61.37% and a false positive rate of 1.15%.

Winter et al. [62] used a different approach and trained a one-class SVM with malicious traffic that
was extracted from a honeypot dataset. Through hyperparameter optimization, they achieved a
false detection rate of zero, while only using the source and destination ports, TCP flags and the IP
protocol as features. However, different datasets are used for extracting the benign and malicious
traffic respectively, which might result in a bias that is not observable in reality. Furthermore,
training the one-class SVM with malicious traffic makes the assumption that attacks in the testing
phase will be similar to the already-seen ones.

Multiple works point out the inefficiency of support vector machines when handling large and high-
dimensional data, and propose a feature dimensionality reduction beforehand. Kuang et al. [34]
successfully used KPCA (Kernel Principal Component Analysis) for that; however, the remaining
model worked in a supervised manner. Tang et al. [55] used a two-stage approach and utilized
the 2-dimensional encoding of a deep autoencoder as the input features for a one-class SVM. For
its evaluation, they used the DDoS attacks of the CIC-IDS-2017 dataset and manually selected 13
features from it. In their experiments, they compared the approach with a one-class SVM that
uses the unreduced features and reported an improved precision of 99.97% and a recall of 98.28%.
Additionally, they could drastically reduce the training and testing times. Still, the plain one-class
SVM yielded a precision of 96.26% and a recall of 98.21%.

22

3.2. USAGE OF AUTOENCODERS

3.2. Usage of Autoencoders

Besides the already-mentioned approach by Tang et al., there are a few other works that utilize
autoencoders for feature reduction. For instance, in a paper by Javaid et al. [30] the features that
are extracted by sparse autoencoders are then learned by a softmax regression classifier. They
reported an increased F-Measure value when using the autoencoders; however, they only consisted
of one hidden unit. An improvement could be to add more depth to the network, as well as using
unsupervised classifiers instead of regression.

Other works proposed the usage of (deep) autoencoders for classification, as done by Hindy et al.
[28]. The model there is trained with benign instances only, which are split into a training and
validation set. Upon facing unknown traffic, the autoencoder recognizes attacks when an instance’s
reconstruction error is bigger than a given threshold. The particular threshold value, as well as
the autoencoder’s architecture (i.e. the number of layers and number of neurons for each layer),
are hyperparameters and are determined by the random search algorithm. For the CIC-IDS-2017
dataset, the optimal parameters result in a deep autoencoder with three hidden layers, consisting
of 18 nodes in the input and output layer, 15 nodes in the first and third hidden layer, and 9 nodes
in the central hidden layer.

Mirsky et al. [41] applied an ensemble of autoencoders that can be deployed in a distributed manner
and with low runtime requirements. Statistical features are extracted from a stream of network
packets using damped incremental statistics. The features are then mapped to smaller subsets
which are used as inputs to the ensemble of autoencoders. Each autoencoder has three layers and
provides a reconstruction error for its subset. The actual anomaly detection module is another
autoencoder whose inputs are the aggregated reconstruction errors of the ensemble autoencoders.
It outputs a score that reflects the anomaly of the inspected packets.

Gharib et al. [24] proposed “AutoIDS”, which uses two autoencoders that are parallelly trained on
normal traffic. The first autoencoder is a sparse autoencoder that uses sparsity as a classification
criterion, whereas the second uses the reconstruction error. For the classification of traffic, the
sparse autoencoder is queried first, which runs faster. Only the traffic that it is not certain about,
is then shown to the second autoencoder, which takes more time, but is more accurate. With this
procedure, a precision of 95.59 % and a recall of 97.43% was achieved on the NSL-KDD dataset.

3.3. Payload Analysis

Utilizing the payload of the sent packets, instead of only statistical data from their headers, is
proposed in several works. It promises to offer more insight into what the sender intends with the
traffic. While it means to analyse significantly more data (as the payload of a packet is usually
larger than its header information), it intuitively seems an appropriate instrument to distinguish
anomalous packets from normal behaviour.14

A first set of works use the distribution of bytes or byte n-grams for comparing the packet contents.
Wang et al. [60] proposed a method called PAYL that calculates the byte frequency and standard
deviation of the application payload and compare them with the observations for the same port and
a similar packet length. This takes into consideration the assumption that for certain ports and
packet lengths there are characteristic payloads that can be observed under normal circumstances.
Significant deviation from it, which is calculated using the Mahalanobis distance, can then identify
outliers, indicating a network attack. The whole calculation can take place in linear time and

14Of course, analysing the payload only can offer any valuable insight if the payload is not encrypted. If the NIDS
cannot decrypt the payload, it also is not able to recognize any anomalies in a reasonable way. It is therefore
assumed in the following that the NIDS can read the unencrypted payload. This limits its possible applications
in practice, e.g. to internal networks behind an encryption proxy.

23

3.3. PAYLOAD ANALYSIS

yields convincing results on the DARPA dataset, with a false positive rate of only 0.1% for port
80 using TCP. More details about PAYL can be found in section 5.3.2, as it is used as a payload
analyser within this thesis.

PAYL was later enhanced by Wang et al. with multi-centroid clustering (i.e. providing multiple
byte distributions per packet length) and by incorporating the correlation between the inbound and
outbound traffic (ingress/egress correlation). The new approach is suitable for detecting worms
accurately, as they report. [59]

Perdisci et al. proposed McPAD [46]. It uses so-called 2ν-grams for feature extraction, which
represent the occurrence frequency of two bytes with the distance ν within the payload. For each
value ν this results in a fixed number of 2562 features (which takes significantly less memory
than calculating n-grams for n > 2). A clustering algorithm is then applied for dimensionality
reduction. For classification, an ensemble of one-class support vector machines is used. The
method was reported to have lower false positive rates in comparison with PAYL.

Furthermore, there are many approaches utilizing deep learning methods for autonomously rec-
ognizing features in the network traffic’s payloads. Recently, deep learning techniques have led to
advances in many fields of computer science and thus there is an increasing research interest to
utilize them for NIDS as well. As shown in a survey by Liu et al., 14 out of 26 recent papers adopt
deep learning methods [37, p. 20].

Wang et al. [61] transform the raw network traffic data into two-dimensional images that are later
used by a convolutional neural network for extracting features. CNNs are widely used for image
classification and have led to significant progress in this field. With their help, it is possible to
extract spatial features from the images. In the paper, two approaches are discussed: The first
uses images that are generated from the whole network flow as the CNN input. With the second
method, however, one image per packet is made. Furthermore, the temporal relations among the
packet vectors are learned. By this, an overall accuracy of 99.69% on the ISCX2012 dataset is
achieved, with a false positive rate of only 0.22%. However, the detection rates of certain attack
types like R2L and U2R in the DARPA1998 dataset are not as high as in competing approaches
(only 74.19% and 64.25%, respectively). The authors point out that further work is required for
improving the performance on imbalanced datasets and in respect to the inclusion of traditional
traffic features.

Min et al. [40] applied Natural Language Processing (NLP) techniques for increasing the perfor-
mance of NIDS. They used a text-convolutional neural network for extracting features from the
packet payloads. This is done by utilizing a byte-level word embedding method that is similar to
word2vec. Normally, word2vec is used as a word representation that preserves semantic relations
between words. By contrast, for the payload analysis used in the paper, the packet payloads of
each network flow are concatenated and each byte in a flow is then considered as a word. The
emerging embeddings of the flows are then used to extract features with a Text-CNN. Together
with statistical features from each network flow (like fields of the packet headers), a Random Forest
algorithm is trained to classify attacks. With this approach a high classification accuracy (99.13%)
and low false positive rate (1.18%) is achieved, which both out-perform other learning algorithms
that are shown as a comparison in the paper. Nevertheless, the CNN used in the paper, as well as
the classification algorithm, are both trained in a supervised manner. This limits the potential for
real-world usage due to the inability to detect yet unknown attacks. Also, the ISCX2012 dataset
is used, which was recorded in 2012 [48, p. 9] and does not necessarily reflect up-to-date attack
types.

24

3.4. COMPARATIVE EXPERIMENTS

3.4. Comparative Experiments

Most of the aforementioned works also run tests for their proposed approaches. However it is hard
to compare them with each other, as (i) the experiment conditions differ from paper to paper and
(ii) it can be observed that the experiments usually favour the own methods. This can indicate that
the other approaches used for comparison are not optimized as well or are categorically inferior.

Nevertheless, there are various works which run objective comparative experiments to determine
the performance of machine learning techniques on detecting modern network attacks, such as [21],
[4], [42], [33], [58], [38], and [32]. The mentioned articles however differ from the methodology of
this thesis, as they are not using one-class classification algorithms and instead train the models
with already known attacks.

This reduces the set of works with suitable experiments to only a few. One of them is the already-
mentioned article by Hindy et al. [28] which compares one-class SVMs with autoencoders. Çakir
[12] compared different approaches to the detection of zero-day attacks, and also incorporated one-
class SVMs and autoencoders, albeit mainly focusing on the outdated KDD’99 dataset. In general,
it seems to be difficult to find research that takes into account all of the requirements stated in
section 1.1.

25

Chapter 4 | Concept

4.1. Overview

This chapter proposes a sequential procedure for comparing different anomaly-based network in-
trusion detection approaches. Its primary focus is to provide an abstract architecture and define
the theoretical foundation for the later chapters. Concrete details, such as characteristics of the
utilized datasets and implemented algorithms are discussed in chapter 5.

The first and initial step of the scheme described in the following consists in preprocessing the
chosen datasets, which creates the basis for later comparisons. Afterwards, an anomaly detection
model can be trained with a certain set of parameters. During the training, it is assumed that only
benign traffic is observed, and therefore only this type is shown to the model. This corresponds with
the one-class classification approach described in section 2.3.3. Subsequently, the classification
step tests the trained model with unlabelled traffic and lets it decide which network packets belong
to an attack. These predictions are then compared with the actual labels of each packet in the
evaluation step. Several metrics, grouped by attack categories, are calculated as a result.

During this process, it is attempted to retain a practical perspective, which specifically means that
the training and classification steps should conceptually not differ from a real-world setup. The
objective that should be achieved by this is to minimize the gap between the results yielded in the
evaluation step and those that can be observed in more realistic setups.

4.2. Preprocessing

For training a model that can detect anomalies in network traffic, it needs some data to learn from.
While there already exist many datasets which are dedicated to providing such sample data, they
do not come in a consistent format. Therefore, the first step is to preprocess the chosen datasets,
which here means to bring them in line with a fixed, real-world orientated data structure that is
later used for the training. To be more specific, after the preprocessing it must be possible to:

1. read the dataset’s network packets as a stream, e.g. by replaying PCAP files,

2. group the dataset into fixed subsets which are used for the training and classifying steps
respectively, while containing the proper type of network traffic in each set,

3. provide the information whether a specific packet belongs to an attack or not, and if it belongs
to an attack, to which category. This is later needed for the evaluation step.

The complexity of those preprocessing goals depends on the structure of the given dataset. For
instance, the last point likely requires more work if the dataset only provides a labelling per flow,
because associating the corresponding packets is not a trivial task, as later described.

26

4.2. PREPROCESSING

The preprocessing step therefore provides the data source as described in section 2.3.2. However, it
differs insofar from the data pre-processing step defined there, as there is not any feature extraction
involved. Instead, a general interface for the data source is supplied, which can be accessed inde-
pendently of the actually-used dataset, and without introducing any potential bias. By targeting
the three described goals, the following benefits can be achieved as a result of the preprocessing:

Supply a universal and practice-oriented entry point for the model training and classi-
fication: In a real-world application, capturing network traffic as a PCAP file is straightforward
due to the existence of dedicated tools and incorporation of suitable libraries into many program-
ming languages. It therefore is more natural to test an anomaly detection approach directly on
this format than on a processed version of it (like a grouping into flows). While for a system used
in production it is probably more feasible to directly stream network traffic into the anomaly
detection system as soon as it is observed, the underlying data structures and principles are not
likely to change much. As the focus of this thesis is to create an evaluation system, and repro-
ducibility being an important keystone for it, PCAP files as the input source seem to be more
appropriate than to directly listen on network devices.

Provide the entire traffic information: Grouping network packets into flows, as it is done in
many datasets, can discard information about the original network traffic. Most importantly, the
payload of an IP packet, which could be important for anomaly detection, cannot directly be
accessed within a flow-based grouping that only shows statistical properties of the packets (like
their size, IP addresses or used protocols).

Assure comparability between different approaches: Comparing two different approaches
on the same dataset only is meaningful when the training and classification subsets are not
changed between both evaluations. Many datasets do in fact already provide a predefined split
for training and testing (e.g. UNSW-NB15 and CIC-IDS-2017), but some approaches proposed
in literature nevertheless only use a selection of those splits. Furthermore, the provided training
subset does not always solely contain benign traffic, which complicates the utilization of OCC
algorithms. To avoid such situations, the preprocessing step should precisely define which parts
of the dataset can be used for training and testing (OCC-based) anomaly detection models.

Create comparability between different datasets: The process of reducing all datasets to a
common format makes it easier to compare the performance of one anomaly detection approach
on different datasets. As described in section 2.5, many datasets come with a predefined grouping,
like the aggregation of network packets into flows. Such groupings already rely on some knowledge
about the network packet content, e.g. about the used protocols, and therefore create a bias.
As an example, the application responsible for generating the network flows in the CIC-IDS-
2017 dataset, called CICFlowMeter, groups with the help of an arbitrarily set flow timeout, and
additionally on the basis of TCP connection terminations [13]. While the chosen preferences
might intuitively sound appropriate, it is hard to argue that they are the only valid parameters
for generating such flows. Furthermore, it is not guaranteed that other datasets share the same
methods.

Prevent evaluation biases: The grouping of multiple packets into one flow could later distort
the evaluation: For instance, the miss-classification of 1000 attack packets in a packet-based
evaluation setup would yield 1000 false negatives, but when grouped to a single flow it would
only yield one false negative. Providing the label for each packet separately avoids such biases.

Provide the attack category for the evaluation phase: When evaluating a certain approach,
it might be interesting for which kind of network attacks it performs well. By providing the
necessary information for each packet, namely the name of the corresponding attack category, if
there is any, this process is being facilitated.

27

4.3. MODEL COMPONENTS AND TRAINING

4.3. Model Components and Training

After having a standardized format for the data source, it is easier to design how an anomaly
detection model can be built for network traffic data in a general way. It takes a network packet
stream of the training subset, which is defined in the preprocessing, as its input and learns from it
the characteristics of normal behaviour (training). Afterwards, the model is stored in a database
from where it can be loaded for later usage. The following section describes both the structure of
the model and its training process.

Figure 4.1.: Conceptualisation of the training phase

To achieve a generic architecture for an anomaly detection model, it is divided into three compo-
nents: the feature extractor, any number of feature transformers and the decision engine.
They are responsible for processing the network data in a pipeline, where each pipeline step has a
defined input and output format. Each concrete implementation of those components is supposed
to be substitutable, which means it should not rely on any specific implementation of another
component. Figure 4.1 shows a schematic overview of the whole training process. The components
of a model are explained in the following pages.

Feature Extractor: The feature extractor is responsible for generating a feature matrix from a
given stream of network packets. It therefore carries out the feature creation step, as described
in section 2.3.2. That is, having r vectors p1, ..., pr with pi ∈ {0, 1}∗ representing the timestamp-
sorted network packets in binary format15, it maps them to n feature vectors x1, ..., xn of a fixed
length m with xi ∈ Rm. In the following, for a feature vector xi the term instance is used
interchangeably.

Additionally, the feature extractor provides a single vector t = (t1, . . . , tm) ∈ Tm which represents
the type of each feature. T is a finite set of all possible feature types, such as numerical or
categorical. Its concrete items and their meaning are no further defined and instead left to the
concrete implementation. The vector t can be used to pass information about the features to the
following model components (in particular feature transformers). The types can be seen as hints,
instead of strict constraints.16

In a formal way, the function that is provided by the feature extractor can be described as:

e : ({0, 1}∗)∗ → Tm × (Rm)∗,m ∈ N (4.1)

where the number of features M is a fixed value for a certain configuration of the extractor. Note

15The details about the packet format, which also includes how the timestamp of a packet is encoded, are spared
here and left to the implementation.

16An example that employs this information is the one-hot encoder (cf. section 5.4.3), which must know which
features are categorial in order to encode them.

28

4.3. MODEL COMPONENTS AND TRAINING

that r and n are no fixed values for e, but rather depend on the concrete input that is fed to the
feature extractor after its training is done. That is why definition 4.1 requires e to be defined for
any number of packets.17

For a specific set of packets, the extracted features can then be represented in a n ×m feature
matrix, as shown in an exemplary way in Figure 4.2. It is up to the implementation of the feature
extractor whether an own feature vector is created per network packet (r = n) or if multiple
packets are accumulated and represented as one instance (r > n). The remaining case r < n is
not allowed, as it could result in problems during classification (see section 4.4).

Figure 4.2.: Depiction of a trained feature extraction function e. From an arbitrary number of
packets of varying length it extracts instances with a fixed number of features, together
with the corresponding feature type information.

The goal of the training phase is to build and provide the function e. This is trivial in the case
that e can be declared independently from the traffic in the training set. The generation of
network flows as described in section 5.3.1 is an example of this. But it is also possible that the
feature extractor requires an internal state, which is formed during the training. This might be
a distribution for an observed statistical property, for instance the 50 most accessed IP addresses
in the network traffic, or common patterns in the network packet’s payload (as collected by the
PAYL extractor described in section 5.3.2). That information is then used to generate features
for any incoming packets. The state is stored in the database as part of the model, so that it can
be used in later steps. After the function e is built, it is called on the raw traffic itself, in order
to create the instances which are forwarded to the next model component.

Feature Transformer: A feature transformer, here denoted as τ , must provide a function

tτ : Rτin → Rτout , (v1, . . . , vτin) 7→ (u1, . . . , uτout
)

which maps a feature vector of length τin ∈ N to a feature vector of length τout ∈ N. By this, it is
able to execute feature reduction, feature conversion or feature normalization (cf. section 2.3.2).
Unlike the feature extractor, τ applies the function tτ to each of the extracted instances one by
one. It therefore is only permitted to modify feature values, to delete some of them or to add
new ones, but not to change the overall number of instances n or their order. As such operations
can change the type of the feature values, the transformer must also provide a function

typetransformτ : T τin → T τout , (t1, . . . , tτin) 7→ (t1, . . . , tτout
)

which maps the feature types of the input instances to those of the output instances. Both
τin, which depends on the input data provided by the previous step, and τout, which is either a

17Also, the list of feature types chosen from T intuitively should not change for a specific function e (that is, the
type of the extracted features should be consistent, no matter how often e is executed). This detail is again left
to the implementation to no further complicate the notations here.

29

4.3. MODEL COMPONENTS AND TRAINING

transformer-specific constant, or determined during the training, must be fixed after the training
of the transformer is done.

For its training, a feature transformer receives as input all n instances that were generated
by the previous component (the feature extractor or another transformer), together with their
feature types. This data is then used to train the transformer’s internal model and to create the
functions tτ and typetransformτ . Afterwards, tτ is called on each of the input vectors to obtain
the transformed vectors which are then forwarded to the next component in the same order as
received. As a model might have multiple feature transformers τ1, . . . , τ j , these steps have to be
repeated consecutively for each one of them, as also described in the following section. Examples
of feature transforming are standardization and normalization. For preventing a bias between the
features of the training and the classification step, it is important that their scaling is consistent.
For example, the minimum and maximum values used for a min-max normalization must not
change between the training and classification step. Therefore, any state which is needed by the
transforming function used in the training phase must be stored in the database, if it depends on
the training data.

Decision Engine: The purpose of the decision engine is to judge whether an attack occurs or
not. The goal of its training phase is to build a function which executes this decision and can
later be used in the classification step. Formally, this function can be described as

d : Rτ
j
out → {0, 1}, x 7→

0 iff. x is normal

1 iff. x is an anomaly

where each instance x has τ jout features (τ j being the last feature transformer). For building this
function, it receives the output of the feature transformation step. During training, the decision
engine is not required to output anything. After the training, d is stored as a part of the whole
anomaly detection model in the database.

30

4.4. CLASSIFICATION OF UNKNOWN NETWORK TRAFFIC

4.4. Classification of Unknown Network

Traffic

The classification step relies on a trained anomaly detection model which is exposed to network
traffic, like in the training phase, but this time without knowing the traffic label. The principal
setup of the classification pipeline resembles that described in the previous section, but now the
decision engine is supposed to actually yield a result, i.e. its function d is queried to distinguish
normal from anomalous traffic. The classification pipeline is shown in figure 4.3.

