
 Eindhoven University of Technology

BACHELOR

Transient behavior of queues at signalized traffic intersections

van Riel, Jeroen

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1c488ca8-655e-4eed-8be6-3177b31f4cc6

Transient Behavior of Queues at
Signalized Traffic Intersections

Bachelor Thesis
Applied Mathematics

Eindhoven University of Technology
Supervised by Dr. ir. M.A.A. Boon

July 2021
Jeroen van Riel

Contents

1 Introduction 1

2 Background and history of traffic modeling 3
2.1 Traffic flow modeling . 3
2.2 Fundamental diagram and macroscopic models . 3
2.3 Microscopic models . 5

2.3.1 Model categories . 6
2.3.2 Cellular automaton . 6
2.3.3 Car-following model in SUMO . 7

2.4 Queueing models . 8

3 Probabilistic model for queue length 10
3.1 Classical models . 10
3.2 Cycle-to-cycle model . 11
3.3 Bulk service queue . 13
3.4 Continuous within-cycle extension . 15
3.5 Discussion . 17

4 FCTL model 18
4.1 Model description and stationary analysis . 18
4.2 FCTL as extension of bulk service queue . 20
4.3 Determining empty queue probabilities . 21
4.4 Inversion of pgf . 23
4.5 Markov chain . 25
4.6 Discussion . 26

5 Microscopic simulation 27
5.1 Setup . 28
5.2 Measuring departures . 28
5.3 Measuring delay . 29
5.4 Measuring queue length . 31
5.5 Discussion . 33

6 Conclusions and further work 34

A Cellular automaton 40

B Transient bulk service queue 43
B.1 Transient queue length in bulk service queue . 43
B.2 Experiment loading . 43
B.3 Calculating the queue length distribution for each cycle using a matrix 43
B.4 Evolution of full distribution per cycle . 44
B.5 Expected value of overflow queue per cycle . 44

i

Contents

B.6 Queue length within a cycle . 45
B.6.1 Plot within a single cycle . 47
B.6.2 Verify with overflow queue . 48

C Transient FCTL queue 50
C.1 Transient queue length in FCTL queue . 50
C.2 Experiment loading . 50
C.3 Calculating the queue length distribution for each time step using two matrices . . . 50
C.4 Evolution of full distribution per timestep . 51
C.5 Expected value per time step . 52
C.6 Expected value of overflow queue per cycle . 52
C.7 Average distribution over all time steps . 53
C.8 Overflow queue of last cycle . 54
C.9 Percentiles . 55

D SUMO script snippets 56
D.1 Experiment data class . 56
D.2 Script for starting SUMO simulation runs . 58
D.3 Tool departure-counter . 60
D.4 Live queue length graph (streaming XML parser) . 62

ii

Chapter 1

Introduction

Traffic congestion is one of the major problems of modern urban infrastructure, because it causes
waste of energy, driver delays and pollution. Important first steps towards improvement are un-
derstanding and measuring the performance of existing road network, for which different kinds of
models have been developed since the 1930s. Applications of these models may be roughly divided
into two categories: design of infrastructure and dynamic control of traffic.

When building new infrastructure, traffic models are used to assess and compare different designs
based on measures such as capacity and delay. We note that expanding road capacity does not always
solve the problem of congestion and can even cause couterproductive results as shown by Ding &
Song (2012). Models may also be used to understand the causes for congestion in existing road
networks, which is important for maintenance.

The development of intelligent traffic control solutions, which often goes under the name of smart
mobility, provides interesting alternatives to building roads. Existing traffic control devices include
signs, traffic lights, ramp meters for highways and real-time traffic information on digital signs or
via radio. This paper focuses on traffic lights, which provide a way of distributing the capacatiy of
an intersection over multiple connected road segments in a safe and efficient way. This means that
they have a direct impact on the performance of road networks, which makes it an interesting field
of study. Assessing the performance of traffic lights can be done by studying the delays for drivers or
the dynamics of the vehicle queues by using queueing models or simulations. Traffic engineers may
use these models to calibrate green and red times for traffic lights with fixed settings. In combination
with sensors, these models may form the basis of dynamic control algorithms that can, for example,
enable green waves that respond to the current demand.

The rapid integration of autonomous driving and sensing technology in vehicles opens up many
new possible approaches to traffic control. We give a short overview of some developments in the
study of traffic control devices, which may be seen as two converging branches of research. On
one hand there are innovations that make the infrastructure more responsive to the traffic. On the
other hand, while modern vehicles already assist the driver heavily, this trend is heading towards the
adoption of fully autonomous vehicles. The two branches meet in the field of infrastructure-to-vehicle
(I2V) communication. There are simulation software packages that can be used to design wireless
protocols for this kind of communication. One such simulation tool is Veins (Sommer et al. (2011)),
which is in fact a combination of OMNeT++ (Varga (2010)), an event-based network simulator, and
SUMO (Lopez et al. (2018)), a road traffic simulator. In very general terms, the network simulator
models the temporal behavior of the communication and the road traffic simulation models the
dynamic environment in which this communication must take place. Some of the issues that arise
when implementing I2V are the placement of access points, signal blocking caused by buildings,
and transmission delays. One may imagine an intersection that is only available for autonomous
vehicles that are able to connect with the infrastructure. In such environment, Timmerman & Boon
(2021) have shown that efficient scheduling algorithms can be constructed that let vehicles cross the
intersection in platoons without requiring them to stop.

Dynamic traffic control is a popular field of study with exciting new challenges that is getting

1

Chapter 1. Introduction

more attention lately1. In order to study and optimize the performance of dynamic control systems,
it is necessary to have accurate traffic models first. When we want to apply this model-based
optimization, models that allow for fast numerical computation are preferred. Complex models that
try to capture every detail of the behavior of traffic require a lot of computation time, which is often
not available when real-time decisions need to be made. On the other hand, models that are too
simplistic are not able to capture phenomena found in real situations, which may result in a loss of
predictive power.

In this report, we will discuss some models of varying complexity for the queueing process of
vehicles at a traffic lights with fixed control, so the length of the red and green phases are constant.
We study the behavior of the length of the queue, with a particular focus on transient behavior.
Many research papers only analyze the steady-state queues, but it may be argued that transient
queue length is of particular importance for dynamic control. Being able to predict the queue length
for each individual lane connected to a traffic light allows us to balance these lenghts by adjusting the
settings of the traffic light program. When intersections are close to each other, it may happen that
a long queue starts causing congestion or even blockage at the other intersection. This phenomenon
is called spillback and may possibly be prevented by smart traffic lights.

The remainder of this thesis is organized as follows. Some history of the subject of traffic modeling
in general is given in Chapter 2, along with some background on the development of microscopic
simulation techniques and the role of car-following models. Section 2.4 gives a very brief introduction
of mathematical queueing models and their basic assumptions. Chapter 3 presents the probabilistic
model that has been proposed by Viti & van Zuylen (2010) for modeling the transient behavior of
queues at signalized intersections while supporting general arrival and departure distributions. We
will show that this model generalizes the classical bulk service queueing model in Section 3.3. A
continuous extension of this model is discussed in Section 3.4. We discuss the classical FCTL model
in Chapter 4 and present some existing results along with a numerical comparison with the bulk
service queue. We turn to microscopic simulation models in Chapter 5, where we explain how we
interact with the simulation software package SUMO to perform experiments in order to compare a
SUMO model with the FCTL queue. We conclude our work in Chapter 6 and mention some pointers
to possible further work. A selection of the scripts and notebooks that we used in this study have
been included in the appendices.

1See for example this news article (in Dutch) about a recent implementation of a queue prediction system
near Schiphol https://www.verkeersnet.nl/mobiliteitsmanagement/34860/noord-holland-voorspelt-
wachtrijen-voor-verkeerslicht/

2

https://www.verkeersnet.nl/mobiliteitsmanagement/34860/noord-holland-voorspelt-wachtrijen-voor-verkeerslicht/
https://www.verkeersnet.nl/mobiliteitsmanagement/34860/noord-holland-voorspelt-wachtrijen-voor-verkeerslicht/

Chapter 2

Background and history of traffic
modeling

This chapter aims to give an overview of different aspects of traffic modeling. First, we discuss some
models from the theory of traffic flow modeling, which tries to explain the collective behavior of
vehicles by modeling individual vehicle movement or by considering a large amount of vehicles as a
continuum. After that we turn to queueing models for modeling queues near signalized intersections.

2.1 Traffic flow modeling
Traffic flow modeling is an important aspect in traffic modeling, since the behavior of vehicles on links
determines the arrival process at (signalized) intersections. Therefore, we include a short overview
of the different types of traffic models that exist. For a high-level overview of the development of
traffic flow models in historical perspective, we refer to van Wageningen-Kessels et al. (2015).

The earliest work on traffic flow modeling stems from the 1930s, when Greenshields (1934) studied
how the head-to-head distance between vehicles is related to their velocity, which led to the concept
of the fundamental diagram. During the 1950s and 1960s, three categories of flow models arised
that aim to describe the temporal dynamics of traffic: Studying aggregated quantities over a large
number of vehicles is the aim of (1) macroscopic models. These models consider traffic as being a
continuum, and often focus on measures of traffic at a large scale such as flow (vehicles per hour) or
density (vehicles per kilometer) at a specific road cross-section. They are sometimes derived from
and explained as fluid models and many of them are described in terms of differential equations. In
contrast, (2) microscopic models try to model the dynamics of each individual vehicle by specifying
how its speed changes based on a set of rules. We will discuss some variants of these so-called car-
following models later in this chapter, because they form the basis of many microscopic simulation
software packages that are used in practice. The third category is that of mesoscopic models (3),
whose level of detail is in between that of micro- and macroscopic models. In Chapter 5 we will use
a microscopic model in order to study the predictive capability of an equivalent queueing model.

2.2 Fundamental diagram and macroscopic models
Macroscopic traffic flow models are used to get insight into the relationships between measures of
traffic flow such as velocity, vehicle density, delay and congestion. Traffic flow is often characterized
by the following equation

q = vρ ,

where q is the flow in vehicles per hour, v is the speed in kilometers per hour and ρ is the vehicle
density in vehicles per kilometer.

3

Chapter 2. Background and history of traffic modeling

(a) Greenshields (b) Daganzo

Figure 2.1: Schematic illustration of the two most well-known classic fundamental diagrams, showing
the flow (vehicles per second) as a function of the vehicle density (vehicles per meter).

The classical fundamental relation (later called fundamental diagram) introduced by Greenshields
et al. (1935) relates the vehicle density ρ (in vehicles per kilometer) to the velocity of vehicles v
(kilometers per hour) as a linear relationship v(ρ) = −αρ for some α ≥ 0. Therefore, the relationship
between density and flow is parabolic, see Figure 2.1. This agrees with the intuition that increased
vehicle density will increase the probability of traffic jams, which will eventually decrease the total
traffic flow. Interesting phenomena related to traffic congestion can be observed from fundamental
diagrams obtained from real traffic counts. Based on these emperical fundamental diagrams, other
models have been proposed that better capture certain phase change phenomena observed in real
traffic, of which the model of Daganzo (1994) is the most well-known. An interesting phenomenon
is traffic hysteresis in the congested phase (corresponding to the part of the fundamental diagram
to the right of ρcrit in Figure 2.1). This hysteresis can be observed as different trajectories in
the emperical fundamental diagram for the period in which congestion increases and the period
when congestion decreases. Zhang (1999) argued that this effect occurs due to differences in how
fast vehicles accelerate or decelerate and it has also been observed in larger traffic networks by
Geroliminis & Sun (2011).

Whereas fundamental diagrams capture the steady-state behavior of traffic systems very well,
macroscopic models can be viewed as a tool for explaining the temporal dynamics of the fundamental
diagram. The first macroscopic traffic flow model was developed independently by Lighthill &
Whitham (1955) and Richards (1956). Their model was later called the LWR model, which is
essentially a law of conservation of vehicles. Let N(x, t) denote the cumulative number of vehicles
(this specification of traffic flow is called the Eulerian coordinate system see Knoop (2017)) that has
passed a certain point x on the road at time t. The flow at that point may then be expressed as

q(x, t) =
∂N(x, t)

∂t
,

and the density may be expressed as

ρ(x, t) = −∂N(x, t)

∂x
.

The negative sign is necessary because theN is monotonically decreasing in x for a fixed t (cumulative
counts are higher upstream at any point in time). If N is twice differentiable, we get

∂2N

∂x∂t
=
∂2N

∂t∂x
,

from which it follows that
∂q

∂x
+
∂ρ

∂t
= 0 ,

which models the conservation of vehicles on a road segment. The main assumption of the LWR
model is that the flow q is a function of the density ρ alone in the fundamental relationship, so
q(ρ) = v(ρ)ρ.

4

Chapter 2. Background and history of traffic modeling

0 20 40 60 80 100 120 140 160 180 200
Time

0

200

400

600

800

Di
st

an
ce

Trajectories near intersection at 500m.

Figure 2.2: Trajectory plot of vehicles approaching an intersection at 500m. Both the green and the
red phase take 20 time steps and the green phases are indicated by horizontal green lines. The very
sharp halt at t = 160 was due to an emergency stop, which often happens in the SUMO simulation
when no amber phase is specified. A similar plot of trajectories has been used for the cover of this
report.

2.3 Microscopic models
Instead of considering collective behavior, microscopic models provide a desciption of the individual
behavior of vehicles or drivers. The two most important microscopic model categories are car-
following models and lane changing models. Car-following models try to model the change of speed
of an individual vehicle based on the vehicle ahead and the general environment (road condition,
speed limits, near an intersection). Furthermore, lane changing models can be used to model when a
particular vehicle decides to switch lanes, which also enables us to model the process of overtaking.
This study only considers single-lane traffic, so lane changing behavior is not relevant.

There are numerous traffic simulation software packages that are based on car-following models
to simulate urban traffic. Such software provides tools to construct a microscopic model of the
network infrastructure, which includes traffic lights. We can insert vehicles of different types into
this network and assign each vehicle a route to follow. Determining these individual route choices
based on the current state of the network is an interesting field of study on its own. Traffic demand
can be defined using origin-destination (O-D) matrices, which specify the amount of trips between
two locations in the network. These O-D matrices can be obtained by measuring real traffic in a
specific area. Another model category that is often used are user equilibrium traffic assignment
models. The cost of a certain route depends on the current traffic conditions, so drivers will try to
find the least congested route (an increasing number of drivers is able to do this using navigation
software that uses real-time information). Using mathematical optimization techniques a set of
routes with the least total cost may be found. Once routes have been calculated, the microscopic
simulation software computes the position a vehicle in the network over the course of a certain
period. We can then choose to measure certain values that we are interested in. Figure 2.2 shows
an example of simulated trajectories of vehicles near a traffic light. We will discuss the model that
was used to construct this plot in more detail in Chapter 5.

5

Chapter 2. Background and history of traffic modeling

The challenge of constructing a realistic car-following model is to maintain the collective phe-
nomena found in real traffic. The accuracy of car-following models can be assessed by considering
for example the fundamental diagram (flow-density relationship), the average gap between vehicles,
or the passing time, the time which a vehicle needs to travel through a particular road segment. The
latter measure is particularly interesting when studying the queueing process at intersections. Even
the car-following model in the widely used traffic simulation software SUMO (see Chapter 5) has
still issues in capturing the dynamic behavior of real traffic: for example, Bieker-Walz et al. (2017)
found that the passing time of cars bending left on a traffic intersection with green light shows much
less variance than what was found from real recordings of trajectories.

In the following we will give a short overview of the development of car-following models and the
current status in microscopic simulation software. We refer to Brackstone & McDonald (1999) and
Krauss (1998) for a more elaborate overview.

2.3.1 Model categories
Most car-following models are based on the idea that drivers only change their speed at the moment
when their current speeds is not equal to some desired speed, which may be based on other traffic
or road and safety conditions such as speed limitations. Therefore, most car-following models can
be thought of as a differential equation of the form

dvi(t)

dt
=
Vdes − vi

τ
,

where vi is the current velocity, Vdes the desired velocity, and τ a time scaling factor that models the
speed of adaptation. Initially, traffic flow was modelled using results from fluid dynamics. Later, it
was recognized that when the density of cars gets higher, a phase transition happens from laminar
flow to the occurance of start-stop waves. The ability of a car-following model to reproduce this
behavior has been an important requirement. We now shortly present some of the different categories
of car-following models, as a summary of the overview that Krauss (1998) provides.

Classical car-following models. In most classical models only the motion of the vehicle ahead is
considered. The most simple model in this category is

dvi(t)

dt
=
vi+1(t)− vi(t)

τ
,

which has a stable steady state solution, so it does not model congestion. Therefore, extensions have
been proposed to model instability at higher traffic densities.

Optimal velocity model. Instead of adjusting the velocity based on the velocity of the car ahead,
it is also possible to use the distance to the vehicle ahead (gap) in the formula. These models are
called optimal velocity models.

Discrete models. Instead of solving a differential equation, it may be more efficient computation-
ally to implement a model in discrete time, or even in discrete space. This category is illustrated by
the model of Nagel and Schreckenberg, which we will discuss shortly in Section 2.3.2.

