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Abstract

Wide-coverage parsing is an area that attracts much aiteiminatural language pro-
cessing research. This is due to the fact that it is the fiept &t many other applications
in natural language understanding, such as question aimgwer

Supervised learning using human-labelled data is cugréhtt best performing
method. Therefore, there is great demand for annotated Himaever, human anno-
tation is very expensive and always, the amount of annot@d¢al is much less than
is needed to train well-performing parsers. This is the wadton behind making the
best use of data available. Turkish presents a challende limtause syntactically
annotated Turkish data is relatively small and Turkish ghhy agglutinative, hence
unusually sparse at the whole word level.

METU-Sabanci Treebank is a dependency treebank of 5626rsmsd with surface
dependency relations and morphological analyses for waMsshow that including
even the crudest forms of morphological information exeddrom the data boosts
the performance of both generative and discriminative grarscontrary to received
opinion concerning English.

We induce word-based and morpheme-based CCG grammars trkisi depen-
dency treebank. We use these grammars to train a state-@rthlCCG parser that
predicts long-distance dependencies in addition to the tmat other parsers are ca-
pable of predicting. We also use the correct CCG categosesmaple features in a
graph-based dependency parser and show that this impilwesitsing results.

We show that a morpheme-based CCG lexicon for Turkish is @bémlve many
problems such as conflicts of semantic scope, recovering-fange dependencies,
and obtaining smoother statistics from the models. CCG learithguistic phenomena
i.e. local and long-range dependencies more naturally #edteely than other lin-
guistic theories while potentially supporting semantierpretation in parallel. Using
morphological information and a morpheme-cluster baseidd® improve the perfor-
mance both quantitatively and qualitatively for Turkish.

We also provide an improved version of the treebank which el released by
kind permission of METU and Sabanci.
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Chapter 1
Introduction

Parsing is an integral part of natural language understgnslystems, since seman-
tic interpretation requires the syntactic informationyaded by parsing. What makes
parsing natural languages hard is the size and high ambpigfuite grammars. This re-

sults in a much bigger search space for natural languagengasd requires grammar
induction and statistical modeling to guide search.

Creating wide-coverage natural language grammars by tsaingpractical. There
are two approaches that can be taken. Onm&ipervise@grammar extraction which
has been overshadowed by the success of the alterratpervisednethods. The
downside of the supervised methods is that they requirdlébdata. Although syn-
tactically labelled English corpus is bigger than data labde for many languages,
even it is considered to be small to make reliable estimatethis language. The aim
of this thesis is to identfy the problems that are casued éyithitations on the size of
the labelled data and suggest solutions in order to make tst use of available data
however limited.

Supervised statistical parsers for English and other laggs were created soon
after labelled data became available. However, the pojpylairstatistical parsing in-
creased when lexicalised parsers based on head-word dapsnehodels represented
an advance on simple probabilistic context-free gramnRR@&HG, Booth and Thomp-
son, 1973). In the late 1990s, a number of lexicalised hegeodency model based
parsers were proposed (Magerman, 1995; Collins, 1997; ntilgr1997; Collins,
1999; Charniak, 2000). This led to a new emphasis on the tperdkency based
evaluation, an alternative to PARSEVAL which measures timdarity to the human-
labeled gold standard context-free trees (Carroll, Bes@nd Sanfilippo, 1998; Lin,
1998; Collins, 1999; Clark, Hockenmaier, and Steedman2200

1



2 Chapter 1. Introduction

Dependency theories developed in parallel to the phrasetate based theories
such as Head Driven Phrase Structure Grammars (HPSG) r@Paltell Sag, 1994),
Lexical Functional Grammars (LFG) (Bresnan, 1982). Dep®icyg theories are lex-
icalist theories in the sense that all the syntactic retetiare represented as simple
directed links between lexical entities. Head-dependgations are defined between
the representational units in the lexicon. Dependencyessprtations allow to directly
represent non-projective dependencies, thus are prdféorefreer order languages
(Skut et al., 1997).

Natural languages are known to require more than contegt fiever (Shieber,
1985). However, the linguistic evidence that they are nontext free does not imply
full context sensitive power. Several theories of gramnrarcnjectured to exhibit
limited extra power that is required for certain languagemdmena. These theories
are considered to be in a subclass of context sensitive geaimwhich is called the
mildly-context sensitive grammars. Certain constrainegsions of dependency lan-
guages are proven to be equivalent to mildly context semesiiinguages (Kuhlmann
and Mohl, 2007). This result generalises previous worktanrelation between de-
pendency grammars and Lexicalised Tree Adjoining GramimaRambow and Joshi
(1997). Linear-Indexed Grammars (Joshi, Levy, and Takaihda975) have been ar-
gued to be a promising candidate for a class of grammars that &all and only the
extra expressive power beyond CFG that is needed to exgiaifitgusitic phenom-
ena of natural languages (see Gazdar (1988) for discusstnammar theories such
as Combinatory Categorial Grammar (Steedman, 2000), aeelAdjoining Grammar
(Joshi, Levy, and Takahashi, 1975) are weakly equivalelnitear-Indexed Grammars
and, thus, may well be expressive enough, without overg¢ingrThus, the represen-
tational structure chosen for annotating a dependencynfpkiad of) treebank is cru-
cial. Like parsers, the formalism used in annotation shd@dxpressive enough to
represent all the linguistic phenomena specific to thatuagg.

Simpler structures of representation are desirable fos#ke of efficiency in anno-
tation process. However, the balance between simplicitgmfesentation and expres-
siveness of the formalism is of vital importance. The mam af a parser (computa-
tional or human) is to deliver an interpretable meaningeepntation of the sentence
to be parsed. Most of the data can be explained with contegtriiles, and thus pro-
jective acyclic dependency trees. Long-distance depemneleand other “deep” depen-
dencies are, in fact, rare because of the skewed distrifmititat apply to all linguistic
phenomena. However, they are crucial in recovering préeiaegument structure and



semantic interpretation. Post-processing methods tlcaves some deep dependen-
cies from context-free phrase-structure trees that aneutsibf shallower parsers were
suggested in the past (Dienes and Dubey, 2003; Levy and Mg2004; Cahill et al.,
2008; Johnson, 2002).

Treebank annotations that only represent surface cofetrelations limit the
possibility of attaining and evaluating wide-coverageoreary of full semantic inter-
pretations. However, treebanks like these are not uncomarahin fact the METU-
Sabanci treebank we take as our starting point is of this. Kihé impact aimed in this
thesis is to show that a parsing system using an express&eeytiof grammar (CCG)
can be created from a less expressive method of representaiih the use of mor-
phological information and including a limited amount ofegdinguistic information
in the form of deep dependencies. This system is expecteéltbrpore linguistically
meaningful parsing results when compared to the resultsalpgeps that only use the
surface syntactic information.

CCG is known for handling difficult phenomena such as coatilim and cross-
serial dependencies elegantly. CCG parsers are fast, oightime parsers that can
compose semantic interpretation in the form of logical esgrons in parallel to pars-
ing. Multiple-head dependencies and the necessary ngeepik@ dependencies are
automatically modeled in CCG. CCG parsers can produce mgauioutput to cre-
ate semantic interpretation very efficiently. Clark, Steed, and Curran (2004) show
that they can semi-automatically be adapted to new domathsowly lexical category
annotation and training a supertagger or category labdterthis data.

There are high accuracy parsers that parse dependenciusésidirectly. Multilin-
gual dependency parsing is advancing with the introduatiotependency treebanks
in many languages. However, the recognition problem of stnicded non-projective
dependency grammars is NP-complete (Neuhaus and Brad@r,).1 In additon, the
effect of multiple heads that is required by constructiomshsas relativisation is not
clear.

We argue for deep dependency parsing, and also for morpHeriaons for ag-
glutinative languages. Turkish is a language with unusuaipimosyntactic interac-
tions, free word order and other phenomena such as pro-gggpires an expressive
enough parser. Experimental parsers have been built fdtiStuwith CCG in the
past(Baldridge, 2002; Bozsahin, 2002). We explore thieplodential of using an ex-
pressive formalism with a challenging language that hasadheristics that is very
dissimilar to languages most commonly focussed on in coatjouial linguistics re-



Chapter 1. Introduction

search such as English.

1.1 The Thesis

The main thesis of the present work is that a grammar thastakeount of the rich

productive morphology of the Turkish language on the onadhand the constrained

universal combinatory projection mechanism of CCG on theptyields a satisfactory

basis for wide coverage parsing for that language.

1.2 Contribution

This dissertation makes the following contributions:

e A demonstration of the inadequacy of extreme surface syintapproaches to
dependency annotation for a language with a high degreeeetiérm in word
order and pro-drop. Additional information in the form ofcemdary depen-
dencies was added to the treebank in an attempt to includengipredicate-
argument relations that is lost during extraction, or tisatimply absent in case
of coordination. We made a number of systematic correctiorise treebank in
the form of dependency label corrections, head correctiorgphological an-
notation corrections and even tokenisation correctionsoime cases. A much
cleaner version of the treeank which includes crucial Idgiance dependencies
that were missing results although the annotation is gi#iroto improvement.

A wide coverage CCG lexicon for a lesser studied languageisipg. In the
past, CCG grammars for English (Hockenmaier, 2003a) anth&er(Hocken-
maier, 2006) have been extracted. Especially, the gramondtriglish, proved
to be competitive in overall performance and what is moredrtgnt, in predict-
ing the long-range dependencies which other systems ydadlto do. In this
thesis, we study a language in the lesser studied langubagss tt is highly ag-
glutinative unlike English, German, or other more widelgearched languages.

A CCG lexicon is induced from the data which is an improvedsiar of the
lexicon presented in Cakicl (2005). This lexicon is basedhe principle that
different parts of a word in an agglutinative language calit fipe set of de-
pendents of that word. One solution to handle this is thersgipa of these
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morphemes (or morpheme sets) and including them in thedaxis separate
entities. Another solution is keeping all the inflected ferof a word in the
lexicon as separate entities and possibly using the maogiaa! information to
guess the dependents. We believe that the former solutgupirior to the latter
when there is limited data. We explore these possible swlgtand their impacts
on recovery of surface and deep linguistic information frdependency data.
We provide results for:

1 A Word-based (Lexemic) lexicon (Chapter 5) and parseraf@dr 8) that
predict surface dependencies only.

2 A Morphemic lexicon (Chapter 6) and parsers (Chapter &) ghedict sur-
face dependencies only with this lexicon.

3 Both of these lexicons with C&C parser that provides deeguistic infor-
mation in the form of long-range dependencies and so on ({€hajp

We claim that these individual investigations show that pheme-based repre-
sentation of the lexicon provides both qualitative and djtztive advantage in
all parser configurations. In contrast to English, langsagieh rich morphology
seem to benefit from inclusion of morphological informatauring processing
(Eryigit, Nivre, and Oflazer, 2008; Cakicl and Baldridg®06; Dyer, 2007;
Cetinoglu and Oflazer, 2006). These languages also shuilasibehaviour in
parsing compared to languages without strong morphologyréhet al., 2007),
(McDonald, 2006).

e A comparison of direct dependency parsing that outputs riigecies without
an intermediate level and a parser that is able to output tiegpistic knowl-
edge is done. The output of three parsers: Collins’ parseDdhald’s MST-
Parser (non-projective and projective configurationsl, @&C parser are exam-
ined. The outputs of these systems are to some extent incdilmepaHowever,
a partial evaluation and comparison is possible. This diggen gives the first
wide-coverage results for dependency parsing of Turkisth &i syntactically
and semantically expressive grammar formalism.
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1.3 Outline

Chapter 2 provides information about the Turkish dependency trekliaat is used in
this thesis. The characteristics and the limitations ofsiindace syntactic dependency
annotation for Turkish is is discussed with examples andxéensive amount of cor-
rections made to the Turkish dependency treebank are egolaPossible solutions to
some of the most important problems are proposed and implede

Chapter 3 provides a basic introduction to morphology. The inte@ttof mor-
phology, syntax and semantics in the view of some intergdiimguistic phenomena
such as bracketing paradoxes and phrasal scope of morphecmwmsered. Computa-
tional analysis of morphological parsing and the historymafrphological processing
is given together with an overview of morphological parsensl disambiguators that
were created for Turkish in the past. Morphology in relatiorCategorial Grammars
are also discussed in this chapter.

Chapter 4 gives an introduction to CCG grammar formalism and discsisbe
theoretical issues regarding how certain natural langpageomena are treated within
CCG and also discusses the generative power of CCG gramfegiew of statistical
parsing with CCG is given in this chapter. The systems thatimtended for wide-
coverage parsing, and CCG parsers for other languagessarém@fly introduced.

Chapter 5 outlines the algorithm for mapping dependency structuoea CCG
lexicon automatically. An evaluation of this grammar isegivtogether with some
examples of CCG derivations. A review of the earlier reseam automatically or
semi-automatically creating CCG lexicons from other laamgs is also given.

Chapter 6 demonstrates why a morphemic lexicon is more appropriatéafo
guages like Turkish and creates a linguistically more sowerdion of the lexicon in-
duction process that is based on the idea that morphemitesntather than words
are not only more appropriate for solving the problems noer@d earlier like phrasal
scope, but also improves the coverage and provides a defjgameralisation. The
effects of having smaller representational units than warda CCG lexicon of an
agglutinative language is evaluated and results are cadpeith the results from the
word-based lexicon.

Chapter 7 gives an overview of the dependency theory and dependensinga
history. Several influential parsers are reviewed in thispatar, including McDonald’s
MSTParser which is used in some parsing experiments in Satkiat resulted in state-
of-the-art parsing results for Turkish dependency patrsing
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In Chapter 8 the process of experimentation on direct and indirect actsoof
dependency parsing are explained and the results of thgssiments are discussed.
Different parsing models of Turkish are proposed in thispteato explore the ef-
fects of morphology, word-order, scrambling, and formaisipaints of projectivity on
different parsers. The chapter presents the use of morglualiofeatures and use of
gold-standard CCG categories as simple features to patsardirectly estimate de-
pendency relations and provide upper bounds for realistisipg with these features.

Chapter 9 provides a review of the existing wide-coverage CCG parsetsCCG
parsing results for Turkish. The inner workings of the parssed for parsing Turkish
is explained and the advantages and limitations of the rucanfiguration is explored.
The dependency output from this parser is evaluated agacwhnpatible set of depen-
dencies from the treebank, and is compared with the outptiteotiirect dependency
parsing experiments performed with the MSTParser. Theradgas and the potential
for improvement for these models are discussed.

Chapter 10 concludes by summarizing the contributions and the way ehapter
sheds light on the issues introduced in this dissertatioreddons for future research
are also given in this chapter.






Chapter 2

Data

Turkish is highly-inflected and has more word order flextlyilihan languages like
English. It is an agglutinating language, which means war@sformed with linear

concatanation of affixes in a compositonal and surface tstraicsense. In an agglu-
tinating language like Turkish a single word can be a semtavith tense, agreement,
polarity, and voice as in (2.1) and translate into a rel&ivenger English sentence.
Morphological structure of the words bears clues aboutpisgpeech tags, modality,
tense, person and number agreement, case, voice and so an.(2A%b) predicate-

argument structure goes through transformational chatigeagh morphology which

makes the morphology-syntax interface more complex.

(2.1) a. Gidemeyebilirdim.
go-Abil-Neg-Possib-Aor-Past-P1sg
I might not have been able to go.

b.  Konusturmalisin.
speak-Caus-Oblig-P2sg
(You) must make (someone) speak.

c. Arabandakiyleyim.
car-Poss2sg-Loc-Rel-Inst-CopPerslsg
| am with the one in your car.

Turkish has relatively free word order. Although it is sa@have an SOV base
constituent order, it allows both local and long-distar@rasbling. The former means
that arguments of verbs may swap order within a clause, amthtter means that an
argument may appear in a higher clause than that of the verthvdubcategorises

9
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for it. Alternative word orders are subject to discourse arfdrmation structure re-

strictions (Erguvanli, 1979; Hoffman, 1995). The syntactiles of the arguments are
indicated by case marking as in (2.3). There are certainpgiaes to free word order.

Certain scrambling patterns are not allowed in some strastsuch as relativisation.
Bozsahin (1998) proves this by giving evidence from gagmnd coordination, and
showing that some permutations such as SO & OSV are not alloBebordinated

words have relatively restricted argument order. As sed@.i2) and (2.3) these types
of relativisation constructions are always head-final.

(2.2) Caldig sekerleri ceplerine dolduruyordu.
' steal-PastPart candy-Plu-Acc pocket-Plu-Poss-Dat -Btaif-Past
He was stuffing the candies he stole in his pockets.
b *Sekerleri caldig ceplerine dolduruyordu.
' candy-Plu-Acc steal-PastPart pocket-Plu-Poss-Dat -Btaif-Past
(2.3) a Kitaplari kapiya gelen adama verdim.
' ' books-Acc door-Dat come-PresPart man-Dat give-Past:P1sg
b Kaplya  gelen adama verdim kitaplari.

door-Dat come-PresPart man-Dat give-Past-P1sg books-Acc

| gave the books to the man who came to the door

*Gelen kaplya adama verdim kitaplar.
come-PresPart door-Dat man-Dat give-Past-P1sg books-Acc

2.1 METU-Sabanci Treebank

The METU-Sabanci Treebank is a sub-corpus of the METU Thrkisrpus which is

a 2 million word corpus of post-1990 written Turkish. The METTurkish Corpus
includes material taken from three daily newspapers, 8ihgussues and 201 books
(Atalay, Oflazer, and Say, 2003; Oflazer et al., 2003). Théesees in the treebank
are taken from this corpus retaining the proportions of thetgbuting sources. The
dependency treebank has 5620 sentences and 53,796 tok#npynctuation). The
average sentence length is 9.6 tokens and 8 words. Figursh®ws the distribu-
tion of the average sentence length. The sentence lengtigebaramatically among
different genres, going up to as high as 53 for scientificks and news. Sentences



2.1. METU-Sabanci Treebank 11

from fiction and literature are relatively shorter congigtof many one-word sentences
from dialogues. Note that this graph shows the cumulatieeaye over number of sen-
tences. There is a sharp rise in the average sentence |dtegtatzout 508" and 4508
sentences. This is reflected in the category type coverafjpasing coverage results
later in Chapters 5, 6 and 9.

11

average sentence length

L L L L
0 1000 2000 3000 4000 5000 6000
Sentences

Figure 2.1: Average sentence length throughout the corpus

The words in the treebank occur together with their disamdsigd morphological
analyses, and surface dependency links which are repessdmbugh indexes.

(2.4) Kapinin kenarindaki  duvara yaslanip bize bakti bir an

door-Gen side-Loc-Rel wall-Dat lean-ADS* we-Dat looked eonmoment
* ADS = AfterDoingSo

(He) looked at us leaning on the wall next to the door, for a rm

Figure 2.2 shows the encoding of the sentence in (2.4) inrdebank. We filled
the “LEM” and “MORPH?” fields appropriately for illustratiopurposes. These fields
were initially designed to be in the data but then were ledinklin the final release.
“MORPH?” contains the sequence of the morphemes, and “LEMtaias the infinitive
form for the verbs and the root for the others. (Inflectionalugps) IG field represents
the morphological information in terms of derivational Inolaries, type info and mor-
pheme names for each word. They are explained in detail itid®e2.2. It is not
trivial to map the morph information to the given IGs. Thisnainly because IGs are
made of information tags rather than morpheme names. TadsasPos (positive)
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or Pnon (no possessive markel) not correspond to any morphemes, in fact, they
represent the lack of corresponding morphemes in thesg sloth as the agreement
morpheme for the former and the negation morpheme for therlaihere are also
Zeromorphemes in some cases of derivational morphology. Figudehows a graph-
ical representation of the sentence in (2.4). Dependelcetom dependent to head
in this figure.However, throughout the thesis, dependemig lare represented from
dependent to head in graphical representations unlessragieestated. Word to word
dependencies are shown in the figure although dependemeiespaesented between
inflectional groups as explained in Section 2.2.

<S No="3">

<W IX="1" LEM="kap1” MORPH="kapi+nHn" IG="[(1,"kapi+Noun+A3sg+P2sg+Gen")]' REL="[2,1,(POSSESSOR)]'’Kapinin</W>

<W IX="2" LEM="kenar" MORPH="kenar+nHn+DA+ki" IG="[(1,"kenar+Noun+A3sg+P3sg+Loc")(2,’Adj+Rel")]' REL="[3,IMODIFIER)]" > kenarindaki/W>
<W IX="3" LEM="duvar'MORPH="duvar+yA’ IG="[(1,"duvar+Noun+A3sg+Pnon+Dat")]’ REL="[4,1,(OBJECT) duvara</W>

<W IX="4" LEM="dayanmak” MORPH="dayan+Hp" IG="[(1,"dayamVerb+Pos")(2,"Adv+AfterDoingSo")]' REL="[6,1,(MODIFER)]" > dayanip</W>

<W IX="5" LEM="bize” MORPH="biz+yA’ IG="[(1,"biz+Pron+PersP+Alpl+Pnon+Dat")] REL="[6,1,(OBJECT)}® bize </W>

<W IX="6" LEM="bakmak” MORPH="bak+DH" IG="[(1,"bak+Verb+Pos+Past+A3sg")]' REL="[9,1,(SENTENCE)}¥bakti </W>

<W IX="7" LEM="bir" MORPH="bir" IG="[(1,’bir+Det")] REL= "[8,1,(DETERMINER)]"> bir </W>

<W IX="8" LEM="an” MORPH="an" IG="[(1,"an+Noun+A3sg+PnorNom”)|' REL="[6,1,(MODIFIER)]" > an </W>

<W IX="9" LEM=*" MORPH="" IG="[(1,”.+Punc”)]' REL="[,() |"> . </W>

<IS>

Figure 2.2: The encoding of the sentence in (2.4) in the dependency treebank

The dependencies in METU-Sabanci Turkish treebank arasidnes, so phe-
nomena such as traces and pro-drop are not modelled. Apanttiie constraint of
“surface dependencies”, there are a few constraints thabstlall dependency tree-
banks with pure-dependency approach adopt susingse-headedness

The syntactic relations used to model the dependencyaakatre given in Table
2.1. The first two columns show the name and the frequencyedéthel, the third is the
most frequent, bastgart-of-speech tag it occurs with and the fourth is the fesgy
of them occurring together. The most frequent label in th& d&MODIFIER. It can

1The detailed description of basic and extended POS-tageds i Chapter 8.
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SENTENCE

MODIFIER
POSSESSOR ~ MODIFIER OBJECT OBJ DETERMINER
Kapinin  kenarindaki  duvara dayanip  bize bakti bir an
Noun Adj Noun Adv Pron Verb Det Noun Punc
Door-Gen side-Loc-Rel wall-Dat lean-ADS we-Dat look-Past one moment

(He) looked at us leaning on the wall next to the door, for a @om

Figure 2.3: The graphical representation of word-word dependencies in the treebank.

co-occur with a very wide range of part-of-speech tags betrtiost frequent one is
Adj. Adverbs, adjectives, relativised verbs, postpositians, some nominal modifiers
have this label. It is the most overloaded relation type anttkebank.

Apart from familiar label names, oL is used for constructions very similar to
phrasal verbs in English, anddCLOCATION, is used for idiomatic usages and word
sequences with certain patterns. However, some frequélatatons are integrated in
the dependency structures as unified lexical entri@&slocationand Etol are mostly
used to represent frequent pairs that cannot be represienteslsame word-slot. This
happens when they are separated by a clitic or a morpheme.

Punctuation marks are excluded from dependency struatuiess they participate
in a relation, such as the use of comma in coordination. Tinel IB=NTENCE links the
head of the sentence to the final punctuation nfaBection 2.3 gives an overview of
the cases where punctuation is involved in the dependengstsie.

2.2 Morphology

Morphology in the Turkish treebank is representethitectional GroupglGs). Words
with more than one IG either have derivational morphologyalency altering suf-
fixes such as causative and passive morphemes for verbs. Bodwgdities are also
annotated in different IGApility) whereas some of them are n@dnditiona). (2.5)
shows the BJECT linked to the second IG ddgistirmezbecausal&]is is intransi-
tive; it takes an object in this example because of the vglattering property of the
causative morphem®Hr that is affixed to the verb.

2This is essentially like identifying the final punctuatiomrk as theoot symbol, which is how it is
treated when dependency parsers are evaluated (Sectjon 8.6

3_-DHr can be realised in many different ways depending on certaipphophonemic rules that are
explained briefly in Section 3.2.5.
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Label Frequencyl POS-tag| pair frequency
ABLATIVE .ADJUNCT 523 Noun 483
APPOSITION 101 Noun 82
CLASSIFIER 2100 Noun 1967
COLLOCATION 36 Noun 24
COORDINATION 2633 Punc 1817
DATIVE.ADJUNCT 1362 Noun 1136
DETERMINER 1915 Det 1840
EQU.ADJUNCT 34 Pron 19
EToL 13 Adj 8
FOCUS PARTICLE 18 Conj 14
INSTRUMENTAL.ADJUNCT 271 Noun 252
INTENSIFIER 947 Conj 858
LOCATIVE.ADJUNCT 1134 Noun 1107
MODIFIER 11618 Adj 4535
NEGATIVE.PARTICLE 164 Negp 113
NuMm 3 Num 2
OBJECT 8259 Noun 6634
POSSESSOR 1507 Noun 1334
QUESTION.PARTICLE 274 Ques 219
RELATIVIZER 84 Conj 83
SENTENCE 7370 Verb 6165
S.MODIFIER 540 Conj 274
SPEAKER 51 Punc 50
SUBJECT 4536 Noun 3779
VOCATIVE 231 Noun 126

Table 2.1: Names and frequencies of the dependency labels in METU-Sabanci tree-
bank. Last two columns show the POS tag the label occurs with most frequently, and
frequency of this pair. Red coloured labels indicate the ones that exist only in the cor-

rected version of the treebank.
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DATIVE.ADJUNCT

CLASSIFIER MODIFIER  MODIFIER  SUBJEC SENTENCE

S S T

Sandik  baskanlarina bir hafta seminer onerildi

Ballot chair-Plu-Agr-Dat one week seminar suggest-Pass-Past .

One week of training was suggested for ballot chairs.

Figure 2.4: Passive example

Obj
Maod e

| YY
(2.5)  [Yerini] [ pek ]| [degisfirmez]
(1,"yer+Noun+..+Acc”) (1,“pek+Adv”)  (1,"degis+Verb”R,“Verb+Caus+Neg+..")

(He) doesn’t change his place that often.

Figure 2.4 shows how a passive sentence is annotated in acsuwtependency
framework. The dependents in passive sentences are usuadly dependent on the
IG with the passive morpheme but this is not consistent tgjinout the treebank in
the official release of the treebank. These types of anmotatiistakes have been
corrected.

IGs thus play a role in dependency structure. Different I&@slwe heads of different
dependents. Dependencies always emanate from the finald®ofd (Figure 2.5).

from deps. to the head
—>

4 l

[IG1]+[TG2|+[1G3]+[1G4]

Figure 2.5: The structure of a word

2.2.1 Derivational Morphology

Adverbs

Verb-to-adverb derivation is very productive. As shown igu¥e 2.6 verbs that the
adverbs are derived from may have complements.These tenahsuffixes resemble
gerunds in English and behave in the same way. They takersmstas complements
and modify the main predicate. Some examples of these morphand their corre-
sponding tag names in the treebank are shown in Table 2.XeTmerphemes make
verb-modifying adverbs out of verbs. The capital lettefgesent the general form of
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morpheme tag name
-mAdAn | WithoutHavingDoneSo
-(y)Hnca When
-Hp AfterDoingSo
-(y)ArAk ByDoingSo
-ken While

Table 2.2: Verb-to-Adverb derivational morphemes

the morphemes. These capital letters change with respgottel harmony and other
phonological processe§/) means there is an optionathat drops if the root ends with
a consonantA can bea or e depending on vowel harmony restrictions. In a similar
mannerH can be instantiated aor 1.

Ramizand Katanaare shared betweeatoniip andbakti since the coordination of
these two is the subject of both verbs (stems). But since sutface dependencies
are represented, and words can not have two heads, it is asityp®to represent these
dependendies with the current design of representation.

SENTENCE

SUBJECT

MODIFIER SUBJECT COORDINATION
Donup bakti Ramiz ile Katana
Turn-AfterDoingSo look-Past , Ramiz with Katana

E: Ramiz and Katana turned and looked.

Figure 2.6: Adverbs

Subordination

In the treebank, subordination is treated as if the subatdinerb is a noun de-
rived from a verb. Morphemes that are involved in subordorabehave as if they
are derivational suffixes that create nouns out of verbs.eé&grent suffixes or case
markers are attached to the nominalised verb exactly indah@eswvay nouns receive
case. Figure 2.7 shows how a sentence with subordinatiomistated in the Turkish
treebank. Subordination morphemes are a diverse class phames. Some of these
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are shown in Table 2.3.

morpheme sequence  tense
-dHk+AGR+CASE | present - past

-AcAk+AGR+CASE future
-mA+AGR+CASE infinitive

Table 2.3: Subordination morphemes

Subordinated verbs agree with the noun that is in the supesition as AGR tag
indicates. Subjects in subordination clauses are markgtdgenitive case, unlike their
corresponding matrix clause counterparts which are alwaysinative. The final mor-
pheme on the subordinated verb is the appropriate case maikgire 2.7 shows an
example sentence with the last type of subordinatroA+AGR+CASEN the tree-
bank.

MODIFIER SUBJECT
DETERMINER SUBJECT OBJECT SENTENCE
Parktaki tim erkekler onun gelmesini bekliyorlardi
park-Loc-Rel all men him-Gen arrive-Inf-Agr-Acc wait-Prog-Pas

All the men in the park were waiting for him to arrive

Figure 2.7: Subordination

These examples show the morpho-syntactic nature of soragored in the data.
Subordination is controlled by morphological operatiam®yever the syntactic scope
subordination morpheme covers is bigger than the verb itteched to at the con-
stituent level -mesidemand a sentential complement, and, at the same time tibéon
the morphological properties (case marking) of the sulgétite verb it is attached to.

2.2.2 Nominal sentences, copula sentences

The dependency label that identifies the sentence headN$ESICE in the Turkish
treebank. This label marks the head of the sentence togeittethe final punctua-
tion and it does not necessarily mean the sentence is a futktisee. Fragments are
not differentiated. Some sentences consist only of an NRharaypes of non-verb
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phrases in the data. Since one type of copular verb is redagizero morpheme, these
sentences cannot be distinguished from copular senteBoese sentences with non-
verbal heads incorporate as morphological informationzév® copula IG. However,
the remaining sentences are ambiguous between fragmeotpolar sentences. We
do not explicitly annotate non-verbal heads, however,dlggsthrough preprocessing
for lexicon induction as explained in Chapter 6.

2.3 Punctuation

Punctuation marks can sometimes have dependents in MEDBRS&aTreebank. For
instance, in coordination, the first conjunct has a link ® ¢bmma that separates (or
conjoins) the two conjuncts, exactly as (and)would do (Figure 2.8).

COORDINATION

OBJECT SENTENCE SENTENCE

Kapiyr  acti , donip bize bakti

Door-Acc open-Past s Turn-ADS  we-Dat look-Past

(He) opened the door, turned and looked at us.

Figure 2.8: Comma included in the dependency structure as the conjunct in a sentence

coordination.

Punctuation marks can also have different roles such asinggithe sentential com-
plements as in Figure 2.9. The head of the sentential congrliehepends on the
intervening punctuation which is a double-quote in thiganse.

MODIFIER

MODIFIER OBJECT MODIFIER SENTENCE OBJECT SENTENCE
Tek basimiza iktidara dogru yurllyoruz ” dedi
On-our-own power-Dat towards walk-Prog-P1pl ” say-Past

We walk towards power on-out-own, he said

Figure 2.9: A double quote included in the dependency structure as the head of a

sentential complement.
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The sentence final punctuation acts as a root node of the wleplendency struc-
ture. The head of the sentence gets linked to the final putictuaith relation &N-
TENCE. Sentential complements have the dependency labeir&NCE as well, but
they do not depend on the final punctuation. Therefore, drdycombination of SN-
TENCE label and the final punctuation marks the top level of the ddpacy tree.

Apart from these three major uses of punctuation in the deecy structure,
punctuation marks do not get involved in the dependencysire.

2.4 Morpheme names

Table 2.4 lists all the morpheme names that exist in the &lebThe version that this
information is collected is the version that is publishethia CoNLL 2006 shared task
for dependency parsing. These are compared with the moghames that are in the
corrected version of the treebank. The morpheme namesrthptesent in the original

treebank version, but missing in the final version are thesdhat appear as different
tags because of typos or annotation mistakes in the origeraion. An example to

this is theSinceversussincedistinction.

2.5 Improvements on the Treebank

We have made a significant number of changes to the treebamidér to improve
consistency and correctness. The correction cycle causadtconstant correction of
the treebank, explained in Chapter 5, which is in turn fokoWby using the lexicons
and the treebank itself for parsing. Most of the annotatigstakes were found during
lexicon induction phase. Most of the time, when a problem idestified, the whole
treebank was searched for similar problems and inconsigenAmong many changes
the most important types are listed below:

a. fixing incorrect morphological analyses of frequent v&ord
b. connecting tokens that previously were not connectedegaépendency graph,

c. changing dependency links or labels of some relativelyinequent types (e.g.
intensifiers, appositions) to ensure consistency of arioota

d. fixing a considerable number of incorrect dependencyslmidabels,
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old new || old new |
Alpl Alpl NotState NotState
Alsg Alsg Noun Noun
A2pl A2pl Num Num
A2sg A2sg Opt Opt

A3e *NONE* ord Ord
A3pl A3pl Ord Ord
A3sg A3sg P1pl P1pl

Abl Abl Plsg Plsg
Able Able P2pl P2pl
Acc Acc P2sg P2sg
Acquire Acquire P3pl P3pl

Adj Adj P3sg P3sg
Adv Adv Pass Pass
AfterDoingSo | AfterDoingSo || Past Past

Agt Agt PastPart PastPart
Aor Aor PCADbI PCADbI
As As PCAcc PCAcc
Aslf Aslf PCDat PCDat
Become Become PCGen PCGen
ByDoingSo ByDoingSo PCins PCins
Card Card PCNom PCNom
Caus Caus PersP PersP
Cond Cond Pnon Pnon
Conj Conj Pos Pos

Cop Cop Postp Postp
Dat Dat Pres Pres
Demons DemonsP PresPart PresPart
DemonsP DemonsP Progl Progl
Desr Desr Prog2 Prog2
Det Det Pron Pron
Distrib Distrib Prop Prop
Dup Dup Punc Punc
Equ Equ Ques Ques
FitFor FitFor QuesP QuesP
Fut Fut Range Range
FutPart FutPart Real Real
Gen Gen Recip Recip
Hastily Hastily Reflex Reflex
Imp Imp ReflexP ReflexP
InBetween InBetween Rel Rel

Inf Inf Related Related
Inf2 Inf since Since
Ins Ins Since Since
Interj Interj SinceDoingSo SinceDoingSo
JustLike JustLike Stay Stay

Loc Loc Time Time

Ly Ly Verb Verb
Narr Narr When When
Neces Neces While While
Neg Neg With With
*NONE* Negp Without Without
Ness Ness WithoutHavingDoneSo| WithoutHavingDoneSo
Nom Nom Zero Zero

Table 2.4: Morphological tags in METU-Sabanci Turkish treebank data.
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e. correcting tokenisation errors that could be fixed. Wéeaxiplain what we mean
by this in the following.

f. disambiguating coordinations that involve the head$iefdentences, which can-
not be distinguished with the current design principlehimtreebank. The mo-
tivation behind this, and the method are explained in Se@ié.4.

.g adding extra dependencies that are crucial in identifyite type of extraction
in relativisation sentences. These links also containinggsredicate-argument
relations that may be helpful in future semantic processtadies. The process
is explained with examples in Section 2.5.3.

Some additions to the treebank that are not in the originsigthewere necessary
in some exceptional cases. For instance, in news articlbenva person is quoted,
the periods between the sentences divided the speaker anvértbdedi (said)at the
very end of the paragraph as in (2.7) during tokenisation2d6)( Thus, the name
of the person quoted would be disconnected from the verbpédes on which is in
sentence3, and it will be irrelevant to the dependency straof sentencel. For these
cases, a new dependency label was introduced. The spealdr iwheferred to as
Person-X as shown in (2.6) is linked to the next punctuati@mnkmnwhich is usually
a semi-colon, with the labeldJECT and the punctuation mark is linked to the top
level with the label BEAKER. This solution does not connect the speaker subject with
the verb it depends on, but it, at least, preserves the ctemheess and consistency
of sentencel in 2.7. sentence3 is treated as if it is a senigitlc a missing subject
(pro-drop). $EAKER also says that the verb of this subject is in another sentence

(2.6) Person-X:sentencel. sentence2. sentence3, said.

(2.7) Person-X:sentencel.
sentence2
sentence3said.

More substantial changes had been made to the treebank $arhieb were men-
tioned in Cakici (2005). These included adding secondakg lfor long-distance de-
pendencies and arguments shared among conjuncts in serdererb coordination
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structures. A brief summary of these changes is given ini@e&.5.3 and Section
2.5.4.

The main aim of the corrections is to make the treebank atinatanore consistent.
In the majority of cases, we opted for aligning the annotatuith the most frequently
occurring annotation especially when correcting morpgwal errors. This is not an
effort to create a different treebank, but to make the exijstine more self-consistent
and as correct as possible. The new label types suchask&R were only introduced
because the problem could not be solved within the existegigsh principles of the
treebank.

2.5.1 Morphological Changes

Morphological annotation in the Turkish treebank is peried with manual disam-
biguation among possible morphological parses of a worgiigeal by a morphologi-
cal analyser (Atalay, Oflazer, and Say, 2003). Morpholdgioalyses that are wrong
given the context were sometimes chosen by the annotatdiesy &xamples of these
and changes made to correct them are given here.

ikimiz (we both)wvas annotated asiiiki is a number and a noun was derived from
it. In fact, the reading suggested by this annotation is @@”, as in number two.
ikimiz (2.8) -we (both}- should be a pronoun likeepimiz— we (all}- which is anno-
tated as a pronoun in the treebank. An alternative soluida change the second IG
to a pronoun rather than a noun.

Dogrusu(in fact) is an adverb. It can also be a houn in possessive case iresethff
context. The root — Dogru — has a noun reading, an adjea#&eing, and a postposi-
tion reading. The adverDogrusuis annotated as shown in (2.9) most of the time, in
the Turkish treebank. However, postpositions do not ge¢datittnal morphology and
hardly receive derivational suffixes in Turkish. They makeaaopula morpheme as
an affix as all other non-verbal stems do. Thus, this anafgsidojrusuas a noun is
grammatically and pragmatically incorrect. Instanceshis type are replaced by the
annotation shown in (2.9) as ‘correct’.

(2.10) is a more general type of annotation error. This wad be analysed as
two different types. The first is as a relativised verb. Thaseannotated as verb-to-
adjective morphological derivation in the Turkish treebahe second is as a verb
future tense inflection. Relativised verbs of the first typerevmostly annotated as
tense-inflected verbs. These types of disambiguation keistare corrected by replac-
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ing the first annotation in (2.10) with the second line.

(2.8) ikimiz — (1,“iki+Num+Card”)(2,“Noun+Zero+A3sg+Rl+Nom”)
correct — (1,“iki+Pron+Alpl+P1pl+Nom”)
alternative — (1,"“iki+Num+Card”)(2,”"Pron+Alpl+P1pl+Nu’)

(2.9) dogrusu — (1,“dogru+Postp+PCDat")(2,“Noun+Zef@sg+P3sg+Nom”)
correct — (1,“dogrusu+Adv”)

(2.10)  kurtulamayacak — (1,"“kurtul+Verb”)(2,“Verb+Abi®leg+Fut+A3sg”)
correct— (1,"kurtul+Verb”)(2,“Verb+Able+Neg”)(3,"AdiFutPart+Pnon”)

These are only a few examples of a large set of correctionsoipinological an-
notation in the treebank. These changes are not expectedk® significant improve-
ment on the parsing models to be trained on the treebankhewytall contribute to the
overall consistency and correctness of the data, and aextegto be useful in tasks
such as part-of-speech tagger training.

2.5.2 Wrong IGs

A considerable number of corrections were made on the degpenes among IGs.
These are mostly arguments of relativised or subordinagelsy that were annotated
to depend on the last IG instead of the stem verb by mistakesd iependencies were
corrected by assigning the dependency head to be the stéthersecondary IGs. The
motivation could be explained by an example case.

There are 396 genitive marked nouns witheSecT label. Their heads are the first
IGs of the relativised or nominalised verbs. On the otherdhadhnere are 203 nouns
of the same sort that (inconsistently) depend on the set66il( the third(25), the
fourth(11), and the fifth (1) IGs of the head in the originatsien of the treebank.
This means that the general principle of annotating thess i linking them to the
first IG (or the verb stem). Linguistically, if the label isliea SUBJECT, we think that
the dependency should be to the stem which is the verb. Ontliee band, if these
are accepted as genuine derivation, then for instancerdumabed verb phrases should
be treated like other noun phrases which means subjectsabeld be changed into
PosseESSOR The ideal situation would be to have both of these depene&nd his
way, subject dependency would link the noun and the verbpasdessor dependency
would link the noun to the aggreement suffix. However, sifggadedness restriction
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So, we corrected these dependenciemastent with the similar

cases as possible. The same was done for objects and othifiensanf these verbs.

