502 research outputs found

    A Lexicalized Tree Adjoining Grammar for Thai

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    General methods for fine-grained morphological and syntactic disambiguation

    Get PDF
    We present methods for improved handling of morphologically rich languages (MRLS) where we define MRLS as languages that are morphologically more complex than English. Standard algorithms for language modeling, tagging and parsing have problems with the productive nature of such languages. Consider for example the possible forms of a typical English verb like work that generally has four four different forms: work, works, working and worked. Its Spanish counterpart trabajar has 6 different forms in present tense: trabajo, trabajas, trabaja, trabajamos, trabajรกis and trabajan and more than 50 different forms when including the different tenses, moods (indicative, subjunctive and imperative) and participles. Such a high number of forms leads to sparsity issues: In a recent Wikipedia dump of more than 400 million tokens we find that 20 of these forms occur only twice or less and that 10 forms do not occur at all. This means that even if we only need unlabeled data to estimate a model and even when looking at a relatively common and frequent verb, we do not have enough data to make reasonable estimates for some of its forms. However, if we decompose an unseen form such as trabajarรฉis `you will work', we find that it is trabajar in future tense and second person plural. This allows us to make the predictions that are needed to decide on the grammaticality (language modeling) or syntax (tagging and parsing) of a sentence. In the first part of this thesis, we develop a morphological language model. A language model estimates the grammaticality and coherence of a sentence. Most language models used today are word-based n-gram models, which means that they estimate the transitional probability of a word following a history, the sequence of the (n - 1) preceding words. The probabilities are estimated from the frequencies of the history and the history followed by the target word in a huge text corpus. If either of the sequences is unseen, the length of the history has to be reduced. This leads to a less accurate estimate as less context is taken into account. Our morphological language model estimates an additional probability from the morphological classes of the words. These classes are built automatically by extracting morphological features from the word forms. To this end, we use unsupervised segmentation algorithms to find the suffixes of word forms. Such an algorithm might for example segment trabajarรฉis into trabaja and rรฉis and we can then estimate the properties of trabajarรฉis from other word forms with the same or similar morphological properties. The data-driven nature of the segmentation algorithms allows them to not only find inflectional suffixes (such as -rรฉis), but also more derivational phenomena such as the head nouns of compounds or even endings such as -tec, which identify technology oriented companies such as Vortec, Memotec and Portec and would not be regarded as a morphological suffix by traditional linguistics. Additionally, we extract shape features such as if a form contains digits or capital characters. This is important because many rare or unseen forms are proper names or numbers and often do not have meaningful suffixes. Our class-based morphological model is then interpolated with a word-based model to combine the generalization capabilities of the first and the high accuracy in case of sufficient data of the second. We evaluate our model across 21 European languages and find improvements between 3% and 11% in perplexity, a standard language modeling evaluation measure. Improvements are highest for languages with more productive and complex morphology such as Finnish and Estonian, but also visible for languages with a relatively simple morphology such as English and Dutch. We conclude that a morphological component yields consistent improvements for all the tested languages and argue that it should be part of every language model. Dependency trees represent the syntactic structure of a sentence by attaching each word to its syntactic head, the word it is directly modifying. Dependency parsing is usually tackled using heavily lexicalized (word-based) models and a thorough morphological preprocessing is important for optimal performance, especially for MRLS. We investigate if the lack of morphological features can be compensated by features induced using hidden Markov models with latent annotations (HMM-LAs) and find this to be the case for German. HMM-LAs were proposed as a method to increase part-of-speech tagging accuracy. The model splits the observed part-of-speech tags (such as verb and noun) into subtags. An expectation maximization algorithm is then used to fit the subtags to different roles. A verb tag for example might be split into an auxiliary verb and a full verb subtag. Such a split is usually beneficial because these two verb classes have different contexts. That is, a full verb might follow an auxiliary verb, but usually not another full verb. For German and English, we find that our model leads to consistent improvements over a parser not using subtag features. Looking at the labeled attachment score (LAS), the number of words correctly attached to their head, we observe an improvement from 90.34 to 90.75 for English and from 87.92 to 88.24 for German. For German, we additionally find that our model achieves almost the same performance (88.24) as a model using tags annotated by a supervised morphological tagger (LAS of 88.35). We also find that the German latent tags correlate with morphology. Articles for example are split by their grammatical case. We also investigate the part-of-speech tagging accuracies of models using the traditional treebank tagset and models using induced tagsets of the same size and find that the latter outperform the former, but are in turn outperformed by a discriminative tagger. Furthermore, we present a method for fast and accurate morphological tagging. While part-of-speech tagging annotates tokens in context with their respective word categories, morphological tagging produces a complete annotation containing all the relevant inflectional features such as case, gender and tense. A complete reading is represented as a single tag. As a reading might consist of several morphological features the resulting tagset usually contains hundreds or even thousands of tags. This is an issue for many decoding algorithms such as Viterbi which have runtimes depending quadratically on the number of tags. In the case of