Modeling based on human behavior. An example of this category is the model of Wiedemann
(1974), which is also available in SUMO. These models are focused on the perception and reaction
of human drivers. It may be reasonable, for example, to assume that human drivers are not able to
perceive very small changes of velocity, and thus are also not able to react to them. Keeping perfect
constant velocity is also not reasonably possible for most human drivers.

2.3.2 Cellular automaton
Among the first car-following models was a class of discrete time and space models, or cellular
automatons. For single-lane traffic, Nagel & Schreckenberg (1992) proposed a cellular automaton
based on some simple rules, in which the phase transition from laminar flow to start-stop waves
could be observed. They model the lane as a finite array of L positions, each of which may contain

6

Chapter 2. Background and history of traffic modeling

Figure 2.3: Behavior of an artificial traffic jam in the cellular automaton of Nagel and Schreckenberg
with a lane of length L = 100, insertion probability of pi = 0.8 and a probability of drivers slowing
down of p = 0.45. The traffic jam is artificial because the initial state was constructed for the
purpose of this illustration.

exactly one vehicle with an integer velocity between zero and vmax. In each time step, the velocity
v of a vehicle at position i is updated based on the distance j to the next car in front of it. If
j > v + 1, the car will accelerate (v → v + 1). If j ≤ v, then it will decelerate (v → j − 1) to avoid
direct collision. To model the random behavior of human driving, after these updates the velocity
may further decreases by one with some probability p.

They consider both traffic in a closed system (periodic boundaries) and in a bottleneck situation
(open boundaries). The closed system may be viewed as a circle on which a fixed number of cars are
driving (race circuit). In the open system, a new car with velocity zero is put on the first site once
it becomes free. By measuring the density and flow of cars in the system, averaged over 106 time
steps, they constructed a fundamental diagram for the closed system that shows the same shape as
diagrams constructed from real traffic data.

For the sake of illustration, we implemented this simple model in Python, see Appendix A.
Vehicles are being inserted at the first position of the lane at a cruise speed of vmax. Whenever
there is enough head-space (so the first vehicle in the lane is at position j ≥ vmax + 1), a new
vehicle will be inserted with probability pi. Even this simple model is accurate enough to produce
real traffic phenomena such as backpropagation of traffic jams, as can be seen in Figure 2.3. Using
a discrete model may be advantageous in terms of computational speed. Therefore, it is useful to
know that this fundamental phase transition can already be reproduced by a discrete model.

2.3.3 Car-following model in SUMO
SUMO is an example of a microscopic simulation software package that is used a lot by both
researchers and practitioners in the field of traffic engineering. It supports a lot of different car-
following models, but for our discussion in Chapter 5, we will stick to the default model, which was
developed by Krauss (1998). In his thesis, he argues that the fundamental diagram alone is not

7

Chapter 2. Background and history of traffic modeling

sufficient when assessing the accuracy of a car-following model, because there are other dynamical
phenomena that are not captured in this diagram. The main point he makes is that traffic flow can
exist in three different states: free flow, jammed traffic and synchronized traffic. The model family
that Krauss proposes aims to be able to model these three traffic states using only three parameters:
acceleration, deceleration and human driving perfection.

2.4 Queueing models
We will now give a very brief introduction to the mathematical analysis of queueing models, which
appear in a wide range of fields. Queueing models are used to model, for example, communication
systems, production systems, call centers and insurance claims. Earliest research on queueing models
was done by Danish mathematician Erlang in the 1910s when he was studying the queueing behavior
of phone calls at the Copenhagen Telephone Company (we refer to Brockmeyer et al. (1948) for an
overview of the extensive body of work that Erlang left behind). A queue generally consists of one
or more servers to which customers arrive for service. An analogy that is often used is that of a
cashier at a shop, to which customers arrive at random. The cashier can handle one customer at a
time, so customers that arrive while the cashier is busy should join the back of the queue. In very
general terms, queueing models are characterized by the following three components:

(A) rate of arrivals, described by the distribution of inter-arrival times,

(S) distribution of service times,

(c) number of servers.

Kendall (1953) introduced the now widely used notation for specifying each of these components
as A/S/c. Poisson arrivals, so with exponentially distributed inter-arrival times, are denoted by
the letter M (from memoryless or Markovian). For example, the elementary queue with Poisson
arrivals (so exponential inter-arrival times) and exponential service times with one server is denoted
as M/M/1.

When analyzing the behavior of queues, a number of different performance measures may be
considered. First of all, the delay expresses the total time that a customer is in the system. Further-
more, the queue length (number of customers) can be considered, which is of particular interest in
this study. When analyzing the performance of a queue, researchers often consider the steady-state
behavior. This means that a situation is considered in which the distribution of the queue length
does not change over time. This stable state can only exist if the queue length does not grow indef-
initely over time, for which it is required that, loosely speaking, the amount of work that arrives is
less than the amount of work that can be processed per time unit. More formally, let λ be the rate
of arrival and EB the mean service time, then the amount of work arriving per time unit is given by
ρ := λEB. One server can handle 1 unit of work per time unit, so when there are c servers available,
the condition for stability is ρ < c. In the case of a single single server, ρ is called the occupation
rate, because it represents the fraction of time during which the server is actually serving customers.
The situation is a little bit different for queues of vehicles at traffic lights, because the server is not
active during the period when the traffic light is red, which affects the stability condition as we will
see in subsequent chapters.

There are also applications for which the non-steady, or transient, behavior is more interesting.
For example, in dynamical control of traffic lights, it may be the case that the arrival rate is higher
than the departure rate (ρ ≥ 1), so that a steady-state does not even exist. In that case, it is only
possible to use transient measures. When the system is stable (ρ < 1) we may make statements
about how fast the system converges to the stationary state.

The expected value of the queue length gives already a lot of insight in the behavior of the
queue. However, when we know the full distribution of the queue length at a particular time, we
can calculate percentiles. In the setting of traffic light queues, these may be interpreted as the
probability that the queue lenght ever grows beyond a given length. The lanes before a traffic light
are of finite length, so when the queue grows beyond this length, it may start to cause congestion

8

Chapter 2. Background and history of traffic modeling

(a) Horizontal queue (b) Vertical queue

Figure 2.4: Illustration of the two different models categories for traffic light queues. The horizontal
model does take into account the speed and position of each approaching vehicle on the lane and the
acceleration that is needed for each vehicle to depart once the traffic light turns green. The vertical
queue only considers the number of vehicles in the queue and assumes that each vehicle needs a
constant time to depart from the queue during the green phase.

at an upstream intersection, which is known as spillback. The full distribution of the queue length
enables us to calculate the probability of spillback.

Analyzing queueing systems can be done in a very elegant way using probability generating
functions (pgf). However, these methods have often been found to be prohibitive for practical
application Abate et al. (2000), because a pgf needs to be inverted to obtain the actual probability
distribution. The process of inversion depends on the actual generating function at hand. However,
for the queueing models that we consider in this report, formulas are readily available for most
distributions that are used in practise, as we will see in Section 4.4.

The rest of this report will focus on the analysis of a single lane for traffic on which a single traffic
light is situated. The traffic light is assumed to have a fixed program, which means that the durations
of the green phase and the red phase do never change. We will first consider two mathematical
queueing models and then compare one of them to a microscopic model. For the queueing models,
we use existing methods for computing the stationary queue length. The microscopic model can only
provide us with approximations of the stationary queue length. The mathematical queueing models
do not describe the exact position (in meters) of a vehicle in the queue. When an arrival happens,
it is assumed that the vehicle stops immediately and joins the back of the queue. For this reason,
these models are often called vertical queueing models because one may imagine that the vehicles
form a stack just before the traffic light. When the light turns green, vehicles leave one by one at
cruise speed, so acceleration is neglected. In contrast, models that do describe the exact speed and
position of vehicles in the queue, such as the microscopic model that we constructed in SUMO, are
called horizontal queueing models. We tried to make the distinction clear using the illustration in
Figure 2.4. Comparing results between both model categories depends on the exact definition of
queue length in vertical models, which is an interesting issue to which we will return in Chapter 5.

We will now provide some general notation that we will use throughout the rest of this report.
Let X be a random variable. We denote the expected value of X as µX and the variance as σ2

X .
The variables Tg and Tr are used to denote the duration of the green phase and the red phase (in
seconds) of a traffic light program, respectively. The total duration of one cycle of the traffic light
program is denoted by Tc = Tg + Tr. We use Q to denote the random variable of queue lenght in
number of vehicles.

9

Chapter 3

Probabilistic model for queue length

We are interested in the transient behavior of a queue of vehicles at a signalized intersection. Because
of the dynamic nature of modern traffic, it is often not realistic to assume a stationary arrival rate
over a long period of time. Therefore, a description of the transient behavior with varying arrivals
is more appropriate for practical applications. Furthermore, a stationary analysis is only possible if
the system is undersaturated (ρ < 1). However, in real traffic, it is no exception that the system
becomes temporarily unstable because of a high arrival rate.

This chapter is mainly devoted to a discussion of the work done by Viti & van Zuylen (2010),
who proposed a probabilistic method for calculating the full distribution of a queue at a signalized
intersection for non-stationary arrivals and departures. First, some existing results and classical
formulas are presented in Section 3.1. In Section 3.2, we introduce the cycle-to-cycle model of
Viti and van Zuylen that describes the queue length just after the green phase has ended, called
the overflow queue. We first discuss this model under the assumption of stationary arrivals and
departures, in which case it may be described as a Markov chain. In this situation, we show in
Section 3.3 that it is equivalent to the classical bulk service queue. Section 3.4 explains the continuous
within-cycle extension that Viti and van Zuylen propose to describe the queue length at any moment
during a cycle. There, we also discuss how to handle non-stationary arrivals and departures. We
note that the work of Viti and van Zuylen also appeared as Viti & van Zuylen (2009), where they
also consider the case of vehicle actuated traffic lights, which we will not discuss in this study.

3.1 Classical models
We will shortly discuss some classical formulas for the overflow queue that are also mentioned by
Viti & van Zuylen (2010). Let us first define some more notation. Let Tr and Tg denote the red
and green times, respectively. Following Viti and van Zuylen, we will assume in this chapter that a
cycle of length Tc = Tr + Tg starts with the red phase. Let n be the cycle number, starting from
1, and let τn = n · Tc ≥ 0 denote the time epoch of the end of this cycle. Let the overflow queue
of cycle n, which we denote as QO(n), be defined as the number of vehicles in the queue just after
the green phase of this cycle has ended, so at τn. Let µa be the average arrival rate in vehicles per
second and let µd be the saturation flow rate, which is the average number of vehicles that can pass
the intersection during the green phase (‘d’ for departures). In traffic engineering, the average signal
capacity is defined as c = µd · Tg/Tc. The degree of saturation measures how much demand a traffic
intersection experiences compared to its capacity and is defined as

x = µa/c =
µa · Tc
µd · Tg

. (3.1)

This value may be used to formulate a condition for stability of the traffic light as x < 1. This
condition is equivalent to ρ < 1 that we discussed in Section 2.4. Under this stability condition,

10

Chapter 3. Probabilistic model for queue length

Miller (1968) described the expected overflow queue in equilibrium as

E[QO] =
exp
[
− 1.33 ·

√
µd · Tg · (1− x)/x

]
2 · (1− x)

, (3.2)

which is one of the most popular expressions used by practitioners. This formula was later simplified
by Akçelik (1980) to

E[QO] =
1.5 · (x− x0)

1− x
, (3.3)

where x0 = 0.67 + µd · Tg/600, which represents a threshold for when the overflow queue becomes
non-negligible. Expression (3.3) is valid for x0 < x < 1, and zero for x ≤ x0. Using the idea of a
coordinate transformation of Kimber & Hollis (1979), Akçelik (1980) generalized his expression to
provide a time-dependent description of the expected overflow queue

E[QO(t)] =
c · t
4

(
x− 1 +

√
(x− 1)2 +

12 · (x− x0)

c · t

)
, (3.4)

which simplifies to (3.3) for t→∞ and x < 1. Wu & Brilon (1990) have shown that this expression
does not yield good approximations when the arrival rate is non-stationary. Moreover, one may
argue that this expression is the result of a heuristic approach of fitting formulas to real traffic
measurements without a valid theoretical underpinning to construct a general model.

The goal of Viti and van Zuylen is to provide a methodological framework for computing the
transient queue length at a signalized intersection with fixed control (constant red and green times).
Calculating the transient dynamics also allows one to consider systems that are temporarily unstable.
Moreover, instead of only focusing on the expected value, Viti and van Zuylen consider the full
distribution of the queue length. For reasons of presentation, most figures in this report will only
show the expected value. However, we note that knowing the full distribution of X allows us to
compute measures such as percentiles P(X ≤ x) or the probability of spillback P(X > x) for a
given maximum queueing space x. The latter may be particularly interesting if one is interested in
congestion effects in a network with several intersections close to each other.

3.2 Cycle-to-cycle model
Viti and van Zuylen first introduce a model for the evolution of the overflow queue from cycle to
cycle. Later, they extend this model to also describe the queue length in continuous time. Let us
now consider this discrete cycle-to-cycle model. Note that the formulation here may use slightly
different notation, because we think that the orignal formulas contained some small unintentional
errors. We will first consider the model as a Markov chain. The states QO(n) ≥ 0 represent the
overflow queue length at the end of cycle n, so at time epoch τn. The main principle of the model
is that the overflow queue QO(n) can be completely described in terms of the overflow queue of the
previous cycle QO(n−1) and the total number of arrivals An and departures Dn in the current cycle
(τn − Tc, τn] by the following relationship

QO(n) = max{0, QO(n− 1) +An −Dn}. (3.5)

It is assumed that the arrivals An and departures Dn in cycle n are independent and identically
distributed (i.i.d.) according to random variables A and D, respectively. This assumption guarantees
that the model is a Markov chain, which enables us to compute the queue length in a cycle from the
previous cycle by matrix multiplication with a transition matrix. We now formulate this transition
matrix Pij , which gives the probability of moving from state QO(n − 1) = j to state QO(n) = i
during any cycle n. The probability of transitioning to a non-empty queue (i > 0) is given by

Pij =
∑

j+a−d=i

P(A = a) · P(D = d), (3.6)

11

Chapter 3. Probabilistic model for queue length

the probability of transitioning into an empty queue is given by

P0j =
∑

j+a−d≤0

P(A = a) · P(D = d). (3.7)

Let us now slightly abuse notation to denote the distribution ofQO(n) as a column vector (QO(n))j =
P(QO(n) = j), then the evolution follows the simple recursive relation

QO(n) = PQO(n− 1), (3.8)

which allows us to express the overflow queue after any number of cycles in terms of the initial queue
Q(0) as

QO(n) = PnQO(0). (3.9)

Note that the above distribution and transition matrix both have infinite dimensions. Therefore,
in order to compute the distribution of numerically, some further assumptions are needed. The
queue is assumed to have a maximum length Qmax, so there are finitely many states to compute.
Relationship (3.5) may be changed accordingly by clamping the state between 0 and Qmax as follows

QO(n) = max{0,min{QO(n− 1) +An −Dn, Qmax}}. (3.10)

Probability (3.6) is still valid for 0 < i < Qmax, but the probability for i = Qmax now needs to
account for the absorbing behavior of the new upper boundary, and is given by

PQmax,j =
∑

j+a−d≥Qmax

P(A = a) · P(D = d). (3.11)

We note that (3.6), (3.7) and (3.11) still represent infinite summations if the support of either arrivals
A or departures D is infinite. Therefore, we truncate the summations in the following way. Let FA
be the cumulative distribution function of random variable A, defined as FA(a) := P(A ≤ a), then
the quantile function of A is defined as

QA(p) := inf{x ∈ R : p ≤ F (x)}. (3.12)

Now choose ν small, then we define Amax = QA(1 − ν) and Dmax = QD(1 − ν). Now we are able
to compute a finite transition matrix in the following way

Pij =

Amax∑
a=i−j

P(A = a)P(D = j + a− i) for 0 < i < Qmax, (3.13)

P0j =

Amax∑
a=0

Dmax∑
d=j+a

P(A = a)P(D = d) (underflow), (3.14)

PQmax,j =

Amax∑
Qmax−j

j+a−Qmax∑
d=0

P(A = a)P(D = d) (overflow). (3.15)

See Appendix B for details on the calculations in Python.
We may now approximate the stationary queue length by computing (3.9) for large n. See

Figure 3.1 for an example of the evolution of the expected overflow queue length with Poisson
distributed arrivals and deterministic departures. The stationary overflow queue (3.3) and the
transient expected overflow queue (3.4) of Akcelik are also plotted for comparison. We see that his
transient formula indeed approaches the stationary limit.

Note that the model provides the full distribution of the overflow queue, not only the expected
value like some of the classical formulas. This enables us to compute, for example, the probability
that the overflow queue is larger than some given value, which could be interpreted as the probability
of the occurance of spillback effects.

12

Chapter 3. Probabilistic model for queue length

0 25 50 75 100 125 150 175 200
cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

[Q
O
]

Cycle-to-cycle
Akcelik
Simplified Miller

Figure 3.1: Expected overflow queue for 200 cycles, with Tr = Tg = 5 and arrivalsAn
iid∼ Poisson(4.5),

constant deterministic departures Dn
iid∼ D ≡ Tg. The cycle-to-cycle model has a maximum queue

length of Qmax = 40 and we used ν = 10−7 to truncate the sums to a maximum number of arrivals
per cycle.

