104 research outputs found

    Contributions to the Construction of Extensible Semantic Editors

    Get PDF
    This dissertation addresses the need for easier construction and extension of language tools. Specifically, the construction and extension of so-called semantic editors is considered, that is, editors providing semantic services for code comprehension and manipulation. Editors like these are typically found in state-of-the-art development environments, where they have been developed by hand. The list of programming languages available today is extensive and, with the lively creation of new programming languages and the evolution of old languages, it keeps growing. Many of these languages would benefit from proper tool support. Unfortunately, the development of a semantic editor can be a time-consuming and error-prone endeavor, and too large an effort for most language communities. Given the complex nature of programming, and the huge benefits of good tool support, this lack of tools is problematic. In this dissertation, an attempt is made at narrowing the gap between generative solutions and how state-of-the-art editors are constructed today. A generative alternative for construction of textual semantic editors is explored with focus on how to specify extensible semantic editor services. Specifically, this dissertation shows how semantic services can be specified using a semantic formalism called refer- ence attribute grammars (RAGs), and how these services can be made responsive enough for editing, and be provided also when the text in an editor is erroneous. Results presented in this dissertation have been found useful, both in industry and in academia, suggesting that the explored approach may help to reduce the effort of editor construction

    Declarative Specification of Intraprocedural Control-flow and Dataflow Analysis

    Get PDF
    Static program analysis plays a crucial role in ensuring the quality and security of software applications by detecting and fixing bugs, and potential security vulnerabilities in the code. The use of declarative paradigms in dataflow analysis as part of static program analysis has become increasingly popular in recent years. This is due to its enhanced expressivity and modularity, allowing for a higher-level programming approach, resulting in easy and efficient development.The aim of this thesis is to explore the design and implementation of control-flow and dataflow analyses using the declarative Reference Attribute Grammars formalism. Specifically, we focus on the construction of analyses directly on the source code rather than on an intermediate representation.The main result of this thesis is our language-agnostic framework, called IntraCFG. IntraCFG enables efficient and effective dataflow analysis by allowing the construction of precise and source-level control-flow graphs. The framework superimposes control-flow graphs on top of the abstract syntax tree of the program. The effectiveness of IntraCFG is demonstrated through two case studies, IntraJ and IntraTeal. These case studies showcase the potential and flexibility of IntraCFG in diverse contexts, such as bug detection and education. IntraJ supports the Java programming language, while IntraTeal is a tool designed for teaching program analysis for an educational language, Teal.IntraJ has proven to be faster than and as precise as well-known industrial tools. The combination of precision, performance, and on-demand evaluation in IntraJ leads to low latency in querying the analysis results. This makes IntraJ a suitable tool for use in interactive tools. Preliminary experiments have also been conducted to demonstrate how IntraJ can be used to support interactive bug detection and fixing.Additionally, this thesis presents JFeature, a tool for automatically extracting and summarising the features of a Java corpus, including the use of different Java features (e.g., use of Lambda Expressions) across different Java versions. JFeature provides researchers and developers with a deeper understanding of the characteristics of corpora, enabling them to identify suitable benchmarks for the evaluation of their tools and methodologies

    A type-checking preprocessor for Cilk 2, a multithreaded C language

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 37-38).by Robert C. Miller.M.Eng

    A combined representation for the maintenance of C programs

    Get PDF
    A programmer wishing to make a change to a piece of code must first gain a full understanding of the behaviours and functionality involved. This process of program comprehension is difficult and time consuming, and often hindered by the absence of useful program documentation. Where documentation is absent, static analysis techniques are often employed to gather programming level information in the form of data and control flow relationships, directly from the source code itself. Software maintenance environments are created by grouping together a number of different static analysis tools such as program sheers, call graph builders and data flow analysis tools, providing a maintainer with a selection of 'views' of the subject code. However, each analysis tool often requires its own intermediate program representation (IPR). For example, an environment comprising five tools may require five different IPRs, giving repetition of information and inefficient use of storage space. A solution to this problem is to develop a single combined representation which contains all the program relationships required to present a maintainer with each required code view. The research presented in this thesis describes the Combined C Graph (CCG), a dependence-based representation for C programs from which a maintainer is able to construct data and control dependence views, interprocedural control flow views, program slices and ripple analyses. The CCG extends earlier dependence-based program representations, introducing language features such as expressions with embedded side effects and control flows, value returning functions, pointer variables, pointer parameters, array variables and structure variables. Algorithms for the construction of the CCG are described and the feasibility of the CCG demonstrated by means of a C/Prolog based prototype implementation