morphological tagging, the problem can be avoided by using a morphological analyzer. A morphological analyzer is a manually created finite-state transducer that produces the possible morphological readings of a word form. This analyzer can be used to prune the tagging lattice and to allow for the application of standard sequence labeling algorithms. The downside of this approach is that such an analyzer is not available for every language or might not have the coverage required for the task. Additionally, the output tags of some analyzers are not compatible with the annotations of the treebanks, which might require some manual mapping of the different annotations or even to reduce the complexity of the annotation. To avoid this problem we propose to use the posterior probabilities of a conditional random field (CRF) lattice to prune the space of possible taggings. At the zero-order level the posterior probabilities of a token can be calculated independently from the other tokens of a sentence. The necessary computations can thus be performed in linear time. The features available to the model at this time are similar to the features used by a morphological analyzer (essentially the word form and features based on it), but also include the immediate lexical context. As the ambiguity of word types varies substantially, we just fix the average number of readings after pruning by dynamically estimating a probability threshold. Once we obtain the pruned lattice, we can add tag transitions and convert it into a first-order lattice. The quadratic forward-backward computations are now executed on the remaining plausible readings and thus efficient. We can now continue pruning and extending the lattice order at a relatively low additional runtime cost (depending on the pruning thresholds). The training of the model can be implemented efficiently by applying stochastic gradient descent (SGD). The CRF gradient can be calculated from a lattice of any order as long as the correct reading is still in the lattice. During training, we thus run the lattice pruning until we either reach the maximal order or until the correct reading is pruned. If the reading is pruned we perform the gradient update with the highest order lattice still containing the reading. This approach is similar to early updating in the structured perceptron literature and forces the model to learn how to keep the correct readings in the lower order lattices. In practice, we observe a high number of lower updates during the first training epoch and almost exclusively higher order updates during later epochs. We evaluate our CRF tagger on six languages with different morphological properties. We find that for languages with a high word form ambiguity such as German, the pruning results in a moderate drop in tagging accuracy while for languages with less ambiguity such as Spanish and Hungarian the loss due to pruning is negligible. However, our pruning strategy allows us to train higher order models (order > 1), which give substantial improvements for all languages and also outperform unpruned first-order models. That is, the model might lose some of the correct readings during pruning, but is also able to solve more of the harder cases that require more context. We also find our model to substantially and significantly outperform a number of frequently used taggers such as Morfette and SVMTool. Based on our morphological tagger we develop a simple method to increase the performance of a state-of-the-art constituency parser. A constituency tree describes the syntactic properties of a sentence by assigning spans of text to a hierarchical bracket structure. developed a language-independent approach for the automatic annotation of accurate and compact grammars. Their implementation -- known as the Berkeley parser -- gives state-of-the-art results for many languages such as English and German. For some MRLS such as Basque and Korean, however, the parser gives unsatisfactory results because of its simple unknown word model. This model maps unknown words to a small number of signatures (similar to our morphological classes). These signatures do not seem expressive enough for many of the subtle distinctions made during parsing. We propose to replace rare words by the morphological reading generated by our tagger instead. The motivation is twofold. First, our tagger has access to a number of lexical and sublexical features not available during parsing. Second, we expect the morphological readings to contain most of the information required to make the correct parsing decision even though we know that things such as the correct attachment of prepositional phrases might require some notion of lexical semantics. In experiments on the SPMRL 2013 dataset of nine MRLS we find our method to give improvements for all languages except French for which we observe a minor drop in the Parseval score of 0.06. For Hebrew, Hungarian and Basque we find substantial absolute improvements of 5.65, 11.87 and 15.16, respectively. We also performed an extensive evaluation on the utility of word representations for morphological tagging. Our goal was to reduce the drop in performance that is caused when a model trained on a specific domain is applied to some other domain. This problem is usually addressed by domain adaption (DA). DA adapts a model towards a specific domain using a small amount of labeled or a huge amount of unlabeled data from that domain. However, this procedure requires us to train a model for every target domain. Instead we are trying to build a robust system that is trained on domain-specific labeled and domain-independent or general unlabeled data. We believe word representations to be key in the development of such models because they allow us to leverage unlabeled data efficiently. We compare data-driven representations to manually created morphological analyzers. We understand data-driven representations as models that cluster word forms or map them to a vectorial representation. Examples heavily used in the literature include Brown clusters, Singular Value Decompositions of count vectors and neural-network-based embeddings. We create a test suite of six languages consisting of in-domain and out-of-domain test sets. To this end we converted annotations for Spanish and Czech and annotated the German part of the Smultron treebank with a morphological layer. In our experiments on these data sets we find Brown clusters to outperform the other data-driven representations. Regarding the comparison with morphological analyzers, we find Brown clusters to give slightly better performance in part-of-speech tagging, but to be substantially outperformed in morphological tagging