We note that the above description allows A and D to have any distribution. This enables us
to use real traffic data to define demand and capacity. Suppose that a traffic light is located at
a single lane at some location x. We could use the difference between the cumulative counts of
vehicles at some predetermined distance ∆x from the traffic light to define the arrival distribution
by considering the arrivals in cycle n, given by An = N(x−∆x, τn)−N(x−∆x, τn−1). Similarly,
we may choose D to fit the number of departures that we can measure from an induction loop after
the stop line.

The assumption of i.i.d. arrivals and departures caused the model to have the Markov property,
which enables very efficient calculations using matrix multiplication. This assumption means that
arrivals and departures have a constant rate over all cycles. However, in real traffic, these rates
are constantly changing due to the dynamic nature of traffic in urban networks (influence of nearby
signalized intersection) and possibly due to periods of increased traffic intensity, e.g., morning rush
hour. In order to have a more realistic model, we could drop the assumption of identically distributed
arrivals and departures. This would entail that we have to calculate a different transition matrix
for every cycle, so equation (3.9) is no longer valid, which will affect the computation time. We will
come back to this topic when we discuss the continuous-time extension in Section 3.4.

3.3 Bulk service queue
The cycle-to-cycle model may be viewed as a generalization of the classical bulk service queue, which
we will discuss in this section. The bulk service queue is introduced from a historical perspective by
van Leeuwaarden (2005), showing some of the development of queueing theory along the way. We
will briefly give an overview of some existing results.

Bulk service queueing models exist in some different forms. The M/D/s queue was first studied
by Erlang in the 1920’s, see Brockmeyer et al. (1948), to model the process of handling phone calls
at a telephone exchange. Incoming calls arrive according to a Poisson process and can be handled
by s available lines. Each call lasts for a fixed ‘holding time’ v. When we consider the number of
calls in the system Xn (each either waiting in the queue or occupying a single channel) at the fixed

13

Chapter 3. Probabilistic model for queue length

X0 = 0 X1 = 4 X2 = 2 X3 = 1

Figure 3.2: Evolution of a bulk service queue with s = 3, illustrating that the exact arrival epochs
do not really matter for the queue size at the fixed points τn as long as they happen in the same
interval (τn−1, τn]. We see that the 4th arriving call had to wait (dashed line) until the first call
finished.

epochs τn = n · v, we get a Markov chain satisfying the relation

Xn = (Xn−1 − s)+ +An , (3.16)

where x+ = max{x, 0}, and An is the number of calls that arrived during the time interval (τn−1, τn],
see Figure 3.2 for an illustration. It is assumed that the arrivals per cycle An are i.i.d. according
to a random variable A. The exact moment of an arrival within a time slot does not matter for the
analysis of the bulk service queue.

In the cycle-to-cycle model, the exact moment of arrivals or departures within a cycle do not
matter for the analysis or computations. Let us assume that the traffic light has fixed green and red
times, so that the number of vehicles s that can leave during the green phase is fixed and arrivals
are i.i.d according to some random variable A. In that case, we can show that the cycle-to-cycle
model reduces to a bulk service queue by using a formula similar to (3.16) to express the recursion
(3.8) for the overflow queue length as

X
′

n = (X
′

n−1 +An − s)+ . (3.17)

The processes that equations (3.16) and (3.17) describe are equivalent, the only difference is the
moment of evaluating the queue lenght. Formula (3.16) may be seen as an expression for the queue
length at the start of the green phase (end of red phase), whereas formula (3.17) expresses the queue
length after the green phase (overflow queue). When we substitute Xn = X

′

n−1 +An into (3.17), we
obtain the relationship

X
′

n = (Xn − s)+ = Xn+1 −An+1 . (3.18)

Therefore, the stationary queue lengths are related as

E[X
′
] = E[X]− µA, (3.19)

which we need for numerical comparison, because the formulas that we use for the bulk service
calculations apply to (3.16).

Using a generating function technique it is possible to derive the full distribution of the expected
stationary queue length in the bulk service queue, which was done first by Bailey (1954) for some
specific classes of arrival distributions. Using the results from Secion 2.2 in van Leeuwaarden (2005),
we are able to calculate the queue length for general arrival distributions. Let the pgf of A be denoted
by A(z), and let the s roots of equation zs = A(z) in |z|< 1 be denoted by z0 = 1, z1, . . . , zs−1. If
the expected number of arrivals per cycle is less than the capacity of the server, µA < s (Theorem
2.2.1 in van Leeuwaarden (2005)), then these roots lie on or within the unit circle, and the stationary
queue has expected value and variance

µX =
σ2
A

2(s− µA)
+

1

2
µA −

1

2
(s− 1) +

s−1∑
k=1

1

1− zk
, (3.20)

σ2
X = σ2

A +
A′′′(1)− s(s− 1)(s− 2)

3(s− µA)
+
A′′(1)− s(s− 1)

2(s− µA)

+

(
A′′(1)− s(s− 1)

2(s− µA)

)2

−
s−1∑
k=1

zk
(1− zk)2

.

(3.21)

14

Chapter 3. Probabilistic model for queue length

9.0 9.2 9.4 9.6 9.8 10.0
rate of arrivals A

0

20

40

60

80

100

ex
pe

ct
ed

 st
at

io
na

ry
 q

ue
ue

 le
ng

th

PGF technique
Qmax = 100
Qmax = 60
Qmax = 20

Figure 3.3: Stationary expected queue length E[X
′
] computed analytically (using generating func-

tions) for the bulk service queue compared to approximations E[QO(n)] computed for n = 1000
cycles with different settings of Qmax. We used ν = 10−7. The effect of the finite buffer is clearly
visible for high rates of arrivals.

We will turn back to the issue of finding these roots zk and inverting a pgf to find the full distribution
of a random variable in Chapter 4.

The main benefit of the above stationary analysis is that we do not have to assume a finite queue
space or buffer size as we did for the cycle-to-cycle model. However, we note that for most pratical
applications in road traffic engineering, the assumption of a finite queueing space is desirable. In
order to check our implementation of the cycle-to-cycle model and to study the effect of this finite
buffer, we compare for Poisson arrivals A with varying µA and constant deterministic departures s
the stationary expected queue length E[X

′
] computed with (3.20) and the approximation E[QO(n)]

that we obtain by computing (3.9) for a large number of cycles n. The results of this comparison are
illustrated in Figure 3.3. As we expect, a higher rate of arrival always leads to a higher stationary
overflow queue. Moreover, it is clearly visible that a smaller buffer size results in a lower expected
queue length, for any rate of arrivals µA. It would be interesting to see if this stochastic ordering of
models can be shown formally.

3.4 Continuous within-cycle extension
The cycle-to-cycle model and the bulk service queue only provide a description of how the overflow
queue changes between cycles. Viti and van Zuylen extend their cycle-to-cycle to a continuous-time
within-cycle model that describes the evolution of the queue length within a given cycle. For this
description, they assume that the rate of departure µd, in vehicles per second, is constant for all
cycles, so that the number of departures Dn that happen during the green phase is deterministic
and given by Dn = D = [µdTg] for all n, where brackets are used to denote the integer part. Instead
of defining a single transition matrix, they reformulate the cycle-to-cycle model by describing the
transitions directly in the following way. Given the current state 0 < i < Qmax and the previous
state j, the number of arrivals that must have happened is given by An = i + D − j ≥ 0, so we
must have j ≤ i + D. Because of the finite queueing space, we also have j ≤ Qmax, so we define
jmax := min{i+D,Qmax}. Therefore, for deterministic departures, the equivalent of (3.8) is given

15

Chapter 3. Probabilistic model for queue length

by

P(QO(n) = i) =

jmax∑
j=0

P(QO(n− 1) = j) · P(An = i+D − j) for 0 < i < Qmax. (3.22)

Again, the boundaries i = 0 and i = Qmax must be considered separately, because there are multiple
values for the number of arrivals that lead to these states. When the queue empties (i = 0), the
number of arrivals must have been such that j+An−D ≤ 0, from which follows that 0 ≤ An ≤ D−j.
Therefore, we get

P(QO(n) = 0) =

jmax∑
j=0

P(QO(n− 1) = j) ·
D−j∑
a=0

P(An = a) . (3.23)

Similarly in the case of spillback (i = Qmax) we need j + An − D ≥ Qmax, so there is an infinite
number of values possible for An, so the we get

P(QO(n) = Qmax) =

jmax∑
j=0

P(QO(n− 1) = j) ·
∞∑

a=Qmax+D−j
P(An = a), (3.24)

where the last summation may also be written in terms of a cumulative distribution function. Note
that we dropped the assumption of identically distributed arrivals by writing An instead of A, so the
above approach shows how to compute the cycle-to-cycle model for varying rates of arrivals, which
we touched on briefly in Section 3.2. It is also possible to drop the assumption for departures, but
that requires us to consider discrete convolutions, which further complicates the analysis.

Formulas (3.22), (3.23) and (3.24) may now easily be extended to continuous time by defining
the queue length Q(τn−1 + ∆t) at any time whitin cycle n, such that Q(τn) = QO(n). Viti and
van Zuylen allow the moments of arrivals to vary freely within a cycle while still requiring the
total number of arrivals in a cycle to be independently and identically distributed accross cycles.
Therefore, the probability that a arrivals have happened after ∆t seconds since the start of cycle n
may be provided as a function fn(a,∆t), satisfying fn(a, Tc) = P(An = a).

During the red phase, no departures happen, so we do not have to consider the case of underflow
(i = 0) separately. Therefore, the queue length after 0 ≤ ∆t < Tr seconds since the begin of the
cycle can be described by

P(Q(τn−1 + ∆t) = i) =

i∑
j=0

P(Q(τn−1) = j) · fn(i− j,∆t) for 0 ≤ i < Qmax,

Qmax∑
j=0

P(Q(τn−1) = j) ·
∞∑

a=Qmax−j
fn(a,∆t) for i = Qmax.

(3.25)

After 0 ≤ ∆t < Tg seconds from the start of the green period, the number of departures that could
have happened is given by [µd∆t], so the queue length during the green phase can be described as

(3.26)

P(Q(τn−1 + Tr + ∆t) = i)

=

[µd∆t]∑
j=0

P(Q(τn−1 + Tr) = j) ·
[µd∆t]−j∑
a=0

fn(a,∆t) if i = 0,

min{i+[µd∆t],Qmax}∑
j=0

P(Q(τn−1 + Tr) = j) · fn(i+ [µd∆t]− j,∆t) for 0 < i < Qmax,

Qmax∑
j=0

P(Q(τn−1 + Tr) = j) ·
∞∑

a=Qmax+[µd∆t]−j

fn(a,∆t) if i = Qmax.

16

Chapter 3. Probabilistic model for queue length

0 10 20 30 40 50
t

0

1

2

3

4

E[
Q

]

Figure 3.4: Expected queue length within the first 5 cycles using the same settings as in Figure 3.1
for the cycle-to-cycle model (blue) and the within-cycle model (red).

We added the above described calculation schema on top of our implementation of the cycle-
to-cycle model, see Appendix B.6. For the same settings as in Figure 3.1, we calculated the queue
length within the first 5 cycles and compared this with the overflow queue calculated using the
cycle-to-cycle model, see Figure 3.4. We verify that it is indeed an extension. As we would expect,
the expectation of the queue length grows linearly during the red phase. The instantaneous drops
in the green phases are due to the fixed departure times.

3.5 Discussion
We believe that the original description of the cycle-to-cycle model by Viti and van Zuylen hides
the fact that we are dealing with a generalized version of the classical bulk service model. We
made the assumption of the maximum queue length Qmax (buffer size) explicit and studied its
influence on the stationary expected queue length. We think that analytical techniques are also
available for calculating the stationary queue length for the bulk service queue with finite buffer
size. Unfortunately, we did not have time to search in the literature for relevant sources.

Furthermore, we have shown that the within-cycle model indeed extends the cycle-to-cycle model
and that it may give some insight in how the queue fills and empties during a cycle. However, we
will see in Chapter 4 that this same behavior can also be described by the FCTL model, which is
more appropriate for traffic lights.

17

Chapter 4

FCTL model

The fixed cycle traffic light (FCTL) model is a classic description of the behavior of vehicle queues
at traffic lights with fixed control. It is a time-slotted vertical queue model. It is assumed that the
length of the red and green phases are predetermined and fixed throughout all cycles. Furthermore,
it is assumed that during the green phase, exactly one vehicle will be able to pass the stop line per
time slot. One could argue that this is not realistic because in reality vehicles need to accelerate,
so the amount of vehicles that leave the queue is not adequately modelled as a linear function of
the green time. However, we will show later in Section 5.2 by microscopic simulation that this
assumption may not be as bad as it seems. The stationary distribution of the queue length was first
analyzed in the 1960s by Darroch (1964) for (compound) Poisson arrivals. Almost 40 years later has
this analysis been extended by van Leeuwaarden (2006) to allow for generally distributed arrivals
and to provide a method of calculating the full distribution of the queue length. Because of the
assumption of fixed phase lengths, the FCTL model cannot be directly used to model traffic lights
with dynamic control, for example when induction loops are used.

4.1 Model description and stationary analysis
We will briefly introduce the FCTL model and its assumptions along the same lines as van Leeuwaar-
den (2006). The following three assumptions form the basis of the FCTL model:

Assumption 3.1 (Discrete-Time Assumption). Time is divided in fixed unit length time slots. The
traffic light switches between a red phase of r time slots and a green phase of g time slots. Traffic
engineers often use the effective green time, which is the portion of the green phase during which
vehicles actually leave the queue. Therefore, amber light is not considered separately. A red phase
followed by a green phase is called a cycle, which consists of c = r + g time slots. Multiple vehicles
may arrive during a time slot and join the queue at the end of this time slot. Vehicles depart from
the queue during the green phase at a rate of one vehicle per time slot.

Assumption 3.2 (Independence Assumption). The number of arrivals that arrive at the intersection
during slot k in cycle n, denoted by Yk,n, is i.i.d. according to some discrete random variable Y , for
all k and n. The probability generating function of Y is denoted by Y (z).

Assumption 3.3 (FCTL Assumption). When the queue empties before the green phase is ended, all
vehicles that arive after this moment can pass the intersection without any delay. The idea behind
this assumption is that vehicles that arrive at an empty queue do not have to slow down for other
vehicles that are halting in front of them. We will see that this assumption distinguishes the FCTL
queue from the classical bulk service queue.

We now formulate the evolution of the queue length in each time slot. Let Xk,n denote the number
of vehicles in the queue at the end of time slot k in cycle n. Figure 4.1 shows two examples of how
the queue length may evolve during consecutive red and green phases. The evolution of the queue

18

Chapter 4. FCTL model

X0,1X4,0 X5,0 X6,0 X7,0 X8,0 X9,0 X1,1 X2,1 X3,1 X4,1

= = = = = = = = = = =

0 2 3 3 5 5 6 6 6 5 4

(a) Example situation in which there is an overflow queue.

X0,1X4,0 X5,0 X6,0 X7,0 X8,0 X9,0 X1,1 X2,1 X3,1 X4,1

= = = = = = = = = = =

0 0 1 1 1 2 2 1 1 0 0

(b) In this situation the FCTL assumption applies to the last arrival in the green phase.

Figure 4.1: Timelines showing arrivals in the red phase of cycles 0 and the green phase of cycle 1
with r = 4, g = 6. Each arrival is represented as a little circle (delayed) or a rectangle (not delayed
due to FCTL assumption). The queue length Xk,n after each time slot is given under the timeline.

length may be expressed as

Xk+1,n =

{
Xk,n + Yk+1,n − 1 for Xk,n ≥ 1,
0 for Xk,n = 0,

(4.1)

for k = 0, 1, . . . , g − 1 (green phase) and

Xk+1,n = Xk,n + Yk+1,n (4.2)

for k = g, g + 1, . . . , c− 1 (red phase). Furthermore, we have that Xc,n = X0,n+1. Using expression
(4.1), we may also express the queue length distribution during the green phase directly as

P(Xk+1,n = i) =

i+1∑
j=1

P(Xk,n = j)P(Yk+1,n = i− j + 1) for i ≥ 1, (4.3)

P(Xk+1,n = 0) = P(Xk,n = 0) + P(Xk,n = 1)P(Yk+1,n = 0). (4.4)

It is common in the queueing theory literature to analyze the distribution of the stationary
queue length Xk, defined as P(Xk = j) = limn→∞ P(Xk,n = j). By equating the pgf’s as
Xk,n+1(z) = Xk,n(z), see van Leeuwaarden (2006), it then follows from (4.3) and (4.4) that the
pgf of the stationary overflow queue is given by

Xg(z) =
Y (z)g(ζ(z)− 1)

∑g−1
k=0 qkζ(z)k

zg − Y (z)c
, (4.5)

where ζ(z) = z/Y (z) and qk = P(Xk = 0), which can be derived using the zeros of the denominator,
to which we will return in Section 4.3. Using this pgf it is now possible to derive an expressions for
the expected value by computing (d/dz)Xg(z)|z=1, which is given by

EXg =
cσ2
Y + r2µ2

Y − g2(1− µY)2

2(g − cµY)
− σ2

Y

2(1− µY)
+

1− µY
2

+
(1− µY)2

g − cµY

g−1∑
k=0

kqk.