    Practical pluggable types for Java

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 109-115).This paper introduces the Checker Framework, which supports adding pluggable type systems to the Java language in a backward-compatible way. A type system designer defines type qualifiers and their semantics, and a compiler plug-in enforces the semantics. Programmers can write the type qualifiers in their programs and use the plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers who wish to evaluate and deploy their type systems. The Checker Framework includes new Java syntax for expressing type qualifiers; declarative and procedural mechanisms for writing type-checking rules; and support for flow-sensitive local type qualifier inference and for polymorphism over types and qualifiers. The Checker Framework is well-integrated with the Java language and toolset. We have evaluated the Checker Framework by writing five checkers and running them on over 600K lines of existing code. The checkers found real errors, then confirmed the absence of further errors in the fixed code. The case studies also shed light on the type systems themselves.by Matthew M. Papi.M.Eng

    Identifying reusable functions in code using specification driven techniques

    Get PDF
    The work described in this thesis addresses the field of software reuse. Software reuse is widely considered as a way to increase the productivity and improve the quality and reliability of new software systems. Identifying, extracting and reengineering software. components which implement abstractions within existing systems is a promising cost-effective way to create reusable assets. Such a process is referred to as reuse reengineering. A reference paradigm has been defined within the RE(^2) project which decomposes a reuse reengineering process in five sequential phases. In particular, the first phase of the reference paradigm, called Candidature phase, is concerned with the analysis of source code for the identification of software components implementing abstractions and which are therefore candidate to be reused. Different candidature criteria exist for the identification of reuse-candidate software components. They can be classified in structural methods (based on structural properties of the software) and specification driven methods (that search for software components implementing a given specification).In this thesis a new specification driven candidature criterion for the identification and the extraction of code fragments implementing functional abstractions is presented. The method is driven by a formal specification of the function to be isolated (given in terms of a precondition and a post condition) and is based on the theoretical frameworks of program slicing and symbolic execution. Symbolic execution and theorem proving techniques are used to map the specification of the functional abstractions onto a slicing criterion. Once the slicing criterion has been identified the slice is isolated using algorithms based on dependence graphs. The method has been specialised for programs written in the C language. Both symbolic execution and program slicing are performed by exploiting the Combined C Graph (CCG), a fine-grained dependence based program representation that can be used for several software maintenance tasks

    Development of a static analysis tool to find securty vulnerabilities in java applications

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 57-60)Text in English Abstract: Turkish and Englishix, 77 leavesThe scope of this thesis is to enhance a static analysis tool in order to find security limitations in java applications. This will contribute to the removal of some of the existing limitations related with the lack of java source codes. The generally used tools for a static analysis are FindBugs, Jlint, PMD, ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool which already has been developed to find defects Possible bugs (empty try/catch/finally/switch statements), Dead code (unused local variables, parameters and private methods), Suboptimal code (wasteful String/StringBuffer usage), Overcomplicated expressions (unnecessary if statements for loops that could be while loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other hand, faults possible unexpected exception, length may be less than zero, division by zero, stream not closed on all paths and should be a static inner class cases were not implemented by PMD static analysis tool. PMD performs syntactic checks and dataflow analysis on program source code.In addition to some detection of clearly erroneous code, many of the .bugs. PMD looks for are stylistic conventions whose violation might be suspicious under some circumstances. For example, having a try statement with an empty catch block might indicate that the caught error is incorrectly discarded. Because PMD includes many detectors for bugs that depend on programming style, PMD includes support for selecting which detectors or groups of detectors should be run. While PMD.s main structure was conserved, boundary overflow vulnerability rules have been implemented to PMD