The following example justifies our approach. In this exaerplere are two sub-

ject labelled dependencies to the same word. This is notilgessnder normal cir-

cumstances. But, li
the original version

nguistically these subjects are gaceby two different IGs. In
of the treebank this sentence was wyoagnotated as shown in

(2.11). But the corrected dependency structure is as shoih12).

(2 . 1 1) <S No="3">

<W IX="1" ... IG="[(1,"

<W IX=2" ... IG="[(1,"

<WIX="3" ... IG="[(1,

<W IX="4" ... IG="[(1,

<W IX="5" ... IG="[(1,"

<W IX="6"... IG="[(1,"

<W IX=7" ... IG="[(1,*

<IS>

(2 . 12) <S No="3">

<WIX=1"... IG="[(1,"

<WIX=2" ... IG="[(1,"

<WIX="3" ... IG=(1,

<W IX="4" ... IG="[(1,

<W IX="5" ... IG="[(1,

<W IX="6" ... IG="[(1,"

<W IX="7" ... IG="[(1

<IS>

E: What is impor

2.5.3 Relativisati

onem-+Noun+A3sg+Pnon+Nom”)(2,“Ag-With")(3,“Noun+Zero+A3sg+Pnon+Nom")]' REL="{2,1,(BJECT)]"> Onemli </W>
ol+Verb+Pos")(2,"Adj+PresPart”)] REL="[6,3,(SUBJECT)]"> olan </W>

“oncil+Noun+A3sg+Pnon+Nom”)]’ RE="[4,1,(SUBJECT)]"> oncil </W>

ile+Conj")]' REL="[5,1,(COORDINAT ION)]" > ile </W>

kanit+Noun+A3sg+Pnon+Gen”)]' RELY6,3,(SUBJECT)]™> kanitin</W>
celis+Verb+Neg”)(2,“Noun+Inf+A3sg+P3sg+Nom”)(3,“Verb+Zero+Pres+Cop+A3sg”)] REL%L,(SENTENCE)]* celismemesidik/W>

+Punc’)] REL=[,()]" > . </W>

onem+Noun+A3sg+Pnon+Nom”)(2,“Ag-With")(3,“Noun+Zero+A3sg+Pnon+Nom”)]' REL="[2,1,(BJECT)]"> Onemli </W>
ol+Verb+Pos")(2,"Adj+PresPart”)] REL="[6,3,(SUBJECT)]"> olan </W>

“oncul+Noun+A3sg+Pnon+Nom”)]' RE=“[4,1,(SUBJECT)]"> oncill </W>

ile+Conj")]' REL="[5,1,(COORDINAT ION)]" > ile </W>

kanit+Noun+A3sg+Pnon+Gen”)]' RELY6,1,(SUBJECT)]™> kanitin</W>
celis+Verb+Neg”)(2,“Noun+Inf+A3sg+P3sg+Nom”)(3,“Verb+Zero+Pres+Cop+A3sg”)] REL%L,(SENTENCE)]* celismemesidik/W>

SAPune”)] REL=[,()]” > . </W>

tant is that premise and evidence do not coittad

on

So far, we have explained how Turkish dependency treebankde more self-consistent.

The corrections made were mostly corrections of the exgstructure, without adding
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new information. In this section and the next, will describe major contribution to
the METU-Sabanci Treebank: Addition of long distance deleecies.

Long-distance dependencies have an important role iningikemantic interpreta-
tion. Unfortunately, the issue of deep structure alwayssfitgklf in the “Future work”
sections of the work on parsing and other studies. So thimeeeeryone knows cap-
turing “deep” linguistic information is important and eyene also knows it is the hard
part. We will show here, some problems caused by not inctythis information in
the Turkish dependency treebank, and suggest a simplesolut

Underhill (1972) identifies two types of relative constioatin Turkish. Subject
extraction and the rest. The second group covers objeciaidn, extractions from
adjunct phrases (or PP), and from possessive construdteon@n-subject location.

All of these types have instances in the Turkish treebankweéver, there is no
explicit encoding of extraction in the treebank; for instanthe heads of the relative
clauses are represented as modifiers. Some of this infammatuld be recovered
using heuristics that rely on morphology, like the presesfdteePRESPARTMOrpheme
in (2.13), and part-of-speech of the word. However, thissdoet help in identifying
the type of extraction as shown in (2.14). (2.14a) is an exampextraction from a
locative adjunct and (2.14b) shows extraction from objéet s

(2.13) Kitabl okuyan adam uyudu.
book+ACC read+PresPart man slept.
The man who read the book slept

(2.14) a. Uyudugum araba yandi.
sleep+PastPart car burn+Past.
The car | slept in burned.

b. Okudugum kitap yandi.
read+PastPart book burn+Past.
The book | read burned.

Case information is lost in extractions, so surface depecide alone cannot dif-
ferentiate between these cases. The dependency strufuthese extractions are
the same (Figure 2.10), causing loss of information aboitvéilency of verbs that
would lead to incorrect logical forms for these sentence fléd this by adding a
T.LOCATIVE.ADJUNCT dependency fromaraba (car)to uyudujum (sleep+PastPary)
indicating that the extraction is from the adjunct. Sinlifaa T.OBJECT link was
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added fromkitap (book)to okudwum (read+PastPartjo mark the noun that is ex-
tracted from the object position, indirectly providing amiation thatoku (read)is
transitive (Figure 2.10). Similar labels (TuBJECTfor subject extraction, T.®SSESSIVE
for genitive extraction and other types obAUNCT extractions) were added to the tree-
bank manually for approximately 1250 instances in aboutsfiiences. These serve
as additional information about long-distance dependsnici the form of secondary
links from extracted arguments to their logical heads (Ca2005).

The tense information is lost in the relativisation procassvell. In object extrac-
tion one can differentiate between past tense and futusetbuat not past tense and
present. However, this information does not affect the agrammatical structure as
much as case information does. Therefore, we will not disthis issue any further.

MODIFIER SUBJECT SENTENCE MODIFIER ?J_E\CT‘ SENTENCE
Okudugum kitap yandi Uyu@\;raba yandi
rea{+PASTPAR book burned V S . sIeep\+PASTPAR car burned

T A/TLoéATNé_ADJUNCT
T.OBJECT Added manually
The book | read burned. The car | slept in burned.

Figure 2.10: The dependencies in (2.14)

2.5.4 Coordination

There are 1657 sentences with some type of coordination if4Eabanci Treebank.
The treebank annotation for a typical coordination exangpkhown in (2.15). Here,
the first conjunct is linked to the conjunctive wove with a MODIFIER dependency
link and then a © ORDINATION link goes fromveto the second conjunct and finally,
the last conjunct links to the head of the sentence with@MIER link. Despite
its simplicity this scheme bears some problems in ann@aome structures that are
quite common. The example of an argument cluster coordindti (2.16) cannot
possibly be represented with the design principle adopihat causes inconsistencies

throughout the treebank among similar sentences as to heystiould be annotated.
Mod. Coor. Mod.  Sentence

NN YN

Kosarak ve ziplayarak geldi
(2_15) Running and jumping  come+Past

He came running and jumping.
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Coord.

Sub. Obj.  Sent. Sub.
Ob}/" ?
Biri  kuru diyor , Dbiri kavrulmus .
(2.16) One dry says , one roasted

One says dry, another roasted.

It is possible to annotate these types of coordination wépping, if only one
argument coordinates. For instance, in (2.17) objects edimked to each other before
linking to the verb. The approach taken in the treebank wasrig both objects to
the verb as if the verb is ditransitive. Apart from introcaginon-projective links to
the dependency structure, this approach solves the repeaties problem for gapping
in this example. However, if there are two dependents of tissimg head such as
SOVSO coordination, it is not possible to coordinate twodgowith one conjunctive,
thus, this method does not work for those sentences.

SENTENCE

OBJECT

COLLOCATION OBJECT COORDINATION
Kagt kalem bulmalryim bir de zarf .

(2 . 17) paper pencil find-Neces-Plsg one too envelope

| need to find paper and pencil, and an envelope.

V versus VP coordination

There are about 800 coordinations that involveen8NCE label. This is more than
half of the total number of sentences with coordination {@)5dresent in the data.
A surface dependency approach does not differentiate leeteeordination of verbs,
verb phrases, and sentences. Both sentences in (2.18)paesented equivalently in
the Turkish treebank although (a) is verb coordination,igb)erb phrase or sentence
coordination (with pro-drop). The first sentence is from tleebank and the second
sentence is derived from the first by removing the causatiogpheme of the verb in
(2.18a) -bekletti (held) thus making it intransitive bekledi (waited} to simplify the
example?

4Sentence coordination and verb phrase coordination migthtlnd to differentiate in Turkish since
Turkish is a pro-drop language and usually sentences d¢ansisof verb phrases.
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C. OBJECT
SENTENCE SENTENCE
MODIFIER OBJECT COORDINATIQN ﬁ‘%\‘
Yapmaciksiz sikti elimi , bekletti biraz
(2 . 18) a. feign-Without shake-Past hand-Possi1sg-Acc , wait-Caus-Past A while
((s)he) Shook and held my hand
SENTENCE SENTENCE
MODIFIER OBJECT COORDINATION MODIFIER
Yapmaciksiz sikti elimi , bekledi biraz
b_ feign-Without shake-Past  hand-Possisg-Acc, wait-Past a while

((s)he) Shook my hand and waited

Our solution for this is similar to the one suggested in thevimus section for
relativisation. We add secondary dependency links QK2 T emanating fromelimi
(my hand-ACCjo bekletti (held)n (2.18a) in order to restore the information tiedimi
is the object obeklettias well assiktl. By doing this, we make sure that the missing
dependencies are restored and the predicate-argumertusérof these verbs will thus
be predicted correctly. (2.18a) is thus treated as verbdination whereas (2.18b) as
VP or sentence coordination. Similar links such as@@&cT, C.DATIVE.ADJUNCT
etc. are added for other types of dependents that could bledgshanong conjuncts.
We manually added these links to every occurrence of veribdooation with shared
arguments in over 800 sentences WIBENSENCE coordination.

MODIFIER

MODIFIE

N

icine giren bir_daha kolay_kolay  kurtulamaz , clkamaz oradan
inside-Dat enter-PresPart  once_more easily escape-Abil-Neg-Aor ) exit-Abil-Neg-Aor  there-Abl

DATIVE-ADJUNCT

SENTENCE COORDINATION / DATIVE-ADJUNCT

Figure 2.11: Coordination example with secondary edges added

This procedure needs to be done for other types of informdto shared argu-
ments for an improved treebank, which we put aside as futoré.w

Adding these secondary dependencies results in some wairtsiultiple headed.
Multiple heads are not supported by the pure-dependencyagpip adopted and are
usually ignored by the dependency parsers most commonty siseh as McDonald
et al. (2005) and Nivre et al. (2007). This information wag$ nsed in any of the
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initial parsing experiments to be discussed in Chapter &yHre only used in guiding
the lexicon induction process to obtain correct CCG catiegdpr these structures in
order to be able to compare our results with previous worlweieer, this information
is invaluable for training parsers aiming to predict deepetalencies.

2.5.5 Various other changes

Some other changes of small scope when compared to the oneiseussed earlier
were made throughout the data as well. These are mostly eedanghe dependency
labels, indexes or structural changes on the sentence Boeie changes to the mor-
phological annotation of some words were also made and sceised below.

e Some morphemes especially particles had inconsistentsiaowh aemons
versusDemonsHn a few sentences. These were corrected together with-incor
rect annotations caused by typos suclPastpversusPostP

e S.MoDIFIER was linked to the head verb in some sentences, whereas ingthe m
jority of its occurrences it is seen to be linked to the togeldfinal punctuation).
This is regularised by making all S.&bIFIERS linked to the final punctuation
when possible.

e Annotation of verbs or nouns that take sentential complésnerre made con-
sistent. These verbs arelédi (said), “diyerek (while saying) “Sentence-x
karsiligini (the answer thasentence-x)”. The nouns that take sentential com-
plements such dearsiliginiwere linked with @ASSIFIER label as this was the
label that existed in most of the sentences of this sort irotigenal release of
the treebank.

e COORDINATION categories were not compatible in a number of cases. This
is possible under some circumstances but in the Turkistbargde most of the
time it was due to wrong annotation. We corrected these problwhenever
the incompatibility was at the word level. For IGs we autoedathe correction
process. (Section 6.3.2).

e In copular sentences, copula morpheme is attached to thertuem (or adjec-
tive) and this morpheme behaves as the sentence head. Wbatedethese
sentences are headed by the negative particle. Negatitie@sin Turkish tree-
bank are annotated to depend on the previous verb BSANVE.PARTICLE.
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This is not correct whedegil is the head of the sentence. There are other uses
of dgjil where itis used as 1) in “not ... but ...” type coordinatio®stogether
with question particle to be used like “isn’t it". These a@ oonsistently anno-
tated in the original release of the treebank. We isolatebaammotated alegil
cases. The morphology of this word was also erroneous assibwaotated as a
verb. However, it behaves exactly like a noun attached vaiuta verb morpho-
logically. We changed all instances of morphological aatiot of this word by
the tagNegp This is a new morpheme tag, and it is only used for this pugpos

The sentence in (2.19) is shown annotated in the originebaek in (2.20) and
in the corrected version in (2.21). The two versions aregqditferent, but we
would like to draw attention tdegillabelled assENTENCEWhich is the head of
the sentence.

Mazim kalbimde bir yara gibi  degildi

(2.19) _
past-Posslsg heart-Posslsg-Loc a  wound like not-Past

My past was not like a wound in my heart.

(2.20) <S No="1">
<WIX="1" ... 1G="[(1,"mazi+Adj")(2,"Noun+Zero+A3sg+P1g+Nom")] REL="[2,1,(CLASSIFIER)]">
Mazim </W>
<WIX="2" ... 1G="[(1,’kalp+Noun+A3sg+P1sg+Loc”)] REL=16,1,(LOCATIVE.ADJUNCT)]"> kalbimde
</W>
<W IX="3" ... IG="[(1,"bir+Det")] REL="[4,1,(DETERMINER)]" > bir </W>
<W IX="4" ... 1IG="[(1,"yara+Noun+A3sg+Pnon+Nom”)]' REL=[6,1,(OBJECT)]"> yara</W>
<W IX="5" ... IG="[(1,"gibi+Postp+PCNom”)] REL="[7,1,(ENTENCE)]"> gibi </W>
<W IX="6" ... 1G="[(1,"degil+Verb+Past+A3sg”)] REL="[51,(NEGATIVE.PARTICLE)]"> degildi
</W>
<W IX="7" ... IG=[(1,"...+Punc”)] REL="L,()" > ... </W>

<IS>

(2.21) <S No="1">
<W IX="1" ... IG="[(1,’mazi+Noun+A3sg+P1sg+Nom”)]’ REL=[6,1,(SUBJECT)]>> Mazim </W>
<WIX="2" ... IG="[(1,"kalp+Noun+A3sg+P1sg+Loc”)]' REL=14,1,(MODIFIER)]"> kalbimde</W>
<W IX="3" ... IG="[(1,"bir+Det")] REL="[4,1,(DETERMINER)]" > bir </W>
<W IX="4" ... 1IG="[(1,"yara+Noun+A3sg+Pnon+Nom”)]' REL=[5,1,(OBJECT)]"> yara</W>

<W IX="5" ... IG=[(1gibi+Postp+PCNom”)]' REL="[6,1,(MODIFIER)]"> gibi </W>
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<W IX="6" ... IG="[(1,"de§il+Negp+Past+A3sg")] REL="[71,(SENTENCE)]*> degildi </W>
<W IX="7" IG=[(L,"...+Punc”)] REL="L,()]” > ... </W>

<IS>

e Dependency structures for passive and causative sentercegegularised by
checking and correcting the dependents of passive andtcausarbs in these
sentences. In most sentences of this type object and suldipetied arguments
were linked to the 1G with passive or the causative morpheéie ensured this
was applied throghout the treebank.

e Annotation of relatively infrequent relation labels such HOCATIVES, FoO-
cus.ParTICLE were checked and made more consistent throughout the tree-
bank.

e There were many tokenization errors in the treebank. Questnd exclamation
marks were ignored as sentence boundaries and several seft@nces sepa-
rated by these were annotated as a single sentence. Wehgsié sentences
whenever possible. This resulted in 57 additions to théotrek. In other cases,
sentences were wrongly split in between periods in properasawith only ini-
tials and parts of abbreviations. The former is correcteddaybining parts of
these proper names that were in different sentences, andttbeis corrected
by combining the period with the abbreviation and also camlgj it the rest of
the sentence. As a result, the number of sentences chan§é63drom 5620.
Note that these changes do not effect the number of tokeepexcabbreviation
correction cases where one period is combined with the gihegeabbreviation.

e One of the most overloaded words is “Ne—(what)” in the treddbdt can appear
as (BJECT, SUBJECT because of the way questions are annotated. It can be a
MoDIFIER when it is an adverb modifying an adjectivey£sTION.PARTICLE
in some questions, andL@sSSIFIER some other times. It can also be involved
in either .. ortype coordination structures. It can take inflection and be a
ADJUNCT as well. This means it takes almost all the labels. Overlugadieans
confusion in annotation. Mistakes indirectly caused byrimagling were also
corrected throughout the data.
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correction type sentences changes

secondary links (extraction) | 1200 1065

secondary links (coordination)800 181
morphology - 1975
wrong dependency - 4732
tokenisation 49 67

Table 2.5: Summary of major types of corrections

2.6 Summary and Conclusion

Table 2.5 gives a summary of the major corrections made taréedank. The cor-
rection process is still continuing as the lexicons induteth the data are still being
tested on the parsers.

This chapter gave an overview of the current state of thei$hriceebank which
is the data used for this thesis. Turkish treebank is a veligtinew treebank and it
is not uncommon in treebank annotation projects that theredot of mistakes and
design flaws that could not be accounted for in the early stafj&reebank design. A
lot of the treebanks have second releases (Czech2.0, Pgiin@t contain corrected
versions of the existing or a bigger set of trees. But somegimonsiderable linguistic
information needs to be added to account for certain phenanrenatural languages
such as argument sharing between conjuncts, long-distieEndencies etc. An ex-
ample of the second type of improvements is the Tiger trdef@rants et al., 2004)
for German. NEGRA, which was the earlier version of the Gerrtraebank lacked
long-distance dependencies and information such as argwharing between coor-
dinate structures. This kind of information is crucial fatdrmining the coordination
type (if there are no node labels as in some dependency trkgband predicate ar-
gument structure. It is not hard to see that a treebank éatinprovide information
for predicate argument structure is deficient. However,tnobshe time because of
practical issues or for being computationally simple, thsie is ignored.

In this chapter, we explained how a treebank that was ityttldsigned to have only
surface dependencies can be modified to include at least gbtie crucial informa-
tion to recover some long-distance dependencies and be@blifferentiate certain
coordination types which would otherwise be identical. Wealemonstrated other
changes that did not need any substantial diversion fronptimeiple of the original
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release of the treebank. By this, we mean correction of thhwdogical and syntactic
annotation mistakes.






Chapter 3

Morphology

In agglutinative languages the union of words may be contpéweme-
chanical compounds, in inflective languages to chemicalpmamds.R.
Morris.

3.1 Introduction

Before taking its deserved place in linguistic researchtisg@with 90s, morphology
was often neglected within the generative framework indistics. Followers of gener-
ative grammar either considered morphology as part of xighich was transparent
to syntax, or explained morphology by means of syntactidwablogy, i.e. via trans-
formations or X-bar rules that combines morphemes ratheer ords. (Lieber, 1980;
Lieber, 1992; Selkirk, 1982). Chomsky (1970) stated thatphology should be part
of lexicon. This has given rise to a tradition of handling ploslogy with lexical rules.
These were simply phonological changes made to stems amdsaffiithout taking
syntactic relations into consideration.

Hockett (1954) draws attention to two different approadoesiorphology in lin-
guistics. The first is Iltem and Arrangement which relies goresentations of mor-
phemes that are combined (arranged) to form words. The aftygoach is Item-and-
Process in which the rules change the form of the word, byragjdieleting or applying
other processes.

A third approach: “Constraint-based morphology” was latgroduced by Bird
(1990) and was followed by Russell (1993). This adopts tlea ithat morphology
is neither a collection of representational morphemes c¢oimdp to form words, nor
processes that change an original form to obtain the finatlw®his approach holds
that the phonological properties of the words are specifieticbnstraints” that link

35
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them with semantics and syntax.

Hoeksema and Janda (1988) introduce 4 processes that defipéatogical op-
erations, some of which can be explained with categoriahgnar rules. Some others
are handled by introducing new mechanisms that increasgetherative power of cat-
egorial grammars which are originally context-free.

According to Hoeksema and Janda (1988), Bar-Hillel (1964gndling of mor-
phology corresponds to Item-and-Arrangement approachwvtp(l979), Schmerling
(1983), Bach (1983), Bach (1984) adopt an Item-And-Proepgsoach. Hoeksema
and Janda state that Item-and-Arrangement is a variant lodnd¢heory and corre-
sponds to categorial grammars in terms of expressive paives is not powerful
enough to explain all morphological phenomena. They enipbdlke need to extend
categorial grammars to have more than application and ¢enaton in order to ex-
plain some morphological phenomena such as infixation ashaptecation. They use
Bach’s wrapping operations to explain infixation.

The additional operations Hoeksema and Janda (1988) unteotb explain some
morphological phenomena boosts the generative power efjoatl grammars. Ad-
dition is handled with simple application of the CG rules. wéwer, their handling
of infixation, which is accomplished by adding wrapping téecgrial grammars af-
fects the generative capacity of the categorial grammafixdtion brings in some
context-sensitiveness to the grammar which is acceptallgidering the fact that nat-
ural languages are not context-free (Shieber, 1985) butdlass that is a subset of
context-sensitive languages called mildly context-deresianguages (Joshi, 1985).
Wrapping operation in itself has potentially more powertlcantext-free. Hoeksema
and Janda (1988) say that languages with wrapping opesatiay be in a proper sub-
set of context-sensitive languages. However, it is notrcldeether they are equivalent
to the proper subset that Combinatory Categorial Grammiaigdr Indexed Gram-
mars belong to. Type changing rules for morphology (lexio#ds in some contexts),
when used without any restriction on recursivity or on thiegaries that can be type-
changed, boost the generative power of categorial gramtméusing-complete unnec-
essarily Carpenter (1991; 1992).

3.1.1 Morphology and NLP

Morphology in well known NLP systems is not generally coesédl a vital component
to be focused on. The main reason for this is that English¢hvig the most studied
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language, does not have a complex inflectional componenth wbmpared to some
other languages. Thus one can easily build an NLP systemrfgligh that ignores
morphology and still obtain satisfying results. Withoubper consideration for the
interaction between morphology and other components, atidmes of bracketing oc-
cur, or ambiguity that needs to be passed on to syntax andgesienay be ignored
which results in deficient systems.

Computational systems of CCG developed so far do not hawsstdiandling of
morphology. Hoffman (1995) treats inflected forms in Turkés separate words and,
Hockenmaier (2003a) does the same for English. Bozsal®i@2)2proposes a mor-
phemic lexicon with attachment constraints that assumesrahmologically decom-
posed input.

3.1.1.1 Morphological Analysis

There are different approaches to morphological procgsgsithe literature. The rel-
atively more popular approach for agglutinative languagesnite-state transducer
based morphological processing. Finite state transduakesthe input word and pro-
cess it from left to right searching for a valid analysis aheéyt give a string of mor-
phemes that might have created the surface form in question.

Another alternative to morphological parsing is affix4gping. These strip affixes
off the word guided by their lexicon to find a root. When theydfia root that is
compatible with the morphotactics of the rest of the morpbgthey return them as a
candidate analysis.

When parsing a word in an agglutinating language like Tirkihese two ap-
proaches would work in different ways. An FST parser woulttsirom left to right
finding a root from the lexicon, and guided by the transitiand rules of morphotac-
tics scan all possible morphemes that can attach to the noad@the same iteratively
for the rest of the input. An affix-stripping approach, on titeer hand, would start
from the end and strip affixes to reach a compatible root irethek This approach is
not feasible for a language like Turkish due to high ambiguit

Morphological analysers produce all possible morphemeggifor a surface word.
Thus, a morphological processor to be used in practicaliegmns needs a disam-
biguator module or a disambiguation process afterwarddafioguages with highly
ambiguous morphology like Turkish.

Early work on morphological analysis was a part of Englisti-te-speech system
MiTalk. (Sproat, 1992). DECOMP is a suffix-stripping morpdgical model with
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a lexicon that is interactively created from the words in\BnoCorpus. AMPLE by
Summer Institute of Linguistics uses morphotactics ireplyy categorial morphology
(Hoeksema, 1984) and it is context-free (Sproat, 19922[p)-

Two-level morphology is introduced by Koskenniemi (198B)o-levels of “two-
level morphology” are the surface and the lexical levels dichv the rules are applied
in parallel. Two-level morphology is based on three idegsRdles are symbol-to-
symbol constraints that are applied in parallel, not setjakiy like rewrite rules. 2)
The constraints can refer to the lexical context, to theasrfcontext, or to both con-
texts at the same time. 3) Lexical look-up and morphologaeellysis are performed
in tandem. (Karttunen and Beesley, 2001).

KIMMO is a two-level morphological analyser. It is implented in C and is very
efficient. It produces a combined finite-state transducat pinoduces the combined
output of all the morphological rules implemented. A twadkfinite-state transducer
works on two tapes one for lexical form and for surface forrd ancepts if the surface
form is compatible with the rules and the lexical form in rgndion mode. The current
version of KIMMO (PCKIMMO2) uses grammar rules and unifiocatas an interface
when building a morphological system , whereas the earbesion uses “alternation
classes” (corresponding to states in a finite-state maghine

Generative systems have also been suggested for morptallpgirsing. One ex-
ample is Kay’s chart parsing model that has two stages (KdyKaplan, 1983). The
first stage applies the phonological rules and the seconsiepbiadictionary look-up
finds the underlying forms for recognition. Rules are useditevally generate the
surface forms from an underlying form with the help of a chpatser (Sproat, 1992).

We believe a robust system for agglutinative languagesTiik&ish cannot be built
without proper consideration of morphology for the follagireasons:

1 The sparse data problem is unlikely to be overcome regesditthe amount of
data provided, because a word may have millions of diffeneffected forms.
This is discussed in Section 3.4.

2 Morphology is often highly interlaced with syntax, semesiind even discourse
in languages with strong morphology. Thus, without properdiing of interlac-
ing aspects of syntax, semantics and morphology, analiEiaguage structures
is not possible. We will give some discussion and examplésisissue in Sec-
tion 3.2.

3 There is a good potential of generalisation with the use arfpinology and this
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should be facilitated when building NLP systems for a corapebut compact
outcome. A detailed discussion about this issue is giverhaper 6.

In this chapter, we discuss some morphological phenomegether with infor-
mation on how morphology is treated in history. We focus ryosh the interaction
of morphology with syntax and semantics. Most of the exasipiethis chapter are
on Turkish. For a detailed description of Turkish morphgl@nd how it is treated
see (Lewis, 1967; Underhill, 1972; Hankamer, 1989; Kort®97; Oflazer, Gogmen,
and Bozsahin, 1994; Pembeci, 1998ztaner, 1996). We will also discuss the his-
tory of computational morphology to some extent, and givevéesw of morphological
analysers for Turkish. Finally, more discussion on why nhapgical processing is
necessary for NLP applications will be given.

3.2 Morphology and Syntax

Spencer (1991) categorises languages as: isolating, tagglng, inflectional and

polysynthetic. Isolating languages are those that do ngg haorphology whatsoever
such as Chinese and Viethamese. Inflectional languages,doavbined morphemes
of different features which are difficult to map to surfacenis. Polysynthetic lan-

guages make use of combination of words to form a full sertembe fourth class is
Agglutinative defined below. Turkish belongs to the clasagjlutinative languages.
The definition and the Swabhili example (3.1) for agglutioatgiven below are taken
from Trask (1993). The Turkish example in (3.2) shows thel@guative aspect of

Turkish morphology.

AGGLUTINATION A type of morphological structure in which words can be
readily divided into a linear sequence of distinct morphgpeach of which
typically has a fairly consistent shape and a single cogisigneaning or

function.
a- -li- -ku- -on- -a
(3.1) o
he -past you see indicative
he saw you
ol -dur -e -me -z sin
(3.2)

die -Caus -Abil -Neg -Pres P2sg
you can/may not Kill
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(3.3) yom -ase -rare -na -
' read -Caus -Abil -Neg -Pres

X cannot make Y read.

In (3.2), we see a typical one-word-sentence in Turkish wlhlee verbol — dieis
decorated with a decomposable string of morphemes to mack yeCaus), modality
(-Abil), polarity (-Neg), tense (-Pres) and person (-P2sghis is not particularly a
longer-than-average word for Turkish, and it constitutesseatence on its own as the
Swahili example in (3.1) does.

There are many agglutinative languages e.g. Hungariaan&se and Turkish. The
Japanese counterpart of (3.2) is (3.3) although the meamsigyhtly different in this
example! Agglutination could be seen as an advantage because it rgekesalisa-
tion easier. It could be argued that segmentable systenmsuhk easier to model than
inflectional systems.

Generalising a system to process an agglutinative languely@&eavy morphology-
syntax interface may be more complex than isolating langsagth no morphology
or languages with simpler morphology. On the other hand|wiggtive languages
have advantages over inflecting languages where the mogheuandaries are not as
clear, and morphological information cannot be represkmea string of morphemes.
This is because segmentation of morphemes for agglutak@inguages is easier as op-
posed to segmentation in inflectional languages. Howewertdsk has its challenges.
Morphemes may have grammatical functions such as case agehagnt, changes of
predicate-argument structure and so on. This interactegwdeen morphology, syn-
tax and semantics, sometimes, leads to mismatches of tiragke different levels of
representation in some theories, which are usually caltadketing paradoxes in the
literature. This issue will be discussed in more detail iotioa 3.2.1.

3.2.1 Bracketing Paradoxes

Bracketing paradoxes (or bracketing mismatches) are ctsthetween certain levels
of representation in language. We find two types of brackgtaradoxes mostly stud-
ied on in the literature. In the first type, morphological gpmg is inconsistent with
the constituent structure suggested by syntax. A typicaimgte is : He'll do it.he’ll

is a morphological unit butl do it is a constituent (Trask, 1993). The second type is
the mismatch of phonology and interpretation.

1Thanks to Akira Otani for this example.
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Pesetsky (1979) observed that the morphophonemic réstréctvhile attaching a
morpheme may be different from the semantic bracketing addhowing example
from English shows.

(3.4) a. un[happyer]]
b. [[un-happy-er]

In English, an adjective may take comparative form only ifsitmonosyllabic,
trochaic or disyllabic. For exampleappyor easy Sohappycan take-er but unhappy
cannot, normally. The bracketing should be as in (3.4a)raocg to the morphophen-
emic restrictions. Siegel(1974)’s Level ordering hypaiBesays that affixation takes
place in two linearly ordered blocks, which are separatedhgyword stress rules.
Thus, un- being a “class II” affix is attached after -er in gndg. Thus the phonologi-
cal constraint is met. However, the actual meaning of thedigmore unhappyather
thannot happier This means the semantic interpretation has the brackigtifg4b)?2
Bracketing paradoxes appear in many languages and havestusied by Fukushima
(1999), Bozsahin (2002), Muller (2003) and so on.

The type of bracketing paradoxes in Turkish that we discess mostly fall in the
first category mentioned above. The attachment and phoicalagharacteristics of a
bound morpheme is constrained by the word it is attached &reds it has semantic
scope over the whole phrase. Examples (3.5) and (3.6) shawmaiguous case where
bracketing choices make a difference to the semantic ird&fon. These examples
show that morphemes may or may not have phrasal scope ewaygithizey are identi-
fied with the word they are attached to. In (3.5) the scopé efwith —is [long leaves]
whereas in (3.6), it is only [leaves]. Thus they yield diffet interpretations depending
on the bracketing. There is no way to identify this ambiguaity pass it on to syntax
or semantics level without treating the bound morphelHeas a separate item that
defines its own semantic scope.

(3.5) [Uzun yaprak] -h agac
' Long leaf -With tree
The tree with long leaves
(3.6) [Uzun] [yaprak-ll] agacg

Long leaf-With tree
The long tree with leaves

2Some authors such as Stump (1991) and Sproat (1992) clairthitiés not a mismatch.
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3.2.1.1 Bracketing Paradoxes and Coordination

Examples in 3.7 show that bracketing paradoxes appear iic@tion as well. The
noun phrase in 3.7a is a typical coordination example whegertoun phrasesuz
-salt andyagli yiyecekler - fatty fooddoordinate. However, because suspended affix-
ation is possible in Turkish, the bracketing in (3.7b) whista noun coordination is
also possible. The semantic outcome of this bracketinigpd(x) A (with(salt, x) A
with(fat,Xx)).

tuz ve [yag -l yiyecekler

(3.7) a. _
salt and fat -With food
salt and food with fat
b [tuz ve yag] -l yiyecekler

salt and fat -With food
food with salt and fat

(3.8a) and (3.8b) display the bracketing ambiguity betwtbensyntactic and se-
mantic levels of bracketing. We will not discuss this typéambiguity in this chapter.
This example is given only for a better understanding of sisei¢ at hand. This exam-
ple shows that the English version has a bracketing amlyigstwell.

(3.8) [genc kizlar] ve erkekler
' young girl-Plu and man-Plu

[genc [kizlar ve erkekler]]

young girl-Plu and man-Plu
young girls and men

3.2.2 Morphemes with wider scope
3.2.2.1 Subordination

In example (3.9) it is clear that the semantic scopendf is the whole constituent of
adamin kitabi bana vermesit could also be argued that agreement morpheshe

has the phrasal scope shown in (3.9). However, the phor@bgharacteristics of
both morphemes are determined by the word they attachelus;riH is instantiated

as-ni.
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(3.9) Ahmet [adam-in [Kitab-I bana ver]-me-si] -ni iste-di.
' Ahmet man-Gen book-Acc me  give-Inf-Agr -Acc want-Past

Ahmet wanted the man to give the book to me.

3.2.2.2 Adverbials and Gerunds

The derivational morphemanadanattaches to verbs to make them adverbs. This
is another example of phrasal scope derivational morphesnentp scope over the
whole phrasgem@in hepsi bit not just the verb. Taking into account the wider scope
restrictions of these morphemes is vital for the correcta®n interpretation.

[[Yemegin hepsi bit]-meden]  tath yiyemezsin.
food-Gen all-Poss3sg finish-WHDS desert eat-Abil-Neg-Résg
-WHDS = -WithoutHavingDoneSo

(3.10)

You may not have desert before finishing your food.

3.2.3 Suspended Affixation

Suspended affixation is common in Turkish. It can be exptheeinflectional mor-
phemes having scope over the coordinating clause. Infleadtend some derivational
morpheme$ can have scope over the whole coordinating clause. (3.14n isxam-
ple of a group of nominal inflectional morphemes that havepscover the phrase
kap! ve pencere — door and windowlhe semantic structure for this example is
(posgplu(doorAwindow))) whereas the attachment is as seen in the example.

In verbal morphology a non-final conjunct can be underspetiior modality and
tense (second tense) and person as in (3.12). Morphemewidihscope are usually
attached after tense in verbal morphology (second tens@dality) whereas in nomi-
nal morphology there are no restrictions. (3.13) shows amgte where the past tense
morpheme has wider-than-word scope. This morpheme iswtkafter the main tense
morpheme which ismHs —Narrhas a usage that is similar to the past perfect in En-
glish. It has scope over the whole VP coordination conggsbintwo conjuncts. (3.14)
shows the same phenomena with verb coordination as opposéé toordination in
the previous example. However, (3.15) that has the firstetemsrpheme right after
coordination is implausible.

3Although the suffixes in question may not be called derivationorphemes by some linguists, we
will stick with the treebank terminology at this point
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(3.11) ev-in [kapi ve pencere] -ler -i
' house-Gen door and window -Plu -Poss3sg

[doors and windows] of the house

(3.12) [gider ve uyur] -sam

go-Pres and sleep-Pres -Cond-Plsg
if I [go and sleep]

(3.13) simdi [yapraklar dokilmis ve havalar sogumus]-tu.
) Now [leaves fall-Narr and air cool-Narr]-Past

Now, the leaves had fallen and weather had cooled

(3.14) Soba [sOnmis ve sogumus]-tu.
' Stove [die-down-Narr and cool-Narr]-Past .

The stove had died down and cooled.

(3.15) *babam [kay ve dus]-to.
' father-Posslsg [slip and fall]-Past.

Intended reading: My father slipped and fell.

(3.16) Kapidaki kiz [alimli ve glzel] -di.
' door-Loc-Rel girl attractive and pretty -Past

the girl at the door was [attractive and pretty]

Productive derivational morphemes can also take part il soastructions.-li
— with —is considered as a derivational morpheme that makes antizdjeut of a
noun in Turkish. The same holds fey)dH copula morpheme in (3.16) which is also
considered as a derivational morpheme to make verbs outwfa@r noun phrases).
This type of suspended affixation is the most frequent type.

Suspended affixation is an interesting phenomenon whicbtiexclusive to Turk-
ish. Examples of this are seen in Hindi, Japanese and so oretalletl analysis of
suspended affixation in Turkish is given in Kabak (2007) faerested readers.

3.2.4 -kirelativisation

An interesting type of relativisation iki relativisation in Turkish. The head can drop
in constructions which leads to the specifier taking the atibeal properties of the
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dropped noun such as number, case, and so-kinis regarded as an adjective de-
rived from a noun in Turkish treebank. And the phenomenorvali®represented by
deriving a noun from the adjective which itself was deriveahi a noun as in (3.17).

(3.17)  1G="[(1,“Ust+Noun+A3sg+P1sg+Loc”)(2,"Adj+Rel")(3Noun+Zero+A3pl+Pnon+Nom”)]
Ustiimdekiler — the ones on/above me

The morphological structure of the relativised noun is thme in both sentences
in (3.18) except case marking, although the first one is aveéradjective while the
second one behaves as an inflected noun. This may either lse afcdeadless rela-
tivisation” which involves head-deletion according to sotheories or it can simply be
explained as an adjective that goes through nominal moogiyoihich is common in
Turkish. The latter means that the noun is first turned intadjactive by-ki relativiser
and the resulting adjective goes through nominal inflectibnis type of overloading
is often explained by zero morphemes that change types inW&abanci Treebank.
(3.19) is an example of a headless relative clause.

(3.18) masadaki geline baktim.
table-Loc-Rel bride-Dat look-Past-P1sg
| looked at the bride at the table
masadakine baktim.
table-Loc-Rel-Dat look-Past-P1sg
| looked at the one at the table
(3.19) Bu ongorulerin dogrulugunu  sinayacaklar yine  deney

This hypothesis-Plu-Gen truth-Agr-Acc test-FutPart-Plagain  experiment

ve  gozlemlerdir
and observation-Plu-Cop

FutPart = relativiser

What will test the truth of these hypotheses is, again, éxrts and observations.

3.2.5 Morphology and Argument Structure

The most significant aspect of morphology/argument strednteraction is observed
in voice changing structures. In Turkish, voice changirfg@$ not only verbal mor-
phology but also case suffixes on the arguments. Other tyfpasice changing mor-
phemes are passives, reflexives and reciprocals.
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3.2.5.1 Causatives

Causative morphemes aileHr and-t. -DHr is used for verbs ending with a consonant
and-t is used for verbs ending with a vowel or when there is doublesativisation
or if a passive verb is being made into a causative verb. Taerexceptions to these
phonological rules such as if a verb ends with a -t sometirhescausative form is
achieved by -Hr instead of -DHr. Interested reader shoukt te Underhill (1986).

Causative forms of passive verbs and vice versa are quitenoomn Turkish as
well as double passivised or double causativised verbseMan two occurrences of
passive or causative morphemes attached to one verb is mobhcn.

The causative morpheme-BHr, which has a number of phonologically and mor-
phologically conditioned allomorphs. The allomorphs are:

e -DHr is the most common allomorph, which is attached to thbbsyending in
consonants.

e -t is used after vowels or words ending wittH)r or -HI e.g. uyu-t delir-t,
karar-t.

e -Ht is used for a small number of exceptions that end withatersounds such
as-rk. korkut

e -Hris another allomorph that is rargat-ir, bat-ir, bit-ir

e -Aris used for a limited number of one syllable verbs sucki&ar.

The causative morpheme has the effect of adding an argumérd basic argument
structure of the predicate. Thus, causativisation of aimitive verb yields a transitive
structure as in (3.21). The causative morpheme brings thpsuof an intransitive
verb to object position. Causativisation of a transitiveovgields a ditransitive struc-
ture as in (3.20). The subject oku — readbecomes dative marked oblique.