(4.6)

The expected value for the FCTL model with g = r = 10 and Poisson arrivals and binomial
arrivals for varying rates of arrival µY is shown in Figure 4.2. We note that a binomial distribution
approximates a Poisson distribution for large values of n and λ = np constant. We used this fact as
a sanity check for our calculations.

19

Chapter 4. FCTL model

0.30 0.35 0.40 0.45
μY

5

10

15

20

25
Xg

Binomial

Poisson

Figure 4.2: Expected value as computed with (4.6) for the FCTL model with g = r = 10 and
binomial arrivals with shape parameter n = 2.

4.2 FCTL as extension of bulk service queue
The FCTL model may be regarded as an extension of the classical bulk service queue that we
briefly discussed in Section 3.3. Without the FCTL assumption, the FCTL queue may be analyzed
exactly like the bulk service queue because the exact moments of departures do not matter anymore.
Furthermore, the FCTL assumption looses its effect when the number of arrivals per time slot is
limited by one, which we will illustrate now. The number of arrivals during a consecutive red and
green phase in the FCTL queue is given by

An =

c∑
k=g+1

Yk,n +

g∑
k=1

Yk,n+1 .

Note that this notation is in line with the notation for the bulk service queue, cf. (3.16). van
Leeuwaarden (2006) makes the following distinction for delayed vehicles

An = Adn +Apn, (4.7)

with Adn the number of ‘delayed’ vehicles and Apn the number of vehicles that pass without any
delay due to the FCTL assumption. They point out that when assuming Yn,k are Bernoulli random
variables, then An = Adn, which would mean that all arrivals will be delayed and no arrivals will
pass through on behalf of the FCTL assumption. Now consider the situation in which the queue is
cleared before the green phase is over, i.e., there is a 0 ≤ k′ < g such that Xk′,n+1 = 0. Any arrival
Yk,n+1 that happens afterwards (k > k′) can immediately pass at the end of the time slot in which it
arrived, and thus will have a delay of D = 0 time slots, if we use Definition 3.1 in van Leeuwaarden
(2006). Therefore, saying that Adn consists of all vehicles that experience delay can be confusing.
However, we can make the definition of Adn more intuitive if we would take into account the residual
delay DR ∈ [0, 1], which is the delay that a vehicle still has to wait until the end of the time slot.
Then we would define Adn as the number of vehicles that experiences positive delay DT = D +DR,
and Apn as the number of vehicles that experience no delay at all (DT = 0) because of the FCTL
assumption. Suppose for example that Xk′,n+1 = 0 for some 0 ≤ k′ < g, and that two vehicles
arrive in the next time slot, so Yk′+1,n+1 = 2, then the first arrival will experience positive delay
DT = DR, and thus will belong to Adn, but the FCTL assumption applies to the second arrival, and
thus will belong to Apn. Now it is easily seen that the FCTL assumption makes no difference under
the assumption of Bernoulli distributed arrivals.

20

Chapter 4. FCTL model

When we consider the FCTL model with an arrival distribution that allows more than one arrival
per time slot, the bulk service model provides us with an upper bound for the overflow queue. We
will now illustrate the above described relation with some numerical results. In order to compare
both models, we define the saturation rate as

x =
µA
g

=
µY · Tc
g

. (4.8)

We compute the stationary overflow queue for the bulk service queue using (3.20) and for the FCTL
queue using (4.6), where we assume that s = g. We note that the difference between both models
becomes particularly clear when the ratio y = g/r is small, because in that situation, the vehicles
pass the intersection relatively more often because of the FCTL assumption. Figure 4.4 shows the
expected overflow queue for each model with Poisson arrivals and binomial arrivals.

The relative distance computed as (E[X
′
] − E[Xg])/E[X

′
] is shown for Poisson arrivals in Fig-

ure 4.5. We see that this distance becomes smaller for larger saturation rates, as we would expect,
because less vehicles get a chance of passing immediately with the FCTL rule. If we keep the ratio y
constant while increasing the number of time slots for the green phase, we noticed that the relative
distance becomes smaller, as can be seen from Figure 4.5.

0.5 0.6 0.7 0.8 0.9 1.0
x

2

4

6

8

10

EX

Bulk Binomial

Bulk Poisson

FCTL Binomial

FCTL Poisson

Figure 4.3: Expected stationary overflow queue

Figure 4.4: FCTL compared to bulk service for different degrees of saturation. Timing parameters
are s = g = 5, r = 1. The rates of the Poisson and binomial arrivals (with shape parameter n = 2)
have been chosen according to the saturation rate. It can be clearly seen that the bulk service
queue always provides an upper bound. The relative distance is shown only for Poisson arrivals in
Figure 4.5.

4.3 Determining empty queue probabilities
We will now discuss how to determine the probabilities qk in (4.5). If cµY < g, so when the stationary
distribution exists, it can be shown using Rouché’s theorem, see for example Adan et al. (2005), that
the denominator of (4.5) has g zeros z0 = 1, z1, . . . , zg−1 on or within the unit circle |z|≤ 1. Because
a pgf is analytic and finite on and within the unit circle, the numerator of the right-hand side of
(4.5) should vanish at these zeros. Assuming that P(Y = 0) > 0, we have |Y (z)g|> 0. The first zero
z0 = 1 yields a trivial equation, because Y (1) = 1 =⇒ ζ(1)− 1 = 0. For the other zeros |zj |> 0 we

21

Chapter 4. FCTL model

0.6 0.7 0.8 0.9 1.0
x

0.1

0.2

0.3

0.4

0.5

relative distance

Poisson, g=5, r=1

Poisson, g=10, r=2

Figure 4.5: Relative distance (E[X
′
] − E[Xg])/E[X

′
] between FCTL and bulk service queue for

Poisson arrivals.

have that zgj = Y (zj)
g+r, so zj 6= Y (zj) gives us that ζ(zj)− 1 6= 0. Therefore, we end up with the

g − 1 equations

g−1∑
k=0

qkζ(zj)
k = 0, (4.9)

for j = 1, . . . , g − 1. We still need an additional equation in order to have a fully determined linear
system. The normalization condition for pdfs Xg(1) = 1 provides an additional equation if we apply
l’Hôspital’s rule. We have

d

dz
ζ(z)− 1

∣∣∣∣
z=1

=
d

dz
zY −1(z)

∣∣∣∣
z=1

= Y −1(z)− zY −2(z)Y ′(z)

∣∣∣∣
z=1

= 1− µY .

Therefore, we obtain (using ζ(1) = 1)

d

dz

(
Y (z)g

g−1∑
k=0

qkζ(z)k

)
(ζ(z)−1)

∣∣∣∣
z=1

=

(
Y (z)g

g−1∑
k=0

qkζ(z)k

)
d

dz
(ζ(z)−1)

∣∣∣∣
z=1

= (1−µY)

g−1∑
k=0

qk .

Furthermore, we see that

d

dz
zg − Y (z)c

∣∣∣∣
z=1

= gzg−1 − cY (z)c−1Y ′(z)

∣∣∣∣
z=1

= g − cµY ,

from which then follows that

g−1∑
k=0

qk =
g − cµY
1− µY

=: η . (4.10)

Now equations (4.9) and (4.10) together form the following system of linear equations
1 1 1 . . . 1

1 τ1 τ2
1 . . . τg−1

1

1 τ2 τ2
2 . . . τg−1

2
...

...
...

...
...

1 τg−1 τ2
g−1 . . . τg−1

g−1

q0

q1

q2

...
qg−1

 =

η
0
0
...
0

 (4.11)

22

Chapter 4. FCTL model

where τk = ζ(zk). van Leeuwaarden (2006) notes that this system may be solved using Cramer’s
rule and a result involving Vandermonde matrices. They provide the following explicit solution

qj =η(−1)j
1∏g−1

k=1(τk − 1)

·
∑

1≤i1<i2<···<ig−1−j≤g−1

τi1τi2 . . . τig−1−j .
(4.12)

We recognize in the explicit expression some form of Leibniz formula for determinants, but we were
not able to derive this ourselves. Furthermore, we note that using this expression to calculate the
qk directly becomes very slow for large g, because of the exponential run time (O(2g), because the
indices of the sum define a subset of size g−1−j out of a set of size g−1). For our numerical results we
used the LinearSolve1 method from the Wolfram Mathematica software. Note that there is also a
hidden function in Mathematica that can be used for solving Vandermonde systems, which is called
LinearAlgebra‘Private‘VandermondeSolve or LinearAlgebra‘VandermondeSolve in
versions before 11.2.

Now we still need to determine the g zeros of zg = Y (z)c. The method depends on the chosen
arrival distribution. We use the following expressions from Janssen & van Leeuwaarden (2005):

zk =

∞∑
l=1

cl(e
2πki/g)l, (4.13)

for k = 0, 1, . . . , g − 1, where the cl depend on the chosen distribution. For Poisson arrivals Y (z) =
exp(λ(z − 1)), we have

cl = e−lθ
(lθ)l−1

l!
(4.14)

and for binomial arrivals Y (z) = (1− p+ pz)n, we have

cl =
1

l
pl−1(1− p)lβ−l+1

(
lβ

l − 1

)
. (4.15)

We can now simply calculate the roots by truncating the sum in (4.13) to some finite L. For the
case of g = r = 10 and binomial arrivals with shape parameter n = 2 and µY = 0.45, the roots are
shown in Figure 4.6. The corresponding empty queue probabilities are shown in Figure 4.7.

4.4 Inversion of pgf
The generating function of the overflow queue needs to be inverted in order to obtain the full
probability distribution, i.e., given P (z) =

∑∞
k=0 pkz

k, we want to retrieve p0, p1, . . . , pg−1. We used
the same method as van Leeuwaarden (2006), by using the following approximation of Abate et al.
(2000):

pk ≈
1

2krk

2k∑
j=1

(−1)jRe(P (reijπ/k)). (4.16)

In order to have accuracy up to the γth decimal, setting r = 10−γ/2k should be enough. However,
we found that our calculations returned degenerate probability distributions (not summing to 1,
negative values) when using γ > 4. Therefore, we set γ = 4 when calculating further results.

1https://reference.wolfram.com/language/ref/LinearSolve.html

23

https://reference.wolfram.com/language/ref/LinearSolve.html

Chapter 4. FCTL model

-0.2 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

Figure 4.6: Example of roots calculated for the FCTL model with g = r = 10 and binomial arrivals
with n = 2 and p = 0.45 (vertical axis is imaginary axis). The sum (4.13) was truncated to L = 300.

0 1 2 3 4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

Figure 4.7: Example of empty queue probabilities qk calculated for the FCTL model with g = r = 10
and binomial arrivals with µY = 0.45 and shape parameter n = 2.

24

Chapter 4. FCTL model

4.5 Markov chain
Up until now we have only discussed the stationary analysis of the FCTL queue. We will now
present a description of the FCTL queue in a similar way as we have done for the cycle-to-cycle
model in Section 3.2. There, we showed how to construct a single transition matrix that enabled
us to calculate the queue length distribution for any cycle, given the initial distribution, in a very
efficient way. The major difference with that description is the fact that we now need a separate
matrix for each phase due to the FCTL assumption. The states of the chain simply represent the
value of Xk,n. We start our discussion by formulating matrices P (g) and P (r) that describe the
transition to the next time step for the green and the red phase, respectively. The queue is governed
by (4.1) during the green phase, from which it follows that a transition to a non-empy queue (i > 0)
happens with probability

P
(g)
ij = P(Y = i− j + 1), for 1 ≤ j ≤ i+ 1. (4.17)

The queue becomes empty when the last vehicle leaves and no arrivals happen, which gives

P
(g)
01 = P(Y = 0). (4.18)

When the queue has already become empty, it stays empty due to the FCTL assumption, giving

P
(g)
00 = 1. (4.19)

The red phase allows for an even simpler description. From (4.2), it is easily seen that a transition
to i ≥ 0 happens with probability

P
(r)
ij = P(Y = i− j), for 0 ≤ j ≤ i. (4.20)

Transitions that are not described by the above expressions have probability zero. Let us now again
slightly abuse notation to denote the distribution of Xk,n as a column vector (Xk,n)j = P(Xk,n = j),
then the evolution of this distribution can then simply be described as the matrix multiplications

Xk+1,n = P (g)Xk,n, (4.21)

for k = 0, 1, . . . , g − 1 (green phase) and

Xk+1,n = P (r)Xk,n, (4.22)

for k = g, g + 1, . . . , c− 1 (red phase).
In order to compute the evolution of the queue length numerically, we need to make sure that

both transition matrices are finite, so we assume that the queue has a maximum length Qmax,
exactly as we did in Section 3.2. For i < Qmax, expressions (4.17) and (4.20) still hold, but we now
need to consider the case of overflow separately, which happens with probability

P
(g)
Qmax,j

= P(j + Y ≥ Qmax + 1), for j ≥ 1, (4.23)

during the green phase and with probability

P
(r)
Qmax,j

= P(j + Y ≥ Qmax), (4.24)

during the red phase.
We checked our calculations by making sure that the above procedure leads to two proper stochas-

tic matrices (columns summing to one), see Appendix C. The expected value for the first 100 time
steps is shown in Figure 4.8. The discussion of the effect of Qmax from Section 3.2 applies equally
well to the present model, so we omit it here.

The model may be regarded as a Markov chain if we also consider the current time step part
of the state, i.e., the states are given by the tuples (Xk,n, k, n). However, it is also possible to only
consider the overflow queue (or ‘cycle-to-cycle’ evolution of any other time step), in which case the
transition matrix is simply given by (P (r))c−g(P (g))g. Because this matrix needs to be computed
only once, this may possibly help to speed up the calculations.

25

Chapter 4. FCTL model

0 20 40 60 80 100
time step

0

1

2

3

4

5

ex
pe

ct
ed

 q
ue

ue
 le

ng
th

Figure 4.8: Expected queue length per time step computed with the FCTL model for g = r = 10
and Qmax = 40 with binomial arrivals with µY = 4.5 and shape parameter n = 2.

4.6 Discussion
The work done by van Leeuwaarden (2006) extends the classical analysis of Darroch (1964) for the
FCTL model in two ways: (1) it allows us to compute the full distribution of the queue length and
delay instead of only expected values, and (2) it supports general i.i.d. arrivals instead of certain
classes of (compound) Poisson arrivals. However, some limitations still exist in the above described
version of the FCTL model that we will shortly discuss here.

The analyis only considers steady-state behavior, so the framework is only applicable to under-
saturated traffic conditions. Furthermore, the arrivals were considered to be identically distributed
accross cycles. However, in reality, arrival rates are never constant, and periods of oversaturated
traffic are no exception during rush hour, for example. It would be an interesting topic of further
research to use real traffic measurements to assess if the approach of using non-stationary arrivals
and departures described in Section 4.5 is usable for predictions or queue lengths.

The arrivals Yk,n are assumed to be independent, but this is not often the case in real traffic
because of the position of a traffic light queue in a larger traffic network. Vehicles departing from
an upstream intersection with a traffic light may form platoons, which causes a violation of the
independence assumption for the next intersection. For these kinds of situations, a generalization of
the FCTL queue has been proposed by Boon & van Leeuwaarden (2018), which allows for correlated
arrivals. That means that (Y1,n, . . . , Yc,n) can have any joint probability distribution. They study
multiple intersections that are connected to each other in a series. In this setup, the output process
of an intersection determines the input process of the next (downstream) intersection.

Another shortcoming is that the FCTL model uses time slots of fixed length, which is the time
needed for a vehicle to leave a non-empty queue. Therefore, the interdeparture times are constant
and deterministic. We observed (and has been observed by others, for example by Oblakova (2019),
Table 4.1) that interdeparture times are very close to deterministic, see Section 5.2, but this was
for homogeneous traffic. It may be interesting to see if this still holds for mixed traffic with freight
trucks, for example.

Of course, the fixed-cycle traffic light model only considers traffic lights with fixed control. How-
ever, many modern traffic light systems in the Netherlands, for example, use some sort of sensors
(induction loops under the road surface) to measure actual traffic demand. For these situations, the
probabilistic framework discussed in Chapter 3 has also been extended to model dynamic control,
see Viti & van Zuylen (2009).

26

Chapter 5

Microscopic simulation

This chapter will discuss how we may analyze the queueing behavior near a signalized intersection
using microscopic simulation and we will compare this method to an analysis using the FCTL model
from Chapter 4. We will discuss SUMO (Simulation of Urban MObility), which is a continuous-space,
discrete-time microscopic traffic simulation software package. Initially developed by the German
Aerospace Center (DLR), see Lopez et al. (2018), and now available as open-source software, it is
used by practitioners to model and simulate realistic urban traffic networks. The package consists
of a collection of separate tools. The netedit tool can be used to construct a road topology
model and to define traffic lights. There is also a tool to construct a network from real maps in the
OpenStreetMap dataset. The actual simulation program can be started with the sumo command
line tool, which does not show any visual output. The sumo-gui tool provides a graphical user
interface that visualizes the simulation, see Figure 5.1.