Figure 4.3.: Conceptualisation of the classification phase

The first step is to load the state of a previously trained model from the database, by
restoring the state of all its components. As in the training phase, it takes a stream of network
packets as its input. In a practical setup, it would be crucial to receive the result of the classification
as soon as possible, so that measures against ongoing attacks can be undertaken immediately.
However, as real-time responses are no substantial requirement for the evaluation’s functioning, it
is allowed for the classification step to feed in the packets as batches and retrieve the results in
a bundled manner. The following describes the classification procedure for one such batch. As
before, the number of its packets is represented by r.

The feature extraction works in a similar way as in the training phase and applies the function e
on the raw network traffic, yielding n feature vectors. Additionally however, the feature extractor
must now also keep track to which instance xk each packet pi is mapped. This can be expressed
formally as a function

b : {1, . . . , r} → {1, . . . , n}

which assigns a packet index i ∈ {1, . . . , r} to the feature vector index b(i) = k ∈ {1, . . . , n}. The
feature extractor must not provide this function b directly, but rather its inverse b−1: It is later
used to associate the decision engine’s result (which is based on the extracted and/or transformed
features) to the individual packets. The need for this association is also the reason why r ≥ n is
required to hold, as with multiple extracted instances per packet the decision engine could classify
one as an anomaly and the other as normal, resulting in a stalemate that would need special
treatment.18

As described in the previous section, the feature transformation must use the function tτ created
in the training phase. typetransformτ is not needed anymore in the classification phase, because
the feature types that a transformer produces should be fixed by now (if a subsequent model
component should rely on the types of its input instances, this information must be accessed in
the training phase). When multiple feature transformers are used, they must be applied step by

18It should be noted that the function b is mainly needed for the packet-based evaluation of the NIDS, as it shows
how many packets are actually influenced by a single classification of the decision engine. In practice it could
be more convenient to omit it and instead create alerts directly based on the extracted features (such as the IP
address of a flow which is reported to be an anomaly)

31

4.5. EVALUATION

step. For describing this in a formal way, a new function tτall is introduced in the following, where
◦ denotes the composition operator of two functions:

tτall = tτj ◦ · · · ◦ tτ1

Given the n instances provided by the feature extractor, the feature transformation must then be
run consecutively on each instance xk.

(x1, . . . , xn) 7→ (tτall(x1), . . . , tτall(xn))

Finally, the decision engine’s function d is queried to determine whether an instance represents
an attack or not. Using the inverse of function b, those classifications are then stored for each
packet in the database. That is, for each instance xk the following tuples are persisted, each one
assigning the decision engine’s output to the corresponding packet index:

〈i, d(tτall(xk))〉 | ∀i : i ∈ b−1(xk)

Together with them, additional information about the classification context, like the name of
the dataset, which part of the network traffic is used for the classification, and an ID that can
distinguish the used model, can be persisted. It is also useful to time how long the classification,
in detail the duration between the feature extraction and the result of the decision engine, took
in total. This time can then be divided by the number of packets to get the average classification
time per packet.

4.5. Evaluation

Figure 4.4.: Conceptualisation of the evaluation phase

The evaluation step assesses the performance of the classification, i.e. how well the model could
detect attacks within the given network traffic stream. For this purpose, it loads both the classifi-
cation results from the database and the actual packet-wise labels from the preprocessed dataset.
By comparing them, a confusion matrix is created as described in section 2.4. Based on this,
various measurements can be calculated, such as precision, recall and the f1-score.

After multiple approaches are trained, tested and evaluated, they can be compared to each other.
Using the calculated metrics, the influence of one or multiple model parameters on the detection
performance can be described.

32

4.6. HYPERPARAMETER SEARCH

To gain more insights into a model’s ability for detecting a specific type of network attacks, it
might be useful to perform the evaluation separately on each of the categories that are defined in
the preprocessing step. For achieving this, various subsets of the classified packets are built. Per
attack category, all of the corresponding attack packets as well as all benign traffic are evaluated
together. This has the same effect as a retrospective modification of the classification, causing the
anomaly detection model to only be faced with attacks of one category, but still all of the benign
traffic. A downside of this method is that the categories might not be presented proportionally
in the dataset, which leads to distortions. Furthermore, the classifications of benign packets, and
hence the number of false positives and true negatives, are constant between all evaluations. As a
consequence, precision, which depends on the number of both the true and false positives, is not
an adequate measurement here, as it depends on how many packets belong to a category. Instead,
for comparing different categories, the recall can be consulted. The following example illustrates
this: Suppose a classifier which classifies 1000 benign packets incorrectly (causing a high number
of false positives), but all 10 packets of a small attack category correctly. It would have a recall
of 100% for this particular attack category, but a low precision of only 1%. For another category
consisting of 2000 attack packets, of which it correctly classified 1000, it would have a precision
and recall of 50%, despite intuitively it can be argued that the first attack category was detected
better.

4.6. Hyperparameter Search

To facilitate multiple iterations of the training, classification and evaluation steps of the same
model but with different parameters, a hyperparameter search can be utilized. A simple method
for that is a grid search, which executes those steps with all possible combinations within a given
set of allowed parameter values. In contrast to other techniques, it does not need feedback about
how well a certain parameter combination performed in order to yield the next one. Providing
this feedback would have to rely on a single numeric value, but determining which one of the
evaluation metrics should be chosen for it might not be a simple choice. While consuming more
resources than other approaches, a grid search allows easy comparison of a broad set of parameter
values and thereby helps to obtain an overview of their influence on a model’s performance. Figure
4.5 illustrates the entire hyperparameter search process. It is defined by the selected dataset, the
utilized feature extractor and decision engine, and the set of hyperparameter values for them. The
feature transformers are treated as such parameters as well, so that different arrangements for
them can be compared to each other. In each iteration of the search, a model configuration is
generated from the given set of possible parameter combinations. Using this configuration, the
subsequent steps are then executed as described in the previous sections.

33

4.6.
H
Y
P
E
R
P
A
R
A
M
E
T
E
R

S
E
A
R
C
H

Figure 4.5.: Conceptualisation of the hyperparameter grid search.

34

Chapter 5 | Implementation

5.1. General Overview and Utilized

Technologies

This chapter describes the realization of the previously proposed concept for a system dedicated
to comparing anomaly-based network intrusion detection approaches. It starts with details about
the preprocessing of the two chosen datasets and problems that must be solved for it. Then, the
implemented feature extractors are described, namely a network flow generator, which mainly
uses statistical data, and payload-based approaches that utilize byte-wise frequency distributions
of the packet contents. Afterwards, the feature transformers, implementing standardization,
min-max scaling, one-hot encoding, and principal component analysis, are described, followed by
the decision engine approaches. Two types are utilized in the implementation: autoencoders
and one-class support vector machines.

The proposed system is implemented in the programming language python and utilizes several
open-source libraries, namely:

• dpkt19 for reading and processing network packets from PCAP files,

• pandas20 for processing tabular data, which is particularly used during the dataset prepro-
cessing and the evaluation,

• numpy21 for all numeric calculations,

• scikit-learn22 for machine-learning functionalities, especially for the implemented one-class
support vector machine and feature transformers,

• keras23 and tensorflow24 for building the autoencoders, and

• plotly25 for visualizing the evaluation results.

For persisting data, python’s internal sqlite26 module is drawn on, which provides a self-contained,
single-file database.

In the following sections, at some points pseudocode is utilized to describe the developed algorithms.

19https://dpkt.readthedocs.io/en/latest/
20https://pandas.pydata.org
21https://numpy.org
22https://scikit-learn.org
23https://keras.io
24https://www.tensorflow.org
25https://plotly.com
26https://sqlite.org

35

https://dpkt.readthedocs.io/en/latest/
https://pandas.pydata.org
https://numpy.org
https://scikit-learn.org
https://keras.io
https://www.tensorflow.org
https://plotly.com
https://sqlite.org

5.2. DATASET PREPROCESSING

It resembles the actual python code of the implementation, but only focuses on the main ideas.
The source code, which can be consulted as an in-depth reference of the implementation, is publicly
available in a git repository hosted on GitHub27.

5.2. Dataset Preprocessing

5.2.1. Assigning Packets to Flows

(A) Problem Description

Two datasets are chosen for this thesis, which both reflect reasonable recent network traffic: The
CIC-IDS-2017 and the UNSW-NB15 dataset. A common trait that they both share is that they
are providing their raw network traffic in the form of packet captures. However, the corresponding
labels are not given directly. Instead, only a list of network flows, with the information of whether
or not a flow belongs to an attack, is provided. Speaking with the terminology of the previous
chapter, they provide the results of a feature extraction function e, but not an easy way to find
out which packets belong to a specific flow (i.e. access to the function b). Since such a packet-wise
labelling is a goal of the preprocessing, it must be created as a part of it. That is, for each IP
packet in the dataset, the corresponding flow (which includes the packet) has to be found so that
the flow label (benign or attack), and its attack category can be associated with the packet.

A trivial way to achieve this would be an exhaustive search for each network packet within all
provided network flows, which checks whether the packet can belong to a flow based on certain
properties, like its timestamp, protocol or IP addresses. The problem with this method is that it
is inefficient and will take a long time.28 For the given dataset sizes, it would already make the
preprocessing step infeasible. Effectively, its time complexity lies in O(R ·F), R being the number
of network packets and F the number of flows as supplied in the dataset.

To be more efficient, the flows could be sorted by their starting time. For a packet with a timestamp
tp, only flows that have a starting time tf with tf ≤ tp must then be examined. This would reduce
the number of comparisons, but the overall runtime would still be inordinately long, which would
make reproducing and validating the preprocessing difficult for other researchers.

To further reduce the number of possible flows for a packet, flow identifiers can be used. They
must be constructible from both the information of a flow given in the datasets and each packet in
the raw traffic capture. In fact, the CIC-IDS-2017 dataset provides such a flow ID for each flow.
It is a character string constructed in the format

[IP address A]-[IP address B]-[port A]-[port B]-[IP protocol number].

In the same manner flow IDs can be easily generated in the UNSW-NB15 dataset. The needed
information can be extracted from each packet as well; however, there may be multiple possible
flow IDs per flow: Firstly, it is not clear in which order the source and destination hosts of an IP
packet are declared in the flow ID, and secondly, there might be multiple flows with the same id,
but at various times. Using the flow ID as a mean to associate packets with flows therefore still
requires some additional work, as described in the following.

27https://github.com/dhelmr/bachelor-thesis
28In fact, this approach was first tried out during the work on this thesis, but it quickly was clear that the

preprocessing was practically not feasible that way.

36

https://github.com/dhelmr/bachelor-thesis

5.2. DATASET PREPROCESSING

(B) Proposed Algorithm

The main idea of the algorithm is to exploit the following points:

1. Detailed information must only be extracted for attack flows. For a packet that contains
benign traffic, on the other hand, it suffices to only recognize that it is not an attack.

2. It can be assumed that R � F . Therefore, limiting the influence of R on the runtime
complexity can have a desired effect.

3. The number of attack flows is significantly smaller than the number of benign ones. This
implicates in turn, that the number of benign packets RB is significantly bigger than the
number of attack packets RA. Furthermore, the number of packets that have ambiguous flow
identifiers (from both benign and attack flows), in the following called RU , are assumed to
be relatively low, so that holds R� RU .

In a first step all attack and ambiguous flows are found in the dataset and identifiers (flow IDs)
are generated for them. The main part of the algorithm is then a loop, which successively reads
in the network packets provided by the dataset. Per packet, an identifier is generated, together
with a set of potential flow IDs under which the packet can be found in the dataset. If those are
not part of the initially generated attack IDs, the packet must be of benign nature and does not
need to be inspected any further. Otherwise, all potential flows that the packet could be a part
of are loaded. Based on the packet’s timestamp, the exact flow is then determined. Normally, a
suitable flow for the packet should be found and information like its type and, if it’s an attack, the
respective category, can be extracted. The following code listing shows the algorithm described so
far as python-like pseudocode.

attack_flows = get_attack_flow_ids ()

for packet in pcap_reader ():

packet_id = get_packet_id(packet)

flow_ids = make_flow_ids(packet)

if attack_flows.contains_none(flow_ids):

write_to_csv(packet_id , "benign traffic")

continue

potential_flows = attack_flows.find_all(flow_ids)

flow = get_exact_flow(potential_flows , packet)

if flow is None:

write_to_csv(packet_id , "undecidable")

continue

write_to_csv(packet_id , flow.traffic_type , flow.attack_info)

The sub-steps of this algorithm, together with their runtime analysis, are explained in more detail
as follows:

(I) Finding attack flows and corresponding ids: The purpose of this first step,
get attack flow ids(), is to reduce the number of potential flows that the algorithm later must
search through. To achieve this, all flows with an attack label are filtered. Afterwards, for each
of these attack flows, a search is run to find all remaining flows which have the same destination
and source IPs (no matter in which order) and the same protocol. The motivation behind this
is that a packet that is assigned to a certain attack flow ID can as well be part of an identically
identified benign flow if only the flow identification is looked at. For determining the packet’s
true flow, its timestamp must be considered as well and be compared with each flow’s starting
time. This step has a worst-case runtime complexity in Ω(F ·F), as each flow has to be examined,
and for each attack flow, corresponding flows have to be found.

(II) Creating the packet identifier: get packet id() generates a unique identification for
each of the dataset’s network packets. It is used to correctly assign the traffic type label to
a packet later in the evaluation phase. A simple way to generate the ID is an incrementing

37

5.2. DATASET PREPROCESSING

numerical counter, together with the name of the PCAP file where the packet is read from. This
step’s runtime does not depend on the number of packets or flows and is therefore assumed to be
constant here.

(III) Creating the packet’s flow identifiers: This step creates possible flow identifiers for
each packet. In detail, an identifier is created for the flow in forward direction (with the packet’s
source and destination IP addresses in order) and backward direction (with those addresses in
reversed order). As before, this step runs in constant time.

def make_flow_ids(packet):

src_port = packet.transport_layer.source_port

dest_port = packet.transport_layer.dest_port

fwd_flow = (packet.source_ip , packet.dest_ip , src_port , dest_port , packet.

protocol)

bwd_flow = (packet.dest_ip , packet.source_ip , dest_port , src_port , packet.

protocol)

return [fwd_flow , bwd_flow]

(IV) Finding the matching flow: This step checks for all of the potential flows, whether the
packet can be a part of it. This decision is grounded on the packet’s timestamp and the flow’s
starting time. Additionally, if the flow is known to be unidirectional, it is checked whether or not
the packet is sent in the same direction as indicated by the flow. If no flow matches the packet’s
timestamp, None is returned, which indicates a problem with the dataset, as explained later.

def get_exact_flow(potential_flows , packet):

filtered_flows = filter_uni_directional_flows(potential_flows , packet)

sorted_flows = sort(filtered_flows , key=lambda flow: flow.start_time)

selected_flow = None

for flow in sorted_flows:

if flow.start_time > packet.timestamp:

abort criterion : the packet must lie in the previously selected flow

break

selected_flow = flow

return selected_flow

def filter_uni_directional_flows(flows , packet):

filtered_flows = []

for flow in flows:

if flow.is_uni_directional () and flow.src_ip != packet.src_ip:

continue

filtered_flows.append(flow)

return filtered_flows

In the worst case, the runtime of this step is log-linear in the number of potential flows, due
to the sort operation (assuming the application of merge sort, for instance). It can be assumed
however that in the average case the sorted list will accelerate the following iteration through it,
as the abort criterion presumably is reached faster. Moreover, the number of potential flows is
no further estimated here. Instead, an upper bound is stated for the case that all flows of the
dataset need to be iterated through. This yields a worst-case runtime in Ω(F · log(F))

For the overall runtime complexity analysis, the number of packets is divided into two parts: RU ,
the number of packets whose traffic type is unknown at first and R − RU , which is the number
of packets that are immediately identified as benign. For the latter, the last sub-step, (IV), must
not be executed. This results in the following worst-case upper bound, where each of the above
sub-steps is represented by a big Roman number:

Ω(I +R · (II + III + IV)) (5.1)

= Ω(F · F + (R−RU) · (II + III) +RU · (II + III + IV)) (5.2)

= Ω(F · F + (R−RU) +RU · F · log(F)) (5.3)

38

5.2. DATASET PREPROCESSING

This is based on the facts that R = RU + (R−RU) (5.2) and that the sub-steps (II) and (III) run
in constant time (5.3). Assuming that R � F and R � RU , this can be expected to run faster
than the previously stated O(R · F), as R only influences the runtime linearly.

5.2.2. Occurring Problems

Even if the described method for the packet-to-flow association is working in theory, there are
problems when applying it to the chosen datasets:

Problems with CIC-IDS-2017: The accuracy of the provided timestamps is only exact to the
seconds, and sometimes only to the minute, which is not suitable with the millisecond-exact
timestamps of the network packets. It can be observed that the actual timestamps seem to be
rounded down, i.e. their milliseconds (and sometimes seconds) are cut off. Having a timestamp
ts which denotes the flow’s declared (and inaccurate) starting time, and a timestamp tr, which is
the real starting time, accurate on the milliseconds, with tr > ts, a packet will be misclassified if
its timestamp lies within [ts, tr). This case is illustrated in figure 5.1 and can’t be detected, as tr
is not known. It could be argued, however, that a packet within this interval should in some cases
be part of the flow, because it was sent only a short time before the flow is declared to begin,
and is therefore likely to belong to the attack. This argumentation would assume that the flow
generation method of the dataset is not accurate for some packets, and an implication would be
that those packets are actually labelled correctly.

Furthermore, due to the inaccurate timestamps, some flows are not distinguishable from each
other at all, but have distinct labels. The first selected flow is then chosen during the preprocess-
ing.

Figure 5.1.: Illustration of three problems that occur while preprocessing the CIC-IDS-2017 dataset
The given timestamps t1-t4, which indicate the starting times of the flows, represent those that are stated

in the dataset. Suppose that t2 and t4 are imprecisely specified: In the packet stream above, it would
then be possible that the fourth packet should actually be assigned to the first flow. In the stream below,

the first three packets cannot be assigned to any flow and are assumed to be benign. Furthermore, the
fourth and fifth flow can’t be distinguished, as they both share the same starting timestamp.

UNSW-NB15: Also this dataset has duplicate flow records, however mostly they only differ
in the provided attack category. Assuming that such records are no error in the dataset, they
would indicate that the same network packet belongs to multiple attack categories. This case is
neglected in the preprocessing, and only the first attack category is used for labelling the packets.

Furthermore, the dataset provides some names for transport protocols which could not be cor-
rectly identified. Among them there are seven names which are also assigned to some attacks:
any (411 flows), ip, pri-enc, zero, isis, sccopmce and ib (137 flows, respectively). As their
protocol number in the IP header is not known, the corresponding packets cannot be identified
and hence no matching flow can be found. As a consequence they will be labelled as benign.

39

5.2. DATASET PREPROCESSING

CIC-IDS-2017 UNSW-NB15

Packets with Indistinguish-
able Flows

112,296 27,693

Packets with no Matching
Flow

32 640

Non-IP Packets 412,516 25,481

Table 5.1.: Preprocessing Measurements for UNSW-NB15 and CIC-IDS-2017

5.2.3. Preprocessing Result and Validation

For describing the degree of inaccuracy that emerges through the problems indicated in the previous
section, the following validation metrics are collected:

Number of expected and actual packets per attack category: For each flow, the number
of packets in forward and backward direction is provided in the datasets. As a packet should only
belong to one flow, the sum of those numbers can be seen as the number of expected packets and
might be broken down by attack categories. Thereby a comparison is possible with the number
of packets that are associated with each attack during the preprocessing. Both the absolute and
relative difference (in relation to the number of expected packets) is calculated.

Number of uncertain assignments due to indistinguishable flows: This number counts all
packets for which at least two flows are found that cannot be distinguished based on the provided
information. For the CIC-IDS-2017 dataset, this seems to be due to the inaccurate timestamps,
whereas the UNSW-NB15 dataset provides flows that are completely identical except for the
attack category.

Number of packets that cannot be assigned to any flow: Packets for which the step
get exact flow returns ‘None‘ are counted here. This happens if the packet’s timestamp lies
before the first starting time of the examined potential flows.

Number of packets for which no flow ID can be generated: Effectively, this contains all non-
IP packets, and does not directly indicate an error, but instead provides additional information
about the dataset.

