
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Contributions to the Construction of Extensible Semantic Editors

Söderberg, Emma

2012

Link to publication

Citation for published version (APA):
Söderberg, E. (2012). Contributions to the Construction of Extensible Semantic Editors.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/56c0e222-d4fe-46bb-8a6b-1740ee61d538

Contributions to the Construction
of Extensible Semantic Editors

Emma Söderberg

Doctoral Dissertation, 2012

Department of Computer Science
Lund University

ii

ISBN 978-91-976939-8-1
ISSN 1404-1219
Dissertation 41, 2012
LU-CS-DISS:2012-4

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: emma.soderberg@cs.lth.se

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2012

c© 2012 Emma Söderberg

ABSTRACT

This dissertation addresses the need for easier construction and extension of lan-
guage tools. Specifically, the construction and extension of so-called semantic
editors is considered, that is, editors providing semantic services for code compre-
hension and manipulation. Editors like these are typically found in state-of-the-art
development environments, where they have been developed by hand.

The list of programming languages available today is extensive and, with the lively
creation of new programming languages and the evolution of old languages, it
keeps growing. Many of these languages would benefit from proper tool sup-
port. Unfortunately, the development of a semantic editor can be a time-consuming
and error-prone endeavor, and too large an effort for most language communities.
Given the complex nature of programming, and the huge benefits of good tool sup-
port, this lack of tools is problematic.

In this dissertation, an attempt is made at narrowing the gap between generative
solutions and how state-of-the-art editors are constructed today. A generative al-
ternative for construction of textual semantic editors is explored with focus on how
to specify extensible semantic editor services. Specifically, this dissertation shows
how semantic services can be specified using a semantic formalism called refer-
ence attribute grammars (RAGs), and how these services can be made responsive
enough for editing, and be provided also when the text in an editor is erroneous.

Results presented in this dissertation have been found useful, both in industry and
in academia, suggesting that the explored approach may help to reduce the effort
of editor construction.

CONTENTS

Preface ix

Acknowledgements xiii

Popular Scientific Summary in Swedish xv

I Introduction 1
1 Problem Statements . 2
2 Related Work . 4
3 Overview of Contributions . 7
4 Conclusions and Future Work . 9
References . 10

Included Papers 15

I Building Semantic Editors using JastAdd 17
1 Introduction . 17
2 Overview and Background . 18
3 Example Editors . 22
4 Generality and Limitations . 26
5 Conclusions . 27
References . 27

II Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree
Level 29
1 Introduction . 29
2 Control-flow Analysis . 31
3 Dataflow Analysis . 42

vi CONTENTS

4 Dead Assignment Analysis . 48
5 Language Extensions . 51
6 Evaluation . 52
7 Related Work . 59
8 Conclusions . 60
9 Acknowledgements . 61
References . 61

III Automated Selective Caching for Reference Attribute Grammars 65
1 Introduction . 65
2 Reference Attribute Grammars 67
3 Attribute Instance Graphs . 69
4 Computing a Cache Configuration 71
5 Evaluation . 74
6 Related Work . 83
7 Conclusions and Future Work . 85
8 Acknowledgements . 85
References . 85

IV Incremental Evaluation of Reference Attribute Grammars using Dy-
namic Dependency Tracking 89
1 Introduction . 90
2 Reference Attribute Grammars 91
3 Consistent Attribution . 97
4 Dependency Tracking . 98
5 Consistency Maintenance . 100
6 Related Work . 104
7 Conclusion and Future Work . 105
References . 106

V A Comparative Study of Incremental Attribute Grammar Solutions to
Name Resolution 109
1 Introduction . 109
2 Name Resolution . 110
3 Comparison . 113
4 Conclusions . 115
References . 115

VI Practical Scope Recovery using Bridge Parsing 117
1 Introduction . 118
2 Background . 119
3 Bridge Parsing . 122
4 Bridge Parsing for Java . 128
5 Evaluation . 132

CONTENTS vii

6 Conclusions . 136
References . 137

VII Natural and Flexible Error Recovery for Generated Modular Lan-
guage Environments 141
1 Introduction . 141
2 Composite Languages and Generalized Parsing 144
3 Island Grammars . 147
4 Permissive Grammars . 149
5 Parsing Permissive Grammars with Backtracking 162
6 Layout-Sensitive Recovery of Scoping Structures 168
7 Layout-Sensitive Region Selection 171
8 Applying Error Recovery in an Interactive Environment 179
9 Implementation . 184
10 Evaluation . 186
11 Related Work . 198
12 Conclusion . 201
References . 201

PREFACE

This dissertation is divided into two parts. The first part introduces the topic of
this dissertation together with its contributions and conclusions, and the second
part includes papers in support of these claims.

List of Included Papers

The following papers are included in this dissertation:

Paper I. Building Semantic Editors using JastAdd – Tool Demonstration Emma
Söderberg and Görel Hedin. In proceedings of the 11th Workshop on Lan-
guage Descriptions, Tools, and Applications (LDTA’11), ACM, Saarbrücken,
Germany, April 2011.

Paper II. Extensible Intraprocedural Flow Analysis at the Abstract Syntax
Tree Level Emma Söderberg, Görel Hedin, Torbjörn Ekman, and Eva Mag-
nusson. Science of Computer Programming, 2012, Elsevier B.V. In press.

Paper III. Automated Selective Caching for Reference Attribute Grammars
Emma Söderberg and Görel Hedin. In proceedings of the 3rd International
Conference on Software Language Engineering (SLE’10), Lecture Notes in
Computer Science, 2011, Vol. 6563, pp. 2–21, Springer Berlin/Heidelberg.

Paper IV. Incremental Evaluation of Reference Attribute Grammars using
Dynamic Dependency Tracking Emma Söderberg and Görel Hedin. Tech-
nical report, LU-CS-TR:2012-249, ISSN 1404-1200, Report 98, 2012, De-
partment of Computer Science, Lund University.

x Preface

Paper V. A Comparative Study of Incremental Attribute Grammar Solutions
to Name Resolution Emma Söderberg and Görel Hedin. In electronic pro-
ceedings of the 5th Conference on Software Language Engineering (SLE’12),
Dresden, Germany, September 2012.

Paper VI. Practical Scope Recovery using Bridge Parsing Emma Nilsson-Nyman1,
Torbjörn Ekman, and Görel Hedin. In proceedings of the 1st International
Conference on Software Language Engineering (SLE’08), Lecture Notes of
Computer Science, 2009, Vol. 5452, pp. 95–113, Springer Berlin/Heidel-
berg.

Paper VII. Natural and Flexible Error Recovery for Generated Modular Lan-
guage Environments Lennart C.L. Kats, Maartje de Jonge, Emma Söder-
berg, and Eelco Visser. Accepted for publication in ACM Transactions on
Programming Languages and Systems, 2012.

Contribution Statement

The author of this dissertation, Emma Söderberg, is the main contributor of Pa-
per I-VI. For these papers, she was the main designer and author, and did all the
implementation and evaluation work, with the exception of Paper VI where the
evaluation was carried out jointly with Torbjörn Ekman.

The research amounting to Paper VII was carried out in collaboration with the
SERG group at TU Delft. Emma Söderberg contributed to the integration of SGLR
with bridge parsing, the evaluation of the approach, and the writing related to these
parts.

List of Related Papers

The following papers are related to this dissertation, and have contributions by its
author, but are not included:

- Declarative Intraprocedural Flow Analysis of Java Source Code Emma
Nilsson-Nyman, Torbjörn Ekman, Görel Hedin, and Eva Magnusson. In
proceedings of the 8th Workshop on Language Descriptions, Tools and Ap-
plications (LDTA’08), Budapest, Hungary, April 2008. Electronic Notes of
Theoretical Computer Science, Vol. 238:5, pp. 155–171, 2009, Elsevier
B.V..

1Emma Nilsson-Nyman is the maiden name of Emma Söderberg.

xi

- Providing Rapid Feedback in Generated Modular Language Environ-
ments: Adding Error Recovery to Scannerless Generalized-LR Parsing
Lennart C.L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, Eelco Visser.
In proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’09),
pp. 445–464, 2009, ACM.

- A Plan for Building Renaming Support for Modelica Görel Hedin, Emma
Nilsson-Nyman, and Johan Åkesson. In electronic proceedings of the 3rd
Workshop on Refactoring Tools (WRT’09), Orlando, Florida, USA, October
2009.

- Natural and Flexible Error Recovery for Generated Parsers Maartje de
Jonge, Emma Nilsson-Nyman, Lennart C.L. Kats, and Eelco Visser. In pro-
ceedings of the 2nd International Conference on Software Language Engi-
neering (SLE’09), Lecture Notes of Computer Science, 2010, Vol. 5969, pp.
204–223, Springer Berlin/Heidelberg.

ACKNOWLEDGEMENTS

This work was funded by The Swedish Research Council, eLLIIT: The Linköping-
Lund Initiative on IT and Mobile Communication, The Swedish Governmental
Agency for Innovation Systems (VINNOVA), The Engineering and Physical Sci-
ences Research Council of the UK (EPSRC), The Royal Physiographic Society in
Lund, and the Google Anita Borg Memorial Scholarship.

I am very grateful to a lot of people for their support and advice during my work on
this dissertation. I would like to thank my supervisor Görel Hedin, whose support,
knowledge, and experience have been invaluable during this work. I would also
like to thank my co-supervisor Boris Magnusson. I am grateful to Jörn Janneck
for advice and enjoyable discussions, and to Torbjörn Ekman for early encour-
agement. I would also like to thank Roger Henriksson and Jonas Skeppstedt for
advice.

All the work presented in this dissertation was done in collaboration with others,
and I would like to extend my gratitude to my co-authors Torbjörn Ekman, Maartje
de Jonge, Sven Gestegård Robertz, Görel Hedin, Lennart Kats, Boris Magnusson,
Eva Magnusson, David Svensson Fors, Eelco Visser, and Johan Åkesson. An extra
thanks to my co-authors at TU Delft (Lennart Kats, Maartje de Jonge and Eelco
Visser) for fruitful discussions and splendid work.

During the composition of this dissertation I received valuable comments from
several people and I would like to thank Flavius Gruian, Görel Hedin, Jörn Jan-
neck, Roger Henriksson, and Christian Söderberg for taking the time to proof-read
drafts.

While working on the content of this dissertation, I have had the pleasure to visit
other research groups as well as companies. I would like to thank Oege de Moor
and Torbjörn Ekman for inviting me to work at the Computing Laboratory at Uni-
versity of Oxford, and I would like to thank Eelco Visser for inviting me to work
with his group at TU Delft. Thanks to Google UK for a splendid internship in

xiv Acknowledgements

London, and thanks to Robert Führer for hosting my visit to IBM TJ Watson. I
would also like to thank Modelon (Tove Bergdahl, Jesper Mattsson, Jon Sten, and
Johan Åkesson) for joint work on the JModelica IDE, and John Lindskog, Erik
Mossberg, Jesper Mattsson, and Philip Nilsson for using early versions of the edi-
tor architecture in their master thesis work.

A big thanks to all colleagues and students at the Department of Computer Sci-
ence in Lund for providing a nice and relaxed place to work. I would like to thank
all students and faculty members who have contributed to an enjoyable series of
doktorandfikor, a special thanks to all presenters (Görel Hedin, Sten Henriksson,
Thore Husfeldt, Jörn Janneck, Björn Regnell, Per Runeson), and I would like to
thank all those who have contributed to an interesting series of JastAdd semi-
nars (Tove Bergdahl, Niklas Fors, Görel Hedin, John Lindskog, Jesper Mattsson,
Anders Nilsson, Jonas Rosenqvist, Jon Sten, Johan Åkesson, Jesper Öqvist). I
am grateful to Anders Bruce, Peter Möller, Lars Nilsson, Lena Ohlsson, Thomas
Richter, Anne-Marie Westerberg and the administrative staff for help with various
practical matters. I would also like to thank Per Andersson, Klas Nilsson, Jonas
Wisbrant, Linus Åkesson for fun discussions, and thank Mehmet Ali Arslan and
Gustav Cedersjö for sharing some great music.

Finally, I would like to thank my family and friends for all their love and support,
and last, but far from the least, thank you Christian for many happy moments and
plenty to come.

Emma Söderberg
December 2012

Lund

POPULAR SCIENTIFIC
SUMMARY IN SWEDISH

xvi Popular Scientific Summary in Swedish

xvii

Effektiv
konstruktion av
utbyggbara
semantiska editorer

Fantastisk

generator

Av Emma Söderberg
Instutionen för datavetenskap
Lunds universitet

Programmeringsverktyg som semantiska editorer hjälper oss
att utveckla och förstå mjukvara, vilket är viktigt i ett samhälle
där vi måste kunna lita på att mjukvaran runt omkring oss
fungerar. Tyvärr är utvecklingen av semantiska editorer ofta
en tidskrävande och komplicerad uppgift, och majoriteten av
språk saknar programmeringsverktyg. Hur gör vi det enklare
att konstruera och underhålla semantiska editorer?

Programmeringsspråk utgör en
central del av datavetenskapen, de
avgör vad vi kan instruera en dator att
göra och hur vi gör det. Efterhand som
vi upptäcker nya bättre sätt att kom-
municera med datorer utvidgar vi exis-
terande språk eller skapar nya.

Dessutom, likt jargong, kan vi
skapa språk ämnade för en specifik
domän, som till exempel HTML, ska-

pat för att konstruera websidor. Re-
sultatet är en rik flora av språk och
språkutvidgningar.

Samtidigt som programmer-
ingsspråk hjälper oss att uttrycka lös-
ningar på problem, hjälper program-
meringsverktyg oss att utveckla lös-
ningar, samt att förstå andras lösningar.

Tyvärr är utvecklingen av verktyg
tiskrävande och komplex, och de flesta
programmeringsspråk saknar verktyg.

xviii Popular Scientific Summary in Swedish

1

2

3

4 5

Orienteringsscenario

Utvecklaren
väljer ett namn.

Utvecklaren ber om
dess deklaration.Editorn orienterar

utvecklaren till
deklarationen.

Utvecklaren ber om
alla användningar.

Editorn visar en lista
med alla användningar.

Figur: Ett exempel på ett orienteringsscenario där editorn hjälper utvecklaren att
förstå hur saker hänger ihop i ett program.

Om vi kan göra konstruktionen av
verktyg enklare kan vi hjälpa fler mjuk-
varuutvecklare. Om vi dessutom kan
göra det enkelt att utvidga dessa verk-
tyg kan vi stödja språkutvidgningar.

Semantiska editorer

En semantisk editor är ett exempel på
ett programmeringsverktyg som förstår
sig på språksemantik. Denna förståelse
gör det möjligt att erbjuda sofistikerade
editortjänster. Exempelvis kan en se-
mantisk editor hjälpa en utvecklare att
orientera sig i ett program.

Ofta i programmering definieras ett
namn på ett ställe i ett program för att
sedan användas på många andra ställen
i samma program. En editor kan visa
var ett namn är deklarerat, samt var ett
namn används. Något som kan vara
svårt att reda ut för hand för språk med
avancerad semantik.

Ett annat exempel på en semantisk
editortjänst är en så kallad editeringsas-
sistent som exempelvis kan hjälpa en
utvecklare att leta upp vilka namn som
är giltiga att använda på en viss plats i
ett program.

Editeringsassistans

|

Editeringsposition.

Lista med förslag
på textinput.

Syntaxfel.

Figur: Ett exempel på hur en editer-
ingsassistent kan hjälpa en utvecklare.

xix

Konstruktion av semantiska editorer

Genererad Handgjord

Specifikation

Generator

Ansträngning

Figur: En illustration av editorgenerering till vänster, och manuell konstruktion
till höger. De små gubbarna symboliserar ansträngning.

Konstruktion av utbyggbara
semantiska editorer
Ett vanligt angreppssätt för att göra
mjukvaruutveckling effektivare är att
generera kod, snarare än att skriva den
själv, eller att återanvända kod.

För editorutveckling kan detta in-
nebära att man försöker generera ko-
den som beskriver hur editorn ska bete
sig, eller att grafiska editorkomponenter
återanvändas, eller båda.

I den här avhandlingen undersöks
hur semantiska texteditorer kan gener-
eras från formella språkbeskrivningar.
Specifikt, undersöks hur semantiska ed-
itorer kan genereras från så kallade ref-
erensattributgrammatiker, en formalism
för att beskriva språksemantik.

Avhandlingen redogör för hur se-
mantiska editortjänster för orientering,
alternativa programvyer, analys samt
editeringsassistans kan genereras från
en specifikation. Därtill visas hur
sofistikerade editortjänster, beroende av
kunskap om flödet i ett program, kan
genereras och dessutom utvidgas för att
hantera språkutvidgningar.

Utöver detta undersöks hur felaktig
input kan hanteras i en texteditor. Detta

kan vara utmanande eftersom program
under editering ofta kan bli strukturellt
trasiga. Det kan då vara svårt att förstå
vad ett program betyder, men man vill
ändå kunna erbjuda editortjänster som
behöver förstå just detta.

För att reda ut detta behöver man
laga programmet, och ju bättre man kan
laga det, desto bättre tjänster kan man
erbjuda. I avhandlingen beskrivs en
teknik för att laga strukturellt trasiga
program med hjälp av formatteringsin-
formation, som många gånger annars
ignoreras vid textöversättning.

En annan viktig sak som avhandlin-
gen undersöker är hur man effektivt
kan beräkna den semantiska informa-
tion som tjänsterna i en semantisk editor
behöver genom att undvika att beräkna
om information i onödan.

Sammanfattning

Det är utmanande att försöka göra det
enklare att utveckla semantiska editorer,
men bidragen i den här avhandlingen
har tagit oss några viktiga steg på vä-
gen.

INTRODUCTION

Today, integrated development environments (IDEs) such as Eclipse [Foua], IntelliJ
IDEA [Jetb], and NetBeans [Cora] have grown popular with software developers
and represent the state of the art. With knowledge of language semantics, these ed-
itors can provide developers with semantic services for code comprehension and
manipulation [HW09]. For instance, with knowledge of the scope rules of a lan-
guage, an editor can compute where a variable is declared in a program and where
a variable is referenced. An editor with such information can provide services such
as ‘find declaration’ and ‘find references’, that aid developers with code compre-
hension (Figure 1), and services such as ‘name completion’, that aid developers
with code manipulation (Figure 2).

Semantic editors are useful, but can be both time-consuming to construct and
difficult to maintain. For example, the Java editors offered by Eclipse, NetBeans
and IntelliJ were all written more or less from scratch in Java. For Eclipse this work
included the development of a Java compiler tailored for editing [Foua], while
for NetBeans and IntelliJ it included interfacing to the javac compiler [Opeb], a
compiler originally developed for batch compilation.

Once an editor has been created, the next step is to maintain it. Depending on
the language, this work is more or less difficult. In the case with Java, the language
is both complex and actively evolved by a lively community. During this language
development, language extensions are considered and either postponed, discarded
or included in the next language release. This release dictates what maintenance
that needs to be done on editors supporting the language.

On rare occasions a language extension is provided with editor support already
during the development process, to make it easier to evaluate the feature. For
example, a Java language extension currently under consideration [Opea] (Project
Lambda) has been provided with experimental editor support in upcoming releases
of NetBeans [Corb] and IntelliJ [Jeta]. This kind of early editor support makes it
easier to involve users in the language development process, and would be useful
to have for more extensions.

2 Introduction

1

2

3

4 5

Code Comprehension

The user
selects a
name.

The user activates
the ‘find declaration’
service.The editor highlights

the declaration.

The user activates
the ‘find references’
service.

The editor displays
the list of references.

Figure 1: A Browsing Scenario An example of a browsing scenario where the
editor helps the developer to understand the code via a ‘find declaration’ service
and a ‘find references’ service.

1 Problem Statements

This dissertation addresses the need for easier construction and maintenance of
semantic editors, by exploring generative approaches to editor construction. Gen-
erative techniques have grown popular for construction of language tools such as
parsers, for which there are several generators available (e.g., ANTLR, JavaCC
and Beaver), but have not yet gained the same popularity for editor construction.

To narrow the gap between generative approaches and how state-of-the-art ed-
itors are constructed today, this dissertation aims to demonstrate the potential of
editor generation. Specifically, this dissertation explores how a semantic formal-
ism called reference attribute grammars (RAGs) can be used to specify extensible
semantic editor services.

Compilers and editors have many things in common, with regard to the kind
of analyses they perform, and it is reasonable that a technique used for compiler
construction may be used also for editor construction. RAGs have been suc-
cessfully used both for specification of complex static semantics, for languages
such as Java [EH07b] and Modelica [Åke+10], and for complex language exten-
sions [EH07b; Öqv12; Hed+11]. These experiences suggest that RAGs could be
useful for specification of extensible semantic editor services.

However, one concern with using RAGs for specification of editor services is
performance. It has been shown that RAGs can provide reasonable performance
for a generated compiler [EH07b], and it is reasonable that similar performance
could be achieved for an editor. Still, this may not be good enough for editing

1 Problem Statements 3

Code Manipulation

|

1

2

3

While typing, the user activates
the ‘name completion’ service.

The incomplete
statement causes
a syntax error.

The editor
displays a
list of valid
names.

Figure 2: An Edit Scenario An example of an edit scenario where the user has
entered an incomplete statement and the editor helps the user by suggesting valid
names via a ‘name completion’ service.

where the user interacts with the tool in a different way than with a compiler. To
not obstruct the work flow of the user, editor services need to be responsive enough
for the user scenarios in which they are activated.

Responsiveness may mean different things for different services. User studies
suggest that feedback should be given within 100− 200 ms for services activated
by keystrokes [Mil68; DM01]. These limits may serve as a guideline for how fast
a service such as ‘name completion’ needs to be. Notably, ‘name completion’
may be requested as often as copy/paste operations during editing [Mur+06], and
feedback delays for such a service could severely hinder a users work flow.

Another concern for using RAGs is the robustness of editor services. A RAG-
based approach is dependent on the availability of an abstract syntax tree (AST) in
order to compute semantic information. In the event that a user has entered code
which cannot be parsed, the editor may have trouble to provide editor services, as
an AST to do computations on may be missing.

This dependency on the availability of an AST makes error recovery during
parsing important. That is, it increases the importance of finding a parsing ap-
proach which can deal with the kinds of parsing problems that may occur during
editing. RAGs in themselves do not provide a solution for parsing, and as this
dissertation is exploring generative approaches, the natural complement to RAGs
is to use a parser generator for this task.

4 Introduction

2 Related Work

This section gives an overview of editor construction frameworks, parser genera-
tors and error recovery, and attribute grammars, the semantic formalism underlying
RAGs.

2.1 Editor Construction Frameworks

To construct a semantic editor from scratch can be a task which is both error-prone
and time-consuming, and to build a compiler, graphical components (views, pop-
up boxes etc.), and editor services by hand is a lot of work. This effort may be
reduced if some of these parts can be reused or generated.

During the last decade, the Eclipse platform [Foub] has greatly contributed
to the construction of new editors. Eclipse is a plugin framework which, among
other things, offers reusable editor components. These editor components may be
extended, or reused, by new plugins added to the platform, and these new plugins
may in turn offer new components to other plugins. In addition, the platform is a
fully fledged integrated development environment with support for version control,
debugging, etc. IntelliJ IDEA [Jetb] and NetBeans [Cora] are examples of similar
platforms.

In recent years, a number of tool generating systems have emerged which ex-
tend the Eclipse Platform. For instance, the IDE Meta-tooling Platform (IMP)
[Cha+09] provides a framework on top of Eclipse with semi-automatic generation
of textual editors. Using wizards and generation of code skeletons, IMP reduces
the amount of work the editor developer needs to do.

Another example is the xText system [EV06; Xte], which generates an edi-
tor from an annotated grammar. Notably, the behavior of editor services such as
code completion and browsing are inferred from this grammar. However, unless
the semantics of a language is very simple, the implementation of name resolution
is left to the editor developer. This effort may be reduced as new languages like
xSemantics [Xse], supporting specification of semantics, emerge for xText. Exam-
ples of systems with a similar approach include the MontiCore system [Grö+08]
and the EMFText system [Hei+09].

Additionally, there are systems which both generate editors and support for-
mal semantic specifications. One such example is the Spoofax language work-
bench [KV10], which uses formal syntax definitions together with strategic term
rewriting [Vis01] to define editor services.

2.2 Parser Generators and Error Recovery

The first step in analyzing a text file with code is to parse the file, in order to
construct a model suitable for analysis. This model is often a tree and normally
referred to as the concrete syntax tree or the abstract syntax tree, depending on

2 Related Work 5

how much syntax information is included in the tree. Implementing this translation
from text to model by hand can be tricky and time-consuming, so over the years,
many parser generators have been developed to make this development easier and
more efficient.

Given a grammar of a language, a parser generator generates the source code
for a parser capable of parsing the specified language. Typically, a parser gen-
erator supports a specific class of grammars. For instance, ANTLR [PQ95] and
JavaCC [Jav] are both parser generators supporting so-called LL grammars [IS66].
In practice, this means that the generated parser is an LL parser which starts at the
root of the syntax tree, and then builds it from the top down. An example of a
slightly larger class of grammars is the LR grammars [Knu65], and in contrast, an
LR parser starts at the leaves, and then builds the syntax tree from the bottom up.
CUP [Hud+] and Beaver [Bea] are two examples of LR parser generators.

Generally, a grammar for a programming language is unambiguous, but com-
binations of grammars may be ambiguous. Some parser generators support am-
biguous grammars by generating generalized LR (GLR) [Tom85] parsers, parsing
all alternative interpretations of the given input. An interesting extension to GLR
is scannerless GLR (SGLR) [Vis97b], supporting grammar composition. By in-
corporating the scanner into the parser, SGLR can distinguish between tokens in
different contexts. That is, a token may be a reserved word in one context, like
enum in Java, but be a variable in another context, for instance, in an embedding
of a database query language like SQL.

The parser is a central part of any textual language tool, including semantic
textual editors. However, parsing in an editor is different from parsing in a batch
compiler, as code easily becomes erroneous during editing, but an editor should
preferably still provide editor services. For these reasons, a parser needs powerful
support for error recovery to be practical in editing.

Most parser generators have a strategy for handling of errors, where the sim-
plest is to stop the parser when the first error is encountered, which is not so ap-
propriate for editing. Typically, parser generators offer more support for error
recovery. One common approach is to find so-called synchronizing tokens after
a parse error, in order to continue parsing. In rare cases, more complicated error
recovery algorithms are used which, in addition to synchronizing tokens, consider
language scopes [Cha91].

2.3 Attribute Grammar Systems

Typically, the syntax of a language may be specified using a syntax formalism,
while the semantics may be specified using a semantic formalism. Attribute gram-
mars (AGs) introduced by Knuth [Knu68] is one such semantic formalism used to
specify the static semantics of a language.

To compute semantic information, an AG adds context-sensitive information
to an otherwise context-free grammar, by defining so-called attributes on grammar

6 Introduction

productions. A grammar production represents a part of a language, for example,
an if statement. The attributes added to a production are given values from func-
tions evaluated in the context of the production. That is, based on the grammar, a
syntax tree is built to represent the code being analyzed. In this syntax tree, nodes
correspond to productions and each node has its own instances of the attributes
defined for the corresponding production.

The functions computing attribute values may use the value of other attributes,
resulting in a system where attributes are dependent on each other. These attribute
systems can be evaluated in different ways. One strategy is to evaluate all at-
tributes at once. Another strategy is to evaluate attributes as they are needed (on-
demand) [Jou84]. In addition, to improve performance in editing, an AG can be
evaluated incrementally, that is, attributes affected by a change are re-computed
while values of non-affected attributes are reused.

Attribute Grammar Extensions

Originally, AGs [Knu68] included two kinds of attributes: synthesized and inher-
ited. Synthesized attributes are used to propagate information upwards in the tree,
i.e., from the leaves of the tree to the root, while inherited attributes are used to
propagate information downwards in the tree, i.e., from the root of tree to the
leaves. Since their introduction, several extensions to AGs have been proposed.
For example, the following:

• Circular: Farrow introduced circular attribute grammars [Far86] support-
ing circular dependencies between attributes, not supported by Knuth’s AGs.

• Higher-order: Vogt et al. [Vog+89] introduced higher-order attribute gram-
mars (HAGs), allowing attributes to have attributed trees as values. HAGs
provide a means to handle, for example, multi-pass compilation by step-wise
refinement of a parse tree.

A related technique called forwarding, introduced by van Wyk et al. [Wyk+02],
allows for the creation of attributed subtrees, in a fashion similar to HAGs,
where attribute calls are forwarded to the created subtree.

• References: Hedin introduced reference attribute grammars (RAGs) [Hed94;
Hed00] allowing attributes to have references to other tree nodes as values.
RAGs allow for modular and concise descriptions of, for instance, name
analysis where use nodes can point directly to their declaration using refer-
ences. Similar extensions have been presented by Boyland [Boy96; Boy05]
and Poetzsch-Heffter [PH97].

• Collections: Boyland introduced collection attributes [Boy96] which can
be used to compute sets of references to a declaration.

3 Overview of Contributions 7

• Rewrites: Ekman et al. [EH04] introduced demand-driven rewrites for
RAGs, which make use of attribute values to rewrite the syntax tree. Rewrites
can, for example, be used to transform a for each statement in Java to a
for statement.

The JastAdd System

JastAdd [Jas; EH07b] is one example of a system supporting an extended form
of AGs. The JastAdd system supports RAGs with circular attributes, higher-order
attributes, collection attributes and rewrites. In addition, the JastAdd system sup-
ports aspect-oriented and object-oriented specifications. Examples of systems de-
veloped with JastAdd include:

• JastAddJ: An extensible Java compiler [EH07a] which has been modularly
extended from Java 1.4 to Java 5, and more recently to Java 7 [Öqv12].

• JModelica: A compiler [Åke+10] for the Modelica language [Moda], a lan-
guage for modeling of physical systems. The compiler has been extended
modularly to support the Optimica language [Åke08; Hed+11] for optimiza-
tion of physical systems.

• McSAF: A static analysis framework [DH12] for the MATLAB R©1 lan-
guage, allowing for analysis of MATLAB programs and experimentation
with language extensions to MATLAB.

Kiama [Slo+10] and Silver [Wyk+07] are two other examples of systems sup-
porting AGs. Kiama is a Scala-based library supporting RAGs, while Silver is a
standalone system supporting AGs with forwarding.

3 Overview of Contributions

Divided into three groups, the contributions of this dissertation are as follows:

3.1 Specification of Extensible Semantic Services

This dissertation shows how semantic editors with services such as ‘find decla-
ration’, ‘find references’, ‘name completion’ and ‘error feedback’ can be spec-
ified modularly as compiler extensions (Paper I). Two editors are presented as
examples: one for a small object-oriented language called PicoJava, and one for
the JastAdd specification language, an extension of the Java language supporting
RAGs. This latter editor shows how an editor extension may be added to a com-
piler which already has been extended in several steps (Figure 1 and Figure 2).

1MATLAB is a registered trademark of Mathworks, mathworks.com/products/matlab.

8 Introduction

In this case, the underlying compiler is the JastAddJ compiler extended with sup-
port for inter-type declarations for aspect-oriented programming and support for
RAGs.

In addition, this dissertation shows how ‘flow analysis’-based editor services
such as dead assignment detection can be specified modularly as compiler exten-
sions, and extended to cater for language changes (Paper II). Three flow analysis
modules are presented which specify control-flow, dataflow and dead-assignment
analysis for Java, and the precision and performance of these modules is found to
be on par with well-known analysis tools.

The editor construction framework, build using Eclipse and JastAdd, has been
used in several master theses [Mat09; Mos09; Nil10], and is used in the JModelica
IDE, providing an editor for the Modelica language [Modb]. The control-flow
module is used as a central part of the JastAdd Refactoring Tools [Sch; Sch+08;
Sch+09], performing refactoring of Java code.

3.2 Efficient Computation of RAGs

This dissertation introduces a profiler-based configuration approach for efficient
computation of RAGs, and shows how the use of this method can significantly
speed-up RAG computations (Paper III). By compiling a set of sample programs,
where information of how attributes are used is collected, a cache configuration
can be generated which gives better performance than caching of all attributes.
The method is implemented as a part of the JastAdd system and has been evaluated
on the JastAddJ compiler, for which speed-ups of 20% on average, compared to
full caching, have been measured.

In addition, this dissertation introduces how to evaluate RAGs incrementally
with the use of dynamic dependency tracking (Paper IV). This tracking accounts
for dynamic dependencies caused by reference attributes, something not accounted
for by earlier incremental evaluators for AGs. As a foundation for the approach,
a notion of consistency for RAG attributions and an algorithm for maintaining
consistency after edits is presented (Paper IV). To limit the effect of change, an
optimization is introduced which compares attribute values in order to stop change
propagation (Paper V).

This dissertation also shows that incremental RAG evaluators can provide bet-
ter performance for editing than traditional incremental AG evaluators (Paper V).
As an example, a comparison of incremental name resolution is presented, where
the same name resolution problem is solved using an incremental RAG evaluator
and an incremental AG evaluator. By counting the amount of work needed to re-
compute semantic information after changes, it is shown that the RAG approach
significantly reduces the amount of work that needs to be done.

4 Conclusions and Future Work 9

3.3 Textual Error Recovery for Editing

This dissertation presents a technique for light-weight textual scope recovery (Pa-
per VI), which uses secondary notation such as layout information to recover bro-
ken scopes. With this information, the algorithm first identifies broken scopes and
then recovers these scopes by identifying layout-based patterns, described in a so-
called bridge grammar. The technique has been implemented for Java and has
been shown to improve the error recovery quality of Java parsers generated with
state-of-the-art parser generators.

In addition, this dissertation shows how this layout-sensitive recovery approach
has contributed to the addition of error recovery support to SGLR (scanner-less
generalized LR parsing) (Paper VII). The error recovery in SGLR automatically
derives recovery rules from grammars, and takes layout information into consid-
eration to efficiently provide natural recovery suggestions to users. With this addi-
tion of error recovery, SGLR performs on par with the hand-crafted parser of the
Eclipse JDT, in terms of error recovery quality, while also providing the same re-
covery support to composed languages such as Java-SQL. The result of this work
is implemented in the JSGLR [Jsg] parser generator and used in the Spoofax lan-
guage workbench [KV10].