Figure 5.1: The graphical interface provided by sumo-gui. The traffic light is drawn in the visu-
alization area as a vertical line (1) in the color of the traffic light state (currently red). Vehicles are
shown as yellow triangles (2), with active brake lights drawn as two red circles. The user interface
provides acces to various tools via the menus. There are also controls to start or step through the
simulation one step at a time (3). The current time step is displayed (4), and the time between time
steps may be set using the slider at (5). Without such a delay, the simulation would go so fast that
distinguishing individual cars becomes difficult.

27

Chapter 5. Microscopic simulation

Figure 5.2: The simulation setup that was used for the model comparison. The horizontal axis has
been truncated at the indicated locations for visibility reasons. Right after the traffic light at (2)
is an E1 induction loop detector (2), visualized as a yellow rectangle, which is used to count the
number of departures within a loop (used by the departure-counter tool). The long turquoise
rectangle (3) represents an E2 lane area detector, which can measure the actual queue length, and
spans from the beginning of the lane to the traffic light. The entry (4) and exit (5) detectors of the
E3 detector are used to measure delay and are located at 400m and 700m, respectively.

5.1 Setup
In order to study the queueing behavior near a signalized traffic light, we constructed a very simple
road model with a single lane on which a single traffic light is located, see Figure 5.2. The traffic light
is located at 500 meter from the beginning of the lane, which is 800 meters long in total. Vehicles
enter the system at the beginning of the lane and are removed from the system once they reach the
end. In order to keep track of certain values during the simulation, SUMO requires us to specify
one or more detectors.

There are several ways of collecting data from and interacting with the simulation. Measurements
may be stored to XML files by providing flags to the simulation command. The online SUMO
documentation contains a complete overview of the available measurements that can be requested.
There is also a direct socket connection which may be used to receive real-time updates of the
simulation status. On top of the low-level socket connection, the higher level TraCI (Traffic Control
Interface) provides a way to programmatically read and alter settings at runtime.

Each step in the simulation is controlled by a Python script via TraCI, see Appendix D. In
each step a decision can be made to insert a vehicle based on some probability p. We choose to
insert vehicles at a cruise speed of v = 14m/s. Before the vehicle is actually inserted in the system,
SUMO checks if there is enough space available. If not, then the insertion will be put in a so-called
‘insertion queue’. This limits the maximum arrival rate in the system, which will be discussed further
in Section 5.3. SUMO supports programming the traffic lights via sumo-gui, but for our purposes
it was easier to change green and red times directly via TraCI.

5.2 Measuring departures
We will now briefly discuss the departure process of the different models that we have seen. First of
all, in the FCTL model it is assumed that exactly one car can leave during a time slot. So there is a
linear relationship between the length of the green phase and the number of departures. A similar
assumption holds for the bulk service queue. We want to assess if this assumption can also be made
for the microscopic model in SUMO. Note that this departure process may depend on the chosen
car-following model. For our comparison, however, we stick with the default model in SUMO, which
we discussed in Section 2.3.3.

We developed a tool departure-counter, see Appendix D.3, that measures the average num-
ber of vehicles that can leave during a given green time using the E1 induction loop detector in
SUMO, see Figure 5.2. The tool first completely fills the lane with vehicles. After a fixed setup
time the traffic light starts cycling between the given green time and a red time that is at least long
enough to fill the lane again. The average number of departures is calculated over a predetermined
number of cycles. The tool supports plotting this average number of departures against the specified
green times, as can be seen in Figure 5.3, and also supports saving/loading results to file. We observe

28

Chapter 5. Microscopic simulation

Figure 5.3: Average number of vehicles that could leave the traffic light queue during the given
amount of green time. No yellow phase was added to the SUMO traffic light program. The orange
reference line is the number of cars that would leave when each departure takes 2 seconds of time.
Numbers are computed within one simulation only. The average was calculated over 100 cycles.

from the figure that the assumption of a linear relationship seems reasonable. However, for short
green times, the number of departures is overestimated by the mathematical queueing models.

The linear relationship may also be interpreted as constant inter-departure times. We note
that extensions have been proposed for the FCTL model to allow for varying inter-departure times.
Oblakova (2019) proposed an extension of the FCTL queue where the first few inter-departures times
are longer. To model driver distraction, they also allow randomness in the departures.

5.3 Measuring delay
Before we proceed with analyzing queue length, we will first consider delay in the SUMO model and
in the FCTL model. For the FCTL model, we choose to have a red and green phase of 10 time slot
each, which we will denote by rF = 10 and gF = 10, respectively. As we saw in Figure 5.3, one
departure happens around every two time steps in the SUMO model, so we need twice as many time
steps in the SUMO model, which we will denote by rS and gS . When we set gS = 20, we find using
departure-counter that on average 9.5 departures happen. Therefore, to make both models
more equivalent for comparison, we set the green time in the SUMO model to gS = 21, for which
the average number of arrivals is found to be 9.96. We need to take this scaling into account when
converting the arrival rate between both models. Because the SUMO model allows for an insertion
each time step, we let the arrivals in the FCTL model be distributed as Bin(2, pF) random variables
for some insertion probability parameter pF . For the SUMO model, this insertion parameter then

29

Chapter 5. Microscopic simulation

0.30 0.35 0.40 0.45
arrival rate

20

40

60

80

100

de
la

y

FCTL binomial
FCTL Poisson
SUMO

Figure 5.4: Delay in SUMO seconds computed with the FCTL model for binomial and Poisson
arrivals compared to the delay found in the SUMO model after letting the simulation run for 100.000
SUMO seconds. The x-axis shows the insertion probability pF . The equivalence degrades for higher
arrival, probably due to the fact that it is not possible to create such high degrees of saturation in
SUMO due to spatial constraints or speed limits. Note that the binomial arrival distribution shows
a better fit than the Poisson arrivals, which is exactly what we expected.

becomes

pS =
rF + gF
rS + gS

pF . (5.1)

When comparing the delay computed with the FCTL model with the delay found from the simula-
tion, we also need to take this time slot scaling into account. Because the time slots in SUMO are
supposed to represent seconds, we choose to express the delay in terms of these SUMO seconds, so
the FCTL delay in SUMO seconds becomes

E[D′F] =
(rS + gS)

(rF + gF)
E[DF] . (5.2)

Using the E3 entry-exit detector1, see Figure 5.2, we can measure the average delay of vehicles in
the SUMO simulation. For each setting of pF , we ran the simulation for 100.000 SUMO seconds.
We see in Figure 5.4 that both models compute very similar values for low degrees of saturation.
For larger arrival rates, however, the SUMO model does not show the same explosion of delay that
is characteristic for queueing models near saturation. We note that it is possible that setting a
high arrival rate parameter p in SUMO does not necessary mean that this will be realized because
of possible speed limitations and spatial constraints. This may be an argument in favor of the
assumption of finite queueing space, as we saw in Section 3.2 and Figure 3.3 in particular.

1https://sumo.dlr.de/docs/Simulation/Output/Multi-Entry-Exit_Detectors_(E3).html

30

https://sumo.dlr.de/docs/Simulation/Output/Multi-Entry-Exit_Detectors_(E3).html

Chapter 5. Microscopic simulation

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5
MC
Analytic
SUMO

Figure 5.5: Comparison of stationary overflow queue for the FCTL model (via the stationary analysis
and by computing the transient model for 1000 cycles) and as obtained from SUMO after 1000 cycles.
The FCTL model has binomial arrivals with µY = 0.45 and shape parameter n = 2. The transient
SUMO model has Qmax = 40. The same scaling of time slots is applied as described in Section 5.3.

5.4 Measuring queue length
We will now turn to analyzing the queue length using the FCTL model and the SUMO simulation.
The classical queueing models can be used to calculate vertical queues, so numbers of vehicles.
SUMO also supports various ways of retrieving a vertical queue estimation, which we will describe
first.

The sumo sumo-gui command line tools support a -queue-output flag2 that can be used
to produce an XML file containing entries with the queue length and waiting time within a lane for
a particular time step. However, the SUMO documentation does not specify how this queue length
is defined. There is also an ‘experimental queue length’, which is defined as the number of vehicles
up and including the last vehicle with a speed lower than 5 km/h. We could not find a method of
changing this definition ourselves, which makes it hard to make a valid comparison with the FCTL
model. To be able to inspect the queue length while the simulation is still running we used the
socket connection that was mentioned in Section 5.1 to automatically update a graph of the queue
length in each time step. Data is send over the socket as partial XML fragments, so we implemented
a streaming XML parser that can read one time step at a time, see Appendix D.4. However, we
noticed that redrawing the graph still takes a lot of time, so it is not possible to let the simulation
run at high speeds (low time step delay).

Another method of measuring the queue length is provided by SUMO through E2 lanearea
detectors3. As the name already indicates, this type of detector needs to be placed on a part of the
lane and will produce data about jams in this area of the lane. Specifically, the length of the longest
consecutive jam is reported (jam max) and the sum of all jams in the lane (jam sum, which is
essentially the total number of halted vehicles). In contrast to the -queue-output flag output,
the E2 detector gives us the ability to change the definition of when a vehicle is considered halting
based on either speed or gap length by editing the additional-files configuration XML file4.

Being able to change the definition of the vertical queue length in SUMO allows us to calibrate
this definition to be in accordance with the FCTL queue. Although, in practise, it would be more

2https://sumo.dlr.de/docs/Simulation/Output/QueueOutput.html
3https://sumo.dlr.de/docs/Simulation/Output/Lanearea_Detectors_(E2).html
4https://sumo.dlr.de/docs/sumo.html#format_of_additional_files

31

https://sumo.dlr.de/docs/Simulation/Output/QueueOutput.html
https://sumo.dlr.de/docs/Simulation/Output/Lanearea_Detectors_(E2).html
https://sumo.dlr.de/docs/sumo.html##format_of_additional_files

Chapter 5. Microscopic simulation

0 20 40 60 80 100
cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
pe

ct
ed

 o
ve

rfl
ow

 q
ue

ue

FCTL Markov chain
SUMO averaged over 1000 runs, threshold = 13.0
SUMO averaged over 1000 runs, threshold = 12.5
SUMO averaged over 1000 runs, threshold = 12.0

Figure 5.6: Expected overflow queue from FCTL Markov model and from SUMO by averaging
over 1000 simulation runs for different values of the SUMO parameter speed threshold. All other
parameters are the same as in Figure 5.5.

reasonable to calibrate the FCTL model based on the SUMO model, the former method at least
allows us to compare the two models. For different settings of this definition, we compared the
approximation of the stationary queue lenth, that we can obtain from SUMO by running the sim-
ulation for a long time, to the full distribution obtained for the FCTL model using calculations
in Mathematica and an approximation using the transient FCTL calculations of Section 4.5. By
manually inspection, we found that the following settings for the E2 lanearea detector

<laneAreaDetector id="lanearea_detector" lane="arrival_0"
pos="0" endPos="500"
freq="1" file="output/lanearea_counts.xml"
speedThreshold="13"

/>

produced a reasonable similar distribution, as can be seen in Figure 5.5. We noticed that the
distribution from our implementation of the stationary FCTL analysis differs from the approximation
using the transient FCTL model. We believe that this is due to some numerical errors that occur
in the stationary calculations, which may be related to the root-finding procedure. Unfortunately,
we did not have time to investigate this issue further, which is why we included the transient FCTL
approximation.

Vehicles are considered halting if they have a speed lower than the speedThreshold parameter.
Furthermore, the freq parameter indicates the number of SUMO seconds over which the queue length
measurements are computed. By settings this parameter to 1, we try to obtain the highest possible
level of detail. This also means that we cannot measure the queue length at the exact end of the
green phase. For the sake of this comparison, we choose to define the overflow queue as the number
of vehicles in the first timeslot of the subsequent red phase.

After this calibration of SUMO parameters, we can compare the transient behavior of SUMO
with the transient FCTL calculations. Figure 5.6 shows the transient expected queue length as
computed with the FCTL model compared to the transient expected queue length computed using
SUMO by averaging over 1000 simulation runs. We tried some different values for speedThreshold. It
seems that after averaging over 1000 simulations, there is still a lot of variability left. Nevertheless,
it seems that the speed at which the queue length converges to the stationary value is comparable
for both models.

32

Chapter 5. Microscopic simulation

5.5 Discussion
We noticed that a lot of ‘emergency stops’ happen during the SUMO simulation due to the absence
of the amber phase in the static traffic light program. These emergency stops happen because the
traffic light switches to red immediately, so the driver has no way of adjusting the speed in due time.
It would be interesting to see if adding the amber phase makes the behavior of the SUMO simulation
more regular, possibly resulting in a smaller variance of the queue length at a particular time step.

33

Chapter 6

Conclusions and further work

The main theme of this study was the comparison of different models for the queue length at
signalized intersections with fixed control. In order to understand the field of traffic modeling
in a general sense, we also studied some history of traffic flow modeling and the development of
microscopic traffic simulation software. After that, we turned to a comparison of the model proposed
by Viti & van Zuylen (2010), the bulk service queue, the FCTL queue and a microscopic traffic
simulation in SUMO.

The original description of the cycle-to-cycle model that Viti and van Zuylen provide is not very
clear on details, so we first provided an alternative description which tries to make all assumptions
clear. This led to the realization that this cycle-to-cycle model generalizes the classical bulk service
queue by introducing a maximum queue size and allowing non-stationary arrivals and departures
accross cycles. The bulk service queue is a well-known model in queueing theory, so we used existing
results to calculate the stationary queue length numerically, which allowed us to study the effect of
different settings for this maximum queueing space. We also briefly discussed the within-cycle model
of Viti and van Zuylen, which extends the cycle-to-cycle model to give a continuous-time description
of the queue length.

We presented existing results on the stationary analysis of the FCTL model. We included a
description of the issues of root-finding and the inversion of probability generating functions, which
are required for obtaining numerical results for the FCTL queue and the bulk service queue. We
saw that the FCTL model may be viewed as an extension of the bulk service queue. We showed
using numerical comparisons that the bulk service queue provides an upperbound for the stationary
queue length at the end of cycles in the FCTL model. We found that this upperbound gets tighter
when the number of time slots in the green phase gets larger. It would be interesting to see if this
relationship can be made more formal.

Viti and van Zuylen note that their cycle-to-cycle model and their within-cycle model allow for
arrivals and departures with varying rates. We recognize that this is also possible for the transient
FCTL model. We did not consider this possibility in the present study. An interesting use case for
this would be to model the effect of peak periods in a similar way as Oblakova (2019) has done.

We compared the delay obtained from a microscopic simulation model in SUMO with the delay
that we get from the stationary analysis of the FCTL queue. We found that the FCTL formula gives
a reasonable accurate prediction of the simulated delay for low arrival rates. For high arrival rates,
we conjectured that the desired rate of arrival is not achieved in the SUMO model due to speed
restrictions and spatial constraints. This could be verified by measuring the actual demand in the
SUMO model. It would be interesting to see if the FCTL model with finite buffer size gives a more
accurate prediction.

The transient description of the queue length with the FCTL model is similar to the cycle-to-cycle
model of Viti and van Zuylen. This transient FCTL model is a Markov chain when it is restricted
to the overflow queue. We compared this model to the queue in SUMO and found that the speed of
convergence to the stationary limit is comparable. One issue that remains is the calibration of the
parameter speed threshold that defines the vertical queue length measured by SUMO. We showed

34

Chapter 6. Conclusions and further work

that this calibration may be done by comparing the stationary distribution obtained from SUMO by
running a large number of cycles and from the stationary analysis for the FCTL model. We note that
in practical applications, it is desirable to do the calibration between SUMO and FCTL the other
way around: given the speed threshold, find the parameters of the FCTL model that produce the best
fit. Finding a more systematic approach for this calibration is absolutely necessary when we want
to use the FCTL model in dynamic control applications and seems an interesting topic for further
research. We note that fitting models to real data is an important topic in practical application
in general. We also briefly touched upon this subject in our discussion of the cycle-to-cycle model.
In combination with real-time traffic data, simple models could allow model-based optimization for
use in traffic control systems. Simple models that can be computed fast are necessary to allow the
control system to quickly adapt to the current situation.

35

Bibliography

Abate, J., Choudhury, G. L., & Whitt, W. 2000. An Introduction to Numerical Transform Inversion
and Its Application to Probability Models. Pages 257–323 of: Computational Probability. Boston,
MA: Springer US.

Adan, I.J.B.F., Leeuwaarden, van, J.S.H., & Winands, E.M.M. 2005. On the application of Rouché’s
theorem in queueing theory. SPOR-Report: reports in statistics, probability and operations re-
search. Technische Universiteit Eindhoven.

Akçelik, R. 1980. Time-Dependent Expressions for Delay, Stop Rate and Queue Length at Traffic
Signals. Tech. rept. AIR 367-1. Australian Road Research Board, Vermont South, Australia.

Bailey, N. T. J. 1954. On Queueing Processes with Bulk Service. Journal of the Royal Statistical
Society. Series B (Methodological), 16(1), 80–87.

Bieker-Walz, L., Behrisch, M., Junghans, M., & Gimm, K. 2017. Evaluation of car-following-models
at controlled intersections. ESM 2017 European Simulation and Modelling Conference, 31, 247–
251.

