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Abstract

Wide-coverage parsing is an area that attracts much attention in natural language pro-

cessing research. This is due to the fact that it is the first step to many other applications

in natural language understanding, such as question answering.

Supervised learning using human-labelled data is currently the best performing

method. Therefore, there is great demand for annotated data. However, human anno-

tation is very expensive and always, the amount of annotateddata is much less than

is needed to train well-performing parsers. This is the motivation behind making the

best use of data available. Turkish presents a challenge both because syntactically

annotated Turkish data is relatively small and Turkish is highly agglutinative, hence

unusually sparse at the whole word level.

METU-Sabancı Treebank is a dependency treebank of 5620 sentences with surface

dependency relations and morphological analyses for words. We show that including

even the crudest forms of morphological information extracted from the data boosts

the performance of both generative and discriminative parsers, contrary to received

opinion concerning English.

We induce word-based and morpheme-based CCG grammars from Turkish depen-

dency treebank. We use these grammars to train a state-of-the-art CCG parser that

predicts long-distance dependencies in addition to the ones that other parsers are ca-

pable of predicting. We also use the correct CCG categories as simple features in a

graph-based dependency parser and show that this improves the parsing results.

We show that a morpheme-based CCG lexicon for Turkish is ableto solve many

problems such as conflicts of semantic scope, recovering long-range dependencies,

and obtaining smoother statistics from the models. CCG handles linguistic phenomena

i.e. local and long-range dependencies more naturally and effectively than other lin-

guistic theories while potentially supporting semantic interpretation in parallel. Using

morphological information and a morpheme-cluster based lexicon improve the perfor-

mance both quantitatively and qualitatively for Turkish.

We also provide an improved version of the treebank which will be released by

kind permission of METU and Sabancı.
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I thank my parents, Şenol and Yalçın, my brother Mehmet andmy sisters Gülen
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Chapter 1

Introduction

Parsing is an integral part of natural language understanding systems, since seman-

tic interpretation requires the syntactic information provided by parsing. What makes

parsing natural languages hard is the size and high ambiguity of the grammars. This re-

sults in a much bigger search space for natural language parsing and requires grammar

induction and statistical modeling to guide search.

Creating wide-coverage natural language grammars by hand is impractical. There

are two approaches that can be taken. One isunsupervisedgrammar extraction which

has been overshadowed by the success of the alternativesupervisedmethods. The

downside of the supervised methods is that they require labelled data. Although syn-

tactically labelled English corpus is bigger than data available for many languages,

even it is considered to be small to make reliable estimates for this language. The aim

of this thesis is to identfy the problems that are casued by the limitations on the size of

the labelled data and suggest solutions in order to make the most use of available data

however limited.

Supervised statistical parsers for English and other languages were created soon

after labelled data became available. However, the popularity of statistical parsing in-

creased when lexicalised parsers based on head-word dependency models represented

an advance on simple probabilistic context-free grammars (PCFG, Booth and Thomp-

son, 1973). In the late 1990s, a number of lexicalised head-dependency model based

parsers were proposed (Magerman, 1995; Collins, 1997; Charniak, 1997; Collins,

1999; Charniak, 2000). This led to a new emphasis on the the dependency based

evaluation, an alternative to PARSEVAL which measures the similarity to the human-

labeled gold standard context-free trees (Carroll, Briscoe, and Sanfilippo, 1998; Lin,

1998; Collins, 1999; Clark, Hockenmaier, and Steedman, 2002).

1
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Dependency theories developed in parallel to the phrase structure based theories

such as Head Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994),

Lexical Functional Grammars (LFG) (Bresnan, 1982). Dependency theories are lex-

icalist theories in the sense that all the syntactic relations are represented as simple

directed links between lexical entities. Head-dependent relations are defined between

the representational units in the lexicon. Dependency representations allow to directly

represent non-projective dependencies, thus are preferred for freer order languages

(Skut et al., 1997).

Natural languages are known to require more than context free power (Shieber,

1985). However, the linguistic evidence that they are non-context free does not imply

full context sensitive power. Several theories of grammar are conjectured to exhibit

limited extra power that is required for certain language phenomena. These theories

are considered to be in a subclass of context sensitive grammars which is called the

mildly-context sensitive grammars. Certain constrained versions of dependency lan-

guages are proven to be equivalent to mildly context sensitive languages (Kuhlmann

and Möhl, 2007). This result generalises previous work on the relation between de-

pendency grammars and Lexicalised Tree Adjoining Grammarsby Rambow and Joshi

(1997). Linear-Indexed Grammars (Joshi, Levy, and Takahashi, 1975) have been ar-

gued to be a promising candidate for a class of grammars that have all and only the

extra expressive power beyond CFG that is needed to explain the lingusitic phenom-

ena of natural languages (see Gazdar (1988) for discussion). Grammar theories such

as Combinatory Categorial Grammar (Steedman, 2000), and Tree Adjoining Grammar

(Joshi, Levy, and Takahashi, 1975) are weakly equivalent toLinear-Indexed Grammars

and, thus, may well be expressive enough, without overgenerating Thus, the represen-

tational structure chosen for annotating a dependency (or any kind of) treebank is cru-

cial. Like parsers, the formalism used in annotation shouldbe expressive enough to

represent all the linguistic phenomena specific to that language.

Simpler structures of representation are desirable for thesake of efficiency in anno-

tation process. However, the balance between simplicity ofrepresentation and expres-

siveness of the formalism is of vital importance. The main aim of a parser (computa-

tional or human) is to deliver an interpretable meaning representation of the sentence

to be parsed. Most of the data can be explained with context-free rules, and thus pro-

jective acyclic dependency trees. Long-distance dependencies and other “deep” depen-

dencies are, in fact, rare because of the skewed distributions that apply to all linguistic

phenomena. However, they are crucial in recovering predicate-argument structure and
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semantic interpretation. Post-processing methods that recover some deep dependen-

cies from context-free phrase-structure trees that are outputs of shallower parsers were

suggested in the past (Dienes and Dubey, 2003; Levy and Manning, 2004; Cahill et al.,

2008; Johnson, 2002).

Treebank annotations that only represent surface context-free relations limit the

possibility of attaining and evaluating wide-coverage recovery of full semantic inter-

pretations. However, treebanks like these are not uncommon, and in fact the METU-

Sabancı treebank we take as our starting point is of this kind. The impact aimed in this

thesis is to show that a parsing system using an expressive theory of grammar (CCG)

can be created from a less expressive method of representation with the use of mor-

phological information and including a limited amount of deep linguistic information

in the form of deep dependencies. This system is expected to yield more linguistically

meaningful parsing results when compared to the results by parsers that only use the

surface syntactic information.

CCG is known for handling difficult phenomena such as coordination and cross-

serial dependencies elegantly. CCG parsers are fast, polynomial time parsers that can

compose semantic interpretation in the form of logical expressions in parallel to pars-

ing. Multiple-head dependencies and the necessary non-projective dependencies are

automatically modeled in CCG. CCG parsers can produce meaningful output to cre-

ate semantic interpretation very efficiently. Clark, Steedman, and Curran (2004) show

that they can semi-automatically be adapted to new domains with only lexical category

annotation and training a supertagger or category labeler with this data.

There are high accuracy parsers that parse dependency structures directly. Multilin-

gual dependency parsing is advancing with the introductionof dependency treebanks

in many languages. However, the recognition problem of unrestricted non-projective

dependency grammars is NP-complete (Neuhaus and Bröker, 1997). In additon, the

effect of multiple heads that is required by constructions such as relativisation is not

clear.

We argue for deep dependency parsing, and also for morphemiclexicons for ag-

glutinative languages. Turkish is a language with unusual morphosyntactic interac-

tions, free word order and other phenomena such as pro-drop,requires an expressive

enough parser. Experimental parsers have been built for Turkish with CCG in the

past(Baldridge, 2002; Bozşahin, 2002). We explore the full potential of using an ex-

pressive formalism with a challenging language that has characteristics that is very

dissimilar to languages most commonly focussed on in computational linguistics re-
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search such as English.

1.1 The Thesis

The main thesis of the present work is that a grammar that takes account of the rich

productive morphology of the Turkish language on the one hand, and the constrained

universal combinatory projection mechanism of CCG on the other, yields a satisfactory

basis for wide coverage parsing for that language.

1.2 Contribution

This dissertation makes the following contributions:

• A demonstration of the inadequacy of extreme surface syntactic approaches to

dependency annotation for a language with a high degree of freedom in word

order and pro-drop. Additional information in the form of secondary depen-

dencies was added to the treebank in an attempt to include missing predicate-

argument relations that is lost during extraction, or that is simply absent in case

of coordination. We made a number of systematic correctionsto the treebank in

the form of dependency label corrections, head corrections, morphological an-

notation corrections and even tokenisation corrections insome cases. A much

cleaner version of the treeank which includes crucial long-distance dependencies

that were missing results although the annotation is still open to improvement.

• A wide coverage CCG lexicon for a lesser studied language in parsing. In the

past, CCG grammars for English (Hockenmaier, 2003a) and German (Hocken-

maier, 2006) have been extracted. Especially, the grammar for English, proved

to be competitive in overall performance and what is more important, in predict-

ing the long-range dependencies which other systems usually fail to do. In this

thesis, we study a language in the lesser studied languages class. It is highly ag-

glutinative unlike English, German, or other more widely researched languages.

A CCG lexicon is induced from the data which is an improved version of the

lexicon presented in Çakıcı (2005). This lexicon is based on the principle that

different parts of a word in an agglutinative language can split the set of de-

pendents of that word. One solution to handle this is the separation of these
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morphemes (or morpheme sets) and including them in the lexicon as separate

entities. Another solution is keeping all the inflected forms of a word in the

lexicon as separate entities and possibly using the morphological information to

guess the dependents. We believe that the former solution issuperior to the latter

when there is limited data. We explore these possible solutions and their impacts

on recovery of surface and deep linguistic information fromdependency data.

We provide results for:

1 A Word-based (Lexemic) lexicon (Chapter 5) and parsers (Chapter 8) that

predict surface dependencies only.

2 A Morphemic lexicon (Chapter 6) and parsers (Chapter 8) that predict sur-

face dependencies only with this lexicon.

3 Both of these lexicons with C&C parser that provides deep linguistic infor-

mation in the form of long-range dependencies and so on (Chapter 9).

We claim that these individual investigations show that morpheme-based repre-

sentation of the lexicon provides both qualitative and quantitative advantage in

all parser configurations. In contrast to English, languages with rich morphology

seem to benefit from inclusion of morphological informationduring processing

(Eryiğit, Nivre, and Oflazer, 2008; Çakıcı and Baldridge,2006; Dyer, 2007;

Çetinoğlu and Oflazer, 2006). These languages also show similar behaviour in

parsing compared to languages without strong morphology (Nivre et al., 2007),

(McDonald, 2006).

• A comparison of direct dependency parsing that outputs dependencies without

an intermediate level and a parser that is able to output deeplinguistic knowl-

edge is done. The output of three parsers: Collins’ parser, McDonald’s MST-

Parser (non-projective and projective configurations), and C&C parser are exam-

ined. The outputs of these systems are to some extent incompatible. However,

a partial evaluation and comparison is possible. This dissertation gives the first

wide-coverage results for dependency parsing of Turkish with a syntactically

and semantically expressive grammar formalism.
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1.3 Outline

Chapter 2 provides information about the Turkish dependency treebank that is used in

this thesis. The characteristics and the limitations of thesurface syntactic dependency

annotation for Turkish is is discussed with examples and an extensive amount of cor-

rections made to the Turkish dependency treebank are explained. Possible solutions to

some of the most important problems are proposed and implemented.

Chapter 3 provides a basic introduction to morphology. The interaction of mor-

phology, syntax and semantics in the view of some interesting linguistic phenomena

such as bracketing paradoxes and phrasal scope of morphemesis covered. Computa-

tional analysis of morphological parsing and the history ofmorphological processing

is given together with an overview of morphological parsersand disambiguators that

were created for Turkish in the past. Morphology in relationto Categorial Grammars

are also discussed in this chapter.

Chapter 4 gives an introduction to CCG grammar formalism and discusses the

theoretical issues regarding how certain natural languagephenomena are treated within

CCG and also discusses the generative power of CCG grammars.A review of statistical

parsing with CCG is given in this chapter. The systems that are intended for wide-

coverage parsing, and CCG parsers for other languages are also briefly introduced.

Chapter 5 outlines the algorithm for mapping dependency structures to a CCG

lexicon automatically. An evaluation of this grammar is given together with some

examples of CCG derivations. A review of the earlier research on automatically or

semi-automatically creating CCG lexicons from other languages is also given.

Chapter 6 demonstrates why a morphemic lexicon is more appropriate for lan-

guages like Turkish and creates a linguistically more soundversion of the lexicon in-

duction process that is based on the idea that morphemic entities rather than words

are not only more appropriate for solving the problems mentioned earlier like phrasal

scope, but also improves the coverage and provides a degree of generalisation. The

effects of having smaller representational units than words in a CCG lexicon of an

agglutinative language is evaluated and results are compared with the results from the

word-based lexicon.

Chapter 7 gives an overview of the dependency theory and dependency parsing

history. Several influential parsers are reviewed in this chapter, including McDonald’s

MSTParser which is used in some parsing experiments in Turkish that resulted in state-

of-the-art parsing results for Turkish dependency parsing.
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In Chapter 8 the process of experimentation on direct and indirect accounts of

dependency parsing are explained and the results of these experiments are discussed.

Different parsing models of Turkish are proposed in this chapter to explore the ef-

fects of morphology, word-order, scrambling, and formal constraints of projectivity on

different parsers. The chapter presents the use of morphological features and use of

gold-standard CCG categories as simple features to parsersthat directly estimate de-

pendency relations and provide upper bounds for realistic parsing with these features.

Chapter 9 provides a review of the existing wide-coverage CCG parsersand CCG

parsing results for Turkish. The inner workings of the parser used for parsing Turkish

is explained and the advantages and limitations of the current configuration is explored.

The dependency output from this parser is evaluated againsta compatible set of depen-

dencies from the treebank, and is compared with the output ofthe direct dependency

parsing experiments performed with the MSTParser. The advantages and the potential

for improvement for these models are discussed.

Chapter 10concludes by summarizing the contributions and the way eachchapter

sheds light on the issues introduced in this dissertation. Directions for future research

are also given in this chapter.





Chapter 2

Data

Turkish is highly-inflected and has more word order flexibility than languages like

English. It is an agglutinating language, which means wordsare formed with linear

concatanation of affixes in a compositonal and surface structural sense. In an agglu-

tinating language like Turkish a single word can be a sentence with tense, agreement,

polarity, and voice as in (2.1) and translate into a relatively longer English sentence.

Morphological structure of the words bears clues about part-of-speech tags, modality,

tense, person and number agreement, case, voice and so on. Asin (2.1b) predicate-

argument structure goes through transformational changesthrough morphology which

makes the morphology-syntax interface more complex.

(2.1) a. Gidemeyebilirdim.

go-Abil-Neg-Possib-Aor-Past-P1sg

I might not have been able to go.

b. Konuşturmalısın.

speak-Caus-Oblig-P2sg

(You) must make (someone) speak.

c. Arabandakiyleyim.

car-Poss2sg-Loc-Rel-Inst-CopPers1sg

I am with the one in your car.

Turkish has relatively free word order. Although it is said to have an SOV base

constituent order, it allows both local and long-distance scrambling. The former means

that arguments of verbs may swap order within a clause, and the latter means that an

argument may appear in a higher clause than that of the verb which subcategorises

9
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for it. Alternative word orders are subject to discourse andinformation structure re-

strictions (Erguvanlı, 1979; Hoffman, 1995). The syntactic roles of the arguments are

indicated by case marking as in (2.3). There are certain exceptions to free word order.

Certain scrambling patterns are not allowed in some structures such as relativisation.

Bozşahin (1998) proves this by giving evidence from gapping and coordination, and

showing that some permutations such as SO & OSV are not allowed. Subordinated

words have relatively restricted argument order. As seen in(2.2) and (2.3) these types

of relativisation constructions are always head-final.

(2.2) a.
Çaldığı şekerleri ceplerine dolduruyordu.

steal-PastPart candy-Plu-Acc pocket-Plu-Poss-Dat stuff-Prog-Past

He was stuffing the candies he stole in his pockets.

b.
*Şekerleri çaldığı ceplerine dolduruyordu.

candy-Plu-Acc steal-PastPart pocket-Plu-Poss-Dat stuff-Prog-Past

(2.3) a.
Kitapları kapıya gelen adama verdim.

books-Acc door-Dat come-PresPart man-Dat give-Past-P1sg.

b.
Kapıya gelen adama verdim kitapları.

door-Dat come-PresPart man-Dat give-Past-P1sg books-Acc.

I gave the books to the man who came to the door

c.
*Gelen kapıya adama verdim kitapları.

come-PresPart door-Dat man-Dat give-Past-P1sg books-Acc.

2.1 METU-Sabancı Treebank

The METU-Sabancı Treebank is a sub-corpus of the METU Turkish Corpus which is

a 2 million word corpus of post-1990 written Turkish. The METU Turkish Corpus

includes material taken from three daily newspapers, 87 journal issues and 201 books

(Atalay, Oflazer, and Say, 2003; Oflazer et al., 2003). The sentences in the treebank

are taken from this corpus retaining the proportions of the contributing sources. The

dependency treebank has 5620 sentences and 53,796 tokens (with punctuation). The

average sentence length is 9.6 tokens and 8 words. Figure 2.1shows the distribu-

tion of the average sentence length. The sentence length changes dramatically among

different genres, going up to as high as 53 for scientific articles and news. Sentences



2.1. METU-Sabancı Treebank 11

from fiction and literature are relatively shorter consisting of many one-word sentences

from dialogues. Note that this graph shows the cumulative average over number of sen-

tences. There is a sharp rise in the average sentence length after about 500th and 4500th

sentences. This is reflected in the category type coverage and parsing coverage results

later in Chapters 5, 6 and 9.
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Figure 2.1: Average sentence length throughout the corpus

The words in the treebank occur together with their disambiguated morphological

analyses, and surface dependency links which are represented through indexes.

(2.4)
Kapının kenarındaki duvara yaslanıp bize baktı bir an .

door-Gen side-Loc-Rel wall-Dat lean-ADS* we-Dat looked one moment .
* ADS = AfterDoingSo

(He) looked at us leaning on the wall next to the door, for a moment.

Figure 2.2 shows the encoding of the sentence in (2.4) in the treebank. We filled

the “LEM” and “MORPH” fields appropriately for illustrationpurposes. These fields

were initially designed to be in the data but then were left blank in the final release.

“MORPH” contains the sequence of the morphemes, and “LEM” contains the infinitive

form for the verbs and the root for the others. (Inflectional groups) IG field represents

the morphological information in terms of derivational boundaries, type info and mor-

pheme names for each word. They are explained in detail in Section 2.2. It is not

trivial to map the morph information to the given IGs. This ismainly because IGs are

made of information tags rather than morpheme names. Tags such asPos (positive),
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or Pnon (no possessive marker)do not correspond to any morphemes, in fact, they

represent the lack of corresponding morphemes in these slots, such as the agreement

morpheme for the former and the negation morpheme for the latter. There are also

Zeromorphemes in some cases of derivational morphology. Figure2.3 shows a graph-

ical representation of the sentence in (2.4). Dependenciesare from dependent to head

in this figure.However, throughout the thesis, dependency links are represented from

dependent to head in graphical representations unless otherwise stated. Word to word

dependencies are shown in the figure although dependencies are represented between

inflectional groups as explained in Section 2.2.

<S No=”3”>

<W IX=”1” LEM=“kapı” MORPH=“kapı+nHn” IG=’[(1,”kapı+Noun+A3sg+P2sg+Gen”)]’ REL=”[2,1,(POSSESSOR)]”> Kapının</W>

<W IX=”2” LEM=“kenar” MORPH=“kenar+nHn+DA+ki” IG=’[(1,”kenar+Noun+A3sg+P3sg+Loc”)(2,”Adj+Rel”)]’ REL=”[3,1,(MODIFIER)]”> kenarındaki</W>

<W IX=”3” LEM=“duvar”MORPH=“duvar+yA” IG=’[(1,”duvar+Noun+A3sg+Pnon+Dat”)]’ REL=”[4,1,(OBJECT)]”>duvara</W>

<W IX=”4” LEM=“dayanmak” MORPH=“dayan+Hp” IG=’[(1,”dayan+Verb+Pos”)(2,”Adv+AfterDoingSo”)]’ REL=”[6,1,(MODIFIER)]”> dayanıp</W>

<W IX=”5” LEM=“bize” MORPH=“biz+yA” IG=’[(1,”biz+Pron+PersP+A1pl+Pnon+Dat”)]’ REL=”[6,1,(OBJECT)]”> bize</W>

<W IX=”6” LEM=“bakmak” MORPH=“bak+DH” IG=’[(1,”bak+Verb+Pos+Past+A3sg”)]’ REL=”[9,1,(SENTENCE)]”>baktı</W>

<W IX=”7” LEM=“bir” MORPH=“bir” IG=’[(1,”bir+Det”)]’ REL= ”[8,1,(DETERMINER)]”> bir </W>

<W IX=”8” LEM=“an” MORPH=“an” IG=’[(1,”an+Noun+A3sg+Pnon+Nom”)]’ REL=”[6,1,(MODIFIER)]”> an</W>

<W IX=”9” LEM=“.” MORPH=“.” IG=’[(1,”.+Punc”)]’ REL=”[,() ]” > . </W>

</S>

Figure 2.2: The encoding of the sentence in (2.4) in the dependency treebank

The dependencies in METU-Sabancı Turkish treebank are surface ones, so phe-

nomena such as traces and pro-drop are not modelled. Apart from the constraint of

“surface dependencies”, there are a few constraints that almost all dependency tree-

banks with pure-dependency approach adopt such assingle-headedness.

The syntactic relations used to model the dependency relations are given in Table

2.1. The first two columns show the name and the frequency of the label, the third is the

most frequent, basic1 part-of-speech tag it occurs with and the fourth is the frequency

of them occurring together. The most frequent label in the data is MODIFIER. It can

1The detailed description of basic and extended POS-tags is given in Chapter 8.
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(He) looked at us leaning on the wall next to the door, for a moment.

Figure 2.3: The graphical representation of word-word dependencies in the treebank.

co-occur with a very wide range of part-of-speech tags but the most frequent one is

Adj. Adverbs, adjectives, relativised verbs, postpositions,and some nominal modifiers

have this label. It is the most overloaded relation type in the treebank.

Apart from familiar label names, ETOL is used for constructions very similar to

phrasal verbs in English, and COLLOCATION, is used for idiomatic usages and word

sequences with certain patterns. However, some frequent collocations are integrated in

the dependency structures as unified lexical entries.CollocationandEtol are mostly

used to represent frequent pairs that cannot be representedin the same word-slot. This

happens when they are separated by a clitic or a morpheme.

Punctuation marks are excluded from dependency structuresunless they participate

in a relation, such as the use of comma in coordination. The label SENTENCE links the

head of the sentence to the final punctuation mark.2 Section 2.3 gives an overview of

the cases where punctuation is involved in the dependency structure.

2.2 Morphology

Morphology in the Turkish treebank is represented inInflectional Groups(IGs). Words

with more than one IG either have derivational morphology orvalency altering suf-

fixes such as causative and passive morphemes for verbs. Somemodalities are also

annotated in different IGs (Ability) whereas some of them are not (Conditional). (2.5)

shows the OBJECT linked to the second IG ofdĕgiştirmezbecausedĕgiş is intransi-

tive; it takes an object in this example because of the valency altering property of the

causative morpheme-DHr that is affixed to the verb.3

2This is essentially like identifying the final punctuation mark as theroot symbol, which is how it is
treated when dependency parsers are evaluated (Section 8.6).

3-DHr can be realised in many different ways depending on certain morphophonemic rules that are
explained briefly in Section 3.2.5.
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Label Frequency POS-tag pair frequency

ABLATIVE .ADJUNCT 523 Noun 483

APPOSITION 101 Noun 82

CLASSIFIER 2100 Noun 1967

COLLOCATION 36 Noun 24

COORDINATION 2633 Punc 1817

DATIVE .ADJUNCT 1362 Noun 1136

DETERMINER 1915 Det 1840

EQU.ADJUNCT 34 Pron 19

ETOL 13 Adj 8

FOCUS.PARTICLE 18 Conj 14

INSTRUMENTAL.ADJUNCT 271 Noun 252

INTENSIFIER 947 Conj 858

LOCATIVE.ADJUNCT 1134 Noun 1107

MODIFIER 11618 Adj 4535

NEGATIVE.PARTICLE 164 Negp 113

NUM 3 Num 2

OBJECT 8259 Noun 6634

POSSESSOR 1507 Noun 1334

QUESTION.PARTICLE 274 Ques 219

RELATIVIZER 84 Conj 83

SENTENCE 7370 Verb 6165

S.MODIFIER 540 Conj 274

SPEAKER 51 Punc 50

SUBJECT 4536 Noun 3779

VOCATIVE 231 Noun 126

Table 2.1: Names and frequencies of the dependency labels in METU-Sabancı tree-

bank. Last two columns show the POS tag the label occurs with most frequently, and

frequency of this pair. Red coloured labels indicate the ones that exist only in the cor-

rected version of the treebank.
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One week of training was suggested for ballot chairs.

Figure 2.4: Passive example

(2.5) Yerini pek değiş tirmez .
?? ?

Obj
Mod. Sentence

(1,“yer+Noun+..+Acc”) (1,“pek+Adv”) (1,“degis+Verb”)(2,“Verb+Caus+Neg+..”)

(He) doesn’t change his place that often.

Figure 2.4 shows how a passive sentence is annotated in a surface dependency

framework. The dependents in passive sentences are usuallymade dependent on the

IG with the passive morpheme but this is not consistent throughout the treebank in

the official release of the treebank. These types of annotation mistakes have been

corrected.

IGs thus play a role in dependency structure. Different IGs can be heads of different

dependents. Dependencies always emanate from the final IG ofa word (Figure 2.5).

?? ? ?

-
from deps. to the head

IG1 + IG2 + IG3 + IG4

Figure 2.5: The structure of a word

2.2.1 Derivational Morphology

Adverbs

Verb-to-adverb derivation is very productive. As shown in Figure 2.6 verbs that the

adverbs are derived from may have complements.These derivational suffixes resemble

gerunds in English and behave in the same way. They take sentences as complements

and modify the main predicate. Some examples of these morphemes and their corre-

sponding tag names in the treebank are shown in Table 2.2. These morphemes make

verb-modifying adverbs out of verbs. The capital letters represent the general form of
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morpheme tag name

-mAdAn WithoutHavingDoneSo

-(y)Hnca When

-Hp AfterDoingSo

-(y)ArAk ByDoingSo

-ken While

Table 2.2: Verb-to-Adverb derivational morphemes

the morphemes. These capital letters change with respect tovowel harmony and other

phonological processes.(y) means there is an optionaly that drops if the root ends with

a consonant.A can bea or e depending on vowel harmony restrictions. In a similar

mannerH can be instantiated asi or ı.

RamizandKatanaare shared betweendönüp andbaktısince the coordination of

these two is the subject of both verbs (stems). But since onlysurface dependencies

are represented, and words can not have two heads, it is not possible to represent these

dependendies with the current design of representation.

SENTENCE

MODIFIER

�����

SUBJECT

���	
 � ���� ��� ��	��� �

COORDINATION

SUBJECT

��������	�
����� ��������� � ����� ���� ������ �

E: Ramiz and Katana turned and looked.

Figure 2.6: Adverbs

Subordination

In the treebank, subordination is treated as if the subordinate verb is a noun de-

rived from a verb. Morphemes that are involved in subordination behave as if they

are derivational suffixes that create nouns out of verbs. Agreement suffixes or case

markers are attached to the nominalised verb exactly in the same way nouns receive

case. Figure 2.7 shows how a sentence with subordination is annotated in the Turkish

treebank. Subordination morphemes are a diverse class of morphemes. Some of these
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are shown in Table 2.3.

morpheme sequence tense

-dHk+AGR+CASE present - past

-AcAk+AGR+CASE future

-mA+AGR+CASE infinitive

Table 2.3: Subordination morphemes

Subordinated verbs agree with the noun that is in the subjectposition as AGR tag

indicates. Subjects in subordination clauses are marked with genitive case, unlike their

corresponding matrix clause counterparts which are alwaysnominative. The final mor-

pheme on the subordinated verb is the appropriate case marker. Figure 2.7 shows an

example sentence with the last type of subordination-mA+AGR+CASEin the tree-

bank.

SENTENCE

MODIFIER

SUBJECT

�������� ��� 	��	�
	� ��� �	
�	���� �	�
����
���� �

DETERMINER OBJECT

SUBJECT

���������	
� �� � �
 �����
 �����
����������� ������������� �

All the men in the park were waiting for him to arrive

Figure 2.7: Subordination

These examples show the morpho-syntactic nature of some relations in the data.

Subordination is controlled by morphological operations,however the syntactic scope

subordination morpheme covers is bigger than the verb it is attached to at the con-

stituent level.-mesidemand a sentential complement, and, at the same time, it controls

the morphological properties (case marking) of the subjectof the verb it is attached to.

2.2.2 Nominal sentences, copula sentences

The dependency label that identifies the sentence head is SENTENCE in the Turkish

treebank. This label marks the head of the sentence togetherwith the final punctua-

tion and it does not necessarily mean the sentence is a full sentence. Fragments are

not differentiated. Some sentences consist only of an NP or other types of non-verb
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phrases in the data. Since one type of copular verb is regarded as zero morpheme, these

sentences cannot be distinguished from copular sentences.Some sentences with non-

verbal heads incorporate as morphological information thezero copula IG. However,

the remaining sentences are ambiguous between fragments orcopular sentences. We

do not explicitly annotate non-verbal heads, however, these go through preprocessing

for lexicon induction as explained in Chapter 6.

2.3 Punctuation

Punctuation marks can sometimes have dependents in METU-Sabancı Treebank. For

instance, in coordination, the first conjunct has a link to the comma that separates (or

conjoins) the two conjuncts, exactly asve (and)would do (Figure 2.8).

SENTENCE

MODIFIER

������

COORDINATION

OBJECT

���� � 	
��� ��� ���� �

OBJECT SENTENCE

�������� ���	�
�� � ���	���� ����� �����
�� �

(He) opened the door, turned and looked at us.

Figure 2.8: Comma included in the dependency structure as the conjunct in a sentence

coordination.

Punctuation marks can also have different roles such as marking the sentential com-

plements as in Figure 2.9. The head of the sentential complement depends on the

intervening punctuation which is a double-quote in this instance.

��� ������	� 
��
��� ���� ������	 � ���
 �

MODIFIER

MODIFIER

OBJECT MODIFIER SENTENCE OBJECT SENTENCE

���������� ���	��
�� ������ �������������� � �������� �

We walk towards power on-out-own, he said

Figure 2.9: A double quote included in the dependency structure as the head of a

sentential complement.
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The sentence final punctuation acts as a root node of the wholedependency struc-

ture. The head of the sentence gets linked to the final punctuation with relation SEN-

TENCE. Sentential complements have the dependency label SENTENCE as well, but

they do not depend on the final punctuation. Therefore, only the combination of SEN-

TENCE label and the final punctuation marks the top level of the dependency tree.

Apart from these three major uses of punctuation in the dependency structure,

punctuation marks do not get involved in the dependency structure.

2.4 Morpheme names

Table 2.4 lists all the morpheme names that exist in the treebank. The version that this

information is collected is the version that is published inthe CoNLL 2006 shared task

for dependency parsing. These are compared with the morpheme names that are in the

corrected version of the treebank. The morpheme names that are present in the original

treebank version, but missing in the final version are the ones that appear as different

tags because of typos or annotation mistakes in the originalversion. An example to

this is theSinceversussincedistinction.

2.5 Improvements on the Treebank

We have made a significant number of changes to the treebank inorder to improve

consistency and correctness. The correction cycle consisted of constant correction of

the treebank, explained in Chapter 5, which is in turn followed by using the lexicons

and the treebank itself for parsing. Most of the annotation mistakes were found during

lexicon induction phase. Most of the time, when a problem wasidentified, the whole

treebank was searched for similar problems and inconsistencies. Among many changes

the most important types are listed below:

a. fixing incorrect morphological analyses of frequent words,

b. connecting tokens that previously were not connected to the dependency graph,

c. changing dependency links or labels of some relatively non-frequent types (e.g.

intensifiers, appositions) to ensure consistency of annotation,

d. fixing a considerable number of incorrect dependency links or labels,
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old new old new

A1pl A1pl NotState NotState

A1sg A1sg Noun Noun

A2pl A2pl Num Num

A2sg A2sg Opt Opt

A3e *NONE* ord Ord

A3pl A3pl Ord Ord

A3sg A3sg P1pl P1pl

Abl Abl P1sg P1sg

Able Able P2pl P2pl

Acc Acc P2sg P2sg

Acquire Acquire P3pl P3pl

Adj Adj P3sg P3sg

Adv Adv Pass Pass

AfterDoingSo AfterDoingSo Past Past

Agt Agt PastPart PastPart

Aor Aor PCAbl PCAbl

As As PCAcc PCAcc

AsIf AsIf PCDat PCDat

Become Become PCGen PCGen

ByDoingSo ByDoingSo PCIns PCIns

Card Card PCNom PCNom

Caus Caus PersP PersP

Cond Cond Pnon Pnon

Conj Conj Pos Pos

Cop Cop Postp Postp

Dat Dat Pres Pres

Demons DemonsP PresPart PresPart

DemonsP DemonsP Prog1 Prog1

Desr Desr Prog2 Prog2

Det Det Pron Pron

Distrib Distrib Prop Prop

Dup Dup Punc Punc

Equ Equ Ques Ques

FitFor FitFor QuesP QuesP

Fut Fut Range Range

FutPart FutPart Real Real

Gen Gen Recip Recip

Hastily Hastily Reflex Reflex

Imp Imp ReflexP ReflexP

InBetween InBetween Rel Rel

Inf Inf Related Related

Inf2 Inf since Since

Ins Ins Since Since

Interj Interj SinceDoingSo SinceDoingSo

JustLike JustLike Stay Stay

Loc Loc Time Time

Ly Ly Verb Verb

Narr Narr When When

Neces Neces While While

Neg Neg With With

*NONE* Negp Without Without

Ness Ness WithoutHavingDoneSo WithoutHavingDoneSo

Nom Nom Zero Zero

Table 2.4: Morphological tags in METU-Sabancı Turkish treebank data.
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e. correcting tokenisation errors that could be fixed. We will explain what we mean

by this in the following.

f. disambiguating coordinations that involve the heads of the sentences, which can-

not be distinguished with the current design principles in the treebank. The mo-

tivation behind this, and the method are explained in Section 2.5.4.

.g adding extra dependencies that are crucial in identifying the type of extraction

in relativisation sentences. These links also contain missing predicate-argument

relations that may be helpful in future semantic processingstudies. The process

is explained with examples in Section 2.5.3.

Some additions to the treebank that are not in the original design were necessary

in some exceptional cases. For instance, in news articles, when a person is quoted,

the periods between the sentences divided the speaker and the verbdedi (said)at the

very end of the paragraph as in (2.7) during tokenisation of (2.6). Thus, the name

of the person quoted would be disconnected from the verb it depends on which is in

sentence3, and it will be irrelevant to the dependency structure of sentence1. For these

cases, a new dependency label was introduced. The speaker which is referred to as

Person-X as shown in (2.6) is linked to the next punctuation mark, which is usually

a semi-colon, with the label SUBJECT and the punctuation mark is linked to the top

level with the label SPEAKER. This solution does not connect the speaker subject with

the verb it depends on, but it, at least, preserves the connectedness and consistency

of sentence1 in 2.7. sentence3 is treated as if it is a sentence with a missing subject

(pro-drop). SPEAKER also says that the verb of this subject is in another sentence.

(2.6) Person-X: sentence1. sentence2. sentence3, said.

(2.7) Person-X: sentence1.

sentence2

sentence3,said.

More substantial changes had been made to the treebank some of which were men-

tioned in Çakıcı (2005). These included adding secondary links for long-distance de-

pendencies and arguments shared among conjuncts in sentence or verb coordination
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structures. A brief summary of these changes is given in Section 2.5.3 and Section

2.5.4.

The main aim of the corrections is to make the treebank annotation more consistent.

In the majority of cases, we opted for aligning the annotation with the most frequently

occurring annotation especially when correcting morphological errors. This is not an

effort to create a different treebank, but to make the existing one more self-consistent

and as correct as possible. The new label types such as SPEAKER were only introduced

because the problem could not be solved within the existing design principles of the

treebank.

2.5.1 Morphological Changes

Morphological annotation in the Turkish treebank is performed with manual disam-

biguation among possible morphological parses of a word provided by a morphologi-

cal analyser (Atalay, Oflazer, and Say, 2003). Morphological analyses that are wrong

given the context were sometimes chosen by the annotators. Afew examples of these

and changes made to correct them are given here.

ikimiz (we both)was annotated as ifiki is a number and a noun was derived from

it. In fact, the reading suggested by this annotation is ”ourtwo”, as in number two.

Íkimiz (2.8) –we (both)– should be a pronoun likehepimiz– we (all)– which is anno-

tated as a pronoun in the treebank. An alternative solution is to change the second IG

to a pronoun rather than a noun.

Doğrusu(in fact) is an adverb. It can also be a noun in possessive case in a different

context. The root – Doğru – has a noun reading, an adjective reading, and a postposi-

tion reading. The adverbDoğrusuis annotated as shown in (2.9) most of the time, in

the Turkish treebank. However, postpositions do not get inflectional morphology and

hardly receive derivational suffixes in Turkish. They may take copula morpheme as

an affix as all other non-verbal stems do. Thus, this analysisfor doğrusuas a noun is

grammatically and pragmatically incorrect. Instances of this type are replaced by the

annotation shown in (2.9) as ‘correct’.

(2.10) is a more general type of annotation error. This word can be analysed as

two different types. The first is as a relativised verb. Theseare annotated as verb-to-

adjective morphological derivation in the Turkish treebank. The second is as a verb

future tense inflection. Relativised verbs of the first type were mostly annotated as

tense-inflected verbs. These types of disambiguation mistakes are corrected by replac-
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ing the first annotation in (2.10) with the second line.

(2.8) ikimiz – (1,“iki+Num+Card”)(2,“Noun+Zero+A3sg+P1pl+Nom”)

correct – (1,“iki+Pron+A1pl+P1pl+Nom”)

alternative – (1,“iki+Num+Card”)(2,”Pron+A1pl+P1pl+Nom”)

(2.9) doğrusu – (1,“doğru+Postp+PCDat”)(2,“Noun+Zero+A3sg+P3sg+Nom”)

correct – (1,“doğrusu+Adv”)

(2.10) kurtulamayacak – (1,“kurtul+Verb”)(2,“Verb+Able+Neg+Fut+A3sg”)

correct– (1,“kurtul+Verb”)(2,“Verb+Able+Neg”)(3,“Adj+FutPart+Pnon”)

These are only a few examples of a large set of corrections to morphological an-

notation in the treebank. These changes are not expected to make significant improve-

ment on the parsing models to be trained on the treebank, but they all contribute to the

overall consistency and correctness of the data, and are expected to be useful in tasks

such as part-of-speech tagger training.

2.5.2 Wrong IGs

A considerable number of corrections were made on the dependencies among IGs.

These are mostly arguments of relativised or subordinated verbs, that were annotated

to depend on the last IG instead of the stem verb by mistake. These dependencies were

corrected by assigning the dependency head to be the stem, not the secondary IGs. The

motivation could be explained by an example case.

There are 396 genitive marked nouns with SUBJECT label. Their heads are the first

IGs of the relativised or nominalised verbs. On the other hand, there are 203 nouns

of the same sort that (inconsistently) depend on the second(166), the third(25), the

fourth(11), and the fifth (1) IGs of the head in the original version of the treebank.