4 Conclusions and Future Work

An attempt at showing the potential of generative approaches to editor construc-
tion has been made in this dissertation. The focus has been on using RAGs for
specification of extensible semantic editor services, and how such services can be
added as extensions to an existing compiler, in addition to being extended in them-
selves. The examples presented in this dissertation suggest that RAGs can be used
to specify editor services on par with the services offered by the state of the art,
and potentially more.

In response to concerns regarding the performance of RAGs, a profiler-based
method, which has been shown to significantly speed-up RAG computations, has
been presented. To specifically address the performance needs of editing, a tech-
nique for incremental evaluation of RAGs has been presented, together with an
evaluation showing how the technique improves performance compared to tradi-
tional AGs. These results suggest that RAG-based editor services can reach the
performance level needed for editing.

A second concern with the approach was robustness and the capability of pro-
viding services despite erroneous textual input. In response to this concern, an
error recovery approach has been presented which has been shown to improve er-
ror recovery quality for generated parsers. In addition, it has been shown how this
layout-based approach together with SGLR provides error recovery quality on par
with a hand-crafted state-of-the-art parser. These results suggest that RAG-based
editor services can be provided also in the case of erroneous textual input.

10 Introduction

The work presented in this dissertation opens several interesting directions for
future work. With regard to specification of editor services, one such direction is to
further raise the specification level. Recent work by Konat et al. [Kon+12] presents
a language targeted at defining name analysis. This way of considering different
semantic specification domains could likely be explored further, for instance, for
editor construction.

With incremental evaluation in mind, there are challenges in generating evalua-
tors for AG extensions. For instance, demand-driven tree rewrites [EH04] present
interesting problems, which Bürger [Bür12] has started to explore. In addition,
non-terminal attributes [Vog+89], used extensively in JModelica [Åke+10], also
present challenges for incremental evaluation.

Another direction for incremental evaluation, is to reduce the amount of de-
pendency information that is needed, as this information increases the size of the
RAG-based models. The challenge is to reduce this information while still provid-
ing responsive editor services.

For layout-based error recovery, it would be interesting to experiment with lan-
guages where indentation is not secondary. Recent work by Erdweg et al. [Erd+12],
explores the combination of layout-sensitive languages and generalized parsing.
Similar experiments could be done using the layout-sensitive recovery approach
presented in this dissertation.

In summary, editor generation is an area with a rich set of problems. This dis-
sertation has presented solutions to several of them, and helped to narrow the gap
between generative approaches and how state-of-the-art editors are constructed
today.

References
[Åke08] Johan Åkesson. “Optimica – an extension of Modelica supporting dy-

namic optimization”. In: In 6th International Modelica Conference.
Modelica Association, 2008.

[Åke+10] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. “Implementation
of a Modelica compiler using JastAdd attribute grammars”. In: Sci-
ence of Computer Programming 75.1-2 (2010), pp. 21–38.

[Bea] Beaver. http://beaver.sourceforge.net.

[Boy96] John Tang Boyland. “Descriptional Composition of Compiler Com-
ponents”. PhD thesis. University of California at Berkeley, 1996.

[Boy05] John Tang Boyland. “Remote attribute grammars”. In: Journal of the
ACM 52.4 (2005), pp. 627–687.

4 Conclusions and Future Work 11

[Bür12] Christoff Bürger. RACR: A Scheme Library for Reference Attribute
Grammar Controlled Rewriting. Tech. rep. TUD-FI12-09, ISSN 1430-
211X. https://code.google.com/p/racr/. Technische
Universität Dresden, 2012.

[Cha91] Philippe Charles. “A practical method for constructing efficient LALR(k)
parsers with automatic error recovery”. PhD thesis. New York, NY,
USA: New York University, 1991.

[Cha+09] Philippe Charles et al. “Accelerating the creation of customized, language-
Specific IDEs in Eclipse”. In: OOPSLA. Ed. by Shail Arora and Gary
T. Leavens. ACM, 2009, pp. 191–206.

[Cora] Oracle Corporation. NetBeans IDE. http://netbeans.org.

[Corb] Oracle Corporation. NetBeans support for Project Lambda (JSR 335).
http://wiki.netbeans.org/Java_EditorJDK7.

[DM01] James R. Dabrowski and Ethan V. Munson. “Is 100 Milliseconds Too
Fast?” In: CHI ’01 Extended Abstracts on Human Factors in Comput-
ing Systems. CHI EA ’01. Seattle, Washington: ACM, 2001, pp. 317–
318.

[DH12] Jesse Doherty and Laurie J. Hendren. “McSAF: A Static Analysis
Framework for MATLAB”. In: ECOOP. Ed. by James Noble. Vol. 7313.
Lecture Notes in Computer Science. Springer, 2012, pp. 132–155.

[EV06] Sven Efftinge and Markus Völter. “oAW xText: a framework for tex-
tual DSLs”. In: Eclipse Summit Europe, Eclipse Modeling Sympo-
sium. Esslingen, Germany, 2006.

[EH04] Torbjörn Ekman and Görel Hedin. “Rewritable Reference Attributed
Grammars”. In: ECOOP. Ed. by Martin Odersky. Vol. 3086. Lecture
Notes in Computer Science. Springer, 2004, pp. 144–169.

[EH07a] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: OOPSLA. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[EH07b] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Program-
ming 69.1-3 (2007), pp. 14–26.

[Erd+12] Sebastian Erdweg et al. “Layout-sensitive Generalized Parsing”. In:
SLE. Ed. by Krzysztof Czarnecki and Görel Hedin. Lecture Notes in
Computer Science. Springer, 2012.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars”. In: SIGPLAN
Symposium on Compiler Construction. Ed. by Richard L. Wexelblat.
ACM, 1986, pp. 85–98.

12 Introduction

[Foua] Eclipse Foundation. The Eclipse Java Development Tools. http:
//www.eclipse.org/jdt.

[Foub] Eclipse Foundation. The Eclipse Platform. http://www.eclipse.
org.

[Grö+08] Hans Grönniger et al. “MontiCore: a framework for the development
of textual domain specific languages”. In: ICSE. 2008, pp. 925–926.

[Hed94] Görel Hedin. “An Overview of Door Attribute Grammars”. In: CC.
Ed. by Peter Fritzson. Vol. 786. Lecture Notes in Computer Science.
Springer, 1994, pp. 31–51.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

[Hed+11] Görel Hedin, Johan Åkesson, and Torbjörn Ekman. “Extending Lan-
guages by Leveraging Compilers: From Modelica to Optimica”. In:
IEEE Software 28.3 (2011), pp. 68–74.

[Hei+09] Florian Heidenreich et al. “Derivation and Refinement of Textual
Syntax for Models”. In: ECMDA-FA. 2009, pp. 114–129.

[HW09] Daqing Hou and Yuejiao Wang. “An empirical analysis of the evo-
lution of user-visible features in an integrated development environ-
ment”. In: CASCON. Ed. by Patrick Martin, Anatol W. Kark, and
Darlene A. Stewart. ACM, 2009, pp. 122–135.

[Hud+] Scott Hudson, Frank Flannery, and C. Scott Ananian. CUP: LALR
Parser Generator in Java. http : / / www2 . cs . tum . edu /
projects/cup.

[IS66] Philip M. Lewis II and Richard Edwin Stearns. “Syntax Directed
Transduction”. In: SWAT (FOCS). IEEE Computer Society, 1966,
pp. 21–35.

[Jas] JastAdd. http://jastadd.org.

[Jav] JavaCC. http://java.net/projects/javacc.

[Jeta] JetBrains. IntelliJ IDEA support for Project Lambda (JSR 335). http:
//confluence.jetbrains.net/display/IDEADEV/
IDEA+12+EAP.

[Jetb] JetBrains. IntelliJ IDEA. http : / / www . jetbrains . com /
idea.

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for Attribute
Grammars”. In: Symposium on Programming. Ed. by Manfred Paul
and Bernard Robinet. Vol. 167. Lecture Notes in Computer Science.
Springer, 1984, pp. 167–178.

[Jsg] JSGLR. http://strategoxt.org/Stratego/JSGLR.

4 Conclusions and Future Work 13

[KV10] Lennart C. L. Kats and Eelco Visser. “The spoofax language work-
bench: rules for declarative specification of languages and IDEs”. In:
OOPSLA. Ed. by William R. Cook, Siobhán Clarke, and Martin C.
Rinard. ACM, 2010, pp. 444–463.

[Knu65] Donald E. Knuth. “On the Translation of Languages from Left to
Right”. In: Information and Control 8.6 (1965), pp. 607–639.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[Kon+12] Gabriël D. P. Konat et al. “The spoofax name binding language”. In:
SPLASH. Ed. by Gary T. Leavens. ACM, 2012, pp. 79–80.

[Mat09] Jesper Mattsson. “The JModelica IDE: Developing an IDE Reusing
a JastAdd Compiler”. MA thesis. Lund, Sweden: Lund University,
2009.

[Mil68] Robert B. Miller. “Response time in man-computer conversational
transactions”. In: Proceedings of the December 9-11, 1968, fall joint
computer conference, part I. AFIPS ’68 (Fall, part I). San Francisco,
California: ACM, 1968, pp. 267–277.

[Moda] ModelicaAssociation. The Modelica Language. http : / / www .
modelica.org.

[Modb] Modelon. The JModelica.org Project. http://www.jmodelica.
org.

[Mos09] Erik Mossberg. “Inspector – Tool for Interactive Language Develop-
ment”. MA thesis. Lund, Sweden: Lund University, 2009.

[Mur+06] Gail C. Murphy, Mik Kersten, and Leah Findlater. “How are Java
software developers using the Elipse IDE?” In: Software, IEEE 23.4
(2006), pp. 76–83.

[Nil10] Philip Nilsson. “Semantic editing compiler extensions using JastAdd”.
MA thesis. Lund, Sweden: Lund University, 2010.

[Opea] Open JDK. Project Lambda (JSR 335). http://openjdk.java.
net/projects/lambda.

[Opeb] OpenJDK. The javac compiler. http://openjdk.java.net/
groups/compiler.

[Öqv12] Jesper Öqvist. “Implementation of Java 7 Features in an Extensible
Compiler”. MA thesis. Lund, Sweden: Lund University, 2012.

[PQ95] Terence John Parr and Russell W. Quong. “ANTLR: A Predicated-
LL(k) Parser Generator”. In: Softw., Pract. Exper. 25.7 (1995), pp. 789–
810.

14 Introduction

[PH97] Arnd Poetzsch-Heffter. “Prototyping Realistic Programming Languages
Based on Formal Specifications”. In: Acta Informatica 34.10 (1997),
pp. 737–772.

[Sch] Max Schäfer. JastAdd Refactoring Tool. http://code.google.
com/p/jrrt.

[Sch+08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and ex-
tensible renaming for Java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294.

[Sch+09] Max Schäfer et al. “Stepping Stones over the Refactoring Rubicon”.
In: ECOOP. Ed. by Sophia Drossopoulou. Vol. 5653. Lecture Notes
in Computer Science. Springer, 2009, pp. 369–393.

[Slo+10] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. “A Pure
Object-Oriented Embedding of Attribute Grammars”. In: Electr. Notes
Theor. Comput. Sci. 253.7 (2010), pp. 205–219.

[Tom85] Masaru Tomita. “An efficient context-free parsing algorithm for natu-
ral languages and its applications”. PhD thesis. Pittsburgh, PA, USA:
Carnegie Mellon University, 1985.

[Vis97b] Eelco Visser. Scannerless Generalized-LR Parsing. Tech. rep. P9707.
Programming Research Group, University of Amsterdam, 1997.

[Vis01] Eelco Visser. “Stratego: A Language for Program Transformation
Based on Rewriting Strategies”. In: RTA. Ed. by Aart Middeldorp.
Vol. 2051. Lecture Notes in Computer Science. Springer, 2001, pp. 357–
362.

[Vog+89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. Ed. by Richard L. Wexelblat.
ACM Press, 1989, pp. 131–145.

[Wyk+02] Eric Van Wyk et al. “Forwarding in Attribute Grammars for Modular
Language Design”. In: CC. Ed. by R. Nigel Horspool. Vol. 2304.
Lecture Notes in Computer Science. London, UK: Springer-Verlag,
2002, pp. 128–142.

[Wyk+07] Eric Van Wyk et al. “Attribute Grammar-Based Language Extensions
for Java”. In: ECOOP. Ed. by Erik Ernst. Vol. 4609. Lecture Notes
in Computer Science. Springer, 2007, pp. 575–599.

[Xse] XSemantics. http://xsemantics.sourceforge.net.

[Xte] xText. http://www.eclipse.org/Xtext.

INCLUDED PAPERS

PA
P

E
R

I

BUILDING SEMANTIC
EDITORS USING JASTADD

Abstract

A semantic editor, providing services like completion and code browsing, can help
users to quickly develop high-quality source code. However, a lot of languages
still lack semantic editor support due to the difficulty and costs of development.
Tool generation and reuse can greatly alleviate this development task. Specifically,
tool generation from a formal specification, such as reference attribute grammars
(RAGs), can increase development speed by reusing existing specifications. In this
tool demonstration we demonstrate how semantic editors can be built with the aid
of JastAdd, a meta-compilation tool based on RAGs. We demonstrate two editors
built this way. One for a small object-oriented language, PicoJava, and one for the
JastAdd specification language itself.

1 Introduction

Editors providing users with language-specific services during development can
help users to rapidly produce high-quality code. Editors like these can be found
in, for example, Eclipse1, IntelliJ IDEA2 or NetBeans3. Typical examples of ser-

1http://www.eclipse.org
2http://www.jetbrains.com/idea
3http://netbeans.org

Emma Söderberg and Görel Hedin.
In proceedings of the 11th Workshop on Language Descriptions, Tools and Applications (LDTA’11),
ACM, Saarbrücken, Germany, April 2011.

18 Building Semantic Editors using JastAdd

vices found in these editors [HW09] are name completion, which helps users to
quickly insert code appropriate for a certain context, and browsing services like
find declaration or find references, which help users to quickly get an overview of
the structure of a program. We call services like these, which take the semantics of
a language into account, semantic services, and we call editors offering semantic
services semantic editors.

Many language communities do not have the resources to develop editors like
the above mentioned, which are all hand-coded and developed over several years.
Several approaches with the goal of decreasing the costs of editor development
are being explored in systems like xText [EV06], IMP [Cha+07], Spoofax [KV10]
and MontiCore [Grö+08]. Most approaches involve some form of tool generation,
formal specification of at least some parts, and in some cases reuse.

We are exploring the use of references attribute grammars (RAGs) [Hed00] for
semantic editor generation. RAGs are an extension of attribute grammars (AGs)
[Knu68] supporting references as values. These properties in RAGs make it simple
to define structures needed in compiler construction, for example, declaration-use
relations. Examples systems supporting RAGs include JastAdd [EH07b], Kiama
[Slo+10] and Silver [Wyk+10]. The goal with using RAGs in semantic editor de-
velopment is to easily construct semantic services by reusing the specification of
an existing RAG-based compiler. If large parts of a compiler specification can
be reused in an editor, development time can be decreased. Other systems have
also used attribute grammars in editor development, an early example is the Syn-
thesizer Generator [RT84]. A difference from this approach is that we use RAGs
which have properties beneficial to many semantic services.

In this paper we present an architecture for editors built using JastAdd RAGs,
and we show two examples of editors developed using RAGs. One for a small
object-oriented language, PicoJava, and one for the JastAdd language itself.

The rest of this paper starts with an overview of the architecture and some
background in Section 2. This is followed by a walk-through of two example edi-
tors in Section 3. Section 4 discusses the generality and limitations of the approach
and Section 5 sums up the paper with some concluding remarks.

2 Overview and Background

The idea with our approach is to reuse an existing RAG-based compiler specifica-
tion. Ideally, to develop an editor we would like to just specify the behavior of our
semantic services as extensions to an existing compiler and then get a running ed-
itor. With this in mind, we have developed a RAG-based editor framework where
we provide generic editor behavior, leaving the specific language behavior to the
editor implementor.

To build this framework we have used the JastAdd and Eclipse systems. JastAdd
is a system supporting RAGs, as described in the introduction, and Eclipse is an

2 Overview and Background 19

RAGS / SEMANTIC BEHAVIOR
JAVA / APPLICATION CODE

FRAMEWORK

EDITOR

COMPILER

Attributed
AST

Traversal service
implementation

I

Service
implementations

IV

Service
interfaces

II

Generic editor
and service
components

III

Language-specific
editor plugin

V

Figure 1: Overview of the semantic editing framework The right side shows
Java modules and the left side shows RAGs modules. Java modules working as
Eclipse plugins are marked with a cogwheel. Modules are grouped into parts rep-
resenting the compiler, the editing framework and the editor. Arrows show depen-
dencies between RAGs and Java modules. Parts marked as checked are reused and
parts marked with a plus are added.

20 Building Semantic Editors using JastAdd

extensible plugin-based application framework providing basic editor components.
The JastAdd system is used to generate attributed program representations in Java,
or abstract syntax trees (AST), used as the semantic model in an editor, and the
Eclipse system is used as the runtime platform of an editor. The Eclipse system
supports Java code, while the JastAdd system generates Java code. The code, or
specifications, in the two systems are connected via Java interfaces. Figure 1 gives
an overview of how the generic framework connects to compiler and editor mod-
ules. The figure separates modules into JastAdd modules and Java modules. In
addition, modules are grouped into compiler, framework and editor parts. To de-
velop an editor, a developer would have to add the editor part. In more detail, the
different modules in the figure contain the following:

COMPILER: The compiler contains an AST with reusable attributes, for exam-
ple, references from identifier uses to their declarations, and types of expres-
sions.

FRAMEWORK: The framework provides a generic editor with the following mod-
ules (see Figure 2 for module sizes):

I: A generic implementation of an AST traversal interface.

II: Service interfaces that describe which information that needs to be pro-
vided for a certain language in order for a service to be supported.
Currently supported interfaces include outline, browsing, type hierar-
chy view, name completion and error feedback.

III: The generic editor contains service components that interact with the
AST via the service interfaces.

The framework can easily be extended by an editor with additional service
interfaces (II) and corresponding service component implementations (III).

EDITOR: The editor specification contains language-specific behavior.

IV: The service implementations provide language-specific behavior by defin-
ing attributes that implement the service interfaces, reusing attributes
in the compiler.

V: The language-specific editor plugin provides concrete classes for the
generic editor, as well as non-semantic services like syntax highlight-
ing. This code is of simple boiler-plate character.

As example of a semantic service implementation, we will consider the out-
line service for the PicoJava language. An outline visualizes the contents of a file
as a tree in a view next to the editor. Figure 3 shows the service interface for
the outline service, its implementation using RAGs, and a screenshot of the out-
line view. The service interface includes methods needed to construct an outline
tree (lines 2 − 4), along with a method selecting which node types to display (5).

2 Overview and Background 21

I II III Total
FRAMEWORK 4 LOC 137 LOC 1.7 kLOC 1.8 kLOC

Figure 2: Summary of modules in the framework

Outline interface (II):
1 interface IOutlineNode {
2 public List outlineChildren();
3 public String outlineLabel();
4 public Image outlineImage();
5 public boolean showInOutline();
6 }

Outline implementation (IV):
1 aspect Outline {
2 ASTNode implements IOutlineNode;
3 syn List ASTNode.outlineChildren() = getChildren();
4 syn String ASTNode.outlineLabel() = getClass().getName();
5 syn Image ASTNode.outlineImage() = null;
6 syn boolean ASTNode.showInOutline() = true;
7 eq ClassDecl.outlineLabel() = getName();
8 eq VarDecl.outlineLabel() = type().getName() + " " + getName();
9 }

Figure 3: The outline service The upper left code shows the service interface, the
lower left code shows its implementation for PicoJava and the upper right picture
shows the PicoJava editor with an outline view.

The language-specific behavior in this particular example should be to display all
nodes in the outline, but use different labels for some of the nodes. To do this we
start by letting the superclass of all AST nodes (ASTNode) implement the outline
service interface (2). Next, we define an attribute for each method for the node
type ASTNode (3 − 6). On line 3 we compute outline children and on line 4 we
let the labels be the name of the node types, reusing traversal methods in the com-
piler (getChildren, getClass, getName). We choose no default icon on
line 5 and choose to display all nodes on line 6. On lines 7 and 8 we specialize
the behavior for class and variable declarations. For classes we let the label be the
name of the class (getName). For variable declarations, we let the label be the
name of the variable along with the name of its type. Here, we reuse an attribute
in the compiler (type) computing the type of a variable.

22 Building Semantic Editors using JastAdd

EDITOR
Language COMPILER Services (IV) Editor (V) Total
JastAdd 29.2 kLOC 1.1 kLOC 3.2 kLOC 4.3 kLOC
PicoJava 210 LOC 420 LOC 180 LOC 600 LOC
Size Relation x139.0 x2.6 x17.8 x7.2

Figure 4: Summary of compiler and editor modules The columns show the
sizes of compiler and editor modules. The bottom row show the relation in size
between the module in the same column (JastAdd/PicoJava).

3 Example Editors

To demonstrate how we use the generic framework presented in the previous sec-
tion we will show how we specify semantic services for two editors. One for
a small object-oriented language, PicoJava, and one for the JastAdd language.
We selected these two languages as examples due to their size. The PicoJava is
very small with only 15 parse productions, while the JastAdd language is much
larger with 253 parse productions. The JastAdd language includes full Java, inter-
type declarations found in AspectJ [Kic+01], and RAG-specific constructs like
attributes and equations. Figure 4 shows the sizes of compiler and editor modules
for the two example languages. It is clear from the comparison in the figure that
the JastAdd compiler specification is many times larger than the PicoJava compiler
specification. The difference between the total editor sizes are, in relation to the
compiler specification difference, quite small. The difference between the editor
modules is largest for the editor modules (V). This is because the JastAdd edi-
tor adds non-semantic services like syntax highlighting, while the PicoJava editor
does not.

3.1 The Browsing Service

To give a detailed example of how a more advanced service is added to one of
our example editors, we will show how we add browsing service to the JastAdd
editor that supports find declaration and find references. For the JastAdd editor we
want the find declaration service to jump to the declaration of a use, and we want
the find references service to list all references to a declaration. Figure 5 shows
the browsing interface and its implementation, and Figure 6 shows a screenshot
of how browsing works in the editor. The first two methods in the interface (line
2− 3) connects a browsing node to its declaration and its references. The last two
interface methods describe how to visualize browsing nodes when they appear as
search results of the find reference service. In the implementation we select two
types as browsing nodes, TypeDecl and TypeAccess, on line 2 and 8. These
nodes represent type declarations and uses.

3 Example Editors 23

Browsing interface:
1 interface IBrowsingNode {
2 public IBrowsingNode browsingDecl();
3 public List browsingRefs();
4 public String browsingLabel();
5 public Image browsingImage();
6 }

Browsing implementation:
1 aspect Browsing {
2 TypeDecl implements IBrowsingNode;
3 syn IBrowsingNode TypeDecl.browsingDecl() = this;
4 syn List TypeDecl.browsingRefs() = references();
5 syn String TypeDecl.browsingLabel() = getID();
6 syn Image TypeDecl.browsingImage() = ..
7
8 TypeAccess implements IBrowsingNode;
9 syn IBrowsingNode TypeAccess.browsingDecl() = type();

10 syn Collection<IBrowsingNode> TypeAccess.browsingRefs() =
11 type().browsingRefs();
12 syn String TypeAccess.browsingLabel() = getID();
13 syn Image TypeAccess.browsingImage() = ..
14
15 coll HashSet TypeDecl.references() [new HashSet()] with add;
16 TypeAccess contributes this to TypeDecl.references() for type();
17 }

Figure 5: The browsing services The upper code section shows the browsing
interface, and the lower code listing shows an abbrevated implementation for the
JastAdd language.

24 Building Semantic Editors using JastAdd

12

3

Figure 6: Browsing The find declaration service is activated for the marked
method call at (1), and as a result the declaration is marked in the left editor at
(2). The find reference service is activated for the declaration at (2), which results
in the list of references being displayed in the search page at (3). The marked
reference at (3) corresponds to the original method access at (1).

For the type declaration node, we define this to be the result of a find dec-
laration call (3) and the result of an attribute references to be the result of
a find declaration call. This references attribute is not previously defined in
the compiler and is therefore defined in the implementation module. It is defined
on line 15 − 16 as a so called collection attribute (coll) [Mag+09]. Collection
attributes collect a set of references from a set of contributors, defined with the
contribute keyword. During the evaluation of this attribute, which is done on
demand, TypeAccess nodes will add themselves to the reference collection
of their type declaration (TypeDecl). The connection to the TypeDecl node
is given by an attribute type, defined and used during type analysis in the Java
compiler. For the TypeAccess, we let the declaration be the result of the type
attribute (9) and we let the references be the references of the declaration (10−11).
For both node types, we use their identifier (getID) as label in the search result
of a find references call.

3.2 The Completion Service

Another example of a service supported by the generic framework is the comple-
tion service. In the JastAdd editor we want this service to provide valid name

3 Example Editors 25

interface ICompletionNode {
public Collection<ICompletionProposal>

completionProposals(int offset);
}

aspect Completion {
Access implements ICompletionNode;
// ...

}

// abstract grammar extension
ErrorStmt : Stmt ::= ErrorAccess;
ErrorAccess : Access:

// concrete grammar extension
Stmt statement = error SEMICOLON
{: return new ErrorStmt(new ErrorAccess()); :};

1

2

Figure 7: Completion Completion is activated at (1), a popup of alternatives
are displayed. The completion causes a syntactic error marked at (1). The list of
completions show valid completions for this, including the encolsing method
errors at (2).

completion suggestions sensitive to the context in which we activate the service.
Figure 7 shows the completion interface and implementation along with a screen-
shot of the service activated in the JastAdd editor. The ICompletionProposal type
in the return type of the method in the service interface is used by Eclipse to de-
scribe completion proposals (2). In the language-specific behavior we need to
choose a node type to offer the service. For this service, we choose the Access
node which represent uses (2).

Completion and syntax errors

A completion service will typically be triggered during editing where the code
being edited is in an syntactically erroneous state. This calls for robust parsing.
Robust parsing can be accomplished in different ways. In LALR parsing so called
error productions can be inserted into the concrete grammar allowing the parser
to produce error nodes at some positions with syntax errors. For example, an error
statement node can be inserted at positions where a statement is expected but no
parse match can be found.

The JastAdd systems allows us to both modularly extend the abstract grammar
and the concrete grammar. We can, for example, extend the abstract grammar with
a new statement error node as a subclass to the statement node, and we can extend
the concrete grammar with a new parse production, constructing error statement
nodes for cases where no other statement node match. In addition, if we let this
error node include an error access node, inheriting from the access class, we can

26 Building Semantic Editors using JastAdd

Service Size:JastAdd Size:PicoJava Size relation:JastAdd/PicoJava
Outline 96 37 x2.6
Browsing 101 24 x4.2
Completion 128 74 x1.7
Type Hierarchy 80 21 x3.8
Error Feedback 86 104 x0.8

Figure 8: Summary of service modules The sizes of the service modules in
the PicoJava and JastAdd editors given in LOC, and the size relation of service
modules between the two languages with regard to size.

collect valid completion suggestions from these error nodes. Figure 7 shows com-
pletion via an error node at a syntax error, along with the node interface, aspect
implementation, abstract grammar extension and concrete grammar extension.

3.3 Summary of Services

The sizes of the service modules in the two example editors for PicoJava and
JastAdd are summarized in Figure 8. One size that sticks out is the size of the error
feedback module for PicoJava which is larger than the corresponding module for
JastAdd. The larger size is due to the need to add error handling code which was
not present in the PicoJava compiler specification. For cases like this one, where
there is a gap between the compiler and editor specifications, the service module
will increase in size.

Considering the size of the JastAdd service modules compared to their corre-
sponding PicoJava service module, we see that there is not a huge difference. On
average the JastAdd service module is about twice as large as the same PicoJava
service module. In relation to the difference in size between the compiler speci-
fications, shown in Figure 4, where the JastAdd compiler is more than 100 times
larger than the PicoJava compiler, this difference is very small.

4 Generality and Limitations

The editor framework makes some assumptions about the language and editors
that it will support. For example, for browsing it assumes that there are nodes
corresponding to declarations and that there are nodes corresponding to uses. For
some languages this might not be the case, but for most languages with need for
this kind of editor we assume that this is a common design. Further, the editor
implementation requires an existing RAG-based compiler implementation.

The editor framework can handle arbitrary semantic services due to the gen-
erality of attribute grammars. Currently, the framework supports a few common
semantic services, but the framework can be extended to support others. There

5 Conclusions 27

is ongoing work on adding refactoring support. The framework focuses on se-
mantic services and has no specific support for purely lexical services like syntax-
highlighting, debugging services, versioning services etc. These services have to
be implemented in the conventional way.

The architecture of the framework is general and should work for other RAG-
based systems. The framework does not yet support incremental attribute updat-
ing, which means that services may take time to be recomputed during editing.
Incremental evaluation of RAGs is non-trival due to dynamic dependencies, pre-
venting a static scheduling of evaluation dependencies. A solution to incremental
evaluation of RAGs is ongoing work.

5 Conclusions
In this tool demonstration paper we have briefly presented an editor framework
along with two example editors for JastAdd and PicoJava. We have shown how
we use the editor framework to concisely add semantic services to these example
editors. The size of the service modules for these editors suggest that the effort of
adding a service is reasonably small. Particularly, when the language is large but
the service modules remain small. We see a number of possible ways to continue
the work presented in this paper. The editor framework could, for example, pro-
vide more default service behavior and additional common semantic services, like
refactorings. Also, the framework which currently has a focus on text editors and
read-only tree views could be extended to support editable tree or graph views.
In supporting editable tree views, there is a need to support structural updating
which relates to incremental updating. Incremental evaluation of RAGs is an open
problem which we are working on. As a part of this work we want to evaluate the
performance of RAG-based editors.

References
[Cha+07] Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton, Jr. “IMP:

a meta-tooling platform for creating language-specific IDEs in Eclipse”.
In: ASE. Ed. by R. E. Kurt Stirewalt, Alexander Egyed, and Bernd
Fischer. ACM, 2007, pp. 485–488.

[EV06] Sven Efftinge and Markus Völter. “oAW xText: a framework for tex-
tual DSLs”. In: Eclipse Summit Europe, Eclipse Modeling Sympo-
sium. Esslingen, Germany, 2006.

[EH07b] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Program-
ming 69.1-3 (2007), pp. 14–26.

28 Building Semantic Editors using JastAdd

[Grö+08] Hans Grönniger et al. “MontiCore: a framework for the development
of textual domain specific languages”. In: ICSE. 2008, pp. 925–926.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

[HW09] Daqing Hou and Yuejiao Wang. “An empirical analysis of the evo-
lution of user-visible features in an integrated development environ-
ment”. In: CASCON. Ed. by Patrick Martin, Anatol W. Kark, and
Darlene A. Stewart. ACM, 2009, pp. 122–135.

[KV10] Lennart C. L. Kats and Eelco Visser. “The spoofax language work-
bench: rules for declarative specification of languages and IDEs”. In:
OOPSLA. Ed. by William R. Cook, Siobhán Clarke, and Martin C.
Rinard. ACM, 2010, pp. 444–463.

[Kic+01] Gregor Kiczales et al. “An Overview of AspectJ”. In: ECOOP. Ed.
by Jørgen Lindskov Knudsen. Vol. 2072. Lecture Notes in Computer
Science. Springer, 2001, pp. 327–353.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[Mag+09] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. “Demand-driven
evaluation of collection attributes”. In: Automated Software Engi-
neering 16.2 (2009), pp. 291–322.

[RT84] Thomas W. Reps and Tim Teitelbaum. “The Synthesizer Generator”.
In: Software Development Environments (SDE). Ed. by William E.
Riddle and Peter B. Henderson. ACM, 1984, pp. 42–48.

[Slo+10] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. “A Pure
Object-Oriented Embedding of Attribute Grammars”. In: Electr. Notes
Theor. Comput. Sci. 253.7 (2010), pp. 205–219.

[Wyk+10] Eric Van Wyk et al. “Silver: An extensible attribute grammar sys-
tem”. In: Science of Computer Programming 75.1-2 (2010), pp. 39–
54.

PA
P

E
R

II

EXTENSIBLE
INTRAPROCEDURAL FLOW

ANALYSIS AT THE ABSTRACT
SYNTAX TREE LEVEL

Abstract

We have developed a new approach for implementing precise intraprocedural control-
flow and dataflow analysis at the abstract syntax tree level. Our approach is declar-
ative, making use of reference attribute grammars augmented with circular at-
tributes and collection attributes. This results in concise executable specifications
of the analyses, allowing extensions both to the language and with further source
code analyses. To evaluate the new approach, we have implemented control flow,
dataflow and dead assignment analysis for Java, by extending the JastAdd Exten-
sible Java Compiler. We have compared our results to several well-known analysis
frameworks and tools, using a set of Java programs as benchmarks. These results
show that our approach performs well concerning both efficiency and preciseness.

1 Introduction

Control-flow and dataflow analysis are key elements in many static analyses, and
useful for a variety of purposes, e.g., code optimization, refactoring, enforcing

Emma Söderberg, Görel Hedin, Torbjörn Ekman, and Eva Magnusson.
Science of Computer Programming, 2012, Elsevier B.V. In press.

30 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

coding conventions, bug detection, and metrics. Often, such analyses are carried
out on a normalized intermediate code representation, rather than on the abstract
syntax tree (AST). This simplifies the computations by not having to deal with the
full source language. However, doing these analyses directly at the AST level can
be beneficial, since the high-level abstractions are not compiled away during the
translation to intermediate code. This is particularly important for tools that are
integrated in interactive development environments, such as refactoring tools and
tools supporting bug detection and coding convention violations.

In this paper, we present a new approach for computing intra-procedural control-
flow and dataflow at the AST level. Our approach is declarative, making use of
attribute grammars. Advantages include compact specification and modular sup-
port for language extensions, while giving sufficient performance for practical use.