Causativisation, despite resembling a morphological atpmr affected purely by
morphophonemic properties of the verb it is attached tecidfthe argument structure
of the verb it is attached to through syntax by means of caskinta

Ahmet kitab-I oku-du.

Ahmet book-Acc read-Past
Ahmet read the book.

Ben Ahmet-'e  kitab- oku-t-tu-m.
I Ahmet-Dat book-Acc read-Caus-Past-P1sg

(3.20)
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| made Ahmet read the book.

Yangin son-du.
(3.21) . _—
fire-Nom extinguish-Past-P3sg

The fire extinguished.

Ben yangin-1 son-dur-da-m.
I fire-Acc extinguish-Caus-Past-P1sg
| extinguished the fire.

3.2.5.2 Passives

Passive and causative constructions in Turkish are adtikveugh morphology. Pas-
sive morphemes areéHl and-(H)n. -Hl is for verbs that end with a consonant and
-(H)n is for verbs that end with a vowel or the sequerigé. They are also used to
make double passives one after the other one. They dirdudgge the valency of the
verb they are attached to without the need for an auxiliahe passive morpheme is
assigned a category that take$\aor IV category and turns it into & or S category
respectively.

\oice is altered through bound morphemes in Turkish. Treatnof this kind of
type changes can be theory-specific. But in this researchiwasgume that passive
morpheme is a type changing morpheme that changes a tvangtib into an intran-
sitive one.-(H)n and-HI are the morphemes for passive constructigH)n is used if
the word ends with and-HI is used otherwise. The subject of the passive sentence is
the direct object of the underlying “deep structure”, whishwhy the accusative case
marker in (3.22) disappears in (3.23). Impersonal passaveslso common. These
passivise intransitive verbs and they are formed by the saarphological operations.
In terms of effects on argument structure passive morpheloeactly the opposite
of causativisation morphemes, as expected.

Kahya vyuzogu  bul-du.

(3.22) .
Butler ring-Acc read-Past
The butler found the ring
Yuziuk bul-un-du.
(3.23)

ring find-Pass-Past

The ring was found.
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3.3 Morphological Processors for Turkish

As previous discussion indicates, morphology plays a vité¢ in Turkish natural
language processing. There are many morphological amalyesigned for Turk-
ish. (Giingdr, 19950ztaner, 1996; Pembeci, 1998; Cakici, 2002; Hankamei9;198
Oflazer, 1994; Koksal, 1973)

The first finite-state morphological analyser that is desthfor Turkish iskeci
(Hankamer, 1986)keciincorporates ordered phonological rules and finite-state m
photactics. The phonological rules keciare applied one after the other until a per-
fectly matching surface form is found, before moving on thénding the next mor-
pheme. This is different from the two-level approach wherthlexical and surface re-
strictions are checked in parallel and all together giveh@nplogical context. Sproat
calls this procedure “generate-and-test” incorporatirdgredphonological rules fol-
lowing Generative Phonology by Chomsky and Halle (1968y¢&p 1992)[pp.190].

keci has finite-state morphotactics. It does not incorporate camgext-free ele-
ments. Each affix determines the next state of the automatdritee optionality is
obtained bye-transitions.

Oflazer (1994) presents a wide-coverage morphologicalaaatvith 23,000 lex-
ical entities. He uses PC-KIMMO (Antworth, 1990) which is earlier version of
PC-KIMMO-2 that does not have word-grammar rules. Oflazgri@ments the mor-
photactic rules of Turkish that are explained in Oflazerg@én, and Bozsahin (1994)
by alternation classes of PC-KIMMO that correspond to stat@n FST. The morpho-
phonemic rule component uses 22 phonetic rules to explaiptbnetic phenomena in
Turkish. This system is the first wide-coverage morpholabamalyser of Turkish that
handles special cases and exceptions. This morphologietser was also used for
morphological analysis in METU-Sabanci Treebank (Ata@ffazer, and Say, 2003;
Oflazer et al., 2003).

3.3.1 Disambiguators

When the level of morphological ambiguity is considered urkish, morphological
disambiguators that choose between different analyseg gimilar to parse selection)
are vital for practical NLP systems with a morphologicalgessing component. Some
morphological ambiguity should be passed on to the parsgl Ibut this is not a
primary concern. There are a few disambiguators for Turki$he disambiguators
defined in Oflazer and Tur (1996) and Oflazer and Tur (199€)tao of the early
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disambiguators that use hybrid models of hand crafted raiebs voting constraints
modelling the context of the word to be tagged. A purely statal model is created
by Hakkani-Tur, Oflazer, and Tur (2002).

Yuret and Ture (2006) use decision trees and train a separadel for each of the
morphological features the morphological analyser ceealbese features are the 126
morphological tags that Oflazer (1994)’s morphologicallgser creates. The system
decides on the resulting morphological analysis by inddpatly voting on each of
the parses to find the most likely one. They report a taggisgltef 96% when a
separate classifier is trained for each tag and 91% whenidedists are used to tag
the data without the help of a morphological analyser. Tyé$esn is trained on whole
tags (a string of morphological features). The trainingadats semi-automatically
disambiguated corpus of 1 million words and test data is aualncreated set of 958
instances.

3.4 Importance of morphology for NLP applications

Research in this fields shows that morphological procedsimgnguages like Turkish
is inevitable (Hankamer, 1989; Bozsahin, 2002; Jurafsk/Martin, 2000). Sehitoglu
and Bozsahin (1999) shows that generation of all inflectech$ for 40 Turkish root
forms results in about 2800 entries even with limited inflezal morphology. Inflec-
tional suffixes can create around 40,000 word forms for Ugraeadigm without recur-
sive processes like causativisatibifJurafsky and Martin, 2000). Nominal paradigm
with -ki relativisation can create millions of formisAccording to the FLH, each com-
plex word has its own, separate entry in the mental lexicavo VYariants of the FLH
have dominated psycholinguistic accounts in recent yegns. FLH-A version holds
that complex words have their own lexical entries which udd a representation of
their morphological structure. To provide an example, tloediforgetful has a lexical
entry of its own, but the entry contains a morphological gsial of the word: (for-
(get)-ful). The B version, in turn, presupposes that eveoydahas its own entry and
that all entries for morphologically complex words are kkto a basic entry for the
uninflected or root word. Thus, forgetful has its own lexiealry in the mental dic-
tionary, which, along with the entries for unforgettablergettable, forgetting, etc., is

4Adding these may create infinite number of forms.
SThis is because relativised form of the noun can be nomdland get inflectional morphemes
again as shown in Section 3.2.4.
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linked to the basic entry get. Under this version of the FLi& basic entry is called
the nucleus and the remaining entries clustered aroundutieuns are its satellites.

Hankamer (1989) discusses extensively that Full Listingdtiresis (FLH) (Butter-
worth, 1983) is untenable with evidence from Turkish modplyg. According to FLH
each word has its own entry in the mental lexicon. Some viariathold that complex
words have their own entries in additon to their morpholagenalyses. Hankamer
gives figures on how much memory is needed to store such imfttwmtogether with
the numbers of exhaustive generation of inflectional forfmsonins and verbs in Turk-
ish. He shows that even without recursion (which exists irkitln morphology) the
numbers go up as much as 1.8 million per verb root and 9.2anilier noun root.
With recursion these numbers go up to 26.7 million and 216I6am respectively.
This means for a lexicon with 20000 noun roots and 10000 vedbsra lexicon of
200 billion entries would be required. This is infeasibleevor human processing
and Hankamer uses this to suggest that the humans could ssibjyobe storing all
the inflected (and derived) word forms as lexical entitiethmmmemory. He calculates
together with the figures from Sagan (1985) that it would do@ypossible to store only
125 billion morphologically complex words.

If even human mind does not have the ability to store all itfde@l forms in the
memory, it would be irrational and unnecessarily costlyésign an NLP system with
hundreds of billions of lexical entries to fetch frdiiwWe observe in real data that the
number of instances of the vegit — go 177 in the Turkish treebank in Figure 3.1. A
language model without morphological analysis will treatte distinct inflected form
of the verb as a new instance. This might easily cause spatagtbblem.

...... frequency| cat/word
total occurrences 177 N/A
distinct cat-word pair§ 128 1.38
distinct category types 14 12.64

Figure 3.1: The figures for the verb git (go).

NLP systems for Turkish incorporate morphological comfileg. This is either
by employing a morphological analyser, or using sub-wordsuim defining the re-
lationships in sentences. (Cakici and Baldridge, 20@8in@glu and Oflazer, 2006;

5This is discussed in Section 6.2.2.1 in detail.
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Eryigit and Oflazer, 2006). Eryigit, Nivre, and Oflazer (B) and Eryigit, Nivre, and
Oflazer (2008) show that morphological features can be veejuli in improving the
performance of a dependency parse. The most prominentrésaswe nominal case
and relativisation morphemes. It is also established thataf morphology helps in
machine translation systems. Oflazer and Durgar El-Kah{2@®7) show that using
sub-word level entities in machine translation gives anroupment of 24% BLEU
scores compared to a baseline for English to Turkish tréioslavhen morphotactical
knowledge is provided for generation. Dyer (2007) also shtivat the other direction
in translation i.e from morphologically complex languagénglish also benefits from
the use of morphological knowledge. There are still unnestlproblems such as the
ones mentioned in Cetinoglu and Oflazer (2006) such asphsaope of inflectional
morphemes, bracketing mismatches of coordinated stestguch as suspended af-
fixation and so on.






Chapter 4
Combinatory Categorial Grammars

Combinatory Categorial Grammar (Ades and Steedman, 1982p8an, 2000) is an
extension to the classical Categorial Grammar (AB) of Ajéulicz (1935) and Bar-
Hillel (1953). AB, and extensions to it, are lexicalist thes. Surface structure is
constructed with the help of lexical categories of the warccategorial grammars.
Categories are either atomibliP) or complex like (S\NP)/NP. The category of a
word specifies its predicate-argument relations and doeatity of its arguments in
categorial grammars. In this respect, a word with syntazategory(S\NP)/NP ex-
pects two noun phrases: one to the right of the word and onetteft and becomes
a sentence when combined with thérA. lexical item in a categorial grammar can be
represented as the triplet:

¢@:=o: A whereg s the phonological formg is its syntactic type, andl its se-
mantic type. Some examples are shown in (4.1).

4.1) a. book:= N: book

b. oku:= (S\NPnom) \NPacc: AXAy.readxy

In AB, there are two kinds of application rules defined by tireation of applica-
tion. These are shown in (4.2).

(4.2) Forward Application$): X/Y: f Y:a = X: fa

Backward Application€): Y:a X\Y: f = X: fa

IWe assume the notation that the result category is alway$ereft and argument category is
always on the right with respect to the slash.
2The example in (4.1b) is a Turkish transitive verb.

53
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An example AB derivation is shown in (4.3). The directiohaénd lexical type re-
quirements for arguments determine and guide the syntsicticture formation while
the semantic interpretation is composed in parallel. Gataggrammars are known
for this property of parallel construction of syntactic esemantic structuré.

(4.3) John likes Marry.
NP: john' (S\NP)/NP: Ax.Ay.likesxy NP: marry
S\NP: Ay.likesmarryy ’
S: likesmarry john/

4.1 Combinatory Rules and Principles

AB is weakly equivalent to context-free (Bar-Hillel, Gaidm, and Shamir, 1964).
Since natural languages require slightly more generativegpthan context-free, addi-
tional abilities that increase expressivity are requite@xplain linguistic phenomena
that CFGs cannot.

In addition to functional application rules, CCG has thdigbto combine func-
tions with combinatory operators such as functional contjppzs Composition B),
type raising T) that are adopted from Curry and Feys’ (1958) combinatogido
Combinatory operations, while preserving the transparaicsyntax and semantics
during derivations, increase the expressiveness to thanebr Context Free Rewrit-
ing Systems, a multilevel proper subset of mildly contesttstive grammars. CCG is
in the first known trans-context free level together with TAGd others.

CCG is designed to predict long-distance dependenciesgthaswsurface ones au-
tomatically while combining lexical categories represeie of predicate-argument
relations and directionality. CCG is a lexicalist theoryhi§ means all language-
specific characteristics are specified in the lexicon by tggécal modalities on the
slashes i.e. slash typ&g.he rules only specify how these categories can be combined
on a higher level. The language specific properties such a3 @rder or unbounded
dependencies are implicitly coded in the lexicon.

Composition (4.4) and type-raising (4.5) are used to hasgl¢actic coordination
and extraction in languages by providing a means to cortstauastituents that are
not accepted as constituents in other theories. Hoffma@5jl6laims that flexible

3The interested reader is referred to Steedman (2000) fovieweon semantic interpretation con-
struction during parsing, and to Bos et al. (2004) for an gxamf wide-coverage semantic parsing.

4See Steedman and Baldridge (to appear) for an extensivassisn. We will omit slash types here
for ease of reading, and because they are not particulaggitant in the focus of this dissertation.
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constituency is crucial for handling the scrambling of argunts in languages like
Turkish.

(4.4) Forward Composition{B): X/Y: f Y/Z:g = X/Z: Ax.f(gx
Backward Composition{B): Y\Z:g X\Y: f = X\Z: Ax.f(gx)
(4.5) Forward Type Raising{(T): X:a = T/(T\X): Af.fa
Backward Type Raising(T): X:a = T\(T/X): Af.fa
Steedman also defines a generalised version of compoditiovrsin (4.6) where

is bounded by the degree of valency in the lexicon in ordeetain the mildly-context
sensitive power of CCG.

(4.6) Generalised Forward Compositian B"):
X/)Y:f (Y/2)/$:..Az9z.. = X/Z/$:..Azf(gz..)

Where $ is formally defined as the following in Steedman (3(j§042].

4.7) The$ convention
For a categongo, {a$}, (respectivelyfa/$},{a,\$}) denotes the set con-
taininga and all functions (respectively, leftward functions, tigiard func-
tions) into a category ifa$} (respectively{a /$}, {a\$}

CCG handles phenomena such as “non-constituent” coordimseamlessly (with-
out the use of movement or deletion) because it has a moréliexccount of con-
stituency. This property also ensures that the crossingrdgncies in the famous
hippopotamus example in Dutch (4.8) are correctly predietéth the derivation in
(4.9).

(4.8) omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.
' because | Cecilia Henk the hippopotamuses saw help feed
I | |
‘...because | saw Cecilia help Henk feed the hippopotaniuses
(4.9) omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

NP; NP, NP3 NP;  ((Sysug\NP1)\NP)/VP_sus (VP\NPg)/VP_g g VP\NP,
(VP\NPg)\\NP, B:
(SisuB\NPD\NPINPNR,
((S+suB\NP1)\NP2)\NP3
(S+suB\NP1)\NP,

StsuB\NPL
SysuB
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In (4.9) which is taken from Steedman (2000), the existehteaoforward crossing
composition rule in CCG (4.10), which is excluded for mosgksh categories, makes
it possible to cluster the verbs before they combine withr thebjects, thus making it
possible to handle crossing dependencies of this kind.

(4.10) Forward Crossed Composition B):
X/Yif Y\Z:g = X\Z:AM.f(gx)
Backward Crossed Compositioa B«):

Y/Z:g X\Y:f = X/Z:If(gx

Languages that allow scrambling give rise to frequent @dstependencies. The
following Turkish example shows crossing dependenciesaiigacaused by arguments
that are scrambled out of their “canonical” order. In SOVardihich is often referred
to as the canonical word order in Turkigkhmet'inandMehmetare swapped resulting
in a nesting structure.

Ahmet'in Mehmet su aygirini ormesini istemedi.
(4.11) v g

Ahmet-Gen Mehmet hippopotamus-Acc see-Inf-Agr-Acc  wisey-Past
| | ‘

Mehmet didn’'t want Ahmet to see the hippopotamus.

(4.12) Ahmet'in Mehmet su aygirini gor -mesini  istemedi
SISNP) SISNP) NP (S\NPy)\NPs NP,\S; (S\NP,)\NP;
S\NPy
NP;\NP;
(S\NP2)\NPy
S\NP; o

S

There are other operations such as substitution (4.13) iG @tat are adopted
from combinatory logic. Backward crossed substitutiod 4, for instance, is used to
handle parasitic gaps as in (4.15) (Steedman, 2000).

(4.13)  Forward SubstitutionXS): (X/Y)/Z: f Y/Z:g = X/Z: A fx(gx)
Backward SubstitutionS): Y\Z: g (X\Y)\Z: f = X\Z: Ax.fx(gx)
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(4.14) Backward Crossed Substitutiong,):
Y/Z:g (X\Y)/Z:f = X/Z:Ax.fx(gx)

(4.15) (articles)  which Fwill file without reading
(N\N)/(S/NP) SIVP VP/NP (WR'PYVP;,g VP,i/NP
(VP\VP)/NP
VPINP
SINP b
N\N -’

Transparent composition of syntactic structures and samamwerpretations, and
flexible constituency make CCG a preferred formalism forgiwange dependencies
and non-constituent coordination in many languages e.glign Turkish, Japanese,
Irish, Dutch, Tagalog (Steedman, 2000; Baldridge, 2002)

In addition to parameters limiting the degree of recurgi(im B"), or the range and
domain of the rules as in Type raising, there are princigiaslimit the unbounded na-
ture of some rules, or the properties of the lexicon. This Weygenerative power of
the grammar is kept under control by, for instance restrictules that change direc-
tionality and allowing uncontrolled permutation which tdeause the grammar to be
Turing-complete. Some of these principles are (Steedn@o0))2

Principle of Head Categorial Uniqueness “A single nondisjunctive lexical

category for the head of a given construction specifies ba¢hbiounded de-

pendencies that arise when its complements are in cangmisiion and the

unbounded dependencies that arise when those complemerdsplaced un-

der relativization, coordination and the like”. This meainat the dependencies
of both the extracted and non-extracted arguments of théiqgat should be

specified by the same lexical category. The category of the lsannot change
depending on which of these situations it is in. A lexicortisaas compact as
possible is preferred.

Principle of Lexical Head Government “Both bounded and unbounded syn-
tactic dependencies are specified by the lexical syntagiie of their head.”

Principle of Categorial Type Transparency “For a given language, the se-
mantic type of the interpretation together with a numberasfguage-specific
directional parameter settings uniquely determines theagyic category of a
category.”
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Directional Inheritance Principle “If the category that results from the appli-
cation of a combinatory rule is a function category, thenglzsh defining di-
rectionality for a given argument in that category will be ttame as the one(s)
defining directionality for the corresponding argumeniigghe input functions.”

Principle of Consistency“All syntactic combinatory rules must be consistent
with the directionality of the principal function.” This raas, for instance,
backward application cannot, by definition, applyXg@Y. Principle of Con-
sistency prevents copmbinatory rules that override léxizactionality, such as
YX/Y => X.

Principle of Adjacency “Combinatory rules may only apply to finitely many
phonologically realized and string-adjacent entities.”

The principles of Inheritance, Consistency and Adjacemesyrict the set of possi-
ble rules in order to control the expressive power of the gream whereas the princi-
ples of Uniqueness, Lexical Head Government and Transpgiggovern the lexicon.
However, these principles do not eliminate the fact thatesoutes are not needed
in some languages simply because of the inherent chaetafithe language. For
instance, English employs backward crossing compositiothnot the forward coun-
terpart. On the other hand, a language with a freer word ardatd be expected to
have both.

Baldridge (2002) and Baldridge and Kruijff (2003) move thiwice to the lexi-
con by the use of modalities defined over slashes. These itieslgut limitations
on the applicability of rules to categories in a similar waytype logical modalities
(Morrill, 1994). For example, many function categories inglish bear a slash type
that makes them incompatible with crossed compositiorsruldne result is a system
where the rule set is also determined by the combinationesti®s of the categories
in the lexicon giving rise to a higher degree of lexicalisrm éxample of this is the
conjunction category shown in (4.16). Théeature on the slashes limits the combina-
tion of this category only by means of application and najheise. This gives rise to
the derivation set in (4.17). An overview and examples foridewariety of linguistic
phenomena are given in Steedman and Baldridge (to appear).

(4.16) and= (X\.X)/.X
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(4.17)  Marcel conjectured  and proved completeness
NP (SINP)/INP (X, X)X  (S\NP)/NP NP
((S\NP)/NP),.((S\NP)/NP)
(S\NP)/NP
S\NP ’
S

Another use of modalities is suggested by Bozsahin (20@zsahin proposes
a morphemic lexicon, elements of which adhere to combigatategorial grammar
principles. He introduces what he calls “morphosyntactadalities” to restrict and
control the attachment characterics of morphemes. Theghlities appear on the
atomic categories as opposed to slashes on Baldridge’'sneche denotes equality
and< means “up to and equals”. Phrasal scope versus word scopkeprds elegantly
solved in the lexicon keeping the syntax semantics interfeansparent. Bozsahin’s
modalities help simulate the morphotactic order of thechittaent of suffixes while
restricting some of them in a way to encourage phrasal atiaoh This is acquired by
means of delaying the morpheme attachment until after ‘toiesit” formation. The
example in (4.18) shows the categories for the English rioymand the plural mor-
phemes. (4.19) shows how the correct semantics is constructed layithg affixation
by modalities.

(4.18) toy :=2N/2N: AXtoy X
-PLU 1= 3N\AN: Axplux

(4.19) a. toy gun -s

b .b
<JN/<N 21N:p|u gun

*k*k

aN *toy(plu gun)
because n-num (i n-base (b)

b. toy gun -S

ANAN AN ANLEN

b
<N :toy gun

aN plu(toy gun)
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4.2 Generative Power of CCG

Shieber (1985) proved that natural languages falls intdegoealy more powerful than
context-free grammars (CFG) in Chomsky hierarchy using@wte on Swiss-German
cross-serial dependencies. Earlier, Bar-Hillel, Gaifireard Shamir (1964) had proved
that AB grammars are context-free. Hence they are not egmesnough for natural
grammars. Combinatory rules of CCG extend the capabildfesategorial grammars
in a very limited manner. CCG is at level 1 of an infinite hiefar of Mildly Context
Sensitive systems of which CFG is level 0. So CC®asy mildly Context Sensitive,
in fact, nearly context-free. Tree-Adjoining Grammars aitkar-Indexed Grammars
which are weakly equivalent to CCG are also in this levelgyiShanker and Weir,
1994).

Dutch crossing dependencies, shown in the previous secatagpire more than
context-free generative power (Wall, 1972). Handling éhesquire order changing
operations like crossed composition of CCG. These combipatiles introduce the
extra generative power to explain the linguistic phenomaé cannot be explained
with CFGs.

Another extension of categorial grammars, namely, Catabdype Logics (CTL)
(Morrill, 1994; Moortgat, 1997; Oehrle, to appear) have mmpower than context-
sensitive if there is no restriction on modalities (Careent999), but a subset of CTLs
were proved to be equivalent to CCGs (Kruijff and Baldridgép0). Multimodal-
CCG is proved to be weakly equivalent to CCG in generativegr¢®aldridge, 2002).
Hoffman (1995) proves that restricted Multiset-CCG is wgaquivalent to CCG but
the unrestricted version is more expressive than needed.

4.3 Word Order

There have been several variations in CCG mainly to handld waler variation and
scrambling in an efficient and compact way. Only those that@evant to Turkish are
given here. Hoffman (1995) proposed Multiset-CCG to harficie word order with
CCG. The significance of Multiset-CCG is that the set of argnta can be defined
rather than one-at-a-time argument selection. This is shiowork well to handle free
word order particularly in Turkish (Hoffman, 1995). Howeyeon-restricted version
of Multiset-CCG is not weakly equivalent to CCGs, and hasemg®anerative power.
Set-CCG is proposed by Baldridge (2000) which has the adganof handling
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scrambling in languages effectively. Set-CCG is also pndweebe strongly equivalent
to CCG in Baldridge (2000). Underspecification of directibty in Multiset-CCG is
not available in Set-CCG. The rationale is that language$iaad-consistent in word
order, but argument order may vary within a language. Fomgta, the multi-set
categoryS {NR,om, NPscc} for a verb captures all six variations of subject-objeatove
(SOV), lexically. The set-CCG categoB{NPom NP} states that all arguments
must be to the left of the verb, hence only SOV and OSV are difierdcally. The
latter is also consistent with Bozsahin (to appear) whindaonly SOV and OSV
orders are lexical and other orders are derived by procdiksedetopicalisation.

Bozsahin supports this argument with the fact that somstecoctions such as sub-
ordination are strictly head-final. Long-distance scramplout of these phrases is
allowed, but post-verbal scrambling in subordination is/ugncommon.

4.4 Parsing CCGs

4.4.1 Parsing and Ambiguity

The advantages of a relaxed account of constituency arémited to the ones shown
above. Gapping and argument cluster coordination are etkeenples. However, al-
lowing words to combine with each other more freely bringsam efficiency issue
which is one of the most discussed issues in CCG, namelysingribus ambiguity”.
Spurious ambiguity (Wittenburg, 1986) occurs when sev@mtactic derivations yield
the same semantic structure. According to Steedman (20f0@)esht orders of com-
bination are crucial in determining the information stuwret Steedman shows that the
ambiguity caused by this flexibility is needed to accountdifierent prosodic brack-
etings. However, in practical parsing applications, am@tie matching of semantic
classes to derivation trees is preferred by various autioomsfficiency, simplicity and
performance reasons (Hockenmaier, 2003a; Clark and Cuz€4vb).

Many authors worked on removing spurious ambiguity in egl@nt or less ex-
pressive versions of CCG such as Lambek calculus (HeppR9);119endriks, 1993;
Konig, 1989; Hepple and Morrill, 1989). There are sevetatiees on resolving spuri-
ous ambiguity in CCG.

We discuss some of these methods to tackle “spurious” antpiguparsing in
this section. We discuss three approaches each using eediffevel of representation
in order to recognize and remove the unnecessary ambigufigrsing. Pareschi and
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Steedman (1987) use feature structures and redundancysimgas limited with the
help of both the syntax and semantics. Karttunen (1989)qaegpa purely semantics-
driven method of subsumption checks to eliminate equitademantic classes from
the chart. Eisner (1996a) on the other hand aims to provideg@ypsyntactic driven
approach with an argument that semantic information is ivaays available during
parsing.

4.4.1.1 Pareschi and Steedman (1987)

Pareschi and Steedman use an all-path parser and do bottoraramental parsing.
They use a special method to remove the redundant analymestifie chart. They
use feature structures that represent the syntactic andrgéenmnformation in the cat-
egories and derivations. If an analysis has the same edgédsasma feature structure
equivalent to the feature structure of an analysis covehagame span, it is not added
to the chart. They ensure all required edges are added lydinting an operation
calledRevealingvhich is based on the property Barametric neutrality This means
that the syntactic type of any two categories involved inmlsmatory rule determines
the type of the third category. This ensures possible coaealyses requiring back-
ward operations in a left-to-right incremental parser agptkin the chart and saves
search space because the parser tries new parse candmdatesg leftward looking
categories instead of reanalysing.

Hepple (1987) shows that Pareschi and Steedman (19879sthln is incomplete
and gives an extensive analysis of the cases where it faiotdade a correct analysis
or a genuine ambiguity because of disallowing a certain ttoason earlier in the
process of parsing.

4.4.1.2 Karttunen's Approach

Karttunen (1989) proposes a redundancy elimination methaids semantics driven.

Karttunen (1989) uses subsumption to eliminate from thet @wmivalent (or subsum-

ing) semantic analyses for a given sentence part. This lesdecessfully applied to
English and Japanese real text parsing by Komagata (20@halata (2004) parses
text from two languages with the CCG parser defined in Konaa@e97). Komagata

(2004) runs the parser on 22 sentences from a created Japaorpss, and a fragment
of English corpus (197 sentences). Komagata shows coabigéamprovement on the

efficiency of the parsers when disambiguation is applied.
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4.4.1.3 Eisner's Normal Form Derivations

Spurious ambiguity can be avoided by keeping only one dioidree in the chart
per semantic class. This requires the knowledge of semtymés, which is not al-
ways available during parsing and it is very costly (Eisi®96a). Eisner shows that
spurious ambiguity can be completely eliminated by forrmogmal form derivations
that do not contain certain chains of compositoisner (1996a) shows that using
only syntactic restrictions such as blocking rightwardinkaof forward composition
or backward chains of leftward composition are enough tmielate spurious ambigu-
ity during parsing. According to Eisner’s restrictions, @egory that is the result of
a forward composition cannot be the primary (left) functori forward composition
and forward application. Similarly, the result of a backd/@omposition cannot be
the primary (right) functor of a backward composition or kaard application. These
also hold for order changing rules i.e. crossed composition

Eisner (1996a) provides a safe and complete way to normpailisee CCG deriva-
tions by restricting the combination properties of the testicomposition. The over-
head of Eisner’s algorithm is consta®((l) time) as opposed to an extra factor of n
for Karttunen subsumption. This is achieved by markingasertonstituents by tags
during derivation to block them from further combinationdjay-Shanker and Weir
(1990) does a similar kind of tagging (Hockenmaier and Stesad 2005).

Eisner shows that these restrictions can easily be apphigdktY parsing, and
claims that they can easily be incorporated into other pgraigorithms in particular
that of Vijay-Shanker and Weir (1993).

Eisner assumes a CCG without type raising, as mentionedeefaus, his method
does not guarantee to produce normal form structures fatiped CCG systems, but
it is shown to shrink the search space by eliminating eqaiMatyntactic parses, thus
improving the efficiency of the parser (Clark and Curran, 260

4.4.2 The Issue of Representation

Predicate-argument structure is the main level of reptasien in CCG. Derivation
history is considered to be merely a guide during parsingGQierivation trees are
at most binary. They are also very expressive because ohtbamation contained
in the CCG categories. The labels in a derivation tree sucheasnes in CCGBank

SNote that Eisner excludes type-raising in his proofs andritlyms. There has been no study on how
type-raising may affect Eisner’'s method of eliminating spus ambiguity in CCGs to our knowledge.
However, it has been argued that once type-raising is lekisanethod is complete.
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implicitly have information of inherent local and long-igadependencies. The choice
of tree data structure also has a motive that they are morenmonin parsing litera-
ture and there are many polynomial-time parsers for phsaseture grammars. CCG
derivation inherently have the head argument informatibns an annotation of this
information before parsing as this person Collins (199@gis not necessary.

Hockenmaier (2003a) models on derivation trees that areimal form. C&C
models both on derivation trees and dependencies direatlyshows that there is not
much of an accuracy difference between the statisticahtlisguation models trained
with dependencies and the ones trained with derivatiorsiréd use CCGBank data
(Hockenmaier and Steedman, 2007) for both experimentsuath possibly slightly
different version at different times as CCGbank is goingtiyh improvement.

It is shown that using normal-form derivation trees to reprg a derivation se-
guence helps with the efficiency problem caused by spuriousiguities in wide-
coverage systems (Hockenmaier, 2003a; Clark and Curr&730

Hockenmaier (2003a) models on CCG derivation trees, bu¢ fisea restriction on
these. “The derivation trees in CCGbank are in normal-foitmcl, in this case, means
type-raising and composition are used only when necessayy for relative clauses,
right node raising and argument cluster coordination.” ¢kkmmaier and Steedman,
2005)[pp.12] This means that the parser favours functiqutiegtion over combinatory
rules such as composition and type raising, and use the catoby rules only when
necessary. This improves the efficiency by reducing the rurabentities in the chart
and also narrows the search space. A similar method was steghby Wittenburg
(1987).

We discussed several ways to tackle the issue of the sad¢afparious ambiguity”
in the previous sections. One possible way to avoid spurdookiguity is to model
on the predicate-argument structures directly, becausgags ambiguity is caused
by different choices in the derivation paths but derivededefencies, or predicate-
argument relations are shared for any unique semanticirgiation. Clark, Hocken-
maier, and Steedman (2002) takes the side of modeling op&ndiencies which can
be derived from the only primary level of representation @& predicate-argument
structure. However, Clark and Curran’s (2002) model is asound probability model
as is Collins (1996) which it originated from. The aim in GKaHockenmaier, and
Steedman (2002) is “to demonstrate that accurate, effigiedg-coverage parsing is
possible with CCG, even with an over-simplified statisticaldel.”

Clark and Curran (2007a) describe the dependency (in thedbpredicate-argument
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relations) models and evaluate their parser on DepBankg(ktral., 2003), which is

an English dependency treebank extracted from the Penbdn&emaking the output
compatible to DepBank parser RASP (Briscoe and Carroll6200hey use the depen-
dencies derived from the gold-standard normal-form pars€CGBank. They show

that a parsing model trained with dependencies perform disasea model trained

with normal-form derivation structures in the CCGBank (KHeomaier and Steedman,
2007).

Clark and Curran (2007b) provides state-of-the-art pgrsipeed and accuracy.
This parser parses about 50 sentences per second on aveaagel@-node cluster.
A supertagger that has a high supertagging accuracy assig@scategories to words
before parsing is performed. This provides a significantsbao the speed of the
parser because, most of the time, the supertagger assgneniect CCG category to
the word in the first try. This is consistent with Bangalore doshi’s (1999) claim that
supertagging is almost parsing. We will discuss this paaser some of the others in
detail in Chapter 9.

Zettlemoyer and Collins (2005) present a direct approachraap logical struc-
tures to the sentences without any kind of syntactic interfee. Zettlemoyer and
Collins (2007) provide results for the online learning of GParsing to create logical
forms.

So far, we have seen statistical CCG parsers that train atiwely big corpora.
There are also parsers of smaller scale for English and tahguages. OpenCCG is
the extended project originated fro@rok (Baldridge, 2002).Grok was intended as
a library for performing NLP tasks with CCG as described irdBidge (2002) and
Baldridge and Kruijff (2003). OpenCCG is an extended androwed version of Grok
with a generation module (White and Baldridge, 2003). Srmadlle grammars for
many languages such as English, Tagalog and Turkish arediedlin OpenCCG.

Hoffman (1995) describes a CCG parser that is capable oficagtdifferent infor-
mation structural variations that are caused by word onddirkish. Hoffman'’s for-
malism relies on multi-sets of arguments in order to mode fivord-order in Turkish.
Multi-Set CCG parser was implemented as a question ansgvsyistem that predicts
information structure given the word-order variation iregtions.

Cha and Lee (2000) and Cha, Lee, and Lee (2002) describe a @Géror Ko-
rean language which is similar to Turkish in many respecthas morphosyntactic
relations. They built a smaller coverage statistical CC&g@ethat is inspired by Hoff-
man’s multiset-CCG formalism (KCCG). Their system has knties with the ideas
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presented in this thesis, in the sense that morphemes hpreseatational status in
the lexicon and they may have phrasal scope as describedifkisih in Chapter 3.
Cha, Lee, and Lee (2002) acquire high precision and recalpdb 87.67/87.03% on
morphemic Korean data. The evaluation is done using PARSEVA

Bozsahin (2002) presents a morpheme-based CCG grammaurkish. The at-
tachment characteristics of morphemes are regulated hyieelaf morpho-syntactic
modalities. Bozsahin argues for the necessity of a morphes opposed to word-
based account of lexicon and explains that some morphenvespiaasal semantic
scope, rather than the scope of the word they are attacheddqrovides a gram-
mar and a lexicon for a relatively small coverage parser fokigh that uses Eisner’s
constraints in an attempt to eliminate “spurious” ambiguit



Chapter 5
Inducing a CCG Lexicon

Within the last decade, there has been significant increafeiamount of annotated
data available for different languages which has giventésan increase in number
of wide-coverage multilingual parsers. Phrase structepeasentation following Penn
Treebank (Marcus, Marcinkiewicz, and Santorini, 1993peatedency structure anno-
tation as in Czech Prague Dependency Treebank (Hajic,; B888nova et al., 2003),
and hybrid representations e.g. German Tiger Corpus (Branal., 2002)) are the
most popular representation types.

Dependency Parsers (Kudo and Matsumoto, 2000; Nivre, 2d@Bonald et al.,
2005; Nivre, 2006; McDonald and Pereira, 2006) as well afiticmal phrase-structure
parsers were developed that use dependency treebanksaasidatever, phenomena
such as non-projective dependencies or long-distancendepeies were sometimes
ignored even by the studies that provide the most satisfyarging results on linguis-
tic data. We believe deep linguistic information such agjldistance dependencies
should not be ignored even when parsing accuracy on the fdakeadata is high.
Ignoring these phenomena would significantly degrade teéulrsess of a particular
language processing application. Crossing dependergigslaas non-crossing ones,
long-range dependencies as well as local ones should bewl&dged in an NLP
system, because though rare, they are crucial to sematgipiatation when they do
occur.

A CCG parser requires a lexicon that is equipped with syitaetd semantic cat-
egories, a list of the rules assumed, and a model to evalu&ternes or guide search.
Creation of such a lexicon requires considerable manpowsmwt is done manu-
ally. There are efforts to create CCG lexicons automatg@liakici, 2005) or semi-
automatically (Hockenmaier, 2003a; Hockenmaier, 200&Kkeéamaier and Steedman,

67
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2007) for different languages. These use existing corpopdiase structure or depen-
dency formats to create CCG derivation trees and CCG legicon

Clark and Curran (2006) show that statistical parsing nedelined on partial
data that is obtained by using only CCG categories perfonostims well as systems
trained on CCG normal-form derivation trees. With the vidvatt“supertagging is
almostparsing” (Bangalore and Joshi, 1999), given the corre@gmates parsing is
fast and accurate (Clark and Curran, 2004b). However, sapgers themselves need
tagged data to be trained on. In the absence of large amdud$ag generalisation be-
comes important. In this and the next chapter, we explain aowpendency treebank
can be turned into a CCG lexicon automatically and evallsteadsulting lexicon in
Section 5.9 and propose a morphemic account of lexicon iitamat to explain mor-
phosyntactic behaviour and solve the possible sparse daitéemn up to some degree
with the use of morphology.

5.1 Relevant Work

Hockenmaier and Steedman (2007) and Hockenmaier (2006¢mrevide-coverage
CCG lexicons for English and German that are derived from \W8flon of the Penn
Treebank and the Tiger Treebank respectively. HockennaaidrSteedman (2007)
translate the Penn Treebank phrase structure trees into i@@@al-form derivation
trees. The end product of this translation process is a dahafy trees which repre-
sent the steps of a CCG derivation. Each level of a subtraesepts the daughters
combining with CCG rules to yield the result parent. The &=aof these trees give
CCG categories for words. There are several stages of thelétéon process that con-
verts phrase structure trees to the representations of G€i&atlons. Some of these
steps are shown in 5.1.

(5.1) for each tree:t

preproceser)
determineConstituentTy (8

binaris€T)

assignCategori€s)

Preprocessinginvolves correcting tagging and minor annotation errorsl aome
other procedures such as correction of the bracketing fordinate structures, re-
analysis of NPs which are represented as flat trees in the fPegipank, deletion of



5.1. Relevant Work 69

null elements etc. Some preprocessing steps involve oniplsichanges to the tags
whereas some require transformations of the whole treekbtang changes).

Head finding which is included in the step for determining the constitugpe
uses the head-finding rules of Magerman (1994). A modifiedioarof the process
which is explained in Collins (1999) is used to determinetype of constituents as
heads, complements and adjuncts.

Binarisation, as the name suggests binarises the otherwise non-bineay fraes
in order to render them consistent with the nature of CCGvdénns which requires
categories to combine two at a time. After head-finding ralesapplied, all the com-
plements that are to the left of the head are made right-bragdy inserting dummy
non-terminals in the tree up-until the head, and all the dempnts to the right of the
head are made left-branching in the same way. This is demadedton a simple tree
in Figure 5.1.

Assigning categorieds the last major step in the translation process. The cate-
gories are assigned to the internal nodes and the leaf nadesding to the following
procedure: first the root node, which is usually S, is asgigteecategory. Then the
complement nodes are assigned their categories dependthgiolabel in the original
tree. After that, the adjuncts are given their categoridsis Ts a little more compli-
cated than the steps so far. Forward composition and forerassing composition are
accounted for to prevent the inflation of the size of adjulate¢gories and for generali-
sation purposes. Hockenmaier and Steedman (2007) ignerediphological features
of the heads of adjuncts when creating the adjunct categfotehe same reason. Fi-
nally, after adjuncts and complements are assigned ca¢sgtine heads are assigned
their categories according to the following procedure.

The heads, adjuncts and complements in Figure 5.2(1) dezatitiated as shown
in Figure 5.2(2). The head of a parent with category X gets#tegory X if the other
child is an adjunct. If not, depending on the directionabfythe sister of the head
(with category Y) the head gets the category X/Y of¥XOur toy tree in Figure 5.2(1)
would look like Figure 5.2(3) after this step.

Figure 5.4 shows the outcome of the translation procedurehnis applied to
the Penn tree in Figure 5.3. Traces like *RNR* are succelgsfranslated into CCG
categories that hold this information in the categorieslioitty. Some NPs e.gthe
qualityalso go through type raising and this is shown in the treels thi2 use of unary
branching. The part of speech tags are omitted from the ebeanfiqr simplicity.

After initial category assignment by the procedure definedva there are a few
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X
~

~N
X
/ \x
x O\
H .