This means that the general principle of annotating these must be linking them to the

first IG (or the verb stem). Linguistically, if the label is called SUBJECT, we think that

the dependency should be to the stem which is the verb. On the other hand, if these

are accepted as genuine derivation, then for instance, subordinated verb phrases should

be treated like other noun phrases which means subject labelshould be changed into

POSSESSOR. The ideal situation would be to have both of these dependencies. This

way, subject dependency would link the noun and the verb, andpossessor dependency

would link the noun to the aggreement suffix. However, single-headedness restriction
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does not allow this. So, we corrected these dependencies as consistent with the similar

cases as possible. The same was done for objects and other modifiers of these verbs.

The following example justifies our approach. In this example there are two sub-

ject labelled dependencies to the same word. This is not possible under normal cir-

cumstances. But, linguistically these subjects are governed by two different IGs. In

the original version of the treebank this sentence was wrongly annotated as shown in

(2.11). But the corrected dependency structure is as shown in (2.12).

(2.11) <S No=“3”>

<W IX=“1” ... IG=’[(1,“önem+Noun+A3sg+Pnon+Nom”)(2,“Adj+With”)(3,“Noun+Zero+A3sg+Pnon+Nom”)]’ REL=“[2,1,(OBJECT)]”> Önemli</W>

<W IX=“2” ... IG=’[(1,“ol+Verb+Pos”)(2,“Adj+PresPart”)]’ REL=“[6,3,(SUBJECT)]”> olan</W>

<W IX=“3” ... IG=’[(1,“öncül+Noun+A3sg+Pnon+Nom”)]’ REL=“[4,1,(SUBJECT)]”> öncül</W>

<W IX=“4” ... IG=’[(1,“ile+Conj”)]’ REL=“[5,1,(COORDINAT ION)]” > ile </W>

<W IX=“5” ... IG=’[(1,“kanıt+Noun+A3sg+Pnon+Gen”)]’ REL=“[6,3,(SUBJECT)]”> kanıtın</W>

<W IX=“6” ... IG=’[(1,“çeliş+Verb+Neg”)(2,“Noun+Inf+A3sg+P3sg+Nom”)(3,“Verb+Zero+Pres+Cop+A3sg”)]’ REL=“[7,1,(SENTENCE)]”> çelişmemesidir</W>

<W IX=“7” ... IG=’[(1,“.+Punc”)]’ REL=“[,( )]” > . </W>

</S>

(2.12) <S No=“3”>

<W IX=“1” ... IG=’[(1,“önem+Noun+A3sg+Pnon+Nom”)(2,“Adj+With”)(3,“Noun+Zero+A3sg+Pnon+Nom”)]’ REL=“[2,1,(OBJECT)]”> Önemli</W>

<W IX=“2” ... IG=’[(1,“ol+Verb+Pos”)(2,“Adj+PresPart”)]’ REL=“[6,3,(SUBJECT)]”> olan</W>

<W IX=“3” ... IG=’[(1,“öncül+Noun+A3sg+Pnon+Nom”)]’ REL=“[4,1,(SUBJECT)]”> öncül</W>

<W IX=“4” ... IG=’[(1,“ile+Conj”)]’ REL=“[5,1,(COORDINAT ION)]” > ile </W>

<W IX=“5” ... IG=’[(1,“kanıt+Noun+A3sg+Pnon+Gen”)]’ REL=“[6,1,(SUBJECT)]”> kanıtın</W>

<W IX=“6” ... IG=’[(1,“çeliş+Verb+Neg”)(2,“Noun+Inf+A3sg+P3sg+Nom”)(3,“Verb+Zero+Pres+Cop+A3sg”)]’ REL=“[7,1,(SENTENCE)]”> çelişmemesidir</W>

<W IX=“7” ... IG=’[(1,“.+Punc”)]’ REL=“[,( )]” > . </W>

</S>

E: What is important is that premise and evidence do not contradict.

2.5.3 Relativisation

So far, we have explained how Turkish dependency treebank ismade more self-consistent.

The corrections made were mostly corrections of the existing structure, without adding
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new information. In this section and the next, will describethe major contribution to

the METU-Sabancı Treebank: Addition of long distance dependencies.

Long-distance dependencies have an important role in building semantic interpreta-

tion. Unfortunately, the issue of deep structure always finds itself in the “Future work”

sections of the work on parsing and other studies. So this means everyone knows cap-

turing “deep” linguistic information is important and everyone also knows it is the hard

part. We will show here, some problems caused by not including this information in

the Turkish dependency treebank, and suggest a simple solution.

Underhill (1972) identifies two types of relative construction in Turkish. Subject

extraction and the rest. The second group covers object extraction, extractions from

adjunct phrases (or PP), and from possessive construction at a non-subject location.

All of these types have instances in the Turkish treebank. However, there is no

explicit encoding of extraction in the treebank; for instance, the heads of the relative

clauses are represented as modifiers. Some of this information could be recovered

using heuristics that rely on morphology, like the presenceof thePRESPARTmorpheme

in (2.13), and part-of-speech of the word. However, this does not help in identifying

the type of extraction as shown in (2.14). (2.14a) is an example of extraction from a

locative adjunct and (2.14b) shows extraction from object site.

(2.13) Kitabı okuyan adam uyudu.

book+ACC read+PresPart man slept.

The man who read the book slept

(2.14) a. Uyuduğum araba yandı.

sleep+PastPart car burn+Past.

The car I slept in burned.

b. Okuduğum kitap yandı.

read+PastPart book burn+Past.

The book I read burned.

Case information is lost in extractions, so surface dependencies alone cannot dif-

ferentiate between these cases. The dependency structuresfor these extractions are

the same (Figure 2.10), causing loss of information about the valency of verbs that

would lead to incorrect logical forms for these sentences. We fixed this by adding a

T.LOCATIVE.ADJUNCT dependency fromaraba (car)to uyudŭgum (sleep+PastPart),

indicating that the extraction is from the adjunct. Similarly, a T.OBJECT link was
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added fromkitap (book)to okudŭgum (read+PastPart)to mark the noun that is ex-

tracted from the object position, indirectly providing information thatoku (read)is

transitive (Figure 2.10). Similar labels (T.SUBJECT for subject extraction, T.POSSESSIVE

for genitive extraction and other types of ADJUNCT extractions) were added to the tree-

bank manually for approximately 1250 instances in about 800sentences. These serve

as additional information about long-distance dependencies in the form of secondary

links from extracted arguments to their logical heads (Çakıcı, 2005).

The tense information is lost in the relativisation processas well. In object extrac-

tion one can differentiate between past tense and future tense but not past tense and

present. However, this information does not affect the overall grammatical structure as

much as case information does. Therefore, we will not discuss this issue any further.

Okudugum kitap yandi .

MODIFIER

read+PASTPAR book burned

T.OBJECT

SENTENCESUBJECT

Uyudugum araba yandi .

sleep+PASTPAR burnedcar

The car I slept in burned.

T.LOCATIVE.ADJUNCT

SENTENCEMODIFIER SUBJECT

The book I read burned.
Added manually

V.S.

Figure 2.10: The dependencies in (2.14)

2.5.4 Coordination

There are 1657 sentences with some type of coordination in METU-Sabancı Treebank.

The treebank annotation for a typical coordination exampleis shown in (2.15). Here,

the first conjunct is linked to the conjunctive wordve with a MODIFIER dependency

link and then a COORDINATION link goes fromve to the second conjunct and finally,

the last conjunct links to the head of the sentence with a MODIFIER link. Despite

its simplicity this scheme bears some problems in annotating some structures that are

quite common. The example of an argument cluster coordination in (2.16) cannot

possibly be represented with the design principle adopted.This causes inconsistencies

throughout the treebank among similar sentences as to how they should be annotated.

(2.15)

������� �� 	
������� ����� �

���� ����� ���� ��������

������� ��� ��	
��� ��	�����

He came running and jumping.
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(2.16)

���� ���� ����� �	
������

����

��� ��� ���� 	��

�� ����

�
���� �����

������

����

����

� �	��
��

One says dry, another roasted.

It is possible to annotate these types of coordination with gapping, if only one

argument coordinates. For instance, in (2.17) objects can be linked to each other before

linking to the verb. The approach taken in the treebank was linking both objects to

the verb as if the verb is ditransitive. Apart from introcuding non-projective links to

the dependency structure, this approach solves the representation problem for gapping

in this example. However, if there are two dependents of the missing head such as

SOVSO coordination, it is not possible to coordinate two words with one conjunctive,

thus, this method does not work for those sentences.

(2.17)

����� ����	 
��	�����	 
� �� ���� �

����������� ������ ������������

��������

������

 � ��  �!"� �!�#��"�$#%&$' (!� �(( �!)��( �
. . . .

I need to find paper and pencil, and an envelope.

V versus VP coordination

There are about 800 coordinations that involve a SENTENCE label. This is more than

half of the total number of sentences with coordination (1517) present in the data.

A surface dependency approach does not differentiate between coordination of verbs,

verb phrases, and sentences. Both sentences in (2.18) are represented equivalently in

the Turkish treebank although (a) is verb coordination, (b)is verb phrase or sentence

coordination (with pro-drop). The first sentence is from thetreebank and the second

sentence is derived from the first by removing the causative morpheme of the verb in

(2.18a) –bekletti (held)– thus making it intransitive –bekledi (waited)– to simplify the

example.4

4Sentence coordination and verb phrase coordination might be hard to differentiate in Turkish since
Turkish is a pro-drop language and usually sentences consist only of verb phrases.
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(2.18) a.

MODIFIER

SENTENCE

���������	
��

MODIFIER COORDINATION

����������	 ���
� ��� � �����

 ���	 �

OBJECT

SENTENCE

C. OBJECT

�	������ 	����
��������� � ����������� ���	��� �

((s)he) Shook and held my hand

b.

MODIFIER

SENTENCE

���������	
��

MODIFIER COORDINATION

����������	 ���
� ��� � ������ ���	 �

OBJECT

SENTENCE

�	������ 	����
��������� � ������� ��	� �� �

((s)he) Shook my hand and waited

Our solution for this is similar to the one suggested in the previous section for

relativisation. We add secondary dependency links C.OBJECT emanating fromelimi

(my hand-ACC)tobekletti (held)in (2.18a) in order to restore the information thatelimi

is the object ofbeklettias well assıktı. By doing this, we make sure that the missing

dependencies are restored and the predicate-argument structure of these verbs will thus

be predicted correctly. (2.18a) is thus treated as verb coordination whereas (2.18b) as

VP or sentence coordination. Similar links such as C.SUBJECT, C.DATIVE .ADJUNCT

etc. are added for other types of dependents that could be shared among conjuncts.

We manually added these links to every occurrence of verb coordination with shared

arguments in over 800 sentences with SENTENCE coordination.

DATIVE-ADJUNCT MODIFIER SENTENCE

SUBJECT

MODIFIER

COORDINATION

C. SUBJECT

DATIVE-ADJUNCT

SENTENCE�
����

���������	

����� ���	
��� ����	���� ��������� ������ ���
�� ���
��	�
��
����
	 ������
� ���� �� ��������� ��������
 � ���	������������
 	��
����� �

Figure 2.11: Coordination example with secondary edges added

This procedure needs to be done for other types of information for shared argu-

ments for an improved treebank, which we put aside as future work.

Adding these secondary dependencies results in some words being multiple headed.

Multiple heads are not supported by the pure-dependency approach adopted and are

usually ignored by the dependency parsers most commonly used such as McDonald

et al. (2005) and Nivre et al. (2007). This information was not used in any of the



2.5. Improvements on the Treebank 29

initial parsing experiments to be discussed in Chapter 8. They are only used in guiding

the lexicon induction process to obtain correct CCG categories for these structures in

order to be able to compare our results with previous work. However, this information

is invaluable for training parsers aiming to predict deep dependencies.

2.5.5 Various other changes

Some other changes of small scope when compared to the ones wediscussed earlier

were made throughout the data as well. These are mostly changes to the dependency

labels, indexes or structural changes on the sentence level. Some changes to the mor-

phological annotation of some words were also made and are discussed below.

• Some morphemes especially particles had inconsistent names such asDemons

versusDemonsPin a few sentences. These were corrected together with incor-

rect annotations caused by typos such asPostpversusPostP.

• S.MODIFIER was linked to the head verb in some sentences, whereas in the ma-

jority of its occurrences it is seen to be linked to the top level (final punctuation).

This is regularised by making all S.MODIFIERs linked to the final punctuation

when possible.

• Annotation of verbs or nouns that take sentential complements were made con-

sistent. These verbs are “dedi (said)”, “ diyerek (while saying)”, “Sentence-x

karsılığını (the answer thatsentence-x)”. The nouns that take sentential com-

plements such askarsılığını were linked with CLASSIFIER label as this was the

label that existed in most of the sentences of this sort in theoriginal release of

the treebank.

• COORDINATION categories were not compatible in a number of cases. This

is possible under some circumstances but in the Turkish treebank, most of the

time it was due to wrong annotation. We corrected these problems whenever

the incompatibility was at the word level. For IGs we automated the correction

process. (Section 6.3.2).

• In copular sentences, copula morpheme is attached to the head noun (or adjec-

tive) and this morpheme behaves as the sentence head. When negated, these

sentences are headed by the negative particle. Negative particles in Turkish tree-

bank are annotated to depend on the previous verb as NEGATIVE.PARTICLE.
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This is not correct whendĕgil is the head of the sentence. There are other uses

of dĕgil where it is used as 1) in “not ... but ...” type coordinations,2) together

with question particle to be used like “isn’t it”. These are not consistently anno-

tated in the original release of the treebank. We isolated and annotated alldĕgil

cases. The morphology of this word was also erroneous as it was annotated as a

verb. However, it behaves exactly like a noun attached with copula verb morpho-

logically. We changed all instances of morphological annotation of this word by

the tagNegp. This is a new morpheme tag, and it is only used for this purpose.

The sentence in (2.19) is shown annotated in the original treebank in (2.20) and

in the corrected version in (2.21). The two versions are quite different, but we

would like to draw attention todegil labelled asSENTENCEwhich is the head of

the sentence.

(2.19)
Mazim kalbimde bir yara gibi değildi .

past-Poss1sg heart-Poss1sg-Loc a wound like not-Past .

My past was not like a wound in my heart.

(2.20) <S No=”1”>

<W IX=”1” ... IG=’[(1,”mazi+Adj”)(2,”Noun+Zero+A3sg+P1sg+Nom”)]’ REL=”[2,1,(CLASSIFIER)]”>

Mazim </W>

<W IX=”2” ... IG=’[(1,”kalp+Noun+A3sg+P1sg+Loc”)]’ REL=”[6,1,(LOCATIVE.ADJUNCT)]”> kalbimde

</W>

<W IX=”3” ... IG=’[(1,”bir+Det”)]’ REL=”[4,1,(DETERMINER )]” > bir </W>

<W IX=”4” ... IG=’[(1,”yara+Noun+A3sg+Pnon+Nom”)]’ REL=”[6,1,(OBJECT)]”> yara</W>

<W IX=”5” ... IG=’[(1,”gibi+Postp+PCNom”)]’ REL=”[7,1,(SENTENCE)]”> gibi </W>

<W IX=”6” ... IG=’[(1,”değil+Verb+Past+A3sg”)]’ REL=”[5,1,(NEGATIVE.PARTICLE)]”> değildi

</W>

<W IX=”7” ... IG=’[(1,”...+Punc”)]’ REL=”[,( )]” > ... </W>

</S>

(2.21) <S No=”1”>

<W IX=”1” ... IG=’[(1,”mazi+Noun+A3sg+P1sg+Nom”)]’ REL=”[6,1,(SUBJECT)]”> Mazim </W>

<W IX=”2” ... IG=’[(1,”kalp+Noun+A3sg+P1sg+Loc”)]’ REL=”[4,1,(MODIFIER)]”> kalbimde</W>

<W IX=”3” ... IG=’[(1,”bir+Det”)]’ REL=”[4,1,(DETERMINER )]” > bir </W>

<W IX=”4” ... IG=’[(1,”yara+Noun+A3sg+Pnon+Nom”)]’ REL=”[5,1,(OBJECT)]”> yara</W>

<W IX=”5” ... IG=’[(1,”gibi+Postp+PCNom”)]’ REL=”[6,1,(MODIFIER)]”> gibi </W>
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<W IX=”6” ... IG=’[(1,”değil+Negp+Past+A3sg”)]’ REL=”[7,1,(SENTENCE)]”> değildi </W>

<W IX=”7” IG=’[(1,”...+Punc”)]’ REL=”[,( )]” > ... </W>

</S>

• Dependency structures for passive and causative sentenceswere regularised by

checking and correcting the dependents of passive and causative verbs in these

sentences. In most sentences of this type object and subjectlabelled arguments

were linked to the IG with passive or the causative morpheme.We ensured this

was applied throghout the treebank.

• Annotation of relatively infrequent relation labels such as VOCATIVES, FO-

CUS.PARTICLE were checked and made more consistent throughout the tree-

bank.

• There were many tokenization errors in the treebank. Question and exclamation

marks were ignored as sentence boundaries and several actual sentences sepa-

rated by these were annotated as a single sentence. We split these sentences

whenever possible. This resulted in 57 additions to the treebank. In other cases,

sentences were wrongly split in between periods in proper names with only ini-

tials and parts of abbreviations. The former is corrected bycombining parts of

these proper names that were in different sentences, and thelatter is corrected

by combining the period with the abbreviation and also combining it the rest of

the sentence. As a result, the number of sentences changed to5669 from 5620.

Note that these changes do not effect the number of tokens except in abbreviation

correction cases where one period is combined with the preceding abbreviation.

• One of the most overloaded words is “Ne–(what)” in the treebank. It can appear

as OBJECT, SUBJECT because of the way questions are annotated. It can be a

MODIFIER when it is an adverb modifying an adjective, QUESTION.PARTICLE

in some questions, and CLASSIFIER some other times. It can also be involved

in either .. or type coordination structures. It can take inflection and be an

ADJUNCT as well. This means it takes almost all the labels. Overloading means

confusion in annotation. Mistakes indirectly caused by overloading were also

corrected throughout the data.
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correction type sentences changes

secondary links (extraction) 1200 1065

secondary links (coordination)800 181

morphology - 1975

wrong dependency - 4732

tokenisation 49 67

Table 2.5: Summary of major types of corrections

2.6 Summary and Conclusion

Table 2.5 gives a summary of the major corrections made to thetreebank. The cor-

rection process is still continuing as the lexicons inducedfrom the data are still being

tested on the parsers.

This chapter gave an overview of the current state of the Turkish treebank which

is the data used for this thesis. Turkish treebank is a relatively new treebank and it

is not uncommon in treebank annotation projects that there are a lot of mistakes and

design flaws that could not be accounted for in the early stages of treebank design. A

lot of the treebanks have second releases (Czech2.0, Penn2.0) that contain corrected

versions of the existing or a bigger set of trees. But sometimes, considerable linguistic

information needs to be added to account for certain phenomena in natural languages

such as argument sharing between conjuncts, long-distancedependencies etc. An ex-

ample of the second type of improvements is the Tiger treebank (Brants et al., 2004)

for German. NEGRA, which was the earlier version of the German treebank lacked

long-distance dependencies and information such as argument sharing between coor-

dinate structures. This kind of information is crucial for determining the coordination

type (if there are no node labels as in some dependency treebanks) and predicate ar-

gument structure. It is not hard to see that a treebank failing to provide information

for predicate argument structure is deficient. However, most of the time because of

practical issues or for being computationally simple, thisissue is ignored.

In this chapter, we explained how a treebank that was initially designed to have only

surface dependencies can be modified to include at least someof the crucial informa-

tion to recover some long-distance dependencies and be ableto differentiate certain

coordination types which would otherwise be identical. We also demonstrated other

changes that did not need any substantial diversion from theprinciple of the original
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release of the treebank. By this, we mean correction of the morphological and syntactic

annotation mistakes.





Chapter 3

Morphology

In agglutinative languages the union of words may be compared to me-
chanical compounds, in inflective languages to chemical compounds.R.
Morris.

3.1 Introduction

Before taking its deserved place in linguistic research starting with 90s, morphology

was often neglected within the generative framework in linguistics. Followers of gener-

ative grammar either considered morphology as part of lexicon which was transparent

to syntax, or explained morphology by means of syntactic methodology, i.e. via trans-

formations or X-bar rules that combines morphemes rather than words. (Lieber, 1980;

Lieber, 1992; Selkirk, 1982). Chomsky (1970) stated that morphology should be part

of lexicon. This has given rise to a tradition of handling morphology with lexical rules.

These were simply phonological changes made to stems and affixes without taking

syntactic relations into consideration.

Hockett (1954) draws attention to two different approachesto morphology in lin-

guistics. The first is Item and Arrangement which relies on representations of mor-

phemes that are combined (arranged) to form words. The otherapproach is Item-and-

Process in which the rules change the form of the word, by adding, deleting or applying

other processes.

A third approach: “Constraint-based morphology” was laterintroduced by Bird

(1990) and was followed by Russell (1993). This adopts the idea that morphology

is neither a collection of representational morphemes combining to form words, nor

processes that change an original form to obtain the final word. This approach holds

that the phonological properties of the words are specified by “constraints” that link

35
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them with semantics and syntax.

Hoeksema and Janda (1988) introduce 4 processes that define morphological op-

erations, some of which can be explained with categorial grammar rules. Some others

are handled by introducing new mechanisms that increase thegenerative power of cat-

egorial grammars which are originally context-free.

According to Hoeksema and Janda (1988), Bar-Hillel (1964)’s handling of mor-

phology corresponds to Item-and-Arrangement approach. Dowty (1979), Schmerling

(1983), Bach (1983), Bach (1984) adopt an Item-And-Processapproach. Hoeksema

and Janda state that Item-and-Arrangement is a variant of X-bar theory and corre-

sponds to categorial grammars in terms of expressive power,thus is not powerful

enough to explain all morphological phenomena. They emphasise the need to extend

categorial grammars to have more than application and concatenation in order to ex-

plain some morphological phenomena such as infixation and reduplication. They use

Bach’s wrapping operations to explain infixation.

The additional operations Hoeksema and Janda (1988) introduce to explain some

morphological phenomena boosts the generative power of categorial grammars. Ad-

dition is handled with simple application of the CG rules. However, their handling

of infixation, which is accomplished by adding wrapping to categorial grammars af-

fects the generative capacity of the categorial grammar. Infixation brings in some

context-sensitiveness to the grammar which is acceptable considering the fact that nat-

ural languages are not context-free (Shieber, 1985) but in aclass that is a subset of

context-sensitive languages called mildly context-sensitive languages (Joshi, 1985).

Wrapping operation in itself has potentially more power than context-free. Hoeksema

and Janda (1988) say that languages with wrapping operations may be in a proper sub-

set of context-sensitive languages. However, it is not clear whether they are equivalent

to the proper subset that Combinatory Categorial Grammar, Linear Indexed Gram-

mars belong to. Type changing rules for morphology (lexicalrules in some contexts),

when used without any restriction on recursivity or on the categories that can be type-

changed, boost the generative power of categorial grammarsto turing-complete unnec-

essarily Carpenter (1991; 1992).

3.1.1 Morphology and NLP

Morphology in well known NLP systems is not generally considered a vital component

to be focused on. The main reason for this is that English, which is the most studied
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language, does not have a complex inflectional component when compared to some

other languages. Thus one can easily build an NLP system for English that ignores

morphology and still obtain satisfying results. Without proper consideration for the

interaction between morphology and other components, mismatches of bracketing oc-

cur, or ambiguity that needs to be passed on to syntax and semantics may be ignored

which results in deficient systems.

Computational systems of CCG developed so far do not have robust handling of

morphology. Hoffman (1995) treats inflected forms in Turkish as separate words and,

Hockenmaier (2003a) does the same for English. Bozşahin (2002) proposes a mor-

phemic lexicon with attachment constraints that assumes a morphologically decom-

posed input.

3.1.1.1 Morphological Analysis

There are different approaches to morphological processing in the literature. The rel-

atively more popular approach for agglutinative languagesis finite-state transducer

based morphological processing. Finite state transducerstake the input word and pro-

cess it from left to right searching for a valid analysis and they give a string of mor-

phemes that might have created the surface form in question.

Another alternative to morphological parsing is affix-stripping. These strip affixes

off the word guided by their lexicon to find a root. When they find a root that is

compatible with the morphotactics of the rest of the morphemes they return them as a

candidate analysis.

When parsing a word in an agglutinating language like Turkish, these two ap-

proaches would work in different ways. An FST parser would start from left to right

finding a root from the lexicon, and guided by the transitionsand rules of morphotac-

tics scan all possible morphemes that can attach to the root and do the same iteratively

for the rest of the input. An affix-stripping approach, on theother hand, would start

from the end and strip affixes to reach a compatible root in theend. This approach is

not feasible for a language like Turkish due to high ambiguity.

Morphological analysers produce all possible morpheme strings for a surface word.

Thus, a morphological processor to be used in practical applications needs a disam-

biguator module or a disambiguation process afterwards forlanguages with highly

ambiguous morphology like Turkish.

Early work on morphological analysis was a part of English text-to-speech system

MITalk. (Sproat, 1992). DECOMP is a suffix-stripping morphological model with
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a lexicon that is interactively created from the words in Brown Corpus. AMPLE by

Summer Institute of Linguistics uses morphotactics inspired by categorial morphology

(Hoeksema, 1984) and it is context-free (Sproat, 1992)[pp.203].

Two-level morphology is introduced by Koskenniemi (1983).Two-levels of “two-

level morphology” are the surface and the lexical levels on which the rules are applied

in parallel. Two-level morphology is based on three ideas: 1) Rules are symbol-to-

symbol constraints that are applied in parallel, not sequentially like rewrite rules. 2)

The constraints can refer to the lexical context, to the surface context, or to both con-

texts at the same time. 3) Lexical look-up and morphologicalanalysis are performed

in tandem. (Karttunen and Beesley, 2001).

KIMMO is a two-level morphological analyser. It is implemented in C and is very

efficient. It produces a combined finite-state transducer that produces the combined

output of all the morphological rules implemented. A two-level finite-state transducer

works on two tapes one for lexical form and for surface form and accepts if the surface

form is compatible with the rules and the lexical form in recognition mode. The current

version of KIMMO (PCKIMMO2) uses grammar rules and unification as an interface

when building a morphological system , whereas the earlier version uses “alternation

classes” (corresponding to states in a finite-state machine).

Generative systems have also been suggested for morphological parsing. One ex-

ample is Kay’s chart parsing model that has two stages (Kay and Kaplan, 1983). The

first stage applies the phonological rules and the second phase of dictionary look-up

finds the underlying forms for recognition. Rules are used toliterally generate the

surface forms from an underlying form with the help of a chartparser (Sproat, 1992).

We believe a robust system for agglutinative languages likeTurkish cannot be built

without proper consideration of morphology for the following reasons:

1 The sparse data problem is unlikely to be overcome regardless of the amount of

data provided, because a word may have millions of differentinflected forms.

This is discussed in Section 3.4.

2 Morphology is often highly interlaced with syntax, semantics and even discourse

in languages with strong morphology. Thus, without proper handling of interlac-

ing aspects of syntax, semantics and morphology, analysis of language structures

is not possible. We will give some discussion and examples ofthis issue in Sec-

tion 3.2.

3 There is a good potential of generalisation with the use of morphology and this
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should be facilitated when building NLP systems for a competent but compact

outcome. A detailed discussion about this issue is given in Chapter 6.

In this chapter, we discuss some morphological phenomena together with infor-

mation on how morphology is treated in history. We focus mostly on the interaction

of morphology with syntax and semantics. Most of the examples in this chapter are

on Turkish. For a detailed description of Turkish morphology and how it is treated

see (Lewis, 1967; Underhill, 1972; Hankamer, 1989; Kornfilt, 1997; Oflazer, Göçmen,

and Bozşahin, 1994; Pembeci, 1998;Öztaner, 1996). We will also discuss the his-

tory of computational morphology to some extent, and give a review of morphological

analysers for Turkish. Finally, more discussion on why morphological processing is

necessary for NLP applications will be given.

3.2 Morphology and Syntax

Spencer (1991) categorises languages as: isolating, agglutinating, inflectional and

polysynthetic. Isolating languages are those that do not have morphology whatsoever

such as Chinese and Vietnamese. Inflectional languages, have combined morphemes

of different features which are difficult to map to surface forms. Polysynthetic lan-

guages make use of combination of words to form a full sentence. The fourth class is

Agglutinative defined below. Turkish belongs to the class ofagglutinative languages.

The definition and the Swahili example (3.1) for agglutination given below are taken

from Trask (1993). The Turkish example in (3.2) shows the agglutinative aspect of

Turkish morphology.

AGGLUTINATION A type of morphological structure in which words can be

readily divided into a linear sequence of distinct morphemes, each of which

typically has a fairly consistent shape and a single consistent meaning or

function.

(3.1)
a- -li- -ku- -on- -a

he -past you see indicative

he saw you

(3.2)
öl -dür -e -me -z sin

die -Caus -Abil -Neg -Pres P2sg

you can/may not kill
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(3.3)
yom -ase -rare -na -i

read -Caus -Abil -Neg -Pres

X cannot make Y read.

In (3.2), we see a typical one-word-sentence in Turkish where the verböl – die is

decorated with a decomposable string of morphemes to mark voice (-Caus), modality

(-Abil), polarity (-Neg), tense (-Pres) and person (-P2sg). This is not particularly a

longer-than-average word for Turkish, and it constitutes asentence on its own as the

Swahili example in (3.1) does.

There are many agglutinative languages e.g. Hungarian, Japanese and Turkish. The

Japanese counterpart of (3.2) is (3.3) although the meaningis slightly different in this

example.1 Agglutination could be seen as an advantage because it makesgeneralisa-

tion easier. It could be argued that segmentable systems aremuch easier to model than

inflectional systems.

Generalising a system to process an agglutinative languagewith heavy morphology-

syntax interface may be more complex than isolating languages with no morphology

or languages with simpler morphology. On the other hand, agglutinative languages

have advantages over inflecting languages where the morpheme boundaries are not as

clear, and morphological information cannot be represented in a string of morphemes.

This is because segmentation of morphemes for agglutinative languages is easier as op-

posed to segmentation in inflectional languages. However, this task has its challenges.

Morphemes may have grammatical functions such as case and agreement, changes of

predicate-argument structure and so on. This interaction between morphology, syn-

tax and semantics, sometimes, leads to mismatches of bracketing in different levels of

representation in some theories, which are usually called bracketing paradoxes in the

literature. This issue will be discussed in more detail in Section 3.2.1.

3.2.1 Bracketing Paradoxes

Bracketing paradoxes (or bracketing mismatches) are conflicts between certain levels

of representation in language. We find two types of bracketing paradoxes mostly stud-

ied on in the literature. In the first type, morphological grouping is inconsistent with

the constituent structure suggested by syntax. A typical example is : He’ll do it.he’ll

is a morphological unit but’ll do it is a constituent (Trask, 1993). The second type is

the mismatch of phonology and interpretation.

1Thanks to Akira Otani for this example.
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Pesetsky (1979) observed that the morphophonemic restrictions while attaching a

morpheme may be different from the semantic bracketing as the following example

from English shows.

(3.4) a. [un-[happy-er]]

b. [[un-happy]-er]

In English, an adjective may take comparative form only if itis monosyllabic,

trochaic or disyllabic. For examplehappyor easy. Sohappycan take-er but unhappy

cannot, normally. The bracketing should be as in (3.4a) according to the morphophen-

emic restrictions. Siegel(1974)’s Level ordering hypothesis says that affixation takes

place in two linearly ordered blocks, which are separated bythe word stress rules.

Thus, un- being a “class II” affix is attached after -er in ordering. Thus the phonologi-

cal constraint is met. However, the actual meaning of the word ismore unhappyrather

thannot happier. This means the semantic interpretation has the bracketingin (3.4b).2

Bracketing paradoxes appear in many languages and have beenstudied by Fukushima

(1999), Bozşahin (2002), Müller (2003) and so on.

The type of bracketing paradoxes in Turkish that we discuss here mostly fall in the

first category mentioned above. The attachment and phonological characteristics of a

bound morpheme is constrained by the word it is attached to whereas it has semantic

scope over the whole phrase. Examples (3.5) and (3.6) show anambiguous case where

bracketing choices make a difference to the semantic interpretation. These examples

show that morphemes may or may not have phrasal scope even though they are identi-

fied with the word they are attached to. In (3.5) the scope of-lı – with – is [long leaves]

whereas in (3.6), it is only [leaves]. Thus they yield different interpretations depending

on the bracketing. There is no way to identify this ambiguityand pass it on to syntax

or semantics level without treating the bound morpheme-lH as a separate item that

defines its own semantic scope.

(3.5)
[Uzun yaprak] -lı ağaç

Long leaf -With tree

The tree with long leaves

(3.6)
[Uzun] [yaprak-lı] ağaç

Long leaf-With tree

The long tree with leaves

2Some authors such as Stump (1991) and Sproat (1992) claim that this is not a mismatch.
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3.2.1.1 Bracketing Paradoxes and Coordination

Examples in 3.7 show that bracketing paradoxes appear in coordination as well. The

noun phrase in 3.7a is a typical coordination example where two noun phrasestuz

-salt andyağlı yiyecekler - fatty foodcoordinate. However, because suspended affix-

ation is possible in Turkish, the bracketing in (3.7b) whichis a noun coordination is

also possible. The semantic outcome of this bracketing isf ood(x)∧ (with(salt,x)∧

with( f at,x)).

(3.7) a.
tuz ve [yağ -lı] yiyecekler

salt and fat -With food

salt and food with fat

b.
[tuz ve yağ] -lı yiyecekler

salt and fat -With food

food with salt and fat

(3.8a) and (3.8b) display the bracketing ambiguity betweenthe syntactic and se-

mantic levels of bracketing. We will not discuss this types of ambiguity in this chapter.

This example is given only for a better understanding of the issue at hand. This exam-

ple shows that the English version has a bracketing ambiguity, as well.

(3.8) a.
[genç kızlar] ve erkekler

young girl-Plu and man-Plu

b.
[genç [kızlar ve erkekler]]

young girl-Plu and man-Plu

young girls and men

3.2.2 Morphemes with wider scope

3.2.2.1 Subordination

In example (3.9) it is clear that the semantic scope of-nH is the whole constituent of

adamın kitabı bana vermesi. It could also be argued that agreement morpheme-sH

has the phrasal scope shown in (3.9). However, the phonological characteristics of

both morphemes are determined by the word they attached to, thus-nH is instantiated

as-ni.
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(3.9)
Ahmet [adam-ın [kitab-ı bana ver]-me-si] -ni iste-di.

Ahmet man-Gen book-Acc me give-Inf-Agr -Acc want-Past

Ahmet wanted the man to give the book to me.

3.2.2.2 Adverbials and Gerunds

The derivational morpheme-madanattaches to verbs to make them adverbs. This

is another example of phrasal scope derivational morpheme having scope over the

whole phraseyemĕgin hepsi bit, not just the verb. Taking into account the wider scope

restrictions of these morphemes is vital for the correct semantic interpretation.

(3.10)
[[Yemeğin hepsi bit]-meden] tatlı yiyemezsin.

food-Gen all-Poss3sg finish-WHDS desert eat-Abil-Neg-Aor-P2sg

-WHDS = -WithoutHavingDoneSo

You may not have desert before finishing your food.

3.2.3 Suspended Affixation

Suspended affixation is common in Turkish. It can be explained as inflectional mor-

phemes having scope over the coordinating clause. Inflectional and some derivational

morphemes3 can have scope over the whole coordinating clause. (3.11) isan exam-

ple of a group of nominal inflectional morphemes that have scope over the phrase

kapı ve pencere – door and window. The semantic structure for this example is

(poss(plu(door∧window))) whereas the attachment is as seen in the example.

In verbal morphology a non-final conjunct can be underspecified for modality and

tense (second tense) and person as in (3.12). Morphemes withwider scope are usually

attached after tense in verbal morphology (second tense or modality) whereas in nomi-

nal morphology there are no restrictions. (3.13) shows an example where the past tense

morpheme has wider-than-word scope. This morpheme is attached after the main tense

morpheme which is-mHş –Narrhas a usage that is similar to the past perfect in En-

glish. It has scope over the whole VP coordination consisting of two conjuncts. (3.14)

shows the same phenomena with verb coordination as opposed to VP coordination in

the previous example. However, (3.15) that has the first tense morpheme right after

coordination is implausible.

3Although the suffixes in question may not be called derivational morphemes by some linguists, we
will stick with the treebank terminology at this point
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(3.11)
ev-in [kapı ve pencere] -ler -i

house-Gen door and window -Plu -Poss3sg

[doors and windows] of the house

(3.12)
[gider ve uyur] -sam

go-Pres and sleep-Pres -Cond-P1sg

if I [go and sleep]

(3.13)
şimdi [yapraklar dökülmüş ve havalar soğumuş]-tu.

Now [leaves fall-Narr and air cool-Narr]-Past

Now, the leaves had fallen and weather had cooled.

(3.14)
Soba [sönmüş ve soğumuş]-tu.

Stove [die-down-Narr and cool-Narr]-Past .

The stove had died down and cooled.

(3.15)
*babam [kay ve düş]-tü.

father-Poss1sg [ slip and fall]-Past.

Intended reading: My father slipped and fell.

(3.16)
Kapıdaki kız [alımlı ve güzel] -di.

door-Loc-Rel girl attractive and pretty -Past

the girl at the door was [attractive and pretty]

Productive derivational morphemes can also take part in such constructions.-lı

– with – is considered as a derivational morpheme that makes an adjective out of a

noun in Turkish. The same holds for-(y)dH copula morpheme in (3.16) which is also

considered as a derivational morpheme to make verbs out of nouns (or noun phrases).

This type of suspended affixation is the most frequent type.

Suspended affixation is an interesting phenomenon which is not exclusive to Turk-

ish. Examples of this are seen in Hindi, Japanese and so on. A detailed analysis of

suspended affixation in Turkish is given in Kabak (2007) for interested readers.

3.2.4 -ki relativisation

An interesting type of relativisation is-ki relativisation in Turkish. The head can drop

in constructions which leads to the specifier taking the inflectional properties of the
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dropped noun such as number, case, and so on.-ki is regarded as an adjective de-

rived from a noun in Turkish treebank. And the phenomenon above is represented by

deriving a noun from the adjective which itself was derived from a noun as in (3.17).

(3.17) IG=‘[(1,“üst+Noun+A3sg+P1sg+Loc”)(2,“Adj+Rel”)(3,“Noun+Zero+A3pl+Pnon+Nom”)]’

Üstümdekiler – the ones on/above me

The morphological structure of the relativised noun is the same in both sentences

in (3.18) except case marking, although the first one is a derived adjective while the

second one behaves as an inflected noun. This may either be a case of “headless rela-

tivisation” which involves head-deletion according to some theories or it can simply be

explained as an adjective that goes through nominal morphology which is common in

Turkish. The latter means that the noun is first turned into anadjective by-ki relativiser

and the resulting adjective goes through nominal inflection. This type of overloading

is often explained by zero morphemes that change types in METU Sabancı Treebank.

(3.19) is an example of a headless relative clause.

(3.18) a.
masadaki geline baktım.

table-Loc-Rel bride-Dat look-Past-P1sg

I looked at the bride at the table

b.
masadakine baktım.

table-Loc-Rel-Dat look-Past-P1sg

I looked at the one at the table

(3.19)
Bu öngörülerin doğruluğunu sınayacaklar yine deney

This hypothesis-Plu-Gen truth-Agr-Acc test-FutPart-Pluagain experiment

ve gözlemlerdir

and observation-Plu-Cop

FutPart = relativiser

What will test the truth of these hypotheses is, again, experiments and observations.