To make the approach work, we rely on a number of extensions to Knuth’s orig-
inal attribute grammars [Knu68]: Reference attributes [Hed00] allow the control-
flow edges to be represented as references between nodes in the AST. Higher-order
attributes [Vog+89] are used for reifying entry and exit nodes in the control-flow
graph as objects in the AST. Circular attributes [Far86; MH07] are used for writing
down mutually recursive equations for dataflow as attributes, automatically solved
through fixed-point iteration. Finally, collection attributes [Boy05; Mag+09], en-
able the simple specification of reverse relations, for example, computing the set
of predecessors, given the set of successors. These mechanisms are all supported
in the JastAdd system [EH07b], which we have used to implement our approach.

As a case study, we have implemented control-flow graphs and dataflow analy-
sis for Java by extending JastAddJ (the JastAdd Extensible Java Compiler) [EH07a].
The control flow graph is precise: it is implemented at the expression level and
covers non-trivial control flow including Java exception handling, taking excep-
tion types into account, and short-circuited boolean expressions. For dataflow,
we have implemented both liveness analysis and reaching definition analysis. As
an example of a tool-oriented analysis, we have implemented a detector of dead
assignments to local variables.

The implementation is modular and extensible. Similar to the internal modu-
larization of JastAddJ [EH07a], each module can be viewed as an object-oriented
framework, with a client API representing the result of the analysis, and an exten-
sion API for the attributes that need to be defined by a language extension module.
In many cases, new language features can reuse the existing analyses as they are,
but for language constructs affecting control-flow, rules need to be added. We ex-
emplify this by considering the effect on the analyses when extending Java 1.4 to
Java 5.

These are the main contributions of this paper:

• We present a new approach to implementing precise control-flow graphs at
the AST level, using reference attribute grammars. An attribute framework
for control-flow graphs is presented that allows the modular addition of lan-
guage constructs, classified into non-directing, internal flow, and abruptly

2 Control-flow Analysis 31

completing constructs. We furthermore provide attribute grammar solu-
tions for specifying precise control flow of exceptions and short-circuiting
of boolean expressions.

• We present how the control-flow framework can be modularly extended with
liveness analysis and reaching definition analysis. These dataflow analyses
are specified using circular attributes, resulting in declarative implementa-
tions very similar to textbook definitions.

• We have implemented control flow graphs and dataflow analysis using our
approach for full Java 1.4 and with a modular extension to support Java 5.
The implementation is available at the JastAdd site [Jas].

• We report performance and preciseness results of our approach by compar-
ing it to three well known analysis frameworks and tools for Java: Soot
[VR+99], PMD [Cop05], and FindBugs [Aye+08]. This is done by com-
paring the results from a dead assignment analysis (implemented on top of
the dataflow analyses) on a set of benchmark Java programs from the Da-
Capo suite [Bla+06], the largest being 130 000 lines of code. Our results
show that our approach present precise results on par with Soot, and pro-
vides better performance than the selected set of tools for almost all selected
benchmarks.

The rest of this paper is structured as follows. The implementation of control-
flow analysis is described in Section 2, and the dataflow analyses in Section 3.
An application doing dead assignment analysis is given in Section 4, and Sec-
tion 5 discusses how to extend the analysis when the source language is extended.
Section 6 provides a performance evaluation of our method. Finally, Section 7
discusses related work and Section 8 concludes the paper.

2 Control-flow Analysis
In control-flow analysis, the goal is to build a control-flow graph (CFG) where
nodes represent blocks of executable code, and successor edges link the blocks in
their possible order of execution. The nodes typically correspond to basic blocks,
i.e., linear sequences of program instructions with one entry and one exit point
[All70]. Each node n has a set of immediate successors, succ(n), and a set of
immediate predecessors, pred(n), both of which can be empty.

2.1 Control-flow API

In JastAdd, a program is represented as an AST, with nodes that are objects with
attributes. To represent the CFG, we superimpose it on the AST, treating statement
and expression nodes as nodes in the CFG. We represent the succ and pred sets as

32 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

attributes on an interface CFGNode implemented by expressions and statements. To
represent the entry and exit points of a method, we add synthetic empty statements
to the method declaration.

public Set<CFGNode> CFGNode.succ();
public Set<CFGNode> CFGNode.pred();

public CFGNode MethodDecl.entry();
public CFGNode MethodDecl.exit();

Figure 1: The generated Java API for the control flow graph of a method.

JastAdd builds on Java, and generates an ordinary Java API for the AST and
its attributes. Figure 1 shows the generated Java API for the CFG of a method.
JastAdd specs can use this API to specify additional analyses, for example dataflow.
The API can also be used by ordinary Java code, for example, an integrated devel-
opment environment implemented in Java.

2.2 Language Structure

Figure 2 shows an example Java method and parts of its corresponding AST. We
will use this as an example to illustrate how the control-flow graph is superimposed
on the AST. To keep the example concise, we have omitted parameters and local
declarations in the code.

void m() {
if(c > 2)
x = c;

while(c < 10) {
x += p();
c++;

}
}

MethodDecl "void m()"

Block "{...}"

IfStmt "if(...)"

Expr

"c > 2"
Then

AssignExpr

VarAccess

"x"

VarAccess

"c"

WhileStmt "while(...)"

Expr

"c < 10"

Block "{...}"

Stmt

"x += p();"

Stmt

"c++;"

Figure 2: Sample Java method and its abstract syntax tree.

2 Control-flow Analysis 33

A simplified part of the abstract grammar for Java is shown in Figure 3. It
is written in an object-oriented form with abstract classes Stmt and Expr, and
subclasses for the individual statements and expressions such as WhileStmt and
VarAccess.

MethodDecl ::= ParamDecl* Block;
ParamDecl ::= <Type:String> <Name:String>;

abstract Stmt;
Block : Stmt ::= Stmt*;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
WhileStmt : Stmt ::= Expr Stmt;
ExprStmt : Stmt ::= Expr;
VarDecl : Stmt ::= <Type:String> <Name:String> [Init:Expr];
ReturnStmt : Stmt ::= [Expr];
EmptyStmt : Stmt;

abstract Expr;
AssignExpr : Expr ::= LValue:Expr RValue:Expr;
VarAccess : Expr ::= <Name:String>;
MethodCall : Expr ::= <Name:String> Arg:Expr*;

Figure 3: Simplified parts of the Java abstract grammar in Figure 2.

The grammar uses a typical syntax with the Kleene star for list children, angle
brackets for tokens, and square brackets for optional children. Children are either
named after their types, such as a Block child of a MethodDecl, or with given
names preceding the type name. For example, the left and right children of an
AssignExpr are named LValue and RValue.

Certain constructs in Java can act as both expressions and statements, for ex-
ample assignments and method calls. They are represented as expressions in the
grammar, for example AssignExpr, and the class ExprStmt serves the purpose of
adapting such expressions to serve as statements. The full grammar for Java is
available at the JastAdd web site [Jas].

2.3 The control-flow graph

Figure 4 shows how the AST has been attributed with successor edges and syn-
thetic nodes, to form the CFG for the example method. The statement nodes con-
stitute the nodes of the CFG, and reference attributes represent the successor edges.
Two synthetic nodes are added to represent the entry and exit of the graph.

Some nodes can be viewed as explicitly transferring control, whereas others
merely let the control flow through them. For example, the AssignExpr in Figure 4

34 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

void m() {
if(c > 2)
x = c;

while(c < 10) {
x += p();
c++;

}
}

MethodDecl

Blockentry exit

IfStmt

Expr
Then

AssignExpr

VarAccess

"x"

VarAccess

"c"

WhileStmt

Expr

Block

Stmt

"x += p();"

Stmt

"c++;"

Figure 4: Example method and its CFG, excluding control flow internal to omit-
ted children. Successors are shown as directed edges. Synthetic nodes are grey
and the dashed lines show parent-child relations to these nodes.

transfers the control first to its right-hand side (the read of c) and then to its left-
hand side (the assignment to x). After that, it transfers control to some location
decided by its context (to the WhileStmt in this case). For a VarAccess, the control
simply flows through, transferring to a location decided by its context.

Based on this observation, we distinguish between the following three cate-
gories of nodes.

Non-directing nodes which merely transfer control to the next node, as decided
by their context. A VarAccess is an example of a node in this category.

Internal flow nodes which may transfer control to and between their children.
Examples of nodes in this category are Block, WhileStmt, and AssignExpr.

Abruptly completing node which may transfer control to a specific location out-
side itself, in effect ending the execution of one or more enclosing nodes.
Examples of such nodes in Java include breaks, throws, returns and method
calls [Gos+96].

In the following subsections, we will discuss how the different parts of the
CFG are specified, and how these different categories of nodes are handled.

2.4 The successors framework

Figure 5 shows a small attribution framework for the successor edges. It specifies
the behavior for non-directing nodes, and can be specialized to handle internal flow
and abruptly completing nodes. The framework introduces four attributes: succ,

2 Control-flow Analysis 35

following, followingTrue and followingFalse. The succ attribute is a set of
references to nodes, and represents the successor edges in the CFG. The following
attribute of a node n, is its set of successors as seen from its enclosing node, i.e.,
without any knowledge of the internal flow or possible abruptly completing nodes
inside n.

The attributes followingTrue and followingFalse are used for handling con-
trol flow of short-circuited boolean expressions. For instance, in "e1 && e2",
the evaluation of e2 should be skipped if e1 is false. If this boolean expression
is enclosed in some other boolean expression or conditional construct, the place
to skip to may be a different one from the ordinary following set. The attributes
capture the appropriate place to skip to.

In the framework, succ is defined to be equal to following, thus capturing the
behavior of non-directing nodes. Subclasses of Expr and Stmt can override this
definition to cater for internal flow or abrupt completion.

// The successor edges in the CFG
syn Set<CFGNode> CFGNode.succ();

// Nodes that follow a node, as seen from its context
inh Set<CFGNode> CFGNode.following();

// By default, they are the same.
eq CFGNode.succ() = CFGNode.following();

// The following node for conditional branches. By default, these
are empty
inh CFGNode.followingTrue();
inh CFGNode.followingFalse();

Figure 5: The attribution framework for successors.

The attribute succ is synthesized, whereas following, followingTrue and
followingFalse are inherited1. The difference is that synthesized attributes must
be defined in the node in which they are declared, whereas inherited attributes must
be defined in an ancestor node. So, succ is defined by an equation in CFGNode, and
can have overriding equations in subclasses of Expr and Stmt, similar to ordinary
virtual methods. The attribute following of a node n, must instead be defined by
one of the ancestor nodes of n. So to use this framework, equations must be pro-
vided that define the value of following for all possible nodes. The same applies
to followingTrue and followingFalse.

1Note that this use of the term inherited stems from Knuth [Knu68] and is unrelated to and different
from the object-oriented use of the term.

36 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

Node kind Examples succ following*

Non-directing variable – –
Internal-flow block

if
assignment

direct flow to an
internal node

possibly redefine
for internal nodes

Abruptly completing break
return
throw

direct flow to a
special location

–

Figure 6: How different kinds of nodes extend the successors framework to
achieve the control-flow graph.

The table in Figure 6 shows how the CFG is achieved by extending the succes-
sors framework: For non-directing nodes, no additional equations are needed. For
internal-flow nodes, the equation for succ needs to be overridden, and equations
may need to be added for constituents’ following, followingTrue and followingFalse

attributes. For abruptly completing nodes, succ is overridden.
As an example of an internal-flow node, consider the Block whose CFG spec-

ification is shown in Figure 7. To capture the internal flow, Block overrides the
definition of its own succ attribute, transferring control to its first internal state-
ment, if there is one. Since a block has a list of statement children, it must also
define the value of following for each of these children. This is done by the equa-
tion Block.getStmt(int i).following = ... which applies to the i:th state-
ment child of a block. For the last child, following is simply the same as for the
block itself. For other children, following contains a reference to the next child in
the block. The function singleton used in this definition returns a set containing
a single given reference.

eq Block.succ() =
(getNumStmt() = 0) // no children
? following()
: singleton(getStmt(0));

eq Block.getStmt(int i).following() =
(i = getNumStmt()-1) // last child
? following()
: singleton(getStmt(i+1));

Block

Stmt:0 Stmt:n-1. . .

Figure 7: Specializing the successors framework for Block.

Another example of an internal-flow node is the IfStmt, whose CFG specifi-

2 Control-flow Analysis 37

cation is shown in Figure 8. The equation overriding succ states that control will
be transferred to the Expr part (the condition). To allow boolean expressions in the
condition to short-circuit to the correct branch, equations are given defining the
followingTrue and followingFalse attributes. For normal (non-short-circuited)
control flow, transfer is possible to both branches as defined by the equation for
the following attribute.

Note that it is not necessary to define the following attribute for the Then and
Else parts, since they should have the same value as following for the IfStmt

itself, so the same equation in some ancestor applies to these parts.

eq IfStmt.succ() = singleton(getExpr());
eq IfStmt.getExpr().followingTrue() = singleton(getThen());
eq IfStmt.getExpr().followingFalse() = hasElse() ?

singleton(getElse()) : following();
eq IfStmt.getExpr().following() =

getExpr().followingTrue().union(getExpr().followingFalse());

IfStmt

Expr
Then

Else

Figure 8: Specializing the successors framework for IfStmt.

Before we give examples of abruptly completing statements, we will introduce
the framework for entry and exit nodes.

2.5 The entry and exit framework
To make sure there will always be well-defined entry and exit nodes, even for
empty methods, we add two synthetic empty statements to each method. Nodes
can be added declaratively to an AST by means of higher-order attributes, also
known as non-terminal attributes (NTAs) [Vog+89]. An NTA is like a non-terminal
in that it is a node in the AST. However, instead of being constructed as part of
the initial AST, typically built by a parser, it is defined by an equation, just like an
attribute. So in this sense, it is both an attribute and an AST node, hence the term
higher-order. The right-hand side of an equation for an NTA must denote a fresh
object, i.e. an object not already part of the AST, typically computed by a new
expression.

Figure 9 shows the attribution framework defining the entry and exit nodes.
Since the method declaration is the parent of both the entry and exit nodes, as well

38 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

syn nta Stmt MethodDecl.entry() = new EmptyStmt();
syn nta Stmt MethodDecl.exit() = new EmptyStmt();

eq MethodDecl.entry().following() = singleton(getBlock());
eq MethodDecl.getBlock().following() = singleton(exit());
eq MethodDecl.exit().following() = empty();

inh Stmt Stmt.exit();
eq MethodDecl.getBlock().exit() = exit();
eq MethodDecl.entry().exit() = exit();
eq MethodDecl.exit().exit() = exit();

MethodDecl

Block

entry exit

Figure 9: Attribution framework for entry and exit nodes. Dotted directed edges
indicate elements in the following sets.

as of the main block, it furthermore needs to define their following attributes.
Naturally, the entry is followed by the main block, which is followed by the exit
node, which in turn has no following statements, as specified in the equations. The
function empty, used when defining following for the exit node, simply returns
the empty set.

The framework additionally defines an inherited attribute exit which gives all
nodes access to the exit node. This is useful for abruptly completing nodes which
need to transfer control directly to the exit node.

As a simple example of an abruptly completing node, consider the return

statement. Figure 10 shows how it directs the control flow directly to the exit

node by overriding the succ attribute. This definition is simplified, however, and
does not take Java exception handling into account. A full treatment of these issues
is given in the next section.

2.6 Handling Java Exceptions

The Java statements break, throw, continue and return are abruptly completing
nodes, transferring control to a specific location outside of themselves.

The successor of an abrupt node is called the target node. For example, the
target of a return statement is normally the exit node, as was shown in Figure 10.

2 Control-flow Analysis 39

eq ReturnStmt.succ() = exit();

MethodDecl

. . .

Return

exit

Figure 10: Using the entry and exit framework to abruptly transfer control from
return statements to the end of the method. (Simplified definition that ignores Java
exceptions.)

However, if the abrupt node is inside the try block of a Java exception handler
with a finally block, the finally block will intercept control before transferring
control to the normal target(s). Figure 11 shows an example.

try {
return;

} finally {
n();

}

TryStmt

Block Finally

Return ExprStmt

exit

Figure 11: The control flow from a return, in the presence of a finally block.

In a similar way, other abrupt nodes also have a normal target to which control
is transferred if there are no enclosing try statements with finally blocks. For
throw it is a matching catch, or the exit node. For break the normal target is the
statement following a matching enclosing loop or labeled statement. For continue
the normal target is the first part of a matching enclosing loop. Figure 12 shows
example normal control-flow (without finally blocks).

We will now show how control flow of abrupt nodes is handled in the presence
of finally blocks. As an example, we will take a closer look at the break state-
ment. The other abrupt nodes are handled in an analogous way. We introduce an
inherited attribute breakTarget, returning a singleton set with the matching target,
or the empty set if no target is found (corresponding to a compile-time error). For
the break statement, this attribute will be the true successor, i.e., either the normal
target (e.g., a while loop), or a finally block.

The attribute breakTarget is also defined for the try statement, by which the
finally block can find its successor, i.e., usually the normal target. This solution
works also for nested try statements with finally blocks, in which case control is
transferred from the break statement, through all the finally blocks of enclosing
try statements, and finally to the normal target.

40 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

break:

WhileStmt

Expr Block

StmtBreak

continue:

WhileStmt

Expr Block

StmtContinue

throw:

TryStmt

Block

Throw

"throw new E();"

Catch

Expr

"E e"

Stmt

Figure 12: Control flow for some abrupt nodes.

The breakTarget attribute is parameterized by the BreakStmt to allow the
target for the correct BreakStmt to be found. This attribution solution, using pa-
rameterized inherited attributes, is similar to the JastAdd implementation of Java
name analysis, as presented in [EH05].

The successor of a BreakStmt is now simply defined as the breakTarget of
itself. Figure 13 shows the specification. There are several equations defining
breakTarget, and if there is more than one in a chain of ancestors, the closest
equation applies. Therefore, if a BreakStmt is enclosed by a TryStmt, and then by
a BranchTargetStmt (e.g., a while loop), the equation in the TryStmt will hold.
If the BreakStmt is not enclosed by any of these kinds of statements, the equation
defined in BodyDecl will hold, defining the target to be the empty set. To illustrate
how this works, consider Figure 14, showing the values of breakTarget for an
example program.

To handle the remaining abrupt statements, continue, return, and throw, we
define one target attribute for each of them and use them in a similar fashion.
With this approach we end up with potentially several abrupt nodes transferring
control to the finally block. The potential successors of the finally block is
thus the set of normal targets for all these intercepted abrupt nodes. For this reason,
we introduce an attribute interceptedAbruptNodes which contains references to
these nodes. Given this attribute, the TryStmt can define the following attribute
for its finally block, as shown in Figure 15. Here, the attribute targetAt uses
the double dispatch pattern [Ing86] to let each kind of abrupt node decide how to

2 Control-flow Analysis 41

eq BreakStmt.succ() = breakTarget(this);

inh Set BreakStmt.breakTarget(BreakStmt stmt);
inh Set TryStmt.breakTarget(BreakStmt stmt);

// Equations for breakTarget
eq BodyDecl.getChild().breakTarget(BreakStmt stmt) = empty();
eq BranchTargetStmt.getChild().breakTarget(BreakStmt stmt) =

targetOf(stmt)
? following()
: breakTarget(stmt);

eq TryStmt.getBlock().breakTarget(BreakStmt stmt) =
hasFinally()
? singleton(getFinally())
: breakTarget(stmt);

Figure 13: Specializing the successor framework for BreakStmt. The targetOf

attribute is defined in the compiler frontend.

compute its target2.

Handling unchecked exceptions

In addition to explicitly thrown exceptions, using the throw statement, exceptions
can be thrown implicitly by the runtime system at runtime errors such as null
pointer dereferencing, division by zero, out of memory, etc. Unless these errors
are caught, they are propagated back to the calling method, making also method
calls a source of such implicit exceptions. So in this sense, more or less every
expression and statement can have abrupt completion. Instead of adding explicit
successor edges for all these possible control paths, we define an inherited attribute
uncheckedExceptionTarget for Expr and Stmt nodes, and in that way make all
nodes aware of these potential successors. By default, this attribute is a set con-
taining the exit node. But if there are catch clauses that match RuntimeException

or Error, these clauses are also added.
This approach is inspired by the factored control-flow graph explained in [Cho+99]

where unchecked exception branches are summarized at the end of basic blocks to
limit the number of branches.

2The equation for following uses an assignment and a for loop which might be surprising since
our approach is declarative. However, because we use Java method body syntax to define attribute
values, it is natural to use imperative code here. This is perfectly in agreement with the declarative
approach as long as that code has no net side effects, i.e., only local variables are modified.

42 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

{
while (..) {

try {
break;

} finally {
n();

}
}
m();

}

Block

While

Expr

m();

Try bT

Block Finally

Break bT
n();

Figure 14: Values of the breakTarget attribute (bT).

2.7 Predecessors

To complete the implementation of the control-flow API, we now define the set of
predecessors. This is simply the inverse of the successors relation, so if there is
a successor edge from a to b, there will be a predecessor edge from b to a. Such
inverse relations are easily defined using collection attributes [Boy05; Mag+09].
The attributes we have seen so far have been defined using an equation located
in an AST node. A collection, in contrast, is an attribute whose value is defined
by the combination of a number of contributions, distributed over the AST. This
way, we can define the predecessor sets by letting each node contribute itself to
the predecessor sets of its successors. Figure 16 shows the JastAdd specification.

Rule (1) is the declaration of the collection attribute pred for CFGNode. The
rule states the type of the attribute (Set), the initial value (the empty set), and the
operation used to add contributions (add). For correct evaluation, it is assumed
that the operation is commutative, i.e., that the order of adding the contributions is
irrelevant, which is indeed the case for the add method for the Java class Set.

Rules (2) and (3) declare that each Stmt and Expr node contributes itself (this)
to the pred attribute of each of its successors. A more detailed presentation of
collection attributes and their evaluation in JastAdd is available in [Mag+09].

3 Dataflow Analysis

We want to analyze dataflow on the control-flow graph defined in the previous sec-
tion. Two typical examples of dataflow analyses are liveness analysis and reach-
ing definition analysis. We describe our implementation of these analyses using
JastAdd in the following two subsections.

3 Dataflow Analysis 43

eq TryStmt.getFinally().following() {
Set flw =

(getFinally().canCompleteNormally())
? following()
: empty();

for (Stmt abrupt : interceptedAbruptStmts) {
flw = flw.union(abrupt.targetAt(this));

}
return flw;

}

syn Set Stmt.targetAt(TryStmt t) = empty();
eq BreakStmt.targetAt(TryStmt t) = t.breakTarget(this);
eq ContinueStmt.targetAt(TryStmt t) = t.continueTarget(this);
...

Figure 15: Specializing the successor framework for TryStmt.

coll Set CFGNode.pred() [empty()] with add; // (1)
Stmt contributes this to CFGNode.pred() for each succ(); // (2)
Expr contributes this to CFGNode.pred() for each succ(); // (3)

Figure 16: Using a collection attribute to define the predecessors.

3.1 Liveness Analysis
A variable is live at a certain point in the program, if its assigned value will be used
by successors in the control-flow graph. If a variable is assigned a new value before
an old value has been used, the old assignment to the variable is unnecessary, also
called dead.

We express liveness in the same fashion as Appel in [App02] using four sets –
in , out , def and use . The def set of a node n contains the variables assigned a
value in n, and the use set contains the variables whose values are used in n. From
these two sets we calculate the in and out sets, i.e., variables live into a node and
variables live out of a node, using the following equations:

Definition 1 Let n be a node and succ[n] the value of the succ attribute for the
node n:

in[n] = use[n] ∪ (out [n] \ def [n])

out [n] =
⋃

s∈succ[n]

in[s]

44 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

We note that the equations for the in and the out sets are recursive and mutually
dependent, i.e. they have a circular dependency to each other. Equations like these
are usually solved by iteration until a fixpoint is reached, which is guaranteed if
all intermediate values can be organized in a finite height lattice and all operations
are monotonic on that lattice. We will explain how circular equations like these
can be implemented as circular attributes in JastAdd [MH07].

The use and def sets

The main challenge in computing the use set for each node, is to support all kinds
of statements and expressions in the source language. A complex language such as
Java has more than 20 statements and 50 expressions. Fortunately, it is quite easy
to support all these constructs in JastAddJ (the JastAdd Extensible Java Compiler),
since each expression that accesses a local variable encapsulates a VarAccess node
performing the actual binding. Moreover, each VarAccess node has two boolean

attributes, isDest and isSource, determining whether the access acts as a defini-
tion (l-value) or use (r-value). Some nodes actually act as both. For example, a
VarAccess that is the child of the post increment operator ’++’, will both read from
and write to the variable. JastAddJ also defines an attribute decl for VarAccess
nodes, referring to the appropriate declaration node. Figure 17 summarizes the
JastAdd API used.

public boolean VarAccess.isDest();
public boolean VarAccess.isSource();
public Decl VarAccess.decl();

Figure 17: JastAddJ API used by liveness analysis

In the liveness analysis, we represent use and def as sets of references to dec-
laration nodes in the AST. We implement them using synthesized attributes, and
let VarAccess nodes add themselves to the appropriate collection, depending on
their role as an r-value and/or l-value. The variable, parameter and field declara-
tions are also viewed as assignments, so they contribute themselves to their own
def set. Figure 18 shows the implementation of these attributes.

These two attributes effectively compute the use and def sets for all intrapro-
cedural control-flow nodes in Java. If we add a new language construct that modi-
fies a local variable we need only make sure it encapsulates a VarAccess and pro-
vide equations for the inherited attributes isDest and isSource, which are needed
elsewhere in the frontend anyway, and the use set and def set attributes are still
valid.

3 Dataflow Analysis 45

// def
syn Set<Decl> CFGNode.def();
eq Stmt.def() = empty();
eq Expr.def() = empty();
eq VarAccess.def() = isDest() ? singleton(decl()) : empty();
eq VarDecl.def() = singleton(this);
eq ParamDecl.def() = singleton(this);

// use
syn Set<Decl> CFGNode.use() = empty();
eq VarAccess.use() = isSource() ? singleton(decl()) : empty();

Figure 18: Implementation of def and use for liveness analysis

The in and out sets for liveness

The equations for the in set and out set in Definition 1 are mutually dependent. As
mentioned earlier, such equations can be solved by iteration as long as the values
form a finite height lattice and all functions are monotonic. This is clearly the
case for our equations since the power set of the set of local variables, ordered by
inclusion, forms a finite lattice, with the empty set as bottom, on which union is
monotonic. A fixpoint will thus be reached if we start with the bottom value and
iteratively apply the equations as assignments until no values change.

JastAdd has explicit support for fixpoint iteration through circular attributes,
as described in [MH07]. If we declare an attribute as circular and provide a bottom
value, then the attribute evaluator will perform the fixpoint computation automat-
ically. This allows us to implement the in and out sets using circular attributes,
resulting in a specification very close to the textbook definition, as shown in Fig-
ure 19.

In our actual implementation, we use an even more concise specification of
the out set by defining it as a collection attribute, reversing the direction of the
computation by making use of the predecessors instead of the successors. See
Figure 20.

An alternative to using circular attributes would be to manually implement the
fixpoint computation imperatively. Such a solution requires manual book keeping
to keep track of change, which significantly increases the size of the implementa-
tion and the essence of the algorithm gets tangled with book keeping code. Also,
it is necessary to either statically approximate the sets of attributes involved in the
cycle to iterate over, or to manually keep track of such dependencies dynamically.
This is all taken care of automatically by the attribute evaluation engine in JastAdd
when using circular attributes.

46 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

// in
syn Set<Decl> CFGNode.live_in() circular [empty()] =

use().union(live_out().compl(def()));

// out
syn Set<Decl> CFGNode.live_out() circular [empty()] {

Set<Decl> set = empty();
for(Stmt s : succ()) {

set = set.union(s.live_in());
}
return set;

}

Figure 19: Implementation of liveness in and out sets, using circular attributes.

coll Set<Decl> CFGNode.live_out() circular [empty()] with add;
Stmt contributes live_in() to CFGNode.live_out() for each pred();
Expr contributes live_in() to CFGNode.live_out() for each pred();

Figure 20: Alternative implementation of the out set, using a circular collection.

3.2 Reaching Definition Analysis

In computing reaching definitions, we are interested in sets of definitions (assign-
ments), rather than in sets of variable declarations. Because definitions may occur
in several different syntactic constructs, not just in assignment statements, we de-
fine an interface Definition to abstract over the relevant AST classes, namely
VarAccess, VarDecl, and ParamDecl. Not all variable accesses are definitions, but
the isDest attribute can be used to decide this.

A definition of a variable is said to reach a use of a variable if there is a path
in the control-flow graph from the definition to the use. A variable use may be
reached by more than one variable definition in which case the actual value of the
variable can not be decided statically. For cases where there is only one reaching
definition the use might be replaceable with a constant, a property typically used
in, for example, constant propagation.

We define five sets – defs , gen , kill , in and out , in the same fashion as Ap-
pel [App02]. The defs set of a variable declaration v contains all definitions of that
variable. The gen set of a node n contains the definitions in n, i.e., corresponding
to the new variable values generated by that node. The kill set of a node n is the set
of definitions killed by definitions made in n. Consider a definition d of a certain
variable v. The kill set for a definition d is the defs for v, minus the definition d

3 Dataflow Analysis 47

itself, see Definition 2. The kill set for a statement is simply the union of the kill
sets of its gen set.

The in set of a node n is the set of definitions that reach the beginning of
n, and out is the set that reaches the end of n. Given the kill and gen sets, in
and out are defined as shown in Definition 3. Note that the equations for in and
out are recursive and mutually dependent, hence requiring a fixpoint iteration for
evaluation.

Definition 2 Let d be a definition of a variable v:

d : v ← . . . : kill [d] = defs[v] \ {d}

Definition 3 Let n be a node and pred[n] the value of the pred attribute for the
node n:

in[n] =
⋃

p∈pred[n]

out [p]

out [n] = gen[n] ∪ (in[n] \ kill [n])

The defs set

To implement the defs set, we use a collection attribute on Variable, which is
an interface implemented by VarDecl and ParamDecl. We then let the definitions
contribute themselves to their declaration. Contributing VarAccess nodes check
that they are actually acting as definitions using the attribute isDest. The imple-
mentation is shown in Figure 21.

coll Set<Definition> Variable.defs() [empty()] with add;
VarAccess contributes this

when isDest() to Variable.defs() for decl();
VarDecl contributes this to Variable.defs() for this;
ParDecl contributes this to Variable.defs() for this;

Figure 21: Implementation of defs using attributes.

The gen and kill sets

The gen set of a node contains all the definitions inside the node. We use a syn-
thesized attribute to implement this set and let variable declarations, parameter
declarations and VarAccess nodes, that serve as definitions, contribute themselves
to their own gen . The kill set is implemented using the same strategy, see Fig-
ure 22.

48 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

// gen
syn Set<Definition> CFGNode.gen();
eq Stmt.gen() = empty();
eq Expr.gen() = empty();
eq VarAccess.gen() = isDest() ? singleton(this) : empty();
eq VarDecl.gen() = singleton(this);
eq ParamDecl.gen() = singleton(this);

// kill
syn Set<Definition> CFGNode.kill();
eq Stmt.kill() = empty();
eq Expr.kill() = empty();
eq VarAccess.kill() = isDest() ? defs().compl(this) : empty();
eq VariableDeclaration.reaching_kill() = defs().compl(this);
eq ParameterDeclaration.reaching_kill() = defs().compl(this);

Figure 22: Implementation of gen and kill .

The in and out sets for reaching definitions

In Definition 3 the sets in and out are defined as two mutually dependent equations
using the kill and gen sets. Again we use circular attributes, obtaining an imple-
mentation very similar to the textbook definition of these sets. See Figure 23.

// out
syn Set<Definition> CFGNode.reach_out() circular [empty()];
eq CFGNode.reach_out() = gen().union(reach_in().compl(kill()));

// in
coll Set<Definition> CFGNode.reach_in() circular [empty()] with add;
Stmt contributes reach_out() to CFGNode.reach_in() for each succ();
Expr contributes reach_out() to CFGNode.reach_in() for each succ();
ParamDecl contributes reach_out() to CFGNode.reach_in() for each succ();

Figure 23: Implementation of the in and out sets for reaching definitions.

4 Dead Assignment Analysis
To evaluate the efficiency and scalability of our approach, we have implemented a
simple intraprocedural analysis for Java which detects dead assignments. In more
detail, we locate assignments whose values are not used later in a body declaration,

4 Dead Assignment Analysis 49

i.e., in a method, constructor, instance initializer, static initializer, or field declara-
tion. We only include assignments to local non-constant variables and parameters
in the analysis:

syn lazy boolean CFGNode.includeInDeadAssignAnalysis() = false;
eq VarAccess.includeInDeadAssignAnalysis() =

isDest() && isLocalStore();
eq VarDecl.includeInDeadAssignAnalysis() =

hasInit() && isLocalVariable() && !isConstant();

We try out two versions on this selection: one based on liveness analysis, and one
combining liveness analysis with analysis of reaching definitions.

4.1 Collecting Dead Assignments

To collect all dead assignments of a compilation unit, we add a collection (coll)
attribute deadAssignments to the CompilationUnit class. This class represents a
file with one or more classes which might contain one or more body declarations
(methods, constructors etc.):

coll Set<Stmt> CompilationUnit.deadAssignments() [empty()] with add;

The CompilationUnit class is connected to the grammar in Figure 3 as follows
(here, only including methods):

CompilationUnit ::= ClassDecl*;
ClassDecl ::= MethodDecl*;
MethodDecl ::= ...