    Assessment of Pre-Trained Models Across Languages and Grammars

    Full text link
    We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors.Comment: Accepted at IJCNLP-AACL 202

    Concepts of structural underspecification in Bantu and Romance

    Get PDF

    Automatic Generation of Morpheme Level Reordering Rules for Korean to English Machine Translation

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์–ธ์–ดํ•™๊ณผ, 2017. 2. ์‹ ํšจํ•„.Word order is one of the main challenges that machine translation systems must overcome when dealing with any linguistically divergent language pair, such as Korean and English. Statistical machine translation (SMT) models are often insufficient at long distance reordering due the distortion penalties they impose.Rule-based systems, on the other hand, are often costly, in both time and money, to build and maintain. The present research proposes a new hybrid approach for Korean to English machine translation. While previous approaches have focused on the word, our approach considers the morpheme as the basic unit of translation for this language pair. We begin by developing a classification model to disambiguate Korean functional morphemes based on alignment pairs and context feature data. Then, according to our automatically generated rules, we apply this model in a preprocessing step to reorder the morphemes to better match English sentence structure. After retraining our statistical translation system, Moses, results indicate an improvement in overall translation quality. When the SMT system's internal lexicalized reordering is restricted, we note an increase in the BLEU score of 3.5% over the SMT-only baseline. In the case where we do not limit decoding-time reordering, an even greater BLEU score increase of 4.42% is observed. We also find evidence to suggest that our changes enable Moses to execute additional reordering operations at decoding time that it was previously unable to perform.Chapter 1. Introduction 1 Chapter 2. Literature Review 6 2.1 Machine Translation. 6 2.2 Reordering 10 2.3 Korean to English MT. 12 Chapter 3. Corpus Data and SMT System. 14 3.1 Background 14 3.2 Preparation. 15 3.3 Moses 17 Chapter 4. Rule Generation. 19 4.1 Corpus Processing. 20 4.1.1 Suggested Korean-English Alignments. 21 4.1.2 Feature Sets 24 4.1.3 Reordering Movement. 26 4.2 Rule Creation. 33 4.3 Input Preprocessing. 35 4.3.1 Rule Matching. 35 4.3.2 Morpheme Reordering. 38 4.4 Examples 40 Chapter 5. Results 44 Chapter 6. Conclusion. 49 References 51 Appendix A: Rules 55 Abstract in Korean 64Maste