3.2.5 Morphology and Argument Structure

The most significant aspect of morphology/argument structure interaction is observed

in voice changing structures. In Turkish, voice changing affects not only verbal mor-

phology but also case suffixes on the arguments. Other types of voice changing mor-

phemes are passives, reflexives and reciprocals.
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3.2.5.1 Causatives

Causative morphemes are-DHr and-t. -DHr is used for verbs ending with a consonant

and-t is used for verbs ending with a vowel or when there is double causativisation

or if a passive verb is being made into a causative verb. Thereare exceptions to these

phonological rules such as if a verb ends with a -t sometimes the causative form is

achieved by -Hr instead of -DHr. Interested reader should refer to Underhill (1986).

Causative forms of passive verbs and vice versa are quite common in Turkish as

well as double passivised or double causativised verbs. More than two occurrences of

passive or causative morphemes attached to one verb is not common.

The causative morpheme is-DHr, which has a number of phonologically and mor-

phologically conditioned allomorphs. The allomorphs are:

• -DHr is the most common allomorph, which is attached to the verbs ending in

consonants.

• -t is used after vowels or words ending with-(H)r or -Hl e.g. uyu-t, delir-t,

karar-t.

• -Ht is used for a small number of exceptions that end with certain sounds such

as-rk. korkut.

• -Hr is another allomorph that is rare.yat-ır, bat-ır, bit-ir

• -Ar is used for a limited number of one syllable verbs such asçıkar.

The causative morpheme has the effect of adding an argument to the basic argument

structure of the predicate. Thus, causativisation of a intransitive verb yields a transitive

structure as in (3.21). The causative morpheme brings the subject of an intransitive

verb to object position. Causativisation of a transitive verb yields a ditransitive struc-

ture as in (3.20). The subject ofoku – readbecomes dative marked oblique.

Causativisation, despite resembling a morphological operation affected purely by

morphophonemic properties of the verb it is attached to, affects the argument structure

of the verb it is attached to through syntax by means of case marking.

(3.20) a.
Ahmet kitab-ı oku-du.

Ahmet book-Acc read-Past

Ahmet read the book.

b.
Ben Ahmet-’e kitab-ı oku-t-tu-m.

I Ahmet-Dat book-Acc read-Caus-Past-P1sg
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I made Ahmet read the book.

(3.21) a.
Yangın sön-dü.

fire-Nom extinguish-Past-P3sg

The fire extinguished.

b.
Ben yangın-ı sön-dür-dü-m.

I fire-Acc extinguish-Caus-Past-P1sg

I extinguished the fire.

3.2.5.2 Passives

Passive and causative constructions in Turkish are achieved through morphology. Pas-

sive morphemes are-Hl and -(H)n. -Hl is for verbs that end with a consonant and

-(H)n is for verbs that end with a vowel or the sequence-Hl. They are also used to

make double passives one after the other one. They directly change the valency of the

verb they are attached to without the need for an auxiliary. The passive morpheme is

assigned a category that takes aTV or IV category and turns it into aIV or Scategory

respectively.

Voice is altered through bound morphemes in Turkish. Treatment of this kind of

type changes can be theory-specific. But in this research we will assume that passive

morpheme is a type changing morpheme that changes a transitive verb into an intran-

sitive one.-(H)n and-Hl are the morphemes for passive construction.-(H)n is used if

the word ends withl and-Hl is used otherwise. The subject of the passive sentence is

the direct object of the underlying “deep structure”, whichis why the accusative case

marker in (3.22) disappears in (3.23). Impersonal passivesare also common. These

passivise intransitive verbs and they are formed by the samemorphological operations.

In terms of effects on argument structure passive morphemesdo exactly the opposite

of causativisation morphemes, as expected.

(3.22)
Kahya yüzüğü bul-du.

Butler ring-Acc read-Past

The butler found the ring

(3.23)
Yüzük bul-un-du.

ring find-Pass-Past

The ring was found.
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3.3 Morphological Processors for Turkish

As previous discussion indicates, morphology plays a vitalrole in Turkish natural

language processing. There are many morphological analysers designed for Turk-

ish. (Güngör, 1995;̈Oztaner, 1996; Pembeci, 1998; Çakıcı, 2002; Hankamer, 1989;

Oflazer, 1994; Köksal, 1973)

The first finite-state morphological analyser that is designed for Turkish iskeçi

(Hankamer, 1986).keçi incorporates ordered phonological rules and finite-state mor-

photactics. The phonological rules inkeçiare applied one after the other until a per-

fectly matching surface form is found, before moving on the to finding the next mor-

pheme. This is different from the two-level approach where both lexical and surface re-

strictions are checked in parallel and all together given a phonological context. Sproat

calls this procedure “generate-and-test” incorporatingorderedphonological rules fol-

lowing Generative Phonology by Chomsky and Halle (1968) (Sproat, 1992)[pp.190].

keçi has finite-state morphotactics. It does not incorporate anycontext-free ele-

ments. Each affix determines the next state of the automaton and the optionality is

obtained byε-transitions.

Oflazer (1994) presents a wide-coverage morphological analyser with 23,000 lex-

ical entities. He uses PC-KIMMO (Antworth, 1990) which is anearlier version of

PC-KIMMO-2 that does not have word-grammar rules. Oflazer implements the mor-

photactic rules of Turkish that are explained in Oflazer, Göçmen, and Bozşahin (1994)

by alternation classes of PC-KIMMO that correspond to states in an FST. The morpho-

phonemic rule component uses 22 phonetic rules to explain the phonetic phenomena in

Turkish. This system is the first wide-coverage morphological analyser of Turkish that

handles special cases and exceptions. This morphological analyser was also used for

morphological analysis in METU-Sabancı Treebank (Atalay,Oflazer, and Say, 2003;

Oflazer et al., 2003).

3.3.1 Disambiguators

When the level of morphological ambiguity is considered in Turkish, morphological

disambiguators that choose between different analyses (very similar to parse selection)

are vital for practical NLP systems with a morphological processing component. Some

morphological ambiguity should be passed on to the parsing level but this is not a

primary concern. There are a few disambiguators for Turkish. The disambiguators

defined in Oflazer and Tür (1996) and Oflazer and Tür (1997) are two of the early
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disambiguators that use hybrid models of hand crafted rulesand voting constraints

modelling the context of the word to be tagged. A purely statistical model is created

by Hakkani-Tür, Oflazer, and Tür (2002).

Yüret and Türe (2006) use decision trees and train a separate model for each of the

morphological features the morphological analyser creates. These features are the 126

morphological tags that Oflazer (1994)’s morphological analyser creates. The system

decides on the resulting morphological analysis by independently voting on each of

the parses to find the most likely one. They report a tagging result of 96% when a

separate classifier is trained for each tag and 91% when decision lists are used to tag

the data without the help of a morphological analyser. This system is trained on whole

tags (a string of morphological features). The training data was semi-automatically

disambiguated corpus of 1 million words and test data is a manually created set of 958

instances.

3.4 Importance of morphology for NLP applications

Research in this fields shows that morphological processingfor languages like Turkish

is inevitable (Hankamer, 1989; Bozşahin, 2002; Jurafsky and Martin, 2000). Şehitoğlu

and Bozşahin (1999) shows that generation of all inflected forms for 40 Turkish root

forms results in about 2800 entries even with limited inflectional morphology. Inflec-

tional suffixes can create around 40,000 word forms for verbal paradigm without recur-

sive processes like causativisation.4 (Jurafsky and Martin, 2000). Nominal paradigm

with -ki relativisation can create millions of forms.5 According to the FLH, each com-

plex word has its own, separate entry in the mental lexicon. Two variants of the FLH

have dominated psycholinguistic accounts in recent years.The FLH-A version holds

that complex words have their own lexical entries which include a representation of

their morphological structure. To provide an example, the word forgetful has a lexical

entry of its own, but the entry contains a morphological analysis of the word: (for-

(get)-ful). The B version, in turn, presupposes that every word has its own entry and

that all entries for morphologically complex words are linked to a basic entry for the

uninflected or root word. Thus, forgetful has its own lexicalentry in the mental dic-

tionary, which, along with the entries for unforgettable, forgettable, forgetting, etc., is

4Adding these may create infinite number of forms.
5This is because relativised form of the noun can be nominalised and get inflectional morphemes

again as shown in Section 3.2.4.
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linked to the basic entry get. Under this version of the FLH, the basic entry is called

the nucleus and the remaining entries clustered around the nucleus are its satellites.

Hankamer (1989) discusses extensively that Full Listing Hypothesis (FLH) (Butter-

worth, 1983) is untenable with evidence from Turkish morphology. According to FLH

each word has its own entry in the mental lexicon. Some variations hold that complex

words have their own entries in additon to their morphological analyses. Hankamer

gives figures on how much memory is needed to store such information together with

the numbers of exhaustive generation of inflectional forms of nouns and verbs in Turk-

ish. He shows that even without recursion (which exists in Turkish morphology) the

numbers go up as much as 1.8 million per verb root and 9.2 million per noun root.

With recursion these numbers go up to 26.7 million and 216.6 million respectively.

This means for a lexicon with 20000 noun roots and 10000 verb roots a lexicon of

200 billion entries would be required. This is infeasible even for human processing

and Hankamer uses this to suggest that the humans could not possibly be storing all

the inflected (and derived) word forms as lexical entities inthe memory. He calculates

together with the figures from Sagan (1985) that it would onlybe possible to store only

125 billion morphologically complex words.

If even human mind does not have the ability to store all inflectional forms in the

memory, it would be irrational and unnecessarily costly to design an NLP system with

hundreds of billions of lexical entries to fetch from.6 We observe in real data that the

number of instances of the verbgit – go177 in the Turkish treebank in Figure 3.1. A

language model without morphological analysis will treat each distinct inflected form

of the verb as a new instance. This might easily cause sparse data problem.

...... frequency cat/word

total occurrences 177 N/A

distinct cat-word pairs 128 1.38

distinct category types 14 12.64

Figure 3.1: The figures for the verb git (go).

NLP systems for Turkish incorporate morphological complexities. This is either

by employing a morphological analyser, or using sub-word units in defining the re-

lationships in sentences. (Çakıcı and Baldridge, 2006; Çetinoğlu and Oflazer, 2006;

6This is discussed in Section 6.2.2.1 in detail.
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Eryiğit and Oflazer, 2006). Eryiğit, Nivre, and Oflazer (2006) and Eryiğit, Nivre, and

Oflazer (2008) show that morphological features can be very useful in improving the

performance of a dependency parse. The most prominent features are nominal case

and relativisation morphemes. It is also established that use of morphology helps in

machine translation systems. Oflazer and Durgar El-Kahlout(2007) show that using

sub-word level entities in machine translation gives an improvement of 24% BLEU

scores compared to a baseline for English to Turkish translation when morphotactical

knowledge is provided for generation. Dyer (2007) also shows that the other direction

in translation i.e from morphologically complex language to English also benefits from

the use of morphological knowledge. There are still unresolved problems such as the

ones mentioned in Çetinoğlu and Oflazer (2006) such as phrasal scope of inflectional

morphemes, bracketing mismatches of coordinated structures, such as suspended af-

fixation and so on.





Chapter 4

Combinatory Categorial Grammars

Combinatory Categorial Grammar (Ades and Steedman, 1982; Steedman, 2000) is an

extension to the classical Categorial Grammar (AB) of Ajdukiewicz (1935) and Bar-

Hillel (1953). AB, and extensions to it, are lexicalist theories. Surface structure is

constructed with the help of lexical categories of the word in categorial grammars.

Categories are either atomic (NP) or complex like ((S\NP)/NP). The category of a

word specifies its predicate-argument relations and directionality of its arguments in

categorial grammars. In this respect, a word with syntacticcategory(S\NP)/NPex-

pects two noun phrases: one to the right of the word and one to the left and becomes

a sentence when combined with them.1 A lexical item in a categorial grammar can be

represented as the triplet:

φ := σ : λ whereφ is the phonological form,σ is its syntactic type, andλ its se-

mantic type. Some examples are shown in (4.1).2

(4.1) a. book:= N : book

b. oku:= (S\NPnom)\NPacc: λx.λy.readxy

In AB, there are two kinds of application rules defined by the direction of applica-

tion. These are shown in (4.2).

(4.2) Forward Application (>): X/Y : f Y : a ⇒ X : f a

Backward Application (<): Y : a X\Y : f ⇒ X : f a

1We assume the notation that the result category is always on the left and argument category is
always on the right with respect to the slash.

2The example in (4.1b) is a Turkish transitive verb.

53
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An example AB derivation is shown in (4.3). The directionality and lexical type re-

quirements for arguments determine and guide the syntacticstructure formation while

the semantic interpretation is composed in parallel. Categorial grammars are known

for this property of parallel construction of syntactic andsemantic structure.3

(4.3) John likes Marry.

NP: john′ (S\NP)/NP: λx.λy.likes′xy NP: marry′
>

S\NP: λy.likes′marry′y
<

S: likes′marry′ john′

4.1 Combinatory Rules and Principles

AB is weakly equivalent to context-free (Bar-Hillel, Gaifman, and Shamir, 1964).

Since natural languages require slightly more generative power than context-free, addi-

tional abilities that increase expressivity are required to explain linguistic phenomena

that CFGs cannot.

In addition to functional application rules, CCG has the ability to combine func-

tions with combinatory operators such as functional composition. Composition (B),

type raising (T) that are adopted from Curry and Feys’ (1958) combinatory logic.

Combinatory operations, while preserving the transparency of syntax and semantics

during derivations, increase the expressiveness to that ofLinear Context Free Rewrit-

ing Systems, a multilevel proper subset of mildly context-sensitive grammars. CCG is

in the first known trans-context free level together with TAGand others.

CCG is designed to predict long-distance dependencies, as well as surface ones au-

tomatically while combining lexical categories representative of predicate-argument

relations and directionality. CCG is a lexicalist theory. This means all language-

specific characteristics are specified in the lexicon by type-logical modalities on the

slashes i.e. slash types.4 The rules only specify how these categories can be combined

on a higher level. The language specific properties such as word order or unbounded

dependencies are implicitly coded in the lexicon.

Composition (4.4) and type-raising (4.5) are used to handlesyntactic coordination

and extraction in languages by providing a means to construct constituents that are

not accepted as constituents in other theories. Hoffman (1995) claims that flexible

3The interested reader is referred to Steedman (2000) for a review on semantic interpretation con-
struction during parsing, and to Bos et al. (2004) for an example of wide-coverage semantic parsing.

4See Steedman and Baldridge (to appear) for an extensive discussion. We will omit slash types here
for ease of reading, and because they are not particularly important in the focus of this dissertation.
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constituency is crucial for handling the scrambling of arguments in languages like

Turkish.

(4.4) Forward Composition (>B): X/Y : f Y/Z : g ⇒ X/Z : λx. f (gx)

Backward Composition (<B): Y\Z : g X\Y : f ⇒ X\Z : λx. f (gx)

(4.5) Forward Type Raising (>T): X : a ⇒ T/(T\X) : λ f . f a

Backward Type Raising (<T): X : a ⇒ T\(T/X) : λ f . f a

Steedman also defines a generalised version of composition shown in (4.6) wheren

is bounded by the degree of valency in the lexicon in order to retain the mildly-context

sensitive power of CCG.

(4.6) Generalised Forward Composition (> Bn):

X/Y : f (Y/Z)/$: ...λz.gz... ⇒ X/Z/$: ...λz. f (gz...)

Where $ is formally defined as the following in Steedman (2000)[pp.42].

(4.7) The$ convention

For a categoryα,{α$}, (respectively,{α/$},{α,\$}) denotes the set con-

tainingα and all functions (respectively, leftward functions, rightward func-

tions) into a category in{α$} (respectively,{α/$},{α\$}

CCG handles phenomena such as “non-constituent” coordination seamlessly (with-

out the use of movement or deletion) because it has a more flexible account of con-

stituency. This property also ensures that the crossing dependencies in the famous

hippopotamus example in Dutch (4.8) are correctly predicted with the derivation in

(4.9).

(4.8)
omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

because I Cecilia Henk the hippopotamuses saw help feed

‘...because I saw Cecilia help Henk feed the hippopotamuses.’

(4.9) omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

NP1 NP2 NP3 NP4 ((S+SUB\NP1)\NP2)/VP−SUB (VP\NP3)/VP-SUB VP\NP4
> B×

(VP\NP3)\NP4
> B2

×

(((S+SUB\NP1)\NP2)\NP3)\NP4
<

((S+SUB\NP1)\NP2)\NP3
<

(S+SUB\NP1)\NP2
<

S+SUB\NP1
<

S+SUB
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In (4.9) which is taken from Steedman (2000), the existence of the forward crossing

composition rule in CCG (4.10), which is excluded for most English categories, makes

it possible to cluster the verbs before they combine with their subjects, thus making it

possible to handle crossing dependencies of this kind.

(4.10) Forward Crossed Composition (> B×):

X/Y : f Y\Z : g ⇒ X\Z : λx. f (gx)

Backward Crossed Composition (< B×):

Y/Z : g X\Y : f ⇒ X/Z : λx. f (gx)

Languages that allow scrambling give rise to frequent crossed dependencies. The

following Turkish example shows crossing dependencies that are caused by arguments

that are scrambled out of their “canonical” order. In SOV order which is often referred

to as the canonical word order in Turkish,Ahmet’inandMehmetare swapped resulting

in a nesting structure.

(4.11)
Ahmet’in Mehmet su aygırını görmesini istemedi.

Ahmet-Gen Mehmet hippopotamus-Acc see-Inf-Agr-Acc want-Neg-Past

Mehmet didn’t want Ahmet to see the hippopotamus.

(4.12) Ahmet’in Mehmet su aygırını gör -mesini istemedi
T T

S/(S\NP1) S/(S\NP2) NP3 (Ss\NP1)\NP3 NP4\Ss (S\NP2)\NP4
<

Ss\NP1
< B

NP4\NP1
< B

(S\NP2)\NP1
> B×

S\NP1
<

S

There are other operations such as substitution (4.13) in CCG that are adopted

from combinatory logic. Backward crossed substitution (4.14), for instance, is used to

handle parasitic gaps as in (4.15) (Steedman, 2000).

(4.13) Forward Substitution (>S): (X/Y)/Z : f Y/Z : g ⇒ X/Z : λx. f x(gx)

Backward Substitution (<S): Y\Z : g (X\Y)\Z : f ⇒ X\Z : λx. f x(gx)
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(4.14) Backward Crossed Substitution (<Sx):

Y/Z : g (X\Y)/Z : f ⇒ X/Z : λx. f x(gx)

(4.15) (articles) which I will file without reading

(N\N)/(S/NP) S/VP VP/NP (VP\VP)/VPing VPing/NP
> B

(VP\VP)/NP
< S×

VP/NP
> B

S/NP
> B

N\N

Transparent composition of syntactic structures and semantic interpretations, and

flexible constituency make CCG a preferred formalism for long-range dependencies

and non-constituent coordination in many languages e.g. English, Turkish, Japanese,

Irish, Dutch, Tagalog (Steedman, 2000; Baldridge, 2002)

In addition to parameters limiting the degree of recursivity (in Bn), or the range and

domain of the rules as in Type raising, there are principles that limit the unbounded na-

ture of some rules, or the properties of the lexicon. This waythe generative power of

the grammar is kept under control by, for instance restricting rules that change direc-

tionality and allowing uncontrolled permutation which could cause the grammar to be

Turing-complete. Some of these principles are (Steedman, 2000):

Principle of Head Categorial Uniqueness: “A single nondisjunctive lexical

category for the head of a given construction specifies both the bounded de-

pendencies that arise when its complements are in canonicalposition and the

unbounded dependencies that arise when those complements are displaced un-

der relativization, coordination and the like”. This meansthat the dependencies

of both the extracted and non-extracted arguments of the predicate should be

specified by the same lexical category. The category of the head cannot change

depending on which of these situations it is in. A lexicon that is as compact as

possible is preferred.

Principle of Lexical Head Government: “Both bounded and unbounded syn-

tactic dependencies are specified by the lexical syntactic type of their head.”

Principle of Categorial Type Transparency “For a given language, the se-

mantic type of the interpretation together with a number of language-specific

directional parameter settings uniquely determines the syntactic category of a

category.”
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Directional Inheritance Principle “If the category that results from the appli-

cation of a combinatory rule is a function category, then theslash defining di-

rectionality for a given argument in that category will be the same as the one(s)

defining directionality for the corresponding argument(s)in the input functions.”

Principle of Consistency“All syntactic combinatory rules must be consistent

with the directionality of the principal function.” This means, for instance,

backward application cannot, by definition, apply toX/Y. Principle of Con-

sistency prevents copmbinatory rules that override lexical directionality, such as

YX/Y => X.

Principle of Adjacency “Combinatory rules may only apply to finitely many

phonologically realized and string-adjacent entities.”

The principles of Inheritance, Consistency and Adjacency restrict the set of possi-

ble rules in order to control the expressive power of the grammar, whereas the princi-

ples of Uniqueness, Lexical Head Government and Transparency govern the lexicon.

However, these principles do not eliminate the fact that some rules are not needed

in some languages simply because of the inherent characterics of the language. For

instance, English employs backward crossing composition,but not the forward coun-

terpart. On the other hand, a language with a freer word ordercould be expected to

have both.

Baldridge (2002) and Baldridge and Kruijff (2003) move thischoice to the lexi-

con by the use of modalities defined over slashes. These modalities put limitations

on the applicability of rules to categories in a similar way to type logical modalities

(Morrill, 1994). For example, many function categories in English bear a slash type

that makes them incompatible with crossed composition rules. The result is a system

where the rule set is also determined by the combination properties of the categories

in the lexicon giving rise to a higher degree of lexicalism. An example of this is the

conjunction category shown in (4.16). The⋆ feature on the slashes limits the combina-

tion of this category only by means of application and nothing else. This gives rise to

the derivation set in (4.17). An overview and examples for a wide variety of linguistic

phenomena are given in Steedman and Baldridge (to appear).

(4.16) and := (X\⋆X)/⋆X
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(4.17) Marcel conjectured and proved completeness

NP (S\NP)/NP (X\⋆X)/⋆X (S\NP)/NP NP
>

((S\NP)/NP)\⋆((S\NP)/NP)
<

(S\NP)/NP
>

S\NP
<

S

Another use of modalities is suggested by Bozşahin (2002).Bozsahin proposes

a morphemic lexicon, elements of which adhere to combinatory categorial grammar

principles. He introduces what he calls “morphosyntactic modalities” to restrict and

control the attachment characterics of morphemes. These modalities appear on the

atomic categories as opposed to slashes on Baldridge’s scheme. ⊲⊳ denotes equality

and⊳ means “up to and equals”. Phrasal scope versus word scope problem is elegantly

solved in the lexicon keeping the syntax semantics interface transparent. Bozsahin’s

modalities help simulate the morphotactic order of the attachment of suffixes while

restricting some of them in a way to encourage phrasal attachment. This is acquired by

means of delaying the morpheme attachment until after “constituent” formation. The

example in (4.18) shows the categories for the English nountoy and the plural mor-

pheme-s. (4.19) shows how the correct semantics is constructed by delaying affixation

by modalities.

(4.18) toy :=
b
⊳N/

b
⊳N: λxtoy x

-PLU :=
n
⊳N\

b
⊳N: λxplux

(4.19) a. toy gun -s
<

b
⊳N/

b
⊳N

n
⊳N:plu gun
***

n
⊳N :* toy(plu gun)

because n-num (n)� n-base (b)

b. toy gun -s

b
⊳N/

b
⊳N

b
⊳N

n
⊳N\

b
⊳N

>

b
⊳N :toy gun

<
n
⊳N : plu(toy gun)
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4.2 Generative Power of CCG

Shieber (1985) proved that natural languages falls into a category more powerful than

context-free grammars (CFG) in Chomsky hierarchy using evidence on Swiss-German

cross-serial dependencies. Earlier, Bar-Hillel, Gaifman, and Shamir (1964) had proved

that AB grammars are context-free. Hence they are not expressive enough for natural

grammars. Combinatory rules of CCG extend the capabilitiesof categorial grammars

in a very limited manner. CCG is at level 1 of an infinite hierarchy of Mildly Context

Sensitive systems of which CFG is level 0. So CCG isverymildly Context Sensitive,

in fact, nearly context-free. Tree-Adjoining Grammars andLinear-Indexed Grammars

which are weakly equivalent to CCG are also in this level (Vijay-Shanker and Weir,

1994).

Dutch crossing dependencies, shown in the previous section, require more than

context-free generative power (Wall, 1972). Handling these require order changing

operations like crossed composition of CCG. These combinatory rules introduce the

extra generative power to explain the linguistic phenomenathat cannot be explained

with CFGs.

Another extension of categorial grammars, namely, Categorial Type Logics (CTL)

(Morrill, 1994; Moortgat, 1997; Oehrle, to appear) have more power than context-

sensitive if there is no restriction on modalities (Carpenter, 1999), but a subset of CTLs

were proved to be equivalent to CCGs (Kruijff and Baldridge,2000). Multimodal-

CCG is proved to be weakly equivalent to CCG in generative power (Baldridge, 2002).

Hoffman (1995) proves that restricted Multiset-CCG is weakly equivalent to CCG but

the unrestricted version is more expressive than needed.

4.3 Word Order

There have been several variations in CCG mainly to handle word order variation and

scrambling in an efficient and compact way. Only those that are relevant to Turkish are

given here. Hoffman (1995) proposed Multiset-CCG to handlefree word order with

CCG. The significance of Multiset-CCG is that the set of arguments can be defined

rather than one-at-a-time argument selection. This is shown to work well to handle free

word order particularly in Turkish (Hoffman, 1995). However, non-restricted version

of Multiset-CCG is not weakly equivalent to CCGs, and has more generative power.

Set-CCG is proposed by Baldridge (2000) which has the advantage of handling
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scrambling in languages effectively. Set-CCG is also proven to be strongly equivalent

to CCG in Baldridge (2000). Underspecification of directionality in Multiset-CCG is

not available in Set-CCG. The rationale is that languages are head-consistent in word

order, but argument order may vary within a language. For example, the multi-set

categoryS|{NPnom,NPacc} for a verb captures all six variations of subject-object-verb

(SOV), lexically. The set-CCG categoryS\{NPnom,NPacc} states that all arguments

must be to the left of the verb, hence only SOV and OSV are defined lexically. The

latter is also consistent with Bozşahin (to appear) who claims only SOV and OSV

orders are lexical and other orders are derived by processeslike detopicalisation.

Bozşahin supports this argument with the fact that some constructions such as sub-

ordination are strictly head-final. Long-distance scrambling out of these phrases is

allowed, but post-verbal scrambling in subordination is very uncommon.

4.4 Parsing CCGs

4.4.1 Parsing and Ambiguity

The advantages of a relaxed account of constituency are not limited to the ones shown

above. Gapping and argument cluster coordination are otherexamples. However, al-

lowing words to combine with each other more freely brings inan efficiency issue

which is one of the most discussed issues in CCG, namely, the “spurious ambiguity”.

Spurious ambiguity (Wittenburg, 1986) occurs when severalsyntactic derivations yield

the same semantic structure. According to Steedman (2000) different orders of com-

bination are crucial in determining the information structure. Steedman shows that the

ambiguity caused by this flexibility is needed to account fordifferent prosodic brack-

etings. However, in practical parsing applications, one-to-one matching of semantic

classes to derivation trees is preferred by various authorsfor efficiency, simplicity and

performance reasons (Hockenmaier, 2003a; Clark and Curran, 2007b).

Many authors worked on removing spurious ambiguity in equivalent or less ex-

pressive versions of CCG such as Lambek calculus (Hepple, 1990; Hendriks, 1993;

König, 1989; Hepple and Morrill, 1989). There are several studies on resolving spuri-

ous ambiguity in CCG.

We discuss some of these methods to tackle “spurious” ambiguity in parsing in

this section. We discuss three approaches each using a different level of representation

in order to recognize and remove the unnecessary ambiguity in parsing. Pareschi and
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Steedman (1987) use feature structures and redundancy in parsing is limited with the

help of both the syntax and semantics. Karttunen (1989) proposes a purely semantics-

driven method of subsumption checks to eliminate equivalent semantic classes from

the chart. Eisner (1996a) on the other hand aims to provide a purely syntactic driven

approach with an argument that semantic information is not always available during

parsing.

4.4.1.1 Pareschi and Steedman (1987)

Pareschi and Steedman use an all-path parser and do bottom upincremental parsing.

They use a special method to remove the redundant analyses from the chart. They

use feature structures that represent the syntactic and semantic information in the cat-

egories and derivations. If an analysis has the same edges and has a feature structure

equivalent to the feature structure of an analysis coveringthe same span, it is not added

to the chart. They ensure all required edges are added by introducing an operation

calledRevealingwhich is based on the property ofParametric neutrality. This means

that the syntactic type of any two categories involved in a combinatory rule determines

the type of the third category. This ensures possible correct analyses requiring back-

ward operations in a left-to-right incremental parser are kept in the chart and saves

search space because the parser tries new parse candidates involving leftward looking

categories instead of reanalysing.

Hepple (1987) shows that Pareschi and Steedman (1987)’s algorithm is incomplete

and gives an extensive analysis of the cases where it fails toprovide a correct analysis

or a genuine ambiguity because of disallowing a certain construction earlier in the

process of parsing.

4.4.1.2 Karttunen’s Approach

Karttunen (1989) proposes a redundancy elimination methodthat is semantics driven.

Karttunen (1989) uses subsumption to eliminate from the chart equivalent (or subsum-

ing) semantic analyses for a given sentence part. This has been successfully applied to

English and Japanese real text parsing by Komagata (2004). Komagata (2004) parses

text from two languages with the CCG parser defined in Komagata (1997). Komagata

(2004) runs the parser on 22 sentences from a created Japanese corpus, and a fragment

of English corpus (197 sentences). Komagata shows considerable improvement on the

efficiency of the parsers when disambiguation is applied.
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4.4.1.3 Eisner’s Normal Form Derivations

Spurious ambiguity can be avoided by keeping only one derivation tree in the chart

per semantic class. This requires the knowledge of semantictypes, which is not al-

ways available during parsing and it is very costly (Eisner,1996a). Eisner shows that

spurious ambiguity can be completely eliminated by formingnormal form derivations

that do not contain certain chains of composition.5 Eisner (1996a) shows that using

only syntactic restrictions such as blocking rightward chains of forward composition

or backward chains of leftward composition are enough to eliminate spurious ambigu-

ity during parsing. According to Eisner’s restrictions, a category that is the result of

a forward composition cannot be the primary (left) functor in a forward composition

and forward application. Similarly, the result of a backward composition cannot be

the primary (right) functor of a backward composition or backward application. These

also hold for order changing rules i.e. crossed composition.

Eisner (1996a) provides a safe and complete way to normalisepure CCG deriva-

tions by restricting the combination properties of the result of composition. The over-

head of Eisner’s algorithm is constant (O(1) time) as opposed to an extra factor of n

for Karttunen subsumption. This is achieved by marking certain constituents by tags

during derivation to block them from further combinations.Vijay-Shanker and Weir

(1990) does a similar kind of tagging (Hockenmaier and Steedman, 2005).

Eisner shows that these restrictions can easily be applied to CKY parsing, and

claims that they can easily be incorporated into other parsing algorithms in particular

that of Vijay-Shanker and Weir (1993).

Eisner assumes a CCG without type raising, as mentioned before. Thus, his method

does not guarantee to produce normal form structures for practical CCG systems, but

it is shown to shrink the search space by eliminating equivalent syntactic parses, thus

improving the efficiency of the parser (Clark and Curran, 2007b).

4.4.2 The Issue of Representation

Predicate-argument structure is the main level of representation in CCG. Derivation

history is considered to be merely a guide during parsing. CCG derivation trees are

at most binary. They are also very expressive because of the information contained

in the CCG categories. The labels in a derivation tree such asthe ones in CCGBank

5Note that Eisner excludes type-raising in his proofs and algorithms. There has been no study on how
type-raising may affect Eisner’s method of eliminating spurious ambiguity in CCGs to our knowledge.
However, it has been argued that once type-raising is lexical his method is complete.
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implicitly have information of inherent local and long-range dependencies. The choice

of tree data structure also has a motive that they are more common in parsing litera-

ture and there are many polynomial-time parsers for phrase-structure grammars. CCG

derivation inherently have the head argument information,thus an annotation of this

information before parsing as this person Collins (1996) does is not necessary.

Hockenmaier (2003a) models on derivation trees that are in normal form. C&C

models both on derivation trees and dependencies directly and shows that there is not

much of an accuracy difference between the statistical disambiguation models trained

with dependencies and the ones trained with derivation trees. All use CCGBank data

(Hockenmaier and Steedman, 2007) for both experiments although possibly slightly

different version at different times as CCGbank is going through improvement.

It is shown that using normal-form derivation trees to represent a derivation se-

quence helps with the efficiency problem caused by spurious ambiguities in wide-

coverage systems (Hockenmaier, 2003a; Clark and Curran, 2007b).

Hockenmaier (2003a) models on CCG derivation trees, but there is a restriction on

these. “The derivation trees in CCGbank are in normal-form which, in this case, means

type-raising and composition are used only when necessary,e.g. for relative clauses,

right node raising and argument cluster coordination.” (Hockenmaier and Steedman,

2005)[pp.12] This means that the parser favours function application over combinatory

rules such as composition and type raising, and use the combinatory rules only when

necessary. This improves the efficiency by reducing the number of entities in the chart

and also narrows the search space. A similar method was suggested by Wittenburg

(1987).

We discussed several ways to tackle the issue of the so-called “spurious ambiguity”

in the previous sections. One possible way to avoid spuriousambiguity is to model

on the predicate-argument structures directly, because spurious ambiguity is caused

by different choices in the derivation paths but derived dependencies, or predicate-

argument relations are shared for any unique semantic interpretation. Clark, Hocken-

maier, and Steedman (2002) takes the side of modeling over dependencies which can

be derived from the only primary level of representation in CCG: predicate-argument

structure. However, Clark and Curran’s (2002) model is an unsound probability model

as is Collins (1996) which it originated from. The aim in Clark, Hockenmaier, and

Steedman (2002) is “to demonstrate that accurate, efficientwide-coverage parsing is

possible with CCG, even with an over-simplified statisticalmodel.”

Clark and Curran (2007a) describe the dependency (in the form of predicate-argument
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relations) models and evaluate their parser on DepBank (King et al., 2003), which is

an English dependency treebank extracted from the Penn Treebank, making the output

compatible to DepBank parser RASP (Briscoe and Carroll, 2006). They use the depen-

dencies derived from the gold-standard normal-form parsesin CCGBank. They show

that a parsing model trained with dependencies perform as well as a model trained

with normal-form derivation structures in the CCGBank (Hockenmaier and Steedman,

2007).

Clark and Curran (2007b) provides state-of-the-art parsing speed and accuracy.

This parser parses about 50 sentences per second on avearge on an 18-node cluster.

A supertagger that has a high supertagging accuracy assignsCCG categories to words

before parsing is performed. This provides a significant boost in the speed of the

parser because, most of the time, the supertagger assigns the correct CCG category to

the word in the first try. This is consistent with Bangalore and Joshi’s (1999) claim that

supertagging is almost parsing. We will discuss this parserand some of the others in

detail in Chapter 9.

Zettlemoyer and Collins (2005) present a direct approach and map logical struc-

tures to the sentences without any kind of syntactic interference. Zettlemoyer and

Collins (2007) provide results for the online learning of CCG parsing to create logical

forms.

So far, we have seen statistical CCG parsers that train on relatively big corpora.

There are also parsers of smaller scale for English and otherlanguages. OpenCCG is

the extended project originated fromGrok (Baldridge, 2002).Grok was intended as

a library for performing NLP tasks with CCG as described in Baldridge (2002) and

Baldridge and Kruijff (2003). OpenCCG is an extended and improved version of Grok

with a generation module (White and Baldridge, 2003). Smallscale grammars for

many languages such as English, Tagalog and Turkish are included in OpenCCG.

Hoffman (1995) describes a CCG parser that is capable of capturing different infor-

mation structural variations that are caused by word order in Turkish. Hoffman’s for-

malism relies on multi-sets of arguments in order to model free word-order in Turkish.

Multi-Set CCG parser was implemented as a question answering system that predicts

information structure given the word-order variation in questions.

Cha and Lee (2000) and Cha, Lee, and Lee (2002) describe a CCG parser for Ko-

rean language which is similar to Turkish in many respects such as morphosyntactic

relations. They built a smaller coverage statistical CCG parser that is inspired by Hoff-

man’s multiset-CCG formalism (KCCG). Their system has similarities with the ideas
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presented in this thesis, in the sense that morphemes have representational status in

the lexicon and they may have phrasal scope as described for Turkish in Chapter 3.

Cha, Lee, and Lee (2002) acquire high precision and recall ofup to 87.67/87.03% on

morphemic Korean data. The evaluation is done using PARSEVAL.

Bozşahin (2002) presents a morpheme-based CCG grammar forTurkish. The at-

tachment characteristics of morphemes are regulated by a lattice of morpho-syntactic

modalities. Bozşahin argues for the necessity of a morphemic as opposed to word-

based account of lexicon and explains that some morphemes have phrasal semantic

scope, rather than the scope of the word they are attached to.He provides a gram-

mar and a lexicon for a relatively small coverage parser for Turkish that uses Eisner’s

constraints in an attempt to eliminate “spurious” ambiguity.
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Inducing a CCG Lexicon

Within the last decade, there has been significant increase in the amount of annotated

data available for different languages which has given riseto an increase in number

of wide-coverage multilingual parsers. Phrase structure representation following Penn

Treebank (Marcus, Marcinkiewicz, and Santorini, 1993), dependency structure anno-

tation as in Czech Prague Dependency Treebank (Hajič, 1998; Böhmová et al., 2003),

and hybrid representations e.g. German Tiger Corpus (Brants et al., 2002)) are the

most popular representation types.

Dependency Parsers (Kudo and Matsumoto, 2000; Nivre, 2003;McDonald et al.,

2005; Nivre, 2006; McDonald and Pereira, 2006) as well as traditional phrase-structure

parsers were developed that use dependency treebanks as data. However, phenomena

such as non-projective dependencies or long-distance dependencies were sometimes

ignored even by the studies that provide the most satisfyingparsing results on linguis-

tic data. We believe deep linguistic information such as long-distance dependencies

should not be ignored even when parsing accuracy on the rest of the data is high.

Ignoring these phenomena would significantly degrade the usefulness of a particular

language processing application. Crossing dependencies as well as non-crossing ones,

long-range dependencies as well as local ones should be acknowledged in an NLP

system, because though rare, they are crucial to semantic interpretation when they do

occur.

A CCG parser requires a lexicon that is equipped with syntactic and semantic cat-

egories, a list of the rules assumed, and a model to evaluate outcomes or guide search.

Creation of such a lexicon requires considerable manpower when it is done manu-

ally. There are efforts to create CCG lexicons automatically (Çakıcı, 2005) or semi-

automatically (Hockenmaier, 2003a; Hockenmaier, 2006; Hockenmaier and Steedman,

67
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2007) for different languages. These use existing corpora in phrase structure or depen-

dency formats to create CCG derivation trees and CCG lexicons.

Clark and Curran (2006) show that statistical parsing models trained on partial

data that is obtained by using only CCG categories perfom almost as well as systems

trained on CCG normal-form derivation trees. With the view that “supertagging is

almostparsing” (Bangalore and Joshi, 1999), given the correct categories parsing is

fast and accurate (Clark and Curran, 2004b). However, supertaggers themselves need

tagged data to be trained on. In the absence of large amounts of data, generalisation be-

comes important. In this and the next chapter, we explain howa dependency treebank

can be turned into a CCG lexicon automatically and evaluate the resulting lexicon in

Section 5.9 and propose a morphemic account of lexicon in an attempt to explain mor-

phosyntactic behaviour and solve the possible sparse data problem up to some degree

with the use of morphology.