Figure 5.1: Binarisation principle

1. s 2. S/H 3. S
NP VP NP/C VP/H NP S\NP
| 7/ \ | RN | 7\
John VBD NP John VBD/H NP/C John  (S\NP)/NP NP
| | | | |
loved Mary loved Mary loved Mary

Figure 5.2: The translation example

post processing steps. One of them is the removal of thestrabech were kept until
the end of the translation process to get the long distanperadkencies. Another is
treating argument clusters and assigning them the coregegories. There are other
steps which we will not mention here. Interested readersishefer to Hockenmaier
(2003a) and Hockenmaier and Steedman (2007) for a detaikgtiew. However, we
will refer to some aspects of the translation process irr lsg¢etions for comparison
and discussion purposes.

S

RN
cc—NPSB) VP~
And they VBP l
/ \
prw S
NP-SBJ > VP —
all their people TO / VP \
| N
to VP CcC VP PP-1
VB NP and VB NP  of their own work
| P N 1 e N
increase NP PP improve NP PP
the speed -NONE- the quality -NONE-
*RNR*-1 *RNR*-1

Figure 5.3: Penn Tree

Hockenmaier (2006) describes how this translation algoritnay be adapted to
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S[dcl]

/ \
NP S[dcl\NP
they (S[dcl]\NP)/(S[to\NP) S[to]\NP
((S[dc\NP)/(S[to\NP))/NP NP (S[to]\NP)/(S[b\NP) S[b)\NP
| | | — T~
prepare all their people to (S[bI\NP)/(NP\NP) NP\NP
— ~ |
(S[bI\NP)/(NP\NP) (S[bI\NP)/(NP\NP)[conj] of their own work
7 N ~ ~N
(S[b]\NP)\NP NP/(NP\NP) conj (S[b]\NP)/(NP\NP)
I I I 7 N
increase NP and (S[b]\NP)\NP NP/(NP\NP)
| | |
the speed improve NP

the quality

Figure 5.4: The outcome of the translation of the Penn tree in Figure 5.3. Taken from

Hockenmaier and Steedman (2005)

account for German, which has more relaxed word-order afeerimorphology than

English. Another important difference between English @etman CCG bank in-

ductions is that the German treebank adopts a hybrid frame®o representation

which is dependency-based but inherits some phrase steuetements such as in-
ternal nodes. This means the translation procedure shoafu dependency tree to
derivation trees. This brings in a few interesting challengFor instance, there are
crossed dependencies, in other words, crossed branchles tiées which we do not
see in phrase structure grammars.

(5.2) for each Tiger grapht
tigertree= createTreér)
preprocesgigertree)
translatetoCC@tigertree)
verifyDerivatior{tigertree)

This does not bring any complexities to the translation efdbpendencies to CCG
categories as CCG categories are designed to representispehdencies as well as
non-crossing ones inherently. However, since in the Peeebiank, these were rep-
resented differently with traces and null elements, a obffié path should be taken for
translating a dependency treebank which is more relatdtetéotus of research in this
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— T >
AC NK NK

3
g
(MO
[PM]
an einem Hochsten , dem der kleine Mensch  sich fraglos zu  unterwerfen  habe
in a Highest ~ whom  the small human  refl. without to submit have
questions
APPR  ART NN $, PRELS ART ADJA NN PRF ADJD PTKZU  VVVIN VAFIN
Figure 5.5: Tiger Graph
PP,
APPR-AC NP-ARG
__—/ T
an AR"Ii—HD NOUN-ARG PKT SBAR-RC
einem NN-NK ; PRELS-EXTRA-DA/S-ARG
Hochsten dem NP-SB VP-OC VAFIN-HD
7
,/ ART-NK NOUN-ARG PRF-ADJ ADJD-MO VZ-HD habe
\
N der ADJA-NK NN-HD sich fraglos PTKZU-PM VVINF
~
= \kLeiQe Mensch Zu unterwerfen

~~
-~
-~ -
—_——— —_——

Figure 5.6: Planar Tiger tree

thesis. The algorithm that translates Tiger trees to CC@&akgon trees is shown in
(5.2).

The algorithm takes Tiger graphs as input and as such thegarplanar trees.
These graphs need to be turned into flat trees with non-crgps=ilges since CCG
derivations are represented as binary trees of such kines&trees then go through a
preprocessing stage where some changes are made to thérdejank trees to make
them compatible with the translation algorithm that is dasd for Penn Treebank
style trees. A typical example of a Tiger treebank sentesigéven in Figure 5.5.

Hockenmaier (2006) first creates a planar tree by raisingréethat causes the
crossing to the higher level. The result of this is seen iruFggs.6. This tree is
then transformed into the tree in Figure 5.7 where the pmeiteal nodes are CCG
categories for words and internal structure representdehigation tree of the parse.
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PP,

PP/NP[dat] NP[dat]
an NP[dat] NP\NP
NP[dat] v (NP\NP)/(S[vlast} NP[dat]) S|vlast)\ NP[dat]
NP[dat]/N[dat] N[dat] ; d(lem S|vlast]/(S[vlast} N P[no/m]) (S[vlasth NP[nom])\ NP[dat]
— ~~
einlem H'Oclhsten NP[nom] (S[z]\NP)\NP[dat] (S[vlasth NP[nom])\ (S[z]\NP)
/
NP[nom]/N/[nom] N[nom] (S\NP)/(S\NP) (S[z]\NP)\NP[dat] hallbe
d 1 — ~
er N/N N[nom] sich (S\NP)/(S\NP) (S[z]\NP)\ NP[dat]
I ~ .
kleine Mensch fraglos (S[z]\ NP)/(S[b\NP) (S[b]\ NP)\ NP[dat]
zZu unter\lmerfen

Figure 5.7: Tiger CCG tree (All Tiger images are taken from Hockenmaier (2006))

Other grammars were extracted from the Penn Treebank amal ttebanks as
well. Lexicalised TAGs (LTAGS) have been extracted from Bren Treebank by Xia
(1999) and Chen and Vijay-shanker (2000) by a similar sgsatmilar to Hocken-
maier’'s. These studies process the whole treebank as treecgleers who used only
portions (Neumann, 1998). Other wide-coverage deep gramaxracted from the
Penn Treebank are: HPSG (Miyao, Nonomiya, and Tsujii, 200B% (Cabhill et al.,
2002; Cahill et al., 2004). Extraction algorithms for LF&ate F-structures automati-
cally by making use of the configurational, categorial amagérinformation in Penn-II
phrase structure trees (Cahill et al., 2008). Moortgat arm?\(2001; 2002) extract a
CTL grammar from Spoken Dutch Corpus CGN (Hoekstra et aD120

5.2 Algorithm

The lexicon induction procedure is recursive on the argumehthe head of the main
clause. Itis called for every sentence and gives a list olvitrels with categories. This
procedure is then applied to all of the sentential conjuimctase of coordination (Fig-
ure 5.8).

After the head of the first conjunct that is connected to thelevel is found,
the CCG catgory is assigned depending on how many arguntdms.i Extracted as
well as in-situ arguments are taken into account when thagoigee. Then all of the
dependents of this head are visited assigning them CCGaradsg

The words with labels object and subject are assigfiedndNP[nom]categories
respectively, with the exception of sentential complerseiitthe word is an adjunct
it is given a CCG category depending on how many argumenthehd word has in
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recursiveFunction(index i, Sentence s)
headcat = findheadscat(i)
/Ibase case
if myrel is “MODIFIER”
handleMod(headcat)
elseif “COORDINATION”
handleCoor(headcat)
elseif “OBJECT”
cat = NP
elseif “SUBJECT”
cat = NP[nom]
elseif “SENTENCE”
cat=S

if hasObiject(i)
combCat(cat,"NP")

if hasSubject(i)
combCat(cat,"NP[nom]”)

Ilrecursive case
forall arguments in arglist

recursiveFunction(argument,s);

N—r

Figure 5.8: The lexicon induction algorithm

between the adjunct and itself.

Sentential modifiers are always assigned cate@i8or S\S depending on their
position in the sentence. All the other dependency typesatepresent in Turkish
dependency treebank are assigieX or X/X X being the head category type.

A typical examples from METU-Sabanci Treebank is given igufe 5.9. The
CCG categories that are assigned to the words in the depeyndesph are shown in
Figure 5.10.
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DATIVE.ADJUNCT

CLASSIFIER MODIFIER MODIFIER SUBJEC SENTENCE
Sandik  bagkanlarina  bir hafta seminer onerildi
Noun Noun Num Noun Noun Verb Punc
Ballot chair-Plu-Dat one week seminar suggest-Pass-Past .

Figure 5.9: Turkish treebank tree

DATIVE.ADJUNCT
CLASSIFIER MODIFIER MODIFIER SUBJEC SENTENCE
Sandik baskanlarina bir hafta seminer  Onerildi
ballot chair-Plu-Agr-Dat one week seminar suggest-Pass-Past Punc
NP/(S/S) S/S NP/(NP[nom]/NP[nom) NP[nom]/NP[nom] NP[nom] S\NP[nom]

Figure 5.10: After CCG categories are assigned

5.3 Pro-drop

The pronoun subject of a sentence and the genitive pronquusisessive constructions
usually drop. In fact, pronouns are mostly used in Turkishegiif there is an ambigu-
ous reference in the discourse, or for contrastive and etigpparposes (Go¢cmen,
Sehitoglu, and Bozsahin, 1995). Pro-drop informati®mat included in the Turkish
dependency treebank, which is consistent with the surfapertlency approach taken
(Oflazer et al., 2003).

A [nom] (for nominative case) feature is added by us to the NPs tovenie am-
biguity of predicate argument structure of verbs. All sewts have a subjettThey
are either marked by morphology, or inferred from discoluirdeey are dropped. Thus,
a verb with a categor$\NP is assumed to be transitive with a dropped subject. This
information is expected to be useful together with lexicégs in generalising the lex-
icon for use with a CCG parser. Figure 5.11 shows how expls# of[Nom] feature
helps in identifying the verb categories with a dropped sobj

There are many types of pro-drop in Turkish such as objectipop which cannot
be recovered from the current version of the data. This mean® verbs will have

1This includes the passive sentences in the treebank
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original pro-drop
transitive | (S\NP[nom])\ NP S\NP
intransitive | S\NP[nom] S
ditransitive | ((S\NP[nom])\NP)\NP | (S\NP)\NP

Figure 5.11: Categories with and without dropped subjects

a different distribution over their predicate-argumemtisture leading to data sparsity
and loss in accuracy. The counterpart to the English exam.3) about pronoun

resolution, is in (5.4). All 4 combinations of object dropgiare possible leading to
different meanings as well as information structures akigion of pronouns in some
cases marks topic. This has a similar effect achieved thrautgnation in the English

example (5.3). Genitive subjects of relativisation ar® alearked with [nom] feature

for the time being. We will leave the solution to this problénfuture work.

(5.3) Bill called John, a republican, and then he insulted. hi

Bill John’a cumhutiyetci dedi ,sonra hakaret etti.

(5.4) a . . . .
bill john-Dat republican said ,then insulted
intended reading: Bill called John a republican, and theil Bisulted
John.
b Bill John’a cumhutiyetci dedi ,sonra o0 hakaret etti.
bill john-Dat republican said ,then he insulted
intended reading: Bill called John a republican, and thehdansulted
Bill.
c Bill John’a cumhutiyetci dedi ,sonra ona hakaret etti.
bill john-Dat republican said ,then he-Dat insulted
intended reading: Bill called John a republican, and theil Bisulted
John.
n Bill John'a cumhutiyetci dedi, sonra o ona hakaret etti.

bill john-Dat republican said ,then he he-Dat insulted
intended reading: Bill called John a republican, and thefi Bisulted John.

5.4 Modifiers and Adjuncts

MODIFIER label is the most overloaded label in the Turkish dependéeepank. The
lexicon induction algorithm defined relies mostly on depamzy labels to predict CCG
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categories. When assigning categories to “Modifiers”, tegory of the head of the
word which had been assigned in the previous recursive rususlly enough. For
instance, a noun phrase modifier is assigNEdNPor NP\ NP.

To give a few examples, adjuncts are assigfi¢d/NP)/(NP/NPwhen they mod-
ify adjectives,(S\NP)/(S\NP) when they modify transitive verbs. Since there is no
distinction between V modifiers and VP modifiers we prediet thtegory of the ad-
junct depending on its position among the verb and its argisn@omplements). If
all the complements are in between the adjunct and the verbwie assign the adjunct
S/Scategory. We also consider extraposed or extracted congplenthat may be on
the other side of the verb. If the adjunct itself has an objeist is also reflected in
the category as an NP argument sucl{@I$) NP for cases like adverbs derived from
verbs with derivational morphemes.

A predicate may have a sequence of modifiers and modifiers nadyfynother
adjuncts, too. In this case, we may end up with categories(bk7), and even more
complex ones. CCG’s composition rule means that as long jas@d are adjacent
and they have the same head, they can compose which mearad! threyassigne&/S
for this case, and they compose to a sir§i8at the end without compromising the se-
mantics. This method eliminates many gigantic adjunctgraies, that are especially
unavoidable in lexemic lexicons, causing sparse counts fitee lexicon, following
Hockenmaier (2003a).
diferansiyel esitliklerinizdeki matematiksel tekilléi daha iyi

55
(5:5) differential equations+Poss+Rel mathematical singidafiAcc more good

bir modelle ortadarkaldirdiginizda Tanriniz da tekillikle birlikte
a model+ins eliminate+P2pl+When  God+Ps2pl too singytahits together

ortadankalkar
disappear

When you eliminate the mathematical singularities in yoiffiecential equations with a

better model, your god, too, disappears together with thgidarities.

(5.6) dah&Adv|((S/S)/(SIS))I((SIS)I(SIS))I((SIS)I(SIS))((SIS)EP — “more”
iyi |Adj|((S/S)/(SIS))I((S/S)/(SIS)) — “good”
bir|DetfNP/NP —a”
modelléNoun.Ing|(S/S)/(S/S) —‘model+Ins”
ortadankaldirdiginizdgNoun Verb|(S/S)\NP — “remove+When”
...when you eliminate it (singularity) with a better model.
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(5.7) daha (Adv)= (((S/S)I(SIS)HI((SIS)I(SISH)I(((SIS)I(SIS))((SS)))
‘more’

5.5 Coordination

The treebank annotation for a typical adverb coordinatsoshiown in (5.8). The con-
stituent which is directly dependent on the head of the seerte’ziplayarak” in this

case, takes its category according to the algorithm thethalbther conjuncts are vis-
ited by the recursive algorithm. If one of the coordinatirigneents is involved in

relativisation, the others are assumed to shared the éxtratement if they have the
same morphological clues such as relativisation partidtémvever, sharing of other
arguments such as objects is not possible since this infamis missing in the data.

Mod. Coor. Mod. Sentence

SN YT YN

Kosarak  ve  ziplayarak geldi
(5.8) run+While and jump+While come+Past

He came running and jumping.

In Cakici (2005), it is shown that verb phrase, verb or set#ecoordination cannot
be differentiated because of the lack of this informatiothietreebank. 800 sentences
that had this kind of coordination that cannot be differatetd were removed from the
treebank. We explain in Section 2.5 how we added second#y tionnecting shared
arguments to both conjuncts to solve this problem for co@tibn constructions in-
volving matrix verbs. We use this information to predict ttaegory of the head cor-
rectly. (5.9) is an example of this kind. Without this infaation predicate-argument
structures of sentences with coordination are incomplé&teese categories not only
miss the predicate argument relations between the redatiwerbkusturanand the
extracted subjedtaptan but also the dependencies that implicitly state that kafgta
also the extracted subject of the first relativised ueban This is because these verbs
receive adjective categories determined by their partpeésh. This example may be
compared with (6.9) in Section 6.4.4 where these depenegmace correctly captured
with appropriate categories in a sentence of similar stinect
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Kristof_Kolomb’un NP[nom] — Kristof_Kolomb-Gen

yeni (NP/NP)/(NP/NP) —new

zenginlikler NP/NP —treasure-Plu

pesinde (NP/NP)/(NP/NP) —after

kosan (NP/NP)NP —run-PresPart

ve conj —and

tayfasina (NP/NP)/(NP/NP) - crew-Poss3sg-Dat
(5.9) kan NP —blood

kusturan (NP/NP)NP —vomit-Caus-PresPart

zalim NP/NP —tyrannic

bir NP/NP —-a

kaptan NP — captain

oldugunu (NP\NP[nom])\NP —be-PastPart-Agr-Acc

fark_ediyorsunuz ~ S\NP —realise-Prog-P2pl

You realise, that Christopher Colombus is a tyrannic capta@ho runs after
new treasures and agonises his crew.

Verb ellipsis is considered to be one of the weaker pointejmetidency grammar
(Oflazer et al., 2003) together with other headless constng: Oflazer et al. (2003)
describes inserting null elements as “dummy constituetatsivercome this problem
in annotation. However, the final release of the treebanls dw¢ have these null
elements. Therefore we chose to leave analysis of thesers®stas future work.

5.6 Noun Phrases

There are no articles and thus N&®/N distribution in Turkish. All marked and un-
marked instances of nouns are given category NP for the dagienplicity. Object
heads are giveNP categories. Subject heads are giwA[nom]. The category for
a modifier of a subject NP isP[nom]/NP[nom]and the modifier for an object NP is
NP/NPor NP\NP although NPs are almost always head-final.

5.6.1 Collocations

Collocations and some frequently co-occurring words aceiged into single entries
in the treebank. However, the annotation of these consbnits not very consistent.
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We assign the collocations their categories accordinggaldpendency label and mor-
phological features of the compound which are usually théues of the last word in
the group.

5.7 Relativisation

Long-range dependencies, which are crucial for naturagguage understanding, are
not modelled in the Turkish data. Hockenmaier handles thgmdking use of traces
in the Penn Treebank (Hockenmaier, 2003a)[sec 3.9]. BukiSlutreebank does not
employ traces or any other means to represent long-dis@eendencies or extrac-
tions of any type. For instance, the relativised verb is @spnted as a modifier of
the head noun and there is no explicit or implicit relatiotw®en the extracted noun
and the relativised verb as discussed in Section 2.5.3. kewbecause of lexemic
nature of the lexicon that is described here, these secptidks added will not be of
much use here. We will show CCG category set that predicts datface and deep
dependencies in cases of long distance dependencies iexh€imapter.

A typical subject extraction example is shown in (5.10). &elsed verb is con-
sidered as an adjective formed out of a verb phrase with theofiderivational mor-
phology. Since its label is MDIFIER, it is assigned an adjective category. If it has
arguments, these are also represented as backslashed Msagijective category.

Kitabi okuyan adam uyudu.
(5.10) Book-Acc read-PresPart man  sleep-PRast
NP (NProm!NPhom)\NP  NRom  S\NProm.

The man who read the book slept.

The lexicon in this form represents all the dependenciesranitly in CCG cate-
gories. This is also consistent with the fact that the prgi@argument relations are
lost in relativisation.. This means (5.11) and (5.12) widt gexactly the same sur-
face dependencies. This is enough for most of the stateesétt dependency parsers.
However, we believe that recovery of predicate-argumeatires, and thus, semantic
interpretation should be the basis of evaluation. We belgesystem that is not capable
of predictingarabaas the adjunct in the first sentence daitp as the object in the
second sentence is not complete. Thus, treebanks shoulelsigndd to include this
information and parsers should be able to predict them.
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(5.11) Benim uyu-dugum araba yandi.
I-Gen sleep-PastPart car burn-Past

N Pnom (N P/N P)\ N Pnom N Pnom S\ N Pnom
N Pnom/N Pnom
NPnom

S
The car | slept in burned.

(5.12) Benim oku-dugum kitaE yandi.
I-Gen read-PastPart book burn-Past

NProm (NP/NPXNPnom NProm S\NPnom
NPror/NPoom
NPI’]OFI"I

S
The book | read burned.

5.8 Punctuation

Punctuation marks can sometimes have dependents in MEbBRS&aTreebank. For
instance, in a coordination structure, the first conjunc ebordination has a depen-
dency link to the comma that separates two conjuncts, andneohas a link to the
head of the next conjunct. This case and the other types bfsion of punctuation
in the dependency structure is given in Section 2.3. Putiotuaarks involved in a
coordination are assigned the conjunction category.

Punctuation marks can also have different roles such asinggttke sentential com-
plements as shown in Figure 2.9. In these cases we changepkadkncy structure
during the pre-processing stage to get the correct categarich are shown in Fig-
ure 5.12. Vocatives and words labelleBE\KER may have punctuation as their “head”

token.

5.9 Results

The most frequent words and their most frequent categoreegigen in Figure 5.13.
The fact that the 7th most frequent word is the non-functiondvdedi’(said) reveals
the nature of the sources of the data —mostly newspapersauaiisn
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MODIFIER

MODIFIER OBJECT MODIFIER SENTENCE OBJECT SENTENCE
Tek basimiza iktidara dogru yuriyoruz ! dedi
Tek bag iktidar dogru yari -DBLQ- de .
Noun Noun Noun Postp Verb Punc Verb Punc
S/s S/s NP (S/S)\NP S[c] ” S\S[c] .

Figure 5.12: Use of punctuation in sentential complementation

token eng. freq. pos most freq. cat fwc*
: Comma| 2286 Conj (NP/NP)\NP 159
bir a 816 Det NP/NP 373
-yAn who 554 | Rel. morph.| (NP/NP)(S\NP) | 554
ve and 372 Conj (NP/NP)\NP 100
de too 335 Int NP[nom\NP[nom]| 116
da too 268 Int NP[nom\NP[nom]| 86
dedi said 188 Verb S\NP 87
-DHk+AGR | which 163 | Rel. morph.| (NP/NP)(S\NP) | 163
Bu This 159 Det NP/NP 38
gibi like 148 Postp (SIS\NP 21
(o] that 141 Det NP/NP 37

*fwc Frequency of the word occurring with the given category

Figure 5.13: The lexicon statistics

cattype frequency| rank type
NP 5384 1 noun phrase
NP/NP 3292 2 adjective,determiner, etc
NP[nom] 3264 3 subject NP
SIS 3212 4 sentential adjunct
S\NP 1883 5 | transitive verb with pro-drop
S 1346 6 sentence
S\NP[nom] 1320 7 intransitive verb
(S\NP[nom])\NP 827 9 transitive verb

Figure 5.14: The most frequent category types
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f # categories
f>0 450
f>1 293
f>2 244
f>3 215
f>4 186
f>5 169
f>10 | 132
f>100| 48

Figure 5.15: Distribution of category types

In Figure 5.14 the most frequent category types are showe didtribution reflects
the real usage of the language (some interesting categameesxplained in the last
column of the table). The category type distribution is shawfFigure 5.15. There are
450 distinct category types in total at the moment and 15herhtoccur only once.

The English CCGbank lexicon contains 1286 types with arel8®loccurring only
once (Hockenmaier and Steedman, 2007) for about 1 millikarte with CCG cate-
gories. 556 categories appear more than 5 times.

German treebank has 50474 sentences and 900K tokens sonméchfwere ex-
cluded in the lexicon induction proce$sGerman lexicon contains 2506 lexical cate-
gory types in which 1018 appear only once. 933 categoriesappore than 5 times.

Numbers from all three treebnanks seem to have the samerfims) however,
the Turkish treebank categories do not have features liken&e and English CCG-
Banks do. Therefore, lexical coverage and parsing coveemgsts obtained with these
categories are the most precise estimates of the qualityeler, we give these results
here because too many infrequent categories mean irrégwad inconsistency in the
data. The lexical coverage results are given in Sectiori 28d the parsing coverage
measure is given in Chapter 9.

Figure 5.16 shows the growth of the category types as theseatnumber in-
creases. Different lines indicate the growth of categopetfrequencies greater than
correspondingn. Note that even after 4500 sentences the curve for mostdraaate-
gories has not convergédThe data set is too small to give convergence and category

2About 8% of the sentences
3The slight increase after 3800 sentences may be becausatthard not uniform. Relatively longer
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Figure 5.16: The growth of category types

types are still being added as unseen words appear. Hockan{@@03a) shows that
the curve for categories with frequencies greater than fssta converge only after
10K sentences in the Penn Treebank.

5.9.1 Coverage

The coverage of the lexicon is evaluated with a similar sggatHockenmaier (2006)
did for German CCG lexicon. She divided the lexicon into 1igpand used 9 parts to
extract a lexicon and the 10th part to test its coverage. Eloclaier’s test is a token-
based comparison, and does not check if the token at hand&gpehe lexicon more
than one time. Thus, every occurrence is counted. This igoirg that our strategy
differs. We give the percentage of the unique token mataméise unique token set.
The second difference is that we count the matches in tegisat the 9 part-control
set whereas Hockenmaier counts the matches in control set.

There are 5609 sentences in the set the lexicon is extragted dnd there are
53796 tokens including puctuation. There are 450 categggd and 19385 token
types. There are 27895 unique word-category pairs. Theswers are very similar
to the ones we had in Cakici (2005). The difference is thét $$htences that had
sentence or verb coordination had been removed from thénatizeebank in Cakici

sentences from a history article start after short sentefroen a novel.
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(2005).

We did a 10-fold cross evaluation on the data to test the egeeof the lexicon
induced. We take out the 1/10 of sentences for test and takesh as control set. We
test the coverage by checking if the lexical entities anddagategory pairs exist in the
control set for each test set. Note that, when doing this wg compare the unique
lexical entities and pairs, that way we do not count repatiticcurrences of the same
entity in a test set.

We homogenise the data by taking 1 sentence of each 10 cdiveesentences in
the test set of the fold everytime. In other words the firstset the 111", 215t etc.
sentences in the data and the second set fha8 2", 22" and so on. This way we
avoid the non-homogeneity problem we had in Figure 5.16.e&n13n the figure, the
number of distinct category types grow faster than the regteodata after about 4300
sentences. This is due to the fact that the data is non-hameogs and this portion of
the treebank has much longer sentences and technical terms.

On the average 90.64% of the categories in the test set wereisdhe training
set. Standard deviation is 1.93. The number of unique wardkse to the number of
words in each evaluation set ( 3100 vs. 5400) which means aay/words are fre-
guent throughout each set which is a precursor to sparsepdatbéeems. Furthermore,
the number of the words that were seen in training data is eratlerage 53.95% of
all the unique words, and the ratio of seen word-categoryspaieven less with an
average of 37.06%.

5.9.2 Evaluation by sampling

As a small scale evaluation experiment we took a small saofdentences (25) au-
tomatically selected throughout the data. These sentemeesmanually checked of
their words are assinged correct CCG categories. They iswgarsed using the CCG
parser for Turkish described in Chapter 9. 14 of the sentehed at least one parse.
Out of the 166 categories in these 25 sentences, 144 werectamd 22 wrong. Out
of 25 sentences 9 had at least one wrong category. The rdst s€htences received a
parse. Out of these 9 sentences only 1 still received a psirsm the mistake was an
adjunct with wrong scope that was linked to some other elémen

2 of the category errors were caused by annotation mistaigeesent in the data.
Of the 25 sentences 5 of the sentences did not receive a peraade at least one of
the categories were not in the category dictionary.
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There are 2 words that could not be assigned any categoryebgrtigram. They
are given NULL categories. The sentence with the most elmacs5 errors out of
9 words. A summary of this is shown in the following table. Blahat this is not
an evaluation of the linguistic quality of the lexicon. Thetegories that are right in
word-based terms do not always yield the correct linguistierpretation.

sentences tokens| coverage exceptions no cat. assigned cat. accuracy
25 166 14 5 2 86.7%




Chapter 6
A Morphemic CCG Lexicon

Turkish is a free word order language with very rich morplgyloNot only case, tense
and number, but also modality, polarity, voice and eventikgtation are achieved
through morphology. This means one Turkish word can traestao a full English
sentence with several words. As discussed in Chapter 3utgaing languages may
have very complex word forms. There are 231,818 morphenadsdimg punctuation
for 53,796 tokens in the treebank. This corresponds to 4.8tphemes per word in-
cluding the stem itseff. This means that for a fixed amount of data it is likely that some
of the inflected (or derived) forms of the words will never lees. When building lan-
guage models, languages with complex morphology requinereenormous amounts
of data or generalisation of some sort. We show in this chidye we generalise the
CCG lexicon the induction of which is shown in the previousgter using morpho-
logical clusters as lexical entities in Turkish. We atterfgptreate a wide-coverage
morphemic lexicon using the IG-based dependencies in Sdépendency treebank.
Our motivation is not limited to providing computationafiefency. There are
linguistic constraints that make morphemic lexicons esakas well. Quite a few
morphemes require semantic and syntactic scope greatemtbials. An example is
what is called “suspended suffixation”. In this type of phaean, the morphologi-
cal attachment characteristics of the affix contradicthhie semantic and syntactic
scope it covers. The morpheme is affixed to the last conjuncbordination and its
morphophonemic, characteristics (such as vowel harmaeyjetermined by the word
itis attached to, however the semantic scope it covers iwhiode coordinating phrase.
Morphologically rich languages like Turkish, as well as ethanguages, suffer

1Some of these morphemes are zero morphemes, that do nadpomckto surface forms. So, actual
number of morphemes maybe smaller but because morph infiamia not included in the treebank,
we do not know the exact number of surface morphemes per token

87
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wb IGb
tokens 53796| 64992
token excl. punc. 43426| 54662
Avg. sent. length excl. punc. 7.74 | 9.72
Avg. sent. length incl. punc. 9.57 | 11.56
Average number of tags per token4.31 | 3.57

Figure 6.1: Numbers from Turkish treebank

from bracketing mismatches. A possible solution is to tkeaind morphemes as sep-
arate lexical entities so that they can choose their ownesomgiead of being “bound”
to the word they are attached to. We show in this chapter tloapheme or morpheme
cluster based lexicons solve some of the mismatch probleemsiomed.

In Section 6.1 we talk about the data we used to extract themgea. Section 6.2
discusses the motivation for a morphemic approach. Sedi@ndiscusses algorithm
for inducing the morphemic lexicon. Section 6.4 gives asadyof frequent construc-
tions. Section 6.4.7 discusses the evaluation of the reguitxicon and compares it
with the word-based lexicon in Chapter 5 and the final seégi@monclusion.

6.1 Data

We use the dependency treebank discussed in Chapter 2 @xtettie morphemic
CCG lexicon. The treebank consists of 5670 sentefcdhe treebank contains de-
pendencies, together with the morphological structureachewvord. Morphological
structure of a word consists of “inflectional groups” (IGkat are divided by deriva-
tional boundaries. Relativisation and subordination dse eepresented as instances
of morphological derivation of the involved relativisedus in Turkish treebank. This
means they exist in a different IG than the verb stem they amghologically attached
to. These IGs are the basic lexical entities for which we traosthe CCG categories
in this chapter as opposed to words in Chapter 5.

Figure 6.1 gives IG-based (IGb) and word-based (wb) siegiabout the treebank.
The average sentence length with and without punctuategigen. Punctuation con-
stitutes about 10K of the tokens. The average number of |G is 1.26.

2Note that this is the number after the correction of toketivseerrors
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu

lang. fam. Sem. | Sin. Sla. Ger. | Ger. | Ger. | Jap. | Rom. | Sla. Rom. | Ger. Ura. | Sla.
genres lne | 6 3 8+ 5+ lne | Ldi 1:ne | 1no | 9 4+ 8 12
annotation d c+f d d de+f | de+f | c+f de+f | d c(+f) | dc+f/d | d c+t
training data
tokens (k) 54 337 1249 | 94 195 | 700 151 | 207 29 89 191 58 190
non-scor. 8.8 0.8 149 | 139 | 11.3 | 115 | 116 | 142 | 173 | 126 | 11.0 331 | 144
units (k) 15 57.0 | 72.7 | 5.2 13.3 | 39.2 | 17.0 | 9.1 15 3.3 11.0 5.0 12.8
tokens/unit | 37.2 | 5.9 17.2 | 182 | 146 | 17.8 | 8.9 228 | 18.7 | 27.0 | 17.3 11.5 | 14.8
LEMMA + - + - + - - + + + - + -
CPOSTAGs | 14 22 12 10 13 52 20 15 11 15 37 14 11
POSTAGs 19 303 63 24 302 | 52 77 21 28 38 37 30 53
FEATS 19 - 61 47 81 - 4 146 51 33 - 82 50
DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18
D.s H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1
%HEAD=0 | 5.5 16.9 | 6.7 6.4 8.9 6.3 186 | 5.1 5.9 4.2 6.5 134 | 7.9
%H. preced. | 82.9 | 24.8 | 50.9 | 75.0 | 46.5 | 50.9 | 8.9 60.3 | 47.2 | 60.8 | 52.8 6.2 62.9
%H. follow. | 11.6 | 58.2 | 424 | 186 | 446 | 427 | 725 | 346 | 46.9 | 351 | 40.7 80.4 | 29.2
H.=0/unit 1.9 1.0 1.0 1.0 1.2 1.0 15 1.0 0.9 1.0 1.0 1.0 1.0
%n.p. arcs | 0.4 0.0 1.9 1.0 5.4 2.3 11 1.3 1.9 0.1 1.0 15 0.4
%n.p. units | 11.2 | 0.0 23.2 | 156 | 36.4 | 27.8 | 5.3 189 | 22.2 | 1.7 9.8 116 | 5.4
test data
scor. tokens | 4990 | 4970 | 5000 | 5010 | 4998 | 5008 | 5003 | 5009 | 5004 | 4991 | 5021 5021 | 5013
%new form | 17.3 | 9.3 5.2 18.1 | 20.7 | 6.5 0.96 | 11.6 | 22.0 | 14.7 | 18.0 414 | 145
%new lem. | 4.3 n/a 1.8 n/a 159 | n/a n/a 7.8 9.9 9.7 n/a 13.2 | nla

Table 6.1: CoNLL 2006 data

Characteristics of the data sets for the 13 languages (aht®é by their first two letters): language family (Semjitic

Sino-Tibetan, Slavic, Germanic, Japonic (or languagetedl Romance, Ural-Altaic); number of genres, and germalif one

(news, dialogue, novel); type of annotation (d=dependetrgonstituents, dc=discontinuous constituents, +frfiinctions,
+t=with types). For the training data: number of tokens &ni000); percentage of non-scoring tokens; number of prase

units (usually sentences, times 1000); average numbecofitg and non-scoring) tokens per parse tree unit; whethemma

or stem is available; how many different CPOSTAG values, P&IBvalues, FEATS components and DEPREL values occur for
scoring tokens; how many different values for DEPREL saptivkens with HEAD=0 can have (if that number is 1, there is one

designated label (e.g. “ROOT") for tokens with HEAD=0); pemtage of scoring tokens with HEAD=0, a head that precedes o

a head that follows the token (this nicely shows which laggsaare predominantly head-initial or head-final); the ager

number of scoring tokens with HEAD=0 per parse tree unit;geentage of (scoring and non-scoring) non-projectilegions

and of parse tree units with at least one non-projectivaioglaFor the test data: number of scoring tokens; percentédg
scoring tokens with a FORM or a LEMMA that does not occur intifaéning data.



90 Chapter 6. A Morphemic CCG Lexicon

Tables 6.% and 6.2 compare statistics across different dependency treetihaks
were included in the CoNLL 2006 and 2007 shared tasks for rtdgrecy parsing
(Buchholz and Marsi, 2006; Nivre et al., 2007). The percgesaof new forms and
new lemmas in the test sets give an idea about the inflectfmoglerties of Turkish
compared to other languages. 41% of all the tokens in thelteatarauinseerat least
in that inflectional form. This number is 36.3% in Table 6.2asthe highest among
languages included. The fact that the percentage of unse@nas is also high means
that the training set is too small for reasonable coveragéhan only accentuates the
importance of and the need for generalisation through nuqgly.

If we compare these numbers with Dutch data that has 15.9%safan lemmas in
Table 6.1 which is slightly higher than Turkish (13.2%), vee $hat the main problem
is not only unseemwordsbut also unseen inflected formsSimilarly, when we look at
CoNLL 2007 figures, Arabic has the biggest ratio of unseerd&®o unseen lemmas
which is about 6. But unseen words in Arabic are only 12% ofuiwle test set.
This shows Arabic has very rich morphology as well, but beeailhe percentage of
unseen words is not as big as in Turkish it is expected to lseliéscted by sparse data
problems at least for this particular test sample. This ate@ans that Arabic would
benefit from morphological generalisation, too.

6.2 Morphemic Lexicon

Marslen-Wilson (1999) gives a review of the experimentsedtmprove that the or-
ganisation of mental lexicon does not conform to Full Ligthypothesis (FLH) (But-
terworth, 1983). Marslen-Wilson (1999), furthermore,adisses experiments results
of which suggest that compositional and productive deioveti morphemes and in-
flectional morphemes are stored in the mental lexicon asratpantities. The issue
of lexicon representation is also discussed in Hankame8qQJL9Hankamer suggests
that storing fully inflected forms of all the words in memosyriot possible because of
memory requirements.

3Data is taken from Buchholz and Marsi (2006).

4Data is taken from Nivre et al. (2007).

SNote that these statistics are from the version used for CoA006 shared task and thus might be
slightly different from our statistics of the correctedabank.
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Multilingual
Ar Ba| Ca| Ch| Cz | En| Gr Hu It Tu

Language Family | Sem.| Isol. |Rom.| Sin.| Sla. | Ger.| Hel. | F.-U.{Rom.| Tur.

Annotation d d c+Hf | c+f d c+f d c+Hf | c+f d

Training Data

Tokens (k) 112 | 51 | 431|337 432 |447| 65 | 132 | 71 | 65
Sentences (k) 29| 3.2 |15.0/57.0/ 25.4|186| 2.7 | 6.0 | 3.1 | 5.6
Tokens/sentence | 38.3| 15.8| 28.8| 5.9 | 17.0|24.0| 24.2| 21.8| 22.9| 11.6
LEMMA Yes | Yes | Yes| No | Yes| No | Yes | Yes | Yes | Yes
No. CPOSTAG 15 | 25 | 17 | 13| 12 | 31| 18 | 16 | 14 | 14
No. POSTAG 21 | 64 | 54 | 294| 59 | 45| 38 | 43 | 28 | 31
No. FEATS 21 | 359 | 33 0 71 0 31 50 21 78
No. DEPREL 29 | 35 | 42 | 69| 46 | 20 | 46 | 49 | 22 | 25
No. DEPRELH=0| 18 | 17 1 1 8 1 22 1 1 1

% HEAD=0 87| 97| 35|169|116| 42| 83| 46 | 54 | 128
% HEAD left 79.2| 44.5| 60.0| 24.7| 46.9|49.0| 44.8| 27.4| 65.0| 3.8
% HEAD right 12.1| 45.8| 36.5(58.4| 41.5|46.9| 46.9| 68.0| 29.6 | 83.4

HEAD=0/sentence| 3.3 | 1.5 | 1.0 | 10| 20| 10| 20| 10| 1.2 | 15
% Non-proj. arcs 041 2901|00|19|03| 11|29 | 05] 55
% Non-proj. sent. | 10.1| 26.2| 29 | 0.0 | 23.2| 6.7 | 20.3| 26.4| 7.4 | 33.3

Punc. attached S S A S S A S A A S
DEPRELS for pung. 10 | 13 6 29 | 16 | 13 | 15 1 10 | 12
Test Data
Tokens 5124|5390| 5016|5161| 4724 |5003| 4804 | 7344 | 5096| 4513
Sentences 131 | 334 | 167 | 690 | 286 | 214 | 197 | 390 | 249 | 300
Tokens/sentence | 39.1| 16.1| 30.0| 7.5 | 16.5|23.4| 24.4| 18.8| 20.5| 15.0
% New words 12.4424.98 4.35|9.70|12.58 3.13|12.43/26.10| 15.07/ 36.29

% New lemmas 2.82111.13 3.36| n/a | 5.28| n/a | 5.82|14.80| 8.24| 9.95

Table 6.2: CoNLL 2007 data
10 languages of the multi-lingual track in CONLL'07 sharadk for dependency pars-

ing.
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6.2.1 Why morphemic Lexicon

The interaction of morphology with semantics and syntaXdag been studied (Sproat,
1985; Sproat, 1998; Pesetsky, 1985; Spencer, 1988). Thersoecalledbracketing
paradoxeghat are taken as empirical evidence that morphologicalgsses interfere
with semantics and syntax. Bracketing paradoxes may beatkéis the contradiction
between morphological attachment characteristic of tfie afid the semantic scope it
covers and are covered in Chapter 3.

Relativisation is considered to be a deverbaliser that makigectives out of verbs
by the relativiser morpheme. An example is shown below.

Odev-i bitir-en cocuk uyu-du.

homework-ACC finish-PresPart child sleep-PAST.
The child who finished the homework slept.

(6.1)

We argue that the relativiser morpheme here should haveesoagr the whole VP.
For instance in (6.1) the bracketing should be as shown #aj6ather than (6.2b).

(6.2) a. [[[[Odev-i bitir]-en] cocuk] uyu-du]
homework-Acc finish -PresPart child sleep-Past

b.  [[[[Odev-i] bitir-en] cocuk] uyu-du]
homework-Acc finish -PresPart child sleep-Past
The child who finished the homework slept.