Dead assignments contribute themselves to the collection of their enclosing Comp-

ilationUnit using a contributes clause. The reference to the Compilation-

Unit node is propagated to descending statement nodes using an inherited attribute
enclosingCompilationUnit:

VarAccess contributes this
when includeInDeadAssignAnalysis() && isDeadAssign()
to CompilationUnit.deadAssignments()
for enclosingCompilationUnit();

VarDecl contributes this
when includeInDeadAssignAnalysis() && isDeadAssign()
to CompilationUnit.deadAssignments()
for enclosingCompilationUnit();

Each of these nodes, VarAccess and VarDecl, contribute to the collection, if they
are included in the selection of the analysis, and their isDeadAssign attribute is
true. We define this attribute to be false by default for all control flow nodes:

50 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

syn boolean CFGNode.isDeadAssign() = false;

4.2 Analyzing using Liveness
Definition 4 If a variable is defined, but not live immediately after the node, the
assignment is considered dead in the sense that the assignment is unnecessary.
That is, an assignment a is dead when:

kill [a] 6= ∅ ∧ kill [a] ∩ out [a] = ∅

Using liveness analysis, we can define an assignment to be dead when a defined
variable is not live after the assignment, as defined in Definition 4. With this in
mind, we can define a very useful attribute isDead which we can use to define
equations for isDeadAssign as follows:

syn lazy boolean CFGNode.isDead();
eq CFGNode.isDead() = !def().compl(liveness_out()).isEmpty();

eq VarAccess.isDeadAssign() = isDead();
eq VarDecl.isDeadAssign() = isDead();

4.3 Analyzing using Liveness and Reaching Definition
We can combined liveness analysis with reaching definition analysis, by adding a
condition to the equations of the isDeadAssign attribute, as follows:

eq VarAccess.isDeadAssign() = isDead() || allReachedUsesAreDead();
eq VarDecl.isDeadAssign() = isDead() || allReachedUsesAreDead();

The consequence of combining these two analyses, is that we can find additional
dead assignments on the form:

a = 0; // Also dead because b is dead (the reached use)
b = a; // b is dead

Here, the assignment to a is dead because the assignment to b is dead, which is
the only reached use of a. To get this behavior, we need to define the attribute
allReachedUsesAreDead, which investigates whether all reached uses are dead:

syn boolean ReachingDef.allReachedUsesAreDead() circular [false];
eq Stmt.allReachedUsesAreDead() {

for (ReachedUse use : reachedUses())
if (!use.inDeadAssign())

return false;
return true;

}

5 Language Extensions 51

The reachedUses attribute is defined on an interface ReachingDef, implemented
by nodes defining values, and it returns a set of reached uses, implementing an
interface ReachedUse. Nodes implementing the ReachedUse interface has an addi-
tional attribute inDeadAssign returning true if the use is in the right-hand side of
an assignment that is dead:

inh boolean ReachedUse.inDeadAssign();
eq VarDecl.getInit().inDeadAssign() = isDead();
eq AssignExpr.getSource().inDeadAssign() =

getDest().isLocalStore() && getDest().isDead();
eq Program.getChild().inDeadAssign() = false; // default value

It might be the case that an assignment that is dead has, for instance, a method
call on its right-hand side, but we do not want to consider variables given to the
method as dead. To avoid cases like these, we can add an equation to, for example,
a method call as follows:

eq MethodAccess.getArg(int i).inDeadAssign() = false;

5 Language Extensions

The previous examples have illustrated how the control-flow specification for indi-
vidual statements can be written modularly. Similarly, the control-flow implemen-
tation for Java 1.4 can be extended modularly to support Java 1.5. The only new
language constructs that affect the CFG are the new enhanced for statement and
enum constant, which is a new kind of body declaration. As an example we will
considering the enhanced for statement in more detail, which has the following
abstract syntax:

EnhancedFor : BranchTargetStmt ::= VarDecl Expr Stmt;

This statement iterates over the elements in the iterable object denoted by Expr. In
each iteration, a new element is assigned to VarDecl, and the Stmt is executed. To
capture this flow, we let the EnhancedFor itself represent the initialization of the
iterator. We provide equations defining the succ attribute for EnhancedFor and the
following attributes of its constituents. Figure 24 shows the specification.

Note that since the analyses of liveness, reaching definitions, and dead assign-
ments are defined in terms of the control-flow graph, they will work automatically
also for these new constructs.

52 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

eq EnhancedForStmt.succ() = singleton(getExpr());
eq EnhancedForStmt.getExpr().followingTrue() =

singleton(getVarDecl());
eq EnhancedForStmt.getExpr().followingFalse() = following();
eq EnhancedForStmt.getExpr().following() =

getExpr().followingTrue().union(
getExpr().followingFalse());

eq EnhancedForStmt.getVarDecl().following()=
singleton(getStmt());

eq EnhancedForStmt.getStmt().following()=
singleton(getExpr());

EnhancedFor

VarDecl

StmtExpr

Figure 24: Control flow for EnhancedFor

6 Evaluation

To evaluate our approach, we have run the dead assignment analysis on a set of
Java benchmark applications, and compared the results and performance to other
analysis tools. We have also measured the size of our specification modules in
order to evaluate development effort, and compared them to another tool.

6.1 Setup

Selection of Benchmarks

For evaluating our analyses, we have selected four Java applications of varying size
from the DaCapo benchmark suite [Bla+06]: ANTLR, Bloat, Chart and Apache
FOP. ANTLR is a parser and translator generator, Bloat is a byte-code level op-
timization and analysis tool, Chart is a charting utility tool and Apache FOP is
a print formatting tool. Figure 25 gives an overview of the selected benchmarks
with regard to size (lines of code), number of flows (methods, instance initializers
etc.), and average size of these flows (number of nodes in the control-flow graph).
ANTLR and Bloat are of similar size, but we include both because they differ
substantially in their average flow size.

6 Evaluation 53

Name Version Lines of Code Candidates # Flows Avg. Flow Size

ANTLR 2.7.7 37 730 3 826 3 332 47.0
Bloat 1.0 38 581 5 740 5 095 136.0
Chart 1.0 9 968 1 818 1 469 39.0
FOP 0.95 130 300 18 203 19 632 110.0

Figure 25: Java benchmarks. Candidates are the number of local variable decla-
rations and assignments in an application. The last two columns show the number
of intraprocedural flows (methods etc.) in an application and the average flow size,
i.e. the average number of nodes in a flow.

The figure also shows the number of possible dead assignments, or candidates,
in each application. For a node to be a candidate it needs to be either a variable
declaration with an initializing assignment, or an assign expression. For reason
of comparison, we exclude constants of primitive types (integer, double etc.) and
strings from the set of candidates. Constants like these may be removed by default
by some analysis tools, excluding them from the dead assignment analysis that we
want to compare to.

Selection of Analysis Tools

We compare our JastAdd-based analysis results to those of Soot (2.4.0), FindBugs
(1.3.9) and PMD (4.3.5). Soot is a very well known Java optimization framework,
working at the byte code level [VR+99]. It is interesting for comparison as it can
be expected to have very high precision and correctness. FindBugs [Aye+08] and
PMD [Cop05] are two well known tools for detection of bugs and anomalies in
Java source code. They are interesting for us to compare to since they exemplify
the developer-oriented tools we have in mind for our AST-based analysis. Find-
Bugs performs the analysis on byte code, whereas PMD analyzes the source code
directly.

All these tools support a number of different analyses, but for our comparison
we are only interested in dead assignment analysis. In order to get these results
from each tool we have used the following configurations:

Soot The Soot framework is made up by a set of phases, each connected to a
certain kind of analysis. For example, there is a phase called jb which
translates input to a three-address code called jimple, and there are phases for
whole program analysis, for example, cg, wjtp, wjop. We are interested
in the intra-procedural analyses found in a phase called jop. So we disable
all other phases, except for the jb phase. Inside a phase there are several
packs, one for each analysis. For the jop phase, we are only interested in
the jop.dae pack, performing dead assignment elimination, and hence we
disable all other packs in the jop phase.

54 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

We want to easily find which assignments that Soot wants to eliminate. With
this in mind, we have added a flag -only-tag to the jop.dae pack,
which causes the analysis to tag an assignment rather than removing it. This
way, we can print out the jimple code and find which assignments are de-
tected as dead.

Since Soot operates on a jimple representation it might find a lot of dead as-
signments to temporaries in its own representation which do not correspond
to assignments in the source. To partly deal with this issue we only consider
assignments on the line of a source assignment, i.e., on the line of a can-
didate. However, given that one source assignment may be represented on
several lines in Soot, it is still possible that Soot will remove an assignment
but not the actual source assignment. For cases like these, i.e., where Soot
does not remove all jimple lines of a candidate, we do a manual check.

FindBugs FindBugs performs a number of identifications of so called bug pat-
terns, i.e., patterns in the code possibly corresponding to a bug. One such
bug pattern identifies dead local stores (DLS), that is, dead assignments. We
have configured FindBugs to only include the DLS pattern in its analysis.
The results are given on a file and source line basis which makes it easy for
us to map the result to candidates in a benchmark. To get as good precision
as possible and to find all pattern matches for DLS we run FindBugs with
the -effort:max and -low flags.

PMD PMD supports the definition of rules using Java or XPath, but also provides
a default set of rules. One such rule set looks for so called dataflow anoma-
lies of three kinds, and two of these locate dead assignments – DU and DD.
DD by identifying when a variable is assigned twice in a row with out a use
in between, and DU by identifying if an assigned value is not used in the
scope it is defined. The third finds undefined variables (UR) which is not
interesting for our comparison. Results are obtained on a file and line basis
which makes it easy for us to map the results to candidates in a benchmark.

Comparison of Result

In order to compare the results of different tools we need a unified way to identify
which assignments that are found to be dead. To accomplish this we pretty-print
the source code of each benchmark and let each assignment start on a new line.
This way we can identify a candidate by file name and source line.

In the case where the analysis is not performed on source code, we may need
to maintain a mapping to source. For Soot we maintain a mapping between each
source line and its corresponding jimple lines, to know if an assignment has been
found completely dead or partially dead. In the case with FindBugs, which analy-
ses bytecode, the result includes information of source lines and no extra mapping
is required.

6 Evaluation 55

Performance Measurement

All performance measurements have been performed on a Lenovo Thinkpad X61
running Ubuntu 10.10 (Maverick Meerkat). For comparison between tools, we use
the average time of 10 runs from a terminal, measuring execution time with the
Unix command time. For JastAdd, we also provide performance measurements
using the multi-iteration approach with a pre-heated VM, as presented in [Bla+08].

6.2 Correctness and Precision

Dead Assignments Found (#)

Tool: A,B only A both only B

JA, Soot 8 308 (22) 3

JA, PMD 57 259 658

JA, FB 278 38 0

Soot, PMD 57 254 (21) 663

Soot, FB 276 35 (21) 3

PMD, FB 885 32 6
(a) Results for ANTLR

Tool: A,B only A both only B

JA, Soot 8 78 (26) 3

JA, PMD 32 54 466

JA, FB 58 28 0

Soot, PMD 31 50 (6) 470

Soot, FB 59 22 (10) 6

PMD, FB 502 18 10
(b) Results for Bloat

Tool: A,B only A both only B

JA, Soot 8 22 (4) 0

JA, PMD 0 30 104

JA, FB 19 11 0

Soot, PMD 0 22 (4) 112

Soot, FB 16 6 (3) 5

PMD, FB 123 11 0
(c) Results for Chart

Tool: A,B only A both only B

JA, Soot 13 226 (31) 6

JA, PMD 22 217 1705

JA, FB 193 46 0

Soot, PMD 10 222 (27) 1700

Soot, FB 191 41 (21) 5

PMD, FB 1884 38 8
(d) Results for Apache FOP

Figure 26: Results The numbers show the number of dead candidate assignments
found by pairs of tools: Soot, JAlive (JA), FindBugs (FB) and PMD. For each tool
pair, the number of assignments only found in one of the tools and the number of
assignments found in both are shown. For the assignments found by both tools,
where one tool is Soot, the number of cases where Soot only removed some jimple
lines are shown within parentheses.

Figure 26 shows the number of dead candidate assignments found by each tool.
The results are grouped into four subfigures, one for each Java benchmark.

For JastAdd we only include the results for JAlive, i.e., the dead assignment
analysis only using liveness. The results for JAlive+reaching are slightly more
precise, but at a substantial additional cost in execution time. JAlive+reaching only
identified an additional three cases, one in ANTLR and two in Chart, all on the
form:

56 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

s = s + a; // dead in JA_live
s = b; // also dead in JA_live+reaching

None of the other tools found any of these cases.
JastAdd and Soot both find very similar numbers of dead assignments among

the selected candidates. JastAdd finds a few dead assignments that Soot does not
find, and we have manually verified that they are indeed dead. Soot also finds a
few dead assignments that JastAdd does not find. We have looked at each of these
manually. One of these cases correspond to a true dead assignment at the source
level:

int a = 0;
while (expr) {

a++; // dead in Soot but not in JastAdd
}

Here, a is kept alive in the JastAdd analysis, while not in Soot.
In the other cases where Soot identifies dead candidate assignments, and JastAdd

not, it is actually not the source level assignment that is detected, but assignments
to temporary variables introduced in the jimple code. These do thus not correspond
to dead assignments at the source level.

There are some cases where both Soot and JastAdd have identified a dead
assignment, but Soot has only removed some of the corresponding jimple lines.
This is because the right-hand side is a construct that might have side effects,
typically a method call, and the call is therefore still present. The behavior for
these cases is equivalent for JastAdd and Soot, but we needed to look at the jimple
code manually to determine this.

In addition to the dead assignments found on candidates shown in the figure,
Soot also finds an additional number of dead assignments not matching candidates
(ANTLR=256, Bloat=902, Chart=106 and FOP=5212). We have not been able to
manually check all these assignments, but after looking at many of them, we have
only found cases that are either due to constant propagation (which we do not do),
or to temporary variables introduced in the jimple code.

PMD reports very many dataflow anomalies of type DD and DU. After in-
specting several of those that are neither reported by Soot nor JastAdd, we have
only found false positives. It seems that arrays appear to be treated as ordinary
variables, and that the control-flow is not fine enough, ignoring, for example,
short-circuiting of boolean expressions. Like Soot, PMD reports dead assign-
ments for non-candidates (ANTLR=18, Bloat=99, Chart=22, FOP=625). These
non-candidates may, for example, be fields. It should be pointed out that the DD
and DU reports are described by PMD to be anomalies that are potentially dead
assignments. PMD does not claim that they are dead.

FindBugs finds comparatively few dead assignments, and reports no dead as-
signments for non-candidates. All the dead assignments found by FindBugs are

6 Evaluation 57

Bench. JAlive JAlive+reach Soot FindBugs PMD
ANTLR 11.8± 0.3 22.3± 0.2 26.0± 5.2 105.6± 18.1 17.9± 2.4

Bloat 15.0± 0.4 46.8± 11.8 37.0± 8.9 115.5± 14.8 61.9± 10.1

Chart 7.4± 0.2 17.2± 4.4 20.2± 5.2 53.0± 12.0 7.6± 0.1

FOP 59.4± 11.6 278.9± 27.3 256.3± 2.6 250.3± 38.3 38.9± 9.3

Figure 27: Average total execution time (in seconds)

found also by JastAdd.

6.3 Performance

Benchmark Plain JAlive JAlive+reach

ANTLR 1.7± 0.1 2.9± 0.06 9.1± 0.04
Bloat 2.3± 0.1 3.6± 0.06 17.5± 0.08
Chart 1.0± 0.07 1.3± 0.1 9.3± 0.2
FOP 10.0± 0.05 16.2± 0.07 182.4± 16.5

Figure 28: In-memory performance for JastAdd. In seconds, using a pre-
heated VM. Plain is the static-semantic analysis only.

Figure 27 shows average total execution times in seconds for all tools, mea-
sured using time. All average times are given with a confidence interval of 95%.

JAlive is faster than Soot on all four applications, and it is the fastest tool
for three of the applications, with the exception of FOP where PMD is faster.
For PMD, the performance for Bloat sticks out, which may be due to the large
average flows in Bloat. FindBugs generally gets the worst performance, except
for FOP where both JAlive+reach and Soot are worse. Both JastAdd and PMD
perform analysis on source which is likely to result in smaller control-flow graphs
with less nodes. This might also explain the difference in performance between
Soot/FindBugs and JastAdd/PMD.

One motivation for doing this type of analysis on source rather than on byte
code is the applicability in interactive settings, for example, in editors. In an edit-
ing scenario a model of the edited program will be kept in memory. This model,
which is typically an AST, will be updated in response to user actions, like code
modifications. The time needed for re-computation of information will affect the
response time experienced by the user, and a translation to byte code would poten-
tially slow down performance. Figure 28 shows JastAdd performance measures
for an in-memory AST with a pre-heated VM. We show both our analyses, JAlive

and JAlive+reach, as well as a plain analysis only doing semantic analysis. These

58 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

numbers show the performance for a full analysis of the whole benchmark appli-
cation. Preferably, in an editing scenario each edit action should not trigger a full
analysis of the application being edited, but employ some incremental evaluation
mechanism for limiting unnecessary re-computations.

6.4 Effort

Modules Number of Rules
Name Version LOC syn inh eq coll contr.

Java Frontend 1.4 10 352 471 168 1 453 0 0
1.5 4 909 166 48 588 0 0

Control Flow 1.4 444 17 26 185 2 5
1.5 20 0 0 9 0 0

Liveness 1.4 29 4 1 10 1 3
Reaching 1.4 96 8 1 30 3 7
Helpers 1.4 33 11 1 13 1 1

Dead assignment 1.4 25 3 1 5 2 5

Figure 29: Size of modules using lines of code (LOC) and number of JastAdd
rules separated into different columns for – syn, inh, eq, coll, contributes. The
modules for the alternative variants of liveness (JAlive and JAlive+reaching) have
the same size and are only included once.

In order to estimate effort of implementation, we look at the actual size of
the implementations. By making use of higher-level abstractions in the form of
attributes, our wish is to decrease the development effort needed for the analyses.

Figure 29 shows an overview of the different modules for the JastAdd ap-
proach, including the frontend of JastAddJ. Each module is separated into two
rows when there is a modular extension from Java version 1.4 to Java version 1.5.
For cases where such an extension is unnecessary due to reused behavior, only
numbers for version 1.4 are given. Besides size, we also show the number of
JastAdd rules divided into different columns depending on rule type. For com-
pleteness, the size of a Helpers module, needed by the Control Flow, Liveness,
Reaching Definition and Dead Assignment modules, is also included.

The total number of lines for the JastAdd analyses is 647. In comparison, the
corresponding Soot implementation is 1308 lines of code, i.e., more than twice
as large. This includes 186 for the dead assignment analysis, 481 for dataflow
analysis, and 641 for control-flow including the handling of exceptions. We have
not found it meaningful to compare with the implementation sizes of PMD and
FindBugs, since the results they report are so different.

7 Related Work 59

7 Related Work

Silver is a recent attribute grammar system with many similarities to JastAdd, but
which does not support circular attributes. It has also been applied for declara-
tive flow analysis [Wyk+07], but using a different approach than ours. In Silver,
the specification language itself is extended to support the specification of control-
flow and dataflow analysis. The actual dataflow analysis is not carried out by the
attribute grammar system, but by an external model checking tool. This approach
is motivated by the difficulty of declaratively specifying dataflow analysis on the
same program representation as, for example, type analysis. No performance fig-
ures for this approach are reported. In contrast, we have shown how both control
flow and dataflow can be specified in a concise way directly using the general at-
tribute grammar features of JastAdd, in particular relying on the combination of
reference attributes, circular attributes and collection attributes.

Farrow introduced circular attributes, and used liveness as a motivating ex-
ample [Far86]. He builds on traditional attribute grammars without reference at-
tributes, and does therefore not build any explicit control-flow graph. The dataflow
analysis is instead defined directly in terms of the underlying syntax, with rules for
each kind of statement.

Another declarative approach to dataflow analysis (both inter- and intra) is
to use techniques based on logic programming and deductive databases, running
queries on a database of facts extracted from the program code [Rep94]. Deductive
database languages like Datalog have been used for interprocedural flow analyses
of Java [WL04; BS09]. In this approach, the source program needs to be prepro-
cessed, for example to resolve names, in order to extract the relevant facts. In
contrast, the attribute grammar approach can be used seamlessly for all analysis
after parsing. However, it should be pointed out that our current implementation
concerns intraprocedural flow analysis only. Implementation of interprocedural
flow analyses using reference attribute grammars is still future work.

Soot, [VR+99], is a framework for optimizing, analyzing, and annotating Java
bytecode. The framework provides a set of inter- and intraprocedural program
optimizations with a much wider scope than the analyses presented in this pa-
per. Soot is based on several kinds of intermediate code representations, including
typed three-address code, and provides seamless translations between the different
representations. Java source code is first translated into one of these representa-
tions in which some high-level structure is lost. The control-flow and data-flow
frameworks in Soot are indeed quite powerful with reasonably small APIs. A
major difference, as compared to our approach, is that the Soot approach is not
declarative and therefore relies on manual scheduling when combining analyses,
or adding new analyses as new specializations of the framework.

Schäfer et al. have used a variant of our analyses modules in the implemen-
tation of experimental refactoring tools for Java. They report performance on par
with industrial strength refactoring tools [Sch+08].

60 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

8 Conclusions

Control-flow and intraprocedural dataflow analysis is important for source-level
tools like bug detectors and refactoring tools. Doing such analysis at the source
level, rather than at the level of intermediate code, is desirable from a tool integra-
tion point of view. The downside of working at the source level is that it requires
all language constructs to be taken into account, and that the analyses need to be
extended when new language features are added.

In this paper, we have presented a new approach to source level control-flow
and dataflow analysis, based on reference attribute grammars that are augmented
with circular attributes and collection attributes. We argue that this provides an
excellent foundation for implementing these analyses, leading to concise specifi-
cations that are close to text book definitions, and that are easy to extend modularly
when the language evolves.

We have demonstrated that the approach works well for practical applications
by implementing control flow, dataflow, and dead assignment analysis for Java,
and comparing with Soot (a well known Java optimization framework), and with
PMD and FindBugs (both well known tools for bug and code anomaly detection).

Our evaluation shows that JastAdd analyses are concise and easy to extend
modularly. The JastAdd specification for Java 1.4 is only 627 lines for Java 1.4,
and only a 20-line module is needed to extend the control-flow analysis to Java 5,
and the other analyses can be reused as they are. In comparison, the corresponding
Soot implementation is 1308 lines.

To evaluate correctness and precision, we compared the results of dead assign-
ment analysis on a number of Java benchmark programs, the largest being over
130 000 lines of code. Due to its focus on optimization, Soot can be expected to
have both high correctness and preciseness, and manual inspection of deviating
results between the tools confirmed this. We found that the results from JastAdd
and Soot were almost identical, with both finding a very small number of dead as-
signments that the other did not find. Both PMD and FindBugs found substantially
fewer dead assignments, and PMD had many false positives.

Concerning performance, our JastAdd-based solution is between four and nine
times faster than FindBugs, and at the same time more precise. The performance
comparison between JastAdd and the other two tools, Soot and PMD, is less clear
cut. While JastAdd is the fastest on most benchmarks, Soot and PMD find dead
assignments also outside the candidate set we have tested. While we believe that
most of these reports are due to constant propagation and internal optimizations of
jimple code for Soot, and false positives for PMD, this would need to be manually
verified.

We implemented two variants of dataflow analysis: liveness only, and liveness
combined with reaching definitions. The difference between these variants was ex-
tremely small: adding the reaching definitions analysis accounted for merely three
additional dead assignments detected in the four benchmark programs together,

9 Acknowledgements 61

and which none of the other tools detected. The performance cost was quite large,
however, resulting in an analysis that was between two to five times slower.

There are several interesting ways to continue this work. One is to investigate
more advanced interactive tool support that need precise intraprocedural dataflow
analysis. For example, more advanced bug and code anomaly detectors. Another
direction is to extend the work to interprocedural analyses, in particular to object-
oriented call graph construction and interprocedural points-to analysis. We already
have promising work in the direction of call graphs and simple whole program de-
virtualization analysis [Mag+09]. Because evaluation of reference attribute gram-
mars is demand-driven, they should lend themselves to interprocedural analyses.

A third direction is to apply these results to analysis on intermediate code, and
to develop declarative frameworks building SSA form and declarative implemen-
tation of related analyses.

9 Acknowledgements
We are very grateful to Max Schäfer for refactorings and improvements to the
Control Flow Graph module.

References
[All70] Frances E. Allen. “Control flow analysis”. In: Proceedings of a sym-

posium on Compiler optimization. Urbana-Champaign, Illinois: ACM,
1970, pp. 1–19.

[App02] Andrew W. Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, 2002.

[Aye+08] Nathaniel Ayewah et al. “Using Static Analysis to Find Bugs”. In:
IEEE Software 25.5 (2008), pp. 22–29.

[Bla+06] Stephen M. Blackburn et al. “The DaCapo benchmarks: Java bench-
marking development and analysis”. In: OOPSLA. Ed. by Peri L. Tarr
and William R. Cook. Portland, Oregon, USA: ACM, 2006, pp. 169–
190.

[Bla+08] Stephen M. Blackburn et al. “Wake up and smell the coffee: evalu-
ation methodology for the 21st century”. In: Communications of the
ACM 51.8 (2008), pp. 83–89.

[Boy05] John Tang Boyland. “Remote attribute grammars”. In: Journal of the
ACM 52.4 (2005), pp. 627–687.

[BS09] Martin Bravenboer and Yannis Smaragdakis. “Strictly declarative spec-
ification of sophisticated points-to analyses”. In: OOPSLA. Ed. by
Shail Arora and Gary T. Leavens. ACM, 2009, pp. 243–262.

62 Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree Level

[Cho+99] Jong-Deok Choi et al. “Efficient and Precise Modeling of Exceptions
for the Analysis of Java Programs”. In: PASTE. Ed. by William G.
Griswold and Susan Horwitz. ACM, 1999, pp. 21–31.

[Cop05] Tom Copeland. PMD applied. Centennial Books, 2005.

[EH05] Torbjörn Ekman and Görel Hedin. “Modular Name Analysis for Java
Using JastAdd”. In: GTTSE. Ed. by Ralf Lämmel, João Saraiva, and
Joost Visser. Vol. 4143. Lecture Notes in Computer Science. Springer,
2005, pp. 422–436.

[EH07a] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: OOPSLA. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[EH07b] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Program-
ming 69.1-3 (2007), pp. 14–26.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars”. In: SIGPLAN
Symposium on Compiler Construction. Ed. by Richard L. Wexelblat.
ACM, 1986, pp. 85–98.

[Gos+96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Spec-
ification. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1996.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

[Ing86] Daniel H. H. Ingalls. “A Simple Technique for Handling Multiple
Polymorphism.” In: OOPSLA. Ed. by Norman K. Meyrowitz. ACM,
1986, pp. 347–349.

[Jas] JastAdd. http://jastadd.org.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[MH07] Eva Magnusson and Görel Hedin. “Circular Reference Attributed
Grammars - their Evaluation and Applications”. In: Science of Com-
puter Programming 68.1 (2007), pp. 21–37.

[Mag+09] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. “Demand-driven
evaluation of collection attributes”. In: Automated Software Engi-
neering 16.2 (2009), pp. 291–322.

[Rep94] Thomas W. Reps. “Solving Demand Versions of Interprocedural Anal-
ysis Problems”. In: CC. Ed. by Peter Fritzson. Vol. 786. Lecture
Notes in Computer Science. Springer, 1994, pp. 389–403.

9 Acknowledgements 63

[Sch+08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and ex-
tensible renaming for Java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294.

[VR+99] Raja Vallée-Rai et al. “Soot - a Java bytecode optimization frame-
work”. In: CASCON. Ed. by Stephen A. MacKay and J. Howard
Johnson. IBM, 1999, p. 13.

[Vog+89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. Ed. by Richard L. Wexelblat.
ACM Press, 1989, pp. 131–145.

[WL04] John Whaley and Monica S. Lam. “Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams”. In: PLDI. Ed.
by William Pugh and Craig Chambers. ACM, 2004, pp. 131–144.

[Wyk+07] Eric Van Wyk et al. “Attribute Grammar-Based Language Extensions
for Java”. In: ECOOP. Ed. by Erik Ernst. Vol. 4609. Lecture Notes
in Computer Science. Springer, 2007, pp. 575–599.

PA
P

E
R

II
I

AUTOMATED SELECTIVE
CACHING FOR REFERENCE

ATTRIBUTE GRAMMARS

Abstract

Reference attribute grammars (RAGs) can be used to express semantics as super-
imposed graphs on top of abstract syntax trees (ASTs). A RAG-based AST can
be used as the in-memory model providing semantic information for software lan-
guage tools such as compilers, refactoring tools, and meta-modeling tools. RAG
performance is based on dynamic attribute evaluation with caching. Caching all
attributes gives optimal performance in the sense that each attribute is evaluated at
most once. However, performance can be further improved by a selective caching
strategy, avoiding caching overhead where it does not pay off. In this paper we
present a profiling-based technique for automatically finding a good cache config-
uration. The technique has been evaluated on a generated Java compiler, compiling
programs from the Jacks test suite and the DaCapo benchmark suite.

1 Introduction

Reference attribute grammars (RAGs) [Hed00] provide a means for describing se-
mantics as super-imposed graphs on top of an abstract syntax tree (AST) using
reference attributes. Reference attributes are defined by functions and may have

Emma Söderberg and Görel Hedin.
Lecture Notes in Computer Science, 2011, Vol. 6563, pp. 2–21, Springer Berlin/Heidelberg.

66 Automated Selective Caching for Reference Attribute Grammars

values referring to distant nodes in the AST. RAGs have been shown useful for
the generation of many different software language tools, including Java compil-
ers [Wyk+07; EH07a], Java extensions [Hua+08; Ibr+09; Pto], domain-specific
language tools [Jou+08; Åke+10], refactoring tools [Sch+08], and meta-modeling
tools [Bür+10]. Furthermore, they are being used in an increasing number of meta-
compilation systems [EH07b; Wyk+10; Slo+10; Kat+10a].

RAG evaluation is based on a dynamic algorithm where attributes are evaluated
on demand, and their values are cached (memoized) for obtaining optimal perfor-
mance [Jou84]. Caching all attributes gives optimal performance in the sense that
each attribute is evaluated at most once. However, caching has a cost in both com-
pilation time and memory consumption, and caching does not pay off in practice
for all attributes. Performance can therefore be improved by selective caching,
caching only a subset of all attributes, using a cache configuration. But deter-
mining a good cache configuration is not easy to do manually. It requires a good
understanding of how the underlying attribute evaluator works, and a lot of experi-
ence is needed to understand how different input programs can affect the caching
inside the generated language tool. Ideally, the language engineer should not need
to worry about this, but let the system compute the configuration automatically.

In this paper we present a profiling-based approach for automatically comput-
ing a cache configuration. The approach has been evaluated experimentally on
a generated compiler for Java [EH07a], implemented using JastAdd [EH07b], a
meta-compilation system based on RAGs. We have profiled this compiler using
programs from Jacks (a compiler test suite for Java) [Jac] and DaCapo (a bench-
mark suite for Java) [Bla+06]. Our evaluation shows that it is possible to obtain an
average compilation speed-up of 20% while only using the profiling results from
one application with a fairly low attribute coverage of 67%. The contributions of
this paper include the following:

• A profiling-based approach for automatic selective caching of RAGs.

• An implementation of the approach integrated with the JastAdd meta-compilation
system.

• An evaluation of the approach, comparing it both to full caching (caching
all attributes) and to an expert cache configuration (produced manually).

The rest of this paper is structured as follows. Section 2 gives background on
reference attribute grammars and their evaluation, explaining the JastAdd caching
scheme in particular. Section 3 introduces the concept of an AIG, an attribute
instance graph with call information, used as the basis for the caching analysis.
Section 4 introduces our technique for computing a cache configuration. Section 5
presents an experimental evaluation of the approach. Section 6 discusses related
work, and Section 7 gives a conclusion along with future work.

2 Reference Attribute Grammars 67

2 Reference Attribute Grammars

Reference Attribute Grammars (RAGs) [Hed00], extend Knuth-style attribute gram-
mars [Knu68] by allowing attributes to be references to nodes in the abstract syn-
tax tree (AST). This is a powerful notion because it allows the nodes in an AST
to be connected into the graphs needed for compilation. For example, reference
attributes can be used to build a type graph connecting subclasses to superclasses
[EH05], or a control-flow graph between statements in a method [NN+09a]. Sim-
ilar extensions to attribute grammars include Poetzsch-Heffter’s occurrence alge-
bras [PH97] and Boyland’s remote attribute grammars [Boy05].

In attribute grammars, attributes are defined by equations in such a way that for
any attribute instance in any possible AST, there is exactly one equation defining
its value. The equations can be viewed as side-effect-free functions which make
use of constants and of other attribute values.

In RAGs, it is allowed for an equation to define an attribute by following a
reference attribute and accessing its attributes. For example, suppose node n1 has
attributes a and b, where b is a reference to a node n2, and that n2 has an attribute
c. Then a can be defined by an equation as follows:

a = b.c

For Knuth-style attribute grammars, dependencies are restricted to attributes in
parents or children. But the use of references gives rise to non-local dependencies,
i.e., dependencies that are independent of the AST hierarchy: a will be dependent
on b and c, where the dependency on b is local, but the dependency on c is non-
local: the node n2 referred to by b could be anywhere in the AST. The resulting
attribute dependency graph cannot be computed without actually evaluating the
reference attributes, and it is therefore difficult to statically precompute evaluation
orders based on the grammar alone. Instead, evaluation of RAGs is done using a
simple but general dynamic evaluation approach, originally developed for Knuth-
style attribute grammars, see [Jou84]. In this approach, attribute access is replaced
by a recursive call which evaluates the equation defining the attribute. To speed up
the evaluation, the evaluation results can be cached (memoized) in order to avoid
evaluating the equation for a given attribute instance more than once. Caching all
attributes results in optimal evaluation in that each attribute instance is evaluated
at most once. Because this evaluation scheme does not require any pre-computed
analysis of the attribute dependencies, it works also in the presence of reference
attributes.

Caching is necessary to get practical compiler performance for other than
the tiniest input programs. But caching also implies an overhead. Compared to
caching all attributes, selective caching may improve performance, both concern-
ing time and memory.