5.1 Relevant Work

Hockenmaier and Steedman (2007) and Hockenmaier (2006) present wide-coverage

CCG lexicons for English and German that are derived from WSJportion of the Penn

Treebank and the Tiger Treebank respectively. Hockenmaierand Steedman (2007)

translate the Penn Treebank phrase structure trees into CCGnormal-form derivation

trees. The end product of this translation process is a set ofbinary trees which repre-

sent the steps of a CCG derivation. Each level of a subtree represents the daughters

combining with CCG rules to yield the result parent. The leaves of these trees give

CCG categories for words. There are several stages of the translation process that con-

verts phrase structure trees to the representations of CCG derivations. Some of these

steps are shown in 5.1.

(5.1) for each tree:τ

preprocess(τ)

determineConstituentType(τ)

binarise(τ)

assignCategories(τ)

Preprocessinginvolves correcting tagging and minor annotation errors, and some

other procedures such as correction of the bracketing for coordinate structures, re-

analysis of NPs which are represented as flat trees in the Penntreebank, deletion of
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null elements etc. Some preprocessing steps involve only simple changes to the tags

whereas some require transformations of the whole tree (bracketing changes).

Head finding which is included in the step for determining the constituent type

uses the head-finding rules of Magerman (1994). A modified version of the process

which is explained in Collins (1999) is used to determine thetype of constituents as

heads, complements and adjuncts.

Binarisation, as the name suggests binarises the otherwise non-binary parse trees

in order to render them consistent with the nature of CCG derivations which requires

categories to combine two at a time. After head-finding rulesare applied, all the com-

plements that are to the left of the head are made right-branching by inserting dummy

non-terminals in the tree up-until the head, and all the complements to the right of the

head are made left-branching in the same way. This is demonstrated on a simple tree

in Figure 5.1.

Assigning categoriesis the last major step in the translation process. The cate-

gories are assigned to the internal nodes and the leaf nodes according to the following

procedure: first the root node, which is usually S, is assigned its category. Then the

complement nodes are assigned their categories depending on their label in the original

tree. After that, the adjuncts are given their categories. This is a little more compli-

cated than the steps so far. Forward composition and forwardcrossing composition are

accounted for to prevent the inflation of the size of adjunct categories and for generali-

sation purposes. Hockenmaier and Steedman (2007) ignore the morphological features

of the heads of adjuncts when creating the adjunct categories for the same reason. Fi-

nally, after adjuncts and complements are assigned categories, the heads are assigned

their categories according to the following procedure.

The heads, adjuncts and complements in Figure 5.2(1) are differentiated as shown

in Figure 5.2(2). The head of a parent with category X gets thecategory X if the other

child is an adjunct. If not, depending on the directionalityof the sister of the head

(with category Y) the head gets the category X/Y or X\Y. Our toy tree in Figure 5.2(1)

would look like Figure 5.2(3) after this step.

Figure 5.4 shows the outcome of the translation procedure which is applied to

the Penn tree in Figure 5.3. Traces like *RNR* are successfully translated into CCG

categories that hold this information in the categories implicitly. Some NPs e.g.the

qualityalso go through type raising and this is shown in the trees with the use of unary

branching. The part of speech tags are omitted from the examples for simplicity.

After initial category assignment by the procedure defined above there are a few
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X
X

... X
X

H ...
...

Figure 5.1: Binarisation principle

1. S

NP

John

VP

VBD

loved

NP

Mary

2. S/H

NP/C

John

VP/H

VBD/H

loved

NP/C

Mary

3. S

NP

John

S\NP

(S\NP)/NP

loved

NP

Mary

Figure 5.2: The translation example

post processing steps. One of them is the removal of the traces which were kept until

the end of the translation process to get the long distance dependencies. Another is

treating argument clusters and assigning them the correct categories. There are other

steps which we will not mention here. Interested readers should refer to Hockenmaier

(2003a) and Hockenmaier and Steedman (2007) for a detailed overview. However, we

will refer to some aspects of the translation process in later sections for comparison

and discussion purposes.

S

CC

And

NP-SBJ

they

VP

VBP

prepare S

NP-SBJ

all their people

VP

TO

to

VP

VP

VB

increase

NP

NP

the speed

PP

-NONE-

*RNR*-1

CC

and

VP

VB

improve

NP

NP

the quality

PP

-NONE-

*RNR*-1

PP-1

of their own work

.

.

Figure 5.3: Penn Tree

Hockenmaier (2006) describes how this translation algorithm may be adapted to
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S[dcl]

NP

they

S[dcl]\NP

(S[dcl]\NP)/(S[to]\NP)

((S[dcl]\NP)/(S[to]\NP))/NP

prepare

NP

all their people

S[to]\NP

(S[to]\NP)/(S[b]\NP)

to

S[b]\NP

(S[b]\NP)/(NP\NP)

(S[b]\NP)/(NP\NP)

(S[b]\NP)\NP

increase

NP/(NP\NP)

NP

the speed

(S[b]\NP)/(NP\NP)[conj]

conj

and

(S[b]\NP)/(NP\NP)

(S[b]\NP)\NP

improve

NP/(NP\NP)

NP

the quality

NP\NP

of their own work

Figure 5.4: The outcome of the translation of the Penn tree in Figure 5.3. Taken from

Hockenmaier and Steedman (2005)

account for German, which has more relaxed word-order and richer morphology than

English. Another important difference between English andGerman CCG bank in-

ductions is that the German treebank adopts a hybrid framework for representation

which is dependency-based but inherits some phrase structure elements such as in-

ternal nodes. This means the translation procedure should map dependency tree to

derivation trees. This brings in a few interesting challenges. For instance, there are

crossed dependencies, in other words, crossed branches of the trees which we do not

see in phrase structure grammars.

(5.2) for each Tiger graph:τ
tigertree= createTree(τ)
preprocess(tigertree)

translatetoCCG(tigertree)

veri f yDerivation(tigertree)

This does not bring any complexities to the translation of the dependencies to CCG

categories as CCG categories are designed to represent suchdependencies as well as

non-crossing ones inherently. However, since in the Penn Treebank, these were rep-

resented differently with traces and null elements, a different path should be taken for

translating a dependency treebank which is more related to the focus of research in this
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Figure 5.5: Tiger Graph
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Figure 5.6: Planar Tiger tree

thesis. The algorithm that translates Tiger trees to CCG derivation trees is shown in

(5.2).

The algorithm takes Tiger graphs as input and as such they arenot planar trees.

These graphs need to be turned into flat trees with non-crossing edges since CCG

derivations are represented as binary trees of such kind. These trees then go through a

preprocessing stage where some changes are made to the Tigertreebank trees to make

them compatible with the translation algorithm that is designed for Penn Treebank

style trees. A typical example of a Tiger treebank sentence is given in Figure 5.5.

Hockenmaier (2006) first creates a planar tree by raising thetree that causes the

crossing to the higher level. The result of this is seen in Figure 5.6. This tree is

then transformed into the tree in Figure 5.7 where the pre-terminal nodes are CCG

categories for words and internal structure represents thederivation tree of the parse.
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Figure 5.7: Tiger CCG tree (All Tiger images are taken from Hockenmaier (2006))

Other grammars were extracted from the Penn Treebank and other treebanks as

well. Lexicalised TAGs (LTAGs) have been extracted from thePenn Treebank by Xia

(1999) and Chen and Vijay-shanker (2000) by a similar strategy similar to Hocken-

maier’s. These studies process the whole treebank as there are others who used only

portions (Neumann, 1998). Other wide-coverage deep grammars extracted from the

Penn Treebank are: HPSG (Miyao, Nonomiya, and Tsujii, 2003), LFG (Cahill et al.,

2002; Cahill et al., 2004). Extraction algorithms for LFG create F-structures automati-

cally by making use of the configurational, categorial and trace information in Penn-II

phrase structure trees (Cahill et al., 2008). Moortgat and Moot (2001; 2002) extract a

CTL grammar from Spoken Dutch Corpus CGN (Hoekstra et al., 2001).

5.2 Algorithm

The lexicon induction procedure is recursive on the arguments of the head of the main

clause. It is called for every sentence and gives a list of thewords with categories. This

procedure is then applied to all of the sentential conjunctsin case of coordination (Fig-

ure 5.8).

After the head of the first conjunct that is connected to the top level is found,

the CCG catgory is assigned depending on how many arguments it has. Extracted as

well as in-situ arguments are taken into account when this isdone. Then all of the

dependents of this head are visited assigning them CCG categories.

The words with labels object and subject are assignedNPandNP[nom]categories

respectively, with the exception of sentential complements. If the word is an adjunct

it is given a CCG category depending on how many arguments thehead word has in
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recursiveFunction(index i, Sentence s)

headcat = findheadscat(i)

//base case

if myrel is “MODIFIER”

handleMod(headcat)

elseif “COORDINATION”

handleCoor(headcat)

elseif “OBJECT”

cat = NP

elseif “SUBJECT”

cat = NP[nom]

elseif “SENTENCE”

cat = S

.

.

if hasObject(i)

combCat(cat,“NP”)

if hasSubject(i)

combCat(cat,“NP[nom]”)

//recursive case

forall arguments in arglist

recursiveFunction(argument,s);

Figure 5.8: The lexicon induction algorithm

between the adjunct and itself.

Sentential modifiers are always assigned categoryS/Sor S\S depending on their

position in the sentence. All the other dependency types that are present in Turkish

dependency treebank are assignedX\X or X/X Xbeing the head category type.

A typical examples from METU-Sabancı Treebank is given in Figure 5.9. The

CCG categories that are assigned to the words in the dependency graph are shown in

Figure 5.10.



5.3. Pro-drop 75

SENTENCE

����

MODIFIER

������ ������	�
��� ��
 ���� ������
 ���
�	�� �

CLASSIFIER

DATIVE.ADJUNCT

���� ����

MODIFIER SUBJECT

��	 ���� ���� 
���

����� �����
����� ��� ���� ��	��� ��������
���
�� �

Figure 5.9: Turkish treebank tree
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Figure 5.10: After CCG categories are assigned

5.3 Pro-drop

The pronoun subject of a sentence and the genitive pronoun inpossessive constructions

usually drop. In fact, pronouns are mostly used in Turkish either if there is an ambigu-

ous reference in the discourse, or for contrastive and emphatic purposes (Göçmen,

Şehitoğlu, and Bozşahin, 1995). Pro-drop information is not included in the Turkish

dependency treebank, which is consistent with the surface dependency approach taken

(Oflazer et al., 2003).

A [nom] (for nominative case) feature is added by us to the NPs to remove the am-

biguity of predicate argument structure of verbs. All sentences have a subject.1 They

are either marked by morphology, or inferred from discourseif they are dropped. Thus,

a verb with a categoryS\NP is assumed to be transitive with a dropped subject. This

information is expected to be useful together with lexical rules in generalising the lex-

icon for use with a CCG parser. Figure 5.11 shows how explicituse of[Nom] feature

helps in identifying the verb categories with a dropped subject.

There are many types of pro-drop in Turkish such as object pro-drop which cannot

be recovered from the current version of the data. This meanssome verbs will have

1This includes the passive sentences in the treebank
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original pro-drop

transitive (S\NP[nom])\NP S\NP

intransitive S\NP[nom] S

ditransitive ((S\NP[nom])\NP)\NP (S\NP)\NP

Figure 5.11: Categories with and without dropped subjects

a different distribution over their predicate-argument structure leading to data sparsity

and loss in accuracy. The counterpart to the English examplein (5.3) about pronoun

resolution, is in (5.4). All 4 combinations of object dropping are possible leading to

different meanings as well as information structures as inclusion of pronouns in some

cases marks topic. This has a similar effect achieved through intonation in the English

example (5.3). Genitive subjects of relativisation are also marked with [nom] feature

for the time being. We will leave the solution to this problemfor future work.

(5.3) Bill called John, a republican, and then he insulted him.

(5.4) a.
Bill John’a cumhutiyetci dedi , sonra hakaret etti.

bill john-Dat republican said , then insulted

intended reading: Bill called John a republican, and then Bill insulted

John.

b.
Bill John’a cumhutiyetci dedi , sonra o hakaret etti.

bill john-Dat republican said , then he insulted

intended reading: Bill called John a republican, and then John insulted

Bill.

c.
Bill John’a cumhutiyetci dedi , sonra ona hakaret etti.

bill john-Dat republican said , then he-Dat insulted

intended reading: Bill called John a republican, and then Bill insulted

John.

d.
Bill John’a cumhutiyetci dedi, sonra o ona hakaret etti.

bill john-Dat republican said , then he he-Dat insulted

intended reading: Bill called John a republican, and then Bill insulted John.

5.4 Modifiers and Adjuncts

MODIFIER label is the most overloaded label in the Turkish dependencytreebank. The

lexicon induction algorithm defined relies mostly on dependency labels to predict CCG
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categories. When assigning categories to “Modifiers”, the category of the head of the

word which had been assigned in the previous recursive run isusually enough. For

instance, a noun phrase modifier is assignedNP/NPor NP\NP.

To give a few examples, adjuncts are assigned(NP/NP)/(NP/NP)when they mod-

ify adjectives,(S\NP)/(S\NP) when they modify transitive verbs. Since there is no

distinction between V modifiers and VP modifiers we predict the category of the ad-

junct depending on its position among the verb and its arguments (complements). If

all the complements are in between the adjunct and the verb then we assign the adjunct

S/Scategory. We also consider extraposed or extracted complements that may be on

the other side of the verb. If the adjunct itself has an objectthis is also reflected in

the category as an NP argument such as(S/S)\NP for cases like adverbs derived from

verbs with derivational morphemes.

A predicate may have a sequence of modifiers and modifiers may modify other

adjuncts, too. In this case, we may end up with categories like (5.7), and even more

complex ones. CCG’s composition rule means that as long as adjuncts are adjacent

and they have the same head, they can compose which means theyall are assignedS/S

for this case, and they compose to a singleS/Sat the end without compromising the se-

mantics. This method eliminates many gigantic adjunct categories, that are especially

unavoidable in lexemic lexicons, causing sparse counts from the lexicon, following

Hockenmaier (2003a).

(5.5)
diferansiyel eşitliklerinizdeki matematiksel tekillikleri daha iyi

differential equations+Poss+Rel mathematical singularites+Acc more good

bir modelle ortadankaldırdığınızda Tanrınız da tekillikle birlikte

a model+Ins eliminate+P2pl+When God+Ps2pl too singularity+Ins together

ortadankalkar .

disappear .

When you eliminate the mathematical singularities in your differential equations with a

better model, your god, too, disappears together with the singularities.

(5.6) daha|Adv|((S/S)/(S/S))/((S/S)/(S/S))/((S/S)/(S/S))/((S/S)/(S/S)) – “more”

iyi |Adj|((S/S)/(S/S))/((S/S)/(S/S)) – “good”

bir|Det|NP/NP –“a”

modelle|Noun Ins|(S/S)/(S/S) –“model+Ins”

ortadankaldırdığınızda|Noun Verb|(S/S)\NP – “remove+When”

...when you eliminate it (singularity) with a better model...
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(5.7) daha (Adv):= (((S/S)/(S/S))/((S/S)/(S/S)))/(((S/S)/(S/S))/((S/S)/(S/S)))

‘more’

5.5 Coordination

The treebank annotation for a typical adverb coordination is shown in (5.8). The con-

stituent which is directly dependent on the head of the sentence, “zıplayarak” in this

case, takes its category according to the algorithm then allthe other conjuncts are vis-

ited by the recursive algorithm. If one of the coordinating elements is involved in

relativisation, the others are assumed to shared the extracted element if they have the

same morphological clues such as relativisation particles. However, sharing of other

arguments such as objects is not possible since this information is missing in the data.

(5.8)

������� �� 	
������� ����� �

���� ����� ���� ��������

��������	 
�� ��������	 ��	��
��

He came running and jumping.

In Çakıcı (2005), it is shown that verb phrase, verb or sentence coordination cannot

be differentiated because of the lack of this information inthe treebank. 800 sentences

that had this kind of coordination that cannot be differentiated were removed from the

treebank. We explain in Section 2.5 how we added secondary links connecting shared

arguments to both conjuncts to solve this problem for coordination constructions in-

volving matrix verbs. We use this information to predict thecategory of the head cor-

rectly. (5.9) is an example of this kind. Without this information predicate-argument

structures of sentences with coordination are incomplete.These categories not only

miss the predicate argument relations between the relativised verbkusturanand the

extracted subjectkaptan, but also the dependencies that implicitly state that kaptan is

also the extracted subject of the first relativised verbkoşan. This is because these verbs

receive adjective categories determined by their parts of speech. This example may be

compared with (6.9) in Section 6.4.4 where these dependencies are correctly captured

with appropriate categories in a sentence of similar structure.
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(5.9)

Kristof Kolomb’un NP[nom] – Kristof Kolomb-Gen

yeni (NP/NP)/(NP/NP) – new

zenginlikler NP/NP – treasure-Plu

peşinde (NP/NP)/(NP/NP) – after

koşan (NP/NP)\NP – run-PresPart

ve conj –and

tayfasına (NP/NP)/(NP/NP) – crew-Poss3sg-Dat

kan NP – blood

kusturan (NP/NP)\NP – vomit-Caus-PresPart

zalim NP/NP – tyrannic

bir NP/NP – a

kaptan NP – captain

olduğunu (NP\NP[nom])\NP – be-PastPart-Agr-Acc

fark ediyorsunuz S\NP – realise-Prog-P2pl

. . .

You realise, that Christopher Colombus is a tyrannic captain who runs after

new treasures and agonises his crew.

Verb ellipsis is considered to be one of the weaker points in dependency grammar

(Oflazer et al., 2003) together with other headless constructions. Oflazer et al. (2003)

describes inserting null elements as “dummy constituents”to overcome this problem

in annotation. However, the final release of the treebank does not have these null

elements. Therefore we chose to leave analysis of these sentences as future work.

5.6 Noun Phrases

There are no articles and thus noNP/N̄ distribution in Turkish. All marked and un-

marked instances of nouns are given category NP for the sake of simplicity. Object

heads are givenNP categories. Subject heads are givenNP[nom]. The category for

a modifier of a subject NP isNP[nom]/NP[nom]and the modifier for an object NP is

NP/NPor NP\NPalthough NPs are almost always head-final.

5.6.1 Collocations

Collocations and some frequently co-occurring words are grouped into single entries

in the treebank. However, the annotation of these constructions is not very consistent.
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We assign the collocations their categories according to the dependency label and mor-

phological features of the compound which are usually the features of the last word in

the group.

5.7 Relativisation

Long-range dependencies, which are crucial for natural language understanding, are

not modelled in the Turkish data. Hockenmaier handles them by making use of traces

in the Penn Treebank (Hockenmaier, 2003a)[sec 3.9]. But Turkish treebank does not

employ traces or any other means to represent long-distancedependencies or extrac-

tions of any type. For instance, the relativised verb is represented as a modifier of

the head noun and there is no explicit or implicit relation between the extracted noun

and the relativised verb as discussed in Section 2.5.3. However, because of lexemic

nature of the lexicon that is described here, these secondary links added will not be of

much use here. We will show CCG category set that predicts both surface and deep

dependencies in cases of long distance dependencies in the next Chapter.

A typical subject extraction example is shown in (5.10). Relativised verb is con-

sidered as an adjective formed out of a verb phrase with the use of derivational mor-

phology. Since its label is MODIFIER, it is assigned an adjective category. If it has

arguments, these are also represented as backslashed NPs onthe adjective category.

(5.10)

Kitabı okuyan adam uyudu.

Book-Acc read-PresPart man sleep-Past.

NP (NPnom/NPnom)\NP NPnom S\NPnom.
The man who read the book slept.

The lexicon in this form represents all the dependencies inherently in CCG cate-

gories. This is also consistent with the fact that the predicate-argument relations are

lost in relativisation.. This means (5.11) and (5.12) will get exactly the same sur-

face dependencies. This is enough for most of the state-of-the-art dependency parsers.

However, we believe that recovery of predicate-argument relatins, and thus, semantic

interpretation should be the basis of evaluation. We believe a system that is not capable

of predictingaraba as the adjunct in the first sentence andkitap as the object in the

second sentence is not complete. Thus, treebanks should be designed to include this

information and parsers should be able to predict them.



5.8. Punctuation 81

(5.11) Benim uyu-duğum araba yandı.
I-Gen sleep-PastPart car burn-Past

NPnom (NP/NP)\NPnom NPnom S\NPnom
>

NPnom/NPnom
>

NPnom
>

S

The car I slept in burned.

(5.12) Benim oku-duğum kitap yandı.
I-Gen read-PastPart book burn-Past

NPnom (NP/NP)\NPnom NPnom S\NPnom
>

NPnom/NPnom
>

NPnom
>

S

The book I read burned.

5.8 Punctuation

Punctuation marks can sometimes have dependents in METU-Sabancı Treebank. For

instance, in a coordination structure, the first conjunct ofa coordination has a depen-

dency link to the comma that separates two conjuncts, and comma has a link to the

head of the next conjunct. This case and the other types of inclusion of punctuation

in the dependency structure is given in Section 2.3. Punctuation marks involved in a

coordination are assigned the conjunction category.

Punctuation marks can also have different roles such as marking the sentential com-

plements as shown in Figure 2.9. In these cases we change the dependency structure

during the pre-processing stage to get the correct categories which are shown in Fig-

ure 5.12. Vocatives and words labelled SPEAKERmay have punctuation as their “head”

token.

5.9 Results

The most frequent words and their most frequent categories are given in Figure 5.13.

The fact that the 7th most frequent word is the non-function word “dedi”(said) reveals

the nature of the sources of the data —mostly newspapers and novels.
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Figure 5.12: Use of punctuation in sentential complementation

token eng. freq. pos most freq. cat fwc*

, Comma 2286 Conj (NP/NP)\NP 159

bir a 816 Det NP/NP 373

-yAn who 554 Rel. morph. (NP/NP)\(S\NP) 554

ve and 372 Conj (NP/NP)\NP 100

de too 335 Int NP[nom]\NP[nom] 116

da too 268 Int NP[nom]\NP[nom] 86

dedi said 188 Verb S\NP 87

-DHk+AGR which 163 Rel. morph. (NP/NP)\(S\NP) 163

Bu This 159 Det NP/NP 38

gibi like 148 Postp (S/S)\NP 21

o that 141 Det NP/NP 37

* fwc Frequency of the word occurring with the given category

Figure 5.13: The lexicon statistics

cattype frequency rank type

NP 5384 1 noun phrase

NP/NP 3292 2 adjective,determiner, etc

NP[nom] 3264 3 subject NP

S/S 3212 4 sentential adjunct

S\NP 1883 5 transitive verb with pro-drop

S 1346 6 sentence

S\NP[nom] 1320 7 intransitive verb

(S\NP[nom])\NP 827 9 transitive verb

Figure 5.14: The most frequent category types
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f # categories

f>0 450

f>1 293

f>2 244

f>3 215

f>4 186

f>5 169

f>10 132

f>100 48

Figure 5.15: Distribution of category types

In Figure 5.14 the most frequent category types are shown. The distribution reflects

the real usage of the language (some interesting categoriesare explained in the last

column of the table). The category type distribution is shown in Figure 5.15. There are

450 distinct category types in total at the moment and 157 of them occur only once.

The English CCGbank lexicon contains 1286 types with around439 occurring only

once (Hockenmaier and Steedman, 2007) for about 1 million tokens with CCG cate-

gories. 556 categories appear more than 5 times.

German treebank has 50474 sentences and 900K tokens some of which were ex-

cluded in the lexicon induction process.2 German lexicon contains 2506 lexical cate-

gory types in which 1018 appear only once. 933 categories appear more than 5 times.

Numbers from all three treebnanks seem to have the same proportions, however,

the Turkish treebank categories do not have features like German and English CCG-

Banks do. Therefore, lexical coverage and parsing coverageresults obtained with these

categories are the most precise estimates of the quality. However, we give these results

here because too many infrequent categories mean irregularity and inconsistency in the

data. The lexical coverage results are given in Section 5.9.1 and the parsing coverage

measure is given in Chapter 9.

Figure 5.16 shows the growth of the category types as the sentence number in-

creases. Different lines indicate the growth of category type frequencies greater than

correspondingn. Note that even after 4500 sentences the curve for most frequent cate-

gories has not converged.3 The data set is too small to give convergence and category

2About 8% of the sentences
3The slight increase after 3800 sentences may be because the data are not uniform. Relatively longer
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Figure 5.16: The growth of category types

types are still being added as unseen words appear. Hockenmaier (2003a) shows that

the curve for categories with frequencies greater than 5 starts to converge only after

10K sentences in the Penn Treebank.

5.9.1 Coverage

The coverage of the lexicon is evaluated with a similar strategy Hockenmaier (2006)

did for German CCG lexicon. She divided the lexicon into 10 parts and used 9 parts to

extract a lexicon and the 10th part to test its coverage. Hockenmaier’s test is a token-

based comparison, and does not check if the token at hand appears in the lexicon more

than one time. Thus, every occurrence is counted. This is onepoint that our strategy

differs. We give the percentage of the unique token matches in the unique token set.

The second difference is that we count the matches in test setgiven the 9 part-control

set whereas Hockenmaier counts the matches in control set.

There are 5609 sentences in the set the lexicon is extracted from and there are

53796 tokens including puctuation. There are 450 category types and 19385 token

types. There are 27895 unique word-category pairs. These numbers are very similar

to the ones we had in Çakıcı (2005). The difference is that 800 sentences that had

sentence or verb coordination had been removed from the original treebank in Çakıcı

sentences from a history article start after short sentences from a novel.
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(2005).

We did a 10-fold cross evaluation on the data to test the coverage of the lexicon

induced. We take out the 1/10 of sentences for test and take the rest as control set. We

test the coverage by checking if the lexical entities and word-category pairs exist in the

control set for each test set. Note that, when doing this we only compare the unique

lexical entities and pairs, that way we do not count repetitive occurrences of the same

entity in a test set.

We homogenise the data by taking 1 sentence of each 10 consecutive sentences in

the test set of the fold everytime. In other words the first sethas the 1st,11th,21st etc.

sentences in the data and the second set has 2nd,12th,22nd and so on. This way we

avoid the non-homogeneity problem we had in Figure 5.16. As seen in the figure, the

number of distinct category types grow faster than the rest of the data after about 4300

sentences. This is due to the fact that the data is non-homogeneous and this portion of

the treebank has much longer sentences and technical terms.

On the average 90.64% of the categories in the test set were seen in the training

set. Standard deviation is 1.93. The number of unique words is close to the number of

words in each evaluation set ( 3100 vs. 5400) which means not many words are fre-

quent throughout each set which is a precursor to sparse dataproblems. Furthermore,

the number of the words that were seen in training data is on the average 53.95% of

all the unique words, and the ratio of seen word-category pairs is even less with an

average of 37.06%.

5.9.2 Evaluation by sampling

As a small scale evaluation experiment we took a small sampleof sentences (25) au-

tomatically selected throughout the data. These sentenceswere manually checked of

their words are assinged correct CCG categories. They were also parsed using the CCG

parser for Turkish described in Chapter 9. 14 of the sentences had at least one parse.

Out of the 166 categories in these 25 sentences, 144 were correct and 22 wrong. Out

of 25 sentences 9 had at least one wrong category. The rest of the sentences received a

parse. Out of these 9 sentences only 1 still received a parse,since the mistake was an

adjunct with wrong scope that was linked to some other element.

2 of the category errors were caused by annotation mistakes still present in the data.

Of the 25 sentences 5 of the sentences did not receive a parse because at least one of

the categories were not in the category dictionary.
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There are 2 words that could not be assigned any category by the program. They

are given NULL categories. The sentence with the most errorshad 5 errors out of

9 words. A summary of this is shown in the following table. Note that this is not

an evaluation of the linguistic quality of the lexicon. The categories that are right in

word-based terms do not always yield the correct linguisticinterpretation.

sentences tokens coverage exceptions no cat. assignedcat. accuracy

25 166 14 5 2 86.7%



Chapter 6

A Morphemic CCG Lexicon

Turkish is a free word order language with very rich morphology. Not only case, tense

and number, but also modality, polarity, voice and even relativisation are achieved

through morphology. This means one Turkish word can translate into a full English

sentence with several words. As discussed in Chapter 3, agglutinating languages may

have very complex word forms. There are 231,818 morphemes including punctuation

for 53,796 tokens in the treebank. This corresponds to 4.31 morphemes per word in-

cluding the stem itself.1 This means that for a fixed amount of data it is likely that some

of the inflected (or derived) forms of the words will never be seen. When building lan-

guage models, languages with complex morphology require either enormous amounts

of data or generalisation of some sort. We show in this chapter how we generalise the

CCG lexicon the induction of which is shown in the previous chapter using morpho-

logical clusters as lexical entities in Turkish. We attemptto create a wide-coverage

morphemic lexicon using the IG-based dependencies in Turkish dependency treebank.

Our motivation is not limited to providing computational efficiency. There are

linguistic constraints that make morphemic lexicons essential as well. Quite a few

morphemes require semantic and syntactic scope greater than words. An example is

what is called “suspended suffixation”. In this type of phenomean, the morphologi-

cal attachment characteristics of the affix contradicts with the semantic and syntactic

scope it covers. The morpheme is affixed to the last conjunct in coordination and its

morphophonemic, characteristics (such as vowel harmony) are determined by the word

it is attached to, however the semantic scope it covers is thewhole coordinating phrase.

Morphologically rich languages like Turkish, as well as other languages, suffer

1Some of these morphemes are zero morphemes, that do not correspond to surface forms. So, actual
number of morphemes maybe smaller but because morph information is not included in the treebank,
we do not know the exact number of surface morphemes per token.

87



88 Chapter 6. A Morphemic CCG Lexicon

wb IGb

tokens 53796 64992

token excl. punc. 43426 54662

Avg. sent. length excl. punc. 7.74 9.72

Avg. sent. length incl. punc. 9.57 11.56

Average number of tags per token4.31 3.57

Figure 6.1: Numbers from Turkish treebank

from bracketing mismatches. A possible solution is to treatbound morphemes as sep-

arate lexical entities so that they can choose their own scope instead of being “bound”

to the word they are attached to. We show in this chapter that morpheme or morpheme

cluster based lexicons solve some of the mismatch problems mentioned.

In Section 6.1 we talk about the data we used to extract the grammar. Section 6.2

discusses the motivation for a morphemic approach. Section6.3 discusses algorithm

for inducing the morphemic lexicon. Section 6.4 gives analyses of frequent construc-

tions. Section 6.4.7 discusses the evaluation of the resulting lexicon and compares it

with the word-based lexicon in Chapter 5 and the final sectionis conclusion.

6.1 Data

We use the dependency treebank discussed in Chapter 2 to extract the morphemic

CCG lexicon. The treebank consists of 5670 sentences2. The treebank contains de-

pendencies, together with the morphological structure of each word. Morphological

structure of a word consists of “inflectional groups” (IGs) that are divided by deriva-

tional boundaries. Relativisation and subordination are also represented as instances

of morphological derivation of the involved relativised verbs in Turkish treebank. This

means they exist in a different IG than the verb stem they are morphologically attached

to. These IGs are the basic lexical entities for which we construct the CCG categories

in this chapter as opposed to words in Chapter 5.

Figure 6.1 gives IG-based (IGb) and word-based (wb) statistics about the treebank.

The average sentence length with and without punctuation are given. Punctuation con-

stitutes about 10K of the tokens. The average number of IGs per word is 1.26.

2Note that this is the number after the correction of tokenisation errors
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu

lang. fam. Sem. Sin. Sla. Ger. Ger. Ger. Jap. Rom. Sla. Rom. Ger. Ura. Sla.

genres 1:ne 6 3 8+ 5+ 1:ne 1:di 1: ne 1:no 9 4+ 8 12

annotation d c+f d d dc+f dc+f c+f dc+f d c(+f) dc+f/d d c+t

training data

tokens (k) 54 337 1249 94 195 700 151 207 29 89 191 58 190

non-scor. 8.8 0.8 14.9 13.9 11.3 11.5 11.6 14.2 17.3 12.6 11.0 33.1 14.4

units (k) 1.5 57.0 72.7 5.2 13.3 39.2 17.0 9.1 1.5 3.3 11.0 5.0 12.8

tokens/unit 37.2 5.9 17.2 18.2 14.6 17.8 8.9 22.8 18.7 27.0 17.3 11.5 14.8

LEMMA + - + - + - - + + + - + -

CPOSTAGs 14 22 12 10 13 52 20 15 11 15 37 14 11

POSTAGs 19 303 63 24 302 52 77 21 28 38 37 30 53

FEATS 19 - 61 47 81 - 4 146 51 33 - 82 50

DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18

D.s H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1

%HEAD=0 5.5 16.9 6.7 6.4 8.9 6.3 18.6 5.1 5.9 4.2 6.5 13.4 7.9

%H. preced. 82.9 24.8 50.9 75.0 46.5 50.9 8.9 60.3 47.2 60.8 52.8 6.2 62.9

%H. follow. 11.6 58.2 42.4 18.6 44.6 42.7 72.5 34.6 46.9 35.1 40.7 80.4 29.2

H.=0/unit 1.9 1.0 1.0 1.0 1.2 1.0 1.5 1.0 0.9 1.0 1.0 1.0 1.0

%n.p. arcs 0.4 0.0 1.9 1.0 5.4 2.3 1.1 1.3 1.9 0.1 1.0 1.5 0.4

%n.p. units 11.2 0.0 23.2 15.6 36.4 27.8 5.3 18.9 22.2 1.7 9.8 11.6 5.4

test data

scor. tokens 4990 4970 5000 5010 4998 5008 5003 5009 5004 4991 5021 5021 5013

%new form 17.3 9.3 5.2 18.1 20.7 6.5 0.96 11.6 22.0 14.7 18.0 41.4 14.5

%new lem. 4.3 n/a 1.8 n/a 15.9 n/a n/a 7.8 9.9 9.7 n/a 13.2 n/a

Table 6.1: CoNLL 2006 data
Characteristics of the data sets for the 13 languages (abbreviated by their first two letters): language family (Semitic,

Sino-Tibetan, Slavic, Germanic, Japonic (or language isolate), Romance, Ural-Altaic); number of genres, and genre ifonly one

(news, dialogue, novel); type of annotation (d=dependency, c=constituents, dc=discontinuous constituents, +f=with functions,

+t=with types). For the training data: number of tokens (times 1000); percentage of non-scoring tokens; number of parsetree

units (usually sentences, times 1000); average number of (scoring and non-scoring) tokens per parse tree unit; whethera lemma

or stem is available; how many different CPOSTAG values, POSTAG values, FEATS components and DEPREL values occur for

scoring tokens; how many different values for DEPREL scoring tokens with HEAD=0 can have (if that number is 1, there is one

designated label (e.g. “ROOT”) for tokens with HEAD=0); percentage of scoring tokens with HEAD=0, a head that precedes or

a head that follows the token (this nicely shows which languages are predominantly head-initial or head-final); the average

number of scoring tokens with HEAD=0 per parse tree unit; thepercentage of (scoring and non-scoring) non-projective relations

and of parse tree units with at least one non-projective relation. For the test data: number of scoring tokens; percentage of

scoring tokens with a FORM or a LEMMA that does not occur in thetraining data.
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Tables 6.13 and 6.24 compare statistics across different dependency treebanksthat

were included in the CoNLL 2006 and 2007 shared tasks for dependency parsing

(Buchholz and Marsi, 2006; Nivre et al., 2007). The percentages of new forms and

new lemmas in the test sets give an idea about the inflectionalproperties of Turkish

compared to other languages. 41% of all the tokens in the testdata areunseenat least

in that inflectional form. This number is 36.3% in Table 6.2 and is the highest among

languages included. The fact that the percentage of unseen lemmas is also high means

that the training set is too small for reasonable coverage but that only accentuates the

importance of and the need for generalisation through morphology.

If we compare these numbers with Dutch data that has 15.9% of unseen lemmas in

Table 6.1 which is slightly higher than Turkish (13.2%), we see that the main problem

is not only unseenwordsbut also unseen inflected forms.5 Similarly, when we look at

CoNLL 2007 figures, Arabic has the biggest ratio of unseen words to unseen lemmas

which is about 6. But unseen words in Arabic are only 12% of thewhole test set.

This shows Arabic has very rich morphology as well, but because the percentage of

unseen words is not as big as in Turkish it is expected to be less affected by sparse data

problems at least for this particular test sample. This alsomeans that Arabic would

benefit from morphological generalisation, too.

6.2 Morphemic Lexicon

Marslen-Wilson (1999) gives a review of the experiments done to prove that the or-

ganisation of mental lexicon does not conform to Full Listing Hypothesis (FLH) (But-

terworth, 1983). Marslen-Wilson (1999), furthermore, discusses experiments results

of which suggest that compositional and productive derivational morphemes and in-

flectional morphemes are stored in the mental lexicon as separate entities. The issue

of lexicon representation is also discussed in Hankamer (1989). Hankamer suggests

that storing fully inflected forms of all the words in memory is not possible because of

memory requirements.

3Data is taken from Buchholz and Marsi (2006).
4Data is taken from Nivre et al. (2007).
5Note that these statistics are from the version used for CoNLL 2006 shared task and thus might be

slightly different from our statistics of the corrected treebank.
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Multilingual

Ar Ba Ca Ch Cz En Gr Hu It Tu

Language Family Sem. Isol. Rom. Sin. Sla. Ger. Hel. F.-U. Rom. Tur.

Annotation d d c+f c+f d c+f d c+f c+f d

Training Data

Tokens (k) 112 51 431 337 432 447 65 132 71 65

Sentences (k) 2.9 3.2 15.0 57.0 25.4 18.6 2.7 6.0 3.1 5.6

Tokens/sentence 38.3 15.8 28.8 5.9 17.0 24.0 24.2 21.8 22.9 11.6

LEMMA Yes Yes Yes No Yes No Yes Yes Yes Yes

No. CPOSTAG 15 25 17 13 12 31 18 16 14 14

No. POSTAG 21 64 54 294 59 45 38 43 28 31

No. FEATS 21 359 33 0 71 0 31 50 21 78

No. DEPREL 29 35 42 69 46 20 46 49 22 25

No. DEPREL H=0 18 17 1 1 8 1 22 1 1 1

% HEAD=0 8.7 9.7 3.5 16.9 11.6 4.2 8.3 4.6 5.4 12.8

% HEAD left 79.2 44.5 60.0 24.7 46.9 49.0 44.8 27.4 65.0 3.8

% HEAD right 12.1 45.8 36.5 58.4 41.5 46.9 46.9 68.0 29.6 83.4

HEAD=0/sentence 3.3 1.5 1.0 1.0 2.0 1.0 2.0 1.0 1.2 1.5

% Non-proj. arcs 0.4 2.9 0.1 0.0 1.9 0.3 1.1 2.9 0.5 5.5

% Non-proj. sent. 10.1 26.2 2.9 0.0 23.2 6.7 20.3 26.4 7.4 33.3

Punc. attached S S A S S A S A A S

DEPRELS for punc. 10 13 6 29 16 13 15 1 10 12

Test Data

Tokens 5124 5390 5016 5161 4724 5003 4804 7344 5096 4513

Sentences 131 334 167 690 286 214 197 390 249 300

Tokens/sentence 39.1 16.1 30.0 7.5 16.5 23.4 24.4 18.8 20.5 15.0

% New words 12.44 24.98 4.35 9.70 12.58 3.13 12.43 26.10 15.07 36.29

% New lemmas 2.82 11.13 3.36 n/a 5.28 n/a 5.82 14.80 8.24 9.95

Table 6.2: CoNLL 2007 data

10 languages of the multi-lingual track in CONLL’07 shared task for dependency pars-

ing.
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6.2.1 Why morphemic Lexicon

The interaction of morphology with semantics and syntax haslong been studied (Sproat,

1985; Sproat, 1998; Pesetsky, 1985; Spencer, 1988). There are so-calledbracketing

paradoxesthat are taken as empirical evidence that morphological processes interfere

with semantics and syntax. Bracketing paradoxes may be defined as the contradiction

between morphological attachment characteristic of the affix and the semantic scope it

covers and are covered in Chapter 3.