There are many examples in Turkish like the relativisatiraneple here, where
morphemes have phrasal scope. Some of these are discusSkdpter 6 and more
examples will be given in the course of this chapter. Mandistsiargue that involving
even coarse-grained morphological representation otdexin Turkish gives better
results. For instance, Turkish treebank is designed ond&eth dependecies (Atalay,
Oflazer, and Say, 2003). Bozsahin (2002) proposes a moiipl@&@e lexicon together
with attachment constraints to prevent overgeneratiof twkish. The parsing results
by Cakici and Baldridge (2006) and Eryigit and Oflazer @Ghow that taking at least
derivational morphology into account improves the parsafggmance. Oflazer and
Durgar El-Kahlout (2007) discusses the way morphemes ophene groups rather
than words bind other morpheme groups in a machine traoslagistem. A purely lex-
ical approach would either be computationally expensivdadicient in performance
because of the need to model all inflectional forms of a worémtranslating from
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one language to the other in this particular study. A simalpproach bringing the
morphology to the scene is taken by Dyer (2007) for Czech i@ language with
a similarly complex morphology.

6.2.2 Why morphemic CCG Lexicon
6.2.2.1 Generalisation and Computational constraints

Statistical parsers need as much data as possible to |eam Especially lexicalised
theories like CCG rely on words and their relations to eadtentLearning these re-
lations is not trivial when complexity of word forms in agghating languages are
taken into account. Complex inflected forms make the distigm of word and cat-
egory pairs sparse. The numbers in Figures 6.2 and 6.3rdkesthis for a relatively
common verb in the Turkish data. There are 177 occurrencéiseo¥erbgitmek (to
go) in the data. According to the output of the program there 2&distinct category
word pairs. This means the average frequency of a categorg-pair is 1.38. When
the inflections are ignored and only stems are taken intowadcdhere are only 14
distinct category types assigned to this verb. 7 of thesaramaly once (Figure 6.2).
This means the average frequency of a category-word paithferverb is 177/14 =
12.64. Figure 6.3 shows the categories that the gdaiccurs with in the lexicon.

...... frequency| cat/word

total occurrences 177 N/A
distinct cat-word pair§ 128 1.38
14 12.64

distinct category type

1°2)

Figure 6.2: The figures for the verb git (go).

However, ignoring morphology in this sense usually hurts gerformance let
alone improving it. This is why a mid-way approach need to deh where mor-
phology could be used as features together with stemmedswave show in Cakici
and Baldridge (2006) and in Chapter 8 that the best resutslatained by using stems,
morphological derivation information, and word minus stéuffix) part of the word
all together as features.

Figure 6.4 shows the CCG categories assigned to words vétlexicon induction
process described in Cakici (2009)ar (narrow) is an adjective, but it is assgined
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f word cat

1 git NP\NP[nom]

1 git (NP\NP[nom])\NP

1 git (S\NP)/(S\NP)

1 git S/NP[nhom]

1 git (S\NP[nom]\NP

1 git ((S\NP)/(S\NP))\NP[nom]
1 git  ((S\NP[nom])\NP)/((S\NP[nom])\NP)
2 git SIS

2 git NP\NP

3 git NP

5 git SINP

25 git S\NP

28 git S\NP[nom]

106 git S

Figure 6.3: CCG categories (cat) and frequencies (f) of entities of verb git (go) in mor-

phemic lexicon.

(S/S)/(S/Shecause the head word of the noun phrase i®@ATIVE.ADJUNCT. ltis
unlikely thatDar (narrow) will have the same category unless we have a very large
corpus. Alternatively, if we assigNP/NPto it, then we will not get a parse.

In the same sentence, a morphemic approach would providgar@s shown in
Figure 6.5.Dar will be assignedNP/NP, which is a legitimate adjective category. Sim-
ilar categories will be induced fogrol (path) which will be NP, every time itis in a
noun phrase, regardless of the type of its head, rather tbimg different categories
for every occurrence as an adjunct, derived verb, and so ampiblogically rich lan-
guages like Turkish, rely on morphological analysis or astesome kind of generali-
sation. Turkish is one of the new languages gaining focus thig rise of multilingual
language processing, and the amount of annotated datainomi@e-coverage NLP
systems is quite limited. Making morphological data morailable to these systems
will both improve the performances of these systems andigeca way to generalise
over the data.

Lexical rules may also be employed to handle problems desgabove. A lexical
rule that turns an NP that is locative marked into a locatijeict is also legitimate
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for the phraséar yollarda — through narrow streetdHowever, there are other situa-
tions such as many cases of derivational morphology in Sarkieebank that change
almost all types to other types. Handling these with lexiabds will add unnecessary
additional expressive power to the grammar. Solving thadeagsigning independent
lexical status to morphemes would be both simpler and safer.

6.2.2.2 Linguistic Principles

Acquiring all possible syntactic derivations represegtall possible semantic inter-
pretations is very important in wide coverage parsing. TikiBow the parse with
the correct, or most likely interpretation is selected amorany less likely or wrong
parses. The categories in Figure 6.4 do not give the parselétmeaning that Kerem
is running through narrow streets. This is one of the intetiggions (the one we want)
that this sentence has, together with another one with erdiit adjunct scope: “I saw,
in narrow streets, Kerem who was running.”. The adjunct riesli‘run” in the first
interpretation, where in the second interpretation it rfiedi“see”.

The other concern is that the locative case marklarhas scope over the whole
noun phrasé®ar yollar (narrow paths)rather than jusyollar (paths) This means in
order to get the correct semantic interpretation, we neddhte-da have semantic
scope over the whole phrase. This will yield the correct sginanterpretation much
more simply and effectively than some other solutions suehCuantifier Raising”
(QR) and incorporating traces of morphemes (Pesetsky,)16&fet the correct brack-
eting.

A similar problem is faced wittkosarakandgidenin the same sentenfe-arak
(-ing) is a derivational suffix that makes adverbs out of verbs dbo pérrases. Imagine
we had a transitive verb instead nfn here. In a CCG derivation, we would want
the verb to combine with all of its arguments so the semamgicgyht. This would
only be possible if we had a separate lexical entry for théxsufhe same is true for
the relativised verb “git”. The relativisation morpherentakes a VP, not a verb, as
argument. This is achieved by having a separate lexicay éortit.

Figure 6.5 shows the morpheme based lexical entries andarés for this sen-
tence.

5The morphemeenis the surface realisation of -(y)An morpheme mentionedteef
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2 4 4 5 6 7 0
Dar yollar-da kos-arak gid-en Kerem'i yakala-dim
narrow streets-LOC  run-ADV go-PresPart Kerem-ACC catéls$P
(SIS)I(SIS) SIS NP/NP NP/NP NP \ ISP NULL
SIS
NP/NP
NP
?

| caught Kerem who left running through narrow streets.

Figure 6.4: This analysis of the sentence does not give the intended semantics.

2 3 5 5 6 7 8-6 9
Dar yollar -da kosarak gid -en Kerem'i yakala-dim .
narrow streets -LOC run-ADV go -PresPart Kerem-ACC catélsP .

NP/NP NP (S\NPnom)/(S\NPnom)\NP (S\NProm)/(S\NProm) S\NPnom (NP / NPO\(S\NProm)  NPacc S\NP

>

NP
(S\NPnom)/(S\NPnom)
(S\NProm)/(S\NPnom)
(S\NPnom)
NPx/NPx
NPacc

>B

Figure 6.5: The morpheme-based categories for the sentence

0



6.3. Lexicon Induction 97

6.3 Lexicon Induction

The algorithm is based on the one that is described in CE0O5). The dependencies
are traversed from the head to the dependent in a recursineenan order to construct
the CCG categories. The results in Cakici (2005) imply thatTurkish CCG lexical
categories are not complete after 53K tokens which is ctardisvith the results from
CCGBank (Hockenmaier, 2003a). The ultimate aim is to gdiseréhe lexicon with
a morphological analyser and create a fully morphemic xithat will be helpful in
overcoming the complexities that arise from the fact thakiB is an agglutinative
language with morphology heavily interlaced with syntax @emantics. We restrict
ourselves to inflectional groups that are marked in the Blrkieebank for now, since
analysis and automatic disambiguation of morphology atlthiel of detail remains a
challenge.

The lexicon induction algorithm takes 1G-based dependstrogtures as input and
creates CCG categories for every token. Complement/atiflisiinction is important
here. We take all the dependents that are calledi8cT and QBJECT as comple-
ments, modifiers (adverbs) and case adjuncts as adjuncestir§hstep is translating
the dependency graphs into IG based dependency graphsififistep, these graphs
go through pre-processing stages for regularisation. llyin@CG categories are as-
signed to IGs. Details of these stages are explained in tloeviag sections.

6.3.1 The morphemic dependency structure

The algorithm for the morphemic lexicon is very similar te@thne described in Chap-
ter 5. To preserve the connectedness of the dependencylgaphust be involved in
the dependency structure as well. There are several wagptesent IG-based depen-
dencies of Turkish treebank including the approach takédoNNL 2006 shared task
(Buchholz and Marsi, 2006) which replaces IGs with underessbecause there is no
lexical form for these in the treebank, and using the morpgggem them as features.
The approach we used makes use of the I1G tokens instead ekegiing them with
an underscore. We believe a representation format thatakas to the lexical forms
of the tokens as possible is the most appropriate approach.

In CoNLL 2006 shared task data set the IGs are representediriwternal de-
pendencies by replacing the inner IGs with underscore.rliatde evaluation process
these dependencies are removed from the final score bedamsare trivial. The

"These are the main complement tags in the METU-Sabanci depeptreebank.



98 Chapter 6. A Morphemic CCG Lexicon

fact that morphemes are represented as underscore chiarsaas we cannot use the
lexical information for morpheme groups. Eryigit and O#8a£2006) suggest that lex-
icalisation does not work for Turkish, however Eryigit W&, and Oflazer (2006) in a
similar framework show that lexicalisation does improve gerformance. Cakici and
Baldridge (2006) also show that using both the stems andeteof the word form as
features give state-of-the-art results. However, sinceavet have lexical information
here, we will approximate these with using morpheme stringsead of completely
ignoring them.

We introduce at least some degree of lexicalisation by agsjgnflectional groups
token names which are derived from the morpheme names simogh” information
is missing in the data. The token name for the IG represemtmgmpty derivational
morpheme that makes a verb out of a noun is shown b&low.

(2, Verb+Zero+Past+A3sqg”}- is"Verb+Zero” .

The lexicon induction algorithm requires a dependency lyrdgat is connected.
Only punctuation and sentence modifiers are allowed to bepietel, however, an-
notation inconsistencies and some tokenisation mistakestb disconnected graphs in
some sentences. In Chapter 2 we show the cases where we tazhtiexse subgraphs
and solution to some of the tokenisation mistakes. If thelgia still disconnected we
treat each disconnected subgraph as a separate sentence.

When creating the morpheme based dependency graphs ifisherae than one
IG in a word, we make each of them depend on the IG immediatelige right and
make the outward dependency emanate from the last IG to tlleaGt depends on
in the head word. The dependencies between the internalfl@svord are labelled
INFGR. So the implicit information that these are parts of one weteserved. There
is an example of this in (6.3).

SENTENCE

MODIFIER
SENTENCE OBIJECT

INFGR INFGR

Olur , dedi care “Adj+Without” ‘“Noun+Ness”
(63) Alright ,  say+Past hope -less -ness

T: Olur, dedi ¢aresizlikle
E: Alright , he said, hopelessly.

8As seen in the example, this is in fact a “Zero” morpheme, dioass not have a surface lexical form.
Zero morphemes are not rare (2022 instances) in the treebank
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6.3.2 Preprocessing

There were some inconsistencies in the treebank regardéig3s involved in coordi-
nation. If a single-1G word coordinates with a word with niplke 1Gs and if the types
of IGs (their part-of-speech tags) are different, it is Uguie case that the link is an-
notated to go to the first IG of the second conjunct wronglyaad of the coordinating
IG. This usually can be fixed by changing the dependencytsireiso that the link
points to the last IG of the second conjunct. If the problemnca be solved by the
end of this step this means either there is an annotatiorakasir IGs in the middle
are involved in coordination or there is a suspended affixatiase. However, this is
very rare and most IG mismatch errors are solved by changiadjrik to point to the
last 1G.

All the sentences in Turkish treebank have at least creTENCE label, and if
there is more than one, the one that depends on the final @tiwetius considered
to be the root. SNTENCE is assigned to the main predicate regardless of its part-
of-speech tag. Fragments, for instance, are not diffextadi There are three types
of copula in Turkish. One type is often considered as zeroptmeme followed by
person agreement shown in (6.4a). The other is the past tieaisis shown by explicit
morphemesyDH and-mHsas shown in (6.4b-c). The last oneBHr which is always
in 3rd person. This is referred to as Epistemological cofula

Ev -de -yim
(6.4) a.
home -Loc -(CopZero) -Perslsg
| am at home.
b Ev -de  -ydi -m
home -Loc -CopPast -Perslsg
| was at home.
c Ev -de  -ymis -im
home -Loc -CopNarr -Perslsg
| was (supposedly) at home.
d Ev -de  -dir

home -Loc -CopPres
He is (surely) at home.

The first case combined with 3rd person agreement (which nsanked, too) in
(6.5) shows no indication as to whether it is a copula sertema fragment. Since

9Can be translated as “It is” and implies definiteness.
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intuitively copular sentences are more common, we add “Péedb” IGs to the depen-
dency structures during preprocessing to the end of nobaveypes that have -
TENCE label in the treebank. This is done because some copularszs have this
zero morpheme and some do not. For instance when the subjecffirst person
IG structure consists of 2 IGs, the first being the noun steththe second being
“Verb+Zero+..+Alsg” as in (6.6a). This preprocessing sgeppplied as a means of
regularisation of copular sentences as shown in (6.6).

Ev -de
home -Loc -CopZero -Pers3sg(Zero)
(He) (is) at home.

(6.5)

(6.6) a. Ev-de-yim
(1, "ev+Noun+Alsg+Pnon+Loc") (2, " Ver b+Zer o+Pr es+Alsg")
b. Ev-de
(1, "ev+Noun+Alsg+Pnon+Loc") (2, " Ver b+Zer 0+Pr es+A3sg")
Case Adjuncts that are not objects or subjects are also §pig example is Figure

6.5 above wheredais assignedX/X)\NP whereX = S\NPRon, the category of the
adjunct’s head. The other example is (6.7).

LOCATIVE.ADJUNCT

SUBJECT

INFGR SENTENCE

WY

Park -nDA  gecmis “Adj+Rel”“NountZero” da var “Verb+Zero”.

INTENSIFIER

INFGR INFGR INFGR

(6.7) Park -Loc past the one -Plu too  there is

T: Parkta gecmistekiler de var.
E: In the park, there are the ones from the past, too.

Conditionals are verbs that modify other verbs, so they lmagements of their
own. This means they have phrasal scope. For this reasormatbegiso split, even
though this is considered as verbal inflection in the trekb&h8) is an example from
the treebank. Conditional in this example serves as an bdvet it has its arguments.
We believe it should be treated as other derived adverbsttiBglconditionals will
allow the verb stem to combine with its arguments before beéieg an adverb.
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MODIFIER

SUBJECT

SUBJECT MODIFIER
MODIFIER

INFGR

O Dboyle 06lme -sA  hayatin baska tirli mii olurdu
(68) He  such die-Neg -Cond life-Poss2sg different way QP be-Aor-Past2

T: O boyledlmese hayatin baskard i mil olurdu.
E: If he didn't die like this, would your life be different?

6.3.3 Algorithm

After translation of dependency graphs and preprocessimggalgorithm which is a
modified version of the algorithm in Cakici (2005) is apglte the dependency struc-
tures.

If head is the stem of the word, we assign the category of #ra gepending on the
part-of-speech tags and give the (last)X@Cat whereX is the result category of the
stem after taking its arguments, if necessary, @atis the category it would have been
assigned given its label. Note that in lexemic lexicon irtaucthe category assigned to
aword is usually determined by its relation to its surfagetactic head in the treebank
i.e. its dependency label. However, in morphemic lexicattugtion, the stems are
assigned categories dependending on their parts-of4spard the rest depending on
their labels. Williams (1981) argues that the final IG actthashead of the whole word
or phrase if it has phrasal scope (Right Hand Rule). In a stiimgoview, particularly
for the Turkish treebank, where IGs are mostly represasriatof segments separated
by derivational morphemes derivational morphology charigeical types of the items
they are attached to.

Since we are dealing with IGs of a word here, the new lexicamsists of stems
of words and their IGs instead of inflected words. The morpigial structure is only
given as morpheme names in the treebank, so we do not haceallespresentation of
morphemes, but we represent each IG with the first two morgheames in it. This
means we remove the rest of the morphemes which are alwagstiofial if they do
not change the category types at this stage. We also add sa&sni& lpreprocessing
that are not based on the IG information in the treebank. iBhexplained in Section
6.3.2. The first case is the case markers that make a nounepdmaadjunct. Dative
marker creates a dative adjunct, locative marker createsaive adjunct, etc. These
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correspond to prepositional phrases (PP) in English, Imgesthey are named after the
relevant case marker and the word adjunct in the treebarkkd@aTIVE.ADJUNCT,
INSTRUMENTAL.ADJUNCT, we will refer to them as adjuncts here. We treat these as
we treat IGs and assign them categories of their own. Anathsge is the conditional
modifier which in Turkish treebank was treated as inflectidhis means it does not
have an IG of itself. These are the two exceptions that needeel handled separately
by the algorithm.

S.MODIFIER

SENTENCE

OBJECT

SUBJECT

DETERMINER  OBJECT

INTENSIFIER

T v X T
Ama higbir sey sOylemedim ki ben sizlere
But  noneof thing say-Neg-Past intensifier 1 you-Plu-Dat
S/S  NPNP NP ((SNP_)WNP)\NP) ((S\NP_ )\NP)\NP)\((S\NP_ )\NP)\NP) NP NP

But, | did not say anything to you.

Figure 6.6: The dependencies and the final CCG categories assigned to a sentence in

the treebank

A simple example is given in Figure 6.6. This example doesoatain any multi-
ple IG words. The recursive algorithm applies to the 2 toglelements here, one by
one. First it finds the S.MDIFIER and assigns it with catego&/S since the sentence
it modifies is to the right. After that, it finds the other elemat the top level, which
is the main verlsdylemedim After counting its complements, the algorithm assigns
ditransitive category to the verb. The complements rectige categories in a depth-
first manner. This meartsicbir beingseys determiner is assigneddP/NPright after
seyis assigned NP. Objects are assighdtland subjects are assignsé’[nom]. This
example has argument scrambling to the right of the verb,edls We take SOV as the
canonical word order and assign categories according $o thi

Coordination and extraction cases are handled differeiikamples of different
linguistic structures are given in Section 6.4.
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6.4 Results

We will focus on the outcome of the morphemic CCG lexicon apph for some
specific constructions in the Turkish treebank. Taking rherpes as the smallest rep-
resentational units has some advantages discussed Bivi@ome of the solutions
of the problems discussed earlier are given in this section.

6.4.1 Passives and Causatives

As discussed in Chapter 2 and Chapter 3, voice is alteredghrmorphology in Turk-
ish. Voice morphemes are separated from the stems by IG boesdin a similar way
derivational morphemes are. Surface dependency annotsttbese construction lead
to structures where all the complements of verbs depend @hGhcontaining voice
morphemes. This leads to categories like the ones show iexample (6.9).

Yerini pek degis  -tirmez

place-Poss3sg-Acc much change -Pass-Neg-Aor-Alsg

NP (S\NP)/(S\NP) S (S\INP)\S
<
S\NP
>
S\NP
<
(6.9) s

He does not change his place much.

(“Verb+Caug, (S\NP)\S, 2, dejistirmez, —)
(pek, (S\NP)/(S\NP)1,2, “Verb+Caus”4, —)
(“Verb+Caug, (S\NP)\S, 1, Yerini, —)

6.4.2 PPs or Adjuncts

As discussed earlier, the algorithm treats the case mathkatsare involved in PPs
—or case “adjuncts” as they are annotated in Turkish trdebas if they are IGs.
This allows us to assign correct categories to the elemédntseonoun phrase the
case marker is attached to. Note that in Figure 6.5, the CG&ogy of the locative
case marker i§S/S) NP. The categories assigned in the earlier example (6.7) dre as
(6.10).
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Park -nDA geemis  “Adj+Rel” “Noun+Zero” da var “Verb+Zero” .
Park -Loc past the one -Plu too there is
NP (S/S)\NP NP NPWP NP \NP (NP NP)|(NP_ NP) NP (SINP_)INP
< < < <
S/S NP NP NP SWp
<
NP
nom -
N
>
(6.10) s

In the park, there are the ones from the past, too.

The category of the adjunct is determined by the number ofptements there are
in between itself and the head. This is especially pracssade we do not have the
information to differentiate between verbal adjuncts a®Rladjuncts. This means, in
this example, we assume that the locative adjunct is notrdided and because the
complements of its head are closer to the head than it is, suerasit is a VP modifier.

6.4.3 Relativisation

Object extraction and adjunct extraction examples arengiggether with the depen-
dencies in the treebank that are used to create the categofegyures 6.7 and 6.8.

The fact that relative morphemes behave in a similar marmeglative pronouns
in English provides the basis for the approach taken heregoovering long-range
dependencies in extractions of this type.

SUBJECT

OBJECT

MODIFIER SUBJECT

INFGR MODIFIER MODIFIER

)

Geng erkek , Muammer'in  getirdigi “Adj+PastPart” suyu yudum_yudum icti
young Noun s Muammer-Gen bring PastPart water-Acc 'sip by sip’ drink-Past
NP[nom]/NP[nom] NP[nom] , NP[nom] (S[eI\NP[nom])\NP (NP/NP)\(S\NP) NP ((S\NP[nom])\NP)/((S\NP[nom])\NP) (S\NP[nom])\NP

SENTENCE

The young man drank the water Muammer brought sip by sip.

Figure 6.7: Categories for object extraction

(6.11) Oku -dugum kitap yandi.
read -Adj-PastPart book burn-Past

S\NP (NP/NP)(S\NP) NP SNP
NP/NP
NP

S
The book | read burned.
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COORDINATION

DETERMINER

INFGR MODIFIER SUBJECT  SENTENCE MODIFIE! OBJECT INFGR
Yiradaguomiz  “Adj+PastPart” yol bitmis , bir baska sokaga aclimisti
Walk PastPart road end-Past s a other street open-Past1-Past2 .
S (NP[nom]/NP[nom])/S NP[nom] S\NP[nom] conj NP/NP NP/NP NP (S\NP[nom])\NP

The road we walked had ended and lead to another street.

Figure 6.8: Categories for adjunct extraction

(6.12) Uyu -dugum araba yandi.
sleep -Adj-PastPart car burn-Past

'S (NP/INP)S NP SNP
NP/NP
NP

S
The car | slept in burned.

The relativised verb in (2.14b) is given a transitive verlegary with pro-drop,
(S\NP), instead of(NP/NP)\NP that it would get otherwise. The relative pronoun-
equivalent in Turkish;dHk+AGR now, has its own lexical category. A lexical entry
with category(NP/NP) (S\NP) is created and added to the lexicon to give the cate-
gories in (6.11) and in (6.12). This solves the problems iilesd in Chapter 2.

6.4.4 Long-distance dependencies

Long-distance dependencies as well as surface ones aneeredowith the help of

CCG categories. The dependencies that are derived usifagsuypes of words are
not sufficient to predict implicit predicate-argument tedas. For instance, relativisa-
tion treated as adjectival noun phrase cannot recover gaegiargument relations of
the relativised verb. Long-distance dependencies caugeddrdination and extrac-
tion are also not trivial. (6.13) shows how morphemic lexiayeated handles long
distance dependencies of extraction and coordination.

S.MODIFIER

COORDINATION MODIFIER
SUBJECT

DETERMINER MODIFIER MODIF! OBJECT DETERM{NER

Gor -diiginiiz gibi higbir  zaman  kurtul -mayacak , $zgiir olma -yacak bir tutsag  -im ben
(6,13) see  -PastPart-A2pl like  none of time  escape -FutPart-A3sg free  be-Neg -FutPart-A3sg ~ a  prisoner -CopZero-Alsg 1

OBJECT

As you see, | am a prisoner who never will escape, be free.
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Gor -digundz  gibi  higbir zaman kutul-mayacak | Gzgir  olma -yacak bir  tutsag -m ben
see  -PastPart-A2pl like  none of time escape -FutPartA3sg ,  free  be-Neg-FutPart-A3sy a prisoner-CopZero-A1sg !
NP (S/S)\NP NP/NP ((S\NPv:r)/(S\NPm))/((S\NPT)/(S\NPM)) {SWP‘L)/(S\NP' J conj NP ((SINP w)/{S\NPM"))INP (SINP _v)/(S\NPm) S\NPW NP
> < >
sis XXX (SINP_)/(SINP) SINP, SIISINP.)
S . . )
(SINP)/(SINP)
conj
(SINP_J(SINP)
>
S\NP"lw
S
>
(6.14) s
Gor -diginiz ~ gibi  higbir zaman kurtul -mayacak  Gzgir olma  -yacak bir  tutsa§  -m ben
see -PastPart-A2pl  like none of time escape -FutPart-A3sg s free  be-Neg -FutPart-A3sg a prisoner -CopZero-A1sg i
NP (S/ISNP- X/ X (S\NPW)/(S\NPW) SWPT" (NPINP)\(SINP_)  conj NP {S\NPW)\NP (NP/NP)\{S\NPV) NPINP NP (SINP. J\NP NP
< > < > T
S/S (SINP_)/(SINP ) SINP_ NP SISINP,)
<
SINP_ < NPINP
NPINP <
o>
NP/NP
>
NP
<
SINP,
(6.15) 5

The categories assigned to the words with the lexicon indgtrocess are given
to CCG parser to demonstrate the usefulness on a very snaédl sere. The depen-
dencies that the CCG derivation in (6.15) yields are showigire 6.9. In addition
to the surface dependencies in the original dependenastsis) long distance depen-
dencies such as the ones that result from coordination adégbed, too. For instance,
(kurtulmayacal, S\NP[nom1, 1,tutsajiny 4, —) and
(olmayacaki, (S\NP[nom1)\NP, 1,tutsajimas, —) are not predicted with most de-
pendency parsers, although they are crucial dependermisginantic interpretation.
These dependencies are obtained by giving the categoriée t@all-parse version of
Clark and Curran (2007b)'s CCG parser. The output of thegrassshown in (6.16).
Each line represents a dependency between two words. Tamsp& is a simplified
version of a sentence in the treebank, and the full examples@issed in Chapter 9.
The dependencies shown in blue dotted lines in Figure 6.harenes that do not exist
in the original dependency structure. These dependen@ageovered through coor-
dination and extraction. When the dependencies shown iinglne are compared with
the original treebank dependencies in (6.13), one can sgestime dependency arcs
point in opposite directions (red dotted arcs). This issusso explained in Chapter 9.

The red arc in the figure indicates the dependency of the teahpdverb that is
assigned to a different head than its correct head. Withimetiamodel, these kinds of
errors will be less frequent.
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Figure 6.9: The dependencies recovered from the morphemic lexicon categories with a

CCG parser.

(—Noun+ PastParp, NP\ S;, 1,Gorduguniz,, —)
(gibis, (S/S1)\NP>, 2, —Noun+ PastParp, —)
(hicbirs, (S/S)/(S/9)1,2,zaman, —)
(—Ad j+ FutPartg, (NP/NP)\ (S\NP[nom), 2, kurtulmayacal, —)
(olamayacakl, (S\NP[nonj1)\NP, 2,6zdir10, —)
(—Ad j+ FutPart2, (NP/NP )\ (S\NP[non), 2, olmayacaki, —)
(,0,conj, 1, —Adj+ FutParty 5, —)
(6.16) (,0,conj, 1, —Adj+ FutPartg, —)
(bir13, NP/NPy, 1 tutsagim 4, —)
(kurtulmayacal, S\NP[nonjq, 1,tutsajimy 4, —)
(olmayacalk;, (S\NP[nomn1)\NP, 1 ,tutsagimy, —)
(—Ad j+ FutParty2, (NP/NP)\ (S\NP[nom), 1,tutsagim 4, —)
(—Ad j+ FutPartg, (NP/NPp)\ (S\NP[nonj), 1,tutsagimy4, —)
(—Verb+Zeros, (S\NP[nom1)\NP, 1, beng, —)
(—Verb+Zeros, (S\NP[nom1)\NP,, 2, tutsajima, —)
(zaman, S/S;, 1, —Verb+ Zeros, —)
(

gibis, (S/S1)\NP, 1, —Verb+ Zeros, —)

6.4.5 Copula Sentences and Fragments

There are a lot of sentences in the Turkish treebank withaatrbal predicate. Cop-
ula sentences are sometimes identified with morphologieakens such asDHr, or
past tenseyDH. When these markers do not exist, or when the sentence igysanp
fragment (not a complete sentence) it is difficult to assagegories reliably.
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We showed in Section 6.3.2 that the copular sentences mifistnadditional 1G
are fixed during preprocessing. The IG containing the zergoimeme is assigned a
category XY where X is the category of the morpheme, the copular morgh&m
attached to and Y is a verb category whose type depends omthiear of arguments
it has. The main predicate in (6.15) is an example of a comdatence.

6.4.6 Coordination

In the example for adjunct extraction (Figure 6.8) therdgs éhe issue of coordination.
We mentioned in Chapter 5 that S V and VP type coordinatiomiglifferentiated in
terms of annotation in the treebank. With the help of secpntiiaks we added, we
now get the correct categories fbitmis and agilmisin the figure. The secondary
links that are added are not shown in the figure here. AUBJECT link from yol to
acilmistimakes sure that the information that the subject is sharezhgroonjuncts
is used, andaciimistitakes a full transitive category and not a pro-drop one. This
especially important in cases of object sharing in ordesettige correct valency of the
verb.

6.4.7 Coverage

We have 27895 unique word-category pairs for 19385 distiokéns in Chapter 5.
The morphemic lexicon has 13016 distinct word-categorysdar 6315 distinct word
stems and IG stem names. This is considerable improvenrerd gie have now more
than 69K tokens compared to about 54K word tokens for theniéxexicon. The av-
erage word-category pair frequency goes up from 1.97 to. 3=Bfure 6.10 demostrates
the category distribution of one of the most frequent venae treebank eku (read)

— with the lexemic approach in Chapter 5 and Figure 6.11 shbesategory distribu-
tion with the morphemic approach.

There are 450 lexemic category types as compared to 311 mmiphcategory
types. Although the number of category types is less in thephemic lexicon, we
believe that we have a more complete set of morphemic categpes than lexemic
category types. Figure 6.13 shows the distribution of merpic categories with the
data. The sudden rise that was observed in Figure 5.16 foexeenic data is not seen
in this figure. This means the part of the corpus after 420@epees have the same
degree of growth as the part after about 1700 sentences vtlstegts a more linear
growth curve of category types.
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| f  word cat | f  word cat
1 okuyan (NP/NP)NP 1  okuyup (SIS)NP
1 okudugu ((8NP[nom])/(S\NP[nom]))/((S\NP[nom])/(S\NP[nom])) | 1 ok uyup (NP/NP)/(NP/NP)
1  okuyorsunuz NP 3 okuyor SNP
1 okumuscasina  (§®P[nom])/(S\NP[nom])\NP 1  Okuyorum S
1  okuyabilir S 1 okurum SNP
1  okudunuz SNP 1  okurken (S/S)NP
1 okumadim S 1  okuttum NRNP
1  okuyorum SNP[nom] 1 Okumayabilir S/NP
1 okumustunuz  (§NP[nom])\NP 1  okudular S
1 okunacagini NENP[nom] 1  okurduk SNP
1 okuyun S 1  okuyacaklar S
1  okurdu SINP 1 okudu SNP
1  okurdu SNP 1  okuduk S
2 okudu S 1  okudun SNP
1 okursa SIS 1 okumadim SNP[nom]
2 okur S 1 okudum SNP
1  okurkenki NRNP 1 Okumuyorlar S
1  okuyabilirim (NP\NP[nom])/NP 1 okunamayan NP/NP
1  okumalarini NRNP 1  Okudum S
1  Okuyucunun NP[nom] 1  okuyor (S\NP[nom])\NP
1 okumalari NRNP 1 okuyayim SNP
1 okuyucudan SIS 1  okudu (SNP[nom]\NP
1 okumasini NRNP

Figure 6.10: CCG categories (cat) and frequencies (f) of all the derived and inflected

forms of verb oku (read) in lexemic lexicon.

f  word cat
oku S\NP[nom]
oku (S\NP[nom])\NP
20 oku S
23  oku S NP

Figure 6.11: CCG categories (cat) and frequencies (f) of entities of verb oku (read) in

morphemic lexicon.

word match%| cat%jword

pair match%

mean 70.1 94

58.5

std. dev.|| 1.34 1.70

0.92

Figure 6.12: Results on the 10-fold evaluation of the morphemic lexicon
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Figure 6.13: The growth of morphemic category types

Figure 6.12 gives the numbers of a 10-fold evaluation pretesest the coverage
of the lexicon. The method is the same as Section 5.9.1. Wedakthe 1/10 of
sentences for test and take the rest as control set. We &esbterage by checking if
the unique lexical entities and unique word-category paxist in the control set for
each test set. Coverage is higher than the coverage in lexexigcon, implying a more
complete set of categories and word-category pairs.

We also used an alternative evaluation method. We used C@@arées induced
here as features to a dependency parser described in MaDehal. (2005). The
results are discussed in detail in Chapter 8. In summanhdost in accuracy of the
MST parser with the use of CCG categories was encouragirigly. iunlabelled and
labelled dependency accuracies were 95.08% and 88.96%ctesgly. This shows
that the use of CCG gold supertags boosts the performancedependency parser
even when they are used as very simple features. We know sigieaitagger is crucial
in getting realistic results but we include this informatias a means of evaluation of
the gold standart CCG categories in the morphemic lexicdaded.

6.4.8 Evaluation by sampling

We perform a small evaluation with 25 sentences similar eoetaluation in Section
5.9.2. We provide the results of both lexicons for compariparposes. 2 out of 202
words were assigneNULL categories by the lexicon induction process. All of the
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sentences that were not parsed had at least one category ®nmdhe other hand 3
sentencesvith errors (1 with a minor category feature error) were parseke Gate-
gory accuracy of the morphemic lexicon sample set is mone hpoints higher than
the accuracy of the sample set from the lexemic lexicon. daare not any unseen
categories in the morphemic evaluation set.

A comparison of lexemic and morphemic lexicon evaluatiangiven in the fol-
lowing table. Morphemic lexicon is seen to outperform theelaic lexicon in both
category accuracy and also parsing results with the CC@dexi

lexicon # sent.| # tokens| accur.| correct | scorrect| cov. | unseen
morphemic| 25 202 188 | 93.07%| 17 20 | O
lexemic 25 166 144 | 86.74%]| 16 14 |5

6.5 Conclusion

We have explained why a morphemic approach is crucial ingesfitheoretical and
computational aspects. We induced a morphemic CCG lexiawn the Turkish tree-
bank which is relatively small when compared to the treeldok well-studied lan-
guages. These results show that especially for languagbscainplex morphology,
generalisation is very important. CCG categories impriegerformance of a depen-
dency parser when they are used as features in the stdtiaticke!.

We achieved great improvement on word-category pair frages which we hope
will help with training a supertagger. The supertagger seelbt of data to be accurate
(or as accurate as possible). The average category typegeergees up to 5.32 from
1.97 categories per word. In statistical terms this meanbave less data sparseness.
We have also shown in Section 6.4, the theoretical and Istguadvantages of the
morphemic lexicon.

We used the inflectional groups to specify the lexical bouedaecause we did
not have a morphological analyser to obtain the actual mer@s. We have also
included a few of the crucial inflectional morphemes, suchlihgsones involved in
phrasal adjuncts, namely case markers. We are aiming to d&aduly morphemic
lexicon that takes into account of bracketing paradoxesaanre detailed study of
the status of inflectional morphemes in a CCG lexicon in tharu We also plan
to focus more on bracketing paradoxes that involve cootitindghat is similar to the
ones discussed in (Fukushima, 1999) in Turkish.

The work explained in this chapter is important in both gejtthe correct cat-
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egories out of supertagger because it improves the numbersalao predicting the
dependencies out of linguistically more appropriate catieg.



Chapter 7
Dependency Theory and Parsing

Dependency treebanks have emerged for many low-densigyiéayes in the last few
years. The reasons for this among many others are that tlendepcy structures are
intuitive, easy to implement and more appropriately flexitar representing phenom-
ena in free word order langauges.

Dependencies are relations that are defined on words oremmatlits where the
sentences are divided into its elements called heads anchargs, e.g. verbs and ob-
jects. Dependency parsing aims to predict these dependelatipns between lexical
units to retrieve information, mostly in the form of semarititerpretation or syntactic
structure.

Parsing is usually considered as the first step of naturgiuage processing. To
train supervised statistical parsers, a sample of datatatatbwith necessary informa-
tion is required. There are different views on how infornaator functional annotation
should be. There are different constraints on the desigogs®such as: 1) how in-
tuitive (natural) the representation format is, 2) how e#sy to extract information
from it, and 3) how appropriately and unambiguously it reergs the phenomena that
occur in natural languages.

Using phrase structure trees has been the de facto stamcandatation of linguis-
tic data following the generative tradition. Syntactigasinnotated linguistic corpora
are called treebanks, after tree representations of cofrsxderivations. Dependency
representation, i.e. syntactic annotation of the sentensmg the notion of heads, de-
pendents and relations only, is becoming more popular edpewith less studied lan-
guages. This does not mean that either phrase structurgpendency representation
is deficient. They have respective advantages and disayesytwhich is out of the
scope of this thesis. In this chapter, we will look at the awfncy theory and gram-

113
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AN

The black car hit the big motorcycle

Figure 7.1: The dependency tree

mar from a historical perspective, give a brief summary @& #éxisting dependency
corpora designed with some version of the dependency thaodythe state-of-the art
results of dependency parsers that use the data in thissesgiegion format.

7.1 Dependency Grammar

The concept of dependency grammar is usually attribute@sni€re (1959) and Hays
(1964). Tesniére’'s goal was to design a grammar that isubgefilearning foreign
languages. The result is a very intuitive and natural repridion of grammatical
structure. The dependency theory has since developed;iakpevith the works of
Gross (1964), Gaifman (1965), Robinson (1970), Mel’cuR88), Starosta (1988),
Hudson (1984), Hudson (1990), Sgall, HajiCova, and Pav&1(1986), Barbero et al.
(1998), Duchier (2001), Menzel and Schroder (1998), Kir(2001).

Dependencies are defined as links between lexical entitiesdié or morphemes)
that connect heads and their dependents. Dependenciesavaydbels or be un-
labelled. A dependency tree is often a directed (sometime&ected (Sleator and
Temperley, 1993)), acyclic (sometimes cyclic (Hudson,@®graph of links that are
defined between lexical entities in a sentence. Dependeacgeusually represented
as trees where the root of the tree is a distinct node.

An example dependency tree is in Figure 7.1. A phrase streittee for the same
sentence is shown in Figure 7.2. The ROOT of this tree is *hit”

Since Tesniére, much work has been done on dependency.th&arong many
well known theories of dependency grammar are: Functiomade®ative Description
(Sgall et al., 1969; Sgall, Hajicova, and Panenova, 1988kevic, 1987; Petkevic,
1995), Dependency Unification Grammar (DUG) (Hellwig, 198€ellwig, 2003),
Meaning Text Theory (Gladkij and Mel’Cuk, 1975; Mel'Cuk88), Lexicase (Starosta,
1988), and Topological Dependency Grammar (Gerdes andr€al2D01). Kruijff
(2001) also suggests a type of logic that is specific to degrerydgrammar, which is
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NP VP
Art Adj N \ NP
Art  Adj N
The black car hit the big motorcycle

Figure 7.2: The phrase structure tree

called “Dependency Grammar Logic” (DGL). DGL aims tranggdrsemantic inter-
pretation during parsing.

There are many open issues regarding the representati@pehdency structure.
Hays (1964) and Gaifman (1965) take dependency grammapgeasbkcases of phrase
structure grammars whereas Barbero et al. (1998), MenzkBahroder (1998), Eis-
ner (2000), Samuelsson (2000), Duchier (2001), Gerdes atdhie (2001), Kruijff
(2001) think they are completely different. Certain coasted versions of dependency
grammars are, in fact, equivalent to context-free phragsetre grammars. Depen-
dency languages were shown to be exactly context-free &gegu(Gross, 1964), just
before Dependency grammars of single headed, projectwendkency structures were
shown to be weakly equivalent to context-free grammars bjnizen (1965).

The dependencies are defined between lexical units. Hoyneze are different
views on what lexical units should be. The relations betwemmstituents of phrase
structure grammars are represented by relations betweehdhd words of corre-
sponding constituents in dependency grammars. However tre alternatives to
this. Mel’Cuk (1988) allows morpheme based dependenuwibsreas Tesniére (1959)
defines groups of words resembling phrases as units betwieieh the dependencies
are defined.

One important issue in dependency theory is projectivitojdetivity is beyond
a representational preference. Most dependency gramrssus@ projectivity of de-
pendencies. This means when dependencies are drawn on pipetirected links
above the sentence, these links should not cross. Manyrpdasee this constraint,
as well as single-headedness for tractability concernsinstance Eisner (2000), and
Eisner (1996b) force this constraint with defining spans altalving only words at
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the edges of these spans to combine with other words. Tlgsther with some other
constraints brings the advantage of cubic time parsing. évew projectivity in de-
pendency grammars does not allow representation of diswug dependencies, for
instance extraposed relative clauses like the one in {7Itl9an be said that projectiv-
ity preserves the context freeness of dependency gramifiagse structures can easily
be translated into context free derivation trees. On therdtland, recognition of non-
projective dependency grammmars, when unconstrained-sdiiplete (Neuhaus and
Broker, 1997). However, the generative power can be asttiwith gap-degreee and
well-nestedness constraints. Gap-degree of a dependgncyuse is determined by
the discontinuities it has. A dependency structure is we#ted if no two of its dis-
joint subtrees interleave. Recently, Kuhimann and Mob0@ defined “regular de-
pendency languages” and showed that applying differentaeetions of gap-degree
and well-nestedness restrictions on non-projectivityhiese languages gave a class
of mildly context-sensitive grammars. This means it is gassto simulate the de-
pendencies, that can be predicted with mildly-context ilgrggrammars by adding
extra generative power to otherwise context-free deperydgrammars. They show
that well-nested structures with a gap-degree of at most xaictly the class of Lex-
icalised Tree Adjoining Grammars (LTAG).

N mmm

(7.1) A woman arrived who was wearing a  hat top

We see in Figure 7.3 that the notion of non-projectivity isMommon throughout
languages although distribution of it is rare in any givemgaage. The fact that it is
rare does not make it less important because it is this kilgthehomena that defines
the automata-theoretic class to which natural languagesge

1This example is from Levy (2005). Although Levy (2005) drewetlinks betweemwomanand
arrived, andwomanandwasas crossing, these links can be drawn in a projective marthawever,
Levy (2005) does not take into account the link between tlo¢ mode, and the head of the sentence,
which is necessary for most dependency grammars. This liimg® in the non-projectivity to this
sentence.
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7.2 Dependency Treebanks

7.2.1 Why dependency trees?

Many dependency corpora have been designed and createddaghfew years. These
are mostly for languages other than English. Dependenagseptation is preferred
when these corpora are designed. This can be argued by towifad properties of
dependency trees:

1 They are easier to annotate than some other representgfies like phrase
structure trees (PST). There are fewer tags and labels @miypany as words
in a sentence) and no internal nodes.

2 They are much easier to extract information from, becahserformation is
represented more directly. For example, predicate-argaisteucture can easily
be extracted from dependency trees. On the other hand, #us loé phrases in
phrase structure trees either need to be declared explicitould be found by
heuristics and head finding algorithms as in Magerman (1994)

3 Worst-case complexity of a lexicalised PST parser iD{hereas non-projective
dependency parsers without an underlying grammar moduienruquadratic
time (McDonald et al., 2005). Projective dependency paraen in O°) time
(Eisner, 1996b; McDonald, Crammer, and Pereira, 2005; Mebet al., 2005).
McDonald, Crammer, and Pereira (2005) discuss why Eispeogctive pars-
ing algorithm is slower than their non-projective parsimgoaithm.

7.2.2 Dependency Treebanks

Annotation of dependency treebanks have accelerated ipasiefew years. As a re-
sult, there are numerous dependency treebanks that chellanlti-lingual parsing.
Figure 7.3 compares dependency corpora of 19 languagesthatsed as the data
sets in CoNLL 2006 and 2007 shared tasks for dependencyngdrsThe reader is
referred to Buchholz and Marsi (2006) and Nivre et al. (20fof)more informa-
tion about these treebanks and the parsing results. Altihoing underlying theory
is the same in all of these treebanks there are major diffe®im the outcome that

2Some languages are not included in both tasks. The infoomatithe first and second columns of
each set belong to CoNLL 2006 and 2007 training data resfgti
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| Language || #T #S HTI#S | %NST | %NPR | %NPS | R
Arabic 54 112 | 15 2.9 37.2 38.3 8.8 - 0.4 0.4 11.2 101 Y
Basque - 51 - 3.2 - 38.3 - - - 29 - 26.2 | - -
Bulgarian 190 - 12.8 - 14.8 - 14.4 - 0.4 - 5.4 - N -
Catalan - 431 - 15 - 28.8 - - - 0.1 - 2.9 - -
Chinese 337 337| 57 57 59 5.9 0.8 - 0.0 0.0 0.0 00| N -
Czech 1249 432 72.7 25.4| 17.2 17.0| 14.9 - 1.9 1.9 23.2 232 Y
Danish 94 - 5.2 - 18.2 - 13.9 - 1.0 - 15.6 - N -
Dutch 195 - 13.3 - 14.6 - 11.3 - 5.4 - 36.4 - N -
English - 447 - 18.6 - 24.0 - - - 0.3 - 6.7 - -
German 700 - 39.2 - 17.8 - 115 - 23 - 27.8 - N -
Greek - 65 - 2.7 - 24.2 - - - 11 - 203 | - -
Hungarian - 132 - 6.0 - 21.8 - - - 2.9 - 264 | - -
Italian - 71 - 3.1 - 22.9 - - - 0.5 - 7.4 - -
Japanese 151 - 17 - 8.9 - 11.6 - 1.1 - 53 N -
Portuguese|| 207 - 9.1 - 22.8 - 14.2 - 1.3 - 18.9 - Y
Slovene 29 - 15 - 18.7 - 17.3 - 1.9 - 22.2 - Y
Spanish 89 - 3.3 - 27 - 12.6 - 0.1 - 1.7 N -
Swedish 91 - 11 - 17.3 - 11.0 - 1.0 - 9.8 N -
Turkish 58 65 5 5.6 115 11.6| 331 - 15 55 11.6 333 N -

Figure 7.3: Treebank information
#T = number of tokens * 1000, #S = number of sentences * 100@tS¥ tokens per sentence, %NST = % of non-scoring tokens,
%NPR = % of non-projective relations, %NPS = % of non-prajecsentences, IR = has informative root labgls.

originate from the questions like 1) how much informatioméeded to put in the de-
pendency trees, 2) how strongly interlaced the differentiahes such as morphology
syntax are in a language. Czech treebank (Bohmova et@03)3s a good exam-
ple of a well-designed dependency treebank with 3 diffekevels of representation,
namely, morphological, grammatical and tecto-grammblageers as defined in Sgall,
HajiCova, and Panenova (1986). In addition to the twoials levels, the third level
—tectogrammatical level- bears information such as vgleheerbs, anaphora resolu-
tion, etc. The design of Turkish Treebank is a good exampdaa@nswer to the second
guestion. Morphology-syntax interface makes word-basgeddencies inappropriate
for Turkish. Therefore, the dependencies are defined betwdlectional groups in the
Turkish treebank. These are two arguments among many ontidyery important
to make a good feasibility study when designing a dependaeepank as different
features of languages require different handling in terindexisions such as word
versus morphemic representation of the lexicon.
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7.3 Dependency Parsing

Statistical or data-driven parsing methods have gainecefomus with the continuous
introduction of new linguistic data. Parsing was more fazlien training and parsing
with phrase structure trees and specifically English lagguzecause the Penn Tree-
bank (Marcus, Marcinkiewicz, and Santorini, 1993) was tla@msource available for a
long time. With the introduction of treebanks of differeabhbuages, it is now possible
to explore the bounds of multi-lingual parsing.

We give a review of Dependency parsing in this section. Mdshese parsers
assume dependency structures as single-headed, prejsttictures, and they create
surface syntactic dependencies which is less expressavevihat some dependency
grammars express. Deep linguistic analysis does not getgénattention when fo-
cused on quantitative improvement. Fortunately, thereatge studies that focus on
recovering deep dependencies as well as surface ones slarks Hockenmaier,
and Steedman (2002), Hockenmaier (2003a), Levy and Mar{@b@y), Riezler et al.
(2002),Cahill et al. (2008) and so on.

7.3.1 Collins’ Czech Parser

Some of the early efforts of data-driven dependency pargiage focused on trans-
lating dependency structures to phrase structure treesibe@hrase structure parsers
already existed. Translating dependency structures withstng dependencies is not
trivial if the surface order needs to be preserved. Thusjribempatible translation
of dependency structures to phrase structure trees resw#sying degrees of loss of
information.

Collins et al. (1999) translate the Prague Treebank depeydiees to phrase
structure trees in the flattest way possible and name thenadteodes after part-of-
speech tags of the head words of nodes. They use Model 2 ah€¢11999) and
evaluate the attachment score on the dependencies egtfemtethe resulting phrase
structure trees of the parser. However, crossing depemngteoannot be trivially trans-
lated into phrase structure trees with the surface orddreftords unchanged (Cakici
and Baldridge, 2006). But, Collins et al. (1999) do not mamtion-projective (cross-
ing) dependencies, therefore, it is not clear what they didHese cases in the Czech
treebank.
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7.3.2 Deterministic Parsers

Deterministic parsers need only one pass over the data,.ttieysare potentially time-
efficient as long as the constant factors are small. Nivi@32@ives a deterministic
parsing algorithm for projective dependency trees. He ag@®babilistic framework
to guess the parser actions. The parser makes only one p#ss ioiput and assigns a
dependency structure at once, without any redundancy dtiaaking thus the algo-
rithm runs in linear time (Nivre, 2003). Nivre, Hall, and Bdon (2004) uses memory-
based learning (Daelemans, 1999), and achieves bettaaagci similar approach is
followed by Yamada and Matsumoto (2003). They look at thespafiwords to decide
whether they should be linked or noight decides that the dependency is right-to-left
andleft decides it is left-to-right. They use support vector maekito decide on the
next action which is one of 3 actionshift, left, andright. 3 different SVM classifiers
trained for each distinct action were used to decide whidtoado take next based
on the two words in question. The parsing algorithm runs in?P(Kudo and Mat-
sumoto (2000), and Kudo and Matsumoto (2002) use suppdxmaachines to parse
Japanese. MaltParser of Nivre et al. (2007) provides re$ottmultilingual depen-
dency parsing using both memory-based learning and SVMifies. Oflazer (2003)
uses an extended finite state automaton to parse Turkisindepey structures.

7.3.3 Eisner’s Dependency Parsers

One of the most influential statistical systems for parsiegashdency structures di-
rectly is due to Eisner (1996b). He proposes 3 different risofie direct dependency
parsing. He evaluates them on dependencies derived frorReha Treebank. His
generative model which is similar to the Model 1 in Collin®98) achieves the best
performance on a 400 sentence test sample from WSJ. Eigeessr is a projective
parser thus it cannot predict crossing dependencies.

Eisner's parser relies on structures called spans. Hetiff#y designs an Of)
algorithm for parsing projective dependency structureigh whe use of these spans.
Classical lexicalised parsers run in Q(time because, the head of a phrase can be
anywhere in the phrase. The same holds for the head of thendepg thus n times
n possibilities are also stored in the chart (Eisner, 20B@wever, in Eisner’s parser,
the head of phrase is only allowed at two ends of the spans. ngniree models
described in Eisner (1996b), generative one, that gerselatieand right dependents
recursively has the best performance. The generative piiities in the generative
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model are calculated by the given formula.

1+sizrwi(i))
Pr(words, tags, links)}= ( Pr(tword(kidc(i))|tag(kidc,1(i)),tword(i))
1<i<n " c=—(1+sizeflwl (i))),c£0

(7.2)

Here,sizdwl (i) andsizewlemph(i) give the number of left and right dependents of
the wordi respectivelytword denotes tagged word.

Eisner (2000) defines bilexical grammars based on this fismaand shows that
cubic time parsing is possible with lexicalised dependegreynmars. He defines two
automata lwand rw for the left dependents and right dependents of a head wgrd w
and generates these. This is similar in ways to Collins’ gatien of left and right
daughters independently.

Sleator and Temperley (1993) gives a similar algorithm tengr (1996b) inde-
pendenctly (Eisner, 2000). Their dependency structures;aledlinkagesinstead of
dependency trees, and are made up of labelled, undirectesl IHowever, they use
the same decomposition, which Eisner (1996b) calls spasa€E 2000).

7.3.4 Nivre's Parsers

Nivre (2003) defines a deterministic parser. Nivre parsasalsSwedish dependency
corpus with this parser. The parser runs in a greedy detéstiimode that goes over
the input string once, assigning dependencies to each voisldeterministic in the
sense that only one analysis is available for a given seatdParser actions consist of
. Shift, Reduce Left-Arc, andRight-Arc. The input string is accepted if the depen-
dency structure the parser suggests is well-formed wheiimalestate is reached. Well-
formedness conditions are: acyclicity, projectivity anthte-headedness together with
connectivity.

Nivre, Hall, and Nilsson (2004) use the same parser togetitarMemory based
learning and achieve better performance than the origysaés that uses hand-written
grammar rules. Nivre and Scholz (2004) apply determingséicsing to English text.

Recently, mostly with introduction of multi-lingual depdncy data, non-projective
parsing methods became more popular than before. Parsmpgnogective dependency
graphs were shown to be NP-complete. However, this doesomtise attempts to cre-
ate approximations for non-projective parsing. Nivre ants$on (2005) do pseudo-
projective parsing which is first defined in Nasr (1998) artdd@anplemented by Ka-
hane, Nasr, and Rambow (1998). Non-projective dependerei encoded in the
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projective link labels to be decoded after projective pagdio create non-projective
structures by post-processing.

7.3.5 Graph based algorithms (McDonald et al’s Parsers)

McDonald et al. (2005) apply graph spanning algorithms tmetielency parsing. They
formalise dependency parsing as the problem of finding a mmaixi spanning tree in
a directed graph. Chu-Liu-Edmonds algorithm is used togoamn-projective depen-
dency structures. This algorithm has two major advantaigesns in Of2) time and
it handles non-projective dependencies directly. McDdwralal. (2005) show that this
algorithm significantly improves performance on depenggrassing for Czech, espe-
cially on sentences that contain at least one crossed dependvicDonald, Crammer,
and Pereira (2005) report results for strictly projectieeging. For this, they use Eis-
ner’s algorithm mentioned in the previous section.

Margin Infused Relaxed Algorithm (MIRA) (Crammer and Sing2003) is used
to determine the weights of dependency links as part of thisputation. Variations
of this parser have been used in CoNLL 2006 shared task amiveecthe highest
ranking among the participants averaged over the resultdl aff the 13 languages
(Buchholz and Marsi, 2006). The use of morphological feedware shown to improve
the overall performance of the multilingual system. Thisspa runs in two stages.
The first stage assigns the unlabelled dependencies ané¢badsstage decides on
the labels afterwards.

When no linguistic or global constraints are applied, tlasser may yield impossi-
ble dependency sequences such as assigning two subjestsrio(Riedel, Cakici, and
Meza-Ruiz, 2006). This is because McDonald et al. (2005% ao¢ have an underly-
ing grammar formalism and relies on first order edge decssibtowever, they explain
that second-order non-projective dependency parsing isdfplete. McDonald and
Pereira (2006) present an approximation algorithm to stilissproblem, and achieve
state-of-the-art performance.

7.3.6 Deep dependency parsers

Since most dependency parsers are projective, there is @nusption that depen-
dency grammars are projective and thus context-free. Maraependency theories
allow non-projective structures as well as multiple-hehderds (Hudson, 1984),
(Mel'tuk, 1988).
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Lombardo and Lezmo (2000) follow a “GPSG” style approachandiing long-
distance dependencies in dependency grammar. Thet icgaapty elements (gaps)
for handling long-distance dependencies resulting fromnaeon, coordination and
control. They give a formal theory of dependency syntax wih-lexical units, how-
ever, they did not implement a parser, so they do not prowgemental results.

CCG parsers inherently predict long-distance dependsn@enerative models of
Hockenmaier (2003a) and discriminative models of Clarkckémmaier, and Steed-
man (2002), Clark and Curran (2007b) give state-of-theemtlts in recovery of deep
linguistic information. We will give a more detailed revie’CCG parsers in Chapter
9.

Levy and Manning (2004) induce long-distance dependeriimes a context free
framework. Dienes and Dubey (2003) do deep syntactic psingdy post-processing
the output of CFG parsers. Cahill et al. (2008) also inducesee expressive LFG
grammar from the Penn treebank with similar techniques.

7.4 Discussion

There is growing body of work on creating new treebanks fdfedent languages.
Requirements for the design of these treebanks are at Isadiverse as these nat-
ural languages themselves. For instance, some languagesahmuch more strong
morphological component or freer word order than otherserétare challenges both
for dependency parsing and for different dependency teeoFRor instance, modelling
morpho-syntactic relations in dependency represent&iomorphologically complex
languages. Representing “deep” dependencies needs rtesrgat as well. Although
these constitute a fraction of all the phenomena in natargjliages, they are important
for semantic interpretation.

This chapter has reviewed dependency grammar theoriethrgsith recent ad-
vances in statistical dependency parsing for differengleges. Some current chal-
lenges in building dependency treebanks and dependensingdrave also been dis-
cussed. Dependency theory and practical applicationspértency representations
have advantages and disadvantages. The fact that depgmdesmg is easy to adapt
to new languages, and is well-adapted to representing foed-arder, makes it the
preferred representation for many new linguistic corp@apendency parsing is also
developing in the direction of multi-lingual parsing whexeingle system is required
to be successful with different languages. This researghbimiag us closer to under-
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standing the universals of language, and thus to builditigbNLP systems.



Chapter 8

Turkish Dependency Parsing

In this chapter, parsing models for Turkish using the METab&nci dependency tree-
bank are described. Different representation schemesepertlency structures are
investigated and different styles of projective and noojgutive parsing models are
compared. We show, in particular, that representing dithns about derivational

morphology and case marking provides large improvementisaraccuracy of recov-

ering word-word and IG-IG surface dependencies.

We aim to give a comparison of direct versus indirect appgneado dependency
parsing. By indirect, we refer to approaches that translafgendency structures to a
different representation format —usually phrase strigctteges— for which the parsing
models used to be more popular presumably as a result of thandace of Penn Tree-
bank. We also explore the effectiveness of projective \&ensan-projective algorithms
in direct dependency parsing. We use the principles of @ljparser which is a gen-
erative parser and Maximum Spanning Tree parser of McDosiadéd. (2005) which
is a discriminative parser.

Section 8.1 gives an overview of the relevant work on Turkishendency parsing.
Section 8.2 outlines our procedure for mapping dependetragtares to tree struc-
tures as input for training the Collins parser, and discsissgerent POS tag sets with
varying levels of sensitivity to Turkish morphology. Sexti8.4 introduces the pars-
ing models used, and Section 8.6 reports and discussesrfbenpance of the various
configurations tested. In particular, Section 8.6.3 repthe results of experiments
testing the effect of using CCG supertags with MST parsed. S&ction 8.6.4 reports
the results of experiments in which the inflectional groupthee treebank are directly
represented in the dependency structures.

125
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8.1 Literature Review

Since the creation of the Turkish treebank (Atalay, Oflaaad Say, 2003; Oflazer et
al., 2003) several parsers were created to parse it. Tudaplendency structures are
non-projective, which is expected given its free word ondature. Parsers that parse
projective and non-projective structures are implemebgedarious authors. A review

of dependency parsers that use Turkish treebank is givdreifotlowing sections.

8.1.1 Eryigit and Oflazer (2006)

Eryigit and Oflazer (2006) present a statistical depengpacser for Turkish evaluated
on a subset of the Turkish dependency corpus. They use a betkveam search
algorithm of Sekine, Uchimoto, and Isahara (2000) with dptwlistic classifier. Since
the parser cannot handle non-projective or leftward depeciés, they take only a
subset of the Turkish treebank that consists only of thees®®ms with non-crossing
rightward links.

Eryigit and Oflazer (2006) argue that lexicalisation does mave any effect on
the training process. However, we do not think it is trivialdrgue this since there
is not enough information for lexicalisation in an IG-basgdtem like theirs. 1Gs in
Turkish treebank are only defined as components of wordstayddonsist of a string
of morphological tag names. Therefore, an IG does not hawerasponding surface
form.

Their best-performing model recovers 72.3% of the righth@ependencies. This
is 2.7 percentage points higher than their highest basahdel2.4 points higher than
the baseline that is achieved by linking every word to ithtigard neighbour. They
give a word-based accuracy of 81.3% together with results Gfure word based”
model. They describe word-based dependency as corre& dutrent word is depen-
dent on any of the IGs of the target word. They also say that 80%e words had
their dependents in the range of next 3 words and 4 IGs in chEe based depen-
dencies. In a word-based system the above claim about thekvasred dependencies
would be similar to saying that a word is dependent on the fre¢tte nt" position or
n+1 or n+2 which makes it very likely that one of these are threect head especially
in an only rightward linking system. An assumption abouti@Be being independent
entities in the dependency structure is initially made byigt and Oflazer (2006).
Therefore, it could be argued that calculating word-basggeddency accuracy in this
way is flawed. Also, the word boundaries are not known whegipgrbecause of the



8.1. Literature Review 127

IG independence assumptions), thus we cannot predict ehatly given two IGs are
in the same word or not.

If we look at the statistics of the languages given in Secii) we see that the
projective links constitute most of the dependencies irkiBlirdata. The percentage of
sentences with at least one non-projective link is 33.6%céflg the fact that the non-
projective dependencies these sentences contain coagifi%s of all dependenciés.
Looking at the numbers for the other data sets in 2007 shasddin Figure 7.3, it is
obvious that Turkish, in fact, has the greatest number ofprofective links. Thus,
excluding such a vital part of data compromises both the rameand interpretability
of the results. Figure 8.1 shows an example non-projeceéypeddency structure in the
Turkish treebank.

S. MODIFIER

ABLATIVE ADJ. DETERMINER

DETERMINER W

Arttk o  parktan bir ¢ikis yolu  yoktur

SENTENCE

anymore that  park-ABL an exit path  there is not

E: There is no exit from that park, anymore.

Figure 8.1: Crossing dependencies in Turkish treebank

Our experiments explained in this chapter are differenmfiryigit and Oflazer
(2006) in four ways. First, we focus on word-word dependesas well asIG-1G
dependencies. Second, we paal&sentences rather than just projective ones with only
rightward links. Third, we provide results for parsing wahtomatic POS tagging as
well as for gold-standard POS tags. Finally, we provide ltedor labeled as well as
unlabeled dependencies.

8.1.2 Eryigit, Nivre and Oflazer (2006)

Eryigit, Nivre, and Oflazer (2006) use Nivre’s parsing aitfum (Nivre, 2006; Nivre,
2003) with support vector machines to predict the next aatiche parser. They incre-

1These numbers are different than the ones given in CoNLL 2@8®&h are 11.6 and 1.5 respec-
tively. Given that a corrected version of the treebank waslus CoNLL 2007, we take the more recent
numbers as correct. However, in both versions punctuatiaksmare connected to a top-level root node
which is artifically created. This causes extra non-prajedinks in the data-sets for non-sentence-final
punctuation.
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mentally add morphological and lexical information andwltbat lexicalisation and
the use of morphology improves the parsing performanceyragnto what Eryigit and
Oflazer (2006) suggest. One other finding is that IG-basedrtigncies perform better
than word-based. Eryigit, Nivre, and Oflazer (2006) do mdlbfv Eryigit and Oflazer
(2006) in calculating word-based dependencies and thelinigs are compatible with
the results we provide in this chapter.

Results for word-based dependencies in Eryigit, Nivred &flazer (2006) are
surprisingly low (67.2% unlexicalised and 70.2% lexicatly compared to the “pure
word-based” score in Eryigit and Oflazer (2006) (77.7%)isThay be because even
though they use the same configuration of labels and tagydgtiand Oflazer (2006),
the evaluation is not compatible because Eryigit and Oflé2@06) train only on pro-
jective and rightward linking sentences and evaluate onstiree set while Eryigit,
Nivre, and Oflazer (2006) train on projective sentences aseltbe entire treebank
for evaluation. Neither of these parsers predict the najegtive dependencies. This
is similar to the approach we chose when evaluating Collp@sser. We trained on
sentences with different surface order caused by projeation and evaluated on the
whole treebank. Since Collins’ parser is a phrase strugtarser it does not predict
crossing dependencies, either.

Results of Eryigit, Nivre, and Oflazer (2006) also show tiard-based depen-
dency results are worse than IG-based dependencies aneéxitadisation improves
the accuracy. However, the effect of lexicalisation is nofarm over the set of syn-
tactic categories. They also parse the data set of all gregereghtward linking depen-
dency subset and observe improvement for both the lexehli8.3% unlabelled and
unlexicalised (76.1% unlabelled) systems, lexicaliseiddp@ few percentage points
more in all results.

Their results are obtained by ten fold cross-validationtwndata. They also give
results on the CoNLL 2006 Shared task on multilingual depeny parsing data set
and report 75.82% unlabelled and 65.68% labelled attachsuenes.

8.1.3 CoNLL 2006 Shared Task on Dependency Parsing

The data set used in CoNLL 2006 shared task (Buchholz andiMN&@6) for Turk-
ish treebank is a split set of roughly 5000 training senterared 600 test sentences.
While converting the treebank to CoNLL format, several emthnconventional deci-
sions were made about the way to translate the dependentiethe target format.
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The punctuation is not evaluated in CoNLL but Turkish demsmy treebank uses
some commas as conjunctions. This brings in a problem ofmpaadibility among
coordinations with comma and coordinations with conjusrcsi

Coordination with commas were translated as shown in Fi§lt@nd Figure 8.3.
Commas which were heads of conjunct heads in the origingisewere made to
depend on these heads and conjunct heads were linked giirect right to left.

We believe, the way one conjunct was linked to the next onbdaight proves to
be problematic, since losing the constituency informatioght change the probability
distribution and the consistency in the treebank. The dwestcy information is lost
when the label of the first conjunct is changed. This is itatstd in Figure 8.3 and
Figure 8.4. Therefore, in terms of statistical parsing, naenbers for different types
of coordination changes, will make it difficult to for any aeter to differentiate be-
tween these. Also inconsistency between sentences witttymtion versus sentences
with clitics as conjunctions will arise because the samdigaration is not applied to
conjunctions such aendandbut.

1 Hilya Hilya Noun Prop A33BnorNom 13  SUBJECT o

2 , , Punc Punc _ 13 PUNC .-

3 Onu o} Pron  PersP  A38norfAcc 5 OBJECT - -

4 seri seri Adj Adj _ 5 MODIFIER -

5 distn dusin  Verb  Verb Piosp|A2sg 8 COORDINATION

6 , , Punc Punc _ 8 PUNC -

7 hadi hadi Interj  Interj _ 8 VOCATIVE -

8 gel gel Verb Verb Pdémp|A2sg 10 OBJECT o

9 , , Punc Punc _ 10 PUNC .-

10 dedi de Verb  Verb  Pd¢BastA3sg 11 SENTENCE - -

11 ve ve Conj Conj 13 COORDINATION

12 kolumdan kol Noun Noun  A3$glsdAbl 13 OBJECT - -

13 cekti cek Verb  Verb PoBastA3sg 0 ROOT -

14 Punc Punc _ 13 PUNC .-
Hualya , Onu seri disin , hadi , gel , dedi ve kolumdan icekt
Hulya , it-Acc quick think , lets , come , say-Past and armiAb pull

E: Hulya said “think that quickly, come on”, and she pulled aryn.

Figure 8.2: A sentence from CoNLL test set

One third of Turkish data set consists of non-scoring toké&iss is mostly caused
by the representation style of IG-based dependencies. a@stheir own lexical rep-
resentation, independent from the word they belong to. Wewsome LEMMA and
FORM fields are changed inta™character to differentiate between an internal IG and
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SUBJECT

COORDINATION

OBJECT PUNC OBJECT COORDINATION
MOD VOCATIVE }J&‘ ENTENCE OBJEC

Hilya Onu seri dasun hadi gel dedi ve kolumdan  cekti
Noun Punc Pron Adj Verb Punc Interj Verb Punc  Verb Gonj Noun Verb Punc
Hulya s it-Acc quick think f let's come say-Past and arm-Abl pull

Figure 8.3: Graphical representation of the sentence in Figure 8.2

BJECT

OBJECT COORDINATION COORDINATION
MODIFIER SENTENCE VOCATIVE \SENTENCE OBJECT\ SENTENCE OBJECT SE}f\ENCE
Hilya Onu seri dasiun , hadi  gel , dedi ve kolumdan  gekti
Noun Punc Pron Adj Verb Punc Interj Verb Punc  Verb Conj Noun Verb Punc
Hulya s it-Acc quick think B let's come s say-Past and arm-Abl pull

Figure 8.4: The original dependency structure of the sentence

a final 1G. Internal IGs always depend on the next lexical eletn The dependency
emanating from the final IG of a word goes to the head IG of thatdw An exam-

ple of this is in (8.1). Word-internal dependencies werated like punctuation, and
were excluded from scoring. However, we believe, and sho8eiction 6.4.7 that this
representation causes loss of information and may hurtéhfeqmance of the parsers

unnecessarily.

1 - - Punc  Punc - 9 PUNC - -
2 Galiba galiba  Adv Adv _ 9 S.MODIFIER _ _
3 siz siz Pron  PersP A2pinoriNom 8 SUBJECT - -
4 insanlari insan Noun  Noun A3pinonAcc 6 OBJECT - -
(8.1) 5 _ yonlen  Verb Verb _ 6 DERIV o
6 - - Verb  Verb CaufPos 7 DERIV - -
7 yonlendiren _ Adj APresPart _ 8 MODIFIER o
8 - takim Noun  Noun A3sP3sdAbl 9 DERIV - -
9 takimindansiniz - Verb  Verb ZerdPresA2pl 0 ROOT - -
10 Punc  Punc 9 PUNC - -

Turkish data is the most difficult to parse looking at the agerparse score among
all languages. This is attributed to 8 different genres imkigln data and high per-
centage of unseen LEMMA and FORM values in the Turkish tesbgeBuchholz
and Marsi (2006). One of the best average scores was by Mdf)dnerman, and
Pereira (2006). Their results show that the use of morphcébfeatures for treebanks



8.1. Literature Review 131

LA | UA | data
Eryigit and Oflazer (2006) - 77.7| part
Eryigit et al. (2006) 62.0| 70.7| all
Cakici and Baldridge(2006)-MST| 72.3 | 84.9 | all
Cakici and Baldridge (2006)-MSJ[ 72.6 | 85.6 | part

Table 8.1: Word-based Turkish parsing

LA | UA | data

Eryigit and Oflazer (2006)|| - 73.5]| part
Eryigit et al. (2006) 64.9| 73.8| all
Eryigit et al. (2006) 68.9| 78.3| part

CoNLL 06 (by Nivre et al.)|| 65.7 | 75.8| conll
CoNLL 07 (by Titovetal.)| 79.8| 86.2| conll

Table 8.2: IG-based Turkish parsing

that have this information improves the average perforradnycnearly 1 point in both
the unlabelled and the labelled scores. McDonald (2006)[j§}] reports that Turkish
parsing scores lose about 2 points for unlabelled and 2 @p&or labelled accuracy
when morphological features are not included. Turkishésrtiost affected with inclu-
sion of these features among languages.

8.1.4 CoNNL 2007 Shared Task on Dependency Parsing

A comparison of the parsers for Turkish is given in Tables &4 8.2. Only the
numbers that are comparable with each other are includesth asi the “pure word
based” results for word based dependency recovery in Eggl Oflazer (2006). Also
note that all punctuation is included in evaluation in iyend Oflazer (2006) and
CoNLL 2007 whereas trivial punctuation (marking the rootlapare not included in
results of Cakici and Baldridge (2006) and punctuationstasvn to make a difference
of 8 points in Nivre et al. (2007). The best score achieved byeNet al. (2006) in
CoNLL 2006 and by Titov and Henderson (2007) in CoNLL 2007retidasks.

The quantitative difference between CoNNL 2006 shared task 2007 shared
task Turkish parsing results is significant. It is seen thaNCL 2007 results are
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considerably better. This could be because of several nsa&arst of all, punctuation
was included in CoNLL 2007 evaluation. Secondly, trainiegygrew in size since a
new development set was annotated. Also this developmerg adifferent set and
changes the genre ratios in training and test. We beliew¢hibdiggest contribution to
this improvement is the fact that a subset of the correctiamgxplained in this thesis
were applied to the Turkish treebank in between 2006 and 2Bared tasks. With or
without punctuation 6 percentage points of improvement @lzserved in the overall
result for Turkish (Nivre et al., 2007).

8.2 Tree-Based Models

In order to use a phrase-structure parser with the treebaindnecessary to create
trees out of the annotated dependency structures. We cmsthad similar to the one
suggested by Collins et al. (1999) for Prague Dependenepargk for Czech. In this
section, we describe a few simple strategies that dranligtiogprove the performance
of phrase-structure parsers for dependency recovery.

8.2.1 Mapping Dependencies to Trees

Collins et al. (1999) outline three choices when creatiegdrfrom dependencies: (a)
branching factor, (b) choice of non-terminal labels, andtije set of POS tags to be
used. A fourth choice, which they do not mention, is how todi@amon-projective
dependencies.

We create the flattest possible trees and use the POS tagsate cron-terminal
labels as explained in Collins et al. (1999). Tags are ddriv@m the morphological
analyses in the treebank; there are 15 tag types in the met tag set. Dubey and
Keller (2003) also use flat trees because of the nature of énmén treebank and find
that sister-head dependencies are much more useful thdrhieaa dependencies that
are dominant in Collins parsers.

344 of the 5620 sentences have at least one crossed depgndascmakes the
mapping process non-trivial. There are ways of faithfupresenting crossed depen-
dencies using mechanisms such as traces. However, thisiwalve considerable
effort. Our goal is to compare th&raightforwardapplication of a phrase-structure
approach to the MST model, which handles crossed deperegenatively. Under
our approach for mapping dependency structures to phraseiste trees, dependents
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appear immediately adjacent to their heads. This givesdhea head-daughter de-
pendencies but changes the word order from that in the @lgientence. Collins’
parser is seen as a phrase structure baseline for Turkigndepcy parsing.

8.2.1.1 Coordination

Coordination is represented as a sequence of head labetlsea@dORDINATION label

in the Turkish Treebank. If the modifier coordination is colesed in (8.2), the first
conjunct is linked to the conjunctive worg with a MODIFIER dependency link and
then a @ORDINATION link goes fromveto the second conjunct, and finally, the last
conjunct links to the head of the sentence with abFIER link. This translates to a
phrase structure model as in Figure 8.5 with the translatiethod used here.

Mod. Coor. Mod. Sentence

NN YN

Kosarak ve ziplayarak geldi
(8.2) Running and jumping  come+Past

He came running and jumping.

S(TOP)
/

VerbP \.
PR
AdvP geldi(VERB)

e ~

ConjP  ziplayarak(ADV)
7 ~N
Kosarak(ADV) ve(CONJ)

Figure 8.5: The parse tree for the sentence in (8.2).

A more phrase-structure friendly way of representing cowtion dependencies is
used in some other treebanks. This can simly expained asnm#ie conjunctivere
the head of coordinating phrases and then linking geddi, as shown in (8.3). This
would ensure that coordinating elements are on the samkadedenould form a tree
as in Figure 8.6. For now, we choose to make the minimal chatugthe baseline trees
in this study, but the impact of such tree-transformatiamsla be the focus of future

experiments.
Mod.

(8.3) Kosarak ve ziplayarak geldi
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S(TOP)
/
VerbP \.
e N
ConjP_ geldi(VERB)
\

]
Kosarak(ADV) ve(CONJ) ziplayarak(ADV)
Figure 8.6: The parse tree for the sentence in (8.3).

S(TOP)

NounP  okuyorsunuz(VERB)

~

NounP_ distnmedigini(NOUN)

_—

Vahdettin’in(NOUN) imparatorlugu(NOUN) satmayi(NOUN)

Figure 8.7: The basic mapping does not distinguish NPs from the subordinate clauses.

8.2.1.2 Punctuation

Apart from the sentence final punctuation that the sentered s dependent on, all
other punctuation is ignored by the translation proceskessma dependency link em-
anates from them (e.g commas in coordination, sententmapéementation).

In our experiments, we have excluded punctuation withopeddency links from
all scoring.

8.2.2 Modifications to the Baseline Trees

The morphological structure of each word is representedfiedtional groups (IGs)
in the treebank. The POS tags we use for the parser are dérradhese inflectional
groups, which we use to create four distinct tag sets.

Our basic tag set uses only the POS tags in a word’s last IGexamnple the POS
tag isVerbfor (8.4), andNounfor (8.5).

(8.4)  istemiyoruntl don’t want..”
IG="[(1,"iste+Verb+Neg+Prog1+A1sg”)]

(8.5) kurtulmak“to escapg
IG="[(1,"kurtul+Verb+Po0s")(2,"Noun+Inf+A3sg+Pnon+Nn”)]’
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S(TOP)

Verb_NounP  okuyorsunuz(VERB)

/

Verb_NounP  disiinmedigini(VERBNOUN)

_—

Vahdettin'in(NOUN) imparatorlugu(NOUN) satmayi(VERBNOUN)

Figure 8.8: The improved mapping with extended pos tags.

However, this causes some problems regarding the way slatich and extraction
are represented in the treebank for sentences like (8.@) oUsasic tags results in the
tree in Figure 8.7 satmaylanddusinmedgini are both subordinate verbs, Howevet,
there is no way to discriminate between a subordinated elans aNounPwith the
flat tree structure we derive from the dependencies sincg hlage the same basic
part-of-speech tag.

Vahdettin'in imparatorlugu  satmayi disunmedigini kugorsunuz
Vahdettin-Gen empire-Acc sell-Inf-Acc  think-Neg-PastPagr read-Prog

(8.6)

“You read that Vahdettin was not planning to sell the empire”

We create enriched POS tags for our second configuration bgatenating the
original tag of the morphological stem and the final tag. V8ondth only one inflec-
tional group are not affected by this change. This gMebfor (8.4) andverb.Noun
for (8.5). This kind of information is expected to help suteggrisation choices for
some words such as subordinated verbs and thereby help reidicpng the relation
between such words and their dependents. This mean¥dhdettin'inandimpara-
torlugu will be correctly identified as a dependent of the subordidaterbsatmayi
instead of being clustered as a noun group. The same holdsd@ubordinated verb
dudinmedgini and the rest as shown in Figure 8.8. A detailed descriptiaiftdérent
tags sets created by including varying levels of lexical emmtphological information
is given in Section 8.3.

8.3 POS tag sets

There are 102 morpheme names in the Turkish treebank. Not tidém can co-occur
being restricted by the rules of morphotactics. In a realdpplication, however, even
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only the ones thatanco-occur together with the possibility of the permutatidm@s
containing them will give rise to sparse data problem for phoiogical (or part-of-
speech) tagging. This means we cannot use the combinatiat thfe morphemes
as they appear in the data which are as sparse as the inflectaed 6f the words
themselves. We need to find means to represent all the negastsamation while
preserving the compactness of the part-of-speech tagsthisowe suggest several
means of representation.

Turkish treebank does not have separate POS tag informa&i0® tags we men-
tion here are drawn from the morphological parses of the wamdhe treebank. We
tested the effect of using different POS tag sets on perfocmaf the dependency
parsers. We added the derivational boundary informatiotougp level of two in the
POS tags, and then we added case information to nouns. Al thiee morphological
information. However, the trade-off between data sparsitysed by using very rich
POS tags and performance gain by using more informativestagts to become biased
against the performance gain at some point in between usiaegels of derivational
tags and case and using full IG tags that are given in thedrdetata. This does
not mean that when category types are diverse then we widysiose performance.
For instance, although the CCG category types derived filuendiata are 450 com-
pared to 15 basic POS tag types, using CCG categories asdagts Ibhe performance
of unlabelled results for MST parser to about 95% from ab&@%8 This is because
CCG categories carry even more information than morphokigiategories. It has
been argued and shown that when given supertags that castaeinch information as
CCG categories contain parsing is much easier and very aec{Bangalore and Joshi,
1999; Clark and Curran, 2006). Hockenmaier (2003a) maké&siéas comparison of
CCG tags with Penn Treebank style part-of-speech tags.

We used different types of POS tags that are enriched wittphwogical infor-
mation that is present in the treebank data. The first seteistimtrol set that only
contains the actual part-of-speech information of the atélé (or derived) word. The
other tagsets are obtained by gradually adding more moogied! information on
these basic tags.

In a typical morphological structure of a derived word (SegFe 8.5) that is made
up of IGs, there are as many POS tags as there are derivationatlaries. In (8.5)
the verb rookurtul goes through nominalisation. The next more informative RQS
set is obtained by concatenating the POS tags of the first ishais the POS tag
of the root word to the POS tag from the last IG which is the alcROS tag of that
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name | info example
BAS | lastIG tag Noun

EXT | first& last IG tag Verb.Noun
CAS | BAs+case for nouns NounNom
EC EXT+case for nouns NounNom
CRYP | 1%t letter of each tag in the last IG2NIAPN

Table 8.3: Different tag sets

(derived) word. This way, we differentiate between the raotrds and the derived
words. The POS tag of the nominalised verb in the figure wiNed_Noun instead of
Noun with this schema. We suspect that given that some meypitactic phenomena
such as relativisation and causativisation are only mavkiéa derivational morphol-
ogy and IG-based dependencies, making this distinctidnmgrove the performance
on sentences with these phenomena.