Boon, M. A. A., & van Leeuwaarden, J. S. H. 2018. Networks of fixed-cycle intersections. Trans-
portation Research Part B: Methodological, 117, 254–271.

Brackstone, M., & McDonald, M. 1999. Car-following: a historical review. Transportation Research
Part F: Traffic Psychology and Behaviour, 2(4), 181–196.

Brockmeyer, E., Halstrom, H. L., & Jensen, A. 1948. The Life and Works of A. K. Erlang. In:
Transactions of the Danish Academy of Technical Sciences. Akademiet for de Tekniske Vidensk-
aber.

Daganzo, C. F. 1994. The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4),
269–287.

Darroch, J. N. 1964. On the Traffic-light Queue. The Annals of Mathematical Statistics, 35(1),
380–388.

Ding, C., & Song, S. 2012. Traffic Paradoxes and Economic Solutions. Journal of Urban Management,
1(1), 63–76.

Geroliminis, N., & Sun, J. 2011. Hysteresis phenomena of a Macroscopic Fundamental Diagram in
freeway networks. Transportation Research Part A: Policy and Practice, 45(9), 966–979.

Greenshields, B. D. 1934. The photographic method of studying traffic behavior. Pages 382–399 of:
Proceedings of the 13th annual meeting of the highway research board.

Greenshields, B. D., Bibbins, J. R., Channing, W. S., & Miller, H. H. 1935. A study of traffic
capacity. Pages 448–477 of: Proceedings of the 14th annual meeting of the highway research
board.

36

Bibliography

Janssen, A. J. E. M., & van Leeuwaarden, J.S.H. 2005. Analytic computation schemes for the
discrete-time bulk service queue. Queueing Systems, 50(2-3), 141–163.

Kendall, D. G. 1953. Stochastic Processes Occurring in the Theory of Queues and their Analysis
by the Method of the Imbedded Markov Chain. The Annals of Mathematical Statistics, 24(3),
338–354.

Kimber, R., & Hollis, E. M. 1979. Traffic queues and delays at road junctions. Tech. rept. 909.
Transport and Road Research Laboratory.

Knoop, V. L. 2017. Macroscopic Traffic Flow Modelling. Reader from and for graduate Students
Course by TRAIL research school.

Krauss, S. 1998. Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics.
Tech. rept. 98-08. DLR Deutsches Zentrum fur Luft– und Raumfahrt.

Lighthill, M. J., & Whitham, G. B. 1955. On kinematic waves II. A theory of traffic flow on long
crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 229(1178), 317–345.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y., Hilbrich, R., Lücken, L.,
Rummel, J., Wagner, P., & Wießner, E. 2018. Microscopic Traffic Simulation using SUMO. In:
IEEE Intelligent Transportation Systems Conference (ITSC).

Miller, A. 1968. The capacity of signalized intersections in Australia. Tech. rept. Australian Road
Research Board.

Nagel, K., & Schreckenberg, M. 1992. A cellular automaton model for freeway traffic. Journal de
Physique I, 2(12), 2221–2229.

Oblakova, A. 2019. Queueing models for urban traffic networks. Ph.D. thesis, University of Twente.

Richards, P. I. 1956. Shock Waves on the Highway. Operations Research, 4(1), 42–51.

Sommer, C., German, R., & Dressler, F. 2011. Bidirectionally Coupled Network and Road Traffic
Simulation for Improved IVC Analysis. IEEE Transactions on Mobile Computing (TMC), 10(1),
3–15.

Timmerman, R. W., & Boon, M.A.A. 2021. Platoon forming algorithms for intelligent street inter-
sections. Transportmetrica A: Transport Science, 17(3), 278–307.

van Leeuwaarden, J. S. H. 2006. Delay analysis for the fixed-cycle traffic-light queue. Transportation
Science, 40(2), 189–199.

van Leeuwaarden, J.S.H. 2005. Queueing models for cable access networks. Ph.D. thesis, Technische
Universiteit Eindhoven.

van Wageningen-Kessels, F., van Lint, H., Vuik, K., & Hoogendoorn, S. 2015. Genealogy of traffic
flow models. EURO Journal on Transportation and Logistics, 4(4), 445–473.

Varga, A. 2010. OMNeT++. Pages 35–59 of: Wehrle, K., Güneş, M., & Gross, J. (eds), Modeling
and Tools for Network Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg.

Viti, F., & van Zuylen, H. J. 2009. The Dynamics and the uncertainty of queues at fixed and actuated
controls: A probabilistic approach. Journal of Intelligent Transportation Systems: Technology,
Planning, and Operations, 13(1), 39–51.

Viti, F., & van Zuylen, H. J. 2010. Probabilistic models for queues at fixed control signals. Trans-
portation Research Part B: Methodological, 44(1), 120–135.

37

Bibliography

Wiedemann, R. 1974. Simulation des Strassenverkehrsflusses. Tech. rept. Institute for Traffic Engi-
neering, University of Karlsruhe.

Wu, N., & Brilon, W. 1990. Delays at Fixed-Time Traffic Signals Under Time-Dependent Traffic
Conditions. Traffic Engineering and Control, 31(12).

Zhang, H. M. 1999. A mathematical theory of traffic hysteresis. Transportation Research Part B:
Methodological, 33B(1), 1–23.

38

Appendices

The following appendices show a selection of the scripts and SUMO definition files that we used for
the numerical work presented in this report. The transient calculations for the bulk service queue
and the FCTL model have been implemented using Python in a Jupyter notebook. These notebooks
may be exported directly to LaTeX files1, which we have directly included here. We did not include
the calculations for the stationary analysis that we implemented using Mathematica, because we
believe that they do not provide more insight than the formulas that we have discussed within the
text.

1https://tex.stackexchange.com/a/314785

39

https://tex.stackexchange.com/a/314785

Appendix A

Cellular automaton

Python implementation of the cellular automaton of Nagel & Schreckenberg (1992), which was
discussed in Section 2.3.2.

1 L = 110 # length of the lane in slots
2 v_max = 5 # maximum cruise speed of vehicles
3 p = 0.45 # probability of randomly decreasing velocity
4 t_max = 100 # number of timesteps to compute
5

6 p_insert = 0.8 # insertion probability

1 from random import random
2

3 def print_positions (positions) :
4 ’’’Prints the current state of the lane by showing
5 the velocity of the vehicle in a slot, or 0 when
6 no vehicle is present.’’’
7 for i in range (L) :
8 v = positions [i]
9 if v == - 1 :

10 print (’.’ , end=’’)
11 else :
12 print (v , end=’’)
13 print (’’)

1 def distance_to_next (positions , i , v) :
2 """For the car at i driving at v, compute min(j, v + 2),
3 where j is the distance to the next car."""
4 for j in range (1 , v + 3) : # j \in [1, v + 2]
5 if i+j >= L : # if not in the system any more
6 j = v + 2 # no car ahead
7 break
8 elif positions [i+j] >= 0 : # if car in front
9 break

10

11 return j

1 def add_car (t , positions) :
2 # make sure the first position is free...
3 if random () < p_insert and positions [0] == - 1 :
4 v0 = 5
5 j = distance_to_next (positions , 0 , v0)
6

7 if j >= v0 + 1 : # ...and also make sure there enough head-space
8 positions [0] = v0

40

Appendix A. Cellular automaton

1 # clear all vehicles
2 positions = [- 1 for x in range (L)]
3

4 # create an artificial traffic jam
5 positions [2 0] = 0
6 positions [1 7] = 0
7 positions [2 5] = 0
8 positions [2 6] = 0
9 positions [2 7] = 0

10 positions [2 8] = 0
11 positions [2 9] = 0
12

13 for t in range (t_max) :
14 # add cars
15 add_car (t , positions)
16

17 new_positions = [- 1 for x in range (L)]
18

19 # update velocities
20 for i in range (L) :
21 v = positions [i]
22 if v >= 0 : # if there is a car at this position
23

24 j = distance_to_next (positions , i , v)
25

26 if j <= v :
27 # decelerate to match speed of vehicle ahead
28 v = min (j - 1 , v)
29

30 if j > v + 1 and v < v_max :
31 # accelerate
32 v = v + 1
33

34 if random () < p and v > 0 :
35 # randomly decrease velocity
36 v = v - 1
37

38 # we may create an artificial bottle-neck
39 # if 45 <= i < 55:
40 # v = min([1, v])
41

42 # assign the computed velocity
43 positions [i] = v
44

45 # compute next position
46 if i+v < L : # let cars disappear when they pass position L-1
47 new_positions [i+v] = v
48

49 # show current state t with correct velocities
50 print_positions (positions)
51

52 # update all positions
53 positions = new_positions

41

Appendix A. Cellular automaton

5................1..0....00000..
.....5............0.1....00000..
..........5.......1..2...00001..
4..............2...1...1.0000.1...
....4............2..2...00001..2..
........5..........1..1.0000.1...3..
5............4......2..00001..1.....4...
.....5...........4....00001.2..2........5...
4.........4..........00000.1..2..3...........5..
....4.........4......00001..2...2...3.............4...
........5.........1..0001.2...2...3....4..............5...
4............4.....0.000.1..2...3....3.....5...............4..
....5............1.1.000..1...3....3....4.......5..............4..
5........5........1.0000...2.....3....4.....5........5.............5..
.....5........4....00001.....2......4.....4......5........4.............4.....................................
..........5.......00001.1......2........5.....4.......4.......5.............4.................................
5..............2..0001.0.2.......2...........3....5.......4........4............5.............................
.....5...........0000.00...2.......2............4......4......5........5.............5........................
4.........5......0000.01.....2.......2..............5......4.......5........5.............5...................
....5..........0.0000.0.1......3.......3.................5.....5........4........5.............5..............
5........4.....1.0001.0..2........3.......3...................5.....4.......5.........5.............4.........
.....5.......1..0000.00....2.........3.......4.....................3....4........5.........4............5.....
4.........3...0.0000.00......2..........4........4....................3.....4.........5........5.............5
....4........00.0001.01........2............4........4...................3......5..........5........4.........
........4....01.001.00.1.........3..............4........5..................4........4..........5.......4.....
............01.000.001..2...........4...............4.........4.................4........4...........5......4.
5...........1.0000.01.1...3.............5...............4.........4.................4........4............4...
.....5.......00001.0.1.1.....3...............4..............4.........4.................5........4............
5.........2..0001.01..1.2.......4................5..............4.........5..................5.......5........
.....4......0000.01.1..1..3.........5.................4.............5..........4..................5.......5...
.........2..0001.1.1.1..2....4...........5................5..............4.........4...................5......
4..........0000.0.0.1.2...3......5............4................5.............4.........4....................4.
....5......0000.0.0..2..2....4........5...........5.................5............5.........5..................
.........1.0000.1.0....1..2......4.........4...........5.................4............4.........4.............
5.........00000..00.....2...2........4.........5............5................4............5.........4.........
.....3....00000..01.......3...3..........5..........5............5...............4.............5........4.....
4.......1.00000..1.1.........2...3............4..........4............4..............5..............5.......4.
....4....000000...1.2..........3....4.............4..........5............4...............4..............4....
5.......0000001....2..2...........3.....5.............5...........4...........4...............5..............5
.....2..000000.1.....1..3............4.......5.............5..........5...........5................4..........
5......0000000..1.....2....3.............5........4.............5..........5...........5...............4......
.....1.0000000...2......2.....3...............5.......5..............5..........4...........4..............4..
......00000000.....2......3......3.................5.......5..............5.........5...........4.............
......00000000.......2.......4......3...................4.......5..............4.........5..........4.........
......00000000.........3.........5.....3....................5........5.............5..........4.........4.....
5.....00000000............3...........3...3......................5........4.............4.........5.........4.
.....000000001...............3...........3...4........................5.......4.............4..........5......
.....00000001.1.................3...........4....4.........................5......5.............5...........4.
.....0000000.0.1...................3............3....4..........................4......4.............5........
.....0000001.0..2.....................4............3.....5..........................5......4..............5...
.....000001.01....2.......................5...........3.......4..........................4.....5..............
.....00000.00.2.....3..........................4.........4........5..........................5......4.........
.....00001.01...2......4...........................4.........5.........4..........................5.....4.....
.....0000.01.2....2........5...........................5..........5........5...........................4....4.
.....0000.0.2..2....2...........5...........................4..........4........4..........................5..
.....0000.0...1..2....2..............4..........................4..........4........4.........................
.....0001.0....1...3....3................5..........................5..........5........5.....................
.....000.00.....1.....4....3..................5..........................5..........4........4................
.....001.00......2........3...4....................4..........................4.........4........5............
.....00.000........3.........3....4....................4..........................5.........5.........4.......
.....00.001...........3.........3.....4....................5...........................5.........4........4...
.....00.00.1.............3.........4......5.....................5...........................4........4........
.....00.01..1...............4..........4.......4.....................5..........................4........4....
.....00.1.1..2..................5..........4.......4......................4.........................5........5
.....01..0.2...3.....................5.........5.......5......................5..........................4....
.....0.1.1...2....4.......................4.........4.......4......................4.........................4
.....0..1.1....3......5.......................4.........4.......5......................4......................
.....0...1.1......3........4......................4.........4........5.....................5..................
.....1....1.1........4.........4......................5.........4.........5.....................5.............
5.....1....0.1...........5.........5.......................5........5..........4.....................4........
.....0.2...0..2...............5.........4.......................5........5.........4.....................4....
.....0...0.1....3..................4........5........................5........4........5.....................4
.....0...0..2......3...................4.........5........................4.......4.........5.................
.....1...1....3.......3....................4..........4.......................4.......4..........5............
......1...1......4.......3.....................5..........5.......................5.......4...........5.......
5......1...1.........4......4.......................4..........5.......................4......5............5..
.....2..2...1............5......5.......................5...........5......................4.......5..........
4......2..1..1................4......5.......................4...........5.....................5........4.....
....4....0.2..2...................5.......5......................5............4.....................4.......4.
........01...2..2......................4.......4......................5...........5.....................4.....
4.......0.1....1..2........................5.......5.......................5...........4....................5.
....3...1..2....2...2...........................5.......5.......................5..........4..................
5......1.2...3....2...2..............................4.......4.......................5.........5..............
.....1..2..3....3...3...2................................4.......5........................4.........5.........
5.....2...3...4....3...1..2..................................5........5.......................5..........5....
.....2..2....4....3...0.2...2.....................................5........5.......................5..........
.......2..3......2...01...3...3..5........5.......................5.....
4........3...4.....0.0.2.....3...3..4........5.......................4
....4.......3....0.1.1...2......2...3...4.........5...................
........4......1.0..1.2....3......2....3..5..........4..............
5...........3...00...2..2.....3.....3.....3..5.........5..........
.....4.........000.....2..2......3.....4.....3..5.........5.....
.........4.....001.......2..3.......4......4....4..5.........5
4............0.01.2........3...4........4......3....4...5.....
....5........1.1.2..3.........3....5........5.....4.....5..5
4........3....0.2..2...3.........4......5........4....5......4..
....4.......1.0...2..3....4..........4.......5.......5.....4.....5..
5.......3....01.....2...4.....5..........5........4.......4....4......5.......................................
.....5.....0.1.1......2.....4......4..........5.......5.......3....5.......5..................................
5.........00..1.1.......2.......4......4...........4.......5.....3......4.......5.............................

42

Appendix B

Transient bulk service queue

B.1 Transient queue length in bulk service queue
Instead of using the probability generating function approach for the bulk service queue, we can
also compute the transient and stationary distribution of the (overflow) queue by iterating through
the cycles one by one. This Markov chain is generalized by the cycle-to-cycle model of Viti and
Van Zuylen that allows departures to be generally distributed, which makes the construction of the
transition matrix a little bit more involved. We have to truncate the possible values for the arrivals
and departures in order to calculate the transition matrix.

Like in the paper of Viti and Van Zuylen, we let the cycle start with the green phase.

B.2 Experiment loading

1 %run init . ipynb

Stored ’e0’ (Experiment)
Stored ’e1’ (Experiment)

1 %store -r e1
2 e = e1
3 e . f_cycle = dill . loads (e . f_cycle) # Python does not support pickling of lambda’s by

default
4 e . F_cycle = dill . loads (e . F_cycle)
5 e . g_cycle = dill . loads (e . g_cycle)

B.3 Calculating the queue length distribution for each cycle
using a matrix

The evolution of the overflow queue distribution can easily be computed for each cycle by multiplying
with the transition matrix.