    ํ•œ๊ตญ์–ด ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ ๊ตฌ์ถ•๊ณผ ํ™•์žฅ ์—ฐ๊ตฌ: ๊ฐ์ •๋ถ„์„์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ธ๋ฌธ๋Œ€ํ•™ ์–ธ์–ดํ•™๊ณผ, 2021. 2. ์‹ ํšจํ•„.Recently, as interest in the Bidirectional Encoder Representations from Transformers (BERT) model has increased, many studies have also been actively conducted in Natural Language Processing based on the model. Such sentence-level contextualized embedding models are generally known to capture and model lexical, syntactic, and semantic information in sentences during training. Therefore, such models, including ELMo, GPT, and BERT, function as a universal model that can impressively perform a wide range of NLP tasks. This study proposes a monolingual BERT model trained based on Korean texts. The first released BERT model that can handle the Korean language was Google Researchโ€™s multilingual BERT (M-BERT), which was constructed with training data and a vocabulary composed of 104 languages, including Korean and English, and can handle the text of any language contained in the single model. However, despite the advantages of multilingualism, this model does not fully reflect each languageโ€™s characteristics, so that its text processing performance in each language is lower than that of a monolingual model. While mitigating those shortcomings, we built monolingual models using the training data and a vocabulary organized to better capture Korean textsโ€™ linguistic knowledge. Therefore, in this study, a model named KR-BERT was built using training data composed of Korean Wikipedia text and news articles, and was released through GitHub so that it could be used for processing Korean texts. Additionally, we trained a KR-BERT-MEDIUM model based on expanded data by adding comments and legal texts to the training data of KR-BERT. Each model used a list of tokens composed mainly of Hangul characters as its vocabulary, organized using WordPiece algorithms based on the corresponding training data. These models reported competent performances in various Korean NLP tasks such as Named Entity Recognition, Question Answering, Semantic Textual Similarity, and Sentiment Analysis. In addition, we added sentiment features to the BERT model to specialize it to better function in sentiment analysis. We constructed a sentiment-combined model including sentiment features, where the features consist of polarity and intensity values assigned to each token in the training data corresponding to that of Korean Sentiment Analysis Corpus (KOSAC). The sentiment features assigned to each token compose polarity and intensity embeddings and are infused to the basic BERT input embeddings. The sentiment-combined model is constructed by training the BERT model with these embeddings. We trained a model named KR-BERT-KOSAC that contains sentiment features while maintaining the same training data, vocabulary, and model configurations as KR-BERT and distributed it through GitHub. Then we analyzed the effects of using sentiment features in comparison to KR-BERT by observing their performance in language modeling during the training process and sentiment analysis tasks. Additionally, we determined how much each of the polarity and intensity features contributes to improving the model performance by separately organizing a model that utilizes each of the features, respectively. We obtained some increase in language modeling and sentiment analysis performances by using both the sentiment features, compared to other models with different feature composition. Here, we included the problems of binary positivity classification of movie reviews and hate speech detection on offensive comments as the sentiment analysis tasks. On the other hand, training these embedding models requires a lot of training time and hardware resources. Therefore, this study proposes a simple model fusing method that requires relatively little time. We trained a smaller-scaled sentiment-combined model consisting of a smaller number of encoder layers and attention heads and smaller hidden sizes for a few steps, combining it with an existing pre-trained BERT model. Since those pre-trained models are expected to function universally to handle various NLP problems based on good language modeling, this combination will allow two models with different advantages to interact and have better text processing capabilities. In this study, experiments on sentiment analysis problems have confirmed that combining the two models is efficient in training time and usage of hardware resources, while it can produce more accurate predictions than single models that do not include sentiment features.