Table 5.1 shows the last three measurements, whereas tables 5.2 and 5.3 display the distribution
of attack flows and the ratio between expected and associated packets for each category. It can
be observed that for both datasets, a significant portion of the expected packets cannot be found
during the preprocessing. Despite the mentioned problems in the datasets it cannot be ruled out
that the reason for those inaccuracies lies within the implementation of the preprocessing itself.
However, an argument against this assumption is that in both datasets there is an attack category
for which the number of associated packets exactly equals the expectations, indicating that the
preprocessing at least yields correct results for those. Furthermore, it should be noted the number
of wrongly associated packets in the UNSW-NB15 dataset is likely influenced by the fact that for
each one of the duplicate flows, a packet is expected, but it only can be assigned to one of them.
However, the impact on the evaluation of an NIDS is not as severe, because the packet in question
is still classified as an attack. For the CIC-IDS-2017 dataset, on the other hand, the preprocessing
seems to result in more misclassifications, i.e. packets which belong to an attack but are classified
as benign.

40

5.2. DATASET PREPROCESSING

Category Flows in the
Dataset

Expected
Packets

Associated
Packets

Absolute
Difference

Relative
Difference

Exploits 44140 2552199 2298198 254001 09.95%

Reconnaisance 13938 168003 138127 29876 17.78%

DoS 16045 741314 641025 100289 13.53%

Generic 215439 730630 314966 415664 56.89%

Shellcode 1511 13983 13983 0 00.00%

Fuzzers 24176 481398 409338 72060 14.97%

Worms 174 14120 13114 1006 07.12%

Backdoor 2280 19061 7792 11269 59.12%

Analysis 2621 19907 9346 10561 53.05%

All Attacks 320324 4740615 3845889 894726 18.87%

Table 5.2.: Preprocessing Result of the UNSW-NB15 dataset

Category Flows in the
Dataset

Expected
Packets

Associated
Packets

Absolute
Difference

Relative
Difference

FTP-Patator 7938 105618 86806 18812 17.81%

SSH-Patator 5897 163095 160169 2926 01.79%

DoS slowloris 5796 46327 46543 -216 00.47%

DoS
slowhttptest

5499 36874 36317 557 01.51%

DoS hulk 231073 2191807 2160242 31565 01.44%

DoS golden-
eye

10293 99003 103266 -4263 04.31%

Web Attack
Brute Force

1507 27771 23039 4732 17.04%

Web Attack
XSS

652 7483 5387 2096 28.01%

Web Attack
Sql injection

21 120 94 26 21.67%

Infiltration 36 59754 59754 0 00.00%

Bot 1966 12853 12895 -42 00.33%

DDoS 128027 989426 780791 208635 21.09%

Portscan 158930 321442 318684 2758 00.96%

All Attacks 557635 4061573 3793987 267586 06.59%

Table 5.3.: Preprocessing Result of the CIC-IDS-2017 dataset

41

5.3. FEATURE EXTRACTION

5.3. Feature Extraction

5.3.1. Network Flow Generation

Inspired by the feature extraction methods of the two chosen datasets, a feature extractor that
creates network flows is presented in this section. The reason why a new one is implemented,
instead of using already-existing solutions such zeek, argus, or CICFlowMeter (cf. section 2.1),
is that, usually, such flow generators discard the packet payloads. For this thesis, however, the
payload will later be taken into consideration as well, as described in the next section. Furthermore,
an own implementation can be configured more flexible and ensures reproducibility, which might
be beyond control when using third-party solutions.

The feature extractor groups IP packets based on their source and destination IP address, on the
IP protocol number, and on their source and destination ports. The latter two can only be used if
the packet’s transport protocol is understood29 and if the protocol itself is based on ports. If this
is not the case, the particular packets are only grouped based on their IP addresses and protocol
number. Thus, for each packet, a flow identification, consisting of these five values, is created for
determining its respective flow. As all generated flows should be bi-directional, the IP addresses
within this flow identification are not ordered according to the direction of the packet, but instead
sorted based on the numerical value of the addresses. For example, a packet with IP protocol
number 6 (TCP) from address 192.168.12.1 and port 80 to 172.182.4.4, port 4111 is grouped
into a flow with the ID (172.182.4.4,192.168.12.1,6,4111,80).30

Additionally, packets are also grouped based on their timestamp. A configurable timeout value
determines if a packet will be appended to an already-existing group or if a new one will be opened
with the same identification. For TCP packets, the packets can also be grouped based on the
observed connections, as shown later.

For each of the created groups, a set of statistical features is afterwards extracted. Each feature
has one of the types int (for discrete numerical values), float (for continuous numerical values),
binary (which only permits 0 or 1 as valid values) or categorial. The latter indicates that
the feature values should not be compared based on the ordinal relationships of their numerical
representations.

In the default configuration, the generated features are grounded on values from the IP headers,
on the port of the transport protocol, and on statistics about the overall number of packets, packet
sizes and arrival times (cf. table D.1). The packet size is defined as the size of its payload in bytes,
i.e. only the transport layer data is taken into account here. That way, the length of the IP header
does not have any influence on features that depend on the packet’s length. Additionally, as also
done in the CIC-IDS-2017 and UNSW-NB15 datasets, the packets of a flow are separated by their
direction. For each flow, the forward direction is determined by the first packet; all packets in the
reverse direction are assigned to the backward direction. Tables D.2 and D.3 show the features
which are extracted using those separations.

In addition, it is possible to specify further operation modes for the feature extractor. As described
in the following, they may add new features or alter how the network flows are grouped and how
the above-mentioned features are created.

Include IP addresses: With the mode with ip addr, the source and destination IP addresses
for each flow are appended to the extracted features. For this purpose, their binary representation

29More precisely, this means that the used library dpkt can parse the payload of the IP packet. It supports most of
the protocols which are relevant in practice, e.g. TCP, UDP, ICMP, and IPX. https://dpkt.readthedocs.io/
en/latest/api/index.html can be referred to for a complete listing.

30For illustration purposes, the two IP addresses are here compared by their dot-decimal representation. For a more
efficient implementation, comparing the binary representations achieves the same purpose.

42

https://dpkt.readthedocs.io/en/latest/api/index.html
https://dpkt.readthedocs.io/en/latest/api/index.html

5.3. FEATURE EXTRACTION

is converted to an integer. The question of whether or not IP addresses should be considered for
anomaly detection is answered differently in literature. On the one hand it can be argued that
their incorporation makes it harder to generalize the characteristics of attacks between different
networks (cf. [40, p. 3], [36, p. 7] and [33, p. 29]). On the other hand, they can be helpful
to detect unusual traffic patterns within the same network, as shown in various works. For
example, messages from unauthorized IP addresses can be filtered to prevent analysis attacks [42,
p. 695] and counting the number of similar flows from distinct IP addresses can help to reveal
decentralized botnets [8, p. 248]. In order to measure the effect of using the IP address features
with different network types, the mode can be turned on or off according to the requirements of
a particular evaluation setup.

Consider the dot-decimal representation of an IP address: The described way of extracting
features from the packet’s IP addresses does not take into account any semantic meaning of its
parts in the dot-decimal representation. For example, 192.168.231.2 and 192.168.231.210

could identify hosts from the same subnet, but this relationship is not adequately modelled
with the default feature extraction which calculates the decimal value of the complete address.
For that reason, the mode ip dotted creates separate features for each part in the dot-decimal
representation of an IPv4 address. More generally, it creates an additional feature for each 8-bit
part of the address. For example, 192.168.231.2 then results in the four new feature values 192,
168, 231 and 2. As both IPv4 and IPv6, which provides 128-bit addresses, must be supported
by the feature extractor, a total number of 16 features are generated for each IP address (for
IPv4, the first twelve features are padded with zeros).

Generate features based on the digits of the port number: Similarly, the basic implemen-
tation described above does not consider the semantics of port numbers that are used by the
transport protocol. For example, some applications only use certain port ranges in TCP and
many operating systems require administrator rights for opening ports of lower ranges (e.g. port
80 or 443). A naive way for reflecting such information in the extracted features could be the
segmentation of the port number based on its decimal digits. This is implemented with the mode
port decimal: For instance, port 8080 results in the feature values 8, 0, 8 and 0. Altogether
eight additional features per port number, each representing a digit in it, are extracted, so that
all common port number lengths can be handled. In the case that the port number has less than
eight digits, the remaining digits are filled with zeros.

Creation of Subflows: Inspired by the functionality of CICFlowMeter (the feature extractor
used for the CIC-IDS-2017 and CIC-IDS-2018 datasets), the mode subflows examines a flow for
packets that are sent closely together31. Essentially, the same grouping technique as for the flow
creation is used, but with a smaller timeout, which is passed as a hyperparameter with a default
value of 0.5 seconds. By doing this, the behaviour of some transport protocols which segment the
payload into multiple IP packets (like TCP) can be analysed, as such segments are likely to be
sent in short succession. Table D.4 shows the features that are additionally extracted using this
information. Besides statistics like the average subflow length, the entire flow can also be divided
into active and idle phases, depending on whether or not any subflow is yet open, i.e. waiting
for the next packet. Figure 5.2 illustrates the recognition of subflows in backward and forward
direction and shows the flow’s active and idle times.

TCP features While the feature extractor is supposed to be agnostic of any transport protocol
in its basic mode (except taking into account the port information), the tcp mode exploits several
characteristics of this protocol to extract additional features. First, the flow grouping mechanism
is altered, so that flows are not only closed by a timeout, but also by a TCP packet with a FIN flag
set, which signals the end of a connection. Optionally, with the mode tcp end on rst the RST

flag can also be considered. For each of those connection-based flows, additional TCP features
are extracted, as shown in table D.5. If the flow’s protocol is not TCP, those feature values are

31Confer the features subfl fw pk, subfl fw byt, subfl bw pk and subfl bw byt on the CIC-IDS-2018 description
website [14]. They represent the average of the transmitted bytes and packets per subflow in forward and
backward direction, respectively.

43

5.3. FEATURE EXTRACTION

Figure 5.2.: Division of a flow into subflows as well as idle and active times

set to -1, so that they are distinct from any possibly-observable value.

Inspection of the last n flows Analogical to similarly extracted features in the UNSW-NB15
dataset, the mode hindsight compares certain attributes of a flow with the last n flows before it
(ordered by the flows’ starting timestamps). n is a configurable parameter, called the hindsight
window and is set to 100 by default. Within this window, flows with the same IP addresses, ports
or protocols are counted. This can help to detect decentralized attacks. Table D.6 shows the
corresponding features.

Only extract basic features: The last of the described operation modes is called basic and
only selects a very small subset of the features generated by default, namely src port, dest port

and protocol. It can be expected to only be useful in conjunction with enhancements of the
network flow generator that generate additional features, such as the payload analysers described
in the following. The rationale for this mode is the need to determine the influence of such
enhancements with as little interference as possible.

5.3.2. Flow-Based Payload Analysis

This section describes two feature extraction approaches that take into account the payload of
an IP packet. They are based on the previously described flow generator, i.e. they inspect the
aggregated payload of all packets in a flow and extract features from it. All of the operation modes
can be utilized in conjunction with the following approaches.

(A) Append relative frequency of bytes as features

The first of the two described methods simply counts the frequency of each possible byte in the
flow’s concatenated payload. It then calculates the relative frequency for each byte (by dividing the
byte count by the overall payload length) and thereafter appends these values as 256 new features.

It can be seen as a baseline for payload analysis methods as it is very easy to implement, running
in linear time complexity.

(B) Build and compare 1-byte n-grams distributions (resembling PAYL)

A more sophisticated method is inspired by PAYL [60], which also counts 1-byte n-grams but rather
builds a distribution over these counts during the training phase. For feature extraction, it then
calculates the distance between the observed payload and the one seen during the training using a
simplified version of the Mahalanobis Distance. These values are used for generating features that

44

5.3. FEATURE EXTRACTION

indicate how anomalous the payload of a flow is. This is insofar different from the original PAYL
as it takes into account the flow groupings.

The following describes the steps and functionalities of the PAYL feature extractor in detail.

Profile Building In the training phase, the feature extractor builds a distribution over the ob-
served byte frequencies for each distinct (protocol, port, packet-length)-tuple (with regard
to the transport protocol). This is done for each packet, without taking into account flow infor-
mation yet. For each distinct and observed protocol-port-length combination, the following data
is stored in the memory:

• n, the total number of observed payloads (resp. packets) for the corresponding (protocol,

port, payload-length)-tuple

• xi: a distribution over the mean relative byte frequency for each possible byte value i ∈
{0, . . . , 255}

• σi, the standard deviation for each of the observed byte distributions, which is later used
for the simplified Mahalanobis distance

• x2i : the mean of the squared relative byte frequencies, which is later used for updating the
corresponding σi

Note that n can be stored as a simple integer, whereas the other data structures are arrays of
length 256, as they contain a value for each possible byte value i. For each packet in the training
set, the above data structures are initialized if they do not exist yet for the corresponding protocol-
port-length combination. Otherwise, if already existing, they are updated with the payload’s byte
frequencies yi as follows (cf. [60, p. 9]):

• n← n+ 1, as the number of observed payloads has increased by one

• xi ← xi + xi−yi
n , which updates the mean byte frequencies with the newly observed ones

• x2i ← x2i +
x2
i+y

2
i

n , analogically updates the mean squared byte frequencies

• σi ←
√
x2i − (xi)2 updates the standard deviation for each byte. This equation is based on

the fact that the standard deviation is the square root of the variance, and the variance can
be calculated with the equation V ar(X) = E(X2)− (EX)2. E denotes the expected value,
which is approached here using the observed mean byte frequencies.

These variables are stored in the database after the training phase is ended.

Feature Extraction The feature extraction takes place both in the training and classification
phase and uses the trained profile from above. In the training phase, it is run after the profile
was built, so that the features are extracted in the same way as later during the classification.

For each packet in a flow, the relative byte frequencies are calculated. Then, a lookup is made in
the profile for the flow’s protocol-port-length combination. If the particular payload length was
not observed during the profile training, the nearest available packet length is taken.

For the calculated byte frequencies y, the loaded mean byte frequencies from the profile x and the
standard deviations σ, the simplified Mahalanobis distance is then calculated with the following

45

5.4. FEATURE TRANSFORMATION

equation:

d(x, σ, y) =

255∑
i=0

|yi − xi|
σi + α

(5.4)

α is a configurable smoothing factor, with α ∈ R, α > 0. It prevents the denominator from
becoming zero. It is also a measurement for the statistical confidence, i.e. how representative the
training data is for the actual distributions. It is recommended to decrease α with increasing size
of the training data. In the implemented version of PAYL, α does not change automatically, as
the training set does not change after the training ended.

The Mahalanobis distance calculation is done for all packets of a flow. This results in a list of
distance values, which is then used for the actual feature generation, as shown in table D.7. For
each flow, the mean, minimum, maximum, and standard deviation of its packet’s distance values
are calculated, which give information about the degree of abnormality to the payloads observed
during the training phase.

Clustering An additional step, which is executed after the profile’s training, is clustering the
distributions based on neighbouring packet lengths. This reduces the size of the profile and can
also enhance the ability for anomaly detection (cf. [60, p. 9f.]). The clustering process merges two
neighbouring distributions if their Manhattan distance is below a certain (configurable) threshold.
Per clustering iteration, each distribution is only merged once. The entire process is repeated
until no distributions are merged anymore.

For merging two distributions p and q, the following calculations are done, resulting in a new
distribution x:

• n← np + nq

• for each i ∈ {0, . . . , 255}: xi ← pi·np+qi·nq

n

The new packet length is the arithmetic mean of the two old ones. The mean squared byte
frequencies must not be updated because they are not needed after the training.

5.4. Feature Transformation

5.4.1. Min-Max-Scaling

The min-max scaler τ min-max aims to transform a feature value into the [0, 1] interval, by comparing
it with minimum and maximum values of the feature. Those interval limits are determined during
the training phase, therefore they do not change later, even if a bigger or smaller feature value
is observed. Thus, during the classification, the feature values can also lie outside the targeted
interval.

For the transformation of an instance x = (v1, . . . , vτ min-maxin
), a new feature value vi is calculated as

follows:

min-max(vi) =
vi −mini

maxi −mini
(5.5)

where mini and maxi are the minimum and maximum values of the feature which are observed
during the training phase. This results in a function

46

5.4. FEATURE TRANSFORMATION

tτ min-max(x) = (min-max(v1), . . . , min-max(vτ min-maxin
))

As a consequence, the transformer does not change the length of the instances. The feature types
are respectively transformed to float.

5.4.2. Standardization

Another common method for transforming features is standardization (or z-score). It works
analogous to min-max scaling, but modifies the feature values so that they have unit variance and
zero mean, as follows:

standard(vi) =
vi − vi
σi

(5.6)

where vi is the arithmetic mean of the feature’s values during the training, and σi their standard
deviation. As with the min-max scaler, those variables are not changed after training, so that the
transformation will stay consistent between classification and training. τ standard transforms the
features with:

tτ standard(x) = (standard(v1), . . . , standard(vτ standardin
))

5.4.3. One-Hot Encoding

A one-hot encoding bijectively represents the possible values of a feature as binary numbers with
exactly one 1-bit. The remaining bits are set to 0. Each bit is then mapped to a new feature. Each
one of these newly generated features uniquely represents a certain value of the encoded feature,
and attains 1 only for this value. As a consequence, its value is 1 if and only if the other one-hot
features are 0. Fig. 5.3 shows an example for transforming the IP protocol numbers. One-hot
encodings are a widely-used encoding mechanism in machine learning [47, p. 7].

Figure 5.3.: Example of the feature transformation using a one-hot encoder
It creates a new feature (presented by a column) for each observed protocol value. Other (non-categorial)

features are left untouched.

47

5.5. DECISION ENGINES

The one-hot encoder only expands categorial features in this manner, all other features are left
untouched. Furthermore, it only creates new features for values that were observed during training,
which has two implications. Firstly, the transformer doesn’t need to have any knowledge about the
feature and all its possible values, but instead learns them during the training phase. Secondly, if
it encounters a feature value during classification that was not observed in the training it cannot
create a one-hot encoding for it. In this case, all one-hot features are set to 0. While this loses
the information about the original feature value, it keeps the overall feature set consistent between
training and classification, which is essential for the consecutive model pipeline steps (other feature
transformers or the decision engine). Also, it is in accordance with the assumption that categorial
features should not be compared based on their numerical value. Instead, the only necessary
information is that the unknown feature values are of a different category32.

5.4.4. Principal Component Analysis

The last of the implemented feature transformers execute a principal component analysis (PCA)
on the feature matrix. They are available for 10, 20, 30, and 50 principal components. Thereby,
a dimensionality reduction of the feature space can be achieved. This could have a positive effect
on decision engines that cannot handle high dimensional data well, such as the one-class support
vector machines.

5.5. Decision Engines

5.5.1. One-Class SVM

The implementation of the one-class SVM is based on the libraries scikit-learn and libsvm [16].
The following parameter can be specified:

Kernel: It can be chosen between a linear, polynomial, sigmoid and rbf (radial basis function)
kernel (see section 2.3.4).

nu: ν must be within the interval (0, 1] and is an “upper bound on the fraction of training errors
and a lower bound of the fraction of support vectors” [52]. Thus, lower values will cause the
model to fit the training data more accurately, while higher values will increasingly exclude
present outliers in it.

gamma: γ is a parameter appearing as a coefficient in the rbf, sigmoid and polynomial kernel
function. Like ν, it influences the trade-off between generalization and over-fitting. For the rbf
kernel, γ → 0 makes the kernel mappings converge at one point, which causes an over-generalized
model without any classification ability, while γ → ∞ results in over-fitting due to the kernel
mappings being orthogonal. [63, p. 76]

degree: This parameter specifies the degree of the polynomial kernel and has no effect for other
kernels.

coef0: Like degree, it only has an effect for the polynomial kernel where it appears as a constant
coefficient.

tolerance: This parameter declares the tolerance for the stopping criterion of the one-class SVM.

32Suppose two additional feature rows in 5.3 with protocol numbers 42 and 23, which were not seen during the
training phase. Both will be mapped to the one-hot feature vector (0,0,0), which makes it impossible for the
subsequent model components to distinguish them. However, this can be seen as a desired effect, as, given the
training data, there should not be any special conclusion that can be made for one of them that cannot also be
made for the other one.

48

5.5. DECISION ENGINES

shrinking: It can be set to true or false and specifies whether or not the so-called shrinking
heuristic should be used. If turned on, libsvm tries to remove some instances in order to create
a smaller optimization problem, which can be solved in shorter time. [15, p. 13]

cache size: The cache size has an impact on the runtime. With more available memory, it can
be set higher and accelerate the training time.

max iter: If this value is set to a positive integer, it specifies the number of iterations after which
the training will stop, even if the stopping criterion is not yet met. By default, there is no such
fixed limit.