1 def P_transition () :
2 """Construct the transition matrix for going to the next cycle."""
3

4 P = np . zeros (shape=(e . Q_max + 1 , e . Q_max + 1))
5

6 # underflow (i==0)
7 for j in range (0 , e . Q_max + 1) :
8 for a in range (0 , e . a_max + 1) :
9 for d in range (j + a , e . d_max + 1) :

10 P [0 , j] += e . f_cycle (a) ∗ e . g_cycle (d)

43

Appendix B. Transient bulk service queue

11

12 # overflow (i==Q_max)
13 for j in range (0 , e . Q_max + 1) :
14 for a in range (e . Q_max - j , e . a_max + 1) :
15 for d in range (0 , j + a - e . Q_max + 1) :
16 P [e . Q_max , j] += e . f_cycle (a) ∗ e . g_cycle (d)
17

18

19 # all in between
20 for j in range (0 , e . Q_max + 1) :
21 for i in range (1 , e . Q_max) :
22 for a in range (i - j , e . a_max + 1) :
23 P [i , j] += e . f_cycle (a) ∗ e . g_cycle (j + a - i)
24

25

26 return P
27

28

29 P_trans = P_transition ()
30

31 # Use this to check if the matrix is indeed stochastic
32 #np.matmul(np.ones(e.Q_max + 1), P_trans)

We can now simply start multiplying the initial queue length distribution with the transition
matrix for the desired number of cycles. The entry Q[t,k] of the 2d array that results from this
represents the probability that the queue length is k at

1 Q = np . zeros (shape=(e . cycles + 1 , e . Q_max + 1))
2 init_length = 0
3 Q [0 , init_length] = 1 # initial queue length (or distribution if you want)
4

5 for c in range (e . cycles) :
6 Q [c+1] = np . matmul (P_trans , Q [c])
7

8 Q_bulk = Q
9 %store Q_bulk

Stored ’Q_bulk’ (ndarray)

B.4 Evolution of full distribution per cycle
We can visualize the evolution of the full distribution for some cycles by plotting a heatmap.

1 fig , ax = plt . subplots (1 , 1 , figsize=(25 ,5))
2 ax . imshow (Q [: 1 0 0] . transpose () , origin=’lower’) ;

B.5 Expected value of overflow queue per cycle
Instead of the full distribution, we may also plot the expected value of the overflow queue for each
cycle.

1 expected_overflow_queue = np . matmul (Q , np . arange (0 , e . Q_max + 1))

1 fig , ax = plt . subplots (1 , 1 , figsize=(10 ,5))
2 ax . plot (expected_overflow_queue) ;

The expected overflow queue of the last cycle that we computed is an approximation for the
expected stationary overflow queue length, so this may be compared to the value found by the
stationary bulk service analysis, or the stationary FCTL analysis.

44

Appendix B. Transient bulk service queue

1 bulk_stationary = expected_overflow_queue [- 1]
2 %store bulk_stationary

Stored ’bulk_stationary’ (float64)

B.6 Queue length within a cycle
Given the overflow queue for all cycles, we may now extend this with the within-cycle model of Viti
and van Zuylen.

1 from math import floor
2

3 def P_Q (e , Qo , delta_t , f , F) :
4 """Compute the queue length distribution at time delta_t since the start of the

cycle.
5

6 :param Qo: the distribution of the overflow queue at the start of the cycle
7 :param delta_t: time in seconds since the start of the current cycle
8 :param f: arrival pdf f(a, dt) = P(’# arrivals happened after dt seconds’ == a)
9 :param F: arrival cdf F(a, dt) = P(’# arrivals happened after dt seconds’ <= a)

10 """
11

45

Appendix B. Transient bulk service queue

12 assert (0 <= delta_t <= e . cF)
13

14 def get_Q_red_end () :
15 if P_Q . Q_red_end is None : # check if cache has already been created
16 P_Q . Q_red_end = P_Q_red (e , Qo , e . rF , f , F) # first get distribution after

red phase
17 return P_Q . Q_red_end
18

19 if 0 <= delta_t <= e . rF :
20 # red phase
21 return P_Q_red (e , Qo , delta_t , f , F)
22

23 elif e . rF < delta_t <= e . cF :
24 # green phase
25

26 # note that we need to transform the time
27 return P_Q_green (e , get_Q_red_end () , delta_t - e . rF , f , F)
28

29 else :
30 raise ValueError
31

32 P_Q . Q_red_end = None # cacheing value as a function attribute
33

34

35 def P_Q_red (e , Qo , delta_t , f , F) :
36 """Compute the distribution of the queue length during the red phase.
37

38 :param Qo: the distribution of the overflow queue at the start of the cycle
39 """
40

41 P = np . empty (shape=(e . Q_max + 1))
42

43 # underflow and general case
44 for i in range (0 , e . Q_max) :
45 P [i] = sum (
46 Qo [j] ∗ f (i -j , delta_t)
47

48 for j in range (0 , i+1)
49)
50

51 def f_helper (j) :
52 # P(a >= Q_max - j) = 1 - P(a < Q_max - j) = 1 - F_a(Q_max - j - 1)
53 return 1 - F (e . Q_max - j - 1 , delta_t)
54

55 # overflow
56 P [e . Q_max] = sum (
57 Qo [j] ∗ f_helper (j)
58 for j in range (0 , e . Q_max+1)
59)
60

61 return P
62

63 def P_Q_green (e , Q_red_end , delta_t , f , F) :
64 """Compute the distribution of the queue length during the green phase.
65

66 :param Q_red_end: the distribution at tau+tr.
67 """
68

69 P = np . empty (shape=(e . Q_max + 1))
70

71 d_max = floor (e . sS ∗ delta_t)
72

73 # underflow
74 P [0] = sum (
75 Q_red_end [j] ∗ f (a , delta_t)
76

77 for j in range (0 , d_max+1)
78 for a in range (0 , d_max - j +1)

46

Appendix B. Transient bulk service queue

79)
80

81 # general case
82 for i in range (1 , e . Q_max) :
83 j_max = min ([i + d_max , e . Q_max])
84

85 P [i] = sum (
86 Q_red_end [j] ∗ f (i + d_max - j , delta_t)
87

88 for j in range (0 , j_max+1)
89)
90

91 def f_helper (j) :
92 # P(a >= Q_max + d_max - j) = 1 - P(a < Q_max + d_max - j) = 1 - F_a(Q_max +

d_max - j - 1)
93 return 1 - F (e . Q_max + d_max - j - 1 , delta_t)
94

95 # overflow
96 P [e . Q_max] = sum (
97 Q_red_end [j] ∗ f_helper (j)
98 for j in range (0 , e . Q_max+1)
99)

100

101 return P

B.6.1 Plot within a single cycle

1 def plot_within_cycle (n) :
2 # the distribution at the start of the n’th cycle
3 Qo = Q [n - 1 , :]
4

5 # the start of cycle n
6 tau = (n - 1) ∗ e . cF # seconds
7

8 # arrivals within the cycle
9 f = lambda a , dt : poisson . pmf (a , dt ∗ e . aF)

10 F = lambda a , dt : poisson . cdf (a , dt ∗ e . aF)
11

12 # DONT FORGET TO CLEAR CACHE
13 P_Q . Q_red_end = None # cacheing value, function attribute
14

15 x_data = np . arange (0 , e . cF + 0 .1 , 0 . 1)
16 distrs = [P_Q (e , Qo , delta_t , f , F) for delta_t in x_data]
17

18 y_expected = [np . matmul (Q , np . arange (0 , e . Q_max + 1)) for Q in distrs]
19

20 fig , ax = plt . subplots (1 , 1 , figsize=(8 ,5))
21 ax . plot (x_data , y_expected , ’.’)
22 ax . set_ylabel (’$E[Q]$’)
23 ax . set_xlabel (’Δt’)
24 fig . suptitle (f’Expected queue length within cycle {n}’ , fontsize=16) ;
25 plt . savefig (f’./images/within_cycle_{n}.pdf’)

1 plot_within_cycle (1)
2 plot_within_cycle (5)
3 plot_within_cycle (100)

47

Appendix B. Transient bulk service queue

B.6.2 Verify with overflow queue

1 n = 5
2

3 fig , ax = plt . subplots (1 , 1 , figsize=(10 ,5))
4 x_cycle = np . arange (0 , (n + 1) ∗ e . cF , e . cF)
5 ax . plot (x_cycle , expected_overflow_queue [: n+1] , color=’blue’ , label=’cycle-to-cycle’)

;
6

7 for i in range (n) :
8 # the distribution at the start of the n’th cycle
9 Qo = Q [i , :]

10

11 # the start of cycle i+1
12 tau = i ∗ e . cF # seconds

48

Appendix B. Transient bulk service queue

13

14 # arrivals within the cycle
15 f = lambda a , dt : poisson . pmf (a , dt ∗ e . aF)
16 F = lambda a , dt : poisson . cdf (a , dt ∗ e . aF)
17

18 # DONT FORGET TO CLEAR CACHE
19 P_Q . Q_red_end = None # cacheing value, function attribute
20

21 x_data = np . arange (tau , tau + e . cF , 0 . 1)
22 distrs = [P_Q (e , Qo , x - tau , f , F) for x in x_data]
23

24 y_expected = [np . matmul (Q , np . arange (0 , e . Q_max + 1)) for Q in distrs]
25

26 ax . plot (x_data , y_expected , ’.’ , color=’red’)
27

28 ax . set_xlabel (’t’)
29 ax . set_ylabel (’$E[Q]$’)
30 ax . legend ()
31

32 plt . savefig (f’./images/within_first_{n}_cycles.pdf’)

49

Appendix C

Transient FCTL queue

C.1 Transient queue length in FCTL queue
Instead of using the probability generating function approach, we can also compute the transient
and stationary distribution of the (overflow) queue by iterating through the cycles one by one. Like
the cycle-to-cycle model of Viti and Van Zuylen, this approach could also allows us to define non-
stationary arrivals, but then we need to recompute the transition matrix if the arrival rate changes.

Note that we use the same conventions as in the models of Viti and Van Zuylen that a cycle
starts with the green phase. This allows us to compare the transient behavior of both models better.

C.2 Experiment loading

1 %run init . ipynb

Stored ’e0’ (Experiment)
Stored ’e1’ (Experiment)

1 %store -r e0
2 e = e0
3 e . f = dill . loads (e . f) # Python does not support pickling of lambda’s by default
4 e . F = dill . loads (e . F)
5 e . g = dill . loads (e . g)

C.3 Calculating the queue length distribution for each time
step using two matrices

Because the queue lenght distribution evolves differently in the green and red phase, we define a
transition matrix for each of them.

1 def P_green () :
2 """Get transition matrix for steps in green phase."""
3

4 P = np . zeros (shape=(e . Q_max + 1 , e . Q_max + 1))
5

6 # underflow
7 P [0 , 0] = 1
8 P [0 , 1] = e . f (0)
9

10 # overflow
11 for j in range (1 , e . Q_max+1) :

50

Appendix C. Transient FCTL queue

12 P [e . Q_max , j] = 1 - e . F (e . Q_max - j)
13

14 # all in between
15 for i in range (1 , e . Q_max) :
16 for j in range (1 , (i + 1)+1) :
17 P [i , j] = e . f (i - j + 1)
18

19 return P
20

21 def P_red () :
22 """Get transition matrix for steps in red phase."""
23

24 P = np . zeros (shape=(e . Q_max + 1 , e . Q_max + 1))
25

26 # overflow
27 for j in range (e . Q_max) :
28 P [e . Q_max , j] = 1 - e . F (e . Q_max - j - 1)
29

30 # once we have a full queue, it cannot grow anymore
31 P [e . Q_max , e . Q_max] = 1
32

33 # not yet overflow
34 for i in range (0 , e . Q_max) :
35 for j in range (0 , i + 1) :
36 P [i , j] = e . f (i - j)
37

38 return P
39

40

41 Pg = P_green ()
42 Pr = P_red ()
43 # Use this to check if the matrices are indeed stochastic
44 #np.matmul(np.ones(e.Q_max + 1), Pg), np.matmul(np.ones(e.Q_max + 1), Pr)

Now calculate the distribution for each time step by multiplying with each of these matrices in
an alternating way. The entry Q[t,k] of the 2d array that results from this represents the probability
that the queue is k at time step t.

1 Q = np . zeros (shape=(e . cycles ∗ e . cF + 1 , e . Q_max + 1))
2 init_length = 0
3 Q [0 , init_length] = 1 # initial queue length (or distribution if you want)
4

5 for c in range (e . cycles) :
6 for t in range (c∗e . cF , c∗e . cF + e . gF) : # cycle starts with green phase...
7 Q [t+1] = np . matmul (Pg , Q [t])
8

9 for t in range (c∗e . cF + e . gF , (c + 1) ∗e . cF) : # ...and then red phase
10 Q [t+1] = np . matmul (Pr , Q [t])
11

12 Q_FCTL = Q
13 %store Q_FCTL

Stored ’Q_FCTL’ (ndarray)

C.4 Evolution of full distribution per timestep
We can visualize the evolution of the full distribution for some timesteps by plotting a heatmap.

1 fig , ax = plt . subplots (1 , 1 , figsize=(25 ,5))
2 ax . imshow (Q [0 : 2 0 0] . transpose () , origin=’lower’)

51

Appendix C. Transient FCTL queue

C.5 Expected value per time step
We can also show the evolution of the expected value for some timesteps. We calculate the expected
value by multiplying with a row vector with entries 0,1,. . . ,Q_max.

1 expected = np . matmul (Q , np . arange (0 , e . Q_max + 1))

1 fig , ax = plt . subplots (1 , 1 , figsize=(10 ,5))
2 ax . plot (expected [: 1 0 0]) ;
3 ax . set_xlabel (’time step’)
4 ax . set_ylabel (’expected queue length’)
5 plt . savefig (’images/FCTL_MC_timesteps.pdf’)

C.6 Expected value of overflow queue per cycle
Instead of the expected value, we may also choose to only plot the timesteps just after the green
phase, which gives us the evolution of the overflow queue length.

1 expected_overflow_queue = np . take (expected , range (e . gF , e . cycles ∗ e . cF , e . cF))
2 FCTL_expected_overflow = expected_overflow_queue
3 %store FCTL_expected_overflow

Stored ’FCTL_expected_overflow’ (ndarray)

1 fig , ax = plt . subplots (1 , 1 , figsize=(10 ,5))
2 ax . plot (expected_overflow_queue [: 1 0 0]) ;

52

Appendix C. Transient FCTL queue

The expected overflow queue of last timestep that we computed is an approximation for the
expected stationary overflow queue length, so this may be compared to the value found by the
stationary FCTL formula.

1 expected_overflow_queue [- 1]

2.2046148205221536

C.7 Average distribution over all time steps
We may average the distributions over all time steps, giving the distribution of the queue length at
an arbitrary point during a cycle.

1 averaged_distribution = np . matmul (np . ones (shape=(e . cycles ∗ e . cF + 1 , 1)) . transpose ()
, Q) / (e . cycles ∗ e . cF + 1)

2 averaged_distribution = averaged_distribution . flatten () . tolist ()
3

4 fig , ax = plt . subplots (1 , 1 , figsize=(20 ,10))
5 ax . bar (list (range (e . Q_max + 1)) , averaged_distribution) ;

53

Appendix C. Transient FCTL queue

C.8 Overflow queue of last cycle
We consider the distribution of the overflow queue of the last cycle to obtain an approximation
for the distribution of the stationary overflow queue. This distribution may be compared to the
distribution that we find using the FCTL model, or to the distribution that we can find through the
SUMO model. Note that in the latter case, we may need to calibrate the definition of queue length
in SUMO in order to get similar results. However, in practice, it would be more relevant if we could
calibrate the FCTL model, given a definition of queue length for the SUMO model.

1 FCTL_overflow_queue = Q [e . gF + (e . cycles - 1) ∗ e . cF]
2 %store FCTL_overflow_queue

Stored ’FCTL_overflow_queue’ (ndarray)

1 fig , ax = plt . subplots (1 , 1 , figsize=(20 ,10))
2 ax . bar (list (range (e . Q_max + 1)) , FCTL_overflow_queue) ;

54

Appendix C. Transient FCTL queue

C.9 Percentiles
We can also compute percentiles if we want. For example, the probability that the stationary
overflow queue is larger than 20 is given by

1 1 - sum (FCTL_overflow_queue [0 : 2 0])

0.002995292846616371

55

Appendix D

SUMO script snippets

We wrote a collection of Python scripts and SUMO definition files for the numerical work that has
been described in this report, which we cannot all include here. The two most important scripts for
starting and controlling a SUMO simulation run are presented below. The Experiment data class
is used to convert the different parameters for the FCTL and the SUMO model. The ‘start’ script
starts a SUMO simulation and controls it via the TraCI interface to obtain measurements. We have
also included the ‘departure-counter’ tool, because we think that it may be directly used by others.
Other measurements are written directly to file. We wrote parsers for these files to create the figures
in this report. We also included the script that we used for showing a graph of the live queue length
while a simulation is running.