Relativisation is considered to be a deverbaliser that makes adjectives out of verbs

by the relativiser morpheme. An example is shown below.

(6.1)
Ödev-i bitir-en çocuk uyu-du.

homework-ACC finish-PresPart child sleep-PAST.
The child who finished the homework slept.

We argue that the relativiser morpheme here should have scope over the whole VP.

For instance in (6.1) the bracketing should be as shown in (6.2a) rather than (6.2b).

(6.2) a. [[[[Ödev-i bitir]-en] çocuk] uyu-du]

homework-Acc finish -PresPart child sleep-Past

b. [[[[ Ödev-i] bitir-en] çocuk] uyu-du]

homework-Acc finish -PresPart child sleep-Past

The child who finished the homework slept.

There are many examples in Turkish like the relativisation example here, where

morphemes have phrasal scope. Some of these are discussed inChapter 6 and more

examples will be given in the course of this chapter. Many studies argue that involving

even coarse-grained morphological representation of lexicon in Turkish gives better

results. For instance, Turkish treebank is designed on IG-based dependecies (Atalay,

Oflazer, and Say, 2003). Bozşahin (2002) proposes a morphemic CCG lexicon together

with attachment constraints to prevent overgeneration forTurkish. The parsing results

by Çakıcı and Baldridge (2006) and Eryiğit and Oflazer (2006) show that taking at least

derivational morphology into account improves the parser performance. Oflazer and

Durgar El-Kahlout (2007) discusses the way morphemes or morpheme groups rather

than words bind other morpheme groups in a machine translation system. A purely lex-

ical approach would either be computationally expensive ordeficient in performance

because of the need to model all inflectional forms of a word when translating from
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one language to the other in this particular study. A similarapproach bringing the

morphology to the scene is taken by Dyer (2007) for Czech which is a language with

a similarly complex morphology.

6.2.2 Why morphemic CCG Lexicon

6.2.2.1 Generalisation and Computational constraints

Statistical parsers need as much data as possible to learn from. Especially lexicalised

theories like CCG rely on words and their relations to each other. Learning these re-

lations is not trivial when complexity of word forms in agglutinating languages are

taken into account. Complex inflected forms make the distribution of word and cat-

egory pairs sparse. The numbers in Figures 6.2 and 6.3 illustrate this for a relatively

common verb in the Turkish data. There are 177 occurrences ofthe verbgitmek (to

go) in the data. According to the output of the program there are 128 distinct category

word pairs. This means the average frequency of a category-word pair is 1.38. When

the inflections are ignored and only stems are taken into account, there are only 14

distinct category types assigned to this verb. 7 of these occur only once (Figure 6.2).

This means the average frequency of a category-word pair forthis verb is 177/14 =

12.64. Figure 6.3 shows the categories that the rootgit occurs with in the lexicon.

...... frequency cat/word

total occurrences 177 N/A

distinct cat-word pairs 128 1.38

distinct category types 14 12.64

Figure 6.2: The figures for the verb git (go).

However, ignoring morphology in this sense usually hurts the performance let

alone improving it. This is why a mid-way approach need to be taken where mor-

phology could be used as features together with stemmed words. We show in Çakıcı

and Baldridge (2006) and in Chapter 8 that the best results are obtained by using stems,

morphological derivation information, and word minus stem(suffix) part of the word

all together as features.

Figure 6.4 shows the CCG categories assigned to words with the lexicon induction

process described in Çakıcı (2005).Dar (narrow) is an adjective, but it is assgined
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f word cat

1 git NP\NP[nom]

1 git (NP\NP[nom])\NP

1 git (S\NP)/(S\NP)

1 git S/NP[nom]

1 git (S\NP[nom])\NP

1 git ((S\NP)/(S\NP))\NP[nom]

1 git ((S\NP[nom])\NP)/((S\NP[nom])\NP)

2 git S/S

2 git NP\NP

3 git NP

5 git S/NP

25 git S\NP

28 git S\NP[nom]

106 git S

Figure 6.3: CCG categories (cat) and frequencies (f) of entities of verb git (go) in mor-

phemic lexicon.

(S/S)/(S/S)because the head word of the noun phrase is a LOCATIVE.ADJUNCT. It is

unlikely thatDar (narrow) will have the same category unless we have a very large

corpus. Alternatively, if we assignNP/NPto it, then we will not get a parse.

In the same sentence, a morphemic approach would provide categories shown in

Figure 6.5.Dar will be assignedNP/NP, which is a legitimate adjective category. Sim-

ilar categories will be induced foryol (path), which will be NP, every time it is in a

noun phrase, regardless of the type of its head, rather than getting different categories

for every occurrence as an adjunct, derived verb, and so on. Morphologically rich lan-

guages like Turkish, rely on morphological analysis or at least some kind of generali-

sation. Turkish is one of the new languages gaining focus with the rise of multilingual

language processing, and the amount of annotated data to train wide-coverage NLP

systems is quite limited. Making morphological data more available to these systems

will both improve the performances of these systems and provide a way to generalise

over the data.

Lexical rules may also be employed to handle problems described above. A lexical

rule that turns an NP that is locative marked into a locative adjunct is also legitimate
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for the phraseDar yollarda – through narrow streets. However, there are other situa-

tions such as many cases of derivational morphology in Turkish treebank that change

almost all types to other types. Handling these with lexicalrules will add unnecessary

additional expressive power to the grammar. Solving these with assigning independent

lexical status to morphemes would be both simpler and safer.

6.2.2.2 Linguistic Principles

Acquiring all possible syntactic derivations representing all possible semantic inter-

pretations is very important in wide coverage parsing. Thisis how the parse with

the correct, or most likely interpretation is selected among many less likely or wrong

parses. The categories in Figure 6.4 do not give the parse with the meaning that Kerem

is running through narrow streets. This is one of the interpretations (the one we want)

that this sentence has, together with another one with a different adjunct scope: “I saw,

in narrow streets, Kerem who was running.”. The adjunct modifies “run” in the first

interpretation, where in the second interpretation it modifies “see”.

The other concern is that the locative case marker-da has scope over the whole

noun phraseDar yollar (narrow paths)rather than justyollar (paths). This means in

order to get the correct semantic interpretation, we need tohave-da have semantic

scope over the whole phrase. This will yield the correct semantic interpretation much

more simply and effectively than some other solutions such as “Quantifier Raising”

(QR) and incorporating traces of morphemes (Pesetsky, 1985) to get the correct brack-

eting.

A similar problem is faced withkoşarakandgiden in the same sentence.6 -arak

(-ing) is a derivational suffix that makes adverbs out of verbs or verb phrases. Imagine

we had a transitive verb instead ofrun here. In a CCG derivation, we would want

the verb to combine with all of its arguments so the semanticsis right. This would

only be possible if we had a separate lexical entry for the suffix. The same is true for

the relativised verb “git”. The relativisation morpheme-en takes a VP, not a verb, as

argument. This is achieved by having a separate lexical entry for it.

Figure 6.5 shows the morpheme based lexical entries and categories for this sen-

tence.

6The morpheme-en is the surface realisation of -(y)An morpheme mentioned before.
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2 4 4 5 6 7 0

Dar yollar-da koş-arak gid-en Kerem’i yakala-dım .

narrow streets-LOC run-ADV go-PresPart Kerem-ACC catch-PAST .

(S/S)/(S/S) S/S NP/NP NP/NP NP S\NP NULL

S/S

NP/NP

NP

?
I caught Kerem who left running through narrow streets.

Figure 6.4: This analysis of the sentence does not give the intended semantics.

2 3 5 5 6 7 8-6 9 0
Dar yollar -da koşarak gid -en Kerem’i yakala-dım .

narrow streets -LOC run-ADV go -PresPart Kerem-ACC catch-PAST .

NP/NP NP (S\NPnom)/(S\NPnom)\NP (S\NPnom)/(S\NPnom) S\NPnom (NPx / NPx)\(S\NPnom) NPacc S\NP .
>

NP
<

(S\NPnom)/(S\NPnom)
> B

(S\NPnom)/(S\NPnom)
>

(S\NPnom)
<

NPx/NPx
>

NPacc
<

S

Figure 6.5: The morpheme-based categories for the sentence
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6.3 Lexicon Induction

The algorithm is based on the one that is described in Çakıcı(2005). The dependencies

are traversed from the head to the dependent in a recursive manner in order to construct

the CCG categories. The results in Çakıcı (2005) imply thatthe Turkish CCG lexical

categories are not complete after 53K tokens which is consistent with the results from

CCGBank (Hockenmaier, 2003a). The ultimate aim is to generalise the lexicon with

a morphological analyser and create a fully morphemic lexicon that will be helpful in

overcoming the complexities that arise from the fact that Turkish is an agglutinative

language with morphology heavily interlaced with syntax and semantics. We restrict

ourselves to inflectional groups that are marked in the Turkish treebank for now, since

analysis and automatic disambiguation of morphology at this level of detail remains a

challenge.

The lexicon induction algorithm takes IG-based dependencystructures as input and

creates CCG categories for every token. Complement/adjunct distinction is important

here. We take all the dependents that are called SUBJECT and OBJECT7 as comple-

ments, modifiers (adverbs) and case adjuncts as adjuncts. The first step is translating

the dependency graphs into IG based dependency graphs. After this step, these graphs

go through pre-processing stages for regularisation. Finally, CCG categories are as-

signed to IGs. Details of these stages are explained in the following sections.

6.3.1 The morphemic dependency structure

The algorithm for the morphemic lexicon is very similar to the one described in Chap-

ter 5. To preserve the connectedness of the dependency graphIGs must be involved in

the dependency structure as well. There are several ways to represent IG-based depen-

dencies of Turkish treebank including the approach taken inCoNNL 2006 shared task

(Buchholz and Marsi, 2006) which replaces IGs with underscores because there is no

lexical form for these in the treebank, and using the morphemes in them as features.

The approach we used makes use of the IG tokens instead of representing them with

an underscore. We believe a representation format that is asclose to the lexical forms

of the tokens as possible is the most appropriate approach.

In CoNLL 2006 shared task data set the IGs are represented by word-internal de-

pendencies by replacing the inner IGs with underscore. Later in the evaluation process

these dependencies are removed from the final score because they are trivial. The

7These are the main complement tags in the METU-Sabancı dependency treebank.
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fact that morphemes are represented as underscore character means we cannot use the

lexical information for morpheme groups. Eryiğit and Oflazer (2006) suggest that lex-

icalisation does not work for Turkish, however Eryiğit, Nivre, and Oflazer (2006) in a

similar framework show that lexicalisation does improve the performance. Çakıcı and

Baldridge (2006) also show that using both the stems and the rest of the word form as

features give state-of-the-art results. However, since wedon’t have lexical information

here, we will approximate these with using morpheme stringsinstead of completely

ignoring them.

We introduce at least some degree of lexicalisation by assigning inflectional groups

token names which are derived from the morpheme names since “morph” information

is missing in the data. The token name for the IG representingan empty derivational

morpheme that makes a verb out of a noun is shown below.8

(2,”Verb+Zero+Past+A3sg”)– is ”Verb+Zero” .

The lexicon induction algorithm requires a dependency graph that is connected.

Only punctuation and sentence modifiers are allowed to be on top level, however, an-

notation inconsistencies and some tokenisation mistakes lead to disconnected graphs in

some sentences. In Chapter 2 we show the cases where we connected these subgraphs

and solution to some of the tokenisation mistakes. If the graph is still disconnected we

treat each disconnected subgraph as a separate sentence.

When creating the morpheme based dependency graphs if thereis more than one

IG in a word, we make each of them depend on the IG immediately to the right and

make the outward dependency emanate from the last IG to the IGthat it depends on

in the head word. The dependencies between the internal IGs of a word are labelled

INFGR. So the implicit information that these are parts of one wordis preserved. There

is an example of this in (6.3).

(6.3)
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T: Olur, dedi çaresizlikle

E: Alright , he said, hopelessly.

8As seen in the example, this is in fact a “Zero” morpheme, thatdoes not have a surface lexical form.
Zero morphemes are not rare (2022 instances) in the treebank.
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6.3.2 Preprocessing

There were some inconsistencies in the treebank regarding the IGs involved in coordi-

nation. If a single-IG word coordinates with a word with multiple IGs and if the types

of IGs (their part-of-speech tags) are different, it is usually the case that the link is an-

notated to go to the first IG of the second conjunct wrongly instead of the coordinating

IG. This usually can be fixed by changing the dependency structure so that the link

points to the last IG of the second conjunct. If the problem cannot be solved by the

end of this step this means either there is an annotation mistake or IGs in the middle

are involved in coordination or there is a suspended affixation case. However, this is

very rare and most IG mismatch errors are solved by changing the link to point to the

last IG.

All the sentences in Turkish treebank have at least one SENTENCE label, and if

there is more than one, the one that depends on the final punctuation is considered

to be the root. SENTENCE is assigned to the main predicate regardless of its part-

of-speech tag. Fragments, for instance, are not differentiated. There are three types

of copula in Turkish. One type is often considered as zero morpheme followed by

person agreement shown in (6.4a). The other is the past tensethat is shown by explicit

morphemes-yDH and-mHşas shown in (6.4b-c). The last one is-DHr which is always

in 3rd person. This is referred to as Epistemological copula.9

(6.4) a.
Ev -de -yim

home -Loc -(CopZero) -Pers1sg

I am at home.

b.
Ev -de -ydi -m

home -Loc -CopPast -Pers1sg

I was at home.

c.
Ev -de -ymiş -im

home -Loc -CopNarr -Pers1sg

I was (supposedly) at home.

d.
Ev -de -dir

home -Loc -CopPres

He is (surely) at home.

The first case combined with 3rd person agreement (which is unmarked, too) in

(6.5) shows no indication as to whether it is a copula sentence or a fragment. Since

9Can be translated as “It is” and implies definiteness.
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intuitively copular sentences are more common, we add “Zero+Verb” IGs to the depen-

dency structures during preprocessing to the end of non-verbal types that have SEN-

TENCE label in the treebank. This is done because some copular sentences have this

zero morpheme and some do not. For instance when the subject is in first person

IG structure consists of 2 IGs, the first being the noun stem and the second being

“Verb+Zero+..+A1sg” as in (6.6a). This preprocessing stepis applied as a means of

regularisation of copular sentences as shown in (6.6).

(6.5)
Ev -de

home -Loc -CopZero -Pers3sg(Zero)

(He) (is) at home.

(6.6) a. Ev-de-yim

(1,"ev+Noun+A1sg+Pnon+Loc")(2,"Verb+Zero+Pres+A1sg")

b. Ev-de

(1,"ev+Noun+A1sg+Pnon+Loc")(2,"Verb+Zero+Pres+A3sg")

Case Adjuncts that are not objects or subjects are also split. One example is Figure

6.5 above where-da is assigned(X/X)\NP whereX = S\NPnom, the category of the

adjunct’s head. The other example is (6.7).

(6.7)
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T: Parkta geçmiştekiler de var.

E: In the park, there are the ones from the past, too.

Conditionals are verbs that modify other verbs, so they havearguments of their

own. This means they have phrasal scope. For this reason theyare also split, even

though this is considered as verbal inflection in the treebank. (6.8) is an example from

the treebank. Conditional in this example serves as an adverb and it has its arguments.

We believe it should be treated as other derived adverbs. Splitting conditionals will

allow the verb stem to combine with its arguments before becoming an adverb.
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(6.8)
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T: O böyleölmese hayatın başka türlü mü olurdu.

E: If he didn’t die like this, would your life be different?

6.3.3 Algorithm

After translation of dependency graphs and preprocessing,the algorithm which is a

modified version of the algorithm in Çakıcı (2005) is applied to the dependency struc-

tures.

If head is the stem of the word, we assign the category of the stem depending on the

part-of-speech tags and give the (last) IGX\Cat whereX is the result category of the

stem after taking its arguments, if necessary, andCat is the category it would have been

assigned given its label. Note that in lexemic lexicon induction the category assigned to

a word is usually determined by its relation to its surface-syntactic head in the treebank

i.e. its dependency label. However, in morphemic lexicon induction, the stems are

assigned categories dependending on their parts-of-speech, and the rest depending on

their labels. Williams (1981) argues that the final IG acts asthe head of the whole word

or phrase if it has phrasal scope (Right Hand Rule). In a supporting view, particularly

for the Turkish treebank, where IGs are mostly representations of segments separated

by derivational morphemes derivational morphology changes lexical types of the items

they are attached to.

Since we are dealing with IGs of a word here, the new lexicon consists of stems

of words and their IGs instead of inflected words. The morphological structure is only

given as morpheme names in the treebank, so we do not have lexical representation of

morphemes, but we represent each IG with the first two morpheme names in it. This

means we remove the rest of the morphemes which are always inflectional if they do

not change the category types at this stage. We also add some IGs in preprocessing

that are not based on the IG information in the treebank. Thisis explained in Section

6.3.2. The first case is the case markers that make a noun phrase an adjunct. Dative

marker creates a dative adjunct, locative marker creates a locative adjunct, etc. These
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correspond to prepositional phrases (PP) in English, but since they are named after the

relevant case marker and the word adjunct in the treebank i.eLOCATIVE.ADJUNCT,

INSTRUMENTAL.ADJUNCT, we will refer to them as adjuncts here. We treat these as

we treat IGs and assign them categories of their own. Anothercase is the conditional

modifier which in Turkish treebank was treated as inflection.This means it does not

have an IG of itself. These are the two exceptions that neededto be handled separately

by the algorithm.
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But, I did not say anything to you.

Figure 6.6: The dependencies and the final CCG categories assigned to a sentence in

the treebank

A simple example is given in Figure 6.6. This example does notcontain any multi-

ple IG words. The recursive algorithm applies to the 2 top level elements here, one by

one. First it finds the S.MODIFIER and assigns it with categoryS/S, since the sentence

it modifies is to the right. After that, it finds the other element at the top level, which

is the main verbsöylemedim. After counting its complements, the algorithm assigns

ditransitive category to the verb. The complements receivetheir categories in a depth-

first manner. This meanshiçbir beingşey’s determiner is assignedNP/NPright after

şeyis assigned NP. Objects are assignedNP and subjects are assignedNP[nom]. This

example has argument scrambling to the right of the verb, as well. We take SOV as the

canonical word order and assign categories according to this.

Coordination and extraction cases are handled differently. Examples of different

linguistic structures are given in Section 6.4.
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6.4 Results

We will focus on the outcome of the morphemic CCG lexicon approach for some

specific constructions in the Turkish treebank. Taking morphemes as the smallest rep-

resentational units has some advantages discussed previously. Some of the solutions

of the problems discussed earlier are given in this section.

6.4.1 Passives and Causatives

As discussed in Chapter 2 and Chapter 3, voice is altered through morphology in Turk-

ish. Voice morphemes are separated from the stems by IG boundaries, in a similar way

derivational morphemes are. Surface dependency annotation of these construction lead

to structures where all the complements of verbs depend on the IG containing voice

morphemes. This leads to categories like the ones shown in the example (6.9).

(6.9)
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He does not change his place much.

〈“Verb+Caus′′4,(S\NP1)\S2,2, dĕgiştirmez3,−〉

〈pek2,(S\NP)/(S\NP)1,2, “Verb+Caus”4,−〉

〈“Verb+Caus′′4,(S\NP1)\S2,1,Yerini1,−〉

6.4.2 PPs or Adjuncts

As discussed earlier, the algorithm treats the case markersthat are involved in PPs

–or case “adjuncts” as they are annotated in Turkish treebank– as if they are IGs.

This allows us to assign correct categories to the elements of the noun phrase the

case marker is attached to. Note that in Figure 6.5, the CCG category of the locative

case marker is(S/S)\NP. The categories assigned in the earlier example (6.7) are asin

(6.10).
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(6.10)
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In the park, there are the ones from the past, too.

The category of the adjunct is determined by the number of complements there are

in between itself and the head. This is especially practicalsince we do not have the

information to differentiate between verbal adjuncts and VP adjuncts. This means, in

this example, we assume that the locative adjunct is not scrambled and because the

complements of its head are closer to the head than it is, we assume it is a VP modifier.

6.4.3 Relativisation

Object extraction and adjunct extraction examples are given together with the depen-

dencies in the treebank that are used to create the categories in Figures 6.7 and 6.8.

The fact that relative morphemes behave in a similar manner to relative pronouns

in English provides the basis for the approach taken here forrecovering long-range

dependencies in extractions of this type.
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The young man drank the water Muammer brought sip by sip.

Figure 6.7: Categories for object extraction

(6.11) Oku -duğum kitap yandı.
read -Adj-PastPart book burn-Past

S\NP (NP/NP)\(S\NP) NP S\NP
<

NP/NP
>

NP
<

S

The book I read burned.
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The road we walked had ended and lead to another street.

Figure 6.8: Categories for adjunct extraction

(6.12) Uyu -duğum araba yandı.
sleep -Adj-PastPart car burn-Past

S (NP/NP)\S NP S\NP
<

NP/NP
>

NP
<

S

The car I slept in burned.

The relativised verb in (2.14b) is given a transitive verb category with pro-drop,

(S\NP), instead of(NP/NP)\NP that it would get otherwise. The relative pronoun-

equivalent in Turkish,-dHk+AGR, now, has its own lexical category. A lexical entry

with category(NP/NP)\(S\NP) is created and added to the lexicon to give the cate-

gories in (6.11) and in (6.12). This solves the problems described in Chapter 2.

6.4.4 Long-distance dependencies

Long-distance dependencies as well as surface ones are recovered with the help of

CCG categories. The dependencies that are derived using surface types of words are

not sufficient to predict implicit predicate-argument relations. For instance, relativisa-

tion treated as adjectival noun phrase cannot recover predicate-argument relations of

the relativised verb. Long-distance dependencies caused by coordination and extrac-

tion are also not trivial. (6.13) shows how morphemic lexicon created handles long

distance dependencies of extraction and coordination.

(6.13)
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As you see, I am a prisoner who never will escape, be free.
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(6.14)

Gör gibi hiçbir zaman kurtul olmaözgür bir tutsağ ben,-mayacak -yacak -ım-düğünüz

see -PastPart-A2pl like none of time escape -FutPart-A3sg free be-Neg -FutPart-A3sg a prisoner -CopZero-A1sg I,

NP (S/S)\NP NP/ NP ((S\NP
nom

)/(S\NP
nom

))/((S\NP
nom

)/(S\NP
nom

)) NPS\NP
nom

(S\NP
nom

)/(S\NP
nom

)((S\NP
nom

)/(S\NP
nom

))\NPNP(S\NP
nom

)/(S\NP
nom

) conj

S/S (S\NP
nom

)/(S\NP
nom

) S\NP
nom

S\(S\NP
nom

)

(S\NP
nom

)/(S\NP
nom

)

conj

(S\NP
nom

)/(S\NP
nom

)

S\NP
nom

S

S

>

>

>><

>

<
XXX

>

(6.15)

Gör gibi hiçbir zaman kurtul olmaözgür bir tutsağ ben,-mayacak -yacak -ım-düğünüz

see -PastPart-A2pl like none of time escape -FutPart-A3sg free be-Neg -FutPart-A3sg a prisoner -CopZero-A1sg I,

NP (S/S)\NP X/ X (S\NP
nom

)/(S\NP
nom

) NPNPNP/NPNP(NP/NP)\(S\NP
nom

) conj

S/S S\NP
nom

NP S\(S\NP
nom

)

S\NP
nom

<Φ>

NP/NP

NP

S

<

>

>><

<

<

>

T
(S\NP

nom
)/(S\NP

nom
)

S\NP
nom

(S\NP
nom

)\NP(NP/NP)\(S\NP
nom

)(S\NP
nom

)\NP

<
NP/NP

<
NP/NP

S\NP
nom

The categories assigned to the words with the lexicon induction process are given

to CCG parser to demonstrate the usefulness on a very small scale here. The depen-

dencies that the CCG derivation in (6.15) yields are shown inFigure 6.9. In addition

to the surface dependencies in the original dependency structure, long distance depen-

dencies such as the ones that result from coordination are predicted, too. For instance,

〈kurtulmayacak7,S\NP[nom]1,1,tutsăgım14,−〉 and

〈olmayacak11,(S\NP[nom]1)\NP2,1,tutsăgım14,−〉 are not predicted with most de-

pendency parsers, although they are crucial dependencies for semantic interpretation.

These dependencies are obtained by giving the categories tothe all-parse version of

Clark and Curran (2007b)’s CCG parser. The output of the parser is shown in (6.16).

Each line represents a dependency between two words. This example is a simplified

version of a sentence in the treebank, and the full example isdiscussed in Chapter 9.

The dependencies shown in blue dotted lines in Figure 6.9 arethe ones that do not exist

in the original dependency structure. These dependencies are recovered through coor-

dination and extraction. When the dependencies shown in thefigure are compared with

the original treebank dependencies in (6.13), one can see that some dependency arcs

point in opposite directions (red dotted arcs). This issue is also explained in Chapter 9.

The red arc in the figure indicates the dependency of the temporal adverb that is

assigned to a different head than its correct head. With a trained model, these kinds of

errors will be less frequent.
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Figure 6.9: The dependencies recovered from the morphemic lexicon categories with a

CCG parser.

(6.16)

〈−Noun+PastPart2,NP\S1,1,Gördüğünüz1,−〉

〈gibi3,(S/S1)\NP2,2,−Noun+PastPart2,−〉

〈hiçbir5,(S/S)/(S/S)1,2,zaman6,−〉

〈−Ad j+FutPart8,(NP/NP1)\(S2\NP[nom]),2,kurtulmayacak7,−〉

〈olamayacak11,(S\NP[nom]1)\NP2,2,özg̈ur10,−〉

〈−Ad j+FutPart12,(NP/NP1)\(S2\NP[nom]),2,olmayacak11,−〉

〈,9 ,con j,1,−Ad j+FutPart12,−〉

〈,9 ,con j,1,−Ad j+FutPart8,−〉

〈bir13,NP/NP1,1,tutsăgım14,−〉

〈kurtulmayacak7,S\NP[nom]1,1,tutsăgım14,−〉

〈olmayacak11,(S\NP[nom]1)\NP2,1,tutsăgım14,−〉

〈−Ad j+FutPart12,(NP/NP1)\(S2\NP[nom]),1,tutsăgım14,−〉

〈−Ad j+FutPart8,(NP/NP1)\(S2\NP[nom]),1,tutsăgım14,−〉

〈−Verb+Zero15,(S\NP[nom]1)\NP2,1,ben16,−〉

〈−Verb+Zero15,(S\NP[nom]1)\NP2,2,tutsăgım14,−〉

〈zaman6,S/S1,1,−Verb+Zero15,−〉

〈gibi3,(S/S1)\NP2,1,−Verb+Zero15,−〉

6.4.5 Copula Sentences and Fragments

There are a lot of sentences in the Turkish treebank without averbal predicate. Cop-

ula sentences are sometimes identified with morphological markers such as-DHr, or

past tense-yDH. When these markers do not exist, or when the sentence is simply a

fragment (not a complete sentence) it is difficult to assign categories reliably.
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We showed in Section 6.3.2 that the copular sentences missing the additional IG

are fixed during preprocessing. The IG containing the zero morpheme is assigned a

category X\Y where X is the category of the morpheme, the copular morpheme is

attached to and Y is a verb category whose type depends on the number of arguments

it has. The main predicate in (6.15) is an example of a copularsentence.

6.4.6 Coordination

In the example for adjunct extraction (Figure 6.8) there is also the issue of coordination.

We mentioned in Chapter 5 that S V and VP type coordination is not differentiated in

terms of annotation in the treebank. With the help of secondary links we added, we

now get the correct categories forbitmiş and açılmış in the figure. The secondary

links that are added are not shown in the figure here. A C.SUBJECT link from yol to

açılmıştımakes sure that the information that the subject is shared among conjuncts

is used, andaçılmıştıtakes a full transitive category and not a pro-drop one. Thisis

especially important in cases of object sharing in order to get the correct valency of the

verb.

6.4.7 Coverage

We have 27895 unique word-category pairs for 19385 distincttokens in Chapter 5.

The morphemic lexicon has 13016 distinct word-category pairs for 6315 distinct word

stems and IG stem names. This is considerable improvement since we have now more

than 69K tokens compared to about 54K word tokens for the lexemic lexicon. The av-

erage word-category pair frequency goes up from 1.97 to 5.32. Figure 6.10 demostrates

the category distribution of one of the most frequent verbs in the treebank –oku (read)

– with the lexemic approach in Chapter 5 and Figure 6.11 showsthe category distribu-

tion with the morphemic approach.

There are 450 lexemic category types as compared to 311 morphemic category

types. Although the number of category types is less in the morphemic lexicon, we

believe that we have a more complete set of morphemic category types than lexemic

category types. Figure 6.13 shows the distribution of morphemic categories with the

data. The sudden rise that was observed in Figure 5.16 for thelexemic data is not seen

in this figure. This means the part of the corpus after 4200 sentences have the same

degree of growth as the part after about 1700 sentences whereit starts a more linear

growth curve of category types.
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f word cat f word cat

1 okuyan (NP/NP)\NP 1 okuyup (S/S)\NP

1 okuduğu ((S\NP[nom])/(S\NP[nom]))/((S\NP[nom])/(S\NP[nom])) 1 ok uyup (NP/NP)/(NP/NP)

1 okuyorsunuz S\NP 3 okuyor S\NP

1 okumuşçasına ((S\NP[nom])/(S\NP[nom]))\NP 1 Okuyorum S

1 okuyabilir S 1 okurum S\NP

1 okudunuz S\NP 1 okurken (S/S)\NP

1 okumadım S 1 okuttum NP\NP

1 okuyorum S\NP[nom] 1 Okumayabilir S/NP

1 okumuştunuz (S\NP[nom])\NP 1 okudular S

1 okunacağını NP\NP[nom] 1 okurduk S\NP

1 okuyun S 1 okuyacaklar S

1 okurdu S/NP 1 okudu S\NP

1 okurdu S\NP 1 okuduk S

2 okudu S 1 okudun S\NP

1 okursa S/S 1 okumadım S\NP[nom]

2 okur S 1 okudum S\NP

1 okurkenki NP\NP 1 Okumuyorlar S

1 okuyabilirim (NP\NP[nom])/NP 1 okunamayan NP/NP

1 okumalarını NP\NP 1 Okudum S

1 Okuyucunun NP[nom] 1 okuyor (S\NP[nom])\NP

1 okumaları NP\NP 1 okuyayım S\NP

1 okuyucudan S/S 1 okudu (S\NP[nom])\NP

1 okumasını NP\NP

Figure 6.10: CCG categories (cat) and frequencies (f) of all the derived and inflected

forms of verb oku (read) in lexemic lexicon.

f word cat

2 oku S\NP[nom]

4 oku (S\NP[nom])\NP

20 oku S

23 oku S\NP

Figure 6.11: CCG categories (cat) and frequencies (f) of entities of verb oku (read) in

morphemic lexicon.

word match% cat%|word pair match%

mean 70.1 94 58.5

std. dev. 1.34 1.70 0.92

Figure 6.12: Results on the 10-fold evaluation of the morphemic lexicon
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Figure 6.13: The growth of morphemic category types

Figure 6.12 gives the numbers of a 10-fold evaluation process to test the coverage

of the lexicon. The method is the same as Section 5.9.1. We take out the 1/10 of

sentences for test and take the rest as control set. We test the coverage by checking if

the unique lexical entities and unique word-category pairsexist in the control set for

each test set. Coverage is higher than the coverage in lexemic lexicon, implying a more

complete set of categories and word-category pairs.

We also used an alternative evaluation method. We used CCG categories induced

here as features to a dependency parser described in McDonald et al. (2005). The

results are discussed in detail in Chapter 8. In summary, theboost in accuracy of the

MST parser with the use of CCG categories was encouragingly high. Unlabelled and

labelled dependency accuracies were 95.08% and 88.96% respectively. This shows

that the use of CCG gold supertags boosts the performance of adependency parser

even when they are used as very simple features. We know that asupertagger is crucial

in getting realistic results but we include this information as a means of evaluation of

the gold standart CCG categories in the morphemic lexicon induced.

6.4.8 Evaluation by sampling

We perform a small evaluation with 25 sentences similar to the evaluation in Section

5.9.2. We provide the results of both lexicons for comparison purposes. 2 out of 202

words were assignedNULL categories by the lexicon induction process. All of the
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sentences that were not parsed had at least one category error. On the other hand 3

sentenceswith errors (1 with a minor category feature error) were parsed. The cate-

gory accuracy of the morphemic lexicon sample set is more than 6 points higher than

the accuracy of the sample set from the lexemic lexicon. There were not any unseen

categories in the morphemic evaluation set.

A comparison of lexemic and morphemic lexicon evaluations is given in the fol-

lowing table. Morphemic lexicon is seen to outperform the lexemic lexicon in both

category accuracy and also parsing results with the CCG lexicon.

lexicon # sent. # tokens accur. correct scorrect cov. unseen

morphemic 25 202 188 93.07% 17 20 0

lexemic 25 166 144 86.74% 16 14 5

6.5 Conclusion

We have explained why a morphemic approach is crucial in terms of theoretical and

computational aspects. We induced a morphemic CCG lexicon from the Turkish tree-

bank which is relatively small when compared to the treebanks for well-studied lan-

guages. These results show that especially for languages with complex morphology,

generalisation is very important. CCG categories improve the performance of a depen-

dency parser when they are used as features in the statistical model.

We achieved great improvement on word-category pair frequencies which we hope

will help with training a supertagger. The supertagger needs a lot of data to be accurate

(or as accurate as possible). The average category type per word goes up to 5.32 from

1.97 categories per word. In statistical terms this means wehave less data sparseness.

We have also shown in Section 6.4, the theoretical and linguistic advantages of the

morphemic lexicon.

We used the inflectional groups to specify the lexical boundaries because we did

not have a morphological analyser to obtain the actual morphemes. We have also

included a few of the crucial inflectional morphemes, such asthe ones involved in

phrasal adjuncts, namely case markers. We are aiming to havea fully morphemic

lexicon that takes into account of bracketing paradoxes anda more detailed study of

the status of inflectional morphemes in a CCG lexicon in the future. We also plan

to focus more on bracketing paradoxes that involve coordination that is similar to the

ones discussed in (Fukushima, 1999) in Turkish.

The work explained in this chapter is important in both getting the correct cat-
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egories out of supertagger because it improves the numbers and also predicting the

dependencies out of linguistically more appropriate categories.



Chapter 7

Dependency Theory and Parsing

Dependency treebanks have emerged for many low-density languages in the last few

years. The reasons for this among many others are that the dependency structures are

intuitive, easy to implement and more appropriately flexible for representing phenom-

ena in free word order langauges.

Dependencies are relations that are defined on words or smaller units where the

sentences are divided into its elements called heads and arguments, e.g. verbs and ob-

jects. Dependency parsing aims to predict these dependencyrelations between lexical

units to retrieve information, mostly in the form of semantic interpretation or syntactic

structure.

Parsing is usually considered as the first step of natural language processing. To

train supervised statistical parsers, a sample of data annotated with necessary informa-

tion is required. There are different views on how informative or functional annotation

should be. There are different constraints on the design process such as: 1) how in-

tuitive (natural) the representation format is, 2) how easyit is to extract information

from it, and 3) how appropriately and unambiguously it represents the phenomena that

occur in natural languages.

Using phrase structure trees has been the de facto standard in annotation of linguis-

tic data following the generative tradition. Syntactically annotated linguistic corpora

are called treebanks, after tree representations of context-free derivations. Dependency

representation, i.e. syntactic annotation of the sentences using the notion of heads, de-

pendents and relations only, is becoming more popular especially with less studied lan-

guages. This does not mean that either phrase structure or dependency representation

is deficient. They have respective advantages and disadvantages, which is out of the

scope of this thesis. In this chapter, we will look at the dependency theory and gram-

113
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Figure 7.1: The dependency tree

mar from a historical perspective, give a brief summary of the existing dependency

corpora designed with some version of the dependency theory, and the state-of-the art

results of dependency parsers that use the data in this representation format.

7.1 Dependency Grammar

The concept of dependency grammar is usually attributed to Tesniére (1959) and Hays

(1964). Tesniére’s goal was to design a grammar that is useful in learning foreign

languages. The result is a very intuitive and natural representation of grammatical

structure. The dependency theory has since developed, especially with the works of

Gross (1964), Gaifman (1965), Robinson (1970), Mel’čuk (1988), Starosta (1988),

Hudson (1984), Hudson (1990), Sgall, Hajičová, and Panenová (1986), Barbero et al.

(1998), Duchier (2001), Menzel and Schröder (1998), Kruijff (2001).

Dependencies are defined as links between lexical entities (words or morphemes)

that connect heads and their dependents. Dependencies may have labels or be un-

labelled. A dependency tree is often a directed (sometimes undirected (Sleator and

Temperley, 1993)), acyclic (sometimes cyclic (Hudson, 1990)) graph of links that are

defined between lexical entities in a sentence. Dependencies are usually represented

as trees where the root of the tree is a distinct node.

An example dependency tree is in Figure 7.1. A phrase structure tree for the same

sentence is shown in Figure 7.2. The ROOT of this tree is “hit”.

Since Tesniére, much work has been done on dependency theory. Among many

well known theories of dependency grammar are: Functional Generative Description

(Sgall et al., 1969; Sgall, Hajičová, and Panenová, 1986; Petkevič, 1987; Petkevič,

1995), Dependency Unification Grammar (DUG) (Hellwig, 1986; Hellwig, 2003),

Meaning Text Theory (Gladkij and Mel’čuk, 1975; Mel’čuk,1988), Lexicase (Starosta,

1988), and Topological Dependency Grammar (Gerdes and Kahane, 2001). Kruijff

(2001) also suggests a type of logic that is specific to dependency grammar, which is
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Figure 7.2: The phrase structure tree

called “Dependency Grammar Logic” (DGL). DGL aims transparent semantic inter-

pretation during parsing.

There are many open issues regarding the representation of dependency structure.

Hays (1964) and Gaifman (1965) take dependency grammars as special cases of phrase

structure grammars whereas Barbero et al. (1998), Menzel and Schröder (1998), Eis-

ner (2000), Samuelsson (2000), Duchier (2001), Gerdes and Kahane (2001), Kruijff

(2001) think they are completely different. Certain constrained versions of dependency

grammars are, in fact, equivalent to context-free phrase structure grammars. Depen-

dency languages were shown to be exactly context-free languages (Gross, 1964), just

before Dependency grammars of single headed, projective dependency structures were

shown to be weakly equivalent to context-free grammars by Gaifman (1965).

The dependencies are defined between lexical units. However, there are different

views on what lexical units should be. The relations betweenconstituents of phrase

structure grammars are represented by relations between the head words of corre-

sponding constituents in dependency grammars. However, there are alternatives to

this. Mel’čuk (1988) allows morpheme based dependencies,whereas Tesniére (1959)

defines groups of words resembling phrases as units between which the dependencies

are defined.