์ตœ๊ทผ ํŠธ๋žœ์Šคํฌ๋จธ ์–‘๋ฐฉํ–ฅ ์ธ์ฝ”๋” ํ‘œํ˜„ (Bidirectional Encoder Representations from Transformers, BERT) ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์ด์— ๊ธฐ๋ฐ˜ํ•œ ์—ฐ๊ตฌ ์—ญ์‹œ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์žฅ ๋‹จ์œ„์˜ ์ž„๋ฒ ๋”ฉ์„ ์œ„ํ•œ ๋ชจ๋ธ๋“ค์€ ๋ณดํ†ต ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฌธ์žฅ ๋‚ด ์–ดํœ˜, ํ†ต์‚ฌ, ์˜๋ฏธ ์ •๋ณด๋ฅผ ํฌ์ฐฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ELMo, GPT, BERT ๋“ฑ์€ ๊ทธ ์ž์ฒด๊ฐ€ ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๋ชจ๋ธ๋กœ์„œ ๊ธฐ๋Šฅํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์–ด ์ž๋ฃŒ๋กœ ํ•™์Šตํ•œ ๋‹จ์ผ ์–ธ์–ด BERT ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ€์žฅ ๋จผ์ € ๊ณต๊ฐœ๋œ ํ•œ๊ตญ์–ด๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT ๋ชจ๋ธ์€ Google Research์˜ multilingual BERT (M-BERT)์˜€๋‹ค. ์ด๋Š” ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋ฅผ ํฌํ•จํ•˜์—ฌ 104๊ฐœ ์–ธ์–ด๋กœ ๊ตฌ์„ฑ๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ ๋ชจ๋ธ์ด๋ฉฐ, ๋ชจ๋ธ ํ•˜๋‚˜๋กœ ํฌํ•จ๋œ ๋ชจ๋“  ์–ธ์–ด์˜ ํ…์ŠคํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ๊ทธ ๋‹ค์ค‘์–ธ์–ด์„ฑ์ด ๊ฐ–๋Š” ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ฐ ์–ธ์–ด์˜ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜์—ฌ ๋‹จ์ผ ์–ธ์–ด ๋ชจ๋ธ๋ณด๋‹ค ๊ฐ ์–ธ์–ด์˜ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ์ด ๋‚ฎ๋‹ค๋Š” ๋‹จ์ ์„ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋Ÿฌํ•œ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜๋ฉด์„œ ํ…์ŠคํŠธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ์–ธ์–ด ์ •๋ณด๋ฅผ ๋ณด๋‹ค ์ž˜ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•œ๊ตญ์–ด Wikipedia ํ…์ŠคํŠธ์™€ ๋‰ด์Šค ๊ธฐ์‚ฌ๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ KR-BERT ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๊ณต๊ฐœํ•˜์—ฌ ํ•œ๊ตญ์–ด ์ •๋ณด์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ“๊ธ€ ๋ฐ์ดํ„ฐ์™€ ๋ฒ•์กฐ๋ฌธ๊ณผ ํŒ๊ฒฐ๋ฌธ์„ ๋ง๋ถ™์—ฌ ํ™•์žฅํ•œ ํ…์ŠคํŠธ์— ๊ธฐ๋ฐ˜ํ•ด์„œ ๋‹ค์‹œ KR-BERT-MEDIUM ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์€ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ WordPiece ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•ด ๊ตฌ์„ฑํ•œ ํ•œ๊ธ€ ์ค‘์‹ฌ์˜ ํ† ํฐ ๋ชฉ๋ก์„ ์‚ฌ์ „์œผ๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ด๋“ค ๋ชจ๋ธ์€ ๊ฐœ์ฒด๋ช… ์ธ์‹, ์งˆ์˜์‘๋‹ต, ๋ฌธ์žฅ ์œ ์‚ฌ๋„ ํŒ๋‹จ, ๊ฐ์ • ๋ถ„์„ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํ•œ๊ตญ์–ด ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ์— ์ ์šฉ๋˜์–ด ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด๊ณ ํ–ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BERT ๋ชจ๋ธ์— ๊ฐ์ • ์ž์งˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๊ทธ๊ฒƒ์ด ๊ฐ์ • ๋ถ„์„์— ํŠนํ™”๋œ ๋ชจ๋ธ๋กœ์„œ ํ™•์žฅ๋œ ๊ธฐ๋Šฅ์„ ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๊ฐ์ • ์ž์งˆ์„ ํฌํ•จํ•˜์—ฌ ๋ณ„๋„์˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผฐ๋Š”๋ฐ, ์ด๋•Œ ๊ฐ์ • ์ž์งˆ์€ ๋ฌธ์žฅ ๋‚ด์˜ ๊ฐ ํ† ํฐ์— ํ•œ๊ตญ์–ด ๊ฐ์ • ๋ถ„์„ ์ฝ”ํผ์Šค (KOSAC)์— ๋Œ€์‘ํ•˜๋Š” ๊ฐ์ • ๊ทน์„ฑ(polarity)๊ณผ ๊ฐ•๋„(intensity) ๊ฐ’์„ ๋ถ€์—ฌํ•œ ๊ฒƒ์ด๋‹ค. ๊ฐ ํ† ํฐ์— ๋ถ€์—ฌ๋œ ์ž์งˆ์€ ๊ทธ ์ž์ฒด๋กœ ๊ทน์„ฑ ์ž„๋ฒ ๋”ฉ๊ณผ ๊ฐ•๋„ ์ž„๋ฒ ๋”ฉ์„ ๊ตฌ์„ฑํ•˜๊ณ , BERT๊ฐ€ ๊ธฐ๋ณธ์œผ๋กœ ํ•˜๋Š” ํ† ํฐ ์ž„๋ฒ ๋”ฉ์— ๋”ํ•ด์ง„๋‹ค. ์ด๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ์ž„๋ฒ ๋”ฉ์„ ํ•™์Šตํ•œ ๊ฒƒ์ด ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ(sentiment-combined model)์ด ๋œ๋‹ค. KR-BERT์™€ ๊ฐ™์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ ๊ตฌ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ฐ์ • ์ž์งˆ์„ ๊ฒฐํ•ฉํ•œ ๋ชจ๋ธ์ธ KR-BERT-KOSAC๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๋ฐฐํฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๊ณผ์ • ๋‚ด ์–ธ์–ด ๋ชจ๋ธ๋ง๊ณผ ๊ฐ์ • ๋ถ„์„ ๊ณผ์ œ์—์„œ์˜ ์„ฑ๋Šฅ์„ ์–ป์€ ๋’ค KR-BERT์™€ ๋น„๊ตํ•˜์—ฌ ๊ฐ์ • ์ž์งˆ ์ถ”๊ฐ€์˜ ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋˜ํ•œ ๊ฐ์ • ์ž์งˆ ์ค‘ ๊ทน์„ฑ๊ณผ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ๊ฐ ์ ์šฉํ•œ ๋ชจ๋ธ์„ ๋ณ„๋„ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ ์ž์งˆ์ด ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ•˜๋Š”์ง€๋„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๊ฐ์ • ์ž์งˆ์„ ๋ชจ๋‘ ์ถ”๊ฐ€ํ•œ ๊ฒฝ์šฐ์—, ๊ทธ๋ ‡์ง€ ์•Š์€ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์— ๋น„ํ•˜์—ฌ ์–ธ์–ด ๋ชจ๋ธ๋ง์ด๋‚˜ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ์—์„œ ์„ฑ๋Šฅ์ด ์–ด๋Š ์ •๋„ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋•Œ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋กœ๋Š” ์˜ํ™”ํ‰์˜ ๊ธ๋ถ€์ • ์—ฌ๋ถ€ ๋ถ„๋ฅ˜์™€ ๋Œ“๊ธ€์˜ ์•…ํ”Œ ์—ฌ๋ถ€ ๋ถ„๋ฅ˜๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์œ„์™€ ๊ฐ™์€ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ์‚ฌ์ „ํ•™์Šตํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ํ•˜๋“œ์›จ์–ด ๋“ฑ์˜ ์ž์›์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„๊ต์  ์ ์€ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ ๊ฒฐํ•ฉ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ ์€ ์ˆ˜์˜ ์ธ์ฝ”๋” ๋ ˆ์ด์–ด, ์–ดํ…์…˜ ํ—ค๋“œ, ์ ์€ ์ž„๋ฒ ๋”ฉ ์ฐจ์› ์ˆ˜๋กœ ๊ตฌ์„ฑํ•œ ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ์„ ์ ์€ ์Šคํ… ์ˆ˜๊นŒ์ง€๋งŒ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ์กด์— ํฐ ๊ทœ๋ชจ๋กœ ์‚ฌ์ „ํ•™์Šต๋˜์–ด ์žˆ๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ๊ณผ ๊ฒฐํ•ฉํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์—๋Š” ์ถฉ๋ถ„ํ•œ ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์–ธ์–ด ์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๊ธฐ๋Šฅ์ด ๊ธฐ๋Œ€๋˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๊ฒฐํ•ฉ์€ ์„œ๋กœ ๋‹ค๋ฅธ ์žฅ์ ์„ ๊ฐ–๋Š” ๋‘ ๋ชจ๋ธ์ด ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ–๋„๋ก ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์˜ ๊ฒฐํ•ฉ์ด ํ•™์Šต ์‹œ๊ฐ„์— ์žˆ์–ด ํšจ์œจ์ ์ด๋ฉด์„œ๋„, ๊ฐ์ • ์ž์งˆ์„ ๋”ํ•˜์ง€ ์•Š์€ ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Objectives 3 1.2 Contribution 9 1.3 Dissertation Structure 10 2 Related Work 13 2.1 Language Modeling and the Attention Mechanism 13 2.2 BERT-based Models 16 2.2.1 BERT and Variation Models 16 2.2.2 Korean-Specific BERT Models 19 2.2.3 Task-Specific BERT Models 22 2.3 Sentiment Analysis 24 2.4 Chapter Summary 30 3 BERT Architecture and Evaluations 33 3.1 Bidirectional Encoder Representations from Transformers (BERT) 33 3.1.1 Transformers and the Multi-Head Self-Attention Mechanism 34 3.1.2 Tokenization and Embeddings of BERT 39 3.1.3 Training and Fine-Tuning BERT 42 3.2 Evaluation of BERT 47 3.2.1 NLP Tasks 47 3.2.2 Metrics 50 3.3 Chapter Summary 52 4 Pre-Training of Korean BERT-based Model 55 4.1 The Need for a Korean Monolingual Model 55 4.2 Pre-Training Korean-specific BERT Model 58 4.3 Chapter Summary 70 5 Performances of Korean-Specific BERT Models 71 5.1 Task Datasets 71 5.1.1 Named Entity Recognition 71 5.1.2 Question Answering 73 5.1.3 Natural Language Inference 74 5.1.4 Semantic Textual Similarity 78 5.1.5 Sentiment Analysis 80 5.2 Experiments 81 5.2.1 Experiment Details 81 5.2.2 Task Results 83 5.3 Chapter Summary 89 6 An Extended Study to Sentiment Analysis 91 6.1 Sentiment Features 91 6.1.1 Sources of Sentiment Features 91 6.1.2 Assigning Prior Sentiment Values 94 6.2 Composition of Sentiment Embeddings 103 6.3 Training the Sentiment-Combined Model 109 6.4 Effect of Sentiment Features 113 6.5 Chapter Summary 121 7 Combining Two BERT Models 123 7.1 External Fusing Method 123 7.2 Experiments and Results 130 7.3 Chapter Summary 135 8 Conclusion 137 8.1 Summary of Contribution and Results 138 8.1.1 Construction of Korean Pre-trained BERT Models 138 8.1.2 Construction of a Sentiment-Combined Model 138 8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and Cost Advantages 139 8.2 Future Directions and Open Problems 140 8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance 140 8.2.2 Observation of Changes Depending on the Domain of Training Data 141 8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT Learns 142 8.2.4 The Specific Process of Sentiment Features Helping the Language Modeling of BERT is Unknown 143 Bibliography 145 Appendices 157 A. Python Sources 157 A.1 Construction of Polarity and Intensity Embeddings 157 A.2 External Fusing of Different Pre-Trained Models 158 B. Examples of Experiment Outputs 162 C. Model Releases through GitHub 165Docto