The third tag set includes the basic tag information whickaisie as the first set.
In addition, this tag set has grammatical case informaticfuded for nouns. None of
the other grammatical features are included in this bagigtaup.

The fourth set is obtained by extending the second set todaseinformation for
surface nouns. All the POS tags apart frofuurs are the same as type 2 POS tags.
Nouns, regardless of whether they are derived or not havetB@INounCase, Case
being the case information of the noun (or nominalised form)

The last set is created from the last IG of the word. The nurobére IG and the
first letters of all tags in that IG are concatenated to fornnyptic tag. This tag only
contains derivation information implicitly, since a nunmibéggger than 1 means that the
word has more than 1 IG, thus derived.

Table 8.3 shows different POS tag sets used in the expersnaeadithe information
they contain. The example column shows what the tags arecim &g set for the
example in (8.5).

Eryigit, Nivre, and Oflazer (2008) used a similar approathambining informa-
tion in POS tags in unlexicalised parsing. They also showéxiécalisation and using
similar morphological information to ours improves pagsperformance.
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8.4 Parsing models

8.4.1 Head-driven generative parsing

Collins (1997) describes several lexicalised head-drgesmerative parsing models that
are now widely known and used. They incorporate varyingltewé structural infor-
mation, such as distance features, the complement/adglistatction, subcategori-
sation and gaps. The core idea is to decompose the caleulatticontext-free rule
probabilities by first generating a head and then generésrigft and right modifiers
independently.

We use Dan Bikel’s multi-lingual parsing engine (Bikel, 2)®o train such mod-
els for parsing Turkish. We use Collins’ model 1, so the fesguare standard ones:
words, tags and distance over heads and modifiers. We aldbeuiest-order bigram
dependencies described in (Collins et al., 1999). Withaktension, the generation of
a modifier is dependent on the previous modifier as well asahenp and the head:

A(Li(l)|Li—1,P,h,H)
i=1...n+1

We use Bikel's default approximation of the previous modifiehere it is either the
(a) START symbol (no previous modifiers), (b) a coordinatiogjunction, (c) a punc-
tuation mark, or (d) MISC for all other modifiers.

We train the parser on the trees mapped from the dependeiasietescribed in
section 8.2.1, and then parse unseen sentences with armbwtieir POS tags. De-
pendencies are then recovered from the trees derived byattsempby reversing the
dependency structure to tree mapping.

Context-free structures are capable of only representingegtive dependencies.
To represent ill-nested dependencies on such structureshamisms such as traces
must be utilised, and the parser must be made aware of thetuddi this will mean
that the parser is simply unable to recover such dependencie

We train a parsing model on trees which have been “uncrosssdithen apply the
model to sentences which may have crossed dependenciesmn bh such cases, we
will fail to get the crossed dependencies. We can use thigptoee the effectiveness
of different configurations and compare them to the nongmtdje parsing models.
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8.4.2 Discriminative dependency parsing

While phrase-structure parsers such as that of Collins adely+used for recover-
ing dependencies as well as syntactic structures, therenany others which solve
the dependency parsing task directly, beginning with Hisreeibic generative depen-
dency algorithm (Eisner, 1996b). McDonald, Crammer, angkiRe (2005) provide
a discriminative version of Eisner’s dependency parsdrdbares alternative analyses
using large-margin constraints determined with the Mahgfnsed Relaxed Algorithm
(MIRA) (Crammer and Singer, 2003). For English, this parserforms on par with
using a Collins model to recover dependencies, yet is faerafiicient.

McDonald et al. (2005) define a new algorithm that formalidegendency pars-
ing as the problem of finding a maximum spanning tree in a thegraph. Again,
MIRA is used to determine the weights of dependency linksaas qf this computa-
tion. This algorithm has two major advantages: it run©im?) time and it handles
non-projective dependencies directly. McDonald et alO&&how that this algorithm
significantly improves performance on dependency parsing_zech, especially on
sentences which contain at least one crossed dependengn this, it is natural to
expect that the algorithm will be similarly useful for Tuski, and our experiments
confirm this.

We use McDonald’s MSTParser implementation with the sametfy sets as we
do with the Bikel parser. It comes ready with an extensiveo§é&tatures (McDonald,
Crammer, and Pereira, 2005). These features incorponatesahll the different ways
in which the words and POS tags of a head and dependent (and/fews in between
them) can be related. These out-of-the-box features pmlie extremely effective.

Because MSTParser uses a discriminative criterion, mamge rfeatures can be
included without running into problems due to independesssumptions. We thus
extended the parser to optionally use a wider range of fesfwspecifically, we use
word stems and suffixes to create many new features thatindhtarelationships of
these to each other, to full words, and to POS tags. We ohtairstems from the
treebank itself, and as suffixes we use the remainder of thd afber removing the
stem? Performance with these features should indicate whethem such a rough
morphological analysis is useful for parsing morpholotiycach languages.

2More precisely, we remove a prefix with the same number ofaiftars as the stem in order to
handle sound changes. For example, the viotsEjim has the stentutsak from this we get the suffix
Im.
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8.5 Experiments

We report a number of experiments that compare various amafigns which vary the
parser, the tagger, and the tag-sets. We use three parsiggucations: Collins’ phrase-
structural model, MSTParser’s projective model, and MS$&2 non-projective model.
There are four different tag sets (see Section 8.3): (a) #séclonesgAs], (b) ex-
tended tags (tag of the stem plus tag of final inflectional gydaxT], (c) case for
nouns EAs|] and (d) the combination of (b) and (g¢]. Furthermore, we consider an
enriched feature set for MSTParser that incorporates stamdsuffixes. For tagging,
we use either tags produced by a tagden] or gold tags from the treebankf].

We perform 10-fold cross-validation over all the senteriogbe treebank. Model
performance is given for both word-level and sentencetlidependency accurady.
We provide unlabelled scores for the Collins parser, we givth labelled and unla-
belled for MSTParser. Unlabelled word and sentence acgwascabbreviated as UA
and SUA, respectively. LA and SLA are likewise used for |#dxblaccuracy. Scores
are globally determined rather than averaged over all iddia folds. We take word-
final punctuation in the Turkish treebank to constitute rivat symbol (familiar from
other work on dependency parsing) in our evaluation. We @olibcause the word-
final punctuation is given a dependency link to a dummy rootlsyl, but this happens
unambiguously for all sentences. This link is thus trivaldentify, so we exclude it
from consideration for scoring all our models.

Turkish is a predominantly head-final language, so the tesghaseline is one for
which all words depend on the word immediately to the rightisTbaseline correctly
captures 63.2% of the unlabelled dependencies. The lefichiag baseline simply
highlights how fewadjacentieftward links are in the treebank — just 6.1%.

8.6 Results

Table 8.9 shows the performance of the Collins model unaevainious configurations.
We see that even with the most basic tag set, the parser éasitg the right-linking
baseline. Using the richer tag sets helps considerablyprimg the results of Collins
et al. (1999) for Czech based on similar strategies. Becewam®y Turkish words
convey what would require several words in English, it is ¢oade to just label them

3We use the OpenNLP taggapennl p. sf. net).
4We score our models with the evaluation script used for thiI@eX dependency parsing shared
task, and evaluate significance with Dan Bikel's significatester.
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Model UA | SUA
LEFT 6.1| 4.3
RIGHT | 63.2| 16.2
BAS-TT | 71.9| 35.6
BAS-GT | 73.6| 37.5
EXT-TT | 74.0| 36.3
EXT-GT | 76.2| 39.0
CAS-TT | 76.2| 38.5
CAS-GT | 77.8| 40.7
EC-TT | 77.4| 38.9

EC-GT | 79.3| 415
LEFT = left branching baselineIGHT = right branching baselineas= basic tag set

EXT= extended tag set (ex:Nowrerb) cCAs= case information for noursc=
extended tag + case = tagged dat& 1= gold tags

Figure 8.9: Performance of Collins model with different tag sets.

with simple tags likeNoun The extended tag&XT), such afNounVerh are crucial
for getting the syntactic distribution of such words cotre€ase information on tags
(cAas) is also fundamental; for example, nominative and genitivens appear in very
different contexts, so collapsing them as in the basic tbkesps the parser from being
able to handle them appropriately. From the basic tagastto the most complete
EC, performance is improved by 6%.

Unsurprisingly, performance suffers when using tags frbmen tagger rather than
the gold standard tags. However, the drop is not great, andt#% accuracy achieved
by the model using thec tags is well above the 63.2% baseline — and it is obtained
with only access to the raw words. Note that the parser isided tagging for itself —
for the same configuration using parser tags instead of tgets, the performance is
74.6%. This is actuallyotin line with many previous results, where it is often found
to be better to let the parser tag for itself than to use a PQ&eta This is probably
due to the fact that both the corpus and the tag sets are smétie maximum entropy
tagger is able to model the tags themselves more effectikiatythe parser, which ob-
tains its probabilities directly from frequence counts @thus more reliant on large
amounts of data.

Table 8.10 shows the results for the non-projective maxirspanning tree parser.
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Model UA | SUA| LA | SLA
BAS-TT | 79.0| 39.1| 61.5| 19.6
BAS-GT | 81.5| 42.7| 65.9| 22.9
EXT-TT | 80.0| 40.5| 62.6| 20.1
EXT-GT | 83.2| 44.6| 67.9| 23.5
CAS-TT | 79.8| 40.7|| 64.7| 21.7
CAS-GT | 82.5| 44.5|| 70.0| 26.6
EC-TT | 80.6| 41.7| 65.3| 22.3
EC-GT |84.5| 46.9| 72.1| 28.2

Figure 8.10: Performance of MST non-projective model with different tag sets.

Across the board, this parser clearly beats the Collinsgpars recovering unlabelled
dependencies. When given gold tags, the MST parser giveesado the same tag
set beats the Collins parser by over 5%. It also shows lesanga to the choice
of tag set, with only a 3% difference betweBns andec, compared to 6% for the
Collins parser. However, its performance when using tag fthe tagger rather than
gold tags is relatively more affected than the Collins parsimnetheless, its absolute
performance even with tagger tags is still well above thahefCollins parse?.

The labelled scores for the MST parser also show some ititeggsatterns. Most
obvious is that labelled performance is more heavily affid¢han unlabelled when the
parser is given tags from the tagger. This is unsurprisingesisome tags correlate
closely with some labels, such as the tdgunNom (nominative-case noun) and the
labelsuBJECT On a similar note, we see that thas tag set (where case is given)
improves labelled accuracy from 65.9% for the basic set t0%0a more significant
jump than the 67.9% provided by tlexT tag set.

Table 8.11 provides the results for when the MST parser isrgihe stems and
suffix features in addition to the word and tag features tbate out of the box. The
additional features provide a significant boost in perfamog < 0.05) for all con-
figurations. Most interestingly, the performance when gdire tagger tags is a more
marked improvement over the model with stems and suffixes. sStéms and suffixes
essentially provide a means to lexicalise the model witk $emsitivity to data sparsity

SPerformance would presumably not be as degraded if thepaesgrainedon tags from the tagger
rather than gold tags. That way, the material that the paras on is deficient in similar ways to the
material it is tested on.



8.6. Results 143

Model UA | SUA| LA | SLA
BAS-TT | 80.6| 41.2|| 62.3| 19.4
BAS-GT | 83.3| 45.5| 66.7| 22.9
EC-TT | 81.3| 42.6| 65.8| 22.5
EC-GT | 84.9| 47.7| 72.3| 28.2

Figure 8.11: Performance of MST non-projective model with the BAS and EC tag sets

using stem and suffix features.

than full words on their own. They thus help keep the modainfrchoosing poorly
when it is given an incorrect tag from the tagger. This intbsahat lexical informa-
tion is both useful and sufficient despite the small size efttbebank, contra Eryigit
and Oflazer (2006), whose statistical dependency modelgitgrgtion only to tags and
distance measures.

The projective dependency parser (Eisner’s algorithm)altyt performs very sim-
ilarly to the non-projective one. For example, with gold dagheEc tag set and
the stems and suffixes features, it achieves 84.8%/48.19%UA/and 72.2%/28.5%
LA/SLA, not significantly different from the performancdained by the non-projective
parser (se&c-GT in 8.11). This is actually not very surprising, given thatyos% of
the dependencies in the treebank are crossed. Nonethelessan see the impor-
tance of the non-projective algorithm more clearly by secgioth models on just the
344 sentences that had at least one crossed dependenclies®rthe non-projective
parser with theec tag set and the stem and suffix features achieves 76.3%/6+h 8o
belled/labelled accuracy. The projective parser with trastags and features obtains
75.1%/62.9%. This mirrors what McDonald et al. (2005) fodmdCzech, though the
difference they found was greater: 81.5% for the non-ptojecversus 74.8% for the
projective.

8.6.1 Rightward and Non-crossing Dependencies

In the treebank, there are 3501 sentences which have omitywégd links® These are
the sentences Eryigit and Oflazer (2006) used in their eti@o. Their best model
achieved 77.2% word-word UA on these sentences. Ourpregtctivemodel Ec-

This is a slightly different number than that given by Eiy@ind Oflazer (2006) (3398) This might
be because we do not count crossed dependencies on the IG leve
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GT) gets 85.6%/53.1% UA/SUA and 72.6%/31.6% LA/SLA on thesdesgces. This
large improvement should be considered in the light thatroodel can posit left-
ward links, a degree of freedom that is not granted to Ehagid Oflazer's model.
Unsurprisingly, on these test sentences, the projectiveepas slightly, but signifi-
cantly, better than the non-projective one’s performarf@&ba%/52.3% UA/SUA and
72.2%/30.9% LA/SLA. The Collins model achieves 81.6%/4@.BA/SUA on the
rightward-linking sentences. Please note that on the seatevel, we assign correct
dependency structures to almost half of the sentences.

Model UA | SUA
BAS-TT | 72.6| 39.6
BAS-GT | 73.6| 41.5
EC-TT | 79.7| 44.8
EC-GT | 81.6| 47.8

Figure 8.12: Performance of Collins model with different tag sets on sentences with
onlyrightward links.

Model UA | SUA| LA | SLA
EisnerBas-GT | 82.0| 47.4| 64.9| 25.0
MST BAS-GT | 83.3| 45.8| 66.7| 23.1
Eisnerec-GT | 85.6| 53.1| 72.6| 31.6
MST EC-GT 85.4| 52.3| 72.2| 30.9

Figure 8.13: Performance of discriminative parsers with different tag sets on sentences
with only rightward links.

8.6.2 Part of Speech Tagging

To contextualise our results, we feel it important to striésd most work on depen-
dency parsing uses gold standard POS tags as input to ther.p@sr absolute best
result of 84.9% byec-GT with stems and suffixes can thus be compared to other work
which assumes information beyond just the word stringuditig the results presented

in Eryigit and Oflazer (2006) for Turkish. Yet for a parset® useful outside the con-
text of the experimental sandbox, it needs to be able to d#hlumtagged text. Our
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best configuration for this more stringent criterion is th&Mparser with thec tag
set, tags from the tagger, and without features based orsstaoh suffixes (the for-
mer of which we obtain from the treebank, not automatically)is model, shown as
EC-TT in Figure 8.10, obtains 80.6% UA.

8.6.3 CCG categories as supertags

We show that even with a parser that is not able to use thetstalégnformation in
CCG categories, including them improves the performangeading. We integrated
CCG categories as simple features to MST parser. Using @a¢sgas unanalysed
identifiers boosted the performance of the parser. Thisdcbelthought of as an upper
bound since we use gold standard tags that we induced frordataeautomatically
(Chapter 5 and Chapter 6).

Foth, By, and Menzel (2006) describe a recent study. Thewgugertags to guide
dependency parsing of German. The supertags they use afteQtdtcategories but
they are surprisingly similar to CCG categories in termst@ kind of information
they contain. They have directionality information anddhaad argument distinctions.
Foth, By, and Menzel (2006) also integrate the relation reaamel local context of the
word into the supertags. They use a different parser fronotieethat is used here.
Foth, By, and Menzel (2006) achieve 24% error reduction nsipg performance over
their baseline which they say is already competitive.

Model UA | SUA LA | SLA
asPoOs TAGS | 93.66| 68.70| 87.10| 46.92
asFT - BAS | 93.92| 69.52| 87.31| 47.42
asFT - EC 94.60| 71.36| 87.80| 47.92
asFT - CRYP | 93.90| 68.02| 87.84| 47.86
ST- EC 66.60| 16.29|| 35.12| 0.62

Figure 8.14: Performance of MST non-projective parser with CCG categories

Our first experiment acts as a baseline performed to seenfjUSCG categories
would help the parser at all. Thus, we replaced all POS tatystthve CCG categories of
the words. The boost in performance was encouraging (93168&beled and 87.10%
labeled). As shown in the previous section and in (Hockeema003a) using more in-
formative part-of-speech tags boosts the performance. €&&ories are very infor-



146 Chapter 8. Turkish Dependency Parsing

mative tags since they contain information pertaining tedprate-argument structure
and local and global dependencies.

We explored with a few more experiments whether this infdramecould be better
used. MST parser uses a feature called “coarse tag” whicheiditst letter of the
POS tag. In our second set of experiments we used POS tagaras tags and CCG
supertags as fine-grained tags. The results of these arexshgmr-BAs] and [FT-EC]
rows. [FT-BAS] uses our basic pos tags as coarse tags ang ] uses the extended
tags. This shows that using the extended POS tags alwayts iekter results with
94.60% unlabelled and 87.80% labelled accuracy. It is atgmrtant to note that 71%
of the sentences have completely correct unlabelled depenss.

In the last experiment in Figure 8.14 we used the supertatggaribed in Clark and
Curran (2004b) as a front-end to the pars&r][ The performance of the supertagger
was very low. This result was expected given the size of theaad uninformativeness
of the POS tags in Turkish treebank. This had a big impacteM8T parser decisions
and the performance radically dropped when given mostlyngréCG supertags by
the supertagger.

8.6.4 Inflectional Groups as lexical entities

The results were better when the 1Gs were included in thertigrecy structure but de-
pendency links were normalised. This means the dependarksMere always from

the dependent to the stem (the first IG) of the head and thegyalwmanated from
the last IG of the word. We have 64992 tokens (IGs) in morplketata compared
to 53826 tokens (words). The I1Gs could further be decompogedsmaller morpho-

logical units. Here, only derivational morphology is taketo consideration when
forming the 1G boundaries.

The first two rows in Figure 8.15 shows the IG to IG dependercpvery with
no additional features used apart from the ones MSTPargs: Uhe first row is the
attachment score for the exact linking corresponding toties in the Treebank. The
second row is the score obtained by using only the stems d@itheords and second
morpheme tags for IGs.

The third and fourth rows show the attachment score with C&@gories given as
features. When the dependent is always connected to th&Jiadftthe head word the
scores are higher than the “correct” IG dependency scoengivthe fourth row. This
difference may be caused by annotation inconsistencieshwhé encountered many
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Model UA | SUA LA | SLA
correct IG lexicalised 81.08| 33.21| 72.0|| 18.45
correct IG stems only 80.66| 32.5| 70.7| 16.65
first-1G, gold CCG cats | 95.08| 69.74| 88.96| 46.14
correct IG, gold CCG cats 93.59|| 65.10| 87.46| 43.41
correct IG, supertagged | 74.41| 21.09| 58.17| 9.68

CoNLL set with conll eval
(non-stem igs removed) | 89.72 - 1 84.39 -
CoNLL set with conll evall 92.37 - | 88.37 -
CoNLL set with msteval | 93.03| 54.98| 89.63| 43.92

Figure 8.15: Performance of MST non-projective parser with inflectional groups as en-

tities

times in the data or simply because there was not enoughaltxtart on for non-initial
IG dependencies. 88% of the non-null dependencies weraendepeies to the first IG
of the head word. Only 10.2% were to the second IG and the rest wistributed
among 3rd, 4th and 5th I1G dependencies.

Gold standard tags give an upper bound on the parsing regksfifth row shows
the results with a supertagger front-end to the parser.oiigih supertagging accuracy
is higher than it is for word-based results, it is still veoyd The system is trained with
gold CCG categories and the test set was supertagged bafisiagy This resultsin a
dependency accuracy which is lower than the results whend® €ategories are used
which is shown in the first row. Labelled dependency accussmms to be more af-
fected by supertagging accuracy. This is expected becaO&dategories are closely
related to relation types in dependencies. For instancaia wil be labelled as @-
JECTIf it has category NP, but if it is assigned NP[nom] by the stgmgger, the label
will be SuBJECTIinstead. Taggers are affected by the training data sizd athal sta-
tistical systems. We show by comparing word-based and K&dbaupertagged results
that morphological smoothing improves both the perforneaoicthe supertagger and
the dependency parser. However, an increase in trainirgsia¢ will undoubtedly
result in higher accuracy in supertagging which is about %3%e experiments here.

The last 3 rows show the performance of MSTParser on a differealuation set,
namely, CoNLL 2006 split set of Turkish. The results are eatdd with the CoNNL
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evaluation script The conversion to CoNLL data set is disedsn Section 8.1.3. We
treat internal IGs just the same as other elements in thendigppey structure. The row
labelledCoNLL set with conll eval non-stem IGs remowstbws the accuracy when
words are turned into " character if they are not final IGs. This is done to make
the results comparable to the results in CoNLL 2006. Thertagtin the table shows
the evaluation that is done on all IGs, which, we believe, isarappropriate for the
treebank.

8.7 Conclusion

We have demonstrated a range of dependency parsing regim@&sirkish. All our
models perform well above a right-linking baseline, everewhsing tags from a tagger
rather than gold standard ones, although it is a very highlbeesconsistent with head-
final nature of Turkish. Simple extensions to the tag setipexlarge improvements to
parsing accuracy for all models. The discriminative deerg parsers of McDonald
et al. (2005) easily outperform the Collins-style phraseaeture parser. The difference
can be attributed to the fact that the dependency parserskatie problem directly
and do not need the extra level of indirection of phrase siredrees, which can have
complications such as training on phrase structures wittragsed orders and then
testing on sentences with crossed dependencies.

We also extended the MST parser with features based on wemtssand suffixes
in addition to full words and tags. These features infusephology into the parsing
model, which would be expected to be important in a morphobdly rich language
like Turkish. Our results show significant improvementdwitese features, especially
when the parser was supplied with tags from a tagger.

Even though the non-projective MST algorithm and the ptojecisner algorithm
(both using MIRA) achieve similar performance overall, wewed that the former is
significantly better on the subset of sentences in the Tarkeebank which have at
least one crossed dependency.

Our experiments with CCG categories as supertags proves mce that “su-
pertagging is almost parsing” (Bangalore and Joshi, 19¢&) &vhen used as features
for a discriminative dependency parser that computes tobghilities of the depen-
dencies directly regardless of whether they give a corr€&derivation or not. CCG
categories are very informative supertags and using galudsird supertags gives us
the upper bound results for parsing. However, the impogasfchigh accuracy su-
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pertagging is significant. We will focus on this issue in tletchapter.

Experiments with a morphologically sensitive model shoat there is great poten-
tial in using morphological information in parsing becadgenorphological smooth-
ing is inherently a good way to overcome sparse data probtamefatively small
corpora 2) use of this extra information proves to affectghesers decisions in a posi-
tive and more linguistically accurate way. McDonald, Lermand Pereira (2006) also
show that the use of morphological features improves thispeance in multilingual
parsing experiments. The next step in this direction is t® aifull morphological
analyser and a disambiguator as a front end to the parsers.

Using stems of the words together with morphological infatimn does not give
the expected improvement. Using inflected forms insteadsaf ih the morphemic
models leads to higher accuracy. This is possibly becagsmtrphological informa-
tion is organised with regards to derivational boundanesich means the stem of a
word does not share the part-of-speech tag as the word ineasst. This possibly
causes confusion as the dependency is very closely relatie amount of informa-
tion in POS tags, as shown in previous sections. Exploriegetifects of including
more information on inflectional morphology is the focus afure research.

We have given state-of-the-art results for Turkish depang@arsing and showed
that there is great potential in using morphological infation. We used 10-fold cross
validation in all our experiments and trained and evalu#étedgarsers on the corrected
version of the treebank which proves to be important espigaidnen the results for
CoNNL 2006 and 2007 shared task results for Turkish are comtpaCoNNL 2007
uses a corrected version of the data. Turkish parsing gesualthe average are signifi-
cantly higher with this data set than CoNLL 2006 data set.






Chapter 9

Parsing with Combinatory Categorial

Grammar

Dependencies that are not explicitly represented in theéasyio representation are
as important for semantic interpretation as the ones that dihey are sometimes
referred to as hidden or “deep” dependencies, and are ysioaihd in extraction,
wh-movement, gapping and so on. Predicting deep deperegeimas been the focus of
research for some authors of parsers. Some of them triedve 8vs problem by post-
processing the context-free parse trees (Levy and Man@d@y4; Dienes and Dubey,
2003; Johnson, 2002), while others used more powerful gramarsuch as CCG to
predict these automatically (Clark, Hockenmaier, and &tesn, 2002; Hockenmaier,
2003a; Clark and Curran, 2007b). In dependency theory, deppndency parsing is
usually ignored and sometimes resisted. It is claimed thedipg directed graphs that
allow multiple-heads is intractable (McDonald, 2006). Hwer, these dependencies
in natural languages are not arbitrary and, most of the pinemna that cause these and
the crossing dependencies were shown to only require ga@reepower that is slightly
more than context-free. Most non-projective dependencsgra assume arbitrary non-
projective graphs which are difficult to parse. CCG is ablegpresent and predict
surface and deep dependencies without any extra effontdtieally. It was shown that
efficient and high-accuracy parsing to predict these nowveotional dependencies is
possible (Clark and Curran, 2007b; Hockenmaier, 2003a).

Another argument is that the deep dependencies are serdapgndencies rather
than syntactic ones, thus they do not need to be present gytiactic representation
of dependency graphs (McDonald, 2006). However, depemeeimyvolved in control,
coordination and other phenomena have been included imayntrepresentation in
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various Dependency theories and multiple-heads and dgegndencies are allowed
in some theories such as Hudson’s (2007) Word Grammar.

In this chapter, we will give a review of wide-coverage sttial CCG parsers. We
will also cover the information regarding adaptation of atstof-the-art CCG parser
for parsing Turkish. In the final part, we will give the resutif parsing Turkish and
compare the outcome with the earlier results of dependearsiny.

9.1 Why CCG parsing

Combinatory Categorial Grammars explain phenomena sucba@slination and ex-
traction elegantly as discussed earlier. CCG parsers eezdoeal and long-distance
dependencies without any post-processing or extra eff2{s can be parsed in poly-
nomial time with a worst case complexity 6f(n®) (Vijay-Shanker and Weir, 1990;
Vijay-Shanker and Weir, 1993). Successful adaptation ef“8purious ambiguity”

removing methods such as Eisner’s constraints, and chesingaalgorithms that fa-

cilitate dynamic programming made creating very fast widgerage statistical CCG
parsers possible. To summarise, CCG is a formalism thatpseegive enough, and
the output of CCG parsing is highly informative. In additj@tl this can be done very
efficiently.

CCGBank is the biggest corpus of CCG derivations created-aatomatically by
transforming Penn Treebank into a treebank of CCG deriudtees (Hockenmaier and
Steedman, 2007). The wide-coverage CCG parsers can bediwvitb groups regard-
ing the methods of statistical models they use and the reptation structures they
model on. Hockenmaier’s generative model on normal forniveon trees trains on
CCGBank trees whereas Clark, Hockenmaier, and Steedmag)&todel the depen-
dencies derived from these derivation trees. Clark, Hoglaar, and Steedman (2002)
create a similar model to that of Collins (1996) modelingetegency structures. Clark
and Curran apply log-linear training methods and they moddboth derivation trees
and on dependencies (Clark and Curran, 2003; Clark and ©u2@04b; Clark and
Curran, 2007a; Clark and Curran, 2007b). All these parssesdata derived from
CCGbank (Hockenmaier and Steedman, 2007).

Clark and Curran (2006) shows that a parser can be trainddomity words and
CCG categories. The dependencies that are used to traiatiham extracted from the
category sequences rather than full derivations. The padoce of this model is 1.3
points of F-score less than the model trained on the full.dakes shows the amount
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of information in the CCG categories.

9.2 Hockenmaier’s (2003) parser

Hockenmaier’s (2003a) parsing models are generative radtiat are trained on a
CCG-derivation database that is induced semi-autombtiitam the Penn Treebank.
The translation procedure is explained in Section 5.1. ldookaier justifies using
derivation trees with theoretical and efficiency argumaeyvith regards to the claim by
Steedman (2000) that derivation structures are regardeelyras a record of construc-
tion.

Generative models of parsing estimate the probability chiEe given a sentence
depending on the probability of their parts. On the otherdhama conditional model
the probability is estimated directly. Hockenmaier usesyGikart parsing algorithm
with beam search to narrow the search space. Hockenmaiedglnan normal-form
CCG derivations is an adaptation of Collins (1997). Hockamndifferentiates be-
tween 4 different kinds of expansion, nameééaf, unary, left, andright. The last two
depend on the information if the head is on the left or thetragte of the two sub-trees.

Hockenmaier explains that even though the model does niginessro-probability
to non-normal-form derivations, in practice, it will alwayprefer normal-form deriva-
tions. Additional features such as distance do not imprixegerformance of the
parser, however, Hockenmaier argues that this is becausbarent characteristics of
generative models such as the trade-off between bias arahearproblem described
by Geman, Bienenstock, and Doursat (1992).

Hockenmaier (2003b) proposes a generative model for pmesliargument rela-
tions. This outperforms the earlier results by Clark, Houkeaier, and Steedman
(2002). Hockenmaier claims that this is the first model towec all local and long-
range word-word dependencies. It also solves the problemsed by the multiple
heads reported by Abney (1997).

The parsers described in Hockenmaier (2003a) could notéx:fos parsing Turk-
ish simply because the parser needs CCG derivation treesimoan. Translating the
Turkish dependency treebank to CCGBank representatioroldgmatic because of
crossing dependencies and the lack of markers for noneudapendencies in the
Turkish treebank (Cakici and Baldridge, 2006).
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9.3 Clark, Hockenmaier and Steedman (2002) parser

This parser uses the dependency structures that are déowethe CCG derivationsin
CCGBank. This decision is motivated by several factorsstFihe evaluation of CCG
parsers with dependencies is much more informative thaPARSEVAL evaluation
based on constituency information. Second, is the conmeaief not having to deal
with problems caused by non-standard derivations, spsiaoubiguity and such.

In Clark, Hockenmaier, and Steedman (2002), a sent8oasists of word-POS-
tag pairsS= (w,t1), (Wo, 12}, ...(wWn,ty), and a dependency structurés a (C, D) pair.
Cis alist of categorie€ = ¢y, €y, C3, ..C assigned to each word aBd= { (hy,, fi,s,hg ) |i =
1,...m} is a list of dependency relations represented by a 4-tugleiding the head
word hy,, the functor categoryfj, the argument slad and the argument hed .

Note that this representation does not make any assumpiiohew many heads
a word can have, thus allows multiple heads unlike the standigpendency approach
discussed in previous chapters. The probability of a depecystructure is defined as
in (9.1).

(9.1)
P(m0) = P(C,D|S) = P(C|S)P(D|C, S)

TheP(C|S) part can be approximated as :

(9.2) )
P(CIS) = []P(G 1)

whereX; is the local context. The category-word pair probabilites calculated us-
ing maximum entropy techniques following Ratnaparkhi @9&s described in Clark
(2002) and later in Clark and Curran (2004BJD|C, S) is written as follows:

(9.3)
P(DIC,S) = []P(ha[C.9

wherehg, is the head word filling the argument slatgpendent wordn the termi-
nology used here) in th#" dependency in a list ah dependencies. The estimation
method used here is taken from Collins (1996). Since thertigoecy number changes
over different category sequences, they used a geometda wig() as the ranking
function averaged by the number of dependencies in D. Theya@KY chart parsing
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algorithm similar to the one described in Steedman (2006)cd&m to deal with the
redundant analysis in a similar way to what Komagata (198¥) d

Their results were 90.1% precision and 89.9% recall on weilat dependencies,
and 81.8% and 81.9% on labelled dependencies on Section@3dfPenn Treebank.
Labelled dependencies are regarded as correct when thaestexactly match with
the gold standard. Unlabelled dependencies are regardexdrast when there is some
kind of dependency between two heads regardless of the argustot the argument
fills. They also give the results on object extraction degeg recovery as a prelimi-
nary perspective on long-distance dependency recovery.

9.4 Clark and Curran (C&C) Parser

Clark and Curran (2007b) describe a number of log-lineasipgrmodels trained on
CCGBank to parse the Penn Treebank. With log-linear motelparse space can be
represented in terms of features, and adding new featuretatssely easy. Clark and
Curran make considerable use of optimisation techniqudsparallelized program-
ming to account for the performace requirement of the estondask. The memory
requirements vary between 25-30GB of memory and an 18-nludéec was used in
the experiments.

There is a dependency model and a normal form model, but tiedyath evaluated
by the amount of correct dependencies they recover. Theibatpphe parser was also
evaluated on DepBank (King et al., 2003), in order to makeaszformalism compar-
ison and outperformed the RASP parser (Briscoe and Cag@ll6) even though the
dependency evaluation experiment had certain disadvesfagthe CCG system.

The basics of the log-linear model is explained in the regthid Section. The
reader is referred to Clark and Curran (2007b) for a detarierdduction to the concept
and the implementation details of all the parsers covereel he

9.4.1 Clark and Curran’s (2004a) parser

Clark and Curran (2004b) apply log-linear models that arecdbed in Clark and
Curran (2003) to wide-coverage CCG parsing. They give te$oit both a dependency
model trained using all-derivations including the nomsi@rd ones and a normal-form
model trained on normal-form derivation trees. They usestitee evaluation method
as Clark, Hockenmaier, and Steedman (2002).
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The dependencies that are used in training the dependendglrand evaluating
both models are derived from the CCGBank predicate-argtinedgtions. These de-
pendencies are 5-tuples, examples of which are shown infdd first element is the
head representing the dependency relation, the secon@mlésrthe lexical category.
The third element is the argument slot of the word that ctutst$ the remaining part
of the dependency (the argument, the dependent etc.) whgilien in the fourth slot.
The fifth slot is allocated for the locality feature of the degency. The subscripts on
the word forms show their positions in the sentence. Thedahg dependencies are
derived from the sentencéBM bought the compariy

(9.4)  (bought, (S\NP;)/NP,,2,company, —)
<b0ugh§7 (S\N pl)/N Fb? 17 IBML _>
(thes, NP/Np,1, company, —)

In a sentence with extraction , for instanceline company which IBM bougtihe
dependency betwedroughtandcompanyis as represented in (9.5). This dependency
is not a local one. The final field in the tuple shows that theeddpncy is a long-range
dependency created by the object extraction cate@eBiNP)/(S/NP).

(9.5)  (bought, (S\NP) /NP, 2, company, (NP\NP) /(S/NP))

The probability of a dependency structuragiven a sentenc8is defined as fol-
lows:

(9.6)
P(]S) = P(d, 1S
deA(m)
Here,A(T) is the set of all derivations that lead to the dependencystrer. A
conditional log-linear model of a parsec Q for a sentence is.

9.7)
P(w|S) = ! e7‘ fw

w means different things for normal-form model and the depeicg model. For
the normal form model it is simply a derivation, however foe tdependency model it
is a(d,m pair.
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They use of efficient numerical algorithms such as Limitedrbry BFGS algo-
rithm and clusters for keeping the packed charts. They eséinie feature weights by
using simple log-likelihood estimation.

The performance of the two models are very close. The depeydaodel gives
labelled precision and recall scores of 86.7 and 85.6 antiéseperforming normal-
form model gives 87.0 and 86.8. However, it is interestinqiéde that Clark and
Curran find that adding long-range dependencies as fedtateso impact on parsing
accuracy. They say it may be because these dependenciesyarare in the linguistic
data. An evaluation on long-range dependencies is alsoivert n Clark and Curran
(2004b) as the focus is more on efficient parsing. They apEpdf constraints and
seen rulegonstraints, which ensures only seen rules are used imgaiBoth methods
considerably increase the speed. They also put a 300.0G®haharts when training
to derive the dependencies. However, the limit is 1milliamidg testing to get the
maximum coverage.

The parsers described in Clark and Curran (2007b) do notuatdor the type of
ambiguity that Komagata (1997) categorises as the secqedafy“genuine ambigu-
ity”: “lexico-semantic ambiguity” which means categoriesy be assigned multiple
semantic types. For instance, in C&C parsers two differgpes of control — ob-
ject control and subject control — cannot be differentidtedause a lexical category
can only return a certain set of dependencies correspodiagingle semantic inter-
pretation! The following category is used for both object and subjectta (as in
promisg, but it does not make the semantic distinction between two.

(9.8)  persuade= ((Sdcl]persuadeNP1)/(S[to]2\NPx)) /NP 3

Head passing is performed with variables as shown in thévelpronoun category
(9.9). When we change the direction of the slashes we olttaialiject relative particle
in Turkish.

(9.9)  who = (NB\NR1)/(Sdcl2/NFx)

(9.10)  -digi = (NB/NR1)\(S\NFx)

9.4.2 Partial Training (Clark and Curran, 2006)

Clark and Curran (2006) show that only CCG categories aregmdo train a parser

INote that this is a design choice, not a property inherentG&C
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and still obtain results within a certain percentage of #salts obtained by using fully
annotated data for training.

In contrast to previous CCG parsers that train on the deordtees of CCGbank,
partial training requires only CCG supertags (lexical gatees) to create the training
data for the parser. This is a very important step in efficgansing, especially when
Clark and Curran (2004b) show that CCG supertagging is vecyrate when there is
enough data. This agrees with the finding of Bangalore ankli J&999) who show
that supertagging does most of the work when parsing. Trgiosing the derivation
extracted from only category sequences (partially anedtdata) also attempts to solve
the annotation bottleneck, since annotation of CCG categ® easier than annotation
with syntactic trees.

Clark and Curran (2006) take the sentences decorated with €4fegories and
attempt to parse these training sentences with a CCG paisecreates many deriva-
tions. They then take the dependency structures that aageckby a certain percentage
of all the derivations and assume that these are most likelgdrrect dependencies.

The gold-standard dependencies are extracted with theohéie parser described
by Clark and Curran (2004b). The parser returns the depemnekenccuring irk% of
all the derivations licenced by that correct CCG categogusece. Setting=100 has
an effect of returning 100% precision but low recall. Thidbecause a dependency
that is in all of the derivations is bound to be in the correetivhtion. Decreasing
increases the recall but decreases precision . They showkigk is 70% the recall
increases to 85.87 while precision is as high as 99.09%.

The F-score they got from the parser in the end is only 1.3 %tlesn the parser
trained on full dependency structures. This is a significasult. This shows the
amount of linguistic information there is in CCG categories

9.4.3 Supertagging

The supertagger is the crucial component of the C&C parsgreagging step boosts
the speed of the parser, because in most cases the mostdételyory is the correct
one. The memory requirement would be impossible to meetowitthe supertagger,
if for example, the words were assigned all existing lexaakgory types as Hocken-
maier (2003a) does (Clark and Curran, 2007b).

A variant of the Viterbi algorithm for HMM taggers is used tadithe most likely
category sequence for a sentence. The features used areriiie and part-of-speech
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tags in a 5-word window and the two previously assigned categ. Clark and Curran
use a tag-dictionary for the word-category pairs occuroggether in the data and have
a k=20 limit for the word and the category occuring togethethis constraint is not
satisfied, the POS tag of the word is used instead. Superntag@ieassigns the 425
category types that occur more than 10 times in the data.

Multitagging (Curran, Clark, and Vadas, 2006) leaves sawreal category ambi-
guity to the parsing level by assigning a list of categoriegead of a single category
to each word. It assigns a list of categories that are witlproéability threshold[) to
the word. This increases the possibility of assigning threemd category to the word,
while limiting the entries in the chart.

Clark, Steedman, and Curran (2004) show that parsers cay basadjusted to
adapt to different domains by simply annoatating a numbeseotences to improve
supertagging accuracy on those sentences. Clark, Steedm@curran (2004) anno-
tate a relatively small number of sentences by hand with C&€gories. They showed
that this made a significant difference in the accuracy ofpidueser on questions and
object extraction cases. These are two cases that mode@rpaisually fail on. This
shows that supertagging plays an important role in not omigroving the accuracy
but also adapting to other domains or hard-to-solve problenNLP.

9.5 C&C and Turkish

We use the dependency model of the C&C Parser which is destciib Clark and
Curran (2007b) for parsing the Turkish treebank. Using C@&gories as features
in MSTParser improved the performance. In the rest of thaptér, we demonstrate
how the C&C parser is modified for creating a parsing modefankish and give the
results of the parser. We explore the degree of informatienléxicons (morphemic
and lexemic) provide to the CCG parser, and how well the taxiand the parser
perform on deep dependencies that other parsers canndehand

The Turkish word-based (lexemic) CCG lexicon is compatiblth the surface
syntactic approach. We expect to recover only surface dbsperies with this lexicon.
This is because long-range dependencies arising fromwisktion, control and such
cannot be represented in this version of the lexicon. Resatiion is treated as simple
nominal modification with the lexical category of a relased verb as in:NP/NP.
Thus, the dependencies captured with the gold-standasdamagd with the lexemic
lexicon will be directly comparable to MST parser resultsowéver, the treatment
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of coordination is internal to the parser and we still hopegéd some of the long-
distance dependencies resulting from coordination. Menph lexicon is expected to
overcome some of the problems that are inherent in the lexapproach.