5.5.2. Autoencoder

The autoencoder implementation is realized with the libraries keras and tensorflow. During the
training phase, it tries to fit the training instances with a low reconstruction error. Afterwards, a
threshold is determined, which depends on the observed reconstruction errors using the training
set. For determining whether a new instance is an anomaly or not, it is reconstructed by the
autoencoder and the error is compared with the threshold: If it is greater, the instance is classified
as an attack, otherwise as benign traffic.

The following parameter influence the behaviour of the autoencoder:

Loss Function: The loss function is used for training the autoencoder and for determining the
reconstruction error. It can be chosen between the mean absolute error (mae) and mean squared
error (mse).

Activation Function: The available activation functions are provided by keras. Among them
are relu, sigmoid, softmax, tanh, and exponential.

Layer Sizes and Depth: This parameter is a textual representation of the autoencoder’s archi-
tecture. It states the size of each layer, divided by commas, and thereby also specifies its depth
(i.e. the number of layers). The layer sizes can be either given as (i) a fixed number, (ii) as a
factor that is multiplied by the number of neurons in the previous layer or (iii) as a reference
to a previous layer. For example, the value "20,*0.5,5,#2,#1" yields an autoencoder with five
hidden layers, which respectively have 20, 10 (= 20 · 0.5), 5, 10 (as the second layer), and 20 (as
the first layer) neurons. As the size of the input layer (and therefore also those of the output
layer) is influenced by the previous model component, it is not a modifiable hyperparameter and
cannot be changed here.

Threshold Percentile: This value determines how many instances are used for determining the
threshold during the training phase. It is expressed as the percentile of all training reconstruction
errors and therefore must lie between zero and 100. If it is set to 100, the greatest observable
reconstruction error is taken as the threshold.

Batch Size: It specifies the number of instances of a mini-batch. The dataset is split into multiple
mini-batches for the training.

Epochs: This parameter determines the number of epochs for which the autoencoder is trained.

Early Stopping Patience: This parameter specifies the number of epochs after which the train-
ing stops early if the model’s performance was not improved within them. If set to −1, the
training is never stopped early.

49

Chapter 6 | Experiments

6.1. Overview and Experiment Setup

This chapter describes the experiments that were run with the implemented evaluation framework
in the context of this thesis. They were executed on a computing cluster using the Slurm Workload
Manager. The cluster provided an NVIDIA Tesla V100 GPU, which was utilized for the autoen-
coder tests, and altogether 512 GB RAM, of which between 20 GB and 320 GB were used for each
run (depending on the expected memory consumption of the model components and the processed
traffic). Furthermore, a sufficiently big file system was available, which was essential for persisting
the datasets, their preprocessing results, the trained anomaly detection models, and evaluation
measures.

Each experiment was designed for the evaluation of a single model component. Therefore, the
other components were kept more or less fixed, while the parameters of the component that was
the subject of the experiment were varied using a grid search approach.

The experiments were run on both the CIC-IDS-2017 and the UNSW-NB15 dataset. For both, the
endorsed training and testing sets were ignored, and instead, the preprocessing results (cf. section
5.2) were used. For CIC-IDS-2017, the Monday set, which only contains benign traffic (ca. 11 GB),
was used for the training, and the remaining workdays (Tuesday - Friday ; ca. 39 GB; 44,660,731
packets) for the classification phase. For the UNSW-NB15 dataset, it was needed to define own
splits, as those are not present in the dataset itself. It was observed, however, that certain PCAP
files only contain benign traffic. Based on this fact, the splits displayed in table 6.1 are defined
(and referred to hereinafter). As can be seen, not only one training set is provided, but instead
two distinct ones, to make them of a more similar size as the CIC-IDS-2017 Monday subset. Most
experiments in the following use the “A” training and “b” test split.

At first, different parameters for both of the implemented decision engines were examined, while
using a fixed configuration for the network flow feature extractor. The latter is borrowed from
reports of well-performing models in literature: the flow timeout is set to 12 seconds, the subflow
timeout to 500 milliseconds and both the tcp and subflows mode are used (cf. section 5.3.1). The
set of resulting features partly resembles those that would be generated by the CICFlowMeter or

Subset Name Usage PCAP files Number of Packets Size

A Training Day 1: 10.pcap - 31.pcap (not determined) ca. 21 GB

B Training Day 1: 32.pcap - 53.pcap (not determined) ca. 21 GB

a Classification Day 1: 1.pcap - 9.pcap 15,655,696 ca. 8.5 GB

b Classification Day 2: 1.pcap - 14.pcap 49,331,908 ca. 27 GB

c Classification Day 2: 15.pcap - 27.pcap 43,228,007 ca. 23 GB

Table 6.1.: Defined subsets of the UNSW-NB15 dataset

50

6.2. RESULTS

that are used in the UNSW-NB15 dataset. For the one-class SVMs, the rbf, sigmoid and polynomial
kernels were investigated (whereas the examined parameters are mostly nu and gamma, as well
as kernel-specific parameters). As a one-class SVM might yield better results with a reduced
input dimensionality (cf. section 3.1), some tests incorporating PCA were run. The autoencoder
experiments, on the other side, vary its depth, layer sizes and the threshold percentile, as well as
its training batch size, the number of training epochs and the loss function.

Afterwards, well-performing approaches were used for comparing different feature extraction meth-
ods: the flow extractor’s different modes were tested independently, as well as different values for
the hindsight window and the flow and subflow timeouts. Moreover, experiments with the payload-
analysing feature extractors from section 5.3.2 were run. Here, closer attention was given to finding
out which attack types could be detected better by analysing the payload.

In all of the tests outlined above, the feature transformers applied one-hot encoding on categorial
features, as well as min-max scaling and standardization (in this order), as described in section
5.4. This is based on the rationale that the implemented approaches are expected to benefit from
those transformations. For completeness, different combinations of the feature transformers were
tried out as well.

Lastly, the case of unclean training data (i.e. network traffic containing attacks), was simulated,
due to its practical relevance (cf. section 2.3.3). In this way, a more profound conclusion regarding
the influence of attacks in the training set can be drawn. In the end, a larger subset of the UNSW-
NB15, almost encompassing the whole dataset, was used in order to evaluate the best-performing
one-class SVM configuration.

For the evaluation of the made classifications, a set of measurements based on a generated confusion
matrix was calculated, including precision, recall, MCC, balanced accuracy and the F1-score. As
mentioned in section 2.4, the false detection rate can be inferred from the precision. Furthermore,
the total count of false negatives and false positives are given in the following, so that the number of
errors an approach is committing can be reasoned. Finally, considering the objective of comparing
the approaches under practical aspects, the average classification time per packet is measured. Of
course, this highly depends on the utilized implementations, which are not optimized, and further
on the availability of system resources during the experiments, which could not be ensured to be
stable. Nevertheless, this value can help to determine which approaches are faster than others, by
considering its relative difference.

6.2. Results

The detailed results are shown in the respective tables in the appendix. It should be noted that the
experiments sometimes were not executed in completeness due to technical complications on the
computation cluster or because it became apparent that particular configurations do not improve
the detection performance. Furthermore, models which did not classify any packet as an attack
are not shown, as in this case no confusion matrix can be calculated due to the lack of any false
or true positives. In any case, such models have no relevance in practical setups.

For a compact representation, the tables use the following abbreviations: RC for recall, PR for
precision, BA for balanced accuracy, F1 for the f1-score, FN for the false negatives, FP for the
false positives and ms/p for the mean classification time per packet in milliseconds.

6.2.1. One-Class SVM

Tables D.8 and D.9 show the results for the experiments using the rbf kernel. The grid search here
was executed over the parameters γ and ν. The parameters yielding the highest MCC of 87.26%

51

6.2. RESULTS

for the UNSW-NB15 dataset are γ = 0.001 and ν = 0.001, with a tolerance of 0.01. Even if all
other configurations yield a recall of 1, they result in lower precision values. Nevertheless, the best
configuration found only has a precision of 77.78%, which might result in too many false alarms for
a practical setup. The results for the CIC-IDS-2017 were much worse and overall showed precision
values around 10%, which is unacceptable from a practical point of view. Accordingly, the best
configuration only achieved an MCC of 19.01%. As later noted, it must be questioned whether the
underlying packet labels used for the evaluation are accurate enough for permitting any meaningful
inferences from the results for this dataset.

A little bit more promising for the CIC-IDS-2017 dataset is the polynomial kernel, which led to
higher precision values, but at the same time much lower recalls. Two grid searches were executed
for this kernel, one with varying values for the parameters degree and coef0, and the other for
different γ and ν values (cf. tables D.10 and D.13). The best configuration here achieves a precision
of 90.88% and an MCC of 30.76%. For the UNSW-NB15 dataset (cf. tables D.11 and D.12), on
the other hand, the polynomial kernel here yielded worse results and achieved a maximum MCC
of only 19.73%.

The grid search for the sigmoid kernel was not executed in detail, but only for some of the possible
combinations. The results suggest that it is inferior to the rbf kernel for the UNSW-NB15 dataset
and the polynomial kernel for the CIC-IDS-2017 dataset (cf. tables D.14 and D.15).

Table D.16 shows the combination of the PCA feature transformer with the one-class SVM (featur-
ing the rbf and polynomial kernel). The assumption of implicating a better detection performance
cannot be confirmed clearly, as no significant improvement can be observed. However, the clas-
sification times per packet are slightly shorter and for the UNSW-NB15 dataset, a configuration
yielding a slightly better precision and MCC was found with 30 principal components.

The results for the hyperparameter search with different combinations for the feature transformers
performing standardization, min-max scaling, and the one-hot encoding are shown in table D.17.
It can be seen that, for a one-class SVM employing the network flow generator, standardization is
the most important feature transformation step. Furthermore, if a min-max scaler is applied, its
position should be before the standardization. Surprisingly, the one-hot encoding does not seem
to have a big influence (the MCC values are even slightly higher without it); this could be due to
the fact that the one-class SVM may handle smaller feature numbers better, or because there are
not many features which are expanded by the one-hot encoder, so that it has not much effect.

6.2.2. Autoencoder

The experiments for the autoencoder first were executed by a grid search iterating the layer sizes,
the threshold value, and the loss function, while using the relu activation function. The results
are shown in the tables D.18 and D.19. For the CIC-IDS-2017 dataset, a similar trend as described
above is observable: The best configuration only achieves an MCC of 17.93% and a precision of
12.66%. For the UNSW-NB15 dataset on the other hand, an MCC of 88.00% and a precision
of 78.25% was achieved by an autoencoder employing the architecture "*0.9,*0.8,*0.8,#2,#1",
the mean squared error as the loss function, and a threshold percentile value of 99.99%. The best
overall precision was 87.36%, but here, a recall of only 36.88% could be attained.

Table D.20 shows the results of the grid search that tried out different values for the training epochs
and training batch size, as well as the early stopping patience. It shows that those parameters have
no big influence on the detection ability, but smaller training batches seem to favour the resulting
precision values, while greater ones yield higher MCCs.

52

6.2. RESULTS

6.2.3. Flow Feature Extractor

The experiments for the parameters of the network flow generator were only run with the UNSW-
NB15 dataset, as the approaches examined so far achieved no convincing performance with the
CIC-IDS-2017 dataset. A one-class SVM with the rbf kernel and the parameters γ = 0.0005 and
ν = 0.001 was utilized. Table D.23 shows a grid search iterating various values for the flow and
subflow timeouts, while the tcp and subflow modes were applied. Due to the number of tested
configurations, only those with a precision greater than 70% are shown in the table. It can be
observed that the influence of both the flow and subflow timeout parameters is existent, but rather
marginal, as the MCC values only range from 81.56% to 84.88%. The best found configuration
consists of a flow timeout of 12 seconds and a subflow timeout of 0.55 seconds.

Table D.21 shows the best flow generator operation mode combinations for each of the attack
categories in the UNSW-NB15 dataset. It should be noted that a direct comparison between the
categories is not meaningful, as their number of attack packets varies (cf. section 4.5). However, the
MCC can be used for comparing the performance of different configurations in the same category;
and in this way, the most promising combinations were determined. Therefore, the table shows
the configuration with the best MCC for each attack category. An insightful value, besides the
balanced accuracy, is the recall, which indicates how many of the category’s attack packets were
found. In order to reduce the number of experiments, all of them utilized the subflows mode,
except when the basic mode was turned on. The experiments were run with an autoencoder as
the decision engine, featuring an architecture described by "*0.9,*0.8,*0.8,#2,#1", the relu

activation function and the mean squared error as the loss function. The results show that the
best configurations include the tcp mode for all attack categories, and never use the basic mode.
The port decimal mode only improves the detection performance for the categories “worms” and
“generic”. For the former, this might be explainable with the fact that some worm implementations
try to infect a certain range of ports, which is more easily recognizable by only considering parts of
the port number. For the categories “fuzzers”, “exploits”, “reconnaissance”, and “shellcode”, the
modes with ip addr and ip dotted yield the best results in conjunction. For the “dos” category
solely using with ip addr is better. Nevertheless, this shows that the inclusion of the IP addresses
provides valuable information for the detection of attacks when using the UNSW-NB15 dataset.
All of the categories described until now could be detected with recalls greater than 75%, and only
the categories “backdoor” and “analysis” could not be recognized to a satisfactory extent.

The described experiments for the operation modes did not include the hindsight mode, since it
was examined in the following. Here, the grid search varied the hindsight window, as well as the
subflow timeout. Both the tcp and subflows modes were used. Moreover, the flow timeout was
set to a fixed value of 6 seconds. The results in table D.22 indicate that the hindsight mode helped
to detect both “backdoor” and “analysis” attacks, which can be detected with a recall of more
than 93.19% and 55.60%, respectively. Further recall improvements can be made for the “worms”,
“fuzzers”, and “dos” categories, while the recall values for “exploits” and “generic” decreased in
comparison with table D.21. A hindsight window of 500 flows seems to be an acceptable value
for practical circumstances, as with higher values, the classification time increases significantly. In
comparison, a hindsight window of 2000 flows already raises it by a factor of approximately 1.5.

Finally, table D.24 shows the influence of the tcp end on rst mode, which causes the flow gen-
erator to end flows when a RST TCP flag is observed. The experiments followed the setup of
the autoencoder experiments utilizing the "*0.9,*0.8,*0.8,#2,#1" architecture. It can be seen
that the results barely differ with this mode in comparison to table D.19. However, somewhat
surprisingly, the experiments also revealed that the subflows mode, which was always utilized in
the previous experiments, might not have a positive influence at all on the detection performance.

53

6.2. RESULTS

6.2.4. Payload Analysis

Table D.26 shows the results for the simple payload extractor which appends 256 features that
represent the frequency of each byte in the payload. The experiments were run with an autoencoder
similar to the previous section. It can be seen that the overall recall and precision decrease in
comparison with the normal network flow generator (category “all”), but considerable recall values
could can achieved for the categories “worms”, “shellcode”, “backdoor”, and “analysis”. It should
be noted that the classification time per packet suffers and is almost twice as high as with the
standard network flow generator.

The PAYL flow generator results with the autoencoder are shown in tables D.27 and D.28. Again,
an relu autoencoder was used for determining the best values for the parameters smoothing and
clustering threshold. For the UNSW-NB15 dataset, the training set was reduced in order to
cope with memory issues on the computation cluster, and only half of the A training set was used.
It can be observed that the MCC slightly decreased for the “all” category in comparison with table
D.19. In comparison with the results by attack categories from table D.26, the PAYL analyser could
improve the MCC of the categories “analysis”, “exploits”, “fuzzers”, “reconnaisance”, “shellcode”,
and “worms”. However, it had the highest of the observed classification times. On average, a
packet needs 0.2679 milliseconds in order to be classified. For the CIC-IDS-2017 dataset, the
PAYL analyser only was executed on the wednesday and thursday testing sets and only achieved
a considerable performance for the infiltration category, for which an MCC of 71.63 % and a
recall of almost 1 is achieved. However, the precision is at 51.63%, which means that almost every
second packet that is classified as an attack is wrongly labelled as such. Furthermore, the other
attack categories are barely detected better than by a random classifier.

Table D.29 shows the results of PAYL together with a one-class SVM featuring the rbf kernel
(γ = 0.0001, ν = 0.0001). They do not indicate any advantage of using PAYL in comparison with
table D.9. This can be due to a too small training set, too different traffic profiles in the respective
subsets, or because the traffic included in the dataset is not suited for payload analysis to a great
extent, for example, because encryption methods on the application layer might have been used.
Moreover, the implemented flow-based approach of PAYL could need further enhancement and it
is not evident whether the selected features (cf. table D.7) are even suited for anomaly detection,
even if this would be an intuitive rationale.

6.2.5. Unclean Training Data

These experiments, which were run with the autoencoder configuration from section 6.2.3, incorpo-
rated some attacks from the a subset to the A training split in the UNSW-NB15 dataset. As shown
in table D.25, either one or two PCAP files with attacks are included, while the training phase
operates as usual and assumes no attacks in the supplied data. As presumable, the performance
detection goes down with a higher fraction of included attacks. It is notable however that mainly
the recall is affected, while the precision roughly stays at the same level.

6.2.6. Bigger Subsets for the UNSW-NB15 Dataset

Table D.30 shows the results of a one-class SVM with a well-performing configuration from above
(rbf kernel, γ = 0.0001, ν = 0.0001) using almost the complete UNSW-NB15 dataset. Only the a

testing split was spared. The results show a decrease of the MCC and recall; however, the precision
for the complete traffic (category “all”) has improved in comparison to the former experiments, and
is now at almost 89.30%. The other attack categories are shown for reference. It should be noted
again that comparing the precision and MCC values between different categories does not provide
meaningful insights. However, the results show that reasonable recall and balanced accuracy values
can be achieved for the attack categories “worms”, “generic”, “dos”, and “exploits”.

54

Chapter 7 | Conclusion

7.1. Summary

With the present thesis, a systematic approach to evaluating and comparing anomaly-based net-
work intrusion detection systems under practical aspects was proposed. What can be understood
by practical was defined in the first chapter, where dataset independence, no reliance on the ex-
istence of class labels for the training, modern attack types, the system’s runtime efficiency and
low false detection rates were identified as crucial. Derived from those goals, the second chap-
ter narrowed down the theoretical background and argued that one-class classification algorithms
should be preferred for the anomaly-based detection of yet unknown attacks. The literature re-
search shown in chapter 3 pointed out that most of the available related work disregards some of
the mentioned points. Furthermore, it showed the overall lack of an objective, reproducible and
generalized procedure for comparing different approaches to NIDS. In an attempt to address this
very issue, chapter 4 proposed a concept for it, which was designed with the objective to minimize
the gap between experimentation and real-world usage. It consists of the phases preprocessing,
training, classification, and evaluation. A modular and flexible architecture for an anomaly-based
detection model was shown, consisting of a feature extractor, feature transformers, and the decision
engine. Notable here is the requirement of only taking network packets as the feature extractor’s
input, in order to achieve a practice-oriented and unbiased evaluation.

Chapter 5 then delved into the concrete implementation of this concept. Its first part showed the
algorithm which was utilized in order to assign the corresponding traffic label (attack or benign) to
each packet of the chosen datasets (UNSW-NB15 and CIC-IDS-2017). In addition, problems that
arose from its application were discussed. For both datasets, a significant portion of packet labels
could not be correctly identified, which caused problems for the later experiments. The root cause
for those misclassifications could not be identified with absolute certainty, albeit both datasets
show inaccuracies in their provided data. For the CIC-IDS-2017 dataset, those appeared to be
more severe, as many packets belonging to attacks were not identified as such. The remainder of
the chapter described prototypical implementations of the anomaly detection model components,
such as a flow extractor, a packet payload analyser (PAYL), a one-hot encoder, a one-class support
vector machine, and an autoencoder. Those components were then compared to each other in
chapter 6, in order to demonstrate the capabilities of the implemented evaluation system.

The experiment results showed a big difference between both datasets. For the CIC-IDS-2017
dataset, only a few configurations had notable better measurements than a random classifier would.
It must therefore be questioned whether the preprocessing for this dataset led to an unacceptable
extent of inaccuracy for the packet labels, which would make an insightful evaluation impossible.
For the UNSW-NB15 dataset, on the other hand, notable configurations for the autoencoder and
the one-class SVM could be found. However, both showed relatively high false detection rates of
around 20%, which is probably unacceptable for practical setups. No significant advantage of pay-
load analysers could be found; in fact, the overall detection performance sometimes even decreases.
Additionally, they had the costs of a significantly higher runtime, which must be considered as well
in practice.