    A Deterministic Dependency Parser for Japanese

    Get PDF
    We present a rule-based, deterministic dependency parser for Japanese. It was implemented in C ++, using object classes that reflect linguistic concepts and thus facilitate the transfer of linguistic intuitions into code. The parser first chunks morphemes into one-word phrases and then parses from the right to the left. The average parsing accuracy is 83.6%

    Wide-coverage parsing for Turkish

    Get PDF
    Wide-coverage parsing is an area that attracts much attention in natural language processing research. This is due to the fact that it is the first step tomany other applications in natural language understanding, such as question answering. Supervised learning using human-labelled data is currently the best performing method. Therefore, there is great demand for annotated data. However, human annotation is very expensive and always, the amount of annotated data is much less than is needed to train well-performing parsers. This is the motivation behind making the best use of data available. Turkish presents a challenge both because syntactically annotated Turkish data is relatively small and Turkish is highly agglutinative, hence unusually sparse at the whole word level. METU-Sabancฤฑ Treebank is a dependency treebank of 5620 sentences with surface dependency relations and morphological analyses for words. We show that including even the crudest forms of morphological information extracted from the data boosts the performance of both generative and discriminative parsers, contrary to received opinion concerning English. We induce word-based and morpheme-based CCG grammars from Turkish dependency treebank. We use these grammars to train a state-of-the-art CCG parser that predicts long-distance dependencies in addition to the ones that other parsers are capable of predicting. We also use the correct CCG categories as simple features in a graph-based dependency parser and show that this improves the parsing results. We show that a morpheme-based CCG lexicon for Turkish is able to solve many problems such as conflicts of semantic scope, recovering long-range dependencies, and obtaining smoother statistics from the models. CCG handles linguistic phenomena i.e. local and long-range dependencies more naturally and effectively than other linguistic theories while potentially supporting semantic interpretation in parallel. Using morphological information and a morpheme-cluster based lexicon improve the performance both quantitatively and qualitatively for Turkish. We also provide an improved version of the treebank which will be released by kind permission of METU and Sabancฤฑ
    • โ€ฆ
    corecore