One important issue in dependency theory is projectivity. Projectivity is beyond

a representational preference. Most dependency grammars assume projectivity of de-

pendencies. This means when dependencies are drawn on paper, with directed links

above the sentence, these links should not cross. Many parsers force this constraint,

as well as single-headedness for tractability concerns. For instance Eisner (2000), and

Eisner (1996b) force this constraint with defining spans andallowing only words at
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the edges of these spans to combine with other words. This, together with some other

constraints brings the advantage of cubic time parsing. However, projectivity in de-

pendency grammars does not allow representation of discontinous dependencies, for

instance extraposed relative clauses like the one in (7.1).1 It can be said that projectiv-

ity preserves the context freeness of dependency grammars.These structures can easily

be translated into context free derivation trees. On the other hand, recognition of non-

projective dependency grammmars, when unconstrained is NP-complete (Neuhaus and

Bröker, 1997). However, the generative power can be restricted with gap-degreee and

well-nestedness constraints. Gap-degree of a dependency structure is determined by

the discontinuities it has. A dependency structure is well-nested if no two of its dis-

joint subtrees interleave. Recently, Kuhlmann and Möhl (2007) defined “regular de-

pendency languages” and showed that applying different combinations of gap-degree

and well-nestedness restrictions on non-projectivity in these languages gave a class

of mildly context-sensitive grammars. This means it is possible to simulate the de-

pendencies, that can be predicted with mildly-context sensitive grammars by adding

extra generative power to otherwise context-free dependency grammars. They show

that well-nested structures with a gap-degree of at most 1 are exactly the class of Lex-

icalised Tree Adjoining Grammars (LTAG).

(7.1) � ����� ����	
� ��� �� �
����� ���� ���.

.

. . . . . .

We see in Figure 7.3 that the notion of non-projectivity is very common throughout

languages although distribution of it is rare in any given language. The fact that it is

rare does not make it less important because it is this kind ofphenomena that defines

the automata-theoretic class to which natural languages belong.

1This example is from Levy (2005). Although Levy (2005) drew the links betweenwomanand
arrived, andwomanandwasas crossing, these links can be drawn in a projective manner.However,
Levy (2005) does not take into account the link between the root node, and the head of the sentence,
which is necessary for most dependency grammars. This link brings in the non-projectivity to this
sentence.
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7.2 Dependency Treebanks

7.2.1 Why dependency trees?

Many dependency corpora have been designed and created in the past few years. These

are mostly for languages other than English. Dependency representation is preferred

when these corpora are designed. This can be argued by the following properties of

dependency trees:

1 They are easier to annotate than some other representationtypes like phrase

structure trees (PST). There are fewer tags and labels (onlyas many as words

in a sentence) and no internal nodes.

2 They are much easier to extract information from, because the information is

represented more directly. For example, predicate-argument structure can easily

be extracted from dependency trees. On the other hand, the heads of phrases in

phrase structure trees either need to be declared explicitly or could be found by

heuristics and head finding algorithms as in Magerman (1994).

3 Worst-case complexity of a lexicalised PST parser is O(n5) whereas non-projective

dependency parsers without an underlying grammar module run in quadratic

time (McDonald et al., 2005). Projective dependency parsers run in O(n3) time

(Eisner, 1996b; McDonald, Crammer, and Pereira, 2005; McDonald et al., 2005).

McDonald, Crammer, and Pereira (2005) discuss why Eisner’sprojective pars-

ing algorithm is slower than their non-projective parsing algorithm.

7.2.2 Dependency Treebanks

Annotation of dependency treebanks have accelerated in thepast few years. As a re-

sult, there are numerous dependency treebanks that challenge multi-lingual parsing.

Figure 7.3 compares dependency corpora of 19 languages thatare used as the data

sets in CoNLL 2006 and 2007 shared tasks for dependency parsing.2 The reader is

referred to Buchholz and Marsi (2006) and Nivre et al. (2007)for more informa-

tion about these treebanks and the parsing results. Although, the underlying theory

is the same in all of these treebanks there are major differences in the outcome that

2Some languages are not included in both tasks. The information in the first and second columns of
each set belong to CoNLL 2006 and 2007 training data respectively.
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Language #T #S #T/#S %NST %NPR %NPS IR

Arabic 54 112 1.5 2.9 37.2 38.3 8.8 - 0.4 0.4 11.2 10.1 Y -

Basque - 51 - 3.2 - 38.3 - - - 2.9 - 26.2 - -

Bulgarian 190 - 12.8 - 14.8 - 14.4 - 0.4 - 5.4 - N -

Catalan - 431 - 15 - 28.8 - - - 0.1 - 2.9 - -

Chinese 337 337 57 57 5.9 5.9 0.8 - 0.0 0.0 0.0 0.0 N -

Czech 1249 432 72.7 25.4 17.2 17.0 14.9 - 1.9 1.9 23.2 23.2 Y -

Danish 94 - 5.2 - 18.2 - 13.9 - 1.0 - 15.6 - N -

Dutch 195 - 13.3 - 14.6 - 11.3 - 5.4 - 36.4 - N -

English - 447 - 18.6 - 24.0 - - - 0.3 - 6.7 - -

German 700 - 39.2 - 17.8 - 11.5 - 2.3 - 27.8 - N -

Greek - 65 - 2.7 - 24.2 - - - 1.1 - 20.3 - -

Hungarian - 132 - 6.0 - 21.8 - - - 2.9 - 26.4 - -

Italian - 71 - 3.1 - 22.9 - - - 0.5 - 7.4 - -

Japanese 151 - 17 - 8.9 - 11.6 - 1.1 - 5.3 - N -

Portuguese 207 - 9.1 - 22.8 - 14.2 - 1.3 - 18.9 - Y -

Slovene 29 - 1.5 - 18.7 - 17.3 - 1.9 - 22.2 - Y -

Spanish 89 - 3.3 - 27 - 12.6 - 0.1 - 1.7 - N -

Swedish 91 - 11 - 17.3 - 11.0 - 1.0 - 9.8 - N -

Turkish 58 65 5 5.6 11.5 11.6 33.1 - 1.5 5.5 11.6 33.3 N -

Figure 7.3: Treebank information
#T = number of tokens * 1000, #S = number of sentences * 1000, #T/#S = tokens per sentence, %NST = % of non-scoring tokens,

%NPR = % of non-projective relations, %NPS = % of non-projective sentences, IR = has informative root labels.3

originate from the questions like 1) how much information isneeded to put in the de-

pendency trees, 2) how strongly interlaced the different modules such as morphology

syntax are in a language. Czech treebank (Böhmová et al., 2003) is a good exam-

ple of a well-designed dependency treebank with 3 differentlevels of representation,

namely, morphological, grammatical and tecto-grammatical layers as defined in Sgall,

Hajičová, and Panenová (1986). In addition to the two obvious levels, the third level

–tectogrammatical level– bears information such as valency of verbs, anaphora resolu-

tion, etc. The design of Turkish Treebank is a good example ofan answer to the second

question. Morphology-syntax interface makes word-based dependencies inappropriate

for Turkish. Therefore, the dependencies are defined between inflectional groups in the

Turkish treebank. These are two arguments among many on why it is very important

to make a good feasibility study when designing a dependencytreebank as different

features of languages require different handling in terms of decisions such as word

versus morphemic representation of the lexicon.
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7.3 Dependency Parsing

Statistical or data-driven parsing methods have gained more focus with the continuous

introduction of new linguistic data. Parsing was more focused on training and parsing

with phrase structure trees and specifically English language because the Penn Tree-

bank (Marcus, Marcinkiewicz, and Santorini, 1993) was the main source available for a

long time. With the introduction of treebanks of different languages, it is now possible

to explore the bounds of multi-lingual parsing.

We give a review of Dependency parsing in this section. Most of these parsers

assume dependency structures as single-headed, projective structures, and they create

surface syntactic dependencies which is less expressive than what some dependency

grammars express. Deep linguistic analysis does not get enough attention when fo-

cused on quantitative improvement. Fortunately, there arealso studies that focus on

recovering deep dependencies as well as surface ones such asClark, Hockenmaier,

and Steedman (2002), Hockenmaier (2003a), Levy and Manning(2004), Riezler et al.

(2002),Cahill et al. (2008) and so on.

7.3.1 Collins’ Czech Parser

Some of the early efforts of data-driven dependency parsingwere focused on trans-

lating dependency structures to phrase structure trees because phrase structure parsers

already existed. Translating dependency structures with crossing dependencies is not

trivial if the surface order needs to be preserved. Thus, theincompatible translation

of dependency structures to phrase structure trees resultsin varying degrees of loss of

information.

Collins et al. (1999) translate the Prague Treebank dependency trees to phrase

structure trees in the flattest way possible and name the internal nodes after part-of-

speech tags of the head words of nodes. They use Model 2 of Collins (1999) and

evaluate the attachment score on the dependencies extracted from the resulting phrase

structure trees of the parser. However, crossing dependencies cannot be trivially trans-

lated into phrase structure trees with the surface order of the words unchanged (Çakıcı

and Baldridge, 2006). But, Collins et al. (1999) do not mention non-projective (cross-

ing) dependencies, therefore, it is not clear what they did for these cases in the Czech

treebank.
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7.3.2 Deterministic Parsers

Deterministic parsers need only one pass over the data. thus, they are potentially time-

efficient as long as the constant factors are small. Nivre (2003) gives a deterministic

parsing algorithm for projective dependency trees. He usesa probabilistic framework

to guess the parser actions. The parser makes only one pass onthe input and assigns a

dependency structure at once, without any redundancy or backtracking thus the algo-

rithm runs in linear time (Nivre, 2003). Nivre, Hall, and Nilsson (2004) uses memory-

based learning (Daelemans, 1999), and achieves better accuracy. A similar approach is

followed by Yamada and Matsumoto (2003). They look at the pairs of words to decide

whether they should be linked or not.right decides that the dependency is right-to-left

and left decides it is left-to-right. They use support vector machines to decide on the

next action which is one of 3 actions:shift, left, andright. 3 different SVM classifiers

trained for each distinct action were used to decide which action to take next based

on the two words in question. The parsing algorithm runs in O(n2). Kudo and Mat-

sumoto (2000), and Kudo and Matsumoto (2002) use support vector machines to parse

Japanese. MaltParser of Nivre et al. (2007) provides results for multilingual depen-

dency parsing using both memory-based learning and SVM classifiers. Oflazer (2003)

uses an extended finite state automaton to parse Turkish dependency structures.

7.3.3 Eisner’s Dependency Parsers

One of the most influential statistical systems for parsing dependency structures di-

rectly is due to Eisner (1996b). He proposes 3 different models for direct dependency

parsing. He evaluates them on dependencies derived from thePenn Treebank. His

generative model which is similar to the Model 1 in Collins (1999) achieves the best

performance on a 400 sentence test sample from WSJ. Eisner’sparser is a projective

parser thus it cannot predict crossing dependencies.

Eisner’s parser relies on structures called spans. He effectively designs an O(n3)

algorithm for parsing projective dependency structures, with the use of these spans.

Classical lexicalised parsers run in O(n5) time because, the head of a phrase can be

anywhere in the phrase. The same holds for the head of the dependent, thus n times

n possibilities are also stored in the chart (Eisner, 2000).However, in Eisner’s parser,

the head of phrase is only allowed at two ends of the spans. Among three models

described in Eisner (1996b), generative one, that generates left and right dependents

recursively has the best performance. The generative probabilities in the generative
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model are calculated by the given formula.

Pr(words, tags, links)= ∏
1≤i≤n

(
1+size(rwl(i))

∏
c=−(1+size(lwl(i))),c6=0

Pr(tword(kidc(i))|tag
(

kidc−1(i)
)

,tword(i)
)

(7.2)

Here,sizelwl (i) andsizerwlemph(i) give the number of left and right dependents of

the wordi respectively.tword denotes tagged word.

Eisner (2000) defines bilexical grammars based on this formalism, and shows that

cubic time parsing is possible with lexicalised dependencygrammars. He defines two

automata lwi and rwi for the left dependents and right dependents of a head word wi ,

and generates these. This is similar in ways to Collins’ generation of left and right

daughters independently.

Sleator and Temperley (1993) gives a similar algorithm to Eisner (1996b) inde-

pendenctly (Eisner, 2000). Their dependency structures, are calledlinkagesinstead of

dependency trees, and are made up of labelled, undirected links. However, they use

the same decomposition, which Eisner (1996b) calls spans (Eisner, 2000).

7.3.4 Nivre’s Parsers

Nivre (2003) defines a deterministic parser. Nivre parses a small Swedish dependency

corpus with this parser. The parser runs in a greedy deterministic mode that goes over

the input string once, assigning dependencies to each word.It is deterministic in the

sense that only one analysis is available for a given sentence. Parser actions consist of

: Shift, Reduce, Left-Arc , andRight-Arc . The input string is accepted if the depen-

dency structure the parser suggests is well-formed when thefinal state is reached. Well-

formedness conditions are: acyclicity, projectivity and single-headedness together with

connectivity.

Nivre, Hall, and Nilsson (2004) use the same parser togetherwith Memory based

learning and achieve better performance than the original system that uses hand-written

grammar rules. Nivre and Scholz (2004) apply deterministicparsing to English text.

Recently, mostly with introduction of multi-lingual dependency data, non-projective

parsing methods became more popular than before. Parsing non-projective dependency

graphs were shown to be NP-complete. However, this does not stop the attempts to cre-

ate approximations for non-projective parsing. Nivre and Nilsson (2005) do pseudo-

projective parsing which is first defined in Nasr (1998) and later implemented by Ka-

hane, Nasr, and Rambow (1998). Non-projective dependencies are encoded in the
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projective link labels to be decoded after projective parsing to create non-projective

structures by post-processing.

7.3.5 Graph based algorithms (McDonald et al.’s Parsers)

McDonald et al. (2005) apply graph spanning algorithms to dependency parsing. They

formalise dependency parsing as the problem of finding a maximum spanning tree in

a directed graph. Chu-Liu-Edmonds algorithm is used to parse non-projective depen-

dency structures. This algorithm has two major advantages:it runs in O(n2) time and

it handles non-projective dependencies directly. McDonald et al. (2005) show that this

algorithm significantly improves performance on dependency parsing for Czech, espe-

cially on sentences that contain at least one crossed dependency. McDonald, Crammer,

and Pereira (2005) report results for strictly projective parsing. For this, they use Eis-

ner’s algorithm mentioned in the previous section.

Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer, 2003) is used

to determine the weights of dependency links as part of this computation. Variations

of this parser have been used in CoNLL 2006 shared task and received the highest

ranking among the participants averaged over the results ofall of the 13 languages

(Buchholz and Marsi, 2006). The use of morphological features are shown to improve

the overall performance of the multilingual system. This parser runs in two stages.

The first stage assigns the unlabelled dependencies and the second stage decides on

the labels afterwards.

When no linguistic or global constraints are applied, this parser may yield impossi-

ble dependency sequences such as assigning two subjects to averb (Riedel, Çakıcı, and

Meza-Ruiz, 2006). This is because McDonald et al. (2005) does not have an underly-

ing grammar formalism and relies on first order edge decisions. However, they explain

that second-order non-projective dependency parsing is NP-complete. McDonald and

Pereira (2006) present an approximation algorithm to solvethis problem, and achieve

state-of-the-art performance.

7.3.6 Deep dependency parsers

Since most dependency parsers are projective, there is a misconception that depen-

dency grammars are projective and thus context-free. Various dependency theories

allow non-projective structures as well as multiple-headed words (Hudson, 1984),

(Mel’čuk, 1988).
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Lombardo and Lezmo (2000) follow a “GPSG” style approach in handling long-

distance dependencies in dependency grammar. Thet introduce empty elements (gaps)

for handling long-distance dependencies resulting from extraction, coordination and

control. They give a formal theory of dependency syntax withnon-lexical units, how-

ever, they did not implement a parser, so they do not provide experimental results.

CCG parsers inherently predict long-distance dependencies. Generative models of

Hockenmaier (2003a) and discriminative models of Clark, Hockenmaier, and Steed-

man (2002), Clark and Curran (2007b) give state-of-the-artresults in recovery of deep

linguistic information. We will give a more detailed reviewof CCG parsers in Chapter

9.

Levy and Manning (2004) induce long-distance dependenciesfrom a context free

framework. Dienes and Dubey (2003) do deep syntactic processing by post-processing

the output of CFG parsers. Cahill et al. (2008) also induces amore expressive LFG

grammar from the Penn treebank with similar techniques.

7.4 Discussion

There is growing body of work on creating new treebanks for different languages.

Requirements for the design of these treebanks are at least as diverse as these nat-

ural languages themselves. For instance, some languages have a much more strong

morphological component or freer word order than others. There are challenges both

for dependency parsing and for different dependency theories. For instance, modelling

morpho-syntactic relations in dependency representationfor morphologically complex

languages. Representing “deep” dependencies needs more attention as well. Although

these constitute a fraction of all the phenomena in natural languages, they are important

for semantic interpretation.

This chapter has reviewed dependency grammar theories together with recent ad-

vances in statistical dependency parsing for different languages. Some current chal-

lenges in building dependency treebanks and dependency parsing have also been dis-

cussed. Dependency theory and practical applications of dependency representations

have advantages and disadvantages. The fact that dependency parsing is easy to adapt

to new languages, and is well-adapted to representing free word-order, makes it the

preferred representation for many new linguistic corpora.Dependency parsing is also

developing in the direction of multi-lingual parsing wherea single system is required

to be successful with different languages. This research may bring us closer to under-
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standing the universals of language, and thus to building better NLP systems.



Chapter 8

Turkish Dependency Parsing

In this chapter, parsing models for Turkish using the METU-Sabancı dependency tree-

bank are described. Different representation schemes for dependency structures are

investigated and different styles of projective and non-projective parsing models are

compared. We show, in particular, that representing distinctions about derivational

morphology and case marking provides large improvements inthe accuracy of recov-

ering word-word and IG-IG surface dependencies.

We aim to give a comparison of direct versus indirect approaches to dependency

parsing. By indirect, we refer to approaches that translatedependency structures to a

different representation format –usually phrase structure trees– for which the parsing

models used to be more popular presumably as a result of the dominance of Penn Tree-

bank. We also explore the effectiveness of projective versus non-projective algorithms

in direct dependency parsing. We use the principles of Collins’ parser which is a gen-

erative parser and Maximum Spanning Tree parser of McDonaldet al. (2005) which

is a discriminative parser.

Section 8.1 gives an overview of the relevant work on Turkishdependency parsing.

Section 8.2 outlines our procedure for mapping dependency structures to tree struc-

tures as input for training the Collins parser, and discusses different POS tag sets with

varying levels of sensitivity to Turkish morphology. Section 8.4 introduces the pars-

ing models used, and Section 8.6 reports and discusses the performance of the various

configurations tested. In particular, Section 8.6.3 reports the results of experiments

testing the effect of using CCG supertags with MST parser. and Section 8.6.4 reports

the results of experiments in which the inflectional groups in the treebank are directly

represented in the dependency structures.
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8.1 Literature Review

Since the creation of the Turkish treebank (Atalay, Oflazer,and Say, 2003; Oflazer et

al., 2003) several parsers were created to parse it. Turkishdependency structures are

non-projective, which is expected given its free word ordernature. Parsers that parse

projective and non-projective structures are implementedby various authors. A review

of dependency parsers that use Turkish treebank is given in the following sections.

8.1.1 Eryi ğit and Oflazer (2006)

Eryiğit and Oflazer (2006) present a statistical dependency parser for Turkish evaluated

on a subset of the Turkish dependency corpus. They use a backward beam search

algorithm of Sekine, Uchimoto, and Isahara (2000) with a probabilistic classifier. Since

the parser cannot handle non-projective or leftward dependencies, they take only a

subset of the Turkish treebank that consists only of the sentences with non-crossing

rightward links.

Eryiğit and Oflazer (2006) argue that lexicalisation does not have any effect on

the training process. However, we do not think it is trivial to argue this since there

is not enough information for lexicalisation in an IG-basedsystem like theirs. IGs in

Turkish treebank are only defined as components of words and they consist of a string

of morphological tag names. Therefore, an IG does not have a corresponding surface

form.

Their best-performing model recovers 72.3% of the rightward dependencies. This

is 2.7 percentage points higher than their highest baselineand 12.4 points higher than

the baseline that is achieved by linking every word to its rightward neighbour. They

give a word-based accuracy of 81.3% together with results ofa “pure word based”

model. They describe word-based dependency as correct if the current word is depen-

dent on any of the IGs of the target word. They also say that 90%of the words had

their dependents in the range of next 3 words and 4 IGs in case of IG based depen-

dencies. In a word-based system the above claim about the word-based dependencies

would be similar to saying that a word is dependent on the headin thenth position or

n+1 or n+2 which makes it very likely that one of these are the correct head especially

in an only rightward linking system. An assumption about theIGs being independent

entities in the dependency structure is initially made by Eryiğit and Oflazer (2006).

Therefore, it could be argued that calculating word-based dependency accuracy in this

way is flawed. Also, the word boundaries are not known when parsing (because of the
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IG independence assumptions), thus we cannot predict whether any given two IGs are

in the same word or not.

If we look at the statistics of the languages given in Section7.3, we see that the

projective links constitute most of the dependencies in Turkish data. The percentage of

sentences with at least one non-projective link is 33.6% reflecting the fact that the non-

projective dependencies these sentences contain constitute 5.5% of all dependencies.1

Looking at the numbers for the other data sets in 2007 shared task in Figure 7.3, it is

obvious that Turkish, in fact, has the greatest number of non-projective links. Thus,

excluding such a vital part of data compromises both the coverage and interpretability

of the results. Figure 8.1 shows an example non-projective dependency structure in the

Turkish treebank.
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E: There is no exit from that park, anymore.

Figure 8.1: Crossing dependencies in Turkish treebank

Our experiments explained in this chapter are different from Eryiğit and Oflazer

(2006) in four ways. First, we focus on word-word dependenciesas well asIG-IG

dependencies. Second, we parseall sentences rather than just projective ones with only

rightward links. Third, we provide results for parsing withautomatic POS tagging as

well as for gold-standard POS tags. Finally, we provide results for labeled as well as

unlabeled dependencies.

8.1.2 Eryi ğit, Nivre and Oflazer (2006)

Eryiğit, Nivre, and Oflazer (2006) use Nivre’s parsing algorithm (Nivre, 2006; Nivre,

2003) with support vector machines to predict the next action of the parser. They incre-

1These numbers are different than the ones given in CoNLL 2006, which are 11.6 and 1.5 respec-
tively. Given that a corrected version of the treebank was used in CoNLL 2007, we take the more recent
numbers as correct. However, in both versions punctuation marks are connected to a top-level root node
which is artifically created. This causes extra non-projective links in the data-sets for non-sentence-final
punctuation.
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mentally add morphological and lexical information and show that lexicalisation and

the use of morphology improves the parsing performance, contrary to what Eryiğit and

Oflazer (2006) suggest. One other finding is that IG-based dependencies perform better

than word-based. Eryiğit, Nivre, and Oflazer (2006) do not follow Eryiğit and Oflazer

(2006) in calculating word-based dependencies and their findings are compatible with

the results we provide in this chapter.

Results for word-based dependencies in Eryiğit, Nivre, and Oflazer (2006) are

surprisingly low (67.2% unlexicalised and 70.2% lexicalised) compared to the “pure

word-based” score in Eryiğit and Oflazer (2006) (77.7%). This may be because even

though they use the same configuration of labels and tags as Eryiğit and Oflazer (2006),

the evaluation is not compatible because Eryiğit and Oflazer (2006) train only on pro-

jective and rightward linking sentences and evaluate on thesame set while Eryiğit,

Nivre, and Oflazer (2006) train on projective sentences and use the entire treebank

for evaluation. Neither of these parsers predict the non-projective dependencies. This

is similar to the approach we chose when evaluating Collins’parser. We trained on

sentences with different surface order caused by projectivisation and evaluated on the

whole treebank. Since Collins’ parser is a phrase structureparser it does not predict

crossing dependencies, either.

Results of Eryiğit, Nivre, and Oflazer (2006) also show thatword-based depen-

dency results are worse than IG-based dependencies and thatlexicalisation improves

the accuracy. However, the effect of lexicalisation is not uniform over the set of syn-

tactic categories. They also parse the data set of all projective rightward linking depen-

dency subset and observe improvement for both the lexicalised 78.3% unlabelled and

unlexicalised (76.1% unlabelled) systems, lexicalised being a few percentage points

more in all results.

Their results are obtained by ten fold cross-validation on the data. They also give

results on the CoNLL 2006 Shared task on multilingual dependency parsing data set

and report 75.82% unlabelled and 65.68% labelled attachment scores.

8.1.3 CoNLL 2006 Shared Task on Dependency Parsing

The data set used in CoNLL 2006 shared task (Buchholz and Marsi, 2006) for Turk-

ish treebank is a split set of roughly 5000 training sentences and 600 test sentences.

While converting the treebank to CoNLL format, several rather unconventional deci-

sions were made about the way to translate the dependencies into the target format.
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The punctuation is not evaluated in CoNLL but Turkish dependency treebank uses

some commas as conjunctions. This brings in a problem of incompatibility among

coordinations with comma and coordinations with conjunctions.

Coordination with commas were translated as shown in Figure8.2 and Figure 8.3.

Commas which were heads of conjunct heads in the original version were made to

depend on these heads and conjunct heads were linked directly from right to left.

We believe, the way one conjunct was linked to the next one to the right proves to

be problematic, since losing the constituency informationmight change the probability

distribution and the consistency in the treebank. The constituency information is lost

when the label of the first conjunct is changed. This is illustrated in Figure 8.3 and

Figure 8.4. Therefore, in terms of statistical parsing, thenumbers for different types

of coordination changes, will make it difficult to for any decoder to differentiate be-

tween these. Also inconsistency between sentences with punctuation versus sentences

with clitics as conjunctions will arise because the same configuration is not applied to

conjunctions such asandandbut.

1 Hülya Hülya Noun Prop A3sg|Pnon|Nom 13 SUBJECT

2 , , Punc Punc 13 PUNC

3 Onu o Pron PersP A3sg|Pnon|Acc 5 OBJECT

4 seri seri Adj Adj 5 MODIFIER

5 düşün düşün Verb Verb Pos|Imp|A2sg 8 COORDINATION

6 , , Punc Punc 8 PUNC

7 hadi hadi Interj Interj 8 VOCATIVE

8 gel gel Verb Verb Pos|Imp|A2sg 10 OBJECT

9 , , Punc Punc 10 PUNC

10 dedi de Verb Verb Pos|Past|A3sg 11 SENTENCE

11 ve ve Conj Conj 13 COORDINATION

12 kolumdan kol Noun Noun A3sg|P1sg|Abl 13 OBJECT

13 çekti çek Verb Verb Pos|Past|A3sg 0 ROOT

14 . . Punc Punc 13 PUNC

Hülya , Onu seri düşün , hadi , gel , dedi ve kolumdan çekti .

Hulya , it-Acc quick think , let’s , come , say-Past and arm-Abl pull .

E: Hulya said “think that quickly, come on”, and she pulled myarm.

Figure 8.2: A sentence from CoNLL test set

One third of Turkish data set consists of non-scoring tokens. This is mostly caused

by the representation style of IG-based dependencies. IGs have their own lexical rep-

resentation, independent from the word they belong to. However, some LEMMA and

FORM fields are changed into “” character to differentiate between an internal IG and
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Figure 8.3: Graphical representation of the sentence in Figure 8.2
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SENTENCE SENTENCE

Figure 8.4: The original dependency structure of the sentence

a final IG. Internal IGs always depend on the next lexical element. The dependency

emanating from the final IG of a word goes to the head IG of that word. An exam-

ple of this is in (8.1). Word-internal dependencies were treated like punctuation, and

were excluded from scoring. However, we believe, and show inSection 6.4.7 that this

representation causes loss of information and may hurt the performance of the parsers

unnecessarily.

(8.1)

1 - - Punc Punc 9 PUNC

2 Galiba galiba Adv Adv 9 S.MODIFIER

3 siz siz Pron PersP A2pl|Pnon|Nom 8 SUBJECT

4 insanları insan Noun Noun A3pl|Pnon|Acc 6 OBJECT

5 yönlen Verb Verb 6 DERIV

6 Verb Verb Caus|Pos 7 DERIV

7 yönlendiren Adj APresPart 8 MODIFIER

8 takım Noun Noun A3sg|P3sg|Abl 9 DERIV

9 takımındansınız Verb Verb Zero|Pres|A2pl 0 ROOT

10 . . Punc Punc 9 PUNC

Turkish data is the most difficult to parse looking at the average parse score among

all languages. This is attributed to 8 different genres in Turkish data and high per-

centage of unseen LEMMA and FORM values in the Turkish test set by Buchholz

and Marsi (2006). One of the best average scores was by McDonald, Lerman, and

Pereira (2006). Their results show that the use of morphological features for treebanks
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LA UA data

Eryiğit and Oflazer (2006) - 77.7 part

Eryiğit et al. (2006) 62.0 70.7 all

Çakıcı and Baldridge(2006)-MST 72.3 84.9 all

Çakıcı and Baldridge (2006)-MST 72.6 85.6 part

Table 8.1: Word-based Turkish parsing

LA UA data

Eryiğit and Oflazer (2006) - 73.5 part

Eryiğit et al. (2006) 64.9 73.8 all

Eryiğit et al. (2006) 68.9 78.3 part

CoNLL 06 (by Nivre et al.) 65.7 75.8 conll

CoNLL 07 (by Titov et al.) 79.8 86.2 conll

Table 8.2: IG-based Turkish parsing

that have this information improves the average performance by nearly 1 point in both

the unlabelled and the labelled scores. McDonald (2006)[pp.100] reports that Turkish

parsing scores lose about 2 points for unlabelled and 2.6 points for labelled accuracy

when morphological features are not included. Turkish is the most affected with inclu-

sion of these features among languages.

8.1.4 CoNNL 2007 Shared Task on Dependency Parsing

A comparison of the parsers for Turkish is given in Tables 8.1and 8.2. Only the

numbers that are comparable with each other are included, such as the “pure word

based” results for word based dependency recovery in Eryiğit and Oflazer (2006). Also

note that all punctuation is included in evaluation in Eryi˘git and Oflazer (2006) and

CoNLL 2007 whereas trivial punctuation (marking the root node) are not included in

results of Çakıcı and Baldridge (2006) and punctuation wasshown to make a difference

of 8 points in Nivre et al. (2007). The best score achieved by Nivre et al. (2006) in

CoNLL 2006 and by Titov and Henderson (2007) in CoNLL 2007 shared tasks.

The quantitative difference between CoNNL 2006 shared taskand 2007 shared

task Turkish parsing results is significant. It is seen that CoNLL 2007 results are
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considerably better. This could be because of several reasons. First of all, punctuation

was included in CoNLL 2007 evaluation. Secondly, training set grew in size since a

new development set was annotated. Also this development set is a different set and

changes the genre ratios in training and test. We believe that the biggest contribution to

this improvement is the fact that a subset of the correctionswe explained in this thesis

were applied to the Turkish treebank in between 2006 and 2007shared tasks. With or

without punctuation 6 percentage points of improvement wasobserved in the overall

result for Turkish (Nivre et al., 2007).

8.2 Tree-Based Models

In order to use a phrase-structure parser with the treebank,it is necessary to create

trees out of the annotated dependency structures. We chose amethod similar to the one

suggested by Collins et al. (1999) for Prague Dependency treebank for Czech. In this

section, we describe a few simple strategies that dramatically improve the performance

of phrase-structure parsers for dependency recovery.

8.2.1 Mapping Dependencies to Trees

Collins et al. (1999) outline three choices when creating trees from dependencies: (a)

branching factor, (b) choice of non-terminal labels, and (c) the set of POS tags to be

used. A fourth choice, which they do not mention, is how to handle non-projective

dependencies.

We create the flattest possible trees and use the POS tags to create non-terminal

labels as explained in Collins et al. (1999). Tags are derived from the morphological

analyses in the treebank; there are 15 tag types in the most basic tag set. Dubey and

Keller (2003) also use flat trees because of the nature of the German treebank and find

that sister-head dependencies are much more useful than head-head dependencies that

are dominant in Collins parsers.

344 of the 5620 sentences have at least one crossed dependency. This makes the

mapping process non-trivial. There are ways of faithfully representing crossed depen-

dencies using mechanisms such as traces. However, this would involve considerable

effort. Our goal is to compare thestraightforwardapplication of a phrase-structure

approach to the MST model, which handles crossed dependencies natively. Under

our approach for mapping dependency structures to phrase structure trees, dependents
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appear immediately adjacent to their heads. This gives the correct head-daughter de-

pendencies but changes the word order from that in the original sentence. Collins’

parser is seen as a phrase structure baseline for Turkish dependency parsing.

8.2.1.1 Coordination

Coordination is represented as a sequence of head labels andthe COORDINATION label

in the Turkish Treebank. If the modifier coordination is considered in (8.2), the first

conjunct is linked to the conjunctive wordvewith a MODIFIER dependency link and

then a COORDINATION link goes fromve to the second conjunct, and finally, the last

conjunct links to the head of the sentence with a MODIFIER link. This translates to a

phrase structure model as in Figure 8.5 with the translationmethod used here.

(8.2)

������� �� 	
������� ����� �
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��� ��	�����

He came running and jumping.

S(TOP)

VerbP

AdvP

ConjP

Koşarak(ADV) ve(CONJ)

zıplayarak(ADV)

geldi(VERB)

.

Figure 8.5: The parse tree for the sentence in (8.2).

A more phrase-structure friendly way of representing coordination dependencies is

used in some other treebanks. This can simly expained as making the conjunctiveve

the head of coordinating phrases and then linking it togeldi, as shown in (8.3). This

would ensure that coordinating elements are on the same level and would form a tree

as in Figure 8.6. For now, we choose to make the minimal changes to the baseline trees

in this study, but the impact of such tree-transformations could be the focus of future

experiments.

(8.3) ������� ��	
������ �
�� �

����� ����� �����

����
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S(TOP)

VerbP

ConjP

Koşarak(ADV) ve(CONJ) zıplayarak(ADV)

geldi(VERB)

.

Figure 8.6: The parse tree for the sentence in (8.3).

S(TOP)

VerbP

NounP

NounP

Vahdettin’in(NOUN) imparatorluğu(NOUN) satmayı(NOUN)

düşünmediğini(NOUN)

okuyorsunuz(VERB)

.

Figure 8.7: The basic mapping does not distinguish NPs from the subordinate clauses.

8.2.1.2 Punctuation

Apart from the sentence final punctuation that the sentence head is dependent on, all

other punctuation is ignored by the translation process, unless a dependency link em-

anates from them (e.g commas in coordination, sentential complementation).

In our experiments, we have excluded punctuation without dependency links from

all scoring.

8.2.2 Modifications to the Baseline Trees

The morphological structure of each word is represented in inflectional groups (IGs)

in the treebank. The POS tags we use for the parser are derivedfrom these inflectional

groups, which we use to create four distinct tag sets.

Our basic tag set uses only the POS tags in a word’s last IG. Forexample the POS

tag isVerbfor (8.4), andNounfor (8.5).

(8.4) istemiyorum“ I don’t want...”

IG=’[(1,”iste+Verb+Neg+Prog1+A1sg”)]’

(8.5) kurtulmak“ to escape”

IG=’[(1,”kurtul+Verb+Pos”)(2,”Noun+Inf+A3sg+Pnon+Nom”)]’



8.3. POS tag sets 135

S(TOP)

VerbP

Verb NounP

Verb NounP

Vahdettin’in(NOUN) imparatorluğu(NOUN) satmayı(VERBNOUN)

düşünmediğini(VERBNOUN)

okuyorsunuz(VERB)

.

Figure 8.8: The improved mapping with extended pos tags.

However, this causes some problems regarding the way subordination and extraction

are represented in the treebank for sentences like (8.6). Use of basic tags results in the

tree in Figure 8.7.satmayıanddüş̈unmedĭgini are both subordinate verbs, Howevet,

there is no way to discriminate between a subordinated clause and aNounPwith the

flat tree structure we derive from the dependencies since they have the same basic

part-of-speech tag.

(8.6)
Vahdettin’in imparatorluğu satmayı düşünmediğini okuyorsunuz

Vahdettin-Gen empire-Acc sell-Inf-Acc think-Neg-PastPart-Agr read-Prog

“You read that Vahdettin was not planning to sell the empire”.

We create enriched POS tags for our second configuration by concatenating the

original tag of the morphological stem and the final tag. Words with only one inflec-

tional group are not affected by this change. This givesVerb for (8.4) andVerb Noun

for (8.5). This kind of information is expected to help subcategorisation choices for

some words such as subordinated verbs and thereby help with predicting the relation

between such words and their dependents. This means thatVahdettin’inand impara-

torluğu will be correctly identified as a dependent of the subordinated verbsatmayı

instead of being clustered as a noun group. The same holds forthe subordinated verb

düş̈unmedĭgini and the rest as shown in Figure 8.8. A detailed description ofdifferent

tags sets created by including varying levels of lexical andmorphological information

is given in Section 8.3.

8.3 POS tag sets

There are 102 morpheme names in the Turkish treebank. Not allof them can co-occur

being restricted by the rules of morphotactics. In a real-life application, however, even
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only the ones thatcanco-occur together with the possibility of the permutation of IGs

containing them will give rise to sparse data problem for morphological (or part-of-

speech) tagging. This means we cannot use the combination ofall the morphemes

as they appear in the data which are as sparse as the inflected forms of the words

themselves. We need to find means to represent all the necessary information while

preserving the compactness of the part-of-speech tags. Forthis we suggest several

means of representation.

Turkish treebank does not have separate POS tag information. POS tags we men-

tion here are drawn from the morphological parses of the words in the treebank. We

tested the effect of using different POS tag sets on performance of the dependency

parsers. We added the derivational boundary information upto a level of two in the

POS tags, and then we added case information to nouns. All these are morphological

information. However, the trade-off between data sparsitycaused by using very rich

POS tags and performance gain by using more informative tagsstarts to become biased

against the performance gain at some point in between using 2levels of derivational

tags and case and using full IG tags that are given in the treebank data. This does

not mean that when category types are diverse then we will always lose performance.

For instance, although the CCG category types derived from the data are 450 com-

pared to 15 basic POS tag types, using CCG categories as tags boosts the performance

of unlabelled results for MST parser to about 95% from about 85%. This is because

CCG categories carry even more information than morphological categories. It has

been argued and shown that when given supertags that containas much information as

CCG categories contain parsing is much easier and very accurate (Bangalore and Joshi,

1999; Clark and Curran, 2006). Hockenmaier (2003a) makes a similar comparison of

CCG tags with Penn Treebank style part-of-speech tags.

We used different types of POS tags that are enriched with morphological infor-

mation that is present in the treebank data. The first set is the control set that only

contains the actual part-of-speech information of the inflected (or derived) word. The

other tagsets are obtained by gradually adding more morphological information on

these basic tags.

In a typical morphological structure of a derived word (See Figure 8.5) that is made

up of IGs, there are as many POS tags as there are derivationalboundaries. In (8.5)

the verb rootkurtul goes through nominalisation. The next more informative POStag

set is obtained by concatenating the POS tags of the first IG, which is the POS tag

of the root word to the POS tag from the last IG which is the actual POS tag of that
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name info example

BAS last IG tag Noun

EXT first& last IG tag Verb Noun

CAS BAS+case for nouns NounNom

EC EXT+case for nouns NounNom

CRYP 1st letter of each tag in the last IG2NIAPN

Table 8.3: Different tag sets

(derived) word. This way, we differentiate between the rootwords and the derived

words. The POS tag of the nominalised verb in the figure will beVerb Noun instead of

Noun with this schema. We suspect that given that some morphosyntactic phenomena

such as relativisation and causativisation are only markedwith derivational morphol-

ogy and IG-based dependencies, making this distinction will improve the performance

on sentences with these phenomena.

The third tag set includes the basic tag information which issame as the first set.

In addition, this tag set has grammatical case information included for nouns. None of

the other grammatical features are included in this basic tag group.

The fourth set is obtained by extending the second set to havecase information for

surface nouns. All the POS tags apart fromNouns are the same as type 2 POS tags.

Nouns, regardless of whether they are derived or not have POStags:NounCase, Case

being the case information of the noun (or nominalised form).

The last set is created from the last IG of the word. The numberof the IG and the

first letters of all tags in that IG are concatenated to form a cryptic tag. This tag only

contains derivation information implicitly, since a number bigger than 1 means that the

word has more than 1 IG, thus derived.

Table 8.3 shows different POS tag sets used in the experiments and the information

they contain. The example column shows what the tags are in each tag set for the

example in (8.5).