55

7.2. FUTURE WORK

To conclude, the experiments could not find approaches that are particularly compelling for being
used in practical setups, even if some of them are promising and could be further investigated. More
importantly in this regard, the present thesis laid the foundation for an objective and reproducible
evaluation procedure that permits to make statements about the practicality of implemented de-
tection models, and which can be used in future for evaluating other anomaly-based approaches
to NIDS. The next, and last, section gives suggestions for further work that could be built upon
this foundation.

7.2. Future Work

A crucial point for improving the evaluation quality is the provision of accurate packet-wise labels.
This can be done by either further investigating the utilized datasets in order to eliminate the
described inaccuracies (albeit, due to the problems described in 5.2.2, this might not be achievable),
by reviewing other datasets which provide such data in a more easily-accessible manner, or by
creating a dedicated dataset with this objective. Before this is achieved, results based on the
CIC-IDS-2017 dataset should be interpreted with caution.

As the described anomaly detection approaches should only be understood as prototypical demon-
strations for the evaluation system, they leave much room for further enhancement. Besides using
autoencoders for the compression of the extracted features (i.e. as feature transformers), this in-
cludes the usage of a more complex payload analysis, as shortly introduced in section 3.3. Both
deep learning techniques, but also shallow approaches developed for natural language processing,
such as word or document embeddings, are promising candidates for this.

The developed network flow feature generator can easily be extended in order to support a broader
range of protocols. The incorporation of application layer protocols seems to be encouraging;
however, here, the issue of not being able to handle encrypted traffic must be considered. The
aggregation of network traffic based on sessions could be a potential enhancement.

Furthermore, some changes to the proposed evaluation concept can be imagined. Allowing updates
of an anomaly detection model by giving it feedback about its made classification is an enhancement
that could be relevant in practice. Moreover, a functionality for determining the influence of the
training’s data size on the model’s performance could be of similar interest. Additionally, a more
differentiated inspection of the false alarms on a flow-based, instead of a packet-based, level could
help to define a notion of the concept alarm which might be more suitable for practical needs:
With the previously proposed concept, each miss-classified packet is equalized with a false alarm,
whereas in a practical system, an alarm could consist of multiple packets which belong together.

Lastly, the described hyperparameter search can be replaced by more sophisticated methods which
use the results of previous runs as feedback in order to optimize the parameter configurations. An
efficient and effective tuning process could enable researchers and developers to design performant
anomaly detection models with more ease. Helpful could be the ability to evaluate and adjust
models using incrementally increasing subsets of the datasets. In this way, unpromising approaches
or configurations could be filtered out quickly. Conceivably, by this means an “evaluation-driven”
development of anomaly-based NIDS can be made possible.

56

Appendix A | Bibliography

[1] M. Ahmed, A. Mahmood, and J. Hu, A Survey of Network Anomaly Detection Techniques,
Journal of Network and Computer Applications, 60 (2015), pp. 19–31.

[2] J. An and S. Cho, Variational autoencoder based anomaly detection using reconstruction
probability, Special Lecture on IE, 2 (2015), pp. 1–18.

[3] M. Barth, N. Hellemann, T. Kob, C. Krösmann, U. Morgenstern, T. Tschersich,
T. Ritter, H. Shulman, D. Trapp, and R. Wintergerst, Spionage, Sabotage und
Datendiebstahl – Wirtschaftsschutz in der vernetzten Welt - Studienbericht 2020. (German)
[Espionage, Sabotage and Data Theft - Economic Protection in the Networked World - Study
Report 2020]. Bitkom e. V., 2020.

[4] R. Basnet, R. Shash, C. Johnson, L. Walgren, and T. Doleck, Towards Detecting
and Classifying Network Intrusion Traffic Using Deep Learning Frameworks, (2019).

[5] X. Bellekens, H. Hindy, R. Atkinson, C. Tachtatzis, D. Brosset, E. Bayne, and
A. Seeam, A Taxonomy and Survey of Intrusion Detection System Design Techniques, Net-
work Threats and Datasets, (2018).

[6] D. K. Bhattacharyya and J. Kalita, Network Anomaly Detection: A Machine Learning
Perspective, 04 2013.

[7] M. Bhuyan, D. K. Bhattacharyya, and J. Kalita, Network Traffic Anomaly Detection
and Prevention: Concepts, Techniques, and Tools, 01 2017.

[8] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, and A. A. Ghorbani, Towards
effective feature selection in machine learning-based botnet detection approaches, in 2014 IEEE
Conference on Communications and Network Security, 2014, pp. 247–255.

[9] L. Bilge and T. Dumitras, Before we knew it: An empirical study of zero-day attacks in
the real world, 10 2012, pp. 833–844.

[10] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2007.

[11] Bundesamt für Sicherheit in der Informationstechnik (BSI), Die Lage der IT-
Sicherheit in Deutschland 2020. (German) [The Situation of IT Security in Germany in 2020],
September 2020.

[12] B. Çakir, Zero-Day Attack Detection with Deep Learning, 2019.

[13] Canadian Institute for Cybersecurity, Applications, CICFlowMeter (formerly IS-
CXFlowMeter). https://www.unb.ca/cic/research/applications.html#CICFlowMeter,
2020. [Online; accessed on 13 December 2020].

[14] , CSE-CIC-IDS2018 on AWS. https://www.unb.ca/cic/datasets/ids-2018.html,

i

https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://www.unb.ca/cic/datasets/ids-2018.html

2020. [Online; accessed on 29 December 2020].

[15] C.-C. Chang and C.-J. Lin, Training v-support vector classifiers: theory and algorithms,
Neural computation, 13 (2001), pp. 2119–2147.

[16] , LIBSVM: A library for support vector machines, ACM transactions on intelligent sys-
tems and technology (TIST), 2 (2011), pp. 1–27.

[17] D. Chicco and G. Jurman, The advantages of the Matthews correlation coefficient (MCC)
over F1 score and accuracy in binary classification evaluation, BMC genomics, 21 (2020),
pp. 1–13.

[18] C. Eckert, IT-Sicherheit: Konzepte - Verfahren - Protokolle. (German) [IT Security: Con-
cepts - Methods - Protocols], De Gruyter Studium, 2018.

[19] C. Estan, K. Keys, D. Moore, and G. Varghese, Building a better NetFlow, ACM
SIGCOMM Computer Communication Review, 34 (2004), pp. 245–256.

[20] Europol Press Release, World’s most dangerous malware EMOTET disrupted
through global action. https://www.europol.europa.eu/newsroom/news/world%E2%

80%99s-most-dangerous-malware-emotet-disrupted-through-global-action, January
2021. [Online; accessed on 02 February 2021].

[21] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, Deep Learning for
Cyber Security Intrusion Detection: Approaches, Datasets, and Comparative Study, Journal
of Information Security and Applications, 50 (2019).

[22] S. Gatlan, Emotet malware hits Lithuania’s National Public Health Cen-
ter. BleepingComputer https://www.bleepingcomputer.com/news/security/

emotet-malware-hits-lithuanias-national-public-health-center/, December 2020.
[Online; accessed on 02 February 2021].

[23] K. Ghanem, F. J. Aparicio-Navarro, K. G. Kyriakopoulos, S. Lambotharan, and
J. A. Chambers, Support vector machine for network intrusion and cyber-attack detection,
in 2017 Sensor Signal Processing for Defence Conference (SSPD), IEEE, 2017, pp. 1–5.

[24] M. Gharib, B. Mohammadi, S. H. Dastgerdi, and M. Sabokrou, AutoIDS: Auto-
encoder Based Method for Intrusion Detection System, arXiv preprint arXiv:1911.03306,
(2019).

[25] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, vol. 1, MIT
press Cambridge, 2016.

[26] S. Hansman, A taxonomy of network and computer attack methodologies, (2003).

[27] S. Hansman and R. Hunt, A taxonomy of network and computer attacks, Computers and
Security, 24 (2005), pp. 31–43.

[28] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and X. Bellekens,
Towards an Effective Zero-Day Attack Detection Using Outlier-Based Deep Learning Tech-
niques, 2020.

[29] K. Ingham and H. Inoue, Comparing Anomaly Detection Techniques for HTTP, 09 2007,
pp. 42–62.

[30] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, A Deep Learning Approach for Network

ii

https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.bleepingcomputer.com/news/security/emotet-malware-hits-lithuanias-national-public-health-center/
https://www.bleepingcomputer.com/news/security/emotet-malware-hits-lithuanias-national-public-health-center/

Intrusion Detection System, vol. 3, 12 2015.

[31] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, Detecting HTTP-based
application layer DoS attacks on web servers in the presence of sampling, Computer Networks,
121 (2017), pp. 25 – 36.

[32] V. Kanimozhi and T. P. Jacob, Calibration of Various Optimized Machine Learning Classi-
fiers in Network Intrusion Detection System on the Realistic Cyber Dataset CSE-CIC-IDS2018
Using Cloud Computing, International Journal of Engineering Applied Sciences and Technol-
ogy, 4 (2019), pp. 2455–2143.

[33] K. Kostas, Anomaly Detection in Networks Using Machine Learning, 08 2018.

[34] F. Kuang, W. Xu, and S. Zhang, A novel hybrid KPCA and SVM with GA model for
intrusion detection, Applied Soft Computing, 18 (2014), pp. 178–184.

[35] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 6th edition,
03 2012.

[36] P. Lin, K. Ye, and C.-Z. Xu, Dynamic Network Anomaly Detection System by Using Deep
Learning Techniques, 06 2019, pp. 161–176.

[37] H. Liu and B. Lang, Machine Learning and Deep Learning Methods for Intrusion Detection
Systems: A Survey, Applied Sciences, 9 (2019), p. 4396.

[38] B. Lypa, O. Iver, and V. Kifer, Application of machine learning methods for network
intrusion detection system, (2019).

[39] Melissa Eddy and Nicole Perlroth, Cyber Attack Suspected in German Woman’s
Death. The New York Times https://www.nytimes.com/2020/09/18/world/europe/

cyber-attack-germany-ransomeware-death.html, September 2020. [Online; accessed on
02 February 2021].

[40] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, TR-IDS: Anomaly-Based Intrusion De-
tection through Text-Convolutional Neural Network and Random Forest, Security and Com-
munication Networks, 2018 (2018), pp. 1–9.

[41] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, Kitsune: An Ensemble of
Autoencoders for Online Network Intrusion Detection, (2018).

[42] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, A Detailed Investigation
and Analysis of Using Machine Learning Techniques for Intrusion Detection, IEEE Commu-
nications Surveys Tutorials, 21 (2019), pp. 686–728.

[43] N. Moustafa, J. Hu, and J. Slay, A holistic review of Network Anomaly Detection Sys-
tems: A comprehensive survey, Journal of Network and Computer Applications, 128 (2018).

[44] N. Moustafa and J. Slay, UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set), 11 2015.

[45] Z. Noumir, P. Honeine, and C. Richard, On simple one-class classification methods,
in 2012 IEEE International Symposium on Information Theory Proceedings, IEEE, 2012,
pp. 2022–2026.

[46] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, McPAD: A multiple clas-
sifier system for accurate payload-based anomaly detection, Computer networks, 53 (2009),

iii

https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html

pp. 864–881.

[47] K. Potdar, T. S. Pardawala, and C. D. Pai, A comparative study of categorical variable
encoding techniques for neural network classifiers, International journal of computer applica-
tions, 175 (2017), pp. 7–9.

[48] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, A Survey of
Network-based Intrusion Detection Data Sets, (2019).

[49] J. Schmidt, Trojaner-Befall: Uni Gießen nutzt Desinfec’t für Aufräumar-
beiten. (German [Trojan Infection: University Gießen Uses Desinfec’t for
Clean-Up Operation]. heise online https://www.heise.de/security/meldung/

Trojaner-Befall-Uni-Giessen-nutzt-Desinfec-t-fuer-Aufraeumarbeiten-4617154.

html, December 2019. [Online; accessed on 02 February 2021].

[50] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
Estimating the support of a high-dimensional distribution, Neural computation, 13 (2001),
pp. 1443–1471.

[51] scikit-learn developers, scikit-learn 0.24.0 documentation - 1.4. Support Vector Ma-
chines / 1.4.6. Kernel functions. https://scikit-learn.org/stable/modules/svm.html#

svm-kernels, 2021. [Online; accessed on 31 January 2021].

[52] , scikit-learn 0.24.0 documentation - sklearn.svm.OneClassSVM. https:

//scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html,
2021. [Online; accessed on 18 January 2021].

[53] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, Toward Generating a New
Intrusion Detection Dataset and Intrusion Traffic Characterization, 01 2018, pp. 108–116.

[54] C. So-In, A Survey of Network Traffic Monitoring and Analysis Tools, (2006).

[55] T. Tang, L. Mhamdi, S. Zaidi, F. El-moussa, D. McLernon, and M. Ghogho, A deep
learning approach combining auto-encoder with one-class SVM for DDoS attack detection in
SDNs, in Proceedings of the international conference on communications and networking,
IEEE, 2019.

[56] D. Tax, One-Class Classification; Concept-Learning In The Absence Of Counter-Examples,
(2001).

[57] E. Viegas, A. Santin, and L. Soares de Oliveira, Toward a Reliable Anomaly-Based
Intrusion Detection in Real-World Environments, Computer Networks, 127 (2017).

[58] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, and
S. Venkatraman, Deep learning approach for intelligent intrusion detection system, IEEE
Access, 7 (2019), pp. 41525–41550.

[59] K. Wang, G. Cretu, and S. J. Stolfo, Anomalous payload-based worm detection and
signature generation, in International Workshop on Recent Advances in Intrusion Detection,
Springer, 2005, pp. 227–246.

[60] K. Wang and S. Stolfo, Anomalous Payload-Based Network Intrusion Detection, vol. 3224,
09 2004, pp. 203–222.

[61] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu, HAST-
IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve

iv

https://www.heise.de/security/meldung/Trojaner-Befall-Uni-Giessen-nutzt-Desinfec-t-fuer-Aufraeumarbeiten-4617154.html
https://www.heise.de/security/meldung/Trojaner-Befall-Uni-Giessen-nutzt-Desinfec-t-fuer-Aufraeumarbeiten-4617154.html
https://www.heise.de/security/meldung/Trojaner-Befall-Uni-Giessen-nutzt-Desinfec-t-fuer-Aufraeumarbeiten-4617154.html
https://scikit-learn.org/stable/modules/svm.html#svm-kernels
https://scikit-learn.org/stable/modules/svm.html#svm-kernels
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

Intrusion Detection, IEEE Access, 6 (2018), pp. 1792–1806.

[62] P. Winter, E. Hermann, and M. Zeilinger, Inductive intrusion detection in flow-based
network data using one-class support vector machines, in 2011 4th IFIP international confer-
ence on new technologies, mobility and security, IEEE, 2011, pp. 1–5.

[63] Y. Xiao, H. Wang, L. Zhang, and W. Xu, Two methods of selecting Gaussian kernel
parameters for one-class SVM and their application to fault detection, Knowledge-Based Sys-
tems, 59 (2014), pp. 75–84.

[64] M. Zhang, B. Xu, and J. Gong, An anomaly detection model based on one-class svm to
detect network intrusions, in 2015 11th International Conference on Mobile Ad-hoc and Sensor
Networks (MSN), IEEE, 2015, pp. 102–107.

[65] J. Zhao, S. Shetty, J. Pan, C. Kamhoua, and K. Kwiat, Transfer learning for detecting
unknown network attacks, EURASIP Journal on Information Security, 2019 (2019).

[66] X. Zhu, Semi-Supervised Learning Literature Survey, Comput Sci, University of Wisconsin-
Madison, 2 (2008).

[67] A. Özgür and H. Erdem, A review of KDD99 dataset usage in intrusion detection and
machine learning between 2010 and 2015, (2016).

v

Appendix B | List of Figures

2.1. The Internet Protocol Stack with examples for each layer. 4
2.2. Typical timeline of a vulnerability, adapted from [9, p. 3]. 8
2.3. Schematic representation of a training dataset for a supervised learning algorithm 10
2.4. Training dataset for an unsupervised learning algorithm 11
2.5. Training dataset for a semi-supervised learning algorithm 12
2.6. Training dataset and possible boundary for a one-class classification learning algorithm 13
2.7. Schematic illustration of an overcomplete (on the left side) and undercomplete au-

toencoder (on the right side) . 16

4.1. Conceptualisation of the training phase . 28
4.2. Depiction of a trained feature extraction function e. From an arbitrary number

of packets of varying length it extracts instances with a fixed number of features,
together with the corresponding feature type information. 29

4.3. Conceptualisation of the classification phase . 31
4.4. Conceptualisation of the evaluation phase . 32
4.5. Conceptualisation of the hyperparameter grid search. 34

5.1. Illustration of three problems that occur while preprocessing the CIC-IDS-2017 dataset 39
5.2. Division of a flow into subflows as well as idle and active times 44
5.3. Example of the feature transformation using a one-hot encoder 47

vi

Appendix C | List of Tables

2.1. IP packet segments in IPv4 . 5
2.2. Relationships between learning methods and requirements for their training dataset 13
2.3. Confusion matrix of the underlying binary classification problem. 17
2.4. Relevant properties of datasets dedicated to network intrusion detection 20

5.1. Preprocessing Measurements for UNSW-NB15 and CIC-IDS-2017 40
5.2. Preprocessing Result of the UNSW-NB15 dataset 41
5.3. Preprocessing Result of the CIC-IDS-2017 dataset 41

6.1. Defined subsets of the UNSW-NB15 dataset . 50

D.1. Default features extracted from the entire flow . ix
D.2. Default features extracted from packets in forward direction x
D.3. Default features extracted from packets in backward direction x
D.4. Extracted features with the subflows mode . xi
D.5. Extracted features with the tcp mode . xii
D.6. Extracted features with the hindsight mode . xiii
D.7. Extracted features using PAYL . xiii
D.8. Results for the rbf kernel on the CIC-IDS-2017 dataset xiv
D.9. Results for the rbf kernel on the UNSW-NB15 dataset xiv
D.10.Results for the polynomial kernel on the CIC-IDS-2017 dataset, trying out different

values for degree and coef0 . xv
D.11.Results for the polynomial kernel on the UNSW-NB15 dataset, trying out different

values for degree and coef0 . xvi
D.12.Results for the polynomial kernel on the UNSW-NB15 dataset, trying out different

values for γ and ν with fixed degree = 3 . xvi
D.13.Results for the polynomial kernel on the CIC-IDS-2017 dataset, trying out different

values for γ and ν with fixed degree = 3 . xvi
D.14.Results for the sigmoid kernel on the CIC-IDS-2017 dataset. xvii
D.15.Results for the sigmoid kernel on the UNSW-NB15 dataset. xvii
D.16.Results for the combination of PCA and a one-class SVM on the UNSW-NB15

dataset (A training set and b test set). Only parameter configurations with MCC >
0.5 are shown. xviii

D.17.Results for the grid search which iterates the feature transformers, while a one-class
SVM is used (rbf kernel, γ = 0.0001, ν = 0.0001, tolerance= 0.01) xviii

D.18.Results for the autoencoder on the CIC-IDS-2017 dataset with the relu activation
function and varying architectures . xix

D.19.Results for the autoencoder on the UNSW-NB15 dataset with the relu activation
function and varying architectures. Always, a training batch size of 1024 and 200
training epochs are used. xx

D.20.Results for the autoencoder on the UNSW-NB15 dataset with the relu activation
function, MSE loss function, and varying values for training epochs, training batch,
and early stopping patience . xxi