68 Automated Selective Caching for Reference Attribute Grammars

Non-cached version:

class Node {
A a() {
return b().c();

}
}

Cached version:

class Node {
boolean a_cached = false;
A a_value;
A a() {
if (! a_cached) {

a_value = b().c();
a_cached = true;

}
return a_value;

}
}

Figure 1: Caching scheme for non-parameterized attributes

2.1 The JastAdd Caching Scheme

In JastAdd, the dynamic evaluation scheme is implemented in Java, making use of
an object-oriented class hierarchy to represent the abstract grammar. Attributes are
implemented by method declarations, equations by method implementations, and
attribute accesses by method calls. Caching is decided per attribute declaration,
and cached attribute values are stored in the AST nodes using two Java fields: one
field is a flag keeping track of if the value has been cached yet, and another field
holds the value. Figure 1 shows the implementation of the equation a = b.c, both
in a non-cached and a cached version. It is assumed that a is of type A. The
example shows the implementation of a so called synthesized attribute, i.e., an
attribute defined by an equation in the node itself. The implementation of a so
called inherited attribute, defined by an equation in an ancestor node, is slightly
more involved, but uses the same technique for caching. The implementation in
Figure 1 is also simplified as compared to the actual implementation in JastAdd
which takes into account, for example, circularity checking. These differences are,
however, irrelevant to the caching problem.

This caching scheme gives a low overhead for attribute accesses: a simple test
on a flag. On the other hand, the caching pays off only after at least one attribute
instance has been accessed at least twice. Depending on the cost of the value
computation, more accesses than that might be needed for the scheme to pay off.

JastAdd allows attributes to have parameters. A parameterized attribute has
an unbounded number of values, one for each possible combination of parameter
values. To cache accessed values, the flag and value fields are replaced by a map
where the actual parameter combination is looked up, and the cached values are
stored. This is a substantially more costly caching scheme, both for accessing at-
tributes and for updating the cache, and more accesses per parameter combination
will be needed to make it pay off.

3 Attribute Instance Graphs 69

main a

b

c d

e(3)

e(4)

1
1

1
2

1

2

x

LEGEND:

x

instance of attribute x

y when evaluating x, y is called n timesn

Figure 2: Example AIG

3 Attribute Instance Graphs

In order to decide which attributes that may pay off to cache, we build a graph
that captures the attribute dependencies in an AST. This graph can be built by in-
strumenting the compiler to record all attribute accesses during a compilation. By
analyzing such graphs for representative input programs, we would like to identify
a number of attributes that are likely to improve the compilation performance if
left uncached. We define the attribute instance graph (AIG) to be a directed graph
with one vertex per attribute instance in the AST. The AIG has an edge (a1, a2) if,
during the evaluation of a1, there is a direct call to a2, i.e., indirect calls via other
attributes do not give rise to edges. Each edge is labeled with a call count that
represents the number of calls. This count will usually be 1, but in an equation like
c = d+d, the count on the edge (c, d) will be 2, since d is called twice to compute
c.

The main program of the compiler is modeled by an artificial vertex main,
with edges to all the attribute instances it calls. This may be many or few calls,
depending on how the main program is written.

To handle parameterized attributes, we represent each accessed combination of
parameter values for an attribute instance by a vertex. For example, the evaluation
of the equation d = e(3) + e(4) + e(4) will give rise to two vertices for e, one for
e(3) and one for e(4). The edges are, as before, labeled by the call counts, so the
edge (d, e(3)) is labeled by 1, and the edge (d, e(4)) by 2, since it is called twice.
Figure 2 shows an example AIG for the following equations:

a = b.c
c = d+ d
d = e(3) + e(4) + e(4)

70 Automated Selective Caching for Reference Attribute Grammars

abstract Expr;
Use : Expr ::= ...;
Literal : Expr ::= ...;
AddExpr : Expr ::=

e1:Expr e2:Expr;

Decl ::= Type ... ;

abstract Type;
Integer : Type;
Unknown : Type;

...

syn Type Expr.type();
syn Type Decl.type() = ...;

eq Literal.type() =
stdTypes().integer();

eq Use.type() = decl().type();
eq AddExpr.type() =
(left.type().sameAs(right.type()) ?
left.type() : stdTypes.unknown();

syn Decl Use.decl() = lookup(...);
inh Decl Use.lookup(String name);
inh Type Expr.stdTypes();

syn boolean Type.sameAs(Type t) = ...;
...

Figure 3: Example JastAdd attribute grammar

and where it is assumed that a is called once from the main program.

3.1 An Example Grammar

Figure 3 shows parts of a typical JastAdd grammar for name and type analysis.
The abstract grammar rules correspond to a class hierarchy. For example, Use
(representing a use of an identifier) is a subclass of Expr. The first attribution
rule:

syn Type Expr.type();

declares a synthesized attribute of type Type, declared in Expr and of the name
type. All nodes of class Expr and its subclasses will have an instance of this
attribute. Different equations are given for it in the different subclasses of Expr.
For example, the equation

eq Use.type() = decl().type();

says that for a Use node, the value of type is defined to be decl().type().
The attribute decl() is another attribute in the Use node, referring to the ap-
propriate declaration node, possibly far away from the Use node in the AST. The
decl() attribute is in turn defined using a parameterized attribute lookup, also
in the Use node. The lookup attribute is an inherited attribute, and the equation
for it is in an ancestor node of the Use node (not shown in the grammar). For
more information on name and type analysis in RAGs, see [EH05].

Figure 4 shows parts of an attributed AST for the grammar in Figure 3. The ex-
ample program contains two declarations: "int a" and "int b", and two add

4 Computing a Cache Configuration 71

expressions: "a + b" and "a + 5". For the decl attributes of Use nodes, the
reference values are shown as arrows pointing to the appropriate Decl node. Sim-
ilarly, the type attributes of Decl nodes have arrows pointing to the appropriate
Type node. The nodes have been labeled A, B, and so on, for future reference.

Decl

A

"int a"

Integer

I

"int"

Decl

B

"int b"

Integer

J

"int"

AddExpr

C

"a + b"

Use

D
"a" Use

E
"b"

AddExpr

F

"a + 5"

Use

G
"a"

Literal

H
"5"

type

sameAs

type

sameAs

type

type

decl

lookup

type

decl

lookup

type

type

decl

lookup

type

LEGEND:

T
AST node
of type T
Reference

a Attribute

Figure 4: An example attributed AST

Figure 5 shows parts of the AIG for this example. In the AIG we have grouped
together all instances of a particular attribute declaration, and labeled each attribute
instance with the node to which it belongs. For instance, since the node D has the
three attributes (type, decl, and lookup), there are three vertices labeled D
in the AIG. For parameterized attribute instances, there is one vertex per actual
parameter combination, and their values are shown under the vertex. For instance,
the sameAs attribute for I is called with two different parameters: J and K, giving
rise to two vertices. (K is a node representing integer literal types and is not shown
in Figure 4.) All call counts in the AIG are 1 and have therefore been omitted.

4 Computing a Cache Configuration
Our goal is to automatically compute a good cache configuration for a RAG spec-
ification. A cache configuration is simply the set of attributes configured to be
cached. Among the different attribute kinds, there are some that will always be
cached, due to properties of the kind. For example, circular attributes [Far86],
which may depend on themselves, and non-terminal attributes (NTAs) [Vog+89],
which may have ASTs as values. There is no cache decision to make for these at-
tributes, i.e., they are unconfigurable. We let PRE denote the set of unconfigurable
attributes. Since the attributes in the PRE set are always cached, we exclude them
from remaining definitions in this paper. We let ALL denote the remaining set of
configurable attributes. This ALL set can further be divided into two disjoint sets

72 Automated Selective Caching for Reference Attribute Grammars

Expr.typea1:
C D E F G H

Use.decla2:
D E G

Decl.typea4:
A B

Use.lookupa3:
D

"a"
E

"b"
G

"a"

Type.sameAsa5:
I
J

I
K

LEGEND:
a Attribute

Attribute dependency

I Instance of attribute
"p" Parameter value

Figure 5: Parts of the AIG for the example

PARAM and NONPARAM, for parameterized and non-parameterized attributes re-
spectively. For the rest of this paper we will refer to configurable attributes when
we write attributes.

As a basis for our computation, we do profiling runs of the compiler on a set of
test programs, producing the AIG for each program. These runs are done with all
attributes cached, allowing us to use reasonably large test programs, and making it
easy to compute the AIG which reflects the theoretically optimal evaluation with
each attribute instance evaluated at most once. We will refer to these test programs
as the profiling input denoted by the set P. Further, a certain profiling input (p ∈ P)
will, depending on its structure, require that a certain number of attributes are
evaluated. We call this set of attributes the USEDp set. However, it cannot be
assumed that a single profiling input uses all attributes. We define the set of unused
attributes for a profiling input p as follows:

UNUSEDp = ALL \ USEDp (1)

4.1 The ONE set
The calls label on the edges in the AIG reflects the number of attribute calls in a
fully cached configuration. To find out if a certain attribute is worth uncaching,
we define extra_evals(ai), i.e., the number of extra evaluations of the attribute
instance ai that will be done if the attribute a is not cached:

extra_evals(ai) =

{
calls(ai)− 1, if a ∈ NONPARAM∑

c∈params(ai)
(calls(c)− 1), if a ∈ PARAM

(2)

where params(ai) is the set of vertices in the AIG representing different parame-
ter combinations for the parameterized attribute instance ai. The number of extra
evaluations is a measure of what is lost by not caching an attribute. The total num-
ber of extra evaluations for an attribute a is simply the sum of the extra evaluations

4 Computing a Cache Configuration 73

of all its instances:

extra_evals(a) =
∑

ai∈Icalled(a)

extra_evals(ai); (3)

where Icalled(a) is the set of attribute instances of a that are called at least once. Of
particular interest is the set of attributes for which all instances are called at most
once. These should be good candidates to leave uncached since they do not incur
any extra evaluations for a certain profiling input (p). We call this set the ONEp set,
and for a profiling input p it is constructed as follows:

ONEp = {a ∈ USEDp|extra_evals(a) = 0} (4)

The USEDp \ ONEp set contains the remaining attributes in the AIG, i.e., the at-
tributes which may gain from being cached, depending on the cost of their evalu-
ation.

4.2 Selecting a good profiling input
To obtain a good cache configuration, it is desirable to use profiling input that is
realistic in its attribute usage, and that has a high attribute coverage, i.e., as large a
USEDp set as possible. We define the attribute coverage (in percent) for a profiling
input, p ∈ P, as follows:

coverage(p) = (|USEDp|/|ALL|) ∗ 100 (5)

Furthermore, for tools used in an interactive setting with continuous compilation
of potentially erroneous input, it is important to also take incorrect programs into
account. To help fulfill these demands, different profiling inputs can be combined.
In particular, a compilation test suite may give high attribute coverage and test
both correct and erroneous programs. But test suites might contain many small
programs that do not use the attributes in a realistic way. In particular, attributes
which most likely should be in the USEDp − ONEp set for an average application
may end up in the ONEp sets of the test suite programs because these are small. By
combining the test suite with a large real program, better results may be obtained.
Still, even with many applications and a full test suite, it may be hard to get full
coverage. For example, there may be semantic checks connected to uncommon
language constructs and, hence, attributes rarely used.

4.3 Choosing a cache configuration
In constructing a good cache configuration we want to consider the USEDp, UNUSEDp,
ONEp and ALL sets. From these sets we can experiment with two interesting con-
figurations:

ALLONEp = ALL \ ONEp (6)

74 Automated Selective Caching for Reference Attribute Grammars

USEDONEp = USEDp \ ONEp (7)

Presumably, the first configuration, which includes the UNUSEDp set, will provide
robustness for cases where the profiling input is insufficient, i.e., the USEDp set is
too small. In contrast, the second configuration may provide better performance in
that it uses less memory for cases where the profiling input is sufficient.

4.4 Combining cache configurations
In order to combine the results of several profiling inputs, for example, A, B and
C in P, we need to consider each of the resulting sets USEDp and ONEp. One
attribute might be used in the compilation of program A but not in the compilation
of program B. If an attribute is used in both B and C, it might belong to ONEB , but
not to ONEC , and so on. We want to know which attributes that end up in a total
ONEP set for all profiling inputs (p ∈ P), i.e., the attributes that are used by at least
one profiling input, but that, if they are used by a particular profiling input, they
are in its ONEp set. More precisely:

ONEP =
⋃
p∈P

USEDp \
⋃
p∈P

(USEDp \ ONEp) (8)

These attributes should be good candidates to be left uncached. By including
or excluding the UNUSEDP set, we can now construct the following combined
cache configuration, for a profiling input set P, in analogy to Definition 6 and
Definition 7:

ALLONEP = ALL \ ONEP (9)

USEDONEP = USEDP \ ONEP (10)

5 Evaluation
To evaluate our approach we have applied it to the frontend of the Java compiler
JastAddJ [EH07a]. This compiler is specified with RAGs using the JastAdd sys-
tem. We have profiled the compilation with one or several Java programs as profil-
ing input, and used the resulting AIGs to compute different cache configurations.
We have divided our evaluation into the following experiments:

Experiment A: The effects of no caching

Experiment B: The effects of profiling using a compiler test suite

Experiment C: The effects of profiling using a benchmark application

Experiment D: The effects of combining B and C

Throughout our experiments we use the results of caching all attributes and the
results of using a manual configuration, composed by an an expert, for comparison.

5 Evaluation 75

5.1 Experimental setup
All measurements were run on a high-performing computer with two Intel Xeon
Quad Core @ 3.2 GHz processors, a bus speed of 1.6 GHz and 32 GB of primary
memory. The operating system used was Mac OS X 10.6.2 and the Java version
was Java 1.6.0._15.

The JastAddJ compiler The frontend of the JastAddJ compiler (for Java ver-
sion 1.4 and 1.5) has an ALL set containing 740 attributes and a PRE set containing
47 unconfigurable attributes (14 are circular and 33 are non-terminal attributes).
The compiler comes with a configuration MANUAL, with 281 attributes manually
selected for caching by the compiler implementor, an expert on RAGs, making
an effort to obtain as good compilation speed as possible. The compiler performs
within a factor of three as compared to the standard javac compiler, which is good
considering that it is generated from a specification. MANUAL is clearly an expert
configuration, and it cannot be expected that a better one can be obtained manually.

Measuring of performance The JastAddJ compiler is implemented in Java
(generated from the RAG specification), so measuring its compilation speed comes
down to measuring the speed of a Java program. This is notoriously difficult, due to
dynamic class loading, just-in-time compilation and optimization, and automatic
memory management [Bla+06]. To eliminate as many of these factors as possible,
we use the multi-iteration approach suggested in [Bla+08]. We start by warming up
the compiler with a number of non-measured compilations (5), thereby allowing
class loading and optimization of all relevant compiler code to take place, in order
to reach a steady state. Then we turn off the just-in-time compilation and run a
couple of extra unmeasured compilations (2) to drain any JIT work queues. After
that we run several (20) measured compilation runs for which we compute 95%
confidence intervals. In addition to this, we start each measured run with a forced
garbage collection (GC) in order to obtain as similar conditions as possible for each
run. Memory usage is measured by checking of available memory in the Java heap
after each forced GC call and after each compilation. The memory measurements
are also given with a 95% confidence interval. We present a summary of these
results in Figure 7, Figure 8, Figure 9 and Figure 10. All results have a confidence
interval of less than±0.03%. These intervals have not been included in the figures
since they would be barely visible with the resolution we need to use. A complete
list of results are available on the web [Söd10].

Profiling and test input As a basis for profiling input, we use the Jacks test
suite [Jac], the DaCapo benchmark suite [Bla+06; Dac] and a small hello world
program. We use 4170 tests from the Jacks suite, checking frontend semantics,
and the following applications from the DaCapo suite (lines of code (LOC)):

ANTLR: an LL(k) parser generator (ca 35 000 LOC).

76 Automated Selective Caching for Reference Attribute Grammars

Bloat: a program for optimization and analysis of Java bytecode (ca 41 000 LOC).

Chart: a program for plotting of graphs and rendering of PDF files
(ca 12 000 LOC).

FOP: parses XSL-FO files and generates PDF files (ca 136 000 LOC).

HsqlDb: a database application (ca 138 000 LOC).

Jython: a Python interpreter (ca 76 000 LOC).

Lucene: a program for indexing and searching of large text corpuses
(ca 87 000 LOC).

PMD: a Java bytecode analyzer for a range of source code problems
(ca 55 000 LOC).

Xalan: a program for transformation of XML documents into HTML
(ca 172 000 LOC).

In our experiments, we use different combinations of these applications and tests
as profiling input. We will denote these profiling input sets as follows:

J: The Jacks test suite profiling input set

D: The DaCapo benchmarks profiling input set

"APP": The benchmark APP of the DaCapo benchmarks.
For example, ANTLR means the ANTLR benchmark.

HELLO: The hello world program

We combine these profiling input sets in various ways, for example, the profiling
input set J + ANTLR means we combine the Jacks suite with the benchmark
ANTLR. Finally, as test input for performance testing we use the benchmarks
from the DaCapo suite and the hello world program.

Cache configurations We want to compare the results of using the cache
configurations defined in Section 4. In addition, the JastAddJ specification comes
with a manual cache configuration (MANUAL) which we want to compare to. We
also have the option to cache all attributes (ALL), or to cache no attributes (NONE):

MANUAL: This expert configuration is interesting to compare to, as it would be
nice if we could obtain similar results with our automated methods.

ALL: The ALL configuration is interesting as it is easily obtainable and robust
with respect to performance: there is no risk that a particular attribute will
be evaluated very many times for a particular input program, and thereby
degrade performance.

5 Evaluation 77

NONE: The least possible configuration is interesting as it provides a lower bound
on the memory needed during evaluation. However, this configuration will
in general be useless in practice, leading to compilation times that increase
exponentially with program size.

From each profiling input set P, we compute USEDP, and ONEP, and construct the
configurations USEDONEP and ALLONEP (according to Definition 9 and 10):

USEDONEP: This is an interesting cache configuration as it should give good per-
formance by avoiding caching of unused attributes and attributes used only
once by P. The obvious risk with this configuration is that other programs
might use attributes unused by P, causing performance degradation. There
is also a risk that the attributes in the ONEP set may belong to another pro-
gram’s USED \ ONE set, also causing a performance degradation. However,
if attributes in ONEP are only used once in a typical application, they are
likely to be used only once in most applications.

ALLONEP: This configuration is more robust than the USEDONEP configuration
in that also unused attributes are cached, which prevents severe performance
degradation for those attributes.

Attribute coverage Figure 6 gives an overview of the USEDP \ ONEP, ONEP
and UNUSEDP sets for the profiling inputs from the DaCapo suite. The figure also
includes the combined sets for DaCapo (D) and Jacks (J). Not surprisingly, Hello
World has the lowest attribute coverage. Still, it covers as much as 29%. The
high coverage is due to analysis of standard library classes needed to compile the
program. The combined results for the DaCapo suite and two of its applications
have better or the same coverage as the Jacks suite, i.e., the USEDJ set of Jacks does
not enclose the USEDD set of DaCapo neither does it have an empty UNUSEDJ.
These observations are interesting since they might indicate that additional tests
could be added to Jacks. We can also note that the attribute coverage is not directly
proportional to the size of an application, as shown by PMD and Lucene which
both are smaller than Xalan and FOP in regard to LOC. This may not be surprising
since the actual attribute coverage is related to the diversity of language constructs
in an application rather than to the application size.

5.2 Experiment A: The effects of no caching

To compare the behavior of no caching with various other configurations, we
profiled a simple Hello World program (HELLO) and then tested performance
by compiling the same program using the configurations ALL, NONE, MANUAL,
USEDONEHELLO and ALLONEHELLO. The results are shown in Figure 7. It is clear
from these results that the minimal NONE configuration is not a good configu-
ration, not even on this small test program. Even though it provides excellent

78 Automated Selective Caching for Reference Attribute Grammars

A
N

TL
R
67
%

B
LO

AT
71
%

C
H

A
RT

61
%

FO
P
74
%

H
SQ

LD
B
81
%

JY
TH

O
N
73
%

LU
C

EN
E
80
%

PM
D
79
%

X
A

LA
N
75
%

D
84
%

J
80
%

H
EL

LO
29
%

0

200

400

600

A
ttr

ib
ut

es
Attribute Coverage

USEDP \ ONEP
ONEP

UNUSEDP

Figure 6: Attribute coverage for the benchmarks in the DaCapo suite, the com-
bined coverage for all the DaCapo applications (D), the combined coverage for
the programs in the Jacks suite (J) and for a hello world program. The attribute
coverages are given next to the names of the application/combination.

memory usage, the compilation time is more than twice as slow as any of the other
configurations. For a larger application the NONE configuration would be useless.

5.3 Experiment B: The effects of profiling using a com-
piler test suite

To show the effects of using a compiler test suite we profiled the compilation of
the Jacks suite and obtained the two configurations USEDONEJ and ALLONEJ.
We then measured performance when compiling the DaCapo benchmarks using
these configurations. The results are shown in Figure 8 and are given as percent
in relation to the compilation time and memory usage of the ALL configuration1.
The results for the MANUAL configuration are included for comparison.

Clearly, the MANUAL configuration performs better with regard to both com-
pilation time and memory usage, with an average compilation time / memory us-
age of 75% / 47% in relation to the ALL configuration. The average results for
USEDONEJ is 83% / 67%. The ALLONEJ configuration has the same average
compilation time 83% / 72%, but higher average memory usage. It is interest-
ing to note that USEDONEJ is robust enough to handle the compilation of all the
DaCapo benchmarks. So it seems that the Jacks test suite has a sufficiently large
coverage, i.e., we can use the USEDONEJ configuration rather than the ALLONEJ

1The absolute average results for ALL are the following: Antlr (1.462s/0.270Gb), Bloat
(1.995s/0.339Gb), Chart (0.928s/0.177Gb), FOP (8.328s/1.362Gb), HsqlDb (6.054s/1.160Gb),
Jython (3.257s/0.611Gb), Lucene (4.893s/0.930Gb), PMD (3.921s/0.691Gb), Xalan
(6.606s/1.141Gb)

5 Evaluation 79

Hello World
0

50
100
150
200

Compilation Time (% of ALL)

Hello World
0

50

100

Used Memory (% of ALL)

MANUAL
NONE

USEDONEHELLO

ALLONEHELLO

Figure 7: Results from Experiment A: Compilation of Hello World using static
configurations along with configurations obtained using Hello World (HELLO) as
profiling input. The average compilation time / memory usage when compilating
with the ALL configuration were 50.0 ms / 14.7 kb. The corresponding values for
the NONE configuration were 95.9 ms / 8.4 kb.

configuration. In doing so, we can use less memory with the same performance
and robustness.

5.4 Experiment C: The effects of profiling using a bench-
mark program

To show the effects of using benchmarks we profiled using each of the DaCapo
benchmarks obtaining the USEDONE and ALLONE configurations for each bench-
mark. We also combined the profiling results for all the benchmarks to create the
combined configurations USEDONED and ALLONED. We then measured perfor-
mance when compiling the DaCapo benchmarks using these configurations. A se-
lected set of the results are shown in Figure 9, including the combined results and
the best USEDONE and ALLONE configurations from the individual benchmarks.
All results are given as percent in relation to the compilation time and memory us-
age of the ALL configuration. The results for the MANUAL set are also included for
comparison. Note that not all results are shown in Figure 9. Two of the excluded
configurations USEDONEANTLR and USEDONECHART performed worse than full
caching (ALL). These results validate the concern that the USEDONEp configura-
tion would have robustness problems for insufficient profiling input. In this case,
neither ANTLR nor Chart were sufficient as profiling inputs on their own. We can

80 Automated Selective Caching for Reference Attribute Grammars

ANTLR Bloat Chart FOP HsqlDbJython Lucene PMD Xalan
0

20

40

60

80

100

Compilation Time (% of ALL)

ANTLR Bloat Chart FOP HsqlDbJython Lucene PMD Xalan
0

20

40

60

80

100

Used Memory (% of ALL) MANUAL

USEDONEJ

ALLONEJ

Figure 8: Results from Experiment B: Compilation of DaCapo benchmarks us-
ing configurations from the Jacks suite. All results are given in relation to the com-
pilation time and memory usage of the ALL configuration and results for MANUAL
are included for comparison.

note that these two applications have the least coverage among the applications
from the DaCapo suite (67% for ANTLR and 61% for Chart).

The USEDONE configurations

The USEDONE configurations for ANTLR and Chart perform worse than the ALL
configuration for several of the applications in the DaCapo benchmarks: FOP,
Lucene and PMD. The remaining USEDONE configurations can be sorted with
regard to percent of compilation time, calculated as the geometric mean of the
DaCapo benchmark program compilation times (each in relation to the ALL con-
figuration), as follows:

80%: USEDONEBLOAT (mem. 62%)

82%: USEDONEFOP (mem. 63%), USEDONEXALAN (mem.66%)

83%: USEDONEHSQLDB (mem. 68%), USEDONEJYTHON (mem. 65%),
USEDONELUCENE (mem. 68%), USEDONEPMD (mem. 66%)

84%: USEDONED (mem. 70%)

5 Evaluation 81

ANTLR Bloat Chart FOP HsqlDb Jython Lucene PMD Xalan
0

20

40

60

80

100

Compilation Time (% of ALL)

ANTLR Bloat Chart FOP HsqlDb Jython Lucene PMD Xalan
0

20

40

60

80

100

Used Memory (% of ALL)

MANUAL

USEDONED

ALLONED

USEDONEBLOAT

ALLONEANTLR

Figure 9: Results from Experiment C: Compilation of DaCapo benchmarks
using configurations from the DaCapo benchmarks. All results are shown as com-
pilation time and memory usage as percent of the results for the ALL configuration
and results for MANUAL are included for comparison.

These results indicate that a certain coverage is needed in order to obtain a ro-
bust USEDONE configuration. It is also interesting to note that the combined
USEDONED configuration for DaCapo performs the worst (except for the non-
robust configurations). One possible explanation to this performance might be
that some attributes ending up in the USEDONED set might be used rarely or not
at all in several compilations. Still, these attributes are cached which leads to more
memory usage.

The ALLONE configurations

The ALLONE configurations generally perform worse than the USEDONE con-
figurations. This result might be due to the fact that these configurations include
unused attributes for robustness. However, this strategy for robustness pays off in
that all ALLONE configurations become robust, i.e., they compile all the DaCapo
benchmarks faster than the ALL configuration. The ALLONE configurations can

82 Automated Selective Caching for Reference Attribute Grammars

be sorted as follows, with regard to percent of compilation time:

80%: ALLONEANTLR (mem. 69%)

82%: ALLONEBLOAT (mem. 69%), ALLONEFOP (mem. 69%)

83%: ALLONECHART (mem. 71%)

84%: ALLONEHSQLDB (mem. 73%), ALLONEJYTHON (mem. 70%),
ALLONEXALAN (mem. 70%)

85%: ALLONELUCENE (mem. 73%), ALLONEPMD (mem. 71%)

86%: ALLONED (mem. 73%)

These results indicate that a profiled application does not necessarily need to be
large, or have the best coverage, for the resulting configuration to provide good
performance. The best individual ALLONE configuration is obtained from pro-
filing ANTLR which is remarkable since ANTLR has the next lowest attribute
coverage, while the combined ALLONED configuration for DaCapo performs the
worst on average. This result might be due to the fact that the combined configu-
ration caches attributes that might be in the ONE set of an individual application.
This fact is also true for several of the individual configurations but apparently the
complete combination takes the edge off the configuration.

5.5 Experiment D: The effects of combining B and C

To show the effects of profiling using a compiler test suite (B) together with pro-
filing a benchmark program (C) we combine the cache configurations from ex-
periment B and C. We then measured performance when compiling the DaCapo
benchmarks using these configurations. A selected set of the results are shown
in Figure 10, including the fully combined results and the best USEDONE and
ALLONE configurations, obtained from combining configurations from ANTLR
and Jacks. We can sort the USEDONE configurations, with regard to their percent
of compilation time, as follows:

81%: USEDONEJ+ANTLR (mem. 64%), USEDONEJ+BLOAT (mem. 67%),
USEDONEJ+CHART (mem. 65%)

82%: USEDONEJ+FOP (mem. 68%), USEDONEJ+XALAN (mem. 69%)

83%: USEDONEJ+JYTHON (mem. 69%)

84%: USEDONEJ+HSQLDB (mem. 70%),
USEDONEJ+LUCENE (mem. 70%), USEDONEJ+PMD (mem. 70%)

85%: USEDONEJ+D (mem. 71%)

6 Related Work 83

We can sort the ALLONE configurations in the same fashion:

82%: ALLONEJ+ANTLR (mem. 66%), ALLONEJ+BLOAT (mem. 68%)

84%: ALLONEJ+CHART (mem. 66%)

85%: ALLONEJ+D (mem. 72%)

88%: ALLONEJ+FOP (mem. 69%), ALLONEJ+JYTHON (mem. 69%),
ALLONEJ+XALAN (mem. 70%)

89%: ALLONEJ+LUCENE (mem. 71%), ALLONEJ+PMD (mem. 71%)

We note that the influence of the benchmarks improve the average performance of
the Jacks configurations (83%) with one or two percent. It is interesting to note
that the benchmarks providing the best performance on average for Jacks, inde-
pendent of configuration, are those with small coverage and few lines of code.
These results indicate that it is worth combining a compiler test suite with a nor-
mal program, but that the program should not be too large or complicated. This
way, we will end up with a configuration that caches attributes that end up in the
USEDONE set of any small intricate program, as well as in the USEDONE set of
larger programs, but without caching attributes that seem to be less commonly
used many times. Further, it should be noted that the memory usage results for
the combined ALLONEJ+D and USEDONEJ+D present unexpected results when
compiling Jython. Presumably, the first configuration should use more memory
than the second configuration, but the results show the reverse. The difference is
slight but still statistically significant. At this point we have no explanation for this
unexpected result.

6 Related Work

There has been a substantial amount of research on optimizing the performance of
attribute evaluators and to avoid storing all attribute instances in the AST. Much
of this effort is directed towards optimizing static visit-oriented evaluators, where
attribute evaluation sequences are computed statically from the dependencies in
an attribute grammar. For RAGs, such static analysis is, in general, not possible
due to the reference attributes. As an example, Saarinen introduces the notion of
temporary attributes that are not needed outside a single visit, and shows how these
can be stored on a stack rather than in the AST [Saa78]. The attributes we have
classified as ONE correspond to such temporary attributes: they are accessed only
once, and can be seen as stored in the stack of recursive attribute calls. Other static
analyses of attribute grammars are aimed at detecting attribute lifetimes, i.e., the
time between the computation of an attribute instance until its last use. Attributes
whose instances have non-overlapping lifetimes can share a global variable, see,

84 Automated Selective Caching for Reference Attribute Grammars

ANTLR Bloat Chart FOP HsqlDb Jython Lucene PMD Xalan
0

20

40

60

80

100

Compilation Time (% of ALL)

ANTLR Bloat Chart FOP HsqlDb Jython Lucene PMD Xalan
0

20

40

60

80

100

Used Memory (% of ALL)

MANUAL

USEDONEJ+D

ALLONEJ+D

USEDONEJ+ANTLR

ALLONEJ+ANTLR

Figure 10: Results from Experiment D: Compilation of DaCapo benchmarks
using combined configurations from the Jacks and DaCapo suites. All results are
shown as compilation time and memory usage as percent of the results for the ALL
configuration and results for MANUAL are included for comparison.

e.g., [Kas87]. Again, such analysis cannot be directly transfered to RAGs due to
the use of reference attributes.

Memoization is a technique for storing function results for future use, and is
used, for example, in dynamic programming [Bel57]. Our use of cached attributes
is a kind of memoization. Acar et al. present a framework for selective memo-
ization in a function-oriented language [Aca+03]. However, their approach is in a
different direction than ours, intended to help the programmer to use memoized
functions more easily and with more control, rather than to find out which func-
tions to cache. There are also other differences between memoization in function-
oriented programming, and in our object-oriented evaluator. In function-oriented
programming, the functions will often have many and complex arguments that can
be difficult or costly to compare, introducing substantial overhead for memoiza-
tion. In contrast, our implementation is object-oriented, reducing most attribute
calls to parameterless functions which are cheap to cache. And for parameterized
attributes, the arguments are often references which are cheap to compare.

7 Conclusions and Future Work 85

7 Conclusions and Future Work
We have presented a profiling technique for automatically finding a good caching
configuration for compilers generated from RAG specifications. Since the attribute
dependencies in RAGs cannot be computed statically, but depend on the evaluation
of reference attributes, we have based the technique on profiling of test programs.
We have introduced the notion of an attribute dependency graph with call counts,
extracted from an actual compilation. Experimental evaluation on a generated
Java compiler shows that by profiling on only a single program with an attribute
coverage of only 67%, we reach a mean compilation speed-up of 20% and an av-
erage decrease in memory usage of 38%, as compared to caching all configurable
attributes. This is close to the average compilation speed-up obtained for a manu-
ally composed expert configuration (25%). The corresponding average decrease in
memory usage for the manual configuration (53%) is still significantly better. Our
evaluation shows that we get similar performance improvements for both tested
cache configuration approaches. Given these results, we would recommend the
ALLONE configuration due to its higher robustness.

We find these results very encouraging and intend to continue this work with
more experimental evaluations. In particular, we would like to study the effects
of caching, or not caching, parameterized attributes, and to apply the technique
to compilers for other languages. Further, we would like to study the effects of
analyzing the content of the attribute equations. Most likely there are attributes
which only return a constant or similar and, hence, should not benefit from caching
independent of the number of calls. Finally, it would be interesting to further study
the differences between the cache configurations from the profiler and the manual
configuration.

8 Acknowledgements
We are grateful to Torbjörn Ekman for fruitful discussions and for implementing
support in JastAdd for profiling and separate cache configurations. Thanks also to
anonymous reviewers for comments on an earlier version of this paper.

References
[Aca+03] Umut A. Acar, Guy E. Blelloch, and Robert Harper. “Selective mem-

oization”. In: POPL. Ed. by Alex Aiken and Greg Morrisett. ACM,
2003, pp. 14–25.

[Åke+10] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. “Implementation
of a Modelica compiler using JastAdd attribute grammars”. In: Sci-
ence of Computer Programming 75.1-2 (2010), pp. 21–38.

86 Automated Selective Caching for Reference Attribute Grammars

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

[Bla+06] Stephen M. Blackburn et al. “The DaCapo benchmarks: Java bench-
marking development and analysis”. In: OOPSLA. Ed. by Peri L. Tarr
and William R. Cook. Portland, Oregon, USA: ACM, 2006, pp. 169–
190.