Eryiğit, Nivre, and Oflazer (2008) used a similar approach of combining informa-

tion in POS tags in unlexicalised parsing. They also show that lexicalisation and using

similar morphological information to ours improves parsing performance.
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8.4 Parsing models

8.4.1 Head-driven generative parsing

Collins (1997) describes several lexicalised head-drivengenerative parsing models that

are now widely known and used. They incorporate varying levels of structural infor-

mation, such as distance features, the complement/adjunctdistinction, subcategori-

sation and gaps. The core idea is to decompose the calculation of context-free rule

probabilities by first generating a head and then generatingits left and right modifiers

independently.

We use Dan Bikel’s multi-lingual parsing engine (Bikel, 2002) to train such mod-

els for parsing Turkish. We use Collins’ model 1, so the features are standard ones:

words, tags and distance over heads and modifiers. We also usethe first-order bigram

dependencies described in (Collins et al., 1999). With thisextension, the generation of

a modifier is dependent on the previous modifier as well as the parent and the head:

∏
i=1...n+1

Pl (Li(l i)|Li−1,P,h,H)

We use Bikel’s default approximation of the previous modifier, where it is either the

(a) START symbol (no previous modifiers), (b) a coordinatingconjunction, (c) a punc-

tuation mark, or (d) MISC for all other modifiers.

We train the parser on the trees mapped from the dependencies, as described in

section 8.2.1, and then parse unseen sentences with and without their POS tags. De-

pendencies are then recovered from the trees derived by the parser by reversing the

dependency structure to tree mapping.

Context-free structures are capable of only representing projective dependencies.

To represent ill-nested dependencies on such structures, mechanisms such as traces

must be utilised, and the parser must be made aware of them. Not doing this will mean

that the parser is simply unable to recover such dependencies.

We train a parsing model on trees which have been “uncrossed”and then apply the

model to sentences which may have crossed dependencies in them. In such cases, we

will fail to get the crossed dependencies. We can use this to explore the effectiveness

of different configurations and compare them to the non-projective parsing models.
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8.4.2 Discriminative dependency parsing

While phrase-structure parsers such as that of Collins are widely-used for recover-

ing dependencies as well as syntactic structures, there aremany others which solve

the dependency parsing task directly, beginning with Eisner’s cubic generative depen-

dency algorithm (Eisner, 1996b). McDonald, Crammer, and Pereira (2005) provide

a discriminative version of Eisner’s dependency parser that scores alternative analyses

using large-margin constraints determined with the MarginInfused Relaxed Algorithm

(MIRA) (Crammer and Singer, 2003). For English, this parserperforms on par with

using a Collins model to recover dependencies, yet is far more efficient.

McDonald et al. (2005) define a new algorithm that formalisesdependency pars-

ing as the problem of finding a maximum spanning tree in a directed graph. Again,

MIRA is used to determine the weights of dependency links as part of this computa-

tion. This algorithm has two major advantages: it runs inO(n2) time and it handles

non-projective dependencies directly. McDonald et al. (2005) show that this algorithm

significantly improves performance on dependency parsing for Czech, especially on

sentences which contain at least one crossed dependency. Given this, it is natural to

expect that the algorithm will be similarly useful for Turkish, and our experiments

confirm this.

We use McDonald’s MSTParser implementation with the same four tag sets as we

do with the Bikel parser. It comes ready with an extensive setof features (McDonald,

Crammer, and Pereira, 2005). These features incorporate almost all the different ways

in which the words and POS tags of a head and dependent (and words/tags in between

them) can be related. These out-of-the-box features prove to be extremely effective.

Because MSTParser uses a discriminative criterion, many more features can be

included without running into problems due to independenceassumptions. We thus

extended the parser to optionally use a wider range of features; specifically, we use

word stems and suffixes to create many new features that contain the relationships of

these to each other, to full words, and to POS tags. We obtain the stems from the

treebank itself, and as suffixes we use the remainder of the word after removing the

stem.2 Performance with these features should indicate whether even such a rough

morphological analysis is useful for parsing morphologically rich languages.

2More precisely, we remove a prefix with the same number of characters as the stem in order to
handle sound changes. For example, the wordtutsăgımhas the stemtutsak; from this we get the suffix
ım.
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8.5 Experiments

We report a number of experiments that compare various configurations which vary the

parser, the tagger, and the tag-sets. We use three parser configurations: Collins’ phrase-

structural model, MSTParser’s projective model, and MSTParser’s non-projective model.

There are four different tag sets (see Section 8.3): (a) the basic ones [BAS], (b) ex-

tended tags (tag of the stem plus tag of final inflectional group) [EXT], (c) case for

nouns [CAS] and (d) the combination of (b) and (c) [EC]. Furthermore, we consider an

enriched feature set for MSTParser that incorporates stemsand suffixes. For tagging,

we use either tags produced by a tagger3 [TT] or gold tags from the treebank [GT].

We perform 10-fold cross-validation over all the sentencesin the treebank. Model

performance is given for both word-level and sentence-level dependency accuracy.4

We provide unlabelled scores for the Collins parser, we giveboth labelled and unla-

belled for MSTParser. Unlabelled word and sentence accuracy are abbreviated as UA

and SUA, respectively. LA and SLA are likewise used for labelled accuracy. Scores

are globally determined rather than averaged over all individual folds. We take word-

final punctuation in the Turkish treebank to constitute theroot symbol (familiar from

other work on dependency parsing) in our evaluation. We do this because the word-

final punctuation is given a dependency link to a dummy root symbol, but this happens

unambiguously for all sentences. This link is thus trivial to identify, so we exclude it

from consideration for scoring all our models.

Turkish is a predominantly head-final language, so the toughest baseline is one for

which all words depend on the word immediately to the right. This baseline correctly

captures 63.2% of the unlabelled dependencies. The left branching baseline simply

highlights how fewadjacentleftward links are in the treebank – just 6.1%.

8.6 Results

Table 8.9 shows the performance of the Collins model under the various configurations.

We see that even with the most basic tag set, the parser easilybeats the right-linking

baseline. Using the richer tag sets helps considerably, mirroring the results of Collins

et al. (1999) for Czech based on similar strategies. Becausemany Turkish words

convey what would require several words in English, it is toocrude to just label them

3We use the OpenNLP tagger (opennlp.sf.net).
4We score our models with the evaluation script used for the CoNLL-X dependency parsing shared

task, and evaluate significance with Dan Bikel’s significance tester.
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Model UA SUA

LEFT 6.1 4.3

RIGHT 63.2 16.2

BAS-TT 71.9 35.6

BAS-GT 73.6 37.5

EXT-TT 74.0 36.3

EXT-GT 76.2 39.0

CAS-TT 76.2 38.5

CAS-GT 77.8 40.7

EC-TT 77.4 38.9

EC-GT 79.3 41.5
LEFT = left branching baselineRIGHT = right branching baselineBAS= basic tag set

EXT= extended tag set (ex:NounVerb) CAS= case information for nounsEC=

extended tag + caseTT= tagged dataGT= gold tags

Figure 8.9: Performance of Collins model with different tag sets.

with simple tags likeNoun. The extended tags (EXT), such asNounVerb, are crucial

for getting the syntactic distribution of such words correct. Case information on tags

(CAS) is also fundamental; for example, nominative and genitivenouns appear in very

different contexts, so collapsing them as in the basic tag set keeps the parser from being

able to handle them appropriately. From the basic tag setBAS to the most complete

EC, performance is improved by 6%.

Unsurprisingly, performance suffers when using tags from the tagger rather than

the gold standard tags. However, the drop is not great, and the 77.4% accuracy achieved

by the model using theEC tags is well above the 63.2% baseline — and it is obtained

with only access to the raw words. Note that the parser is capable of tagging for itself –

for the same configuration using parser tags instead of the tagger’s, the performance is

74.6%. This is actuallynot in line with many previous results, where it is often found

to be better to let the parser tag for itself than to use a POS tagger. This is probably

due to the fact that both the corpus and the tag sets are small,so the maximum entropy

tagger is able to model the tags themselves more effectivelythan the parser, which ob-

tains its probabilities directly from frequence counts andis thus more reliant on large

amounts of data.

Table 8.10 shows the results for the non-projective maximumspanning tree parser.
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Model UA SUA LA SLA

BAS-TT 79.0 39.1 61.5 19.6

BAS-GT 81.5 42.7 65.9 22.9

EXT-TT 80.0 40.5 62.6 20.1

EXT-GT 83.2 44.6 67.9 23.5

CAS-TT 79.8 40.7 64.7 21.7

CAS-GT 82.5 44.5 70.0 26.6

EC-TT 80.6 41.7 65.3 22.3

EC-GT 84.5 46.9 72.1 28.2

Figure 8.10: Performance of MST non-projective model with different tag sets.

Across the board, this parser clearly beats the Collins parser on recovering unlabelled

dependencies. When given gold tags, the MST parser given access to the same tag

set beats the Collins parser by over 5%. It also shows less variance to the choice

of tag set, with only a 3% difference betweenBAS andEC, compared to 6% for the

Collins parser. However, its performance when using tags from the tagger rather than

gold tags is relatively more affected than the Collins parser. Nonetheless, its absolute

performance even with tagger tags is still well above that ofthe Collins parser.5

The labelled scores for the MST parser also show some interesting patterns. Most

obvious is that labelled performance is more heavily affected than unlabelled when the

parser is given tags from the tagger. This is unsurprising since some tags correlate

closely with some labels, such as the tagNounNom(nominative-case noun) and the

label SUBJECT. On a similar note, we see that theCAS tag set (where case is given)

improves labelled accuracy from 65.9% for the basic set to 70.0%, a more significant

jump than the 67.9% provided by theEXT tag set.

Table 8.11 provides the results for when the MST parser is given the stems and

suffix features in addition to the word and tag features that come out of the box. The

additional features provide a significant boost in performance (p < 0.05) for all con-

figurations. Most interestingly, the performance when using the tagger tags is a more

marked improvement over the model with stems and suffixes. The stems and suffixes

essentially provide a means to lexicalise the model with less sensitivity to data sparsity

5Performance would presumably not be as degraded if the parser wastrainedon tags from the tagger
rather than gold tags. That way, the material that the parsertrains on is deficient in similar ways to the
material it is tested on.
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Model UA SUA LA SLA

BAS-TT 80.6 41.2 62.3 19.4

BAS-GT 83.3 45.5 66.7 22.9

EC-TT 81.3 42.6 65.8 22.5

EC-GT 84.9 47.7 72.3 28.2

Figure 8.11: Performance of MST non-projective model with the BAS and EC tag sets

using stem and suffix features.

than full words on their own. They thus help keep the model from choosing poorly

when it is given an incorrect tag from the tagger. This indicates that lexical informa-

tion is both useful and sufficient despite the small size of the treebank, contra Eryiğit

and Oflazer (2006), whose statistical dependency model paysattention only to tags and

distance measures.

The projective dependency parser (Eisner’s algorithm) actually performs very sim-

ilarly to the non-projective one. For example, with gold tags, theEC tag set and

the stems and suffixes features, it achieves 84.8%/48.1% UA/SUA and 72.2%/28.5%

LA/SLA, not significantly different from the performance attained by the non-projective

parser (seeEC-GT in 8.11). This is actually not very surprising, given that only 5% of

the dependencies in the treebank are crossed. Nonetheless,we can see the impor-

tance of the non-projective algorithm more clearly by scoring both models on just the

344 sentences that had at least one crossed dependency. For these, the non-projective

parser with theEC tag set and the stem and suffix features achieves 76.3%/64.0%unla-

belled/labelled accuracy. The projective parser with the same tags and features obtains

75.1%/62.9%. This mirrors what McDonald et al. (2005) foundfor Czech, though the

difference they found was greater: 81.5% for the non-projective versus 74.8% for the

projective.

8.6.1 Rightward and Non-crossing Dependencies

In the treebank, there are 3501 sentences which have only rightward links.6 These are

the sentences Eryiğit and Oflazer (2006) used in their evaluation. Their best model

achieved 77.2% word-word UA on these sentences. Our bestprojectivemodel (EC-

6This is a slightly different number than that given by Eryiğit and Oflazer (2006) (3398) This might
be because we do not count crossed dependencies on the IG level.
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GT) gets 85.6%/53.1% UA/SUA and 72.6%/31.6% LA/SLA on these sentences. This

large improvement should be considered in the light that ourmodel can posit left-

ward links, a degree of freedom that is not granted to Eryiğit and Oflazer’s model.

Unsurprisingly, on these test sentences, the projective parser is slightly, but signifi-

cantly, better than the non-projective one’s performance of 85.4%/52.3% UA/SUA and

72.2%/30.9% LA/SLA. The Collins model achieves 81.6%/47.8% UA/SUA on the

rightward-linking sentences. Please note that on the sentence level, we assign correct

dependency structures to almost half of the sentences.

Model UA SUA

BAS-TT 72.6 39.6

BAS-GT 73.6 41.5

EC-TT 79.7 44.8

EC-GT 81.6 47.8

Figure 8.12: Performance of Collins model with different tag sets on sentences with

only rightward links.

Model UA SUA LA SLA

EisnerBAS-GT 82.0 47.4 64.9 25.0

MST BAS-GT 83.3 45.8 66.7 23.1

EisnerEC-GT 85.6 53.1 72.6 31.6

MST EC-GT 85.4 52.3 72.2 30.9

Figure 8.13: Performance of discriminative parsers with different tag sets on sentences

with only rightward links.

8.6.2 Part of Speech Tagging

To contextualise our results, we feel it important to stressthat most work on depen-

dency parsing uses gold standard POS tags as input to the parser. Our absolute best

result of 84.9% byEC-GT with stems and suffixes can thus be compared to other work

which assumes information beyond just the word string, including the results presented

in Eryiğit and Oflazer (2006) for Turkish. Yet for a parser tobe useful outside the con-

text of the experimental sandbox, it needs to be able to deal with untagged text. Our
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best configuration for this more stringent criterion is the MST parser with theEC tag

set, tags from the tagger, and without features based on stems and suffixes (the for-

mer of which we obtain from the treebank, not automatically). This model, shown as

EC-TT in Figure 8.10, obtains 80.6% UA.

8.6.3 CCG categories as supertags

We show that even with a parser that is not able to use the structural information in

CCG categories, including them improves the performance ofparsing. We integrated

CCG categories as simple features to MST parser. Using categories as unanalysed

identifiers boosted the performance of the parser. This could be thought of as an upper

bound since we use gold standard tags that we induced from thedata automatically

(Chapter 5 and Chapter 6).

Foth, By, and Menzel (2006) describe a recent study. They usesupertags to guide

dependency parsing of German. The supertags they use are notCCG categories but

they are surprisingly similar to CCG categories in terms of the kind of information

they contain. They have directionality information and head and argument distinctions.

Foth, By, and Menzel (2006) also integrate the relation names and local context of the

word into the supertags. They use a different parser from theone that is used here.

Foth, By, and Menzel (2006) achieve 24% error reduction in parsing performance over

their baseline which they say is already competitive.

Model UA SUA LA SLA

asPOS TAGS 93.66 68.70 87.10 46.92

asFT - BAS 93.92 69.52 87.31 47.42

asFT - EC 94.60 71.36 87.80 47.92

asFT - CRYP 93.90 68.02 87.84 47.86

ST - EC 66.60 16.29 35.12 0.62

Figure 8.14: Performance of MST non-projective parser with CCG categories

Our first experiment acts as a baseline performed to see if using CCG categories

would help the parser at all. Thus, we replaced all POS tags with the CCG categories of

the words. The boost in performance was encouraging (93.66%unlabeled and 87.10%

labeled). As shown in the previous section and in (Hockenmaier, 2003a) using more in-

formative part-of-speech tags boosts the performance. CCGcategories are very infor-
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mative tags since they contain information pertaining to predicate-argument structure

and local and global dependencies.

We explored with a few more experiments whether this information could be better

used. MST parser uses a feature called “coarse tag” which is the first letter of the

POS tag. In our second set of experiments we used POS tags as coarse tags and CCG

supertags as fine-grained tags. The results of these are shown in [FT-BAS] and [FT-EC]

rows. [FT-BAS] uses our basic pos tags as coarse tags and [FT-EC] uses the extended

tags. This shows that using the extended POS tags always yields better results with

94.60% unlabelled and 87.80% labelled accuracy. It is also important to note that 71%

of the sentences have completely correct unlabelled dependencies.

In the last experiment in Figure 8.14 we used the supertaggerdescribed in Clark and

Curran (2004b) as a front-end to the parser [ST]. The performance of the supertagger

was very low. This result was expected given the size of the data and uninformativeness

of the POS tags in Turkish treebank. This had a big impact on the MST parser decisions

and the performance radically dropped when given mostly wrong CCG supertags by

the supertagger.

8.6.4 Inflectional Groups as lexical entities

The results were better when the IGs were included in the dependency structure but de-

pendency links were normalised. This means the dependency links were always from

the dependent to the stem (the first IG) of the head and they always emanated from

the last IG of the word. We have 64992 tokens (IGs) in morphemic data compared

to 53826 tokens (words). The IGs could further be decomposedinto smaller morpho-

logical units. Here, only derivational morphology is takeninto consideration when

forming the IG boundaries.

The first two rows in Figure 8.15 shows the IG to IG dependency recovery with

no additional features used apart from the ones MSTParser uses. The first row is the

attachment score for the exact linking corresponding to theones in the Treebank. The

second row is the score obtained by using only the stems of thefull words and second

morpheme tags for IGs.

The third and fourth rows show the attachment score with CCG categories given as

features. When the dependent is always connected to the firstIG of the head word the

scores are higher than the “correct” IG dependency score given in the fourth row. This

difference may be caused by annotation inconsistencies which we encountered many
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Model UA SUA LA SLA

correct IG lexicalised 81.08 33.21 72.0 18.45

correct IG stems only 80.66 32.5 70.7 16.65

first-IG, gold CCG cats 95.08 69.74 88.96 46.14

correct IG, gold CCG cats 93.59 65.10 87.46 43.41

correct IG, supertagged 74.41 21.09 58.17 9.68

CoNLL set with conll eval

(non-stem igs removed) 89.72 - 84.39 -

CoNLL set with conll eval 92.37 - 88.37 -

CoNLL set with msteval 93.03 54.98 89.63 43.92

Figure 8.15: Performance of MST non-projective parser with inflectional groups as en-

tities

times in the data or simply because there was not enough data to train on for non-initial

IG dependencies. 88% of the non-null dependencies were dependencies to the first IG

of the head word. Only 10.2% were to the second IG and the rest were distributed

among 3rd, 4th and 5th IG dependencies.

Gold standard tags give an upper bound on the parsing results. The fifth row shows

the results with a supertagger front-end to the parser. Although supertagging accuracy

is higher than it is for word-based results, it is still very low. The system is trained with

gold CCG categories and the test set was supertagged before parsing. This results in a

dependency accuracy which is lower than the results when no CCG categories are used

which is shown in the first row. Labelled dependency accuracyseems to be more af-

fected by supertagging accuracy. This is expected because CCG categories are closely

related to relation types in dependencies. For instance a noun will be labelled as OB-

JECT if it has category NP, but if it is assigned NP[nom] by the supertagger, the label

will be SUBJECT instead. Taggers are affected by the training data size as all other sta-

tistical systems. We show by comparing word-based and IG-based supertagged results

that morphological smoothing improves both the performance of the supertagger and

the dependency parser. However, an increase in training data size will undoubtedly

result in higher accuracy in supertagging which is about 53%in the experiments here.

The last 3 rows show the performance of MSTParser on a different evaluation set,

namely, CoNLL 2006 split set of Turkish. The results are evaluated with the CoNNL
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evaluation script The conversion to CoNLL data set is discussed in Section 8.1.3. We

treat internal IGs just the same as other elements in the dependency structure. The row

labelledCoNLL set with conll eval non-stem IGs removedshows the accuracy when

words are turned into “” character if they are not final IGs. This is done to make

the results comparable to the results in CoNLL 2006. The lastrow in the table shows

the evaluation that is done on all IGs, which, we believe, is more appropriate for the

treebank.

8.7 Conclusion

We have demonstrated a range of dependency parsing regimes for Turkish. All our

models perform well above a right-linking baseline, even when using tags from a tagger

rather than gold standard ones, although it is a very high baseline consistent with head-

final nature of Turkish. Simple extensions to the tag set provided large improvements to

parsing accuracy for all models. The discriminative dependency parsers of McDonald

et al. (2005) easily outperform the Collins-style phrase-structure parser. The difference

can be attributed to the fact that the dependency parsers attack the problem directly

and do not need the extra level of indirection of phrase structure trees, which can have

complications such as training on phrase structures with uncrossed orders and then

testing on sentences with crossed dependencies.

We also extended the MST parser with features based on word stems and suffixes

in addition to full words and tags. These features infuse morphology into the parsing

model, which would be expected to be important in a morphologically rich language

like Turkish. Our results show significant improvements with these features, especially

when the parser was supplied with tags from a tagger.

Even though the non-projective MST algorithm and the projective Eisner algorithm

(both using MIRA) achieve similar performance overall, we showed that the former is

significantly better on the subset of sentences in the Turkish treebank which have at

least one crossed dependency.

Our experiments with CCG categories as supertags proves once more that “su-

pertagging is almost parsing” (Bangalore and Joshi, 1999) even when used as features

for a discriminative dependency parser that computes the probabilities of the depen-

dencies directly regardless of whether they give a correct CCG derivation or not. CCG

categories are very informative supertags and using gold standard supertags gives us

the upper bound results for parsing. However, the importance of high accuracy su-
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pertagging is significant. We will focus on this issue in the next chapter.

Experiments with a morphologically sensitive model show that there is great poten-

tial in using morphological information in parsing because1) morphological smooth-

ing is inherently a good way to overcome sparse data problem for relatively small

corpora 2) use of this extra information proves to affect theparsers decisions in a posi-

tive and more linguistically accurate way. McDonald, Lerman, and Pereira (2006) also

show that the use of morphological features improves the performance in multilingual

parsing experiments. The next step in this direction is to use a full morphological

analyser and a disambiguator as a front end to the parsers.

Using stems of the words together with morphological information does not give

the expected improvement. Using inflected forms instead of IGs in the morphemic

models leads to higher accuracy. This is possibly because the morphological informa-

tion is organised with regards to derivational boundaries,which means the stem of a

word does not share the part-of-speech tag as the word in mostcases. This possibly

causes confusion as the dependency is very closely related to the amount of informa-

tion in POS tags, as shown in previous sections. Exploring the effects of including

more information on inflectional morphology is the focus of future research.

We have given state-of-the-art results for Turkish dependency parsing and showed

that there is great potential in using morphological information. We used 10-fold cross

validation in all our experiments and trained and evaluatedthe parsers on the corrected

version of the treebank which proves to be important especially when the results for

CoNNL 2006 and 2007 shared task results for Turkish are compared. CoNNL 2007

uses a corrected version of the data. Turkish parsing results on the average are signifi-

cantly higher with this data set than CoNLL 2006 data set.





Chapter 9

Parsing with Combinatory Categorial

Grammar

Dependencies that are not explicitly represented in the syntactic representation are

as important for semantic interpretation as the ones that are. They are sometimes

referred to as hidden or “deep” dependencies, and are usually found in extraction,

wh-movement, gapping and so on. Predicting deep dependencies has been the focus of

research for some authors of parsers. Some of them tried to solve this problem by post-

processing the context-free parse trees (Levy and Manning,2004; Dienes and Dubey,

2003; Johnson, 2002), while others used more powerful grammars such as CCG to

predict these automatically (Clark, Hockenmaier, and Steedman, 2002; Hockenmaier,

2003a; Clark and Curran, 2007b). In dependency theory, deepdependency parsing is

usually ignored and sometimes resisted. It is claimed that parsing directed graphs that

allow multiple-heads is intractable (McDonald, 2006). However, these dependencies

in natural languages are not arbitrary and, most of the phenomena that cause these and

the crossing dependencies were shown to only require generative power that is slightly

more than context-free. Most non-projective dependency parsers assume arbitrary non-

projective graphs which are difficult to parse. CCG is able torepresent and predict

surface and deep dependencies without any extra effort theoretically. It was shown that

efficient and high-accuracy parsing to predict these non-conventional dependencies is

possible (Clark and Curran, 2007b; Hockenmaier, 2003a).

Another argument is that the deep dependencies are semanticdependencies rather

than syntactic ones, thus they do not need to be present in thesyntactic representation

of dependency graphs (McDonald, 2006). However, dependencies involved in control,

coordination and other phenomena have been included in syntactic representation in

151
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various Dependency theories and multiple-heads and deep dependencies are allowed

in some theories such as Hudson’s (2007) Word Grammar.

In this chapter, we will give a review of wide-coverage statistical CCG parsers. We

will also cover the information regarding adaptation of a state-of-the-art CCG parser

for parsing Turkish. In the final part, we will give the results of parsing Turkish and

compare the outcome with the earlier results of dependency parsing.

9.1 Why CCG parsing

Combinatory Categorial Grammars explain phenomena such ascoordination and ex-

traction elegantly as discussed earlier. CCG parsers recover local and long-distance

dependencies without any post-processing or extra effort.CCG can be parsed in poly-

nomial time with a worst case complexity ofO(n6) (Vijay-Shanker and Weir, 1990;

Vijay-Shanker and Weir, 1993). Successful adaptation of the “spurious ambiguity”

removing methods such as Eisner’s constraints, and chart parsing algorithms that fa-

cilitate dynamic programming made creating very fast wide-coverage statistical CCG

parsers possible. To summarise, CCG is a formalism that is expressive enough, and

the output of CCG parsing is highly informative. In addition, all this can be done very

efficiently.

CCGBank is the biggest corpus of CCG derivations created semi-automatically by

transforming Penn Treebank into a treebank of CCG derivation trees (Hockenmaier and

Steedman, 2007). The wide-coverage CCG parsers can be divided into groups regard-

ing the methods of statistical models they use and the representation structures they

model on. Hockenmaier’s generative model on normal form derivation trees trains on

CCGBank trees whereas Clark, Hockenmaier, and Steedman (2002) model the depen-

dencies derived from these derivation trees. Clark, Hockenmaier, and Steedman (2002)

create a similar model to that of Collins (1996) modeling dependency structures. Clark

and Curran apply log-linear training methods and they modelon both derivation trees

and on dependencies (Clark and Curran, 2003; Clark and Curran, 2004b; Clark and

Curran, 2007a; Clark and Curran, 2007b). All these parsers use data derived from

CCGbank (Hockenmaier and Steedman, 2007).

Clark and Curran (2006) shows that a parser can be trained with only words and

CCG categories. The dependencies that are used to train the data are extracted from the

category sequences rather than full derivations. The performance of this model is 1.3

points of F-score less than the model trained on the full data. This shows the amount
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of information in the CCG categories.

9.2 Hockenmaier’s (2003) parser

Hockenmaier’s (2003a) parsing models are generative models that are trained on a

CCG-derivation database that is induced semi-automatically from the Penn Treebank.

The translation procedure is explained in Section 5.1. Hockenmaier justifies using

derivation trees with theoretical and efficiency argumentswith regards to the claim by

Steedman (2000) that derivation structures are regarded merely as a record of construc-

tion.

Generative models of parsing estimate the probability of a parse given a sentence

depending on the probability of their parts. On the other hand, in a conditional model

the probability is estimated directly. Hockenmaier uses CKY chart parsing algorithm

with beam search to narrow the search space. Hockenmaier’s model on normal-form

CCG derivations is an adaptation of Collins (1997). Hockenmaier differentiates be-

tween 4 different kinds of expansion, namely,leaf, unary, left, andright. The last two

depend on the information if the head is on the left or the right one of the two sub-trees.

Hockenmaier explains that even though the model does not assign zero-probability

to non-normal-form derivations, in practice, it will always prefer normal-form deriva-

tions. Additional features such as distance do not improve the performance of the

parser, however, Hockenmaier argues that this is because ofinherent characteristics of

generative models such as the trade-off between bias and variance problem described

by Geman, Bienenstock, and Doursat (1992).

Hockenmaier (2003b) proposes a generative model for predicate-argument rela-

tions. This outperforms the earlier results by Clark, Hockenmaier, and Steedman

(2002). Hockenmaier claims that this is the first model to recover all local and long-

range word-word dependencies. It also solves the problems caused by the multiple

heads reported by Abney (1997).

The parsers described in Hockenmaier (2003a) could not be used for parsing Turk-

ish simply because the parser needs CCG derivation trees to train on. Translating the

Turkish dependency treebank to CCGBank representation is problematic because of

crossing dependencies and the lack of markers for non-surface dependencies in the

Turkish treebank (Çakıcı and Baldridge, 2006).
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9.3 Clark, Hockenmaier and Steedman (2002) parser

This parser uses the dependency structures that are derivedfrom the CCG derivations in

CCGBank. This decision is motivated by several factors. First, the evaluation of CCG

parsers with dependencies is much more informative than thePARSEVAL evaluation

based on constituency information. Second, is the convenience of not having to deal

with problems caused by non-standard derivations, spurious ambiguity and such.

In Clark, Hockenmaier, and Steedman (2002), a sentenceSconsists of word-POS-

tag pairsS= 〈w1, t1〉,〈w2, t2〉, ...〈wn, tn〉, and a dependency structureπ is a〈C,D〉 pair.

C is a list of categoriesC= c1,c2,c3, ..cn assigned to each word andD = {〈hfi , fi,si ,hai〉|i =

1, ...m} is a list of dependency relations represented by a 4-tuple including the head

word hfi , the functor category,fi , the argument slotsi and the argument headhai .

Note that this representation does not make any assumptionson how many heads

a word can have, thus allows multiple heads unlike the standard dependency approach

discussed in previous chapters. The probability of a dependency structure is defined as

in (9.1).

(9.1)

P(π) = P(C,D|S) = P(C|S)P(D|C,S)

TheP(C|S) part can be approximated as :

(9.2)

P(C|S)≈
n

∏
i=1

P(ci |Xi)

whereXi is the local context. The category-word pair probabilitiesare calculated us-

ing maximum entropy techniques following Ratnaparkhi (1996) as described in Clark

(2002) and later in Clark and Curran (2004a).P(D|C,S) is written as follows:

(9.3)

P(D|C,S) =
m

∏
i=1

P(hai |C,S)

wherehai is the head word filling the argument slot (dependent wordin the termi-

nology used here) in theith dependency in a list ofm dependencies. The estimation

method used here is taken from Collins (1996). Since the dependency number changes

over different category sequences, they used a geometric mean of p(π) as the ranking

function averaged by the number of dependencies in D. They use a CKY chart parsing
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algorithm similar to the one described in Steedman (2000) and claim to deal with the

redundant analysis in a similar way to what Komagata (1997) did.

Their results were 90.1% precision and 89.9% recall on unlabelled dependencies,

and 81.8% and 81.9% on labelled dependencies on Section 23 ofWSJ Penn Treebank.

Labelled dependencies are regarded as correct when the 4-tuples exactly match with

the gold standard. Unlabelled dependencies are regarded ascorrect when there is some

kind of dependency between two heads regardless of the argument slot the argument

fills. They also give the results on object extraction dependency recovery as a prelimi-

nary perspective on long-distance dependency recovery.

9.4 Clark and Curran (C&C) Parser

Clark and Curran (2007b) describe a number of log-linear parsing models trained on

CCGBank to parse the Penn Treebank. With log-linear models the parse space can be

represented in terms of features, and adding new features isrelatively easy. Clark and

Curran make considerable use of optimisation techniques and parallelized program-

ming to account for the performace requirement of the estimation task. The memory

requirements vary between 25-30GB of memory and an 18-node cluster was used in

the experiments.

There is a dependency model and a normal form model, but they are both evaluated

by the amount of correct dependencies they recover. The output of the parser was also

evaluated on DepBank (King et al., 2003), in order to make a cross-formalism compar-

ison and outperformed the RASP parser (Briscoe and Carroll,2006) even though the

dependency evaluation experiment had certain disadvantages for the CCG system.

The basics of the log-linear model is explained in the rest ofthis Section. The

reader is referred to Clark and Curran (2007b) for a detailedintroduction to the concept

and the implementation details of all the parsers covered here.

9.4.1 Clark and Curran’s (2004a) parser

Clark and Curran (2004b) apply log-linear models that are described in Clark and

Curran (2003) to wide-coverage CCG parsing. They give results for both a dependency

model trained using all-derivations including the non-standard ones and a normal-form

model trained on normal-form derivation trees. They use thesame evaluation method

as Clark, Hockenmaier, and Steedman (2002).
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The dependencies that are used in training the dependency model and evaluating

both models are derived from the CCGBank predicate-argument relations. These de-

pendencies are 5-tuples, examples of which are shown in 9.4.The first element is the

head representing the dependency relation, the second element is the lexical category.

The third element is the argument slot of the word that constitutes the remaining part

of the dependency (the argument, the dependent etc.) which is given in the fourth slot.

The fifth slot is allocated for the locality feature of the dependency. The subscripts on

the word forms show their positions in the sentence. The following dependencies are

derived from the sentence “IBM bought the company”.

(9.4) 〈bought2,(S\NP1)/NP2,2,company4,−〉

〈bought2,(S\NP1)/NP2,1, IBM1,−〉

〈the2,NP/N1,1,company4,−〉

In a sentence with extraction , for instance inThe company which IBM bought, the

dependency betweenboughtandcompanyis as represented in (9.5). This dependency

is not a local one. The final field in the tuple shows that the dependency is a long-range

dependency created by the object extraction category(NP\NP)/(S/NP).

(9.5) 〈bought2,(S\NP1)/NP2,2,company4,(NP\NP)/(S/NP)〉

The probability of a dependency structureπ given a sentenceS is defined as fol-

lows:

(9.6)

P(π|S) = ∑
d∈∆(π)

P(d,π|S)

Here,∆(π) is the set of all derivations that lead to the dependency structureπ. A

conditional log-linear model of a parseω ∈ Ω for a sentence is.

(9.7)

P(ω|S) =
1
ZS

eλ. f (ω)

ω means different things for normal-form model and the dependency model. For

the normal form model it is simply a derivation, however for the dependency model it

is a〈d,π〉 pair.
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They use of efficient numerical algorithms such as Limited-MemoryBFGS algo-

rithm and clusters for keeping the packed charts. They estimate the feature weights by

using simple log-likelihood estimation.

The performance of the two models are very close. The dependency model gives

labelled precision and recall scores of 86.7 and 85.6 and thebest performing normal-

form model gives 87.0 and 86.8. However, it is interesting tonote that Clark and

Curran find that adding long-range dependencies as featureshad no impact on parsing

accuracy. They say it may be because these dependencies are very rare in the linguistic

data. An evaluation on long-range dependencies is also not given in Clark and Curran

(2004b) as the focus is more on efficient parsing. They apply Eisner constraints and

seen rulesconstraints, which ensures only seen rules are used in parsing. Both methods

considerably increase the speed. They also put a 300.000 limit on charts when training

to derive the dependencies. However, the limit is 1million during testing to get the

maximum coverage.

The parsers described in Clark and Curran (2007b) do not account for the type of

ambiguity that Komagata (1997) categorises as the second type of “genuine ambigu-

ity”: “lexico-semantic ambiguity” which means categoriesmay be assigned multiple

semantic types. For instance, in C&C parsers two different types of control – ob-

ject control and subject control – cannot be differentiatedbecause a lexical category

can only return a certain set of dependencies correspondingto a single semantic inter-

pretation.1 The following category is used for both object and subject control (as in

promise), but it does not make the semantic distinction between two.

(9.8) persuade := ((S[dcl]persuade\NP1)/(S[to]2\NPX))/NPX,3

Head passing is performed with variables as shown in the relative pronoun category

(9.9). When we change the direction of the slashes we obtain the object relative particle

in Turkish.

(9.9) who := (NPX\NPX,1)/(S[dcl]2/NPX)

(9.10) -diği := (NPX/NPX,1)\(S2\NPX)

9.4.2 Partial Training (Clark and Curran, 2006)

Clark and Curran (2006) show that only CCG categories are enough to train a parser

1Note that this is a design choice, not a property inherent to CCG.
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and still obtain results within a certain percentage of the results obtained by using fully

annotated data for training.

In contrast to previous CCG parsers that train on the derivation trees of CCGbank,

partial training requires only CCG supertags (lexical categories) to create the training

data for the parser. This is a very important step in efficientparsing, especially when

Clark and Curran (2004b) show that CCG supertagging is very accurate when there is

enough data. This agrees with the finding of Bangalore and Joshi (1999) who show

that supertagging does most of the work when parsing. Training using the derivation

extracted from only category sequences (partially annotated data) also attempts to solve

the annotation bottleneck, since annotation of CCG categories is easier than annotation

with syntactic trees.

Clark and Curran (2006) take the sentences decorated with CCG categories and

attempt to parse these training sentences with a CCG parser that creates many deriva-

tions. They then take the dependency structures that are created by a certain percentage

of all the derivations and assume that these are most likely the correct dependencies.

The gold-standard dependencies are extracted with the helpof the parser described

by Clark and Curran (2004b). The parser returns the dependencies occuring ink% of

all the derivations licenced by that correct CCG category sequence. Settingk=100 has

an effect of returning 100% precision but low recall. This isbecause a dependency

that is in all of the derivations is bound to be in the correct derivation. Decreasingk

increases the recall but decreases precision . They show that whenk is 70% the recall

increases to 85.87 while precision is as high as 99.09%.

The F-score they got from the parser in the end is only 1.3 % less than the parser

trained on full dependency structures. This is a significantresult. This shows the

amount of linguistic information there is in CCG categories.

9.4.3 Supertagging

The supertagger is the crucial component of the C&C parser. Supertagging step boosts

the speed of the parser, because in most cases the most likelycategory is the correct

one. The memory requirement would be impossible to meet without the supertagger,

if for example, the words were assigned all existing lexicalcategory types as Hocken-

maier (2003a) does (Clark and Curran, 2007b).

A variant of the Viterbi algorithm for HMM taggers is used to find the most likely

category sequence for a sentence. The features used are the words and part-of-speech
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tags in a 5-word window and the two previously assigned categories. Clark and Curran

use a tag-dictionary for the word-category pairs occuring together in the data and have

a k=20 limit for the word and the category occuring together.If this constraint is not

satisfied, the POS tag of the word is used instead. Supertagger only assigns the 425

category types that occur more than 10 times in the data.

Multitagging (Curran, Clark, and Vadas, 2006) leaves some lexical category ambi-

guity to the parsing level by assigning a list of categories instead of a single category

to each word. It assigns a list of categories that are within aprobability threshold (β) to

the word. This increases the possibility of assigning the correct category to the word,

while limiting the entries in the chart.

Clark, Steedman, and Curran (2004) show that parsers can easily be adjusted to

adapt to different domains by simply annoatating a number ofsentences to improve

supertagging accuracy on those sentences. Clark, Steedman, and Curran (2004) anno-

tate a relatively small number of sentences by hand with CCG categories. They showed

that this made a significant difference in the accuracy of theparser on questions and

object extraction cases. These are two cases that modern parsers usually fail on. This

shows that supertagging plays an important role in not only improving the accuracy

but also adapting to other domains or hard-to-solve problems in NLP.

9.5 C&C and Turkish

We use the dependency model of the C&C Parser which is described in Clark and

Curran (2007b) for parsing the Turkish treebank. Using CCG categories as features

in MSTParser improved the performance. In the rest of this chapter, we demonstrate

how the C&C parser is modified for creating a parsing model forTurkish and give the

results of the parser. We explore the degree of information the lexicons (morphemic

and lexemic) provide to the CCG parser, and how well the lexicon and the parser

perform on deep dependencies that other parsers cannot handle.

The Turkish word-based (lexemic) CCG lexicon is compatiblewith the surface

syntactic approach. We expect to recover only surface dependencies with this lexicon.

This is because long-range dependencies arising from relativisation, control and such

cannot be represented in this version of the lexicon. Relativisation is treated as simple

nominal modification with the lexical category of a relativised verb as in:NP/NP.

