25 research outputs found

    The power-series algorithm:A numerical approach to Markov processes

    Get PDF
    Abstract: The development of computer and communication networks and flexible manufacturing systems has led to new and interesting multidimensional queueing models. The Power-Series Algorithm is a numerical method to analyze and optimize the performance of such models. In this thesis, the applicability of the algorithm is extended. This is illustrated by introducing and analyzing a wide class of queueing networks with very general dependencies between the different queues. The theoretical basis of the algorithm is strengthened by proving analyticity of the steady-state distribution in light traffic and finding remedies for previous imperfections of the method. Applying similar ideas to the transient distribution renders new analyticity results. Various aspects of Markov processes, analytic functions and extrapolation methods are reviewed, necessary for a thorough understanding and efficient implementation of the Power-Series Algorithm.

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Feature Extraction for image super-resolution using finite rate of innovation principles

    No full text
    To understand a real-world scene from several multiview pictures, it is necessary to find the disparities existing between each pair of images so that they are correctly related to one another. This process, called image registration, requires the extraction of some specific information about the scene. This is achieved by taking features out of the acquired images. Thus, the quality of the registration depends largely on the accuracy of the extracted features. Feature extraction can be formulated as a sampling problem for which perfect re- construction of the desired features is wanted. The recent sampling theory for signals with finite rate of innovation (FRI) and the B-spline theory offer an appropriate new frame- work for the extraction of features in real images. This thesis first focuses on extending the sampling theory for FRI signals to a multichannel case and then presents exact sampling results for two different types of image features used for registration: moments and edges. In the first part, it is shown that the geometric moments of an observed scene can be retrieved exactly from sampled images and used as global features for registration. The second part describes how edges can also be retrieved perfectly from sampled images for registration purposes. The proposed feature extraction schemes therefore allow in theory the exact registration of images. Indeed, various simulations show that the proposed extraction/registration methods overcome traditional ones, especially at low-resolution. These characteristics make such feature extraction techniques very appropriate for applications like image super-resolution for which a very precise registration is needed. The quality of the super-resolved images obtained using the proposed feature extraction meth- ods is improved by comparison with other approaches. Finally, the notion of polyphase components is used to adapt the image acquisition model to the characteristics of real digital cameras in order to run super-resolution experiments on real images

    Architectures and implementations for the Polynomial Ring Engine over small residue rings

    Get PDF
    This work considers VLSI implementations for the recently introduced Polynomial Ring Engine (PRE) using small residue rings. To allow for a comprehensive approach to the implementation of the PRE mappings for DSP algorithms, this dissertation introduces novel techniques ranging from system level architectures to transistor level considerations. The Polynomial Ring Engine combines both classical residue mappings and new polynomial mappings. This dissertation develops a systematic approach for generating pipelined systolic/ semi-systolic structures for the PRE mappings. An example architecture is constructed and simulated to illustrate the properties of the new architectures. To simultaneously achieve large computational dynamic range and high throughput rate the basic building blocks of the PRE architecture use transistor size profiling. Transistor sizing software is developed for profiling the Switching Tree dynamic logic used to build the basic modulo blocks. The software handles complex nFET structures using a simple iterative algorithm. Issues such as convergence of the iterative technique and validity of the sizing formulae have been treated with an appropriate mathematical analysis. As an illustration of the use of PRE architectures for modem DSP computational problems, a Wavelet Transform for HDTV image compression is implemented. An interesting use is made of the PRE technique of using polynomial indeterminates as \u27placeholders\u27 for components of the processed data. In this case we use an indeterminate to symbolically handle the irrational number [square root of 3] of the Daubechie mother wavelet for N = 4. Finally, a multi-level fault tolerant PRE architecture is developed by combining the classical redundant residue approach and the circuit parity check approach. The proposed architecture uses syndromes to correct faulty residue channels and an embedded parity check to correct faulty computational channels. The architecture offers superior fault detection and correction with online data interruption

    Efficient algorithms for arbitrary sample rate conversion with application to wave field synthesis

    Get PDF
    Arbitrary sample rate conversion (ASRC) is used in many fields of digital signal processing to alter the sampling rate of discrete-time signals by arbitrary, potentially time-varying ratios. This thesis investigates efficient algorithms for ASRC and proposes several improvements. First, closed-form descriptions for the modified Farrow structure and Lagrange interpolators are derived that are directly applicable to algorithm design and analysis. Second, efficient implementation structures for ASRC algorithms are investigated. Third, this thesis considers coefficient design methods that are optimal for a selectable error norm and optional design constraints. Finally, the performance of different algorithms is compared for several performance metrics. This enables the selection of ASRC algorithms that meet the requirements of an application with minimal complexity. Wave field synthesis (WFS), a high-quality spatial sound reproduction technique, is the main application considered in this work. For WFS, sophisticated ASRC algorithms improve the quality of moving sound sources. However, the improvements proposed in this thesis are not limited to WFS, but applicable to general-purpose ASRC problems.Verfahren zur unbeschränkten Abtastratenwandlung (arbitrary sample rate conversion,ASRC) ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvarianteVerhältnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese(WFS), einem Verfahren zur hochqualitativen, räumlich korrekten Audio-Wiedergabe, untersucht.Durch ASRC-Algorithmen kann die Wiedergabequalität bewegter Schallquellenin WFS deutlich verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystembenötigten simultanen ASRC-Operationen ist eine direkte Anwendung hochwertigerAlgorithmen jedoch meist nicht möglich.Zur Lösung dieses Problems werden verschiedene Beiträge vorgestellt. Die Komplexitätder WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmensignifikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissenermöglicht. Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlungmit einer Komplexität, die mit der Anwendung einfacher konventioneller ASRCAlgorithmenvergleichbar ist. Dieses Partitionierungsschema stellt jedoch auch zusätzlicheAnforderungen an ASRC-Algorithmen und erfordert Abwägungen zwischen Performance-Maßen wie der algorithmischen Komplexität, Speicherbedarf oder -bandbreite.Zur Verbesserung von Algorithmen und Implementierungsstrukturen für ASRC werdenverschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytischeBeschreibungen für den kontinuierlichen Frequenzgang verschiedener Klassen von ASRCStruktureneingeführt. Insbesondere für Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden kompakte Darstellungen hergeleitet, die sowohl Aufschluss über dasVerhalten dieser Filter geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.Einen zweiten Schwerpunkt bildet das Koeffizientendesign für diese Strukturen, insbesonderezum optimalen Entwurf bezüglich einer gewählten Fehlernorm und optionaler Entwurfsbedingungenund -restriktionen. Im Gegensatz zu bisherigen Ansätzen werden solcheoptimalen Entwurfsmethoden auch für mehrstufige ASRC-Strukturen, welche ganzzahligeÜberabtastung mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt.Für diese Klasse von Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen,welche in Verbindung mit den entwickelten optimalen Entwurfsmethoden signifikanteQualitätssteigerungen ermöglichen.Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwierigkeitbei der Auswahl eines für eine gegebene Anwendung geeigneten Verfahrens.Evaluation und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wirdzum Einen der Einfluss verschiedener Entwurfsparameter auf die erzielbare Qualität vonASRC-Algorithmen untersucht. Zum Anderen wird der benötigte Aufwand bezüglich verschiedenerPerformance-Metriken in Abhängigkeit von Design-Qualität dargestellt.Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschränkt, sondernsind in einer Vielzahl von Anwendungen unbeschränkter Abtastratenwandlung nutzbar
    corecore