[Bla+08] Stephen M. Blackburn et al. “Wake up and smell the coffee: evalu-
ation methodology for the 21st century”. In: Communications of the
ACM 51.8 (2008), pp. 83–89.

[Boy05] John Tang Boyland. “Remote attribute grammars”. In: Journal of the
ACM 52.4 (2005), pp. 627–687.

[Bür+10] Christoff Bürger, Sven Karol, and Christian Wende. “Applying At-
tribute Grammars for Metamodel Semantics”. In: Proceedings of the
International Workshop on Formalization of Modeling Languages.
ACM Digital Library, 2010.

[EH05] Torbjörn Ekman and Görel Hedin. “Modular Name Analysis for Java
Using JastAdd”. In: GTTSE. Ed. by Ralf Lämmel, João Saraiva, and
Joost Visser. Vol. 4143. Lecture Notes in Computer Science. Springer,
2005, pp. 422–436.

[EH07a] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: OOPSLA. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[EH07b] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Program-
ming 69.1-3 (2007), pp. 14–26.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars”. In: SIGPLAN
Symposium on Compiler Construction. Ed. by Richard L. Wexelblat.
ACM, 1986, pp. 85–98.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

[Hua+08] Shan Shan Huang et al. “Liquid Metal: Object-Oriented Program-
ming Across the Hardware/Software Boundary”. In: ECOOP. Ed. by
Jan Vitek. Vol. 5142. Lecture Notes in Computer Science. Springer,
2008.

[Ibr+09] Ali Ibrahim et al. “Remote Batch Invocation for Compositional Ob-
ject Services”. In: ECOOP. Ed. by Sophia Drossopoulou. Vol. 5653.
LNCS. Springer, 2009, pp. 595–617.

[Jac] Jacks. http://sources.redhat.com/mauve.

8 Acknowledgements 87

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for Attribute
Grammars”. In: Symposium on Programming. Ed. by Manfred Paul
and Bernard Robinet. Vol. 167. Lecture Notes in Computer Science.
Springer, 1984, pp. 167–178.

[Jou+08] Wilfried Jouve et al. “A SIP-Based Programming Framework for
Advanced Telephony Applications”. In: IPTComm. Ed. by Henning
Schulzrinne, Radu State, and Saverio Niccolini. Vol. 5310. Lecture
Notes in Computer Science. Springer, 2008, pp. 1–20.

[Kas87] Uwe Kastens. “Lifetime Analysis for Attributes”. In: Acta Informat-
ica 24.6 (1987), pp. 633–651.

[Kat+10a] Lennart C. L. Kats, Karl Trygve Kalleberg, and Eelco Visser. “Domain-
Specific Languages for Composable Editor Plugins”. In: Electr. Notes
Theor. Comput. Sci. 253.7 (2010), pp. 149–163.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[NN+09a] Emma Nilsson-Nyman et al. “Declarative Intraprocedural Flow Anal-
ysis of Java Source Code”. In: Electr. Notes Theor. Comput. Sci.
238.5 (2009), pp. 155–171.

[PH97] Arnd Poetzsch-Heffter. “Prototyping Realistic Programming Languages
Based on Formal Specifications”. In: Acta Informatica 34.10 (1997),
pp. 737–772.

[Pto] Ptolemy. http://www.cs.iastate.edu/~ptolemy.

[Saa78] Mikko Saarinen. “On Constructing Efficient Evaluators for Attribute
Grammars”. In: International Colloquium on Automata, Languages
and Programming (ICALP). Vol. 62. Lecture Notes in Computer Sci-
ence. Springer, 1978, pp. 382–397.

[Sch+08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and ex-
tensible renaming for Java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294.

[Slo+10] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. “A Pure
Object-Oriented Embedding of Attribute Grammars”. In: Electr. Notes
Theor. Comput. Sci. 253.7 (2010), pp. 205–219.

[Söd10] Emma Söderberg. Evaluation Link: Automated Selective Caching for
Reference Attribute Grammars. http://svn.cs.lth.se/
svn/jastadd- research/public/evaluation/sle-
10-caching. 2010.

[Dac] The DaCapo Benchmarks. http://dacapobench.org.

[Vog+89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. Ed. by Richard L. Wexelblat.
ACM Press, 1989, pp. 131–145.

88 Automated Selective Caching for Reference Attribute Grammars

[Wyk+07] Eric Van Wyk et al. “Attribute Grammar-Based Language Extensions
for Java”. In: ECOOP. Ed. by Erik Ernst. Vol. 4609. Lecture Notes
in Computer Science. Springer, 2007, pp. 575–599.

[Wyk+10] Eric Van Wyk et al. “Silver: An extensible attribute grammar sys-
tem”. In: Science of Computer Programming 75.1-2 (2010), pp. 39–
54.

PA
P

E
R

IV

INCREMENTAL EVALUATION
OF REFERENCE ATTRIBUTE

GRAMMARS USING DYNAMIC
DEPENDENCY TRACKING

Abstract

Reference attribute grammars (RAGs) have proven practical for generating production-
quality compilers from declarative descriptions, as demonstrated by the JastAdd
system. Recent results indicate their applicability also to generating semantic ser-
vices in interactive editors. For use in editors, it is necessary to update the at-
tribution after edit operations. Earlier algorithms based on statically scheduled
incremental attribute evaluation are, however, not applicable to RAGs, as they do
not account for the dynamic dependencies that reference attributes give rise to. In
this report, we introduce a notion of consistency for RAG attributions, along with
an algorithm for maintaining consistency after edit operations, based on dynamic
dependency tracking. That is, we introduce a means to do incremental evaluation
of RAGs using dynamic dependency tracking.

Emma Söderberg and Görel Hedin.
Technical report, LU-CS-TR:2012-250,
ISSN 1404-1200, Report 99, 2012.
Lund University

90 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

1 Introduction

Today’s industry-standard language-based editors, like the Eclipse JDT or IntelliJ
IDEA for Java, have become indispensable tools for efficient software develop-
ment. More languages would benefit from this kind of editor support, but to de-
velop an editor from scratch is a major endeavor. Especially, since such interactive
tools need support for efficient updating of their internal representation.

To instead generate such editors from declarative descriptions is an area of
research that has been extensively investigated. Much focus has been put on editor
descriptions building on the formalism of attribute grammars (AGs) [Knu68], and
the development of incremental evaluation algorithms for such grammars [Rep82].
This research has resulted in several generator systems [RT84; Jou+90; KS98].

However, a major deficiency of the pure AG approach is its limitation of only
supporting attribute dependencies running along the structure of the syntax tree.
A restriction to such dependencies, leads to shuffling of large aggregated values
along the syntax tree. Also, these restrictions make it difficult to express graph-
like properties, like use-def chains or object-oriented inheritance. Many efforts
have been made to remove these obstacles through extensions to AGs [Boy05;
PH97].

One such recent extension, reference attribute grammars [Hed00] (RAGs), al-
lows attributes to be references to other abstract syntax tree (AST) nodes. In ef-
fect, this allows graphs to be super-imposed on top of the AST, making it easy
to, for instance, express use-def chains. RAGs have further been extended with
parameterized attributes, which remove the need to shuffle large aggregated val-
ues up and down the syntax tree. In addition, RAGs have been extended with
so called ReRAGs or rewrites, that is, demand-driven transformations depending
on attribute values. ReRAGs can, for instance, be used for syntax normalization,
or context-based specialization of nodes in the syntax tree. Together, these ex-
tensions, tackle the earlier mentioned practicality issues of pure AGs, making it
possible to more easily express complex semantics. This expressive property has
been clearly demonstrated by the JastAdd system [EH07b], where a full Java com-
piler has been generated from a RAG specification, performing within a factor of
three from handwritten compilers [EH07a].

The graph properties of RAGs make them highly attractive for the genera-
tion of interactive services in language-based editors, such as refactorings, name
completion, and cross-references [Sch+08; SH11]. However, there is so far no
general algorithm for updating of RAG attributions after edits. Earlier developed
incremental algorithms for AGs are based on static analysis of attribute dependen-
cies, where dependencies follow the tree structure of the AST. RAGs, in contrast,
are more general and may have attribute dependencies that follow a graph struc-
ture emanating from reference attributes, making these static algorithms inapplica-
ble. Instead, RAGs are evaluated dynamically on-demand using a recursive algo-
rithm, originally formulated for AGs [Jou84], during which attribute values may

2 Reference Attribute Grammars 91

be cached to prevent unnecessary re-computations.
In this report, we explore different approaches for maintaining consistency

of RAG attributions after edit operations in an interactive setting. We consider
the spectrum of possible approaches: from the crude batch solution, which re-
stores consistency by rebuilding the AST with a complete re-parsing of the source
code, to the fine-grained incremental solution, that seeks to retain as many valid
attribute values as possible. Previous incremental algorithms statically compute an
evaluation order based on static dependencies. These algorithms work under the
assumption that all attributes should be evaluated, and that all dependencies are
known before evaluation, or a at least a good approximation thereof.

In our setting, neither is true: the exact set of evaluated attributes depends on
the syntax tree, and the set of dependencies depends on the values of references
attributes, and is therefore not known before evaluation. To find the exact depen-
dencies we are left to using a dynamic algorithm where we construct a dependency
graph during evaluation. Once we have this dependency graph, we can react to
change and restore consistency after edits. In addition to the batch and the incre-
mental approach, we consider a so called full flush approach, where we restore
consistency by removing all computed attribute values, but avoid the re-parsing
needed in the batch approach. In this full flush approach, and in the fine-grained
incremental approach, we incorporate support for reversal of rewrites.

To our knowledge, this is the first work on consistency maintenance of RAGs.
The main contributions of this report are the following:

- Basic notions of consistency and attribute dependencies for RAGs.

- A dynamic dependency tracking approach for dependencies in RAGs.

- An incremental algorithm for consistency maintenance for RAGs.

The rest of this report is structured as follows: We start with a brief introduction to
RAGs in Section 2 and a description of the concept of a consistent RAG attribution
in Section 3. This is followed by an explanation of how the dynamic dependency
tracking works in Section 4, and how it is used to maintain a consistent RAG attri-
bution in Section 5. Related work is covered in Section 6 and, finally, conclusions
and a summary of future work ends the report in Section 7.

2 Reference Attribute Grammars
This section describes RAGs and the problems in applying a statically scheduled
attribute evaluation.

2.1 Traditional Attribute Grammars
Attribute grammars (AGs) [Knu68] provide context-sensitive information by as-
sociating attributes to nodes of an abstract syntax tree (AST) defined by a context-

92 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

free grammar. The attribute values are defined using so called semantic functions
of other attributes. Traditionally, there are two kinds of attributes: inherited and
synthesized, propagating information downwards and upwards in the AST. The
following example shows a synthesized attribute propagating the sum of an addi-
tion upwards in the AST:

// Grammar: Add ::= Left Right
syn int Add.sum = Left.val + Right.val;

In the example, the comment shows a simplified grammar with an AST node
Add with two children – Left and Right. The attribute sum is declared as
an integer defined as the sum of its children’s val attributes (definitions of val
are not included in the example).

The definition of an attribute value is called an equation, whose left hand side
is the defined attribute, and whose right hand side is an application of a semantic
function to other attributes. In this case, the semantic function is "+", and it is
applied to the attributes Left.val and Right.val. To propagate information
in the reverse direction, downwards, we can use inherited attributes. The following
example shows an inherited attribute which is used to compute the nesting depth:

// Grammar: Program ::= Block
// Grammar: Block ::= Assign | Block
inh int Assign.nesting;
inh int Block.nesting;
eq Block.Block.nesting = nesting + 1;
eq Block.Assign.nesting = nesting + 1;
eq Program.Block.nesting = 0;

Again, the comment provides a simplified grammar, this time with a Block node
which may have either an assignment (Assign) or another block as a child. Each
of these possible children are defined to have an inherited attribute nesting re-
turning an integer. In contrast to synthesized attributes, the equation for an inher-
ited attribute is not given in the node in which the attribute is declared, instead it is
provided by an ancestor in the AST. With this in mind, we provide equations for
the attribute in Block – one for the Assign child and one for the Block child.
In these equations, we make use of the nesting attribute in Block itself to in-
crease the value for its children. Finally, the root of the AST (Program) provides
an equation for the nesting attribute of its Block child.

2.2 Reference Attributes and Parameters

In traditional AGs, attribute types are value types, for example, integers and booleans.
RAGs extend AGs with reference attributes, that is, by allowing attribute values
to be direct references to distant nodes in the AST. Reference attributes allow for
easy specification of structures that do not follow the AST tree structure, like call

2 Reference Attribute Grammars 93

// Grammar: Program ::= Block
// Grammar: Block ::= Decl (Use | Block)
// Grammar: Decl ::= <Type:String> <Name:String>
// Grammar: Use ::= <Name:String>
syn String Use.type = decl.Type;
syn Decl Use.decl = lookup(Name);
inh Decl Use.lookup(String name);
inh Decl Block.lookup(String name);
syn boolean Decl.declares(String name) =

Name == name;
eq Block.Use.lookup(String name) =

Decl.declares(name) ? Decl : lookup(name);
eq Block.Block.lookup(String name) =

Decl.declares(name) ? Decl : lookup(name);
eq Program.Block.lookup(String name) =

’’Unknown Decl’’

Figure 1: Lookup example, illustrating parameterized attributes.

graphs and inheritance relations useful in compiler construction. A reference at-
tribute can be used to access information in a distant node, as in the following
example:

// Grammar: Decl ::= <Type:String> <Name:String>
// Grammar: Use ::= <Name:String>
syn Decl Use.decl = ...
syn String Use.type = decl.Type;

Here, we have two AST nodes, Decl and Use, representing declarations and uses
of names in a language. The Decl node has two terminals of type String while
the Use node has one. Two synthesized attributes are defined: the first providing
a reference to the declaration of a use, and the second providing the type of a use
as a string. In the latter equation, Type is a terminal of the Decl object referred
to by the decl attribute.

To complete the example and provide an equation for the decl attribute,
we need a means to look up the declaration corresponding to the name of the
use. Traditionally, AGs use inherited aggregate-valued attributes, usually named
environment, to propagate information about all visible names to each use.
With RAGs, we can instead provide a distributed symbol table [EH05] using pa-
rameterized attributes, another central extension in RAGs. Using parameterized
attributes, we define inherited attributes, typically called lookup, that take a name
as a parameter and return a reference to the appropriate declaration node. Param-
eterized attributes allow nodes to be queried for information, rather than having to
construct large aggregate attribute values with all potentially interesting informa-

94 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

Program

Block nesting

Block nesting

Block nesting

Block nesting

Assign nesting

Add sum

Left value Right value

Figure 2: Example of production-based static dependency graphs. An arrow from
b to a indicates that a depends on b.

Block lookup

Decl declares Block lookup

Use decl lookup type

Name Decl?.Type
Program

Block lookup

Block lookup

Decl declares Use decl lookup type

Decl declares

Name Type

Figure 3: Production-based static dependency graphs for the lookup example
listed in Figure 1. Dashed arrows show dependencies, which cannot be captured
by these graphs, due to reference attributes.

tion.
An example is shown in Figure 1. The top comments in the figure show a

simplified grammar with Decl and Use nodes as presented earlier, a Block node
with a Decl node followed by a Block or Use node, and a root Program.
The previous decl attribute is here defined by an equation calling an inherited
attribute lookup, taking the name of the use node as parameter. Three equations
are provided for the lookup attribute: two in Block and one final in Program,
returning a representation of an ”unknown declaration”. The equations in Block
check whether the Decl child declares name, in which case the Decl node is
returned, or calls lookup of Block itself.

2.3 Attribute Evaluation and Dependencies

If the value of an attribute b is used when evaluating the right hand side of the
equation for another attribute a, we say that a depends on b. For traditional AGs,
all attribute dependencies are static, in the sense that they can be deduced from
the AG alone, without taking the attribute values of a particular AST into account.
Most incremental algorithms for AGs, e.g., the well-known optimal algorithm by
Reps [Rep82], make use of this fact.

These algorithms do not apply to RAGs since the possibility to access attributes
of distant nodes, via reference attributes, makes the dependencies dependent on
the values of individual reference attributes. I.e., some of the dependencies are

2 Reference Attribute Grammars 95

ProgramVersion I:

Block lookupBlock lookup

Decl declares Block lookupBlock lookup

Decl declares Use decl lookup type

Decl declares

Name Type
"boolean""a"

Decl declares

Name Type
"int""b"

Use decl lookup type

Name
"a"

{
boolean a;
{
int b;
a;

}
}

ProgramVersion II:

Block lookupBlock lookup

Decl declares Block lookupBlock lookup

Decl declares Use decl lookup type

Decl declares

Name Type
"boolean""a"

Decl declares

Name Type
"int""b"

Use decl lookup type

Name
"b"

{
boolean a;
{
int b;
b;

}
}

Figure 4: Two example showing how the dynamic dependency graph is obtained
for a derivation tree by pasting together instances of the production-based static
dependency graphs. The dashed arrows show dynamic dependencies not captured
by these graphs.

96 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

dynamic, in that they can be decided only after actually evaluating some of the
attributes.

Considering the examples in Section 2.1, the static evaluation order is quite
clear: to compute Add.sumwe must first compute Left.val and Right.val,
and to compute Assign.nesting we must first compute the nesting of its
parent block. These static dependencies can be illustrated using production-based
static dependency graphs, also used in [Der+86], as illustrated in Figure 2.

Using the same notation, we can capture the static dependencies of the lookup
example presented in Section 2.2, as shown in Figure 3. However, here we have
trouble capturing the dependency of the type attribute, as indicated by the dashed
arrow. We know that type depends on the Type terminal of a Decl node but
exactly which node depends on the AST. Figure 4 illustrates these dynamic de-
pendencies with two examples of possible ASTs. The two examples are identical
except for the Use node: in version I there is a use of the name a and in version II
there is a use of the name b.

2.4 Demand-driven Transformations

In addition to the previous mentioned extensions, reference attributes and param-
eterized attributes, RAGs support demand-driven transformations called rewrites
[EH04]. Rewrites are defined as conditional transformations on node types, and
are triggered and evaluated on first access to a node of that type. During traversal
of an AST, on each access to a child, potential rewrites will be evaluated on that
child before it is returned. At the point where a child is returned, it is considered
to be final. Initially, only the root node is considered final, but this final "region"
of the root node will spread downwards in the AST as new nodes are accessed
and evaluated. In practice, this means that rewrites are evaluated top-down, from
parent to child, starting at the root of the AST.

There is no limit to the number of rewrites in an AST. In theory, all nodes
except the root node may have rewrites, but in practice rewrites are mainly used
for smaller transformations. For example, desugaring of syntax or specialization of
access nodes based on context. The extent to which rewrites are evaluated depend
on which AST nodes are that accessed, and in the set of accessed nodes, the actual
set of rewritten nodes depend on which rewrite conditions that have become true.
A rewrite condition may contain attribute values, and these values may depend on
the syntax tree. That is, a rewrite may happen in one syntax tree but not in another.

In order to incrementally update an AST constructed using rewrites, we need
to know the dependencies of rewrite conditions and we need a means to reverse
rewrites if their conditions turn to false after an update. Finding the dependencies
of rewrite conditions, boils down to the finding of dependencies between reference
attributes, and the reversal, or flushing, of rewrites, requires knowledge of which
value to reverse back to. Regardless of approach, the solution to these problems

3 Consistent Attribution 97

needs to be integrated with the tracking of attribute dependencies and flushing of
attribute values.

3 Consistent Attribution
In this section we describe what is meant by a RAG attribution, and what it means
for it to be consistent.

3.1 Attribution
The value of an attribute instance is found by evaluating the right-hand side of its
defining equation, and recursively evaluating any attribute instances used in this
equation. For efficiency, the value can be cached, i.e., stored at the first access,
so that subsequent accesses can return the value directly, rather than have to re-
compute it [Jou84]. In theory, all attribute values should be cached, to minimize
the number of computations. However, in practice, there are performance gains in
selecting only a subset of attributes to be cached [SH10].

We will refer to attributes that store their value as cacheable and attributes that
do not as uncacheable. A cacheable attribute instance is either in the state cached,
meaning it has a currently stored value, or decached, meaning it does not. Initially,
all cacheable attributes are decached. Evaluation of a decached attribute computes
its value, stores it, and takes the attribute to the cached state. A cached attribute can
also be flushed, removing the value and taking the attribute back to the decached
state.

To be able to reason about edits of the AST, we will regard the child and parent
links as intrinsic reference attributes, and terminals as intrinsic value attributes.
Intrinsic attributes have a stored value that is given a priori, when the AST is
constructed. They are similar to cached attributes in that they have a stored value,
but different in that they generally have no defining equation, and are not flushed.
The collective state of all intrinsic and cacheable attributes is called an attribution.

Adding rewrites to a RAG system is then like adding equations to certain in-
trinsic attributes, in this case child links. Rewrites use the values that are given a
priori as base values for their evaluation: the rewrite condition will be evaluated
based on this value and, if the condition is true, the final value of the rewrite will
be constructed using this value. Attribution-wise when using rewrites, the intrin-
sic child attribute can be considered as a cached attribute with a more complex
attributed value: Flushing the rewritten child attribute will bring it back to its base
value.

3.2 Consistency
When accessing an attribute we expect that we will get the same value as we would
if we evaluated the right-hand side of its defining equation. If this is the case for

98 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

all attributes, we say that the attribution is consistent. For the different kinds of
attributes, we define consistency as follows:

intrinsic attributes are by definition consistent, rewrites are here not considered
to be pure intrinsic attributes, but cached intrinsic attributes.

uncacheable attributes are by definition consistent

decached attributes are by definition consistent

cached attributes are consistent if all cached attributes they (transitively) depend
on are consistent, and if their stored value is equal to the value computed by
evaluating the right-hand side of their defining equation.

rewrites are considered to be cached intrinsic attributes. In their decached state,
they are consistent if they have their base value, and in their cached state,
their consistency follows from the definition for cached attributes.

It follows that an initial AST is consistent since it has no cached attributes.
Evaluation of cacheable attributes and caching of their values will keep the at-
tribution consistent, since the expressions in the right-hand side of equations are
side-effect free. These conditions also hold for rewrites, which behave like cached
attributes.

However, after editing an AST, i.e., changing the value of an intrinsic at-
tribute, cached attributes may have become inconsistent. With knowledge of de-
pendencies, potentially inconsistent attributes can be found and consistency can
be restored, either by decaching attributes or by re-caching attributes, i.e., by re-
evaluating attributes. In this paper, we focus on decaching of attributes, i.e., flush-
ing.

4 Dependency Tracking
This section describes how dynamic dependencies are found by tracking during
evaluation of attributes and rewrites.

4.1 Stack-based Dependency Tracking
Reference attributes are evaluated recursively using an evaluation stack [Jou84].
To find dynamic dependencies, dependency tracking is done during evaluation,
recording how attribute instances depend on each other. The example below shows
the stack during the evaluation of an attribute f.

int f = g + h;
int g = h;
int h = 4; f f

g

f

g
h

f

g

f f

h

f
time

stack

4 Dependency Tracking 99

Version I:

Usea.type

Usea.decl

Usea.Name

Usea.type

Usea.decl

Usea.lookupa

Declb.declaresa

Usea.type

Usea.decl

Usea.lookupa

Block.lookupa

Decla.declaresa

Usea.type

Decla.type

time

stack

Version II:

Useb.type

Useb.decl

Useb.Name

Useb.type

Useb.decl

Useb.lookupb

Declb.declaresb

Useb.type

Declb.type

time

stack

Figure 5: The stacks correspond to the evaluation stack at points during the eval-
uation where the stack is about to decrease. The examples being evaluated are
taken from Figure 4.

The evaluation stack is in effect a call stack, where each call reflects that the
callee is dependent on the caller, giving the following dependencies: f←g←h,
and f←h. In this example, the dependencies are static and could have been de-
duced from the attribute definitions alone. However, in the case of dynamic de-
pendencies, the call stack is needed to capture the exact dependencies. Consider
the following example involving a terminal term (i.e., an intrinsic attribute) and
a conditional equation right-hand side:

int m =
term > 2 ? g : h;

int g = 5;
int h = 4;

m m

g

m

time

stack
For term = 3:

m m
h

m

time

stack
For term = 0:

Here, the stack depends on the value of term, resulting in different dependencies:
for term = 3, we get m←g, and for term = 0 we get m←h. Here, a static
approach would lead to an approximation of the exact dependencies: m←{g,h}.

The need for dynamic dependencies is even more apparent in examples us-
ing reference attributes. Figure 5 shows the call stacks for the examples in Fig-
ure 4. Here, we show the stacks only at points during evaluation when the stack
is about to decrease. Version I of the program gives rise to the following de-
pendencies: Usea.type ← Usea.decl ← {Usea.Name, Usea.lookupa}, Usea.lookupa ←

{Declb.declaresa, Block.lookupa}, Block.lookupa ← Decla.declaresa , and Version
II give rise to the following dependencies: Useb.type ← Useb.decl ← {Useb.Name,

Useb.lookupb}, Useb.lookupb← Declb.declaresb. We can note that Version II induces
fewer dependencies, due to the closeness of the declaration to the use.

100 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

4.2 Tracking of Attribute Dependencies

Each attribute is implemented as a method containing evaluation code. For cacheable
and intrinsic attributes this code accesses the stored state (computing and stor-
ing the value in case the cacheable attribute was previously decached). For un-
cacheable attributes, the evaluation code simply computes the value according to
the equation right-hand side.

We represent each intrinsic and cacheable attribute instance a by a dependency
handler object that keeps a set of dependents, i.e., a set of references to handler
objects for the attribute instances that depend on a. Initially, before any attribute
evaluation starts, all dependents sets are empty. For cacheable parameterized at-
tributes, the cached value is stored for each used combination of parameter values,
and a handler is created for each new such combination used.

To track dependencies during evaluation, we instrument the evaluation code of
these attributes to maintain a global stack of handlers, adding and removing the
handler for the evaluated attribute instance to this stack as the evaluation code is
entered and exited. Furthermore, at each evaluation code entry, the previous top of
stack is added to the dependents set of the new top of stack.

4.3 Tracking of AST Structure and Rewrites

Accesses to child and parent links also give rise to dependencies. Even more
so, when a child has rewrites, since then there is a rewrite condition potentially
depending on attribute values. Dependencies for these rewrite conditions need to
be tracked like for any cached attribute. In fact, this tracking needs to be done for
all intrinsic attributes that may be changed. Rewritten children may be changed
due to an update of a dependency, and non-rewritten children may be changed due
to an AST edit. In this sense, we may consider parent and child links as reference
attributes, with all child links of a node as one parameterized child attribute.

The dependency graphs in Figure 4 are thus actually incomplete. In particular,
dependencies to child links are missing, since equations may return references to
children. For example, the equations for lookup in Block in Figure 1 may
return a reference to the Decl child. Possibly less apparent, is that each time an
attribute of a child is used in an equation, there is actually also a dependency on
the child link. Also, each inherited attribute actually depends on the parent link up
to the node holding its defining equation.

5 Consistency Maintenance

During development, a developer makes changes to a program. These changes
will result in a sequence of AST edits handled by the editor. After each edit, the
previously consistent attribution of the AST, corresponding to the program being
edited, may have become inconsistent. The goal of consistency maintenance is

5 Consistency Maintenance 101

to bring the AST into a consistent state after each edit. In practice, this means
keeping track of dependencies and notifying affected cached attributes of change
when needed, so that these attribute values may be flushed.

In our setting, we assume the following: 1) that the AST is initially syntacti-
cally correct with a consistent attribution before any edits have taken place, 2) that
the AST is syntactically correct after an edit, and 3) that any new nodes or subtrees
added to the AST are consistent before the addition, typically with all cacheable
attributes in the decached state.

5.1 AST Edits

There are several possible AST edits, for example, a child link may be replaced,
added, removed or inserted, or a terminal may be replaced. Edits to child links
may be considered to be the most complex edits given that its an edit to a list
structure, where succeeding children may be affected. In contrast, a parent link or
an intrinsic terminal value, like the name of a variable, can only be replaced.

As an example, consider the removal of a child k in a list of n children (from
0 to n− 1), dependants to the removed child must be notified, but also dependants
to child k + 1 to n − 1, since these children are being moved as a consequence.
In comparison, the replacement of a child is a simpler edit, since then only the
dependencies of the child being replaced needs to be notified.

In general, an edit can be described as changing the values of a set I of intrinsic
attributes, i.e., parent and child links, and terminals, followed by a notification of
dependencies which are (transitively) dependent on the set I . Clearly, these are
the set of cached attributes that can become inconsistent due to the edit.

Notably, edits to rewritten children are not very different than edits to children
without rewrites. For example, if a rewritten child is replaced, then the new value is
used as the base value of the rewrite, and the rewrite is considered to be decached.

5.2 Flushing

If a cached attribute is notified of a change, with the current approach, it should be
flushed. A flush means marking the attribute as decached and returning the value
of the attribute to its base value given at AST construction.

Base values for rewrites To flush a rewrite, the base value needs to be stored.
The trivial approach for storing base values is to make an base copy of the value of
a rewrite before it is evaluated. This approach is, however, quite memory demand-
ing, especially when rewrites are nested, or if rewrites occur for larger subtrees,
and not useful in practice. A slightly trimmed alternative, is for rewrites to share
base copies when possible. That is, nested rewrites, or inner rewrites, share their
base copy with enclosing rewrites, or outer rewrites. In practice, this means that
during evaluation outer rewrites make copies while inner rewrites do not.

102 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

Flushing of rewrites Given that we use the slightly trimmed copying of base
values, we get a situation where we have flushing of inner and outer rewrites. The
flushing of an outer rewrite, then includes the following steps: 1) setting the rewrite
to decached, 2) setting all inner rewrites to decached, 3) restoring the value of the
base value, and 4) notifying dependencies of the rewrite. In contrast, the flushing
of an inner rewrite involves the following steps: 1) setting the rewrite to decached,
and 2) locating the enclosing outer rewrite and notifying it of change.

5.3 Algorithm for Consistency Maintenance

A general technique for maintaining RAG consistency after edits is to flush all
attributes that transitively depend on the edited set of intrinsic attributes I . We
represent I by the set of corresponding handler objects, handling dependencies and
acting as nodes in the dependency graph. The algorithm for restoring consistency
can then be expressed as follows:

RESTORE-CONSISTENCY(I)

1 for each intrinsic handler h ∈ I
2 do TRANSITIVE-FLUSH(h)

FLUSH(h)

1 � Flush the cacheable
2 attribute handled by h

TRANSITIVE-FLUSH(h)

1 deps← dependents(h)
2 dependents(h)← ∅
3 for each cacheable handler h ∈ deps
4 do FLUSH(h)
5 TRANSITIVE-FLUSH(h)

Notably, the dependents set of h is cleared before dependents are transitively
flushed. This clean up prevents the algorithm from going into endless recursion
if there are circular dependencies between attributes. Circular attributes [Far86;
MH07] are excluded from the examples in this paper, but are nonetheless sup-
ported by this approach.

5.4 Aborting Transitive Flush

The simple algorithm above does not take the attribute values into account: if an
attribute happens to have the same value after the change, all its dependent at-
tributes will be flushed. In principle, it would be possible to abort the transitive
flush for attributes that are known to have the same value after the change. How-
ever, this would require that a new value is computed before the flush is done. To
compute this new value, we cannot, however, use the cached values it depends on
since they might be inconsistent.

In principle, new values can be computed without using cached values, i.e., by
evaluating corresponding equations rather than using cached values. However, in
general, this can become extremely expensive, since evaluating attributes without
using caching may lead to exponentially growing evaluation times. Therefore, in

5 Consistency Maintenance 103

general, such abortion is not likely to be profitable. In specific cases, however, it
can still pay off.

In particular, if an attribute does not depend (transitively) on any cacheable
attributes, it can be evaluated in the same amount of time before or after the flush.
We call such an attribute cache-independent. To take such cache-independent at-
tributes into account, the algorithm for TRANSITIVE-FLUSH would be altered as
follows:

TRANSITIVE-FLUSH(h)

1 deps← dependents(h)
2 dependents(h)← ∅
3 for each cacheable handler h ∈ deps
4 do if CACHE-INDEPENDENT(h)
5 then
6 valuenew ← EVALUATE-ATTRIBUTE-OF(h)
7 if valuenew! = CACHED-VALUE-OF(h)
8 then
9 SET-VALUE-OF(h, valuenew)

10 FLUSH(h)
11 TRANSITIVE-FLUSH(h)
12
13 else
14 FLUSH(h)
15 TRANSITIVE-FLUSH(h)

The identification of attributes that are cache-independent could either be done
statically, by annotating the attributes as such (and checking this property), or
dynamically, by keeping track of which attributes are cache-independent during
the dependency tracking.

In practice, abortion of transitive flush will be particularly important for param-
eterized attributes that check terminal values, like the attribute Decl.declares
in Figure 1. Suppose the Name terminal of a Decl is edited. Calls to Decl.declares
will have the same value for all parameters that are different from the old and new
Name terminal. In practice, there may be many such calls due to the block struc-
ture in a program.

5.5 Implementation
The algorithm described in Section 5.3 has been implemented and tested in the
JastAdd system [Jas]. The implementation supports incremental consistency main-
tenance for all AST edits allowed by the system, that is, removal, addition and
insertion of children. The JastAddJ extensible Java compiler [EH07a] has been
used as a test platform for the implementation, and all attributes and transforma-
tions occurring in the JastAddJ compiler are supported. This includes synthesized,

104 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

inherited, and parameterized attributes, higher-order attributes [Vog+89], circular
attributes [Far86], and rewrites [EH04]. The abortion of transitive flush is currently
under implementation.

6 Related Work

There is an extensive amount of previous work on the incremental evaluation of
attribute grammars with the goal of supporting interactive language-based editors.