    Realistic vulnerability injections in PHP web applications

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011A injecção de vulnerabilidades é uma área que recebeu relativamente pouca atenção da comunidade científica, provavelmente por o seu objectivo ser aparentemente contrário ao propósito de fazer as aplicações mais seguras. Esta pode no entanto ser usada em variadas áreas que a fazem merecedora de ser investigada, tais como a criação automática de exemplos educacionais de código vulnerável, testar mecanismos de segurança em profundidade, e a avaliação de detectores de vulnerabilidades e de equipas de segurança. Esta tese propõe uma arquitectura para uma ferramenta de injecção de vulnerabilidades genérica que permite a inserção de vulnerabilidades num programa, e aproveita a vasta investigação existente sobre detecção de vulnerabilidades. A arquitectura é também extensível, suportando a adição de novas vulnerabilidades para serem injectadas. Foi também implementado e avaliado um protótipo baseado nesta arquitectura por forma a perceber se a arquitectura era implementável. O protótipo consegue injectar a maior parte das vulnerabilidades da class taint-style, desde que em aplicações web desenvolvidas em PHP. Esta tese contém também um estudo sobre as vulnerabilidades presentes nas últimas versões de algumas aplicações PHP bem conhecidas, que permite perceber quais os tipos de vulnerabilidade mais comuns. Este estudo conclui que as vulnerabilidades que o protótipo permite já incluem a maioria das vulnerabilidades que aparecem habitualmente em aplicações PHP. Finalmente, várias aplicações PHP foram usadas na avaliação. O protótipo foi usado para injectar diversas vulnerabilidades sobre estas aplicações, e após isso as injecções foram analisadas à mão para verificar se uma vulnerabilidade tinha sido criada ou não. Os resultados mostram que o protótipo consegue não só injectar uma grande quantidade de vulnerabilidades mas também que estas são atacáveis e realistas.Vulnerability injection is a field that has received relatively little attention by the research community, probably because its objective is apparently contrary to the purpose of making applications more secure. It can however be used in a variety of areas that make it worthy of research, such as the automatic creation of educational examples of vulnerable code, testing defense in depth mechanisms, and the evaluation of both vulnerability scanners and security teams. This thesis proposes an architecture for a generic vulnerability injection tool that allows the insertion of vulnerabilities in a program, and leverages from the vast work available on vulnerability detection. The architecture is also extensible, supporting the addition of new vulnerabilities to inject. A prototype implementing the architecture was developed and evaluated to analyze the feasibility of the architecture. The prototype targets PHP web applications, and is able to inject most taintstyle type vulnerabilities. The thesis also contains a study on the vulnerabilities present in the latest versions of some well known PHP applications, providing a better understanding of which are the most common types of vulnerabilities. This study shows that the vulnerabilities that the prototype is able to inject already includes the majority of the vulnerabilities that appear in PHP web applications. Finally, several PHP applications were used in the evaluation. These were subject to injections using the prototype, after which they were analyzed by hand to see whether a vulnerability was created or not. The results show that the prototype can not only inject a great amount of vulnerabilities but that they are actually attackable

    木を用いた構造化並列プログラミング

    Get PDF
    High-level abstractions for parallel programming are still immature. Computations on complicated data structures such as pointer structures are considered as irregular algorithms. General graph structures, which irregular algorithms generally deal with, are difficult to divide and conquer. Because the divide-and-conquer paradigm is essential for load balancing in parallel algorithms and a key to parallel programming, general graphs are reasonably difficult. However, trees lead to divide-and-conquer computations by definition and are sufficiently general and powerful as a tool of programming. We therefore deal with abstractions of tree-based computations. Our study has started from Matsuzaki’s work on tree skeletons. We have improved the usability of tree skeletons by enriching their implementation aspect. Specifically, we have dealt with two issues. We first have implemented the loose coupling between skeletons and data structures and developed a flexible tree skeleton library. We secondly have implemented a parallelizer that transforms sequential recursive functions in C into parallel programs that use tree skeletons implicitly. This parallelizer hides the complicated API of tree skeletons and makes programmers to use tree skeletons with no burden. Unfortunately, the practicality of tree skeletons, however, has not been improved. On the basis of the observations from the practice of tree skeletons, we deal with two application domains: program analysis and neighborhood computation. In the domain of program analysis, compilers treat input programs as control-flow graphs (CFGs) and perform analysis on CFGs. Program analysis is therefore difficult to divide and conquer. To resolve this problem, we have developed divide-and-conquer methods for program analysis in a syntax-directed manner on the basis of Rosen’s high-level approach. Specifically, we have dealt with data-flow analysis based on Tarjan’s formalization and value-graph construction based on a functional formalization. In the domain of neighborhood computations, a primary issue is locality. A naive parallel neighborhood computation without locality enhancement causes a lot of cache misses. The divide-and-conquer paradigm is known to be useful also for locality enhancement. We therefore have applied algebraic formalizations and a tree-segmenting technique derived from tree skeletons to the locality enhancement of neighborhood computations.電気通信大学201
    corecore