D.21.Best network flow mode combinations by attack category in the UNSW-NB15 dataset
(with the A training and b test subset) . xxi

vii

D.22.Best hindsight window values by attack category in the UNSW-NB15 dataset . . . xxii
D.23.Results for the grid search which iterates the flow and subflow timeouts xxii
D.24.Influence of the tcp end on rst mode on the UNSW-NB15 dataset (with the A

training and b test subset) . xxiii
D.25.Results for unclean training sets (UNSW-NB15) xxiii
D.26.Best results for the simple payload analyser counting byte frequencies in combination

with an autoencoder . xxiv
D.27.Best results for the PAYL generator on the UNSW-NB15 dataset, in combination

with an autoencoder . xxiv
D.28.Best results for the PAYL generator on the CIC-IDS-2017 dataset (test sets: wednes-

day and thursday), in combination with an autoencoder xxiv
D.29.Best results for the PAYL generator on the UNSW-NB15 dataset, in combination

with a one-class SVM . xxv
D.30.Results using a larger UNSW-NB15 subset (training: A+B, test: b+c) for a model

consisting of the network flow feature extractor (flow timeout: 12 seconds, subflow
timeout: 0.5 seconds, modes: tcp and subflows), the one-hot encoder, a PCA
transformer with 30 principal components, min-max scaling, standardization, and a
one-class SVM (γ = 0.0001, ν = 0.0001) . xxv

viii

Appendix D | Tables

Name Description Type

src port the source port of the transport protocol, or 0 if the
protocol is either not known or does not specify any
ports

int

dest port the destination port, analogous to src port int

protocol the IP protocol number, as read from the packet and
used for the flow groupings

categorial

total sum pkt length the sum of all packet sizes within the flow int

total mean pkt length the arithmetic mean of all packet sizes within the flow float

total min pkt length the minimum packet size within the flow int

total max pkt length the maximum packet size within the flow int

total std pkt length the standard deviation of all packet sizes within the flow float

total n packets the total number of packets within the flow int

total packets per s the average packet throughput of the flow, measured in
packets per seconds

float

total bytes per s the average payload throughput of the flow in bytes per
seconds

float

total avg ttl the arithmetic mean of the time-to-live values, as read
from the IP headers

float

total iat std the standard deviation of the timespans between consec-
utive packets in seconds

float

total iat min the minimum timespan between consecutive packets in
seconds

float

total iat max the maximum timespan between consecutive packets in
seconds

float

total iat sum the sum of the timespans between consecutive packets;
this equals the overall duration of the flow in seconds

float

Table D.1.: Default features extracted from the entire flow

ix

D. Tables

Name Description Type

fwd sum pkt length the sum of all packet sizes in forward direction int

fwd mean pkt length the arithmetic mean of all packet sizes in forward direction float

fwd min pkt length the minimum packet size in forward direction int

fwd max pkt length the maximum packet size in forward direction int

fwd std pkt length the standard deviation of all packet sizes in forward direction float

fwd n packets the total number of packets in forward direction int

fwd packets per s the average packet throughput in forward direction, measured
in packets per seconds

float

fwd bytes per s the average payload throughput in forward direction, measured
in bytes per seconds

float

fwd avg ttl the arithmetic mean of the time-to-live values, as read from the
IP headers of the packets in forward direction

float

fwd iat std the standard deviation of the timespans between consecutive
packets in forward direction, in seconds

float

fwd iat min the minimum timespan between consecutive packets in forward
direction, in seconds

float

fwd iat max the maximum timespan between consecutive packets in forward
direction, in seconds

float

fwd iat sum the sum of the timespans between consecutive packets in for-
ward direction, in seconds

float

Table D.2.: Default features extracted from packets in forward direction

Name Description Type

bwd sum pkt length the sum of all packet sizes in backward direction int

bwd mean pkt length the arithmetic mean of all packet sizes in backward direction float

bwd min pkt length the minimum packet size in backward direction int

bwd max pkt length the maximum packet size in backward direction int

bwd std pkt length the standard deviation of all packet sizes in backward direction float

bwd n packets the total number of packets in backward direction int

bwd packets per s the average packet throughput in backward direction, measured
in packets per seconds

float

bwd bytes per s the average payload throughput in backward direction, mea-
sured in bytes per seconds

float

bwd avg ttl the arithmetic mean of the time-to-live values, as read from the
IP headers of the packets in backward direction

float

bwd iat std the standard deviation of the timespans between consecutive
packets in backward direction, in seconds

float

bwd iat min the minimum timespan between consecutive packets in back-
ward direction, in seconds

float

bwd iat max the maximum timespan between consecutive packets in back-
ward direction, in seconds

float

bwd iat sum the sum of the timespans between consecutive packets in back-
ward direction, in seconds

float

Table D.3.: Default features extracted from packets in backward direction

x

D. Tables

Name Description Type

n subflows the number of subflows within the flow int

n active times the number of active times int

min active time the minimum duration of a subflow, in seconds float

max active time the maximum duration of a subflow, in seconds float

total active times the summed duration of all subflows, in seconds float

std active time the standard deviation of the durations of all subflows, in
seconds

float

mean active time the mean of the duration of all idle phases in the flow, in
seconds

float

n idle times the number of idle times int

min idle time the minimum timespan between two subflows, in seconds float

max idle time the maximum timespan between two subflows, in seconds float

total idle times the overall time (in seconds) in which no subflow was active,
i.e. in which the flow idled

float

std idle time the standard deviation of the duration of all idle phases
within the flow, in seconds

float

mean idle time the mean of the duration of all idle phases in the flow, in
seconds

float

fwd subflow avg pkts the average number of packets per subflow in forward di-
rection

float

fwd subflow avg length the average subflow length in forward direction float

bwd subflow avg pkts the average number of packets per subflow in backward di-
rection

float

bwd subflow avg length the average subflow length in backward direction float

Table D.4.: Extracted features with the subflows mode

xi

D. Tables

Name Description Type

tcp fwd win mean the arithmetic mean of the window value of all TCP packets
in forward direction

float

tcp fwd total urg the number of TCP packets in forward direction with the URG
flag set

int

tcp fwd total syn the number of TCP packets in forward direction with the SYN
flag set and the ACK flag not set

int

tcp fwd total syn ack the number of TCP packets in forward direction with the SYN
and ACK flags set

int

tcp fwd total ack the number of TCP packets in forward direction with the ACK
flag set and the SYN flag not set

int

tcp fwd total fin the number of TCP packets in forward direction with the FIN
flag set

int

tcp fwd total push the number of TCP packets in forward direction with the
PUSH flag set

int

tcp fwd total rst the number of TCP packets in forward direction with the RST
flag set

int

tcp bwd win mean the arithmetic mean of the window value of all TCP packets
in backward direction

float

tcp bwd total urg the number of TCP packets in backward direction with the
URG flag set

int

tcp bwd total syn the number of TCP packets in backward direction with the
SYN flag set and the ACK flag not set

int

tcp bwd total syn ack the number of TCP packets in backward direction with the
SYN and ACK flags set

int

tcp bwd total ack the number of TCP packets in backward direction with the
ACK flag set and the SYN flag not set

int

tcp bwd total fin the number of TCP packets in backward direction with the
FIN flag set

int

tcp bwd total push the number of TCP packets in backward direction with the
PUSH flag set

int

tcp bwd total rst the number of TCP packets in backward direction with the
RST flag set

int

tcp syn synack the duration between the first SYN packet and the first
SYN-ACK packet from the reverse direction

float

tcp synack ack the duration between the SYN-ACK packet (as in
tcp syn synack) and the first ACK packet from the re-
verse direction

float

tcp rtt the round-trip time, calculated as tcp syn synack +
tcp synack ack

float

Table D.5.: Extracted features with the tcp mode

xii

D. Tables

Name Description Type

hindsight dest addr src port the number of flows with the same destination IP
address and source port within the hindsight window

int

hindsight src addr dest port the number of flows with the same source IP address
and destination port within the hindsight window

int

hindsight src addr the number of flows with the same source IP address
within the hindsight window

int

hindsight dest addr the number of flows with the same destination IP
address within the hindsight window

int

hindsight dest addr prot the number of flows with the same destination IP
address and IP protocol number within the hindsight
window

int

hindsight src addr prot the number of flows with the same source IP address
and IP protocol number within the hindsight window

int

Table D.6.: Extracted features with the hindsight mode

Name Description Type

mean payl dist the arithmetic mean of the Mahalanobis distance values float

min payl dist the minimum of the Mahalanobis distance values float

max payl dist the maximum of the Mahalanobis distance values float

std payl dist the standard deviation of the Mahalanobis distance values float

Table D.7.: Extracted features using PAYL
They base on the list of Mahalanobis distance values that are calculated for a flow’s packets

xiii

D
.
T
ab

les

TRAIN TEST gamma nu tolerance RC PR BA MCC F1 FN FP ms/p

Monday Tuesday, Wednesday, Thursday, Friday 0.0001 0.0001 0.0100 0.0449 0.0096 0.3080 -0.2189 0.0159 3623477 17531238 0.1971

Monday Tuesday, Wednesday, Thursday, Friday 0.0001 0.0005 0.0100 0.0508 0.0107 0.3066 -0.2197 0.0176 3601418 17884229 0.1897

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 0.0100 0.4411 0.0802 0.4858 -0.0159 0.1357 2120550 19189538 0.1936

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0005 0.0100 0.4498 0.0815 0.4897 -0.0115 0.1380 2087609 19223205 0.1884

Monday Tuesday, Wednesday, Thursday, Friday 0.0500 0.0001 0.0100 0.7912 0.1217 0.6305 0.1464 0.2110 792136 21664232 0.1969

Monday Tuesday, Wednesday, Thursday, Friday 0.0500 0.0005 0.0100 0.7896 0.1233 0.6341 0.1501 0.2132 798194 21310601 0.2108

Monday Tuesday, Wednesday, Thursday, Friday 0.6000 0.0001 0.0100 1.0000 0.0857 0.5047 0.0283 0.1578 0 40485952 0.2190

Monday Tuesday, Wednesday, Thursday, Friday 0.6000 0.0005 0.0100 0.9735 0.1097 0.6200 0.1554 0.1972 100374 29975951 0.3775

Table D.8.: Results for the rbf kernel on the CIC-IDS-2017 dataset

TRAIN TEST gamma nu tolerance RC PR BA MCC F1 FN FP ms/p

A b 0.0001 0.0001 0.0100 0.9899 0.7778 0.9897 0.8726 0.8711 17808 498804 0.1908

A b 0.0001 0.0005 0.0100 1.0000 0.7072 0.9923 0.8345 0.8285 0 730004 0.1883

A b 0.0050 0.0001 0.0100 1.0000 0.5453 0.9845 0.7269 0.7057 0 1470724 0.1768

A b 0.0050 0.0005 0.0100 1.0000 0.6493 0.9900 0.7977 0.7873 0 952649 0.1792

A b 0.0500 0.0001 0.0100 1.0000 0.3901 0.9710 0.6062 0.5612 0 2757721 0.1875

A b 0.0500 0.0005 0.0100 1.0000 0.4513 0.9775 0.6565 0.6219 0 2144134 0.1906

A b 0.6000 0.0001 0.0100 1.0000 0.0398 0.5533 0.0651 0.0766 0 42502068 0.2151

Table D.9.: Results for the rbf kernel on the UNSW-NB15 dataset

x
iv

D
.
T
ab

les

TRAIN TEST gamma nu degree coef0 tolerance RC PR BA MCC F1 FN FP ms/p

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 3 0.0000 0.0010 0.1135 0.9160 0.5562 0.3074 0.2019 3363538 39456 0.2021

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 4 0.0000 0.0010 0.0422 0.9137 0.5209 0.1866 0.0807 3633761 15133 0.1966

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 5 0.0000 0.0010 0.0907 0.8704 0.5447 0.2663 0.1643 3449714 51256 0.1920

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 7 0.0000 0.0010 0.2018 0.0542 0.4373 -0.0751 0.0854 3028525 13366532 0.1868

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 10 0.0000 0.0010 0.2288 0.0423 0.3737 -0.1413 0.0714 2925773 19673963 0.2034

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 3 0.2000 0.0010 0.0043 0.6633 0.5021 0.0489 0.0086 3777561 8339 0.1897

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 4 0.2000 0.0010 0.0061 0.6682 0.5029 0.0585 0.0122 3770685 11573 0.1925

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 5 0.2000 0.0010 0.0083 0.7020 0.5040 0.0703 0.0165 3762359 13425 0.1855

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 7 0.2000 0.0010 0.0127 0.7435 0.5061 0.0899 0.0249 3745976 16563 0.1957

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 10 0.2000 0.0010 0.0383 0.6277 0.5181 0.1405 0.0722 3648752 86130 0.1925

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 20 0.2000 0.0010 0.6394 0.0995 0.5512 0.0573 0.1723 1368268 21943377 0.1933

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 3 1.0000 0.0010 0.0036 0.6765 0.5017 0.0449 0.0071 3780448 6475 0.1859

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 4 1.0000 0.0010 0.0029 0.6374 0.5014 0.0391 0.0058 3782902 6307 0.1868

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 5 1.0000 0.0010 0.0033 0.6521 0.5015 0.0419 0.0065 3781644 6586 0.1952

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 7 1.0000 0.0010 0.0039 0.6863 0.5019 0.0473 0.0077 3779277 6724 0.1898

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 10 1.0000 0.0010 0.0044 0.6449 0.5021 0.0484 0.0087 3777305 9184 0.1861

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 3 0.0000 0.0010 0.0864 0.7548 0.5419 0.2381 0.1551 3466036 106553 0.2092

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 4 0.0000 0.0010 0.0852 0.8167 0.5417 0.2482 0.1543 3470774 72557 0.2040

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 5 0.0000 0.0010 0.1062 0.5634 0.5493 0.2190 0.1788 3390883 312380 0.2102

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 7 0.0000 0.0010 0.1059 0.5702 0.5493 0.2204 0.1787 3392118 302885 0.2087

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 3 0.2000 0.0010 0.0569 0.7579 0.5276 0.1934 0.1059 3577958 68998 0.2055

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 4 0.2000 0.0010 0.0677 0.7811 0.5330 0.2150 0.1246 3537155 71969 0.2280

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 7 0.2000 0.0010 0.0830 0.8077 0.5406 0.2432 0.1505 3479250 74926 0.2177

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 5 0.2000 0.0010 0.0772 0.8035 0.5377 0.2338 0.1409 3500991 71661 0.2123

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 10 0.2000 0.0010 0.0854 0.4849 0.5385 0.1768 0.1453 3469864 344312 0.2094

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 4 1.0000 0.0010 0.0501 0.7456 0.5242 0.1795 0.0938 3604008 64818 0.2096

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 5 1.0000 0.0010 0.0512 0.7500 0.5248 0.1823 0.0959 3599564 64805 0.2051

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 7 1.0000 0.0010 0.0521 0.7433 0.5252 0.1828 0.0974 3596332 68257 0.2051

Table D.10.: Results for the polynomial kernel on the CIC-IDS-2017 dataset, trying out different values for degree and coef0

x
v

D
.
T
ab

les

TRAIN TEST gamma nu degree coef0 tolerance RC PR BA MCC F1 FN FP ms/p

A b 0.0050 0.0001 3 0.0000 0.0010 0.0117 0.2875 0.5053 0.0517 0.0224 1742938 51017 0.1762

A b 0.0050 0.0001 4 0.0000 0.0010 0.0000 0.0000 0.4927 -0.0230 0.0000 1763521 695967 0.1765

A b 0.0050 0.0001 5 0.0000 0.0010 0.0502 0.0076 0.4032 -0.0845 0.0132 1675064 11593747 0.1794

A b 0.0050 0.0001 7 0.0000 0.0010 0.0608 0.0039 0.2456 -0.1899 0.0074 1656296 27094934 0.1787

A b 0.0050 0.0001 10 0.0000 0.0010 0.0000 0.0000 0.0510 -0.4892 0.0000 1763521 42714484 0.1738

A b 0.0050 0.0001 20 0.0000 0.0010 0.0000 0.0000 0.5000 -0.0002 0.0000 1763521 68 0.1764

A b 0.0050 0.0001 3 0.2000 0.0010 0.0000 0.0000 0.5000 -0.0010 0.0000 1763521 1456 0.1750

A b 0.0050 0.0001 4 0.2000 0.0010 0.0000 0.0000 0.4998 -0.0035 0.0000 1763521 16330 0.1733

A b 0.0050 0.0001 5 0.2000 0.0010 0.0000 0.0000 0.4996 -0.0053 0.0000 1763521 37586 0.1749

A b 0.0050 0.0001 7 0.2000 0.0010 0.0497 0.8241 0.5246 0.1973 0.0937 1675935 18692 0.1783

A b 0.0050 0.0001 10 0.2000 0.0010 0.0000 0.0000 0.5000 -0.0005 0.0000 1763521 347 0.1757

A b 0.0050 0.0001 20 0.2000 0.0010 0.0000 0.0000 0.2973 -0.1543 0.0000 1763503 19288596 0.1729

A b 0.0050 0.0001 10 1.0000 0.0010 0.0000 0.0000 0.5000 -0.0007 0.0000 1763521 689 0.1783

A b 0.0050 0.0001 7 1.0000 0.0010 0.0000 0.0000 0.5000 -0.0007 0.0000 1763521 697 0.1936

A b 0.0050 0.0001 5 1.0000 0.0010 0.0000 0.0000 0.5000 -0.0010 0.0000 1763521 1267 0.1730

A b 0.0050 0.0001 4 1.0000 0.0010 0.0000 0.0000 0.5000 -0.0009 0.0000 1763521 1073 0.1848

A b 0.0050 0.0001 20 1.0000 0.0010 0.0000 0.0000 0.5000 -0.0005 0.0000 1763521 384 0.1717

A b 0.0050 0.0050 4 0.0000 0.0010 0.0000 0.0000 0.4998 -0.0038 0.0000 1763521 18785 0.2103

A b 0.0050 0.0050 7 0.0000 0.0010 0.1981 0.0585 0.5400 0.0455 0.0903 1414092 5623539 0.2090

A b 0.0050 0.0050 5 0.0000 0.0010 0.0522 0.6740 0.5256 0.1811 0.0969 1671454 44536 0.2112

A b 0.0050 0.0050 20 0.0000 0.0010 0.0000 0.0000 0.2693 -0.1724 0.0000 1763521 21950682 0.2273

A b 0.0050 0.0050 4 0.2000 0.0010 0.0000 0.0000 0.4998 -0.0038 0.0000 1763521 19417 0.2203

A b 0.0050 0.0050 10 0.2000 0.0010 0.0000 0.0000 0.4984 -0.0106 0.0000 1763521 149241 0.2166

A b 0.0050 0.0050 4 1.0000 0.0010 0.0000 0.0000 0.4990 -0.0084 0.0000 1763521 93741 0.2238

Table D.11.: Results for the polynomial kernel on the UNSW-NB15 dataset, trying out different values for degree and coef0

TRAIN TEST gamma nu degree coef0 tolerance RC PR BA MCC F1 FN FP ms/p

A b 0.0050 0.0001 3 0.0000 0.0010 0.0117 0.2875 0.5053 0.0517 0.0224 1742938 51017 0.1729

A b 0.0050 0.0005 3 0.0000 0.0010 0.0024 0.2421 0.5010 0.0208 0.0047 1759342 13085 0.1799

A b 0.0500 0.0001 3 0.0000 0.0010 0.0117 0.8516 0.5058 0.0973 0.0230 1742938 3586 0.1774

Table D.12.: Results for the polynomial kernel on the UNSW-NB15 dataset, trying out different values for γ and ν with fixed degree = 3

TRAIN TEST gamma nu degree coef0 tolerance RC PR BA MCC F1 FN FP ms/p

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 3 0.0000 0.0010 0.1135 0.9160 0.5562 0.3074 0.2019 3363538 39456 0.1877

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0005 3 0.0000 0.0010 0.1147 0.9088 0.5568 0.3076 0.2037 3358717 43702 0.1890

Monday Tuesday, Wednesday, Thursday, Friday 0.0500 0.0001 3 0.0000 0.0010 0.1107 0.9339 0.5550 0.3071 0.1980 3373933 29707 0.1885

Monday Tuesday, Wednesday, Thursday, Friday 0.0500 0.0005 3 0.0000 0.0010 0.1137 0.9155 0.5564 0.3076 0.2023 3362583 39830 0.1945

Table D.13.: Results for the polynomial kernel on the CIC-IDS-2017 dataset, trying out different values for γ and ν with fixed degree = 3

x
v
i

D
.
T
ab

les

TRAIN TEST gamma nu tolerance RC PR BA MCC F1 FN FP ms/p

Monday Tuesday, Wednesday, Thursday, Friday 0.0005 0.0001 0.0010 0.0305 0.0099 0.3741 -0.1599 0.0150 3678350 11535754 0.1807

Monday Tuesday, Wednesday, Thursday, Friday 0.0005 0.0050 0.0010 0.1407 0.0288 0.3505 -0.1692 0.0479 3260313 17964855 0.2244

Monday Tuesday, Wednesday, Thursday, Friday 0.0005 0.0100 0.0010 0.1386 0.0280 0.3456 -0.1743 0.0465 3268217 18279330 0.2493

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0001 0.0010 0.0347 0.0109 0.3715 -0.1614 0.0166 3662435 11920437 0.1866

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0050 0.0010 0.2954 0.0583 0.4261 -0.0832 0.0974 2673246 18108321 0.2148

Monday Tuesday, Wednesday, Thursday, Friday 0.0050 0.0100 0.0010 0.3833 0.0707 0.4580 -0.0470 0.1194 2339851 19099319 0.2362

Table D.14.: Results for the sigmoid kernel on the CIC-IDS-2017 dataset.