The C&C parser has a dictionary cutoff of 20 which is hardwineto the parser.
However, only 174 words out of 19385 unique words (includigpctuation) appear
more than 20 times in the lexemic lexicon. Even some funatiords are not in this
list of 174 most frequent words. In the morphemic lexicorr¢hreae 6280 distint tokens
in total, out of which 380 occur more than 20 times. The nuraloéthe distinct words
are significantly different because all the words are eitem forms or morpheme-
cluster names rather than inflected forms in the morphemicda. A dictionary cutoff
of k=20 is clearly too high because of the small size of thekiBlir dataset. For the
experiments here, we changed this to k=10, although we plaptimise this value
empirically in the future.

9.5.1 Turkish Markedup File

C&C uses a marked-up file that is integral to parsing as it&der extracting the de-
pendencies, and controls the head passing mechanism. &aotr requires a marked
up file for the categories in the tag dictionary. The markefileg for the morphemic

and the lexemic lexicons were annotated manually. Markezhiges look like the

following:

(9.12)
(NP/ NP)\ ( S\ NP[ nonj )
2 ((NPEYRINPEY}<1>) {1\ (S{Z}<2>\NP[nonf {Y}) {Z}){ _}
1 ignore
2 ignore

This is the category for the subject relative particle. Thienber 2 on line 2 in-
dicates the number of dependencies this category licenths.lines following the
annotation indicate the DepBank representation and namie @ependencies. We
ignore these as the woighore indicates.



9.5. C&C and Turkish 161

9.5.2 Turkish Rules

Order changing rules are needed in some cases of scramhtihgling scrambling
out of possessive constructions. In the following examiple genitive marked noun is
scrambled out of the NP. This example is taken from Hoffm&®98). This approach
considers genitive noun to be the subject of the genitivasdafollowing Szabolcsi
(1983). In the other example, which is a genitive extractiase, we solve the problem
with a similar approach.

Preserving directionality is important. However, someeasrdhanging rules are
allowed in the Turkish lexicon in exchange for a more compexicon to explain
scrambling, such as the extraposition rule that is includetie Turkish grammar by
Bozsahin (2002). This rule is needed to explain some phenanof extraposition of
genitive nouns and such. However, it is restricted to NP amlgl the backward one
is allowed. Bozsahin (2002) shows that the two “legal” worders in Turkish are
SOV and OSV and post-verbal scrambling is a case of extraposthus is handled
by the following rule. However, he also suggests that thetBerrule is not discourse
equivalent to S with the unscrambled order, in a way thigictstthe use of this rule.

(9.12) Extraposition NP — S\(S\NP)

(9.13) Ben kapisini ~ boyadim evin.
I door-Poss3sg-Acc paint-Past-Perslsg house-Gen

T
S/(S\N IDnom) NPacc\NPgen (S\anom)\NPacc N IDgen
B
(S\ N IDnom)\ N IDgen

>Bx

S\NPyer $\(S\NPyer
S
Turkish is mainly head-final. Extraposition rule is only ded to account for argu-
ments scrambling to the right of the head. This is integratemthe type-raising rules
in the parser. It is a direction changing rule, however itésessary to handle some

cases of post-verbal scrambling and cases like above. lleisvas used in Baldridge
(2002) in Turkish CCG grammar but was not discussed extelysias it interacts with
discourse and information structure.

Type Raising Rules

We have only added type-raising rules for NPs. These are:

T/(T\NP) whereT € {S S\NP,(S\NP)\NP, ((S\NP)\NP)\NP}

Forward crossing composition was not implemented in theetiirelease of the
C&C parser. However, forward crossing composition is neagsfor handling some
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word-orders and other phenomena in Turkish. We lose somerage because of this,
and we will implement this rule in the future.

9.5.3 Training

Only about 65% of the sentences in the lexemic lexicon givarag This number
is just above 70% for the morphemic lexicon. Only the sergsrtbat are assigned
at least one parse is included in the training. We use the sainef features for the
dependency model as described in Clark and Curran (200@kjever, since we do
not have normal-form derivations, the features that areaet¢d from normal-form

derivations are excluded.

9.6 Evaluation

An important part of the evaluation process is extractirgggbld-standard dependen-
cies to which the output of the parser will be compared. S@fdependencies in
Turkish dependency treebank is different from the outpuhefC&C parser. To make
them compatible, a series of transformations are appligigsurface dependencies
in the treebank.

1. Coordination is different in two formalisms. The way cdimation is annotated
is explained in Section 2.5.4. It is different from the deg@mcies output by the C&C
parser. C&C outputs coordination dependencies in a waythlgatonjunction is the
head of all conjuncts, and the coordination dependenceealasays linked to the head
of conjuncts. METU-Sabanci Treebank notation which hasgaesatial order, treats
the conjunction as the modifier of the conjunct to the rightaileft to right manner.
Therefore, some dependencies that C&C outputs do not maateippendencies of the
treebank.

2. Predicate-argument relations are not equivalent to watl dependencies in
terms of directionality. In the case of verbs the order fardicate and argument is the
same as the dependent and head order in C&C, however, a velibiendor instance,
has the opposite order. A modifier is a dependent of the vedependency gram-
mar terms, but since it has the functor category, the depmydelated to the modifier
category in C&C dependencies is represented as if the mpoifiee head (in depen-
dency terms). The order in the gold-standard dependenassadjusted according
to the dependency label between each dependent and headtmed¢bank during the
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translation.

3. Punctuation is included in the dependency structure mmescases as explained
in Section 2.3. However, C&C dependencies do not includepamgtuation. There-
fore, we excluded the punctuation that does not hasenacategory from evaluation.
This means we will lose points for some dependencies as we ishibe next section.

Unlabelled evaluation in C&C checks if the dependency betwe/o words is cor-
rectly predicted regardless of the argumet slot. Labelleduation takes into account
the argument slot as well. All 5 fields need to be exactly theesan labelled evalua-
tion. We provide the unlabelled dependency evaluationisdissertation.

There are also the case of long-range dependencies thabalgcpd in addition to
the standard dependencies. These are extra dependeratieghr parsers described
in the previous chapters are not able to recover. These depeies are very important
in recovering the predicate-argument information in seticaamalysis. Examples of
these are, dependencies in extraction, coordination. €Henmance of the parser on
these extra dependencies will be discussed in a limiteddiash Section 9.7

10-fold cross validation is applied to the data that cossistly of the sentences
that are assigned at least one parse by the parser givernxib& leategories. Precision
and recall figures are provided because the dependencidisteckby the parser and
the gold-standard dependencies may differ. F-score issthieel balanced harmonic
mean of precision (P) and recall (F§:= 2PR/(P+R).

9.7 Turkish Results

The coverage of the morphemic lexicon 70.1%. The most commason for a sen-
tence to not be parsed is that one or more of its CCG categamesrrong. Another
reason is the ambiguousarkedup annotations of the categories. The Turkish cat-
egories do not have features apart from [nom] feature on NIF8s causes a great
amount of ambiguity especially in the NP specifier categorfeor instance, the head
in the genitive construction is assigned WP by the lexicon induction algorithm. On
the other hand specifiers in some scrambled NP constructi@nsalso assigned the
same category. The former has the first NP as head whereasttielatter the second
NP is the head. However, it is only possible to annotate thdadap category in the

2The reason for this is that we do not have gold-standard deppraiency information originally
in the data. Therefore, these dependencies can only beadsdlpartly by comparing them to the
secondary links that were added to the treebank data. Tlkesadary links are explained in Sections
2.5.3and 2.5.4.
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Model coverage cats| UPrec| URec F
morphemic 70.1| 99.46| 72.57| 81.18| 76.63
lexemic 65.3| 99.43| 65.31| 72.72| 68.82
no-oracle(morphemic 97.3| 71.55| 55.64| 63.1|59.13

Table 9.1: Dependency recovery with C&C parser

parser in one way. This costs some coverage points in eilieéce of annotation.

Table 9.1 shows the performance of the parsers trained iitetxemic and mor-
phemic lexicons. The first and the second line shows perfoces with the gold-
standard tags. The coverage is lower than the case whereipleetagger is utilised
which is shown in the last line. This is because the parses mimultitagging mode
and the words are assigned less probable categories urdika s found. Note that
the accuracy of the systems with the gold-standard tagsighehbecause they are
evaluated on only the sentences that is assigned at leagiaose which is 70.1% of
the sentences in the morphemic case. However, with suggn@the correct depen-
dencies are evaluated against almost all the sentence9 W&k coverage.

9.7.1 Long distance dependencies

The following examples are included to emphasize the diffekinds of dependencies
each of the two lexicons can predict. As seen in the exammiEsbha morphemic
lexicon has the ability to facilitate the correct predicatgument relation assignment
by letting the verb take its arguments and then combine It thi¢ extracted noun while
creating the long-distance dependencies licenced.

This example demonstrates a few linguistic phenomena. i$hiege output of the
parser with the input shown at the bottom. Each line showspamdency the format
of which is explained in Section 9.4.1. This example denraiss the solutions to var-
ious phenomena such as subject extraction, coordinatidmpast-verbal scrambling.
Example 9.14 visualises the parser output that is givervbéiahe form of depen-
dencies. Long distance dependencies created by coowhrett also extracted. The
parser tends to connect adjuncts to the farthest head lysiuaimain predicate in the
sentence. If there is an S/S, the parser makes it conneat taghverb.
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Gordiigiiniiz “Noun+  gibi higbir zaman kurtulamayacak “Verb+ “Adj+ , ozgir olamayacak “Verb+ ¢“Adj+  bir tutsagim “Verb+ ben .
PastPart” Able”  FutPart” Able”  FutPart” Zero”

(914) see -PastPart as none time escape -Able-Neg -FutPart  free become  -Able-Neg -FutPart a prisoner -Cop I
Input:
Gordugunupverb|S -see

"Noun+PastParfPastParNP\S —PastPart

gibi|Postp(S/S)\NP -as

,|Pung,

hicbir|Det(S/S)/(S/Shone of—nominal modifiers
zamanNounS/Stime

kurtulamayacal/erb|S\NP[nom] -escape—verb with subject extraction
"Verb+Able”|Able|(S\NP[nom])\(S\NP[nom]) —able—derivation from verb to verb
"Adj+FutPart’|FutPartf(NP/NP) (S\NP[nom]) —FutPart—conjunction
,|Pundconj

0zgutAdj|NP —free

olamayacaR/erb|(S\NP[nom])\NP -become
"Verb+Able”|Able|(S\NP[nom])\ (S\NP[nom]) —Able
"Adj+FutPart’|FutParf(NP/NP) (S\NP[nom]) —FutPart

bir| DetNP/NP a

tutsaginiNoun NP —prisoner

"Verb+Zero”|Zerd (S\NP)/NP[nom] —Aor

benProriNP[nom] 4 — post-verbal argument (word order scrambling)
.|Pung.

A coordination example

This is a relatively long sentence in the corpus. The seetehere are much longer
than the average length in the corpus. This is to show thatiamation dependencies
are correctly recovered with CCG in this example despitesirgence length. In ad-
dition to the coordination dependencies represented inrésbank, the dependency
representing subject relation betwe8affetandyapmisis captured correctly. How-
ever, this could not be carried to the last conjunct becankeame C.SUBJECT could
be added to the dependency structure in the treebank dusigndestrictions. Thus
the dependency betwe&affetandolusturmustiwcould not be captured. The input that
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Saffet de , babasinin sahildeki “Adj+Rel” balikgi kultibesini

Saffet too father-Poss3sg-Gerbeach -Ad]-Rel flsherman cabln-Agr-Acc enlarge-Past  beach-Dat

biydltmis

Chapter 9. Parsing with Combinatory Categorial Grammar

kumsala “Noun+Zero” dogru , ahsap  bir balkon yapmis ,

wooden a

towards

balcony make-Past

gerektiinde “Noun+PastPart” yetmis kisinin yemek vyiyip “Adv+AfterDoingSo” eglenebilecedi “Verb+Able” “Adj+FutPart’ bir lokanta olusturmustu “Verb+Cause”

require -PastPart seventy people food eat -ADS

enjoy -Able

-FutPart-Agr a restaurant create .Caus-Past-Past2

Saffet, too, had extended his father’s fishermen’s cabiheatbast, built a wooden balcony

towards the beach, created a restaurant where seventy @eapl eat and have fun if needed.

Figure 9.1: A coordination example with more than two conjuncts

consists of words and categories for this example is givéombeMore examples of

this sort are given in Appendix C.

Input:
SaffetNoun Nom|NP[nom]
,|Pund,
sahildekjNoun Loc|NP
balikciNoun.Nom|NP/NP
buyultmugVerb|(S\NP[nom])\NP
kumsalaAdj|NP
dogryPostp((S\NP[nom])/(S\NP[nom]))\NP
ahsapAdj|NP/NP
balkorfNoun.Nom|NP
,|Pundconj
“Noun+PastParfNoun Loc|(S/S)S
kisininNoun.GeriNP[nom]
yiyip|Verb|(S\NP[nom])\ NP
elenebilecedVerb|S
“Adj+FutPart’| Adj|(NP/NP)\S
lokantdNoun.Nom|NP
“Verb+Caus’|Verb|((S\NP[nom])\NP)\S

deConjNP[nom)\NP[nom]
babasiniNoun GerfNP/NP
“Adj+Rel”|Adj|(NP/NP)\NP
kulubesinNoun Acc|NP
JPundconj
“Noun+Zero|Noun DaNP\NP
|Pung,

bitDet NP/NP
yapmigVerb|(S\NP[nom])\ NP
gerektigindg/erb|S
yetmigNum|NP[nom]/NP[nom]
yemekNoun.Nom|NP
“Adv+AfterDoingSo’|Adv|(S/S)\(S\NP[nom])
“Verb+Able”|Verb|S\S
biDetiNP/NP
olusturmustYVerb|S

/Pung.
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Figure 9.2: Average sentence length throughout the corpus

9.7.2 Sentence Length

The average sentence length for the parsed sentencesh#yslmver than overall
average sentence length. This indicates that short sexgeme easier to parse and a
bigger proportion of short sentences are parsed than tHahgfsentences. However,
Figures 9.3 and 9.2 show that after 4500 sentences, thestagprise in the length of
the sentences, but the coverage is not affected much byTth&t.part of the treebank
is composed of news articles. The sentences in this genrthardengest, however,
they show regular behaviour in the sense that they do noasoas much word order
variation. This means the coverage is affected more by thaétguwf the lexicon than
the factors like sentence length. We claim this becauseeofafowing reasons.

1) The difference between the average sentence lengthsfparsed and unparsed
parts of the data is not too big. The average sentence leongtthé parsed
sentences is 10.27 tokens as opposed to 11.23 overall aveFag means the
average sentence length for unparsed sentences is ab8ut Tl3erefore, the
parser does not only chose the easiest (shortest) sentartdealso takes on the
more difficult ones.

2) It is more likely there will be at least one wrong categoryen the sentences
are long. In addition to this, long sentences are often igthavhen annotation
errors are being checked because of psychological reaSmrestends to correct
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the short, easily comprehensible, sentences first.

100
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Figure 9.3: Coverage among data

9.8 Supertagging Turkish

Supertagging results are given in this section. The modahi® morphemic lexicon
performs better than the one for the lexemic lexicon. It igiobs that the data is too
small since the supertagger does not benefit from taking stelyns of the words as
tokens despite the expectation that this would reduce thebeuof unseen words and
hence improve the performance. The lack of improvementatds that the classifier
usually backs off to pos-tags even with the stems as tokemsdass the supertag which
results in no improvement on the supertagging accuracy.thefirst time, we have
used case information for an 1G-based experiment. Using gsdsrmation for 1Gs
with noun and pronoun first tags improved the performancebpdints. The results
in word based supertagging are as expected. Once agairdegteart-of-speech tags
with case information proves to be the best performing tag se

There are only 114 category types that occur more than 1Gtoneof 311. This
threshold of 10 also needs to be lowered to match the Turlash @hich is smaller
because when only categories that occur more than 10 tinreetaken the coverage
drops significantly. An experiment was performed with lexehaxicon to investigate
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Morpheme-based Word-based

tag-set | accuracy| sentence
BAS 45.46 17.48
CAS 53.43 21.37
EC 56.7 21.96
CRYP 56.44 21.71
CRYP-2 | 56.34 20.48

tag-set accuracy| sentence
BAS 57.84 17.51
CASmoun+pron) | 68.75 23.25
CAS(oun) 68.6 23.05
Stems 57.1 17.01

Table 9.2: Supertagging results for Turkish (10-fold validation)

this. The best single tagging result on lexemic lexicon imwted by a category cutoff
of 5, and the latest version of the corrected treebank. Ttezyoay accuracy is 62.21%
and the sentence accuracy is 24.93% with this configuratios considerably higher
than the closest result on lexemic supertagging with cayegdoff 10 which is 56.7%.

However, reducing this number any further does not give ntaggovement. We use
this model in the lexemic parsing experiments.

Because supertagging is a very important stage in CCG pgavdih C&C parser
we put a lot of effort in improving the accuracy of the supgger which was 45%
for lexemic lexicon with 10-fold cross validation in the Bar stages. This is a very
low accuracy for the supertagger and it cannot be expectée toformative of the
category types of the words. For instance for MST paser whiti uses the supertags
as features, it reduces the dependency accuracy signiji¢eom about 94% to around
71% for unlabelled dependencies. Continuous effort isgpeut into improving the
supertagger by us by including different kinds of morphadaginformation as well as
cleaning the data.

Clark and Curran (2004a) use a lexical category dictionglnys includes all lexical
categories which appear at least 10 times in Sections 0Z-€CG&Gbank, resulting in
a set of 425 categories. Clark and Curran (2004a) show thitoseave very high
coverage on unseen data. The supertagger trained on Tw&iahwas trained with
this restriction of frequency on lexical categories in effen most of the experiments.
The coverage on Turkish data is quite high as well (about Q%) the supertagger
assigned categories. However, the recall of the depenelenecovered are not very
high with this restriction as shown in Table 9.3.

With all these in effect the multitagger performs above 88 the most restricted
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tagdict cutoff| accuracy| Sentence corregttag set
1 53.16 15.24 EC

3 53.11 15.20 EC

5 53.13 15.20 EC

5 53.13 15.20 CRYP

Table 9.3: Tag dictionary cutoff variation for morphemic lexicon

lexicon | tag set accuracy| sentence t/w

LEX CRYP 79.64 37.33 2.65
LEX EC 82.04 41.65 2.82
MORPH | BAS 88.17 45.80 2.40

MORPH CAS(noun+pron) 8815 4588 220
MORPH | CASoun) 88.19 45.75 2.22

Table 9.4: Multitagging results

(B = 0.1) configuration for the morphemic lexicon. Similar resuitere observed in
multitagging with regard to the use of morphological infaton. Once again, mor-
phemic lexicon beats the lexemic lexicon in supertaggingopmance. Using both
nominal or pronominal case seems to bring the supertaggiogracy by about .02
points. However, it shoul be noted that the tag per categaigyis 2.20 for this config-
uration compared to 2.40 for the basic tags and 2.22 for tkefgmrforming configu-
ration. This provides less ambiguity and a faster systenrwéfiigciency is important.
The parsing results for morphemic lexicon were obtainedh Wit supertagger results
of which are shown in the last line.

9.9 Conclusion

We provided results for parsing with two lexicons createnfrfithe same set of data an-
notated with surface syntactic dependencies. We demdedtiiaat morpheme based
lexicons outperform the word-based counterparts in atfptens from parsing to train-
ing supertaggers. But more importantly, morphemic lexiestablishes semantically
relevant long-range dependencies like those discussecample 9.14 in Section
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9.7.1, which was taken from from the METU/Sabanci treebankl, which the parser
gets completely correct.






Chapter 10
Conclusion and Future Work

A much cleaner Turkish dependency treebank is provided thghimprovements dis-
cussed in Chapter 2. Annotation mistakes that were in therafithousands were
corrected aiming at a consistent and more reliable treebd@hlkese corrections were
applied to the CoNLL 2007 shared task data and were provee teeby important
comparing the average parsing performances between Col06 and 2007 shared
tasks on dependency parsing (Nivre et al., 2007).

The limitations of the annotation style in the Turkish traek is explored (Chapters
2 and 6). Two very important problems in the treebank wereutised and solutions
were proposed. One is recovering the predicate-argumanttste in certain forms
of extraction, and the other is the coordination scope @bl We show that these
problems can be solved effectively to provide a lexicon fdrighly representative
grammar theory that handles deep linguistic phenomenastitaé other theories fail
to capture (Chapter 6).

The heavy interaction between morphology and syntax iniShnkequires unortho-
dox methods in parsing. The data need to be generalised arphaiogical informa-
tion need to be putinto use. This is motivated not only beeafisparse data problems
but also because of linguistic concerns. The wider scopeasphemes, their interac-
tions with syntax and semantics is explored in various paifrthis thesis mostly in
Chapters 2, 3 and 6. We argue that a smaller-than-word req&son for the lexicon
is necessary to explain the bracketing mismatches and rosypkactic phenomena
that are abundant in Turkish data. We show that morphemicdaxperforms qualita-
tively and quantitatively better than the lexemic lexicomeécovering surface and deep
dependencies (Chapters 8 and 9).

Wide coverage parsing results with C&C parser for Turkisé given for both

173
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lexemic and morphemic lexicons in Chapter 9. We show thatgusiaorphological
information and inherent information in CCG categoriedliatprove the performance
of the parser and a morphemic lexicon outperforms the legeesults in supertagger
training models and the parser models.

CCG categories are also used as simple features in MSTR&setion 8.6.3)
which parses dependencies directly using the MST techni§tate-of the art depen-
dency parsing results were obtained when CCG categorieswged. The aim here is
to take this as a lower bound in comparison to results with @@€ing which pro-
vides more informative dependencies. CCG captures “degpédencies, in addition
to the ones captured by the MSTParser.

In this thesis, we have utilised methods to make the best tisgogphological
information in a range of parsing systems. We have also geavalgorithms to create
linguistically meaningful lexicons aiming to model longsthnce dependencies and
solve linguistic problems such as bracketing paradoxesdas smaller-than-word
elements. Making the best use of the information at handusiak in supervised
systems of NLP for low density languages like Turkish. Thehuds described here
to achieve this are expected to be adaptable to other lowigdanguages.

10.1 Future Work

e The representational status of the inflectional morphentiesrdhan the ones
included in the morphemic lexicon here will also be studiédcomplete and
correct CCG lexicon for Turkish is our target. Issues like-grop in genitive
constructions and such are also to be researched in theutase.f

e Only coordination involving ENTENCE labels were reannotated with long-distance
dependencies in this dissertation. We aim to cover all tgpe®ordination de-
pendencies, and also design a practical and linguistisallynd way of anno-
tating gapping constructions in the treebank. This comekeuthe heading of
lexicon improvement.

e We aim to apply morphological analysis and tag disambigmaéind integrate
this to the parsers to provide some degree of freedom witbwatcrowding
the parser with morphological ambiguity. An existing twexl morphological
analyser may be used for this purpose (Cakici, 2002).
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¢ Increasing the coverage of the CCG parser to 100% is one @iribeties. This
process includes both the correction of the treebank degpemels and the per-
fection of the CCG grammar induction process. Disambiguatif the marked
up categories in the CCG parser should also be considerenresd the loss of
coverage is caused by this as explained in the previousehapt

There are many English specific constraints hardwired inGRE parser. We
aim to optimise the parameters of the parser according to¢leels of Turkish
data.

Forward crossing composition rule in CCG was not implemeitethe C&C
parser because CCGBank did not have this rule. Howeveninestord orders
and extraposition constructions require this rule to bas@né We aim to imple-
ment this rule to be able to handle these cases.

e We aim to reseach bracketing paradoxes that involve coatidimand such in the
future. Inflectional morphemes such as tense participagaspended affixation,
but these are not handled in the current lexicon as they & ag part of the
last IG in the current schema. These can be handled in a sivalato the case
markers that have phrasal scope over adjunct phrases.

¢ Inthe long term we aim to create a lexicon with semantic regméations follow-
ing Bos et al. (2004). We also would like to explore the waybdotstrapping
the lexicon with the use of unsupervised methods.






Appendix A

Turkish Morpheme Glosses

The following table shows the descriptions of the morphethasare used throughout

the examples in the thesis. Some of these do not correcpcadudace morpheme.

These ones are included in the treebank for information anesaspects. Part-of-

speech tags such &un, Verbare example of this.

| tag | desctiption || tag | description
Alpl 1st person pl NotState | noun-noun derivation
Alsg 1st person singular Noun Noun
A2pl 2nd person plural Num Numeral
A2sg 2nd person singular Opt Opt
Ord Ordinal number A3pl 3rd person plural
A3sg 3rd person singular P1pl Possesive 1st person plural (ou
Abl Ablative Plsg Possessive 1st person singular
Able Abilitative P2pl Possessive 2nd person plural
Acc Accusative P2sg Possessive 2nd person singulal
Acquire derivational morph. P3pl Possessive 3rd person plural
Adj Adjective P3sg Possessive 3rd person singular
Adv Adverb Pass Passive
AfterDoingSo | verb-adverb derivation Past Past tense
Agt Agentative PastPart | Relativisation morpheme
Aor Aorist PCADbI Particle requiring Ablative
As adjective-adverb derivation)| PCAcc Particle requiring accusative
Aslf adjective-adverb derivatiorj| PCDat Particle requiring dative
Become noun-verb derivation PCGen | Particle requiring genitive
ByDoingSo verb-adverb derivation PCins Particle requiring instrumental

Table A.1: Morpheme descriptions
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tag desctiption tag description

Card Cardinal number PCNom Particle requiring nominative
Caus Causative PersP Personal pronoun
Cond Conditional Pnon No possessive marker
Conj Conjunctive Pos Positive

Cop Copular Postp Postposition

Dat Dative Pres Present

DemonsP | DemonsP PresPart Relativiser morpheme
Desr Deontic modality Progl Progressive type 1
Det Determiner Prog2 Progressive type 2
Distrib Distributive Pron Pronoun

Dup Duplicate Prop Proper noun

Equ Equative Punc Punctuation

FitFor noun-noun derivation Ques Question particle

Fut Future QuesP Question pronoun
FutPart Relativiser morpheme Range Range

Gen Genitive Real Real number

Hastily verb-adverb derivation Recip Reciprocal

Imp Implicative Reflex Reflexive

InBetween | noun-noun derivation ReflexP Reflexive Pronoun

Inf Infinitive Rel Relativiser morpheme (nouns)
Ins Instrumental Related noun-adj derivation
Interj Interjection Since noun-adverb derivation
JustLike JustLike SinceDoingSo verb-adverb derivation
Loc Locative Stay verb-verb derivation
Ly adjective-adverb derivatior]| Time time

Narr Narrative Verb Verb

Neces Epistemic modality When verb-adverb derivation
Neg Negative While verb-adverb derivation
With noun-noun derivation Without noun-noun derivation
Ness noun-noun derivation WithoutHavingDoneSo| verb-adverb derivation
Nom Nominative Zero zero morpheme

Table A.2: Morpheme descriptions Continued



Appendix B

|G types in METU-Sabanci Treebank

“Adj+Agt” —HcH (Noun-Ad)) (Verb-Ad))

“Adj+Aslf” — CAsHNA — cA —esiye (olduresiye) (Verb-Adj anddj-Ad))

“Adj+FitFor” —IHk (Noun-Adj)

“Adj+FutPart” —AcAk (Verb-Adj)

“Adj+InBetween” — arasl (Noun-Adj)

“Adj+JustLike” —HmsH (Noun-Adj)

“Adj+PastPart” —dHk (Verb-Adj) These two morphemes are mated according to
their semantic role. They are named after their phonoldgicaperties. They (Pres-
part) can be used for both subject extraction and other tymxtoactions, thus they
are not named in a different way.

“Adj+PresPart” —yAn (Verb-Adj)

“Adj+Rel” —ki (Noun-Adj)

“Adj+Related” —Hk (ex: antropolojik) —sAl (ex: ulusal) (Nm-Adj))

“Adj+With” —IH (Noun-Adj)

“Adj+Without” —sHz (Noun-Adj)

“Adj+Zero”

“Adv+AfterDoingSo” -Hp (Verb-Adv)

“Adv+As” —CA (Verb-Adv) “Adv+AsIf” —CAsHNA (Verb-Adv)

“Adv+ByDoingSo” —ArAk (Verb-Adv)

“Adv+Ly” —CA (Adj-Adv)

“Adv+Since” —DHr (Noun-Adv) — makes temporal adverbs sustydlardirfor years
“Adv+SinceDoingSo” —AlH (Verb-Adv)

“Adv+When” —HncA (Verb-Adv)

“Adv+While” —ken (Verb-Adv)
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“Adv+WithoutHavingDoneSo” —-mAdAn (Verb-Adv)
“Noun+Agt” —HcH (Noun-Noun) (Verb-Noun)
“Noun+FutPart” —AcAk (Verb-Noun)
“Noun+Inf” —mAk —yHs —mA (Verb-Noun)
“Noun+Ness” —IHk (Noun-Noun) (Adj-Noun)
“Noun+NotState” —-mEzIHk (Verb-Noun)
“Noun+PastPart” —-DHGH (Verb-Noun)
“‘Noun+Zero”

“Pron+A3pl”

“Pron+A3sg”

“Verb+Able” —AbHI (Verb-Verb)
“Verb+Acquire” —|lAn (Noun-Verb)
“Verb+Become” —IAs (Noun-Verb)
“Verb+Caus” —DHr -Hr -Ht -t (Verb-Verb)
“Verb+Hastily” —Hver (Verb-Verb)
“Verb+Pass” —HI —Hn (Verb-Verb)
“Verb+Recip” —Hs (Verb-Verb)

“Verb+Reflex” —Hn (Verb-Verb)

“Verb+Stay” —(y)Akal (Verb-Verb)
“Verb+Zero



Appendix C
Some C&C parsing examples

Parsing results of various sentences are given here. Thig@se given in the form
of output text followed by the parser input. The parser isiruthe dependency output
mode, thus each line represents a dependency between twe.wor

This is an example of an extraction from the adjunct clausih ¥ie word-based
lexicon the categories induced do not give the correct paBseseparating the rela-
tivisation morphemedIGI and giving it the correct category we get all the predicate
argument relation$.

pencesinde 2 (S{Y}/ S{Y}<1>){_} 1 kvran_3 0

digin 4 ((NP{Y}/NP{Y}<1>){ }\S{Z}<2>){ } 2 kvran_3 0

digin 4 ((NP{Y}/ NP{Y}<1>){ }\S{Z}<2>){ } 1 tutkuyu 50

anlattin 6 ((S{_}\NP[nom {Y}<1>){ }\NP{Z}<2>){_} 2 tutkuyu 5 0
anlattin 6 ((S{_}\NP[nom {Y}<1>){ }\NP{Z}<2>){ } 1 Sen_1 0

Input:

SeriNP[nom] -you

pencesind&/S <law-Poss3sg-Loc
kivran'S -struggle

digin(NP/NP)\ S —PastPart

tutkuyu NP passion-Acc
anlattin(S\NP[nom])\ NP —tell-Past-P2sg

You spoke about the passion in claws of which you struggle.

ITurkish characters were changed into English counterpattee parser outputs for readibility.
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T YN

Sen pencesinde kivran digin tutkuyu anlattin

Another example with an object relative is:

birlestirip_5 (((S{Y}\NP[nom {Z}){Y}/ (S{Y}\NP[nom {Z}){Y}){ J\NP{V}<1>){_} 3 ellerini_4 0
dugu_8 ((NP{Y}/ NP{Y}<1>){ I\ (S{Z}<2>\NP{Y})){_} 2 oku_ 7 O

oku_7 (S{_J\NP{Y}<1>){ } 1 kitaptan_9 0

dugu_8 ((NP{Y}/NP{Y}<1>){ I\ (S{Z}<2>\NP{Y})){_} 1 kitaptan_9 O

soz_etti 10 ((S{_J}\NP[nom{Y}<1>){ }\NP{Z}<2>){_} 2 kitaptan_ 9 0

soz_etti_10 ((S{_}\NP[nom{Y}<1>){ }\NP{Z}<2>){_} 1 Jul_2 0

Ardindan_1 (S{Y}/ Y}<1>){_} 1 soz_etti 10 O

Input:
Ardindar|S/S
JulNP[nom]
|||

ellerini|NP
birlestirip|((S\NP[nom])/(S\NP[nom]))\NP
s

oku|S\NP

dugu(NP/NP)(S\NP)

kitaptariNP

sOzetti|(S\NP[nom])\ NP

J

N

Ardindan Jul , ellerini birlestirip , oku dugu kitaptan sbz_etti .

In the above exampldirlestirip is not connected to the rest of the dependency
structure. This is because the category assigned to it i;fanative enough. Itis
unable to represent all the dependencies this adverb kseri®ecause it is a derived
adverb, it needs to take its arguments before it is turnezlantadverb. Note that the
morphemic lexicon solves this problem.

Long-distance dependencies that cannot be recoveredhvatlexemic lexicon are
also recovered in the morphemic lexicon. The morpheme thatrals the object ex-
traction ¢dugu ensures the correct predicate-argument structure iveeed between
okudwu andkitap as shown below.
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kucuk_5 ((NP{Y}/ NP{YD{Z}/ (NP{Y}/ NP{Y}){Z}<1>){ } 2 nmmsanin_6 0
masanin_6 (NP{Y}/NP{Y}<1>){_} 1 uzerinde_7 0

"-nDA" 8 (((S{Y}I\NP{Z}){Y}/ (S{Y}\NP{Z}){Y}<1>){ }\NP{W<2>){ } 3 uzerinde 7 0
"Verb+Caus" 10 ({Y}\S{VY}<1>){_} 1 birlestirip 9 0

"-nDA" 8 ((({Y}I\NP{Z}){Y} (YI\NP{Z}){VY}<1>){ }\NP{W<2>){ } 2 birlestirip 90
birlestirip 9 (S{_}\NP{Y}<1>){_} 1 ellerini_4 0

birlestirip 9 (S{_}\NP{Y}<1>){_} 1 Jul 20

"Adv+AfterDoi ngSo” 11 ((S{Y}/ S{VY}<1>){ }\S{Z}<2>){_} 2 birlestirip 9 0

"Adj +PastPart” 14 ((NP{Y}/ NP{Y}<1>){ I\ (S{Z} <2>\NP{Y}){Z}){_} 2 okudugu_13 0
okudugu_13 (S{_}\NP{Y}<1>){_} 1 kitaptan_15 0

"Adj +Past Part"_14 ((NP{Y}/NP{Y}<1>){ I\ (S{Z}<2>\NP{Y}){Z}){_} 1 kitaptan_15 0
soz_etti_16 (S{_}\NP[non{Y}<1>){_} 1 kitaptan_15 0

"Adv+AfterDoi ngSo" _11 ((S{Y}/ S{Y}<1>){ _}\S{Z}<2>){_} 1 soz_etti 16 0
Ardindan_1 (S{Y}/ VY}<1>){_} 1 soz_etti 16 0

Input:

ArdindarjAdv|S/S
Ju|NounNom|NP[nom]

,|Pung,

ellerinijNoun.Acc|NP

kiictikAd] |(NP/NP)/(NP/NP)
masanifNoun.GeriNP/NP
UzerindéNoun_Loc|NP

"-nDA” |Loc|((S\NP)/(S\NP))\NP
birlestirip|Verb|S\NP
"Verb+Caus'|Verb|S\S
"Adv+AfterDoingSo”|Adv|(S/S)\S
,|Pund,

okuduguVerb|S\NP
"Adj+PastPart!Adj|(NP/NP) (S\NP)
kitaptajNoun Abl NP
sOzetti|Verb|S\NP[nom]

.|Pung.

This is an example from the lexemic lexicon. The problem witis parse is the
word-word dependencies are wrong because relativisatiations are not modeled.



184 Appendix C. Some C&C parsing examples

AN AN o

Sonra sen de bir kertenkele oluverip o gobekli , genis burunlu , kirmizi yiizlii adamm Optiigii

, ellerini gezdirdigi ince beyaz derinden ve hatta ruhundan kurtulmak istemistin .

A

de_3 (NP[nom {Y}\NP[nom {Y}<1>){ } 1 sen 2 0

bir 4 (NP{Y}/NP{Y}<1>){ } 1 kertenkele 5 0

oluverip_6 (((NP{Y}/ NP{Y}){_}\NP[nonm {W<1>){ J\NP{V}<2>){_} 3 kertenkele 5 0
oluverip_6 (((NP{Y}/ NP{Y}){ _J\NP[nom {W<1>){ }\NP{V}<2>){_} 2 sen 2 0
,_ 9 conj 1 genis 10 0

,_9 conj 1 gobekli 8 0

, 12 conj 1 kirmzi_13 0

,_ 12 conj 1 burunlu_11 0

optugu_16 ((NP{Y}/ NP{Y}){ }\NP{Z}<1>){ } 2 adanin_15 0
gezdirdigi _19 ((NP{Y}/NP{Y}){_}\NP{Z}<1>){_} 2 ellerini_18 0
, 17 conj 1 gezdirdigi_19 0

, 17 conj 1 optugu_16 0

kurtul mak_26 (NP{Y}\NP{Y}<1>){_} 1 ruhundan_25 0

hatta 24 (NP{Y}/NP{Y}<1>){ _} 1 ruhundan_25 0

ve_23 conj 1 ruhundan_25 0

ve 23 conj 1 derinden_22 0

beyaz 21 (NP{Y}/ NP{Y}<1>){ } 1 ruhundan_25 0

beyaz 21 (NP{Y}/ NP{Y}<1>){ } 1 derinden_22 0

ince_ 20 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

ince_ 20 (NP{Y}/NP{Y}<1>){_} 1 derinden_22 0

yuzlu_14 (NP[nom {Y}/NP[nom {Y}<1>){ } 1 ruhundan_25 0
yuzlu_14 (NP[nom {Y}/NP[nom{Y}<1>){ } 1 derinden_22 0
kirnzi _13 (NP[nom{Y}/NP[nonj{Y}<1>){_} 1 ruhundan_25 0
kirmzi_13 (NP[nonj{Y}/NP[non{{Y}<1>){_} 1 derinden_22 0
burunlu_11 (NP[non{Y}/NP[non{{Y}<1>){ } 1 ruhundan_25 0
burunlu_11 (NP[non{{Y}/NP[non{{Y}<1>){ } 1 derinden_22 0
genis_10 (NP[nom {Y}/NP[nonj{Y}<1>){_} 1 ruhundan_25 0
genis_10 (NP[nom {Y}/NP[nonj{Y}<1>){_} 1 derinden_22 0
gobekli 8 (NP[nomi{Y}/NP[non{{Y}<1>){_} 1 ruhundan_25 0



gobekli _8 (NP[nomj{Y}/NP[nonj{Y}<1>){_} 1 derinden_22 0
0 7 (NP{Y}/NP{Y}<1>){_} 1 ruhundan_25 0

0_7 (NP{Y}/NP{Y}<1>){_} 1 derinden_22 0
istemstin_ 27 (S{_}\NP{VY}<1>){_} 1 ruhundan_25 0
istemstin 27 (S{_}\NP{VY}<1>){_} 1 derinden_22 0
Sonra_1 (S{Y}/ S{Y}<1>){_} 1 istemstin 27 0
Input:

SonrdAdv|S/S -then

serjPronNP[nom]-you

de/ConjNP[nom]\NP[nom]—too

bir|DefNP/NP —a

kertenkelgNounNom|NP izard

oluverip Adv_Verb|((NP/NP)NP[nom])\ NP -be-Hastily-AfterDoingSo
o|DetNP/NPthat

gobekliAdj_NounNP[nom]/NP[nom] belly-With
,|Pundconj

genigAdj|NP[nom]/NP[nom] -wide
burunlyAdj_NounNP[nom]/NP[nom] -Aose-With
,|Pundconj

kirmizi/Adj|NP[nom]/NP[nom] +ed
yuzli|Adj_NounNP[nom]/NP[nom] -face-With
adaminNounGer]NP[nom] —-man-Gen
optugUAdj_Verb|(NP/NP)\NP —kiss-PastPart

,|Pundconj

ellerinijNounAcc|NP -hands-Acc
gezdirdigiAdj_Verb|(NP/NP)NP —move-PastPart
incelAdj|NP/NP -thin

beyazAdj|NP/NP -white

derindemNoun Abl|NP -skin-Poss2sg-Abl
ve|Conjlconj-and

hattdConjNP/NP —even

ruhundafNounAbl|NP —soul-Poss2sg-Abl
kurtulmaKNounVerb|NP\NP —escape-Inf
istemistirVerb|S\NP —want-Narr-Past-P2sg

.|Pund.
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