For classical AGs, Demers, Reps, and Teitelbaum presented a two-pass algo-
rithm, which first nullifies dependent attributes and then reevaluates them [Dem+81].
The dependency analysis is done based on the static dependencies in the AG. Reps
improved this approach by presenting an optimal change propagation algorithm
[Rep82], where old and new attribute values are compared, and avoiding to prop-
agate the change to dependents if the values are equal. This algorithm was proven
optimal in the sense that it does work proportional to the number of affected at-
tributes, i.e., the attributes that actually do get new values.

A problem with classical AGs is that, even if the algorithm is optimal, the
number of affected attributes becomes very large: to handle complex computa-
tions, large amounts of information, typically symbol tables, are bundled together
into single aggregate-valued attributes that are copied throughout the AST. A small
change to one declaration thereby causes all the copies to become affected, even
if very few attributes actually make use of the changed declaration. A number of
different solutions to these problems were proposed, focusing on special support
for these aggregate-valued attributes, e.g., [HT86].

Other work focused on extending the classical AGs themselves, to make the
complex computations more straightforward to express. This includes work by
Poetzsch-Heffter [PH97], Boyland’s Remote AGs [Boy98], and our RAGs [Hed00].
All these formalisms make use of some kind of mechanism for remote access of
attributes, thereby inducing dependencies that are difficult to deal with by static
analysis of the AG.

In Boyland’s Remote AGs, AST nodes can have local objects with fields, and
attributes can be references to such objects. This allows graph structures to be
built, and equations can read the fields of an object remotely. In Remote AGs, an
AST node can also have collection fields, which are aggregate-valued attributes
like sets, and where the definition can be spread out on multiple sites in the AST,
each contributing to the collection, e.g., adding a particular element.

Boyland developed a static algorithm for the evaluation of Remote AGs, where
control attributes are automatically added to take care of scheduling of remote
attributes and collections [Boy98]. He also developed an incremental algorithm for
remote AGs that combines static scheduling for "ordinary" attributes with dynamic
scheduling for remote attributes and collections [Boy02]. Preliminary experiments
with this algorithm on a small procedural toy language and synthetic benchmark

7 Conclusion and Future Work 105

programs, showed substantial speedups for edits of declarations as compared to
reevaluating all attributes.

Boyland uses collection attributes for solving name analysis problems, repre-
senting local symbol tables as collections of declaration objects. Although JastAdd
does support collection attributes (whose incremental evaluation is not treated in
this paper), name analysis in RAGs is typically solved using parameterized at-
tributes, as in the examples in this paper.

All the algorithms mentioned above are based on data-driven attribute evalua-
tion, i.e., all attributes are evaluated, regardless of if they are actually used or not.
After an edit, all affected attributes are updated. In RAGs, the attribute evaluation
is instead demand-driven [Jou84], evaluating only attributes whose values are ac-
tually needed. After an edit, we decache all attributes that might be inconsistent.
This might well be a larger set than the actually affected set. However, because
aggregate values are avoided, we do not get the inflated affected sets that classical
AGs suffer from.

7 Conclusion and Future Work

We have presented a basic fine-grained algorithm for incremental evaluation of
RAGs. The algorithm restores consistency after edits to the abstract syntax tree,
and is based on dynamic dependency tracking to flush all possibly affected at-
tributes. We have also discussed how the flush propagation can be aborted by
comparing old and new attribute values, and how this can be done without extra
cost for cache-independent attributes.

As future work, we will evaluate the algorithm experimentally, and investi-
gate several optimizations. The basic algorithm has extensive overhead due to
the fine-grained dependency information that is maintained. We expect that more
coarse-grained approaches will perform better in practice, and we are investigating
approaches based on partitioning the AST and the attribute set. Furthermore, some
practical RAGs such as the JastAddJ extensible Java compiler [EH07a], make use
of large attribute values for collecting local declarations into a map data structure.
This is done in order to avoid that multiple queries for declarations repeatedly
search the AST. Unfortunately, this use of large values causes the same kind of
dependency imprecision that ordinary AGs suffer from. To obtain both the higher
performance of the maps and fine-grained dependencies, we are investigating the
introduction of a new kind of bound parameterized attribute, where all results (for
all possible parameter values) can be computed at the first call to the attribute.

There is also a potential for improving the evaluation of rewrites. In our cur-
rent implementation, attributes depending on rewritable parts of the AST are not
cached until those parts are rewritten [EH04]. By using the incremental evaluation
it might be possible to cache such attributes already during rewrite. Other possible
improvements include support for incrementally updating rather than recomputing

106 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

affected higher-order attributes [Vog+89], and support for incremental evaluation
of collection attributes [Mag+09].

References
[Boy05] John Tang Boyland. “Remote attribute grammars”. In: Journal of the

ACM 52.4 (2005), pp. 627–687.

[Boy98] John Boyland. “Analyzing Direct Non-local Dependencies in Attribute
Grammars”. In: CC. Ed. by Kai Koskimies. Vol. 1383. Lecture Notes
in Computer Science. Springer, 1998, pp. 31–49.

[Boy02] John Boyland. “Incremental Evaluators for Remote Attribute Gram-
mars”. In: Electr. Notes Theor. Comput. Sci. 65.3 (2002), pp. 9–29.

[Dem+81] Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. “Incremen-
tal Evaluation for Attribute Grammars with Application to Syntax-
Directed Editors”. In: POPL. Ed. by John White, Richard J. Lipton,
and Patricia C. Goldberg. ACM Press, 1981, pp. 105–116.

[Der+86] Pierre Deransart, Martin Jourdan, and Bernard Lorho. A Survey on
Attribute Grammars, Part I: Main Results on Attribute Grammars.
Tech. rep. Rapport de Recherche 485. Rocquencourt, France: INRIA,
1986.

[EH04] Torbjörn Ekman and Görel Hedin. “Rewritable Reference Attributed
Grammars”. In: ECOOP. Ed. by Martin Odersky. Vol. 3086. Lecture
Notes in Computer Science. Springer, 2004, pp. 144–169.

[EH05] Torbjörn Ekman and Görel Hedin. “Modular Name Analysis for Java
Using JastAdd”. In: GTTSE. Ed. by Ralf Lämmel, João Saraiva, and
Joost Visser. Vol. 4143. Lecture Notes in Computer Science. Springer,
2005, pp. 422–436.

[EH07a] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: OOPSLA. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[EH07b] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Program-
ming 69.1-3 (2007), pp. 14–26.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars”. In: SIGPLAN
Symposium on Compiler Construction. Ed. by Richard L. Wexelblat.
ACM, 1986, pp. 85–98.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

7 Conclusion and Future Work 107

[HT86] Roger Hoover and Tim Teitelbaum. “Efficient incremental evaluation
of aggregate values in attribute grammars”. In: SIGPLAN Symposium
on Compiler Construction. Ed. by Richard L. Wexelblat. ACM, 1986,
pp. 39–50.

[Jas] JastAdd. http://jastadd.org.

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for Attribute
Grammars”. In: Symposium on Programming. Ed. by Manfred Paul
and Bernard Robinet. Vol. 167. Lecture Notes in Computer Science.
Springer, 1984, pp. 167–178.

[Jou+90] Martin Jourdan et al. “Design, implementation and evaluation of the
FNC-2 attribute grammar system”. In: SIGPLAN Notices 25.6 (1990),
pp. 209–222.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[KS98] Matthijs F. Kuiper and João Saraiva. “Lrc - A Generator for Incre-
mental Language-Oriented Tools”. In: CC. Ed. by Kai Koskimies.
Vol. 1383. Lecture Notes in Computer Science. Springer, 1998, pp. 298–
301.

[MH07] Eva Magnusson and Görel Hedin. “Circular Reference Attributed
Grammars - their Evaluation and Applications”. In: Science of Com-
puter Programming 68.1 (2007), pp. 21–37.

[Mag+09] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. “Demand-driven
evaluation of collection attributes”. In: Automated Software Engi-
neering 16.2 (2009), pp. 291–322.

[PH97] Arnd Poetzsch-Heffter. “Prototyping Realistic Programming Languages
Based on Formal Specifications”. In: Acta Informatica 34.10 (1997),
pp. 737–772.

[Rep82] Thomas W. Reps. “Optimal-Time Incremental Semantic Analysis for
Syntax-Directed Editors”. In: POPL. Ed. by Richard A. DeMillo.
ACM Press, 1982, pp. 169–176.

[RT84] Thomas W. Reps and Tim Teitelbaum. “The Synthesizer Generator”.
In: Software Development Environments (SDE). Ed. by William E.
Riddle and Peter B. Henderson. ACM, 1984, pp. 42–48.

[Sch+08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and ex-
tensible renaming for Java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294.

[SH10] Emma Söderberg and Görel Hedin. “Automated Selective Caching
for Reference Attribute Grammars”. In: SLE. Ed. by Brian Malloy,
Steffen Staab, and Mark van den Brand. Vol. 6563. LNCS. Springer,
2010, pp. 2–21.

108 Incremental Evaluation of Reference Attribute Grammars using Dynamic . . .

[SH11] Emma Söderberg and Görel Hedin. “Building semantic editors using
JastAdd: tool demonstration”. In: LDTA. Ed. by Claus Brabrand and
Eric Van Wyk. ACM, 2011, p. 11.

[Vog+89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. Ed. by Richard L. Wexelblat.
ACM Press, 1989, pp. 131–145.

PA
P

E
R

V

A COMPARATIVE STUDY OF
INCREMENTAL ATTRIBUTE
GRAMMAR SOLUTIONS TO

NAME RESOLUTION

Abstract

Attribute grammars are useful in integrated editing environments for obtaining au-
tomatic incremental compilation features. However, traditional attribute grammars
use aggregated values during name resolution, resulting in large sets of affected at-
tribute instances after edits. In this paper, we show how reference attribute gram-
mars (RAGs) can significantly reduce the number of affected attributes. We also
introduce a notion of cache independent attributes used to limit propagation af-
ter edits. Our results indicate that RAGs are a highly viable alternative for use in
editing environments.

1 Introduction

Traditional attribute grammars (AGs) [Knu68; Boc76; Dem+81] use aggregated
values to propagate symbol tables with valid names used during semantic analysis
for name resolution. In incremental evaluation of AGs, attribute values are updated

Emma Söderberg and Görel Hedin.
In electronic proceedings of the 5th International Conference on Software Language Engineering
(SLE’12), Dresden, Germany, September 2012.

110 A Comparative Study of Incremental Attribute Grammar Solutions to Name . . .

after edits to the syntax tree [Dem+81], and a static attribute evaluation order al-
lows for an optimal propagation of change [Rep82]. Using re-evaluation, attribute
values can be tested for change and propagation can be limited for unaffected at-
tributes. However, this optimization does not work well for aggregated values,
because aggregated values are composed of small parts, and even if only a small
part depends on a change the entire value becomes affected, see e.g., [HT86].

Reference attribute grammars (RAGs) [Hed00] extend AGs with reference at-
tributes, i.e., attributes that may refer to distant nodes in the abstract syntax tree,
and parameterized attributes, i.e., attributes may have parameters. These two ex-
tensions allow for a different approach to name resolution, where parameterized
attributes are used for name lookup, and reference attributes connect uses to dec-
larations [EH05]. RAGs can be incrementally evaluated by construction of a dy-
namic dependency graph [SH12]. We show in this paper that RAGs do not have the
same problem as AGs with aggregated values since the support of parameterized
attributes allow for more fine grained attribute values. We also show how detection
of cache independent attributes, i.e. attributes only depending on tokens, can help
to limit notification after edits.

We start this paper with a description of the name resolution problem and how
this typically is solved using an AG-based approach and how it is solved using
a RAG-based approach in Section 2. We compare the presented approaches in
Section 3 where we show how the RAG-based approach significantly reduces the
number of affected attributes, and how detection of cache independent attributes
clearly reduces the number of notified attributes for RAGs. Finally, we conclude
the paper in Section 4.

2 Name Resolution

As a basis for the comparison in this paper, we use a simple language with nesting,
declarations and uses taken from Bochmann [Boc76]. For the benefit of our com-
parison, the grammar has been translated to an object-oriented model. We include
an assignment statement to hold uses, and include types and type literals. The ab-
stract grammar is shown in Figure 1. We use this grammar to do name resolution
using AGs and RAGs. The name resolution task can be defined as follows: define
an attribute type for each Use node with a value corresponding to the type of its
declaration.

Traditional AGs [Knu68], decorate AST nodes with attributes defined by equa-
tions (also called semantic functions) over other attributes. There are two kinds of
attributes, synthesized and inherited, used for propagating information upwards
and downwards in the AST. Name resolution is typically implemented by pairing
names and types from declarations and synthesizing this information upwards in
the AST to the nearest block. The pairs are aggregated into a symbol table map

2 Name Resolution 111

Program ::= Block;
Block ::= StmtList;
abstract StmtList;
CombStmtList : StmtList ::=

StmtList Stmt;
SingleStmtList : StmtList ::= Stmt;
abstract Stmt;
BlockStmt : Stmt ::= Block;
DeclStmt : Stmt ::= Decl;
AssignStmt : Stmt ::=

Left:Use Right:Use;

Decl ::= Type <ID:String>;
Type ::= <ID:String>;
abstract Use;
IdUse : Use ::= <ID:String>;
IntLiteral : Use ::=

<VAL:String>;
abstract BoolLiteral : Use;
TrueLiteral : BoolLiteral;
FalseLiteral : BoolLiteral;

Figure 1: Abstract grammar for the Block language Each line corresponds to
an AST node type. A type X may be abstract (in an object-oriented sense), and
may inherit from another type Y (indicated with ’X : Y’). Children of a node are
listed on the right-hand side of ’::=’, with tokens given within angle brackets.

which is propagated downwards, using inherited attributes, to reach nodes where
names are used.

The left part of Figure 2 shows the attributed AST for a small program, follow-
ing Bochmann’s example AG. Here, dec is the name-type pair for a single decla-
ration, and used is the symbol table map propagated down to nodes that might use
names. The used attribute of a particular node contains the name-type pairs for
all declarations visible at that node. A Use node can use this attribute to look up
its type. The attributes org and upt are maps that collect name-type pairs in order
to help construct the used attributes. This solution builds heavily on aggregating
information in maps and propagating these large aggregate values around in the
AST.

RAGs extend traditional AGs with reference and parameterized attributes [Hed00].
A reference attribute has a value that refers to a distant AST node. Attributes of
that distant node can be accessed via the reference attribute. A parameterized
attribute is an attribute that takes arguments, i.e., it can be called as a function. To-
gether, these extensions allow for a different approach to name resolution where
aggregated values are avoided [EH05].

The right part of Figure 2 shows the RAG-decorated AST for the example
program, exemplifying typical name resolution: Each Use node is decorated with
a reference attribute decl that points to the appropriate declaration node. A Use

node can use this decl attribute to access its type. To define the decl attributes,
parameterized attributes lookup(String) return a reference to the declaration for
a given name. These lookup attributes serve a similar role as the symbol table at-
tributes in traditional AGs, but instead of aggregating all information about visible
declarations into a map, they delegate queries to other parameterized attributes in
order to find the appropriate declaration. Typically, a query can be delegated to a

112 A Comparative Study of Incremental Attribute Grammar Solutions to Name . . .

AGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

Decl Type

Type

used
org
upt

dec
"a"

org

used
upt

usedorg
upt

used

org
upt

type

"int"

org
upt

dec
"c"

org
upt

type

"int"

org
upt

used
type

"a"

used

org

used
upt

AGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

Decl Type

Type

used
org
upt

dec
"a"

org

used
upt

usedorg
upt

used

org
upt

type

"int"

org
upt

dec
"c"

org
upt

type

"int"

org
upt

used
type

"a"

used

org

used
upt

AGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

Decl Type

Type

used
org
upt

dec
"a"

org

used
upt

usedorg
upt

used

org
upt

type

"int"

org
upt

dec
"c"

org
upt

type

"int"

org
upt

used
type

"a"

used

org

used
upt

RAGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

TypeDecl

Type

ll[a]
"a"

ll[a]

ll[a] ll[a]

ll[a]

ll[a]
"c"

ll[a]

type

"int"

type

"int"

ll[a]

lo[a]

type

decl

"a"

RAGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

TypeDecl

Type

ll[a]
"a"

ll[a]

ll[a] ll[a]

ll[a]

ll[a]
"c"

ll[a]

type

"int"

type

"int"

ll[a]

lo[a]

type

decl

"a"

RAGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

TypeDecl

Type

ll[a]
"a"

ll[a]

ll[a] ll[a]

ll[a]

ll[a]
"c"

ll[a]

type

"int"

type

"int"

ll[a]

lo[a]

type

decl

"a"

Legend
Name AST node
name Attribute instance

".." Token with value ".."

AST edge
Attribute dependency
Attribute dependency (examined)

edited
affected
examined
skipped

Example
int a;
int c;
a = 42;

bool

Example
int a;
int c;
a = 42;

b

Example
int a;
int c;
a = 42;

b

Abbreviations
lo[name] - lookup
ll[name] - local lookup

Abbreviations
upt - updated
org - original
dec - declaration

Figure 2: Three token edit scenarios An attribute instance that depends on
an edit is either affected (re-evaluates to a different value), examined (notified,
but with an unaffected value), or skipped (not notified, but guaranteed to have an
unaffected value). Without the optimization for cache-independent attributes, all
skipped attributes would need to be notified as well. (Picture best viewed in color)

3 Comparison 113

localLookup(String) attribute that performs a local search for a requested name,
e.g., in a Block. In RAGs, only attributes that are accessed are computed and
stored (cached). Furthermore, for parameterized attributes, individual call results
are cached. A traditional AG typically computes and stores all attributes.

Given the two presented approaches, we want to incrementally update values
after an edit to the syntax tree. Typically, this is done by keeping track of depen-
dencies, either statically, based on the attribute grammar, or dynamically, based on
the actual syntax tree. When an edit is performed, dependent attributes are noti-
fied so that their values may be updated. To prevent that unaffected attributes are
notified, attribute re-evaluation and notification can be interleaved so that notifi-
cation to dependent attributes is only done if a re-evaluated attribute is affected,
i.e., if its value has changed. This approach is called change propagation and was
introduced for AGs in [Dem+81].

However, even though change propagation limits notification it can cause un-
necessary re-computations for attributes notified more than once due to multiple
dependencies on the same edit. As a solution, Reps introduced an optimal algo-
rithm which uses static information about attribute evaluation order to find an op-
timal notification order [Rep82]. However, in the presence of reference attributes,
there is no useful static evaluation order, making this algorithm inapplicable to
RAGs.

For RAGs, we instead track dependencies dynamically, and notify all attributes
dependent on an edit. To get some of the benefits of the change propagation al-
gorithm, we use a simple scheme where we dynamically detect so called cache
independent attributes, that is, attributes that do not depend on other stored/cached
attributes, but only on tokens. Cache independent attributes are re-evaluated during
the notification phase, and if their value is unchanged, their dependent attributes
are not notified. Figure 2 shows the notifications after three edit scenarios on a
small example program where this approach is used. We can note that both the
number of dependent and affected attributes are much lower for the RAG solution
than for the AG solution. Furthermore, the use of cache-independent attributes for
RAGs is very effective, resulting in very few notifications of unaffected attributes.

3 Comparison

To compare the AG and RAG approaches, we have implemented two name re-
solvers for the Block language, one for each approach, using the JastAdd system
[Jas]. Each analyzer performs name resolution and supports incremental evaluation
after edits of tokens. The full implementation used in this comparison is available
on-line [Söd12].

Input programs We have constructed a Block program that can be generated to
different sizes. The program is constructed as a pattern extendible at REPEATED

114 A Comparative Study of Incremental Attribute Grammar Solutions to Name . . .

HERE, corresponding to a repetition of lines 4 to 9 in the program. The program
size is measured in the number of repetitions used, so the size of the program below
is 1. The table below shows the program size, the number of AST nodes (|AST|),
and the number of nodes in the dynamic dependency graph (|DDG|) [SH12] for
the RAG and AG approaches.

1 int a;//change A,B
2 int b;//change C,D,E
3 a = c;
4 {
5 int a;
6 a = c;
7 d = e;
8 REPEATED HERE
9 }

Program size |AST| |DDGRAG| |DDGAG|
1 29 142 118

10 164 852 721

20 314 1643 1391

30 463 2433 2061

40 614 3223 2731

Edits When tokens are edited, a declaration may switch between being used
and not used, and a use may switch between being declared and not declared. The
figure below captures such edit scenarios. All edits to int a means an edit to the
declaration on line 1, and all edits to int b means a change to the declaration on
line 2. Note that these declarations have the same line number regardless of pro-
gram size.

Affected attributes For our comparison, we consider affected attributes for
each approach in relation to the number of affected output attributes, i.e., attributes
corresponding to features directly visible to the user. Output attributes in this case
are the type attributes for Use nodes. The figure below shows the number of af-
fected output attributes (Out) along with the total number of affected attributes for
the two approaches (AG, RAG). As shown in the figure, the RAG approach sig-
nificantly reduces the number of affected attributes compared to the AG approach.
The results for RAGs are strongly correlated with Out, whereas for AGs the results
are correlated with program size. The distance between Out and RAG is due to the
helper attributes used to compute the values of the output attributes.

Affected attributes after edits for AGs and RAGs

1 10 20 30 40

0

500

1 000

af
fe

ct
ed

int a→int c

Out AG RAG

1 10 20 30 40

int a→int x

1 10 20 30 40

size

int b→int x

1 10 20 30 40

int b→int a

1 10 20 30 40

int b→int c

4 Conclusions 115

Notifications In addition, we compare the difference between using the naive
change notification approach – notifying all dependent attributes, and using the de-
tection of cache independence approach. We focus on RAGs for this comparison
since a large difference between the number of affected and dependent attributes
is key to making this optimization useful. The figure below shows the number
of dependent attributes (Naive), the number of notified attributes using the cache
independence approach (Cache), and the number of affected attributes for RAGs
(Affected). As shown in the figure, the Naive approach will notify many unaf-
fected attributes, whereas the Cache approach is very close to the affected set (the
optimum).

Notification for RAGs

1 10 20 30 40

0

200

400

no
tifi

ed

int a→int c

Naive Cache Affected

1 10 20 30 40

int a→int x

1 10 20 30 40

size

int b→int x

1 10 20 30 40

int b→int a

1 10 20 30 40

int b→int c

4 Conclusions
We have shown how the use of RAGs significantly reduces the number of affected
attributes, and that the number of affected attributes is more correlated with the
number of attributes viewed by the user, than with program size. Furthermore,
we have exemplified how dynamic detection of cache-independent attributes can
reduce the set of notified attributes almost down to the optimal affected set. These
results indicate that RAGs are a highly viable alternative for use in integrated edit-
ing environments. Future work includes evaluation of larger languages and exam-
ples, and exploration of coarser-grained dependency analysis to reduce memory
footprint.

References
[Boc76] Gregor von Bochmann. “Semantic Evaluation from Left to Right”.

In: Communications of the ACM 19.2 (1976), pp. 55–62.

[Dem+81] Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. “Incremen-
tal Evaluation for Attribute Grammars with Application to Syntax-
Directed Editors”. In: POPL. Ed. by John White, Richard J. Lipton,
and Patricia C. Goldberg. ACM Press, 1981, pp. 105–116.

116 A Comparative Study of Incremental Attribute Grammar Solutions to Name . . .

[EH05] Torbjörn Ekman and Görel Hedin. “Modular Name Analysis for Java
Using JastAdd”. In: GTTSE. Ed. by Ralf Lämmel, João Saraiva, and
Joost Visser. Vol. 4143. Lecture Notes in Computer Science. Springer,
2005, pp. 422–436.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000), pp. 301–317.

[HT86] Roger Hoover and Tim Teitelbaum. “Efficient incremental evaluation
of aggregate values in attribute grammars”. In: SIGPLAN Symposium
on Compiler Construction. Ed. by Richard L. Wexelblat. ACM, 1986,
pp. 39–50.

[Jas] JastAdd. http://jastadd.org.

[Knu68] Donald E. Knuth. “Semantics of context-free languages”. In: Journal
Theory of Computing Systems 2.2 (1968), pp. 127–145.

[Rep82] Thomas W. Reps. “Optimal-Time Incremental Semantic Analysis for
Syntax-Directed Editors”. In: POPL. Ed. by Richard A. DeMillo.
ACM Press, 1982, pp. 169–176.

[Söd12] Emma Söderberg. Evaluation Link: A Comparative Study of Incre-
mental Attribute Grammar Solutions to Name Resolution. http:
//svn.cs.lth.se/svn/jastadd-research/public/
evaluation/sle-12-inc. 2012.

[SH12] Emma Söderberg and Görel Hedin. Incremental Evaluation of Ref-
erence Attribute Grammars using Dynamic Dependency Tracking.
Tech. rep. 98. LU-CS-TR:2012-249, ISSN 1404-1200. Lund Univer-
sity, 2012.

PA
P

E
R

V
I

PRACTICAL SCOPE
RECOVERY USING BRIDGE

PARSING

Abstract

Interactive development environments (IDEs) increase programmer productivity,
but unfortunately also the burden on language implementors since sophisticated
tool support is expected even for small domain-specific languages. Our goal is to
alleviate that burden, by generating IDEs from high-level language specifications
using the JastAdd meta-compiler system. This puts increased tension on scope re-
covery in parsers, since at least a partial AST is required by the system to perform
static analysis, such as name completion and context sensitive search. In this pa-
per we present a novel recovery algorithm called bridge parsing, which provides
a light-weight recovery mechanism that complements existing parsing recovery
techniques. An initial phase recovers nesting structure in source files making them
easier to process by existing parsers. This enables batch parser generators with
existing grammars to be used in an interactive setting with minor or no modi-
fications. We have implemented bridge parsing in a generic extensible IDE for
JastAdd based compilers. It is independent of parsing technology, which we val-
idate by showing how it improves recovery in a set of typical interactive editing
scenarios for three parser generators: ANTLR (LL(variable lookahead) parsers),
LPG (LALR(k) parsers), and Beaver (LALR(1) parsers). ANTLR and LPG both
contain sophisticated support for error recovery, while Beaver requires manual er-

Emma Nilsson-Nyman, Torbjörn Ekman, and Görel Hedin.
Lecture Notes of Computer Science, 2009, Vol. 5452, pp. 95–113, Springer Berlin/Heidelberg.

118 Practical Scope Recovery using Bridge Parsing

ror productions. Bridge parsing complements these techniques and yields better
recovery for all these tools with only minimal changes to existing grammars.

1 Introduction

Interactive development environments (IDE) have become the tool of choice in
large-scale software development. This drastically increases the burden on lan-
guage developers since sophisticated tool support is expected even for small domain-
specific languages. The work presented in this paper is part of a larger effort to
generate IDEs from high-level language specifications based on attribute gram-
mars in the JastAdd meta-compiler tools. The AST is used as the predominant
data structure and all static semantic analyses are implemented as attribute gram-
mars on top of that tree. This approach has been used successfully to implement a
production-quality Java compiler [EH07a], extensible refactoring tools [Sch+08],
source level control-flow and data-flow analyses [NN+09a], and various Java ex-
tensions [Avg+08; Hua+08].

One key insight from our earlier work is that we can use the AST as the only
model of the program and then superimpose additional graph structure using at-
tributes on top of that tree, e.g., name bindings, inheritance hierarchies and call
graphs. The IDE can then reuse and extend this model to provide services such
as name completion, cross-referencing, code outline, and semantic search facil-
ities. However, this allows us to use the same extension mechanisms that have
proven successful in building extensible compilers to build extensible IDEs. This
puts extreme tension on the error recovery facilities in parsers since incomplete
programs are the norm rather than the exception during interactive development,
and a recovered AST is necessary for instant feedback to the user. An unfortu-
nate consequence of this challenge is that, despite the wealth of research in auto-
matic parser generators from high-level grammars and sophisticated error recovery
mechanisms, most IDEs still rely on hand crafted parsers to provide such services
to the user.

In this paper we present an algorithm for scope recovery, preserving as much of
the AST structure as possible, that is neither tied to a particular parsing technology
nor to a specific parser generator. A light-weight pre-processor takes an incomplete
program and recovers scope nesting before the adjusted source file is fed to a
traditional parser. Existing error recovery mechanisms are then sufficient to build
a partial AST suitable for static semantic analysis. This approach even makes it
feasible to use a batch parser rather than an incremental parser since the speed of
parsing a complete source unit is usually satisfactory even for interactive editing
on today’s hardware.

The approach has proven successful when combined with several parser gener-
ators in our IDE generator for JastAdd based compilers in the Eclipse IDE frame-
work. We have integrated bridge parsing in an IDE framework for compilers where

2 Background 119

all services use the AST as the only model to extract program information from.
An IDE based on Eclipse is generated from an attribute grammar for static seman-
tic analysis and our largest example is an environment for Java which includes
support for name completion, content outline, cross-referencing, and various se-
mantic search facilities.

We demonstrate that the approach is independent of parsing technology and
parser generator by combining bridge parsing with three different parser gener-
ators: ANTLR which generates an LL(variable lookahead) parser, LPG which
generates an LALR(k) parser, and Beaver which generates an LALR(1) parser.
LPG and ANTLR are particularly interesting because of their sophisticated error
recovery mechanisms. We show that on a set of typical interactive editing scenar-
ios, bridge parsing improves recovery for both these tools and the few cases with
degraded performance can be mitigated by minor enhancements in the IDE. The
contributions of this paper are:

• A general algorithm for recovering scope information suitable for arbitrary
parsing technologies.

• An implementation in an IDE generator for JastAdd based compilers in
Eclipse.

• A careful comparison of its effect on error recovery in state of the art parser
generators.

The rest of the paper is structured as follows. Section 2 explains the require-
ments on error recovery and outlines previous work and room for improvement.
Bridge parsing is introduced in Section 3 and an example of language sensitive
recovery for Java is presented in Section 4 and evaluated in Section 5. We finally
discuss future work and conclude in Section 6.

2 Background
We first outline scenarios requiring error recovery in the setting described above,
and then survey existing recovery mechanisms and explain why they are not suf-
ficient or have room for improvement. This serves as a background and related
work before we introduce bridge parsing in Section 3. A more thorough survey of
error recovery techniques is available in [DP95].

2.1 Error recovery scenarios

The interactive setting this approach is used in puts extreme pressure on error
recovery during parsing. Incomplete programs with errors are the norm rather than
the exception, and we rely on an AST to be built to perform most kinds of IDE
services to the user. It is therefore of paramount importance that common editing

120 Practical Scope Recovery using Bridge Parsing

scenarios produce an AST rather than a parse failure to allow for services such
as name completion while editing. There is also a tension between sophisticated
error recovery and the goal to lower the burden on language developers building
IDEs. Ideally, she should be able to reuse an existing parser, used in the compiler,
in the IDE with minimal changes while providing satisfactory recovery. We define
the following desirable properties of error recovery in this context:

• Support for arbitrary parser generators and parsing formalisms.

• Only moderate additions to add recovery to a specific language grammar.

• Effective in that recovery is excellent for common editing scenarios.

The motivation behind the goal of using arbitrary parser generators is that
JastAdd defines its own abstract grammar and as long as the parser can build an
AST that adheres to that grammar it can be used with JastAdd. We can thus benefit
from the wealth of available parsing techniques by selecting the most appropriate
for the language at hand. Notice that many proposed parser formalisms are orthog-
onal to the problem of handling incomplete programs, e.g., GLR-parsing[Tom85],
Earley-parsing[Ear70], and Parsing Expression Grammars [For04], all deal with
ambiguities in grammars rather than errors in programs.

The overall goal of the project is to lower the burden on language developers
who want to provide IDE support for their languages. The extra effort to handle
incomplete programs should therefore be moderate compared to the overall effort
of lexical and syntactic analysis.

The effectiveness criterion is a very pragmatic one. We want the automatic
recovery to be as close as possible to what a user would manually do to correct the
problem. Here we borrow the taxonomy from Pennello and DeRemer [PD78] and
consider a correction excellent if it repairs the text as a human reader would have,
otherwise as good if the result is a reasonable program and no spurious errors are
introduced, and otherwise as poor if spurious errors are introduced.

Consider the simple incomplete program below. A class C with a method m()

and a field x is currently being edited. There are two closing curly braces missing.
An excellent recovery, and the desired result of an automatic recovery, would be
to insert a curly brace before and after the field x. A simpler recovery, with poor
result, would be to insert two curly braces at the end of the program.

class C {
void m() {
int y;

int x;

Notice that we need to consider indentation to get an excellent result. Chang-
ing the indentation of the field x to the same as for the variable y should, for
instance, change its interpretation to a variable and result in a recovery where both

2 Background 121

closing braces are inserted at the end of the file. Meaning that the simpler recovery
alternative above would be sufficient.

2.2 Simple recovery

The simplest form of recovery is to let the parser automatically replace, remove,
or insert single tokens to correct an erroneous program. This information can
easily be extracted from the grammar and is supported by many parser generators.
However, for incomplete programs this is insufficient since series of consecutive
tokens are usually missing in the source file. It should be noted that this kind of
recovery serves as a nice complement to other recovery strategies by correcting
certain spelling errors.

2.3 Phrase recovery

A more advanced form of recovery is phrase level recovery where text that pre-
cedes, follows, or surrounds an error token is replaced by a suitable nonterminal
symbol [Gra+79]. Beacon symbols, e.g., delimiters, and keywords, are used to
re-synch the currently parsed production and erroneous tokens are removed from
the input stream and replaced by a particular error token. These symbols are lan-
guage specific and the parsing grammar therefore needs to be extended with error
productions unless automatically derived by the parser generator. This form of re-
covery works very well in practice when beacon symbols are available in the input
stream and implemented in many parsing tools. Incomplete programs usually lack
some beacons required to re-synch the parser and often result in a parsing failure
where the recovery can not proceed.

2.4 Scope recovery

Hierarchical structure is usually represented by nested scopes in programming
languages, e.g., blocks and parentheses. It is a common error to forget to close
such scopes and during interactive editing many scopes will be incomplete. Burke
and Fisher introduced scope recovery to alleviate such problems [BF87]. Their
technique requires the language developer to explicitly provide symbols that are
closing scopes. Charles improves on that analysis by automatically deriving such
symbols from a grammar by analyzing recursively defined rules [Cha91]. Scope
recovery can drastically improve the performance of phrase recovery since sym-
bols to open and close scopes are often used as beacons to re-synch the parser.
Scope recovery usually discards indentation information which unfortunately lim-
its the possible result of the analysis to good rather than excellent for the previously
outlined example.