Thus, the dependencies captured with the gold-standard tags and with the lexemic

lexicon will be directly comparable to MST parser results. However, the treatment



160 Chapter 9. Parsing with Combinatory Categorial Grammar

of coordination is internal to the parser and we still hope toget some of the long-

distance dependencies resulting from coordination. Morphemic lexicon is expected to

overcome some of the problems that are inherent in the lexemic approach.

The C&C parser has a dictionary cutoff of 20 which is hardwired into the parser.

However, only 174 words out of 19385 unique words (includingpunctuation) appear

more than 20 times in the lexemic lexicon. Even some functionwords are not in this

list of 174 most frequent words. In the morphemic lexicon there are 6280 distint tokens

in total, out of which 380 occur more than 20 times. The numbers of the distinct words

are significantly different because all the words are eitherstem forms or morpheme-

cluster names rather than inflected forms in the morphemic lexicon. A dictionary cutoff

of k=20 is clearly too high because of the small size of the Turkish dataset. For the

experiments here, we changed this to k=10, although we plan to optimise this value

empirically in the future.

9.5.1 Turkish Markedup File

C&C uses a marked-up file that is integral to parsing as it is used for extracting the de-

pendencies, and controls the head passing mechanism. Each lexicon requires a marked

up file for the categories in the tag dictionary. The markedupfiles for the morphemic

and the lexemic lexicons were annotated manually. Markedupentries look like the

following:

(9.11)

(NP/NP)\(S\NP[nom])

2 ((NP{Y}/NP{Y}<1>){_}\(S{Z}<2>\NP[nom]{Y}){Z}){_}

1 ignore

2 ignore

This is the category for the subject relative particle. The number 2 on line 2 in-

dicates the number of dependencies this category licences.The lines following the

annotation indicate the DepBank representation and names of the dependencies. We

ignore these as the wordignore indicates.
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9.5.2 Turkish Rules

Order changing rules are needed in some cases of scrambling including scrambling

out of possessive constructions. In the following example,the genitive marked noun is

scrambled out of the NP. This example is taken from Hoffman (1995). This approach

considers genitive noun to be the subject of the genitive clause, following Szabolcsi

(1983). In the other example, which is a genitive extractioncase, we solve the problem

with a similar approach.

Preserving directionality is important. However, some order changing rules are

allowed in the Turkish lexicon in exchange for a more compactlexicon to explain

scrambling, such as the extraposition rule that is includedin the Turkish grammar by

Bozşahin (2002). This rule is needed to explain some phenomena of extraposition of

genitive nouns and such. However, it is restricted to NP and only the backward one

is allowed. Bozşahin (2002) shows that the two “legal” wordorders in Turkish are

SOV and OSV and post-verbal scrambling is a case of extraposition, thus is handled

by the following rule. However, he also suggests that the S inthe rule is not discourse

equivalent to S with the unscrambled order, in a way this restricts the use of this rule.

(9.12) Extraposition NP→ S\(S\NP)

(9.13) Ben kapısını boyadım evin.
I door-Poss3sg-Acc paint-Past-Pers1sg house-Gen

T

S/(S\NPnom) NPacc\NPgen (S\NPnom)\NPacc NPgen
< B

(S\NPnom)\NPgen
> B× T

S\NPgen S\(S\NPgen)
<

S

Turkish is mainly head-final. Extraposition rule is only needed to account for argu-

ments scrambling to the right of the head. This is integratedinto the type-raising rules

in the parser. It is a direction changing rule, however it is necessary to handle some

cases of post-verbal scrambling and cases like above. This rule was used in Baldridge

(2002) in Turkish CCG grammar but was not discussed extensively, as it interacts with

discourse and information structure.

Type Raising Rules

We have only added type-raising rules for NPs. These are:

T/(T\NP) whereT ∈ {S,S\NP,(S\NP)\NP,((S\NP)\NP)\NP}

Forward crossing composition was not implemented in the current release of the

C&C parser. However, forward crossing composition is necessary for handling some
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word-orders and other phenomena in Turkish. We lose some coverage because of this,

and we will implement this rule in the future.

9.5.3 Training

Only about 65% of the sentences in the lexemic lexicon give a parse. This number

is just above 70% for the morphemic lexicon. Only the sentences that are assigned

at least one parse is included in the training. We use the sameset of features for the

dependency model as described in Clark and Curran (2007b), however, since we do

not have normal-form derivations, the features that are extracted from normal-form

derivations are excluded.

9.6 Evaluation

An important part of the evaluation process is extracting the gold-standard dependen-

cies to which the output of the parser will be compared. Surface dependencies in

Turkish dependency treebank is different from the output ofthe C&C parser. To make

them compatible, a series of transformations are applied tothe surface dependencies

in the treebank.

1. Coordination is different in two formalisms. The way coordination is annotated

is explained in Section 2.5.4. It is different from the dependencies output by the C&C

parser. C&C outputs coordination dependencies in a way thatthe conjunction is the

head of all conjuncts, and the coordination dependencies are always linked to the head

of conjuncts. METU-Sabancı Treebank notation which has a sequential order, treats

the conjunction as the modifier of the conjunct to the right, in a left to right manner.

Therefore, some dependencies that C&C outputs do not match the dependencies of the

treebank.

2. Predicate-argument relations are not equivalent to word-word dependencies in

terms of directionality. In the case of verbs the order for predicate and argument is the

same as the dependent and head order in C&C, however, a verb modifier, for instance,

has the opposite order. A modifier is a dependent of the verb independency gram-

mar terms, but since it has the functor category, the dependency related to the modifier

category in C&C dependencies is represented as if the modifier is the head (in depen-

dency terms). The order in the gold-standard dependencies was adjusted according

to the dependency label between each dependent and head in the treebank during the
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translation.

3. Punctuation is included in the dependency structure in some cases as explained

in Section 2.3. However, C&C dependencies do not include anypunctuation. There-

fore, we excluded the punctuation that does not have aconj category from evaluation.

This means we will lose points for some dependencies as we show in the next section.

Unlabelled evaluation in C&C checks if the dependency between two words is cor-

rectly predicted regardless of the argumet slot. Labelled evaluation takes into account

the argument slot as well. All 5 fields need to be exactly the same in labelled evalua-

tion. We provide the unlabelled dependency evaluation in this dissertation.

There are also the case of long-range dependencies that are produced in addition to

the standard dependencies. These are extra dependencies that other parsers described

in the previous chapters are not able to recover. These dependencies are very important

in recovering the predicate-argument information in semantic analysis. Examples of

these are, dependencies in extraction, coordination. The performance of the parser on

these extra dependencies will be discussed in a limited fashion in Section 9.7.2

10-fold cross validation is applied to the data that consists only of the sentences

that are assigned at least one parse by the parser given the lexical categories. Precision

and recall figures are provided because the dependencies predicted by the parser and

the gold-standard dependencies may differ. F-score is the is the balanced harmonic

mean of precision (P) and recall (R):F = 2PR/(P+R).

9.7 Turkish Results

The coverage of the morphemic lexicon 70.1%. The most commonreason for a sen-

tence to not be parsed is that one or more of its CCG categoriesare wrong. Another

reason is the ambiguousmarkedup annotations of the categories. The Turkish cat-

egories do not have features apart from [nom] feature on NPs.This causes a great

amount of ambiguity especially in the NP specifier categories. For instance, the head

in the genitive construction is assigned NP\NP by the lexicon induction algorithm. On

the other hand specifiers in some scrambled NP constructionsare also assigned the

same category. The former has the first NP as head whereas the in the latter the second

NP is the head. However, it is only possible to annotate the markedup category in the

2The reason for this is that we do not have gold-standard deep dependency information originally
in the data. Therefore, these dependencies can only be evaluated partly by comparing them to the
secondary links that were added to the treebank data. These secondary links are explained in Sections
2.5.3 and 2.5.4.
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Model coverage cats UPrec URec F

morphemic 70.1 99.46 72.57 81.18 76.63

lexemic 65.3 99.43 65.31 72.72 68.82

no-oracle(morphemic) 97.3 71.55 55.64 63.1 59.13

Table 9.1: Dependency recovery with C&C parser

parser in one way. This costs some coverage points in either choice of annotation.

Table 9.1 shows the performance of the parsers trained with the lexemic and mor-

phemic lexicons. The first and the second line shows performances with the gold-

standard tags. The coverage is lower than the case where the supertagger is utilised

which is shown in the last line. This is because the parser runs in multitagging mode

and the words are assigned less probable categories until a parse is found. Note that

the accuracy of the systems with the gold-standard tags are higher because they are

evaluated on only the sentences that is assigned at least oneparse which is 70.1% of

the sentences in the morphemic case. However, with supertagging the correct depen-

dencies are evaluated against almost all the sentences with97.3% coverage.

9.7.1 Long distance dependencies

The following examples are included to emphasize the different kinds of dependencies

each of the two lexicons can predict. As seen in the examples below, a morphemic

lexicon has the ability to facilitate the correct predicateargument relation assignment

by letting the verb take its arguments and then combine it with the extracted noun while

creating the long-distance dependencies licenced.

This example demonstrates a few linguistic phenomena. Thisis the output of the

parser with the input shown at the bottom. Each line shows a dependency the format

of which is explained in Section 9.4.1. This example demonstrates the solutions to var-

ious phenomena such as subject extraction, coordination and post-verbal scrambling.

Example 9.14 visualises the parser output that is given below in the form of depen-

dencies. Long distance dependencies created by coordination are also extracted. The

parser tends to connect adjuncts to the farthest head, usually the main predicate in the

sentence. If there is an S/S, the parser makes it connect to the last verb.
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(9.14)
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Input:

Gördüğünüz|Verb|S –see

”Noun+PastPart”|PastPart|NP\S –PastPart

gibi|Postp|(S/S)\NP –as

,|Punc|,

hiçbir|Det|(S/S)/(S/S)none of—nominal modifiers

zaman|Noun|S/Stime

kurtulamayacak|Verb|S\NP[nom] –escape—verb with subject extraction

”Verb+Able”|Able|(S\NP[nom])\(S\NP[nom]) –-able—derivation from verb to verb

”Adj+FutPart”|FutPart|(NP/NP)\(S\NP[nom]) –-FutPart—conjunction

,|Punc|conj

özgür|Adj|NP –free

olamayacak|Verb|(S\NP[nom])\NP –become

”Verb+Able”|Able|(S\NP[nom])\(S\NP[nom]) –-Able

”Adj+FutPart”|FutPart|(NP/NP)\(S\NP[nom]) –-FutPart

bir|Det|NP/NP –a

tutsağım|Noun|NP –prisoner

”Verb+Zero”|Zero|(S\NP)/NP[nom] –-Aor

ben|Pron|NP[nom] –I — post-verbal argument (word order scrambling)

.|Punc|.

A coordination example

This is a relatively long sentence in the corpus. The sentences here are much longer

than the average length in the corpus. This is to show that coordination dependencies

are correctly recovered with CCG in this example despite thesentence length. In ad-

dition to the coordination dependencies represented in thetreebank, the dependency

representing subject relation betweenSaffetandyapmışis captured correctly. How-

ever, this could not be carried to the last conjunct because only one C.SUBJECT could

be added to the dependency structure in the treebank due to design restrictions. Thus

the dependency betweenSaffetandoluşturmuştucould not be captured. The input that
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Saffet, too, had extended his father’s fishermen’s cabin at the coast, built a wooden balcony

towards the beach, created a restaurant where seventy people can eat and have fun if needed.

Figure 9.1: A coordination example with more than two conjuncts

consists of words and categories for this example is given below. More examples of

this sort are given in Appendix C.

Input:
Saffet|Noun Nom|NP[nom] de|Conj|NP[nom]\NP[nom]

,|Punc|, babasının|Noun Gen|NP/NP

sahildeki|Noun Loc|NP “Adj+Rel”|Adj|(NP/NP)\NP

balıkçı|Noun Nom|NP/NP kulübesini|Noun Acc|NP

büyültmüş|Verb|(S\NP[nom])\NP ,|Punc|conj

kumsala|Adj|NP “Noun+Zero”|Noun Dat|NP\NP

doğru|Postp|((S\NP[nom])/(S\NP[nom]))\NP ,|Punc|,

ahşap|Adj|NP/NP bir|Det|NP/NP

balkon|Noun Nom|NP yapmış|Verb|(S\NP[nom])\NP

,|Punc|conj gerektiğinde|Verb|S

“Noun+PastPart”|Noun Loc|(S/S)\S yetmiş|Num|NP[nom]/NP[nom]

kişinin|Noun Gen|NP[nom] yemek|Noun Nom|NP

yiyip|Verb|(S\NP[nom])\NP “Adv+AfterDoingSo”|Adv|(S/S)\(S\NP[nom])

elenebileceği|Verb|S “Verb+Able”|Verb|S\S

“Adj+FutPart”|Adj|(NP/NP)\S bir|Det|NP/NP

lokanta|Noun Nom|NP oluşturmuştu|Verb|S

“Verb+Caus”|Verb|((S\NP[nom])\NP)\S .|Punc|.
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Figure 9.2: Average sentence length throughout the corpus

9.7.2 Sentence Length

The average sentence length for the parsed sentences is slightly lower than overall

average sentence length. This indicates that short sentences are easier to parse and a

bigger proportion of short sentences are parsed than that oflong sentences. However,

Figures 9.3 and 9.2 show that after 4500 sentences, there is asteep rise in the length of

the sentences, but the coverage is not affected much by this.That part of the treebank

is composed of news articles. The sentences in this genre arethe longest, however,

they show regular behaviour in the sense that they do not contain as much word order

variation. This means the coverage is affected more by the quality of the lexicon than

the factors like sentence length. We claim this because of the following reasons.

1) The difference between the average sentence lengths for the parsed and unparsed

parts of the data is not too big. The average sentence length for the parsed

sentences is 10.27 tokens as opposed to 11.23 overall average. This means the

average sentence length for unparsed sentences is about 13.3. Therefore, the

parser does not only chose the easiest (shortest) sentencesbut it also takes on the

more difficult ones.

2) It is more likely there will be at least one wrong category when the sentences

are long. In addition to this, long sentences are often ignored when annotation

errors are being checked because of psychological reasons.One tends to correct
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the short, easily comprehensible, sentences first.
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Figure 9.3: Coverage among data

9.8 Supertagging Turkish

Supertagging results are given in this section. The model for the morphemic lexicon

performs better than the one for the lexemic lexicon. It is obvious that the data is too

small since the supertagger does not benefit from taking onlystems of the words as

tokens despite the expectation that this would reduce the number of unseen words and

hence improve the performance. The lack of improvement indicates that the classifier

usually backs off to pos-tags even with the stems as tokens toguess the supertag which

results in no improvement on the supertagging accuracy. Forthe first time, we have

used case information for an IG-based experiment. Using case information for IGs

with noun and pronoun first tags improved the performance by 11 points. The results

in word based supertagging are as expected. Once again extended part-of-speech tags

with case information proves to be the best performing tag set.

There are only 114 category types that occur more than 10 times out of 311. This

threshold of 10 also needs to be lowered to match the Turkish data which is smaller

because when only categories that occur more than 10 times are taken the coverage

drops significantly. An experiment was performed with lexemic lexicon to investigate
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Morpheme-based Word-based

tag-set accuracy sentence

BAS 57.84 17.51

CAS(noun+pron) 68.75 23.25

CAS(noun) 68.6 23.05

Stems 57.1 17.01

tag-set accuracy sentence

BAS 45.46 17.48

CAS 53.43 21.37

EC 56.7 21.96

CRYP 56.44 21.71

CRYP-2 56.34 20.48

Table 9.2: Supertagging results for Turkish (10-fold validation)

this. The best single tagging result on lexemic lexicon is obtained by a category cutoff

of 5, and the latest version of the corrected treebank. The category accuracy is 62.21%

and the sentence accuracy is 24.93% with this configuration.It is considerably higher

than the closest result on lexemic supertagging with category cutoff 10 which is 56.7%.

However, reducing this number any further does not give moreimprovement. We use

this model in the lexemic parsing experiments.

Because supertagging is a very important stage in CCG parsing with C&C parser

we put a lot of effort in improving the accuracy of the supertagger which was 45%

for lexemic lexicon with 10-fold cross validation in the earlier stages. This is a very

low accuracy for the supertagger and it cannot be expected tobe informative of the

category types of the words. For instance for MST paser whichonly uses the supertags

as features, it reduces the dependency accuracy significantly from about 94% to around

71% for unlabelled dependencies. Continuous effort is being put into improving the

supertagger by us by including different kinds of morphological information as well as

cleaning the data.

Clark and Curran (2004a) use a lexical category dictionary.This includes all lexical

categories which appear at least 10 times in Sections 02-21 of CCGbank, resulting in

a set of 425 categories. Clark and Curran (2004a) show this set to have very high

coverage on unseen data. The supertagger trained on Turkishdata was trained with

this restriction of frequency on lexical categories in effect in most of the experiments.

The coverage on Turkish data is quite high as well (about 97%)with the supertagger

assigned categories. However, the recall of the dependencies recovered are not very

high with this restriction as shown in Table 9.3.

With all these in effect the multitagger performs above 88% with the most restricted
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tagdict cutoff accuracy Sentence correct tag set

1 53.16 15.24 EC

3 53.11 15.20 EC

5 53.13 15.20 EC

5 53.13 15.20 CRYP

Table 9.3: Tag dictionary cutoff variation for morphemic lexicon

lexicon tag set accuracy sentence t/w

LEX CRYP 79.64 37.33 2.65

LEX EC 82.04 41.65 2.82

MORPH BAS 88.17 45.80 2.40

MORPH CAS(noun+pron) 88.15 45.88 2.20

MORPH CAS(noun) 88.19 45.75 2.22

Table 9.4: Multitagging results

(β = 0.1) configuration for the morphemic lexicon. Similar resultswere observed in

multitagging with regard to the use of morphological information. Once again, mor-

phemic lexicon beats the lexemic lexicon in supertagging performance. Using both

nominal or pronominal case seems to bring the supertagging accuracy by about .02

points. However, it shoul be noted that the tag per category rate is 2.20 for this config-

uration compared to 2.40 for the basic tags and 2.22 for the best performing configu-

ration. This provides less ambiguity and a faster system when efficiency is important.

The parsing results for morphemic lexicon were obtained with the supertagger results

of which are shown in the last line.

9.9 Conclusion

We provided results for parsing with two lexicons created from the same set of data an-

notated with surface syntactic dependencies. We demonstrated that morpheme based

lexicons outperform the word-based counterparts in all platforms from parsing to train-

ing supertaggers. But more importantly, morphemic lexiconestablishes semantically

relevant long-range dependencies like those discussed in Example 9.14 in Section
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9.7.1, which was taken from from the METU/Sabancı treebank,and which the parser

gets completely correct.





Chapter 10

Conclusion and Future Work

A much cleaner Turkish dependency treebank is provided withthe improvements dis-

cussed in Chapter 2. Annotation mistakes that were in the order of thousands were

corrected aiming at a consistent and more reliable treebank. These corrections were

applied to the CoNLL 2007 shared task data and were proved to be very important

comparing the average parsing performances between CoNLL 2006 and 2007 shared

tasks on dependency parsing (Nivre et al., 2007).

The limitations of the annotation style in the Turkish treebank is explored (Chapters

2 and 6). Two very important problems in the treebank were discussed and solutions

were proposed. One is recovering the predicate-argument structure in certain forms

of extraction, and the other is the coordination scope problem. We show that these

problems can be solved effectively to provide a lexicon for ahighly representative

grammar theory that handles deep linguistic phenomena thatsome other theories fail

to capture (Chapter 6).

The heavy interaction between morphology and syntax in Turkish requires unortho-

dox methods in parsing. The data need to be generalised and morphological informa-

tion need to be put into use. This is motivated not only because of sparse data problems

but also because of linguistic concerns. The wider scope of morphemes, their interac-

tions with syntax and semantics is explored in various partsof this thesis mostly in

Chapters 2, 3 and 6. We argue that a smaller-than-word representation for the lexicon

is necessary to explain the bracketing mismatches and morphosyntactic phenomena

that are abundant in Turkish data. We show that morphemic lexicon performs qualita-

tively and quantitatively better than the lexemic lexicon in recovering surface and deep

dependencies (Chapters 8 and 9).

Wide coverage parsing results with C&C parser for Turkish are given for both

173
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lexemic and morphemic lexicons in Chapter 9. We show that using morphological

information and inherent information in CCG categories both improve the performance

of the parser and a morphemic lexicon outperforms the lexemic results in supertagger

training models and the parser models.

CCG categories are also used as simple features in MSTParser(Section 8.6.3)

which parses dependencies directly using the MST technique. State-of the art depen-

dency parsing results were obtained when CCG categories were used. The aim here is

to take this as a lower bound in comparison to results with CCGparsing which pro-

vides more informative dependencies. CCG captures “deep” dependencies, in addition

to the ones captured by the MSTParser.

In this thesis, we have utilised methods to make the best use of morphological

information in a range of parsing systems. We have also provided algorithms to create

linguistically meaningful lexicons aiming to model long-distance dependencies and

solve linguistic problems such as bracketing paradoxes based on smaller-than-word

elements. Making the best use of the information at hand is crucial in supervised

systems of NLP for low density languages like Turkish. The methods described here

to achieve this are expected to be adaptable to other low-density languages.

10.1 Future Work

• The representational status of the inflectional morphemes other than the ones

included in the morphemic lexicon here will also be studied.A complete and

correct CCG lexicon for Turkish is our target. Issues like pro-drop in genitive

constructions and such are also to be researched in the near future.

• Only coordination involving SENTENCE labels were reannotated with long-distance

dependencies in this dissertation. We aim to cover all typesof coordination de-

pendencies, and also design a practical and linguisticallysound way of anno-

tating gapping constructions in the treebank. This comes under the heading of

lexicon improvement.

• We aim to apply morphological analysis and tag disambiguation and integrate

this to the parsers to provide some degree of freedom withoutovercrowding

the parser with morphological ambiguity. An existing two-level morphological

analyser may be used for this purpose (Çakıcı, 2002).
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• Increasing the coverage of the CCG parser to 100% is one of thepriorities. This

process includes both the correction of the treebank dependencies and the per-

fection of the CCG grammar induction process. Disambiguation of the marked

up categories in the CCG parser should also be considered as some of the loss of

coverage is caused by this as explained in the previous chapter.

There are many English specific constraints hardwired in theC&C parser. We

aim to optimise the parameters of the parser according to theneeds of Turkish

data.

Forward crossing composition rule in CCG was not implemented in the C&C

parser because CCGBank did not have this rule. However, certain word orders

and extraposition constructions require this rule to be present. We aim to imple-

ment this rule to be able to handle these cases.

• We aim to reseach bracketing paradoxes that involve coordination and such in the

future. Inflectional morphemes such as tense participate insuspended affixation,

but these are not handled in the current lexicon as they are seen as part of the

last IG in the current schema. These can be handled in a similar way to the case

markers that have phrasal scope over adjunct phrases.

• In the long term we aim to create a lexicon with semantic representations follow-

ing Bos et al. (2004). We also would like to explore the ways tobootstrapping

the lexicon with the use of unsupervised methods.





Appendix A

Turkish Morpheme Glosses

The following table shows the descriptions of the morphemesthat are used throughout

the examples in the thesis. Some of these do not correcpond toa surface morpheme.

These ones are included in the treebank for information on some aspects. Part-of-

speech tags such asNoun, Verbare example of this.

tag desctiption tag description

A1pl 1st person pl NotState noun-noun derivation

A1sg 1st person singular Noun Noun

A2pl 2nd person plural Num Numeral

A2sg 2nd person singular Opt Opt

Ord Ordinal number A3pl 3rd person plural

A3sg 3rd person singular P1pl Possesive 1st person plural (our)

Abl Ablative P1sg Possessive 1st person singular

Able Abilitative P2pl Possessive 2nd person plural

Acc Accusative P2sg Possessive 2nd person singular

Acquire derivational morph. P3pl Possessive 3rd person plural

Adj Adjective P3sg Possessive 3rd person singular

Adv Adverb Pass Passive

AfterDoingSo verb-adverb derivation Past Past tense

Agt Agentative PastPart Relativisation morpheme

Aor Aorist PCAbl Particle requiring Ablative

As adjective-adverb derivation PCAcc Particle requiring accusative

AsIf adjective-adverb derivation PCDat Particle requiring dative

Become noun-verb derivation PCGen Particle requiring genitive

ByDoingSo verb-adverb derivation PCIns Particle requiring instrumental

Table A.1: Morpheme descriptions
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tag desctiption tag description

Card Cardinal number PCNom Particle requiring nominative

Caus Causative PersP Personal pronoun

Cond Conditional Pnon No possessive marker

Conj Conjunctive Pos Positive

Cop Copular Postp Postposition

Dat Dative Pres Present

DemonsP DemonsP PresPart Relativiser morpheme

Desr Deontic modality Prog1 Progressive type 1

Det Determiner Prog2 Progressive type 2

Distrib Distributive Pron Pronoun

Dup Duplicate Prop Proper noun

Equ Equative Punc Punctuation

FitFor noun-noun derivation Ques Question particle

Fut Future QuesP Question pronoun

FutPart Relativiser morpheme Range Range

Gen Genitive Real Real number

Hastily verb-adverb derivation Recip Reciprocal

Imp Implicative Reflex Reflexive

InBetween noun-noun derivation ReflexP Reflexive Pronoun

Inf Infinitive Rel Relativiser morpheme (nouns)

Ins Instrumental Related noun-adj derivation

Interj Interjection Since noun-adverb derivation

JustLike JustLike SinceDoingSo verb-adverb derivation

Loc Locative Stay verb-verb derivation

Ly adjective-adverb derivation Time time

Narr Narrative Verb Verb

Neces Epistemic modality When verb-adverb derivation

Neg Negative While verb-adverb derivation

With noun-noun derivation Without noun-noun derivation

Ness noun-noun derivation WithoutHavingDoneSo verb-adverb derivation

Nom Nominative Zero zero morpheme

Table A.2: Morpheme descriptions Continued



Appendix B

IG types in METU-Sabancı Treebank

“Adj+Agt” –HcH (Noun-Adj) (Verb-Adj)

“Adj+AsIf” – CAsHnA – cA –esiye (olduresiye) (Verb-Adj and Adj-Adj)

“Adj+FitFor” –lHk (Noun-Adj)

“Adj+FutPart” –AcAk (Verb-Adj)

“Adj+InBetween” – arasI (Noun-Adj)

“Adj+JustLike” –HmsH (Noun-Adj)

“Adj+PastPart” –dHk (Verb-Adj) These two morphemes are notnamed according to

their semantic role. They are named after their phonological properties. They (Pres-

part) can be used for both subject extraction and other type of extractions, thus they

are not named in a different way.

“Adj+PresPart” –yAn (Verb-Adj)

“Adj+Rel” –ki (Noun-Adj)

“Adj+Related” –Hk (ex: antropolojik) –sAl (ex: ulusal) (Noun-Adj)

“Adj+With” –lH (Noun-Adj)

“Adj+Without” –sHz (Noun-Adj)

“Adj+Zero”

“Adv+AfterDoingSo” -Hp (Verb-Adv)

“Adv+As” –CA (Verb-Adv) “Adv+AsIf” –CAsHnA (Verb-Adv)

“Adv+ByDoingSo” –ArAk (Verb-Adv)

“Adv+Ly” –CA (Adj-Adv)

“Adv+Since” –DHr (Noun-Adv) – makes temporal adverbs such as yıllardir–for years

“Adv+SinceDoingSo” –AlH (Verb-Adv)

“Adv+When” –HncA (Verb-Adv)

“Adv+While” –ken (Verb-Adv)
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“Adv+WithoutHavingDoneSo” –mAdAn (Verb-Adv)

“Noun+Agt” –HcH (Noun-Noun) (Verb-Noun)

“Noun+FutPart” –AcAk (Verb-Noun)

“Noun+Inf” –mAk –yHş –mA (Verb-Noun)

“Noun+Ness” –lHk (Noun-Noun) (Adj-Noun)

“Noun+NotState” –mEzlHk (Verb-Noun)

“Noun+PastPart” –DHGH (Verb-Noun)

“Noun+Zero”

“Pron+A3pl”

“Pron+A3sg”

“Verb+Able” –AbHl (Verb-Verb)

“Verb+Acquire” –lAn (Noun-Verb)

“Verb+Become” –lAş (Noun-Verb)

“Verb+Caus” –DHr -Hr -Ht -t (Verb-Verb)

“Verb+Hastily” –Hver (Verb-Verb)

“Verb+Pass” –Hl –Hn (Verb-Verb)

“Verb+Recip” –Hş (Verb-Verb)

“Verb+Reflex” –Hn (Verb-Verb)

“Verb+Stay” –(y)Akal (Verb-Verb)

“Verb+Zero



Appendix C

Some C&C parsing examples

Parsing results of various sentences are given here. The results are given in the form

of output text followed by the parser input. The parser is runin the dependency output

mode, thus each line represents a dependency between two words.

This is an example of an extraction from the adjunct clause. With the word-based

lexicon the categories induced do not give the correct parse. By separating the rela-

tivisation morpheme-dIGI and giving it the correct category we get all the predicate

argument relations.1

pencesinde_2 (S{Y}/S{Y}<1>){_} 1 kvran_3 0

digin_4 ((NP{Y}/NP{Y}<1>){_}\S{Z}<2>){_} 2 kvran_3 0

digin_4 ((NP{Y}/NP{Y}<1>){_}\S{Z}<2>){_} 1 tutkuyu_5 0

anlattin_6 ((S{_}\NP[nom]{Y}<1>){_}\NP{Z}<2>){_} 2 tutkuyu_5 0

anlattin_6 ((S{_}\NP[nom]{Y}<1>){_}\NP{Z}<2>){_} 1 Sen_1 0

Input:

Sen|NP[nom] –you

pençesinde|S/S –claw-Poss3sg-Loc

kıvran|S –struggle

dığın|(NP/NP)\S –PastPart

tutkuyu|NPpassion-Acc

anlattın|(S\NP[nom])\NP –tell-Past-P2sg

.|.

You spoke about the passion in claws of which you struggle.

1Turkish characters were changed into English counterpartsin the parser outputs for readibility.
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Another example with an object relative is:

birlestirip_5 (((S{Y}\NP[nom]{Z}){Y}/(S{Y}\NP[nom]{Z}){Y}){_}\NP{V}<1>){_} 3 ellerini_4 0

dugu_8 ((NP{Y}/NP{Y}<1>){_}\(S{Z}<2>\NP{Y})){_} 2 oku_7 0

oku_7 (S{_}\NP{Y}<1>){_} 1 kitaptan_9 0

dugu_8 ((NP{Y}/NP{Y}<1>){_}\(S{Z}<2>\NP{Y})){_} 1 kitaptan_9 0

soz_etti_10 ((S{_}\NP[nom]{Y}<1>){_}\NP{Z}<2>){_} 2 kitaptan_9 0

soz_etti_10 ((S{_}\NP[nom]{Y}<1>){_}\NP{Z}<2>){_} 1 Jul_2 0

Ardindan_1 (S{Y}/S{Y}<1>){_} 1 soz_etti_10 0

Input:

Ardından|S/S

Jul|NP[nom]

,|,

ellerini|NP

birleştirip|((S\NP[nom])/(S\NP[nom]))\NP

,|,

oku|S\NP

duğu|(NP/NP)\(S\NP)

kitaptan|NP

sözetti|(S\NP[nom])\NP

.|.

�������� ��	 
 �		����� �� �������� ����	������� 
 ������������

In the above example,birleştirip is not connected to the rest of the dependency

structure. This is because the category assigned to it is notinformative enough. It is

unable to represent all the dependencies this adverb licences. Because it is a derived

adverb, it needs to take its arguments before it is turned into an adverb. Note that the

morphemic lexicon solves this problem.

Long-distance dependencies that cannot be recovered with the lexemic lexicon are

also recovered in the morphemic lexicon. The morpheme that controls the object ex-

traction (-dugu) ensures the correct predicate-argument structure is recovered between

okudŭguandkitapas shown below.
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kucuk_5 ((NP{Y}/NP{Y}){Z}/(NP{Y}/NP{Y}){Z}<1>){_} 2 masanin_6 0

masanin_6 (NP{Y}/NP{Y}<1>){_} 1 uzerinde_7 0

"-nDA"_8 (((S{Y}\NP{Z}){Y}/(S{Y}\NP{Z}){Y}<1>){_}\NP{W}<2>){_} 3 uzerinde_7 0

"Verb+Caus"_10 (S{Y}\S{Y}<1>){_} 1 birlestirip_9 0

"-nDA"_8 (((S{Y}\NP{Z}){Y}/(S{Y}\NP{Z}){Y}<1>){_}\NP{W}<2>){_} 2 birlestirip_9 0

birlestirip_9 (S{_}\NP{Y}<1>){_} 1 ellerini_4 0

birlestirip_9 (S{_}\NP{Y}<1>){_} 1 Jul_2 0

"Adv+AfterDoingSo"_11 ((S{Y}/S{Y}<1>){_}\S{Z}<2>){_} 2 birlestirip_9 0

"Adj+PastPart"_14 ((NP{Y}/NP{Y}<1>){_}\(S{Z}<2>\NP{Y}){Z}){_} 2 okudugu_13 0

okudugu_13 (S{_}\NP{Y}<1>){_} 1 kitaptan_15 0

"Adj+PastPart"_14 ((NP{Y}/NP{Y}<1>){_}\(S{Z}<2>\NP{Y}){Z}){_} 1 kitaptan_15 0

soz_etti_16 (S{_}\NP[nom]{Y}<1>){_} 1 kitaptan_15 0

"Adv+AfterDoingSo"_11 ((S{Y}/S{Y}<1>){_}\S{Z}<2>){_} 1 soz_etti_16 0

Ardindan_1 (S{Y}/S{Y}<1>){_} 1 soz_etti_16 0

Input:

Ardından|Adv|S/S

Jul|Noun Nom|NP[nom]

,|Punc|,

ellerini|Noun Acc|NP

küçük|Adj|(NP/NP)/(NP/NP)

masanın|Noun Gen|NP/NP

üzerinde|Noun Loc|NP

”-nDA” |Loc|((S\NP)/(S\NP))\NP

birleştirip|Verb|S\NP

”Verb+Caus”|Verb|S\S

”Adv+AfterDoingSo”|Adv|(S/S)\S

,|Punc|,

okuduğu|Verb|S\NP

”Adj+PastPart”|Adj|(NP/NP)\(S\NP)

kitaptan|Noun Abl|NP

söz etti|Verb|S\NP[nom]

.|Punc|.

This is an example from the lexemic lexicon. The problem withthis parse is the

word-word dependencies are wrong because relativisation relations are not modeled.
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de_3 (NP[nom]{Y}\NP[nom]{Y}<1>){_} 1 sen_2 0

bir_4 (NP{Y}/NP{Y}<1>){_} 1 kertenkele_5 0

oluverip_6 (((NP{Y}/NP{Y}){_}\NP[nom]{W}<1>){_}\NP{V}<2>){_} 3 kertenkele_5 0

oluverip_6 (((NP{Y}/NP{Y}){_}\NP[nom]{W}<1>){_}\NP{V}<2>){_} 2 sen_2 0

,_9 conj 1 genis_10 0

,_9 conj 1 gobekli_8 0

,_12 conj 1 kirmizi_13 0

,_12 conj 1 burunlu_11 0

optugu_16 ((NP{Y}/NP{Y}){_}\NP{Z}<1>){_} 2 adamin_15 0

gezdirdigi_19 ((NP{Y}/NP{Y}){_}\NP{Z}<1>){_} 2 ellerini_18 0

,_17 conj 1 gezdirdigi_19 0

,_17 conj 1 optugu_16 0

kurtulmak_26 (NP{Y}\NP{Y}<1>){_} 1 ruhundan_25 0

hatta_24 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

ve_23 conj 1 ruhundan_25 0

ve_23 conj 1 derinden_22 0

beyaz_21 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

beyaz_21 (NP{Y}/NP{Y}<1>){_} 1 derinden_22 0

ince_20 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

ince_20 (NP{Y}/NP{Y}<1>){_} 1 derinden_22 0

yuzlu_14 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 ruhundan_25 0

yuzlu_14 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 derinden_22 0

kirmzi_13 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 ruhundan_25 0

kirmizi_13 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 derinden_22 0

burunlu_11 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 ruhundan_25 0

burunlu_11 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 derinden_22 0

genis_10 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 ruhundan_25 0

genis_10 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 derinden_22 0

gobekli_8 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 ruhundan_25 0
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gobekli_8 (NP[nom]{Y}/NP[nom]{Y}<1>){_} 1 derinden_22 0

o_7 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

o_7 (NP{Y}/NP{Y}<1>){_} 1 derinden_22 0

istemistin_27 (S{_}\NP{Y}<1>){_} 1 ruhundan_25 0

istemistin_27 (S{_}\NP{Y}<1>){_} 1 derinden_22 0

Sonra_1 (S{Y}/S{Y}<1>){_} 1 istemistin_27 0

Input:

Sonra|Adv|S/S –then

sen|Pron|NP[nom]–you

de|Conj|NP[nom]\NP[nom] –too

bir|Det|NP/NP –a

kertenkele|Noun Nom|NP –lizard

oluverip|Adv Verb|((NP/NP)\NP[nom])\NP –be-Hastily-AfterDoingSo

o|Det|NP/NPthat

göbekli|Adj Noun|NP[nom]/NP[nom] –belly-With

,|Punc|conj

geniş|Adj|NP[nom]/NP[nom] –wide

burunlu|Adj Noun|NP[nom]/NP[nom] –nose-With

,|Punc|conj

kırmızı|Adj|NP[nom]/NP[nom] –red

yüzlü|Adj Noun|NP[nom]/NP[nom] –face-With

adamın|Noun Gen|NP[nom] –man-Gen

öptüğü|Adj Verb|(NP/NP)\NP –kiss-PastPart

,|Punc|conj

ellerini|Noun Acc|NP –hands-Acc

gezdirdiği|Adj Verb|(NP/NP)\NP –move-PastPart

ince|Adj|NP/NP –thin

beyaz|Adj|NP/NP –white

derinden|Noun Abl|NP –skin-Poss2sg-Abl

ve|Conj|conj –and

hatta|Conj|NP/NP –even

ruhundan|NounAbl|NP –soul-Poss2sg-Abl

kurtulmak|NounVerb|NP\NP –escape-Inf

istemiştin|Verb|S\NP –want-Narr-Past-P2sg

.|Punc|.
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bank. In E. Hajicová and B. Hladká, editors,Issues of Valency and Meaning, Stud-
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Labeled pseudo-projective dependency parsing with support vector machines. In

CoNLLX, pages 221–225, New York City.



202 Bibliography

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In

Proceedings of the 43rd Annual Meeting of the Association for Computational Lin-

guistics (ACL-05), pages 99–106.

Nivre, Joakim and Mario Scholz. 2004. Deterministic dependency parsing of English

text. In Proc. of the 20th Intern. Conf. on Computational Linguistics (COLING),

pages 64–70.

Oehrle, Richard T. to appear. Multi-modal type-logical grammar. In Robert D. Bors-

ley and Kersti Borjars, editors,Non-transformational Syntax: A Guide to Current

Debate. Blackwell, Oxford, UK.

Oflazer, Kemal. 1994. Two-level description of Turkish morphology. Literary and

Linguistic Computing, 6(2).

Oflazer, Kemal. 2003. Dependency parsing with an extended finite-state approach.

Computational Linguistics, 29(4):515–544.

Oflazer, Kemal and Ilknur Durgar El-Kahlout. 2007. Exploring different representa-

tional units in English-to-Turkish statistical machine translation. InProceedings

of the Second Workshop on Statistical Machine Translation, pages 25–32, Prague,

Czech Republic, June. Association for Computational Linguistics.
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