TRAIN TEST gamma nu tolerance RC PR BA MCC F1 FN FP ms/p

A b 0.0005 0.0001 0.0010 0.1626 0.8155 0.5806 0.3558 0.2711 1476858 64866 0.1764

A b 0.0050 0.0001 0.0010 0.1226 0.8202 0.5608 0.3097 0.2133 1547321 47383 0.1731

A b 0.0050 0.0050 0.0010 0.3108 0.2721 0.6400 0.2627 0.2902 1215472 1465840 0.2263

A b 0.0050 0.0100 0.0010 0.3403 0.1426 0.6322 0.1757 0.2010 1163476 3608385 0.2853

Table D.15.: Results for the sigmoid kernel on the UNSW-NB15 dataset.

x
v
ii

D
.
T
ab

les

kernel gamma nu tolerance pca reducer 10 pca reducer 20 pca reducer 30 pca reducer 50 RC PR BA MCC F1 FN FP ms/p

rbf 0.0001 0.0001 0.0100 0 0 1 0 0.9899 0.7818 0.9898 0.8749 0.8736 17828 487263 0.1276

rbf 0.0001 0.0001 0.0010 0 1 0 0 0.3593 0.8703 0.6786 0.5501 0.5086 1129961 94399 0.1280

rbf 0.0001 0.0001 0.0100 1 0 0 0 0.3751 0.8750 0.6866 0.5639 0.5251 1101952 94525 0.1315

rbf 0.0001 0.0001 0.0100 0 1 0 0 0.3593 0.8703 0.6786 0.5501 0.5086 1129959 94399 0.1313

rbf 0.0001 0.0001 0.0010 1 0 0 0 0.3751 0.8455 0.6863 0.5537 0.5197 1101966 120907 0.1316

rbf 0.0001 0.0001 0.0100 0 0 0 1 0.9899 0.7699 0.9895 0.8680 0.8662 17775 521639 0.1322

rbf 0.0001 0.0001 0.0010 0 0 1 0 0.9899 0.7818 0.9898 0.8749 0.8736 17828 487275 0.1287

rbf 0.0001 0.0001 0.0010 0 0 0 1 0.9899 0.7699 0.9895 0.8680 0.8662 17775 521639 0.1324

rbf 0.0001 0.0005 0.0100 0 0 1 0 0.9900 0.6902 0.9868 0.8195 0.8134 17582 783628 0.1331

rbf 0.0001 0.0005 0.0100 0 0 0 1 0.9899 0.7012 0.9871 0.8263 0.8209 17775 744037 0.1340

rbf 0.0001 0.0005 0.0010 0 0 1 0 0.9900 0.6902 0.9868 0.8195 0.8134 17582 783628 0.1316

rbf 0.0001 0.0005 0.0010 0 0 0 1 0.9899 0.7012 0.9871 0.8263 0.8209 17775 744037 0.1373

rbf 0.0050 0.0001 0.0100 0 1 0 0 0.6615 0.7503 0.8266 0.6943 0.7031 597040 388130 0.1334

rbf 0.0050 0.0001 0.0100 0 0 1 0 1.0000 0.7332 0.9933 0.8505 0.8460 0 641849 0.1319

rbf 0.0050 0.0001 0.0100 0 0 0 1 1.0000 0.5226 0.9831 0.7106 0.6865 0 1610879 0.1400

rbf 0.0050 0.0001 0.0010 1 0 0 0 0.3897 0.8490 0.6936 0.5658 0.5342 1076273 122245 0.1309

rbf 0.0050 0.0001 0.0010 0 1 0 0 0.6639 0.7696 0.8282 0.7051 0.7128 592780 350451 0.1315

rbf 0.0050 0.0001 0.0010 0 0 1 0 1.0000 0.7420 0.9936 0.8558 0.8519 0 613160 0.1333

rbf 0.0050 0.0001 0.0010 0 0 0 1 1.0000 0.5335 0.9838 0.7184 0.6958 0 1542301 0.1399

rbf 0.0050 0.0005 0.0100 0 1 0 0 0.7387 0.6957 0.8634 0.7061 0.7166 460757 569785 0.1304

rbf 0.0050 0.0005 0.0100 0 0 1 0 1.0000 0.7131 0.9925 0.8381 0.8325 0 709475 0.1344

rbf 0.0050 0.0005 0.0100 0 0 0 1 1.0000 0.5341 0.9838 0.7189 0.6963 0 1538079 0.1418

rbf 0.0050 0.0005 0.0010 0 1 0 0 0.7387 0.6957 0.8634 0.7061 0.7166 460843 569738 0.1321

rbf 0.0050 0.0005 0.0010 0 0 1 0 1.0000 0.7123 0.9925 0.8377 0.8320 0 712120 0.1350

rbf 0.0050 0.0005 0.0010 0 0 0 1 1.0000 0.5336 0.9838 0.7186 0.6959 0 1541226 0.1367

Table D.16.: Results for the combination of PCA and a one-class SVM on the UNSW-NB15 dataset (A training set and b test set). Only parameter
configurations with MCC > 0.5 are shown.

transformers PR RC MCC F1 BA ms/p

minmax scaler 0.7541 0.9325 0.8321 0.8339 0.9606 0.1262

minmax scaler, standard scaler 0.7765 0.9950 0.8742 0.8723 0.9922 0.1261

one hot encoder, minmax scaler 0.7412 0.9281 0.8225 0.8242 0.9581 0.1302

one hot encoder, minmax scaler, standard scaler 0.7755 0.9899 0.8713 0.8697 0.9896 0.1297

one hot encoder, standard scaler 0.7755 0.9899 0.8713 0.8697 0.9896 0.1284

one hot encoder, standard scaler, minmax scaler 0.7412 0.9281 0.8225 0.8242 0.9581 0.1271

standard scaler 0.7765 0.9950 0.8742 0.8723 0.9922 0.1267

Table D.17.: Results for the grid search which iterates the feature transformers, while a one-class SVM is used (rbf kernel, γ = 0.0001, ν = 0.0001,
tolerance= 0.01)

x
v
iii

D
.
T
ab

les

TRAIN TEST layers loss threshold percentile activation RC PR BA MCC F1 FN FP ms/p

Monday Tuesday, Wednesday, Thursday, Friday 400,200,10,200,400 mse 99.9999 relu 0.0102 0.0052 0.4149 -0.1276 0.0069 3755105 7376423 0.2189

Monday Tuesday, Wednesday, Thursday, Friday 400,200,10,200,400 mse 99.9000 relu 0.6376 0.1069 0.5714 0.0797 0.1831 1374985 20216774 0.1972

Monday Tuesday, Wednesday, Thursday, Friday 400,200,10,200,400 mse 95.0000 relu 0.9308 0.1090 0.6123 0.1403 0.1952 262361 28861593 0.2090

Monday Tuesday, Wednesday, Thursday, Friday 400,200,10,200,400 mse 90.0000 relu 0.9659 0.1020 0.5880 0.1238 0.1844 129550 32278138 0.2041

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 100.0000 relu 0.0023 0.0018 0.4410 -0.1051 0.0020 3785311 4917836 0.1990

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 100.0000 relu 0.0159 0.0121 0.4475 -0.0928 0.0138 3733520 4939104 0.2106

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 99.9990 relu 0.0317 0.0070 0.3066 -0.2215 0.0114 3673824 17100042 0.2042

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 99.9990 relu 0.0315 0.0074 0.3188 -0.2101 0.0119 3674484 16099925 0.2175

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 99.9900 relu 0.1683 0.0345 0.3656 -0.1522 0.0573 3155283 17866450 0.2002

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 99.9900 relu 0.0879 0.0187 0.3293 -0.1943 0.0308 3460408 17547438 0.2039

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 99.9000 relu 0.5916 0.1011 0.5516 0.0576 0.1727 1549601 19955244 0.1968

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 99.9000 relu 0.6675 0.1165 0.5987 0.1101 0.1983 1261456 19212875 0.2145

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 99.5000 relu 0.7538 0.1125 0.6009 0.1136 0.1958 934146 22557458 0.2091

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 99.5000 relu 0.7485 0.1157 0.6087 0.1218 0.2004 954226 21707091 0.2091

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 99.0000 relu 0.7974 0.1131 0.6084 0.1234 0.1981 768549 23725033 0.2206

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 99.0000 relu 0.7824 0.1136 0.6079 0.1221 0.1984 825602 23158582 0.2200

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mse 95.0000 relu 0.8381 0.0994 0.5664 0.0822 0.1777 614430 28819447 0.2197

Monday Tuesday, Wednesday, Thursday, Friday 300,200,75,10,75,200,300 mae 95.0000 relu 0.8372 0.0992 0.5658 0.0814 0.1774 617632 28835049 0.2123

Monday Tuesday, Wednesday, Thursday, Friday 200,20,200 mse 99.9999 relu 0.0024 0.0036 0.4711 -0.0705 0.0029 3785060 2458735 0.2053

Monday Tuesday, Wednesday, Thursday, Friday 200,20,200 mse 99.9000 relu 0.7044 0.1165 0.6043 0.1163 0.2000 1121672 20263080 0.1959

Monday Tuesday, Wednesday, Thursday, Friday 200,20,200 mse 95.0000 relu 0.9387 0.1116 0.6225 0.1513 0.1995 232669 28346724 0.2032

Monday Tuesday, Wednesday, Thursday, Friday 200,20,200 mse 90.0000 relu 0.9765 0.1029 0.5932 0.1314 0.1862 89222 32289751 0.1964

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 100.0000 relu 0.0129 0.0098 0.4463 -0.0953 0.0112 3745062 4918538 0.2122

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 99.9990 relu 0.0315 0.0077 0.3265 -0.2030 0.0123 3674648 15469773 0.2052

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mse 99.9900 relu 0.0647 0.0139 0.3196 -0.2058 0.0229 3548605 17390424 0.1987

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 99.9900 relu 0.0474 0.0102 0.3104 -0.2164 0.0168 3614066 17437885 0.2055

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mse 99.9000 relu 0.6067 0.1027 0.5574 0.0640 0.1757 1492189 20104509 0.2101

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 99.9000 relu 0.3559 0.0673 0.4488 -0.0573 0.1131 2443697 18725360 0.2251

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mse 99.5000 relu 0.7794 0.1145 0.6098 0.1240 0.1996 836879 22874759 0.2148

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 99.5000 relu 0.6462 0.1113 0.5837 0.0933 0.1899 1342429 19569795 0.2173

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mse 99.0000 relu 0.8800 0.1266 0.6581 0.1793 0.2213 455217 23042637 0.2035

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 99.0000 relu 0.7352 0.1189 0.6148 0.1282 0.2048 1004685 20660651 0.1940

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mse 95.0000 relu 0.8905 0.1061 0.5970 0.1196 0.1896 415508 28460371 0.2022

Monday Tuesday, Wednesday, Thursday, Friday *0.9,*0.8,*0.8,#2,#1 mae 95.0000 relu 0.8693 0.1164 0.6285 0.1487 0.2054 495904 25025742 0.1973

Table D.18.: Results for the autoencoder on the CIC-IDS-2017 dataset with the relu activation function and varying architectures

x
ix

D
.
T
ab

les

TRAIN TEST layers loss threshold percentile activation RC PR BA MCC F1 FN FP ms/p

A b 400,200,10,200,400 mse 99.9999 relu 0.3688 0.8736 0.6834 0.5586 0.5187 1113066 94111 0.1886

A b 400,200,10,200,400 mse 99.9000 relu 1.0000 0.6291 0.9891 0.7844 0.7723 0 1039907 0.1515

A b 400,200,10,200,400 mse 95.0000 relu 1.0000 0.0688 0.7490 0.1851 0.1287 0 23877380 0.1633

A b 400,200,10,200,400 mse 90.0000 relu 1.0000 0.0600 0.7098 0.1587 0.1133 0 27609724 0.1948

A b 300,200,75,10,75,200,300 mse 100.0000 relu 0.2703 0.8566 0.6343 0.4722 0.4109 1286914 79759 0.1809

A b 300,200,75,10,75,200,300 mse 99.9990 relu 0.9248 0.7792 0.9575 0.8429 0.8458 132608 462223 0.1849

A b 300,200,75,10,75,200,300 mse 99.9900 relu 0.9899 0.7833 0.9899 0.8758 0.8746 17778 482904 0.1880

A b 300,200,75,10,75,200,300 mae 99.9900 relu 0.9899 0.7845 0.9899 0.8765 0.8753 17817 479662 0.1861

A b 300,200,75,10,75,200,300 mse 99.5000 relu 1.0000 0.3213 0.9608 0.5442 0.4864 0 3724642 0.1833

A b 300,200,75,10,75,200,300 mae 99.5000 relu 1.0000 0.3246 0.9614 0.5473 0.4901 0 3669642 0.1886

A b 300,200,75,10,75,200,300 mse 99.0000 relu 1.0000 0.1257 0.8710 0.3054 0.2233 0 12268466 0.2042

A b 300,200,75,10,75,200,300 mae 99.0000 relu 1.0000 0.1684 0.9084 0.3708 0.2882 0 8711655 0.2020

A b 200,20,200 mse 99.9000 relu 1.0000 0.7116 0.9925 0.8372 0.8315 0 714617 0.1833

A b 200,20,200 mse 95.0000 relu 1.0000 0.0616 0.7176 0.1637 0.1160 0 26866658 0.1790

A b 200,20,200 mse 90.0000 relu 1.0000 0.0533 0.6706 0.1349 0.1012 0 31333362 0.1869

A b *0.9,*0.8,*0.8,#2,#1 mae 100.0000 relu 0.5587 0.8461 0.7775 0.6786 0.6730 778287 179152 0.1800

A b *0.9,*0.8,*0.8,#2,#1 mse 99.9990 relu 0.9899 0.7861 0.9899 0.8774 0.8763 17866 475050 0.1831

A b *0.9,*0.8,*0.8,#2,#1 mae 99.9990 relu 0.9710 0.7840 0.9805 0.8674 0.8675 51123 471886 0.1877

A b *0.9,*0.8,*0.8,#2,#1 mse 99.9900 relu 1.0000 0.7825 0.9948 0.8800 0.8780 0 490047 0.1867

A b *0.9,*0.8,*0.8,#2,#1 mae 99.9900 relu 0.9899 0.7850 0.9899 0.8768 0.8756 17784 478209 0.1774

A b *0.9,*0.8,*0.8,#2,#1 mse 99.9000 relu 1.0000 0.6750 0.9911 0.8142 0.8059 0 849239 0.1786

A b *0.9,*0.8,*0.8,#2,#1 mae 99.9000 relu 1.0000 0.6359 0.9894 0.7889 0.7774 0 1009641 0.1845

A b *0.9,*0.8,*0.8,#2,#1 mse 99.5000 relu 1.0000 0.2701 0.9499 0.4930 0.4253 0 4766038 0.1900

A b *0.9,*0.8,*0.8,#2,#1 mae 99.5000 relu 1.0000 0.2837 0.9532 0.5071 0.4420 0 4452230 0.1842

A b *0.9,*0.8,*0.8,#2,#1 mse 99.0000 relu 1.0000 0.1488 0.8939 0.3423 0.2590 0 10092017 0.1862

A b *0.9,*0.8,*0.8,#2,#1 mse 95.0000 relu 1.0000 0.0747 0.7703 0.2009 0.1390 0 21854529 0.1798

A b *0.9,*0.8,*0.8,#2,#1 mae 95.0000 relu 1.0000 0.0629 0.7240 0.1679 0.1184 0 26254549 0.1821

Table D.19.: Results for the autoencoder on the UNSW-NB15 dataset with the relu activation function and varying architectures. Always, a training
batch size of 1024 and 200 training epochs are used.

x
x

D
.
T
ab

les

TRAIN TEST layers training epochs training batch early stopping patience RC PR BA MCC F1 FN FP ms/p

A b *0.9,*0.8,*0.8,#2,#1 800 2048 3 1.0000 0.7817 0.9948 0.8795 0.8775 0 492546 0.1439

A b *0.9,*0.8,*0.8,#2,#1 800 512 -1 1.0000 0.7818 0.9948 0.8796 0.8775 0 492218 0.1413

A b *0.9,*0.8,*0.8,#2,#1 800 256 -1 0.9899 0.7819 0.9898 0.8750 0.8737 17775 487071 0.1405

A b *0.9,*0.8,*0.8,#2,#1 400 1024 -1 0.9899 0.7826 0.9899 0.8754 0.8741 17775 485023 0.1428

A b *0.9,*0.8,*0.8,#2,#1 400 32 -1 0.9899 0.7837 0.9899 0.8760 0.8748 17817 481845 0.1372

A b *0.9,*0.8,*0.8,#2,#1 200 1024 -1 1.0000 0.7801 0.9948 0.8786 0.8765 0 497163 0.1405

A b *0.9,*0.8,*0.8,#2,#1 200 64 -1 0.9583 0.7898 0.9744 0.8648 0.8659 73611 449834 0.1367

A b *0.9,*0.8,*0.8,#2,#1 100 32 -1 0.9310 0.7765 0.9605 0.8443 0.8468 121763 472422 0.1437

A b *0.9,*0.8,*0.8,#2,#1 50 256 3 0.9899 0.7841 0.9899 0.8763 0.8751 17841 480604 0.1392

A b *0.9,*0.8,*0.8,#2,#1 50 64 -1 0.9899 0.7835 0.9899 0.8759 0.8747 17775 482466 0.1422

A b *0.9,*0.8,*0.8,#2,#1 10 2048 -1 0.9899 0.7843 0.9899 0.8764 0.8752 17798 480065 0.1391

A b *0.9,*0.8,*0.8,#2,#1 10 2048 3 0.9950 0.7838 0.9924 0.8785 0.8769 8824 484050 0.1387

A b *0.9,*0.8,*0.8,#2,#1 10 1024 -1 0.9899 0.7840 0.9899 0.8762 0.8750 17775 480942 0.1398

A b *0.9,*0.8,*0.8,#2,#1 10 512 3 0.9899 0.7844 0.9899 0.8764 0.8752 17791 479943 0.1407

A b *0.9,*0.8,*0.8,#2,#1 10 256 3 0.9899 0.7838 0.9899 0.8761 0.8749 17786 481561 0.1420

A b *0.9,*0.8,*0.8,#2,#1 10 32 -1 0.9898 0.7841 0.9899 0.8763 0.8750 17925 480660 0.1464

Table D.20.: Results for the autoencoder on the UNSW-NB15 dataset with the relu activation function, MSE loss function, and varying values for
training epochs, training batch, and early stopping patience

category tcp ip dotted port decimal with ip addr basic MCC BA RC F1 ms/p

worms 1 0 1 0 0 0.1606 0.8810 0.7650 0.0649 0.1415

shellcode 1 1 0 1 0 0.1285 0.9960 1.0000 0.0328 0.1418

reconnaissance 1 1 0 1 0 0.3819 0.9914 0.9909 0.2582 0.1418

generic 1 0 1 0 0 0.5759 0.8819 0.7668 0.5550 0.1415

fuzzers 1 1 0 1 0 0.5653 0.9950 0.9980 0.4878 0.1418

exploits 1 1 0 1 0 0.8175 0.9881 0.9861 0.8084 0.1375

dos 1 0 0 1 0 0.7551 0.9092 0.8207 0.7543 0.1353

backdoor 1 0 0 0 0 0.3288 0.5541 0.1081 0.1951 0.1400

analysis 1 0 0 0 0 0.1945 0.5189 0.0378 0.0729 0.1400

Table D.21.: Best network flow mode combinations by attack category in the UNSW-NB15 dataset (with the A training and b test subset)

x
x
i

D. Tables

category flow timeout subflow timeout hindsight window BA RC F1 MCC ms/p

worms 6.0000 0.2000 500.0000 0.9169 0.8367 0.0754 0.1814 0.1642

shellcode 6.0000 0.5000 500.0000 0.9956 1.0000 0.0297 0.1222 0.1549

reconnaissance 6.0000 0.5000 500.0000 0.9949 0.9988 0.2408 0.3681 0.1549

generic 6.0000 0.5000 100.0000 0.8681 0.7389 0.5608 0.5763 0.1217

fuzzers 6.0000 0.5000 500.0000 0.9950 0.9988 0.4627 0.5459 0.1549

exploits 6.0000 0.2000 100.0000 0.8088 0.6207 0.7034 0.7043 0.1375

dos 6.0000 1.0000 1000.0000 0.9181 0.8387 0.7520 0.7543 0.1708

backdoor 6.0000 0.5000 500.0000 0.9615 0.9319 0.0152 0.0841 0.1549

analysis 6.0000 0.5000 2000.0000 0.7769 0.5560 0.0721 0.1460 0.2260

Table D.22.: Best hindsight window values by attack category in the UNSW-NB15 dataset