D.1 Experiment data class

1 from dataclasses import dataclass
2 from typing import Callable
3

4 @dataclass
5 class Experiment :
6 """Data class containing parameters for SUMO model and for slotted models for

comparison."""
7

8 ### Arrivals ###
9

10 # pdf and cdf of arrivals per time slot
11 f : Callable [[int] , float] = None
12 F : Callable [[int] , float] = None
13

14

15 ### Departures ###
16

17 g : Callable [[int] , float] = None
18

19

20 ### General parameters ###
21

22 cycles : int = 100
23

24

25 ### Slotted model parameters ###
26

27 # number of green time slots in the slotted models (FCTL, Markov chain)
28 gF : int = 10
29 # number of red time slots in the slotted models (FCTL, Markov chain)
30 rF : int = 10
31

32 # mean of number of arrivals per timeslot

56

Appendix D. SUMO script snippets

33 aF : float = 0.4
34

35 # maximum queue length
36 # used to model the occurance of spillback
37 # and this simplifies further calculations, because we only have a finite matrix

of transition probabilities
38 Q_max : int = 40
39

40 # maximum arrivals and departures within one time step
41 # this makes the probabilistic calculations feasible
42 a_max : int = 40
43 d_max : int = 1
44

45

46 ### SUMO parameters ###
47

48 # saturation flow (veh/s) in SUMO
49 sS : float = 0.5 # 0.5 corresponds roughly to the 2s that are needed to depart in

SUMO
50

51 # length of the effective green phase (s)
52 gS : int = 20
53 # length of the effective red phase (s)
54 rS : int = 21
55

56 # length in seconds of a SUMO time step
57 step_length = 1
58

59

60 ### Computed parameters ###
61

62 # timing
63

64 @property
65 def cS (self) :
66 """total signal cycle (s) in SUMO"""
67 return self . gS + self . rS
68

69 @property
70 def cF (self) :
71 """total number of time slots"""
72 return self . gF + self . rF
73

74 @property
75 def simulation_time (self) :
76 """total number of SUMO seconds to simulate"""
77 return self . cycles ∗ self . cS
78

79 # arrivals
80

81 @property
82 def aS (self) :
83 """arrival flow rate (veh/s) in SUMO"""
84 return self . aF ∗ (self . rF + self . gF) / (self . cS)
85

86 @property
87 def pS (self) :
88 """insertion probability for each SUMO timestep"""
89 return self . aS ∗ self . step_length
90

91

92 ### Miscellaneous ###
93

94 @property
95 def yS (self) :
96 """fraction of green time in the cycle"""
97 return self . gS / self . cS
98

57

Appendix D. SUMO script snippets

99 @property
100 def capacityS (self) :
101 """capacity of the signal (veh/s)"""
102 return self . sS ∗ self . yS
103

104 @property
105 def xS (self) :
106 """degree of saturation"""
107 return self . aS / (self . sS ∗ self . yS)
108

109 @property
110 def x0S (self) :
111 """Value above which the overflow queue can be considered nonzero."""
112 return 0 .67 + self . sS ∗ self . gS / 600

D.2 Script for starting SUMO simulation runs
This is the main entry point of interacting with a running SUMO simulation via the TraCI interface.

1 import os , sys , argparse
2 from random import random
3 from math import ceil
4

5 from experiment import Experiment
6

7

8 def simulate (e : Experiment , gui=False , live_plot=False , count_departures=False) :
9 # we need to import python modules from the $SUMO_HOME/tools directory

10 if ’SUMO_HOME’ in os . environ :
11 tools = os . path . join (os . environ [’SUMO_HOME’] , ’tools’)
12 sys . path . append (tools)
13 else :
14 sys . exit ("please declare environment variable ’SUMO_HOME’")
15 import traci
16

17 sumoBinary = ’sumo-gui’ if gui else ’sumo’
18 queue_output_file = ’localhost:1338’ if live_plot else ’./sumo/network/output/

queue_lengths.xml’
19 fcd_output_file = ’./sumo/network/output/fcd.xml’
20

21

22 ### Parameters ###
23 simulation_time = e . simulation_time
24 step_length = e . step_length
25

26 red_seconds = e . rS
27 green_seconds = e . gS
28

29 initialSpeed = 14 # initial speed of vehicles that enter the lane
30

31 p = e . pS # parameter for the Bernoulli arrivals
32 ##################
33

34

35 red = ceil (red_seconds / step_length) # number of steps during which the traffic
light is red

36 green = ceil (green_seconds / step_length) # number of steps during which the
traffic light is green

37 if red != int (red_seconds / step_length) :
38 raise ValueError (’red_seconds is not a multiple of step_length’)
39 if green != int (green_seconds / step_length) :
40 raise ValueError (’green_seconds is not a multiple of step_length’)
41

42 step = 0
43 last_step = ceil (simulation_time / step_length)
44 n_cycles = last_step // (red + green) + 1

58

Appendix D. SUMO script snippets

45

46 routeID = ’route_0’
47 vehID = 0
48

49 # total number of vehicles left (for counting departures per cycle)
50 departures_in_cycle = [0 for x in range (n_cycles)]
51

52 # start sumo as a subprocess and connect to it
53 traci . start ([sumoBinary , ’-c’ , ’sumo/manual_insertion.sumocfg’ , ’--queue-output’ ,

queue_output_file , ’--fcd-output’ , fcd_output_file])
54

55 # at this point, the user needs to click the ’step’ button before we activate
step 0

56 print (’start simulation, begin of step=0’)
57 print (f’n_cycles={n_cycles}’)
58

59 traci . trafficlight . setPhase (’1’ , 0) # traffic light is initially red
60 traci . simulationStep () # we need a step to get at time=0, strange enough
61

62 while step < last_step :
63 cycle = step // (red + green) + 1 # first cycle is 1
64

65 if count_departures :
66 # count departures during last step
67 departures_in_cycle [cycle - 1] += traci . inductionloop .

getLastStepVehicleNumber (’departure_loop’)
68

69 # insert new vehicle for next step
70 if random () < p :
71 traci . vehicle . add (str (vehID) , routeID , departSpeed=str (initialSpeed))
72 vehID += 1
73

74 # set the traffic light
75 if step % (red + green) in range (red) :
76 traci . trafficlight . setPhase (’1’ , 0) # red
77 elif step % (red + green) - red in range (green) :
78 traci . trafficlight . setPhase (’1’ , 1) # green
79

80 step += 1
81 traci . simulationStep ()
82

83 traci . close ()
84

85 if count_departures :
86 print (2∗’\n’)
87 print (f’average departures per cycle={sum(departures_in_cycle) / n_cycles}’)
88

89

90 def get_options () :
91 parser = argparse . ArgumentParser (description=’Start SUMO simulation’)
92 parser . add_argument (’--gui’ , action=’store_true’ , help=’show SUMO gui’)
93

94 parser . add_argument (’--cycles’ , type=int , default=100 , help=’number of cycles to
simulate’)

95 parser . add_argument (’--step-length’ , type=float , default=1, help=’time step
length passed to sumo’)

96 parser . add_argument (’--arrival-rate’ , type=float , default=0.3 , help=’arrival rate
a from FCTL model, from which probability p for inserting vehicles is computed’)

97

98 return vars (parser . parse_args ())
99

100

101 if __name__ == ’__main__’ :
102 options = get_options ()
103

104 e = Experiment ()
105 e . rF = 10
106 e . gF = 10

59

Appendix D. SUMO script snippets

107 e . rS = 20
108 e . gS = 21 # not exactly 20 to make sure that around 10 departures happen on

average
109

110 e . aF = options [’arrival_rate’]
111

112 e . cycles = options [’cycles’]
113 e . step_length = options [’step_length’]
114

115 print (f’starting simulation with {e.simulation_time} SUMO seconds’)
116 print (f’insertion probability p={e.pS}’)
117

118 simulate (e , gui=options [’gui’] , live_plot=False)

D.3 Tool departure-counter
The tool that we discussed in Section 5.2.

1 import os , sys , argparse , pickle
2 import matplotlib . pyplot as plt
3

4 # we need to import python modules from the $SUMO_HOME/tools directory
5 if ’SUMO_HOME’ in os . environ :
6 tools = os . path . join (os . environ [’SUMO_HOME’] , ’tools’)
7 sys . path . append (tools)
8 else :
9 sys . exit ("please declare environment variable ’SUMO_HOME’")

10

11 from sumolib import checkBinary
12 import traci
13

14

15 def run (green_time , cycles=1) :
16 """execute the TraCI control loop"""
17 setup_time = 50
18 red_time = 1 + 2 ∗ green_time
19

20 last_step = setup_time + cycles ∗ (red_time + green_time)
21 end_time = 10 # to make sure that all vehicles cross the induction loop
22

23 step = 0
24 cycle = 1
25

26 departures = 0 # total number of vehicles left
27

28 print (f’start simulation, with {cycles} cycles, green={green_time}, red={red_time
}’)

29

30 traci . trafficlight . setPhase (’1’ , 0) # start with red
31

32 traci . simulationStep () # we need a step to get at time=0, strange enough
33

34 while traci . simulation . getMinExpectedNumber () > 0 and step < last_step + end_time
:

35 departures += traci . inductionloop . getLastStepVehicleNumber (’departure_loop’)
36

37 # modulo cycle size, counting from setup_time
38 within_cycle_step = (step - setup_time) % (red_time + green_time)
39

40 inner_loop = setup_time <= step < last_step
41

42 if inner_loop and within_cycle_step == 0 :
43 traci . trafficlight . setPhase (’1’ , 0)
44 # print(f’swithing to red in step {step}’)
45

46 if inner_loop and within_cycle_step == red_time :

60

Appendix D. SUMO script snippets

47 traci . trafficlight . setPhase (’1’ , 1)
48 # print(f’swithing to green in step {step}’)
49

50 if not inner_loop :
51 traci . trafficlight . setPhase (’1’ , 0)
52

53 step += 1
54 cycle = (step - setup_time) // (red_time + green_time) + 1
55 # print(f’now showing begin of step={step}, cycle={cycle}, inner_loop={

inner_loop}’)
56 traci . simulationStep ()
57

58 traci . close ()
59

60 average = departures / cycles
61

62 print (2∗’\n’)
63 print (f’last_step={step} average departures={average}’)
64

65 # average departures per cycle
66 return average
67

68

69 def get_options () :
70 parser = argparse . ArgumentParser (description=’Measure number of departures for a

given green time’)
71 parser . add_argument (’--load’ , action=’store_true’ , help=’do not simulate, but

load previous values’)
72 parser . add_argument (’--gui’ , action=’store_true’ , help=’show SUMO gui’)
73 parser . add_argument (’--data-file’ , default=’plot_green_departures’ , help=’input/

output file were results are stored and loaded’)
74 parser . add_argument (’--show-plot’ , action=’store_true’ , help=’show plot’)
75 parser . add_argument (’--image’ , help=’save plot to this file’)
76

77 # parser.add_argument(’--step-length’, type=float, default=1, help=’time step
length passed to sumo’)

78 parser . add_argument (’--cycles’ , type=int , default=1, help=’number of cycles to
average over’)

79 parser . add_argument (’--green’ , type=int , help=’specific green time’)
80 return vars (parser . parse_args ())
81

82

83 # this is the main entry point of this script
84 if __name__ == "__main__" :
85 options = get_options ()
86

87 if options [’load’] :
88 print (f"opening file {options[’data_file’]}")
89 (x , y) = pickle . load (open (options [’data_file’] , ’rb’))
90 else :
91 # this script has been called from the command line. It will start sumo as a
92 # server, then connect and run
93 if options [’gui’] :
94 sumoBinary = checkBinary (’sumo-gui’)
95 else :
96 sumoBinary = checkBinary (’sumo’)
97

98 # step_length = options[’step_length’]
99 # print(f’step length: {step_length}’)

100

101 # perform the experiments
102 if options [’green’] is not None :
103 x = [options [’green’]]
104 else :
105 x = range (50 + 1)
106 y = []
107 for green_time in x :
108 # start sumo as a subprocess and connect to it

61

Appendix D. SUMO script snippets

109 traci . start ([sumoBinary , "-c" , "simple_queue.sumocfg"]) #, "--step-length
", str(step_length)])

110

111 # run the simulation
112 y . append (run (green_time , cycles=options [’cycles’]))
113

114 print (f"saving to file {options[’data_file’]}")
115 pickle . dump ((x , y) , open (options [’data_file’] , ’wb’))
116

117

118 y_default = [0 . 5 ∗ i for i in x]
119

120 # plot the results
121 fig , ax = plt . subplots ()
122 ax . plot (x , y , ’.’)
123 ax . plot (x , y_default , ’--’)
124 ax . set_xlabel (’green time (s)’)
125 ax . set_ylabel (’number of vehicles left’)
126

127 if options [’show_plot’] :
128 plt . show ()
129

130 if options [’image’] is not None :
131 print (f"saving plot to {options[’image’]}")
132 plt . savefig (options [’image’])

D.4 Live queue length graph (streaming XML parser)
We shortly mentioned the possible use case of this script in Section 5.4. Note that the socket
connection must also be enabled in the ‘start’ script by setting liveplot=True.

1 import socket
2 import xml . sax
3 import numpy as np
4 import matplotlib . pyplot as plt
5 from matplotlib . ticker import MultipleLocator
6

7

8 class StreamHandler (xml . sax . handler . ContentHandler) :
9

10 lastEntry = None
11 lastName = None
12

13 def __init__ (self , data_callback) :
14 self . data_callback = data_callback
15

16 def startElement (self , name , attrs) :
17 print (’startElement’)
18 self . lastName = name
19 if name == ’data’ :
20 self . lastEntry = {’data’ : { ’attrs’ : attrs }}
21 elif name != ’queue-export’ :
22 self . lastEntry [name] = { ’attrs’ : attrs }
23

24 def endElement (self , name) :
25 if name == ’lane’ :
26 timestep = self . lastEntry [’data’] [’attrs’] [’timestep’]
27

28 self . data_callback ({
29 ’timestep’ : timestep ,
30 ’queueing_length’ : self . lastEntry [’lane’] [’attrs’] [’queueing_length’

] ,
31 ’queueing_length_experimental’ : self . lastEntry [’lane’] [’attrs’] [’

queueing_length_experimental’] ,
32 })

62

Appendix D. SUMO script snippets

33 elif name == ’data’ :
34 self . lastEntry = None
35 elif name == ’queue-export’ :
36 raise StopIteration
37

38

39 if __name__ == ’__main__’ :
40 """Plot the current queue length using the direct socket connect
41 to the running SUMO simulation."""
42

43 # necessary, because we must fix the scale of the graph immediately
44 max_t = 200
45

46 t = np . arange (max_t)
47 q = np . zeros ((max_t ,))
48 q_exp = np . zeros ((max_t ,))
49

50 plt . ion ()
51

52 fig = plt . figure ()
53 ax = fig . add_subplot (111)
54 ax . set_ylim ([0 , 100]) # queue length range in meters
55

56 q_plot , = ax . plot (t , q)
57 q_exp_plot , = ax . plot (t , q_exp)
58

59 ax . set (xlabel=’timestep’ , ylabel=’queue length’ ,
60 title=’Queue length at intersection’)
61

62 ax . xaxis . set_major_locator (MultipleLocator (10))
63 ax . xaxis . set_major_formatter (’{x:.0f}’)
64 ax . xaxis . set_minor_locator (MultipleLocator (1)) # no minor tick labels
65

66 ax . yaxis . set_major_locator (MultipleLocator (10))
67 ax . yaxis . set_major_formatter (’{x:.0f}’)
68 ax . yaxis . set_minor_locator (MultipleLocator (1)) # no minor tick labels
69

70

71 def data_callback (data) :
72 q_length = float (data [’queueing_length’])
73 print (f’queueing length: {q_length}’)
74

75 timestep = int (float (data [’timestep’]))
76 q [timestep] = q_length
77 q_exp [timestep] = float (data [’queueing_length_experimental’])
78

79 q_plot . set_ydata (q)
80 q_exp_plot . set_ydata (q_exp)
81

82 # see https://stackoverflow.com/questions/4098131/how-to-update-a-plot-in-
matplotlib

83 fig . canvas . draw ()
84 fig . canvas . flush_events ()
85

86

87 port = 1338
88 with socket . socket (socket . AF_INET , socket . SOCK_STREAM) as s :
89 s . bind (("localhost" , port))
90 s . listen (1)
91

92 conn , addr = s . accept ()
93 with conn . makefile (’b’ , buffering=0) as f :
94 parser = xml . sax . make_parser ()
95 parser . setContentHandler (StreamHandler (data_callback))
96

97 parser . parse (f)

63

	Introduction
	Background and history of traffic modeling
	Traffic flow modeling
	Fundamental diagram and macroscopic models
	Microscopic models
	Model categories
	Cellular automaton
	Car-following model in SUMO

	Queueing models

	Probabilistic model for queue length
	Classical models
	Cycle-to-cycle model
	Bulk service queue
	Continuous within-cycle extension
	Discussion

	FCTL model
	Model description and stationary analysis
	FCTL as extension of bulk service queue
	Determining empty queue probabilities
	Inversion of pgf
	Markov chain
	Discussion

	Microscopic simulation
	Setup
	Measuring departures
	Measuring delay
	Measuring queue length
	Discussion

	Conclusions and further work
	Cellular automaton
	Transient bulk service queue
	Transient queue length in bulk service queue
	Experiment loading
	Calculating the queue length distribution for each cycle using a matrix
	Evolution of full distribution per cycle
	Expected value of overflow queue per cycle
	Queue length within a cycle
	Plot within a single cycle
	Verify with overflow queue

	Transient FCTL queue
	Transient queue length in FCTL queue
	Experiment loading
	Calculating the queue length distribution for each time step using two matrices
	Evolution of full distribution per timestep
	Expected value per time step
	Expected value of overflow queue per cycle
	Average distribution over all time steps
	Overflow queue of last cycle
	Percentiles

	SUMO script snippets
	Experiment data class
	Script for starting SUMO simulation runs
	Tool departure-counter
	Live queue length graph (streaming XML parser)