TRAIN TEST flow timeout subflow timeout RC PR BA MCC F1 FN FP ms/p

A b 2.0000 0.4000 1.0000 0.7023 0.9921 0.8314 0.8251 9 747417 0.1443

A b 2.0000 0.4500 1.0000 0.7052 0.9923 0.8333 0.8271 9 737047 0.1411

A b 2.0000 0.5000 1.0000 0.7063 0.9923 0.8339 0.8279 9 733401 0.1419

A b 2.0000 0.5500 1.0000 0.7076 0.9923 0.8347 0.8288 9 728611 0.1417

A b 2.0000 0.6000 1.0000 0.7073 0.9923 0.8345 0.8286 9 729703 0.1449

A b 2.0000 0.8000 1.0000 0.7047 0.9922 0.8329 0.8268 9 738973 0.1466

A b 2.0000 1.0000 1.0000 0.7058 0.9923 0.8336 0.8276 9 734917 0.1397

A b 2.0000 3.0000 1.0000 0.7239 0.9929 0.8448 0.8399 0 672500 0.1401

A b 4.0000 0.4000 1.0000 0.7003 0.9921 0.8302 0.8238 9 754541 0.1456

A b 4.0000 0.4500 1.0000 0.7046 0.9922 0.8328 0.8267 9 739423 0.1444

A b 4.0000 0.5000 1.0000 0.7054 0.9923 0.8334 0.8273 9 736343 0.1448

A b 4.0000 0.5500 1.0000 0.7106 0.9924 0.8366 0.8308 9 718143 0.1465

A b 4.0000 0.6000 1.0000 0.7095 0.9924 0.8359 0.8300 9 722197 0.1418

A b 4.0000 0.8000 1.0000 0.7010 0.9921 0.8306 0.8242 9 752359 0.1446

A b 4.0000 1.0000 1.0000 0.7018 0.9921 0.8311 0.8248 9 749309 0.1449

A b 6.0000 0.4500 1.0000 0.7081 0.9924 0.8350 0.8291 9 726900 0.1432

A b 6.0000 0.5000 1.0000 0.7021 0.9921 0.8313 0.8250 9 748096 0.1432

A b 6.0000 0.5000 1.0000 0.7021 0.9921 0.8313 0.8250 9 748096 0.1388

A b 6.0000 0.5500 1.0000 0.7058 0.9923 0.8336 0.8275 9 735131 0.1378

A b 6.0000 0.6000 1.0000 0.7064 0.9923 0.8340 0.8280 0 732916 0.1386

A b 6.0000 0.6000 1.0000 0.7064 0.9923 0.8340 0.8280 0 732916 0.1404

A b 6.0000 0.8000 1.0000 0.7001 0.9921 0.8300 0.8236 0 755518 0.1468

A b 10.0000 0.5500 1.0000 0.7024 0.9921 0.8315 0.8252 0 747059 0.1486

A b 10.0000 0.6000 1.0000 0.7023 0.9921 0.8314 0.8251 0 747441 0.1436

A b 10.0000 3.0000 1.0000 0.7002 0.9921 0.8301 0.8237 0 755112 0.1149

A b 11.0000 0.4000 1.0000 0.7129 0.9925 0.8380 0.8324 0 710141 0.1409

A b 11.0000 0.4500 1.0000 0.7166 0.9927 0.8403 0.8349 0 697483 0.1402

A b 11.0000 0.5000 1.0000 0.7185 0.9927 0.8415 0.8362 0 691009 0.1508

A b 11.0000 0.5500 1.0000 0.7232 0.9929 0.8443 0.8393 0 675117 0.1445

A b 12.0000 0.4000 1.0000 0.7237 0.9929 0.8446 0.8397 0 673429 0.1449

A b 12.0000 0.4500 1.0000 0.7253 0.9930 0.8456 0.8408 0 668065 0.1409

A b 12.0000 0.5000 1.0000 0.7256 0.9930 0.8458 0.8410 0 667033 0.1397

A b 12.0000 0.5500 1.0000 0.7304 0.9932 0.8488 0.8442 0 651023 0.1391

A b 12.0000 0.6000 1.0000 0.7264 0.9930 0.8463 0.8415 0 664144 0.1427

A b 12.0000 0.8000 1.0000 0.7194 0.9928 0.8420 0.8368 0 687712 0.1501

A b 12.0000 1.0000 1.0000 0.7204 0.9928 0.8427 0.8375 0 684322 0.1477

A b 12.0000 3.0000 1.0000 0.7295 0.9931 0.8482 0.8436 0 654012 0.1395

A b 16.0000 0.5500 1.0000 0.7198 0.9928 0.8423 0.8371 0 686523 0.1461

A b 16.0000 0.6000 1.0000 0.7142 0.9926 0.8388 0.8332 0 705846 0.1455

A b 16.0000 0.8000 1.0000 0.7084 0.9924 0.8352 0.8293 0 725770 0.1391

A b 16.0000 1.0000 1.0000 0.7104 0.9924 0.8365 0.8307 0 718792 0.1436

A b 16.0000 3.0000 1.0000 0.7167 0.9927 0.8403 0.8349 0 697246 0.1454

A b 20.0000 0.4000 1.0000 0.7055 0.9923 0.8334 0.8273 0 736085 0.1458

A b 20.0000 0.4500 1.0000 0.7078 0.9923 0.8349 0.8289 0 727941 0.1442

A b 20.0000 0.5000 1.0000 0.7130 0.9925 0.8381 0.8325 0 709851 0.1402

A b 20.0000 0.5500 1.0000 0.7152 0.9926 0.8394 0.8339 0 702413 0.1471

A b 20.0000 0.6000 1.0000 0.7113 0.9925 0.8370 0.8313 0 715880 0.1446

A b 20.0000 0.8000 1.0000 0.7052 0.9923 0.8332 0.8271 0 737284 0.1418

A b 20.0000 1.0000 1.0000 0.7063 0.9923 0.8339 0.8279 0 733366 0.1419

A b 20.0000 3.0000 1.0000 0.7116 0.9925 0.8372 0.8315 0 714636 0.1441

A b 60.0000 0.4500 1.0000 0.7071 0.9923 0.8344 0.8284 0 730628 0.1425

A b 60.0000 0.5000 1.0000 0.7051 0.9922 0.8332 0.8271 0 737430 0.1388

A b 60.0000 0.5500 1.0000 0.7108 0.9925 0.8367 0.8310 0 717464 0.1428

A b 60.0000 0.6000 1.0000 0.7096 0.9924 0.8360 0.8301 0 721718 0.1381

A b 60.0000 0.8000 1.0000 0.7021 0.9921 0.8313 0.8250 0 748268 0.1439

Table D.23.: Results for the grid search which iterates the flow and subflow timeouts

xxii

D. Tables

tcp end on rst subflows flow timeout subflow timeout RC PR BA MCC F1 FN FP ms/p

1 0 6.0000 0.2000 0.9900 0.7858 0.9900 0.8774 0.8762 17584 475857 0.1274

1 0 6.0000 0.5000 1.0000 0.7826 0.9948 0.8801 0.8780 0 489969 0.1331

1 0 6.0000 1.0000 0.9899 0.7859 0.9900 0.8774 0.8762 17775 475490 0.1316

1 0 12.0000 0.2000 0.9999 0.7841 0.9948 0.8809 0.8789 222 485546 0.1311

1 0 12.0000 1.0000 1.0000 0.7827 0.9949 0.8801 0.8781 0 489552 0.1275

1 0 60.0000 0.5000 1.0000 0.7841 0.9949 0.8810 0.8790 0 485477 0.1256

1 0 60.0000 1.0000 1.0000 0.7832 0.9949 0.8805 0.8784 0 488041 0.1317

1 1 12.0000 0.2000 0.9899 0.7843 0.9899 0.8764 0.8752 17780 480026 0.1426

1 1 12.0000 0.5000 0.9899 0.7840 0.9899 0.8763 0.8750 17778 480832 0.1433

1 1 12.0000 1.0000 0.9899 0.7822 0.9899 0.8752 0.8739 17775 486134 0.1431

1 1 60.0000 0.2000 0.9899 0.7826 0.9899 0.8754 0.8742 17778 484817 0.1387

1 1 60.0000 0.5000 0.9899 0.7840 0.9899 0.8762 0.8750 17775 481052 0.1417

1 1 60.0000 1.0000 0.9899 0.7837 0.9899 0.8761 0.8748 17778 481701 0.1417

Table D.24.: Influence of the tcp end on rst mode on the UNSW-NB15 dataset (with the A train-
ing and b test subset)

TRAIN TEST basic layers PR RC MCC F1 BA ms/p

9-31 b 0 *0.9,*0.8,*0.8,#2,#1 0.8673 0.4522 0.6173 0.5945 0.7248 0.1415

8-31 b 0 *0.9,*0.8,*0.8,#2,#1 0.8519 0.3083 0.5033 0.4528 0.6532 0.1386

Table D.25.: Results for unclean training sets (UNSW-NB15)

xxiii

D
.
T
ab

les

category basic subflows tcp flow timeout subflow timeout RC MCC F1 BA ms/p

worms 0 1 1 15.0000 0.5000 1.0000 0.1344 0.0358 0.9963 0.2387

shellcode 0 1 1 15.0000 0.5000 1.0000 0.1339 0.0355 0.9963 0.2387

reconnaissance 0 1 1 15.0000 0.5000 0.9084 0.3649 0.2544 0.9505 0.2387

generic 0 1 1 15.0000 0.5000 0.6924 0.3869 0.3333 0.8425 0.2387

fuzzers 0 1 1 15.0000 0.5000 0.9982 0.5814 0.5085 0.9954 0.2387

exploits 0 1 1 15.0000 0.5000 0.3582 0.4200 0.4232 0.6754 0.2387

dos 0 1 1 15.0000 0.5000 0.6159 0.6583 0.6587 0.8071 0.2417

backdoor 0 1 1 15.0000 0.5000 0.9228 0.0913 0.0180 0.9577 0.2387

analysis 0 1 1 15.0000 0.5000 0.4653 0.0759 0.0245 0.7299 0.2387

all 0 1 1 15.0000 0.5000 0.4853 0.5744 0.5763 0.7390 0.2387

Table D.26.: Best results for the simple payload analyser counting byte frequencies in combination with an autoencoder

TRAIN TEST category basic smoothing clustering threshold flow timeout PR RC MCC F1 BA ms/p

12-20 b worms 0 0.0000 20.0000 15.0000 0.0232 0.9516 0.1483 0.0454 0.9730 0.2669

12-20 b shellcode 0 0.0001 7.0000 15.0000 0.0195 1.0000 0.1390 0.0382 0.9966 0.2650

12-20 b reconnaissance 0 0.0001 4.0000 15.0000 0.1565 0.9895 0.3920 0.2702 0.9910 0.2687

12-20 b generic 0 0.0010 7.0000 15.0000 0.2493 0.9872 0.4938 0.3980 0.9892 0.2687

12-20 b fuzzers 0 0.0001 7.0000 15.0000 0.3583 0.9971 0.5956 0.5271 0.9951 0.2650

12-20 b exploits 0 0.0010 20.0000 15.0000 0.6849 0.9861 0.8174 0.8083 0.9880 0.2679

12-20 b dos 0 0.0010 20.0000 15.0000 0.3887 0.9949 0.6188 0.5591 0.9925 0.2679

12-20 b backdoor 0 0.0001 7.0000 15.0000 0.0093 0.8753 0.0900 0.0185 0.9342 0.2650

12-20 b analysis 0 0.1000 20.0000 15.0000 0.8657 0.0278 0.1550 0.0538 0.5139 0.2653

12-20 b all 0 0.0010 20.0000 15.0000 0.7860 0.9899 0.8774 0.8762 0.9899 0.2679

Table D.27.: Best results for the PAYL generator on the UNSW-NB15 dataset, in combination with an autoencoder

TEST category basic smoothing clustering threshold flow timeout PR RC MCC F1 BA ms/p F1.1 BA.1 classification ms per packet.1

thursday web attack – xss 1 0.0001 2.0000 15.0000 0.0000 0.0000 -0.0000 0.0000 0.5000 0.2325 0.0000 0.5000 0.2325

thursday web attack – sql injection 1 0.1000 20.0000 15.0000 0.0000 0.0106 0.0002 0.0000 0.5023 0.2331 0.0000 0.5023 0.2331

thursday web attack – brute force 1 0.0001 2.0000 15.0000 0.0000 0.0000 -0.0001 0.0000 0.5000 0.2325 0.0000 0.5000 0.2325

thursday infiltration 1 0.1000 20.0000 15.0000 0.5163 0.9996 0.7163 0.6810 0.9968 0.2331 0.6810 0.9968 0.2331

wednesday dos slowloris 0 0.0001 20.0000 15.0000 0.9226 0.0879 0.2841 0.1605 0.5439 0.3215 0.1605 0.5439 0.3215

wednesday dos slowhttptest 1 0.1000 2.0000 15.0000 0.0068 0.0059 0.0034 0.0063 0.5016 0.2424 0.0063 0.5016 0.2424

wednesday dos hulk 1 0.1000 2.0000 15.0000 0.7761 0.0501 0.1718 0.0941 0.5237 0.2424 0.0941 0.5237 0.2424

wednesday dos goldeneye 1 0.1000 2.0000 15.0000 0.2336 0.0922 0.1420 0.1322 0.5447 0.2424 0.1322 0.5447 0.2424

Table D.28.: Best results for the PAYL generator on the CIC-IDS-2017 dataset (test sets: wednesday and thursday), in combination with an autoencoder

x
x
iv

D
.
T
ab

les

TRAIN TEST clustering threshold smoothing pca reducer 30 PR RC MCC F1 BA ms/p

A b 8.0000 0.1000 1 0.7813 0.9899 0.8747 0.8733 0.9898 0.2637

A b 5.0000 0.0100 1 0.7814 0.9899 0.8747 0.8733 0.9898 0.2714

A b 5.0000 0.1000 1 0.7813 0.9899 0.8747 0.8733 0.9898 0.2729

A b 4.0000 0.0100 1 0.7814 0.9899 0.8747 0.8733 0.9898 0.2666

A b 8.0000 0.0100 1 0.7814 0.9899 0.8747 0.8733 0.9898 0.2704

A b 2.0000 0.1000 1 0.7813 0.9899 0.8747 0.8733 0.9898 0.2683

A b 2.0000 0.0100 1 0.7814 0.9899 0.8747 0.8733 0.9898 0.2730

A b 4.0000 0.1000 1 0.7813 0.9899 0.8747 0.8733 0.9898 0.2845

A b 2.0000 0.1000 0 0.7279 0.9909 0.8432 0.8393 0.9886 0.2867

A b 4.0000 0.1000 0 0.7279 0.9909 0.8432 0.8393 0.9886 0.2763

A b 5.0000 0.1000 0 0.7279 0.9909 0.8432 0.8393 0.9886 0.2822

A b 8.0000 0.1000 0 0.7279 0.9909 0.8432 0.8393 0.9886 0.2724

A b 2.0000 0.0100 0 0.7756 0.9909 0.8717 0.8701 0.9901 0.2799

A b 4.0000 0.0100 0 0.7756 0.9909 0.8717 0.8701 0.9901 0.2715

A b 5.0000 0.0100 0 0.7756 0.9909 0.8717 0.8701 0.9901 0.2694

A b 8.0000 0.0100 0 0.7756 0.9909 0.8717 0.8701 0.9901 0.2708

Table D.29.: Best results for the PAYL generator on the UNSW-NB15 dataset, in combination with a one-class SVM

TRAIN TEST category PR RC MCC F1 BA ms/p

10-53 54-81 worms 0.0456 0.8237 0.1936 0.0865 0.9107 0.1378

10-53 54-81 shellcode 0.0002 0.0029 0.0002 0.0003 0.5003 0.1378

10-53 54-81 reconnaissance 0.0336 0.0556 0.0416 0.0419 0.5267 0.1378

10-53 54-81 generic 0.4511 0.6393 0.5354 0.5289 0.8185 0.1378

10-53 54-81 fuzzers 0.1556 0.1165 0.1319 0.1333 0.5571 0.1378

10-53 54-81 exploits 0.8368 0.5485 0.6721 0.6627 0.7731 0.1378

10-53 54-81 dos 0.6814 0.8269 0.7489 0.7471 0.9123 0.1378

10-53 54-81 backdoor 0.0000 0.0006 -0.0003 0.0000 0.4992 0.1378

10-53 54-81 analysis 0.0002 0.0022 0.0004 0.0004 0.5006 0.1378

10-53 54-81 all 0.8930 0.5368 0.6844 0.6706 0.7672 0.1378

Table D.30.: Results using a larger UNSW-NB15 subset (training: A+B, test: b+c) for a model consisting of the network flow feature extractor (flow timeout:
12 seconds, subflow timeout: 0.5 seconds, modes: tcp and subflows), the one-hot encoder, a PCA transformer with 30 principal components,
min-max scaling, standardization, and a one-class SVM (γ = 0.0001, ν = 0.0001)

x
x
v

Erkl�arung / Statement of Originality

”
Ich versichere, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche oder sinngemäße
Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung auch nachträglich zur
Aberkennung des Abschlusses führen kann. Ich versichere, dass das elektronische Exemplar mit
den gedruckten Exemplaren übereinstimmt.“

Ort: Leipzig

Datum: 09. April 2021

Unterschrift:

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Thesis Structure

	2 Background
	2.1 Network Traffic
	2.1.1 Relevant Network Protocols
	2.1.2 Network Flows

	2.2 Network Vulnerabilities and Attacks
	2.2.1 Definitions
	2.2.2 Types of Network Attacks
	2.2.3 Zero-Day Attacks

	2.3 Anomaly-Based Network Intrusion Detection
	2.3.1 Types of Anomalies
	2.3.2 Components of Anomaly-Based NIDS
	2.3.3 Comparing Learning Methods for Network Traffic Anomaly Detection
	2.3.4 One-Class Support Vector Machines
	2.3.5 Autoencoders

	2.4 Evaluation of Anomaly-Based NIDS
	2.4.1 Binary Classification
	2.4.2 Relevant Measurements

	2.5 Datasets for Network Intrusion Detection
	2.5.1 Dataset Requirements
	2.5.2 CIC-IDS-2017 and CSE-CIC-IDS-2018
	2.5.3 UNSW-NB15
	2.5.4 CIC DoS
	2.5.5 Outdated Datasets

	3 Related Work
	3.1 Usage of One-Class Support Vector Machines
	3.2 Usage of Autoencoders
	3.3 Payload Analysis
	3.4 Comparative Experiments

	4 Concept
	4.1 Overview
	4.2 Preprocessing
	4.3 Model Components and Training
	4.4 Classification of Unknown Network Traffic
	4.5 Evaluation
	4.6 Hyperparameter Search

	5 Implementation
	5.1 General Overview and Utilized Technologies
	5.2 Dataset Preprocessing
	5.2.1 Assigning Packets to Flows
	5.2.2 Occurring Problems
	5.2.3 Preprocessing Result and Validation

	5.3 Feature Extraction
	5.3.1 Network Flow Generation
	5.3.2 Flow-Based Payload Analysis

	5.4 Feature Transformation
	5.4.1 Min-Max-Scaling
	5.4.2 Standardization
	5.4.3 One-Hot Encoding
	5.4.4 Principal Component Analysis

	5.5 Decision Engines
	5.5.1 One-Class SVM
	5.5.2 Autoencoder

	6 Experiments
	6.1 Overview and Experiment Setup
	6.2 Results
	6.2.1 One-Class SVM
	6.2.2 Autoencoder
	6.2.3 Flow Feature Extractor
	6.2.4 Payload Analysis
	6.2.5 Unclean Training Data
	6.2.6 Bigger Subsets for the UNSW-NB15 Dataset

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	A Bibliography
	B List of Figures
	C List of Tables
	D Tables