122 Practical Scope Recovery using Bridge Parsing

2.5 Incremental parsing

An interactive setting makes it possible to take history into account when detecting
and recovering from errors. This opens up for assigning blame to the actual edit
that introduced an error, rather than to the location in the code where the error was
detected. A source unit is not parsed from scratch upon a change but instead only
the changes are analyzed. Wagner and Graham present an integrated approach of
incremental parsing and a self versioning document model in [WG98; Wag98]. It
is worth noting that this requires a deep integration of the environment and the
generated parser, which makes it less suitable for our setting due to the goal of
supporting multiple parser generators.

2.6 Island parsing

Island parsing is not an error recovery mechanism per se but rather a general
technique to create robust parsers that are tolerant to syntactic errors, incomplete
source code, and various language dialects [Moo01]. It is based on the observation
that for source model extraction one is often only interested in a limited subset
of all language features. A grammar consists of detailed productions describing
language constructs of interests, that are called islands, and liberal productions
matching the remaining constructs, that are called water. This allows erroneous
programs to be parsed as long as the errors are contained in water. The parts miss-
ing in an incomplete program are usually a combination of both water and islands
which makes this approach less suitable for extracting hierarchical structure on its
own.

3 Bridge Parsing

We now present bridge parsing as a technique to recover scope information from
an incomplete or erroneous source file. It combines island parsing with layout
sensitive scope recovery. In [Moo01] Moonen defines island grammars [Moo02;
DK99] as follows:

An island grammar is a grammar that consists of two parts: (i) detailed pro-
ductions that describe the language constructs that we are particularly interested
in (so called islands), and (ii) liberal productions that catch the remainder of the
input (so called water).

In bridge parsing, tokens which open or close scopes are defined as islands while
the rest of the source text is defined as water or reefs. Reefs are described further
in Section 3.1. This light-weight parsing strategy is used to detect open scopes
and to close them. The end product of the bridge parser is a recovered source
representation suitable for any parser that supports phrase level recovery.

3 Bridge Parsing 123

Original
Source

Text
Tokenizer Bridge

Builder

Bridge
Re-

pairer

Repaired
Source

Text

Bridge Grammar

Conventional
Parser

AST

Bridge Parser

Figure 1: A bridge parser consists of three parts – a tokenizer returning a token
list, a bridge builder taking a token list and returning a bridge model and a bridge
repairer which takes a bridge model and generates a repaired source text.

A bridge parser is built from three parts, as illustrated in Figure 1. The first part,
the tokenizer, takes a source text and produces a list of tokens based on definitions
in the bridge grammar. The second part, the bridge builder, constructs a bridge
model from the token list and the last part, the bridge repairer, analyses and repairs
the bridge model.

3.1 Tokenizer

The goal of the tokenizer is to produce a list of tokens from a source text. Token
definitions are provided by a bridge grammar which extends the island grammar
formalism with bridges and reefs:

A bridge grammar extends an island grammar with the notions of bridges and
reefs: (i) reefs are attributed tokens which add information to nearby islands, and
(ii) bridges connect matching islands. All islands in a bridge grammar are seen as
potential bridge abutments.

We are primarily interested in tokens that define hierarchical structure through
nested scopes. Tokens that open or close a scope are therefore represented as
islands in the grammar, e.g., braces and parentheses in Java, while most other
syntactic constructs are considered water. However, additional tokens in the stream
may be interesting to help match two islands that open and close a particular scope.
Typical examples include indentation and delimiters, and we call such tokens reefs.
Reefs can be annotated with attributes which enables comparison between reefs of
the same type. Indentation reefs may for instance have different indentation levels.
We call such tokens attributed tokens:

124 Practical Scope Recovery using Bridge Parsing

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF

Figure 2: The token list is a simple double-linked list of islands (A, B, C, D), reefs
(R) and water (W). Two additional nodes representing start of file (SOF) and end of
file (EOF) are added first and last in the list. The numbers within parentheses show
the attribute values of the reefs.

Attributed tokens are tokens which have attributes, which potentially makes them
different from other attributed tokens of the same type. This difference makes it
possible to compare attributed tokens to each other.

The first step when defining a bridge grammar, is to specify islands and reefs.
The following example, which we will use as a running example, shows the first
part of a bridge grammar relevant to the tokenizer:

Listing VI.1: Tokenizer Definitions

1 islands SOF, EOF, A=.., B=.., C=.., D=..
2 reefs R(attr)=..

The bridge grammar defines four island types and one reef type. The SOF and
EOF islands, represent start of file and end of file. The A and B islands could, for
instance, be open and close brace and C and D open and close parenthesis. The reef
could represent indentation where the value of attr is the level of indentation. In
our implementation each island corresponds to a class that accepts and consumes
the substring matching its lexical representation. The information given so far in
the example grammar is sufficient to create a lexer which will produce a list of
tokens, e.g., the example in Figure 2.

3.2 Bridge Builder

The bridge builder takes a token list and produces a bridge model defined as fol-
lows:

A bridge model is a token list where matched islands are linked with bridges in
alignment with the nesting structure in a source text. Bridges can be enclosing
other bridges or be enclosed by other bridges, or both, but they never cross each
other in an ill-formed manner. Unmatched islands point out broken parts of the
nesting structure.

3 Bridge Parsing 125

In the bridge model, islands opening and closing a scope should be linked with a
bridge. For the bridge builder to know between which islands to build bridges we
need to add definitions to the bridge grammar.

Listing VI.2: Bridge Builder Definitions
1 bridge from SOF to EOF { ... }
2 bridge from [a:R A] to [b:R B] when a.attr = b.attr { ... }
3 bridge from [a:R C] to [b:R D] when a.attr = b.attr { ... }

The first bridge, the file bridge, between the SOF island and EOF island does
not need any additional matching constraints i.e., constraints that define when two
islands of given types match. For other bridges additional constraints besides type
information i.e., an island of type A and type B match, are usually needed. In the
example above the islands of type A and B match if both islands have reefs of type
R to the left which are equal. The constraints for the third bridge are similar.

The order of the bridge abutments in the definition should correspond to the
order in the source text e.g., the bridge start of type C is expected to occur before
the bridge end of type D.

With the information given so far in our example bridge grammar we can con-
struct a bridge model. The BRIDGE-BUILDER algorithm will construct as many
bridges as possible. If at some point no matching island can be found the algorithm
will jump over the unmatched island and eventually construct a bridge enclosing
the island. The algorithm is finished when the file bridge has been constructed.

The BRIDGE-BUILDER algorithm, listed in Figure 4, will iterate through the
token list until it manages to build the file bridge. For each unmatched bridge start
it will try to match it to the next island. If there is a match a bridge will be built
and otherwise the algorithm will continue with the next unmatched bridge start.
Each time a bridge is encountered it will be crossed. In this way the number of
encountered unmatched islands will decrease each iteration.

The algorithm will try to match an unmatched island to the next unmatched
island within the current tolerance. The tolerance defines how many unmatched
islands that are allowed below a bridge. This value is only changed between it-
erations and depends on the success of the last iteration. The tolerance should be
as low as possible. We start out with a tolerance of zero, meaning no unmatched
islands under a bridge. This value will increase if we fail to build bridges during
an iteration. If we have a successful iteration we reset the tolerance to zero. If
we apply this algorithm to the running example we end up with four iterations,
illustrated in Figure 3.

3.3 Bridge Repairer

The goal of the bridge repairer is to analyze the bridge model and repair it if nec-
essary. The BRIDGE-REPAIRER algorithm needs to locate remaining unmatched

126 Practical Scope Recovery using Bridge Parsing

SOF R(0) W A R(1) W A R(3) W C D R(1) R(0) B

EOF0

Iteration:
A Toler-
ance: 0

SOF R(0) W A R(1) W A R(3) W C D R(1) R(0) B

EOF0

Iteration: B
Tolerance:
0

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF0

1Iteration: C
Tolerance:
1

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF0

1

0

Iteration:
D Toler-
ance: 0

Figure 3: The resulting bridge model after running the BRIDGE-BUILDER al-
gorithm. No bridges were built during iteration B which results in an increased
tolerance in iteration C. During iteration C a bridge is built which means the toler-
ance is reset to zero in iteration D.

3 Bridge Parsing 127

BUILD-BRIDGES(sof)

1 tol ← 0
2 while ¬HAS-BRIDGE(sof)
3 do start ← sof
4 change ← FALSE
5 while start 6= NIL
6 do end ← NEXT-UNMATCHED-ISLAND(start , tol)
7 if BRIDGE-MATCH(start , end)
8 then BUILD-BRIDGE(start , end)
9 change ← TRUE

10 start ← NEXT-UNMATCHED-START-ISLAND(end)
11 else start ← NEXT-UNMATCHED-START-ISLAND(start)
12 if ¬ change
13 then tol ← tol +1
14 else if tol > 0
15 then tol ← 0

Figure 4: The BUILD-BRIDGES algorithm constructs a bridge model from a
token list. The NEXT-UNMATCHED-ISLAND returns the next unmatched island
to the right of the given island. The tolerance defines the number of unmatched
islands to jump over before the procedure returns.
NEXT-UNMATCHED-START-ISLAND is similar but only looks for bridge starts.

128 Practical Scope Recovery using Bridge Parsing

islands and to add artificial islands which will match them. Each island defined
in the bridge grammar can potentially be missing. When an island is missing, the
algorithm will search for an appropriate construction site where an artificial island
can be inserted. The search for a construction site starts from the bridge start if
the bridge end is missing, and vice versa, and ends when a match is found or an
enclosing bridge is encountered. With this in mind we add additional definitions
to our example bridge grammar:

Listing VI.3: Bridge Repair Definitions
1 bridge from [a:R A] to [b:R B] when a.attr = b.attr {
2 missing[A] find [c:R] where c.attr = b.attr insert after
3 missing[B] find [c:R] where c.attr = a.attr insert after
4 }
5 bridge from [a:R C] to [b:R D] when a.attr = b.attr {
6 missing[C] find [c:R] where c.attr = b.attr insert after
7 missing[D] find [c:R] where c.attr = a.attr insert after
8 }

If an island of type A is missing, a construction site will be found in the interval
starting at the unmatched island of type B and ending at the start of the enclosing
bridge. The first reef of type R which is equal to the reef to the left of the un-
matched island of type B points out a construction site. The final information we
need is how to insert the artificial island. In this case the artificial island should be
inserted after the reef. The definitions for the remaining islands are similar.

The BRIDGE-REPAIRER algorithm, listed in Figure 5, recursively repairs un-
matched islands under a bridge, starting with the file bridge. When an unmatched
island is encountered the MEND algorithm, listed in Figure 6, will locate a con-
struction site and insert an artificial island.

In the running example, an island of type A is missing an island of type B.
The island of type A has a reef of type R on its left hand side with value 1 which
means the algorithm will search for for a another reef the same type with the same
value. The search is stopped when either a reef is found or a closing island of an
enclosing scope is encountered. In this case there is a reef of the right type and
value, before the enclosing island of type B, which points out a construction site.

The result of the BRIDGE-REPAIRER algorithm is shown in Figure 7. An
artificial island of type B has been inserted to form a bridge with the previously
unmatched island of type A.

4 Bridge Parsing for Java
To construct a bridge parser for Java we need to create a bridge grammar which
can provide information to each of the three parts of the bridge parser, illustrated

4 Bridge Parsing for Java 129

BRIDGE-REPAIRER(bridge)

1 start ← START(bridge)
2 end ← END(bridge)
3 island ← NEXT-ISLAND(start)
4 while island 6= end
5 do if ¬HAS-BRIDGE(island)
6 then if START-OF-BRIDGE(island)
7 then MEND-RIGHT(island , end)
8 else MEND-LEFT(start , island)
9 bridge ← BRIDGE(island)

10 BRIDGE-REPAIRER(bridge)
11 island ← NEXT-ISLAND(END(bridge))

Figure 5: The BRIDGE-REPAIRER algorithm constructs artificial islands to match
unmatched islands. The MEND-RIGHT algorithm is described further in Figure 6.
The MEND-LEFT algorithm is symmetric to the MEND-RIGHT algorithm.

MEND-RIGHT(broken, end)

1 node ← NEXT(broken)
2 while node 6= end
3 do if HAS-BRIDGE(node)
4 then node ← NEXT(BRIDGE-END(node)
5 else if POSSIBLE-CONSTRUCTION-SITE(broken,node)
6 then CONSTRUCT-ISLAND-AND-BRIDGE(broken,node)
7 return
8 else node ← NEXT(node)
9 CONSTRUCT-ISLAND-AND-BRIDGE(broken, PREVIOUS(end))

Figure 6: The MEND-RIGHT algorithm constructs an artificial bridge end in the
interval starting at the unmatched bridge start (broken) and ending at the end of the
enclosing bridge (end).

130 Practical Scope Recovery using Bridge Parsing

SOF R(0) W A R(1) W A R(2) W C D R(1) B R(0) B EOF

0

0

1

Figure 7: The changes in the example bridge model after the BRIDGE-REPAIRER
algorithm is done. The artificial island is marked with a dashed double edge.

in Figure 1. We will define this bridge grammar for Java in three steps which grad-
ually will include more complex language-specific information. The performance
impact of these different levels of language sensitivity is evaluated in Section 5.

For Java, and other languages with similar language constructs, we need to
consider how to deal with comments and strings. These constructs might enclose
text which would match as reefs or islands but which should be ignored. In our
implementation we handle this separately in the lexer implementation.

4.1 Scopes
The first level of language sensitivity is to only consider tokens directly defining
scopes. We therefore include braces and parentheses as islands since they have a
direct impact on the nesting structure of Java code. Indentation is also included to
enhance matching of islands in incomplete code. The complete bridge grammar
looks like this:

Listing VI.4: Bridge Repairer Definitions

1 islands SOF, EOF, LBRACE, RBRACE, LPAREN, RPAREN
2 reefs INDENT(pos)
3
4 bridge from SOF to EOF
5
6 bridge from [a:INDENT LBRACE] to [b:INDENT RBRACE]
7 when a.pos = b.pos {
8 missing [RBRACE]
9 find [c:INDENT] where (c.pos <= a.pos) insert after

10 missing [LBRACE]
11 find [c:INDENT] where (c.pos <= a.pos) insert after
12 }
13
14 bridge from [a:INDENT LPAREN] to [b:INDENT RPAREN]
15 when a.pos = b.pos {
16 missing [RPAREN]
17 find [c:ISLAND] insert before

4 Bridge Parsing for Java 131

18 find [c:INDENT] where (c.pos <= a.pos) insert after
19 missing [LPAREN]
20 find [c:ISLAND] insert before
21 find [c:INDENT] where (b.pos <= c.pos) insert before
22 }

The pos attribute of the INDENT reef corresponds to the indentation level. Com-
paring two reefs of this type corresponds to comparing their pos attribute.

For the islands corresponding to right and left parentheses there are two find
conditions. For cases like these the first occurrence that fulfills all its conditions
decide which action to take.

4.2 Delimiters

To improve matching of parentheses we add additional reefs for delimiters. The
following code snippet illustrates the benefit of defining commas as reefs during
recovery:

void m(int a) {
n(o(, a); // Recover to "n(o(),a)" and not to "n(o(,a))"

}

We have a call to o() as the first argument in the call to n() in the method m().
The comma tells us that we are editing the first element in the list of arguments
and that the call to o() should be closed right before the comma rather than after
reading the a parameter. If we modify the code snippet and remove the other end
parenthesis instead we end up with a different scenario:

void m(int a) {
n(o(), a; // Recover to "n(o(),a);" and not to "n(o(),a;)"

}

The analysis should ideally place a closing parenthesis somewhere after the comma
but before the semicolon. The reason is that the comma separates elements within
the parentheses and the call to o() is within the call to n(), while the semicolon
separates elements in the block. To deal with these scenarios we define additional
reefs to match delimiters and add additional find declarations to the missing
parenthesis blocks.

Listing VI.5: Bridge Repairer Definitions

1 reefs .., COMMA, DOT, SEMICOLON
2
3 missing [RPAREN]
4 ..
5 find [c:COMMA] where (previous(c) != WATER) insert before

132 Practical Scope Recovery using Bridge Parsing

6 find [c:DOT] where (previous(c) != WATER) insert before
7 find [c:SEMICOLON] insert before
8
9 missing [LPAREN]

10 ..
11 find [c:COMMA] where (next(c) != WATER) insert after
12 find [c:DOT] where (next(c) != WATER) insert after
13 find [c:SEMICOLON] insert after

These definitions should be seen as extensions to the bridge grammar presented
in the previous section. In the above find declaration for RPARENwe have added
actions for when we encounter a COMMA, DOT or SEMICOLONwhile searching for
a construction site.

4.3 Keywords

To further improve matching we can add keywords as reefs. This can be useful
since keywords separate statements from each other. The following code snippet
shows an example:

boolean m(boolean a) {
if a == true) // Recover to "if (a == true)"
return false; // and not to "(if a == true)"

return true;
}

Ideally, the analysis should put the missing left parenthesis after the if key-
word If the keyword has been defined as a reef this is possible, otherwise not since
then keywords will be considered to be water. To deal with scenarios such as these
we add additional keywords and find definitions to the bridge grammar:

Listing VI.6: Bridge Repairer Definitions
1 reefs KEYWORD (if, for, while ..)
2
3 missing [RPAREN]
4 find [c:KEYWORD] insert before
5
6 missing [LPAREN]
7 find [c:KEYWORD] insert after

5 Evaluation
We have chosen to evaluate bridge parsing on common editing scenarios for Java
using the specifications described in Section 4. Our bridge parsing implementation

5 Evaluation 133

has been combined with a set of Java parsers, generated using state of the art parser
generators based on LALR(1) and LL(variable lookahead) grammars. The parsers
were generated with the following parser generators and settings:

• Antlr Generated using Antlr (v.3.0).

• AntlrBT Generated using a forth-coming version of Antlr (v.3.1 beta) with
backtracking turned on. This version of Antlr introduces new error recovery
not yet available in the latest stable version.

• Beaver Generated with Beaver (v.0.9.6.1).

• BeaverEP Generated with Beaver (v.0.9.6.1), with error productions manu-
ally added to the grammar.

• LPG Generated using LPG (v.2.0.12). While this is the newest version of
LPG it does not yet provide a complete automatic scope recovery as sug-
gested by Charles[Cha91]. To allow comparison with Charles approach the
test cases where manually edited to correspond to the suggested recovery
from the generated parser.

In lack of an existing appropriate benchmark suite we have created a test suite for
incomplete and erroneous Java programs to use during evaluation. The test suite
consists of several series of tests, each series with one correct program and one
or more broken programs. The correct program in each series corresponds to the
intention of the programmer, while the broken programs illustrate variations of the
correct program where one or more tokens are missing. Broken programs in this
setting illustrate how programs may evolve during an editing session. For each test
series and parser we build a tree representing the correct program and try to do the
same for each broken program. For the Antlr, AntlrBT and LPG we build parse
trees, while for the Beaver and BeaverEP we build ASTs.

As a metric of how close a tree constructed from one of the broken programs
is to the tree constructed for the correct program we use tree alignment distance,
as described in [Jia+95]. To calculate tree alignment distance, a cost function is
required which provides a cost for insertion, deletion and renaming of nodes. We
use a simple cost function where all these operations have the cost one. As a
complementary classification of success we use the categorization of recovery as
excellent, good, or poor by Pennello and DeRemer [PD78].

5.1 Benchmark examples

The test suite consists of 10 correct test cases which have been modified in various
ways to illustrate possible editing scenarios. The test suite provides a total of
41 tests. Full documentation of the test suite can be found at [Söd09]. We have
focused on three editing scenarios:

134 Practical Scope Recovery using Bridge Parsing

Incomplete code Normally, programs are written in a top-down, left-right fash-
ion. In this scenario we put test cases with incomplete code, to illustrate
how code evolves while being edited in an IDE. An example where a user is
adding a method m() to a class C which already contains two fields x and z

may look like this:

class C {
int x;
void m() {

int x;
if (true) {

int y;

int z;
}

Missing start This scenario highlights situations which might occur when the
normal course of writing a program top-down, left-right is interrupted. A
typical example is that the user goes back to fix a bug or to change an im-
plementation in an existing program. Consider the example below where
the programmer has started changing a while loop which causes a missing
opening brace:

class C {
void m() {

// while (true) {
int a;

}
}

}

Tricky indentation Since bridge parsing relies on indentation it is reasonable to
assume that tricky indentation is its Achilles heel. We therefore included
a set of test cases with unintuative indentation to evaluate its performance
on such programs. An example of nested blocks where indentation is not
increasing is shown below:

class C {
void m() {

}
}

Another scenario leading to a similar situation is when a programmer pastes
a chunk of code with different indentation in the middle of her program, as
illustrated by this example:

5 Evaluation 135

class C {
void n() { .. }

void m() {
}
}

5.2 Results

The results, after running through the test suite with our parser suite, are shown in
Table 8, 9 and 10. The first table shows the results for tests with incomplete code,
the second table shows results for tests with missing starts and the last table shows
results for tests with tricky indentation. Each table has a column for each parser
generator containing a set of tree editing distances: without bridge parsing, with
bridge parsing using the scopes version, with bridge parsing using the delimiters
version. After each tree editing distance set the result for the test case and parser
generator is summarized with a letter indicating excellent (E), improved (I), status
quo (S) or worse (W). A tree alignment distance of 0 indicates a full recovery and
an excellent result while a missing value indicates total failure which is when no
AST or parse tree could be constructed.

The leftmost column for each parser in the tables shows that the test suite
presents many challenges to all parsers which manifest themselves in less than
excellent recoveries, except for the test cases in Table 10 where only indentation
is changed to trick the bridge parser. Without bridge parsing, LPG is much better
than the other parser generators, most likely due to the built-in support for scope
recovery.

The second column for each parser shows that all parser generators benefit
vastly from bridge parsing in most cases, of 41 cases 19 improve from good or
poor recovery to excellent. LPG still has the edge over the other generators with
superior error recovery. We notice that using indentation can indeed improve scope
recovery since the LPG results are improved in many cases.

The third column in each column set shows that there is almost no change when
we use the delimiters version of the bridge parser instead of the scopes version.
Generally, nothing changes or there are small improvement.

There are some problems with bridge parsing, as shown in Table 10, when
there are inconsistencies in the layout. This problem could be alleviated by IDE
support to automatically correct indentation during editing and pasting. Because
of the current problems with some layout scenarios the bridge parser is only run
when the parser fails to construct an AST and there is no other way to acquire an
AST.

We have run tests with keyword sensitive bridge parsing as well, but saw no
improvement using our test suite. There are certainly cases where this could yield
an improvement but we could not easily come up with a convincing realistic edit-
ing scenario to include in the test suite.

136 Practical Scope Recovery using Bridge Parsing

Test Antlr AntlrBT Beaver BeaverEP LPG
A1 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 6, 0, 0 E
A2 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 4, 0, 0 E
A3 75, 0, 0 E 1, 0, 0 E 63, 0, 0 E 63, 0, 0 E 0, 0, 0 E
A4 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 2, 0, 0 E
B1 75, 0, 0 E 28, 0, 0 E 73, 0, 0 E 30, 0, 0 E 0, 0, 0 E
B2 -, 0, 0 E 11, 0, 0 E 73, 0, 0 E 73, 0, 0 E 0, 0, 0 E
B3 29, 2, 0 E 29, 1, 0 E 33, -, 0 E 33, -, 0 E 8, 2, 1 E
B4 1, 0, 0 E 1, 0, 0 E -, 0, 0 E -, 0, 0 E 0, 1, 1 E
B5 75, 0, 0 E 1, 0, 0 E 73, 0, 0 E 73, 0, 0 E 8, 0, 0 E
C1 -, 7, 7 I 249, 7, 7 I 207, 5, 5 I 207, 5, 5 I 9, 5, 5 I
C2 249, 0, 0 E 29, 0, 0 E 207, 0, 0 E 123, 0, 0 E 0, 0, 0 E
C3 -, 0, 0 E 33, 0, 0 E 207, 0, 0 E 207, 0, 0 E 19, 0, 0 E
D1 168, 0, 0 E 114, 0, 0 E 124, 0, 0 E 81, 0, 0 E 12, 0, 0 E
D2 168, 0, 0 E 37, 0, 0 E 124, 0, 0 E 124, 0, 0 E 16, 0, 0 E
D3 168, 0, 0 E 65, 0, 0 E 124, 0, 0 E 105, 0, 0 E 2, 0, 0 E
D4 168, 0, 0 E 15, 0, 0 E 124, 0, 0 E 124, 0, 0 E 10, 0, 0 E
E1 31, -, - W 28, 18, 17 I 109, 109, 109 S 47, 47, 109 W 18, 12, 10 I
E2 -, -, - S 38, 18, 17 I -, 109, 109 I -, 109, 37 I 24, 10, 10 I
E3 125, 0, 0 E 16, 0, 0 E 109, 0, 0 E 109, 0, 0 E 11, 0, 0 E
F1 151, 0, 0 E 67, 0, 0 E 106, 0, 0 E 54, 0, 0 E 25, 0, 0 E
F2 151, 0, 0 E 44, 0, 0 E 106, 0, 0 E 54, 0, 0 E 9, 0, 0 E
F3 151, 0, 0 E 48, 0, 0 E 106, 0, 0 E -, 0, 0 E 9, 0, 0 E
G1 1, 0, 0 E 1, 0, 0 E -, 0, 0 E -, 0, 0 E 0, 0, 0 E
G2 -, 1, 1 I 13, 1, 1 I 154, 0, 0 E 114, 0, 0 E 11, 0, 0 E
G3 -, -, - S 36, 34, 34 I 154, 154, 154 S 154, 154, 154 S 2, 2, 2 S
H1 116, 2, 0 E 116, 1, 0 E 96, -, 0 E 96, -, 0 E 13, 2, 1 I
H2 -, 2, 0 E 97, 1, 0 E 73, 11, 0 E 73, 11, 0 E 16, 2, 0 E
H3 -, -, - S 57, 4, 4 I -, 117, 117 I -, 50, 50 I 4, 1, 1 I
H4 -, -, - S 8, 7, 7 I 117, 15, 15 I 117, 15, 15 I 13, 5, 5 I
I1 1, 1, 1 S 2, 1, 1 I 19, 19, 19 S 19, 19, 19 S 0, 0, 0 S
I2 2, 1, 1 I 2, 1, 1 I 21, 21, 21 S 21, 21, 21 S 15, 15, 15 S
I5 0, 5, 5 W 0, 3, 3 W 15, 105, 105 W 15, 15, 15 W 0, 1, 1 W
I4 0, 0, 0 E 0, 1, 1, W 15, -, -, W 15, -, -, W 0, 3, 3, W
I6 1, 1, 1 S 2, 1, 1 W 23, 23, 23 S 23, 23, 23 S 0, 0, 0 S

Figure 8: Results for test cases with incomplete code

6 Conclusions
We have presented bridge parsing as a technique to recover from syntactic errors
in incomplete programs with the aim to produce an AST suitable for static seman-

6 Conclusions 137

Test Antlr AntlrBT Beaver BeaverEP LPG
A5 9, 0, 0 E 9, 0, 0 E 63, 0, 0 E 63, 0, 0 E 5, 0, 0 E
C4 248, 4, 2 I 193, 193, 2 I 207, 207, 34 I 153, 153, 34 I 4, 4, 1 I

Figure 9: Results for test cases with missing starts

Test Antlr AntlrBT Beaver BeaverEP LPG
A6 0, 3, 3 W 0, 3, 3 W 0, 2, 2 W 0, 2, 2 W 0, 1, 1 W
B6 0, 10, 10 W 0, 64, 64 W 0, 73, 73 W 0, 23, 23 W 0, 4, 4 W
I3 0, -, 0 E 0, 14, 0 E 0, -, 105 W 0, -, 23 W 0, 4, 4 W
J1 0, 17, 17 W 0, 59, 59 W 0, 49, 49 W 0, 49, 49 W 0, 15, 15 W
J2 0, 0, 0 E 0, 0, 0 E 0, 13, 13 W 0, 13, 13 W 0, 3, 3 W

Figure 10: Results for test cases with tricky indentation

tic analysis. This enables tool developers to use existing parser generators when
implementing IDEs rather than writing parsers by hand. The approach has proven
successful when combined with several parser generators in our IDE generator for
JastAdd based compilers in Eclipse.

The approach is highly general and can be used in combination with many
different parsing technologies. We have validated this claim by showing how it
improves error recovery for three different parser generators in common interactive
editing scenarios.

One of the main goals of this work is to lower the burden on language devel-
opers who want to provide IDE support for their language. It is pleasant to notice
that the language models for bridge parsing are very light-weight, yet yield good
recovery on complex languages as exemplified by Java in this paper. We believe
that it would be easy to adjust the bridge parser presented in this paper to support
other languages as well.

As future work we would like to investigate the possibility of integrating his-
tory based information into the bridge model, work on improving the handling of
incorrect layout and investigate how to derive bridge grammars from existing base-
line grammars [KL03]. An other area we would like to look into is to improve the
test suite by observing editing patterns passively from existing code and actively
during development.

138 Practical Scope Recovery using Bridge Parsing

References
[Avg+08] Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble. “Modularity

First: A Case for Mixing AOP and Attribute Grammars”. In: AOSD.
ACM Press, 2008.

[BF87] Michael G. Burke and Gerald A. Fischer. “A practical method for
LR and LL syntactic error diagnosis and recovery”. In: ACM Trans.
Program. Lang. Syst. 9.2 (1987), pp. 164–197.

[Cha91] Philippe Charles. “A practical method for constructing efficient LALR(k)
parsers with automatic error recovery”. PhD thesis. New York, NY,
USA: New York University, 1991.

[DP95] Pierpaolo Degano and Corrado Priami. “Comparison of syntactic er-
ror handling in LR parsers”. In: Journal of Software: Practices and
Experience 25.6 (1995), pp. 657–679.

[DK99] Arie van Deursen and Tobias Kuipers. “Building Documentation Gen-
erators”. In: IEEE International Conference on Software Maintenance.
1999, pp. 40–49.

[Ear70] Jay Earley. “An efficient context-free parsing algorithm”. In: Com-
munications of the ACM 13.2 (1970), pp. 94–102.

[EH07a] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: OOPSLA. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[For04] Bryan Ford. “Parsing expression grammars: a recognition-based syn-
tactic foundation”. In: SIGPLAN Notices 39.1 (2004), pp. 111–122.

[Gra+79] Susan L. Graham, Charles B. Haley, and William N. Joy. “Practi-
cal LR error recovery”. In: SIGPLAN ’79: Proceedings of the 1979
SIGPLAN symposium on Compiler construction. Denver, Colorado,
United States: ACM, 1979, pp. 168–175.

[Hua+08] Shan Shan Huang et al. “Liquid Metal: Object-Oriented Program-
ming Across the Hardware/Software Boundary”. In: ECOOP. Ed. by
Jan Vitek. Vol. 5142. Lecture Notes in Computer Science. Springer,
2008.

[Jia+95] Tao Jianga, Lusheng Wang, and Kaizhong Zhang. “Alignment of trees
- an alternative to tree edit”. In: Theoretical Computer Science. Vol. 143.
Elsevier Science B.V., 1995, pp. 137–148.

[KL03] Steven Klusener and Ralf Lämmel. “Deriving tolerant grammars from
a base-line grammar”. In: ICSM. IEEE Computer Society, 2003, p. 179.

[Moo01] Leon Moonen. “Generating Robust Parsers using Island Grammars”.
In: Proceedings. Eighth Working Conference on Reverse Engineer-
ing. IEEE Computer Society Press, 2001, pp. 13–22.

6 Conclusions 139

[Moo02] Leon Moonen. “Lightweight Impact Analysis using Island Gram-
mars”. In: Proceedings of the 10th IEEE International Workshop of
Program Comprehension. IEEE Computer Society, 2002, pp. 219–
228.

[NN+09a] Emma Nilsson-Nyman et al. “Declarative Intraprocedural Flow Anal-
ysis of Java Source Code”. In: Electr. Notes Theor. Comput. Sci.
238.5 (2009), pp. 155–171.

[PD78] Thomas J. Pennello and Frank DeRemer. “A Forward Move Algo-
rithm for LR Error Recovery”. In: POPL. Ed. by Alfred V. Aho,
Stephen N. Zilles, and Thomas G. Szymanski. ACM Press, 1978,
pp. 241–254.

[Sch+08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and ex-
tensible renaming for Java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294.

[Söd09] Emma Söderberg. Evaluation Link: Practical Scope Recovery using
Bridge Parsing. http://svn.cs.lth.se/svn/jastadd-
research/public/evaluation/sle-08-bp. 2009.

[Tom85] Masaru Tomita. “An efficient context-free parsing algorithm for natu-
ral languages and its applications”. PhD thesis. Pittsburgh, PA, USA:
Carnegie Mellon University, 1985.

[Wag98] Tim A. Wagner. “Practical Algorithms for Incremental Software De-
velopment Environments”. PhD thesis. CA, USA: University of Cal-
ifornia at Berkeley, 1998.

[WG98] Tim A. Wagner and Susan L. Graham. “Efficient and flexible incre-
mental parsing”. In: ACM Trans. Program. Lang. Syst. 20.5 (1998),
pp. 980–1013.

PA
P

E
R

V
II

NATURAL AND FLEXIBLE
ERROR RECOVERY FOR
GENERATED MODULAR

LANGUAGE ENVIRONMENTS

Abstract

Integrated development environments (IDEs) increase programmer productivity,
providing rapid, interactive feedback based on the syntax and semantics of a lan-
guage. Unlike conventional parsing algorithms, scannerless generalized-LR pars-
ing supports the full set of context-free grammars, which is closed under compo-
sition, and hence can parse languages composed from separate grammar modules.
To apply this algorithm in an interactive environment, this paper introduces a novel
error recovery mechanism. Our approach is language-independent, and relies on
automatic derivation of recovery rules from grammars. By taking layout informa-
tion into consideration it can efficiently suggest natural recovery suggestions.

1 Introduction

Integrated Development Environments (IDEs) increase programmer productivity
by combining a rich toolset of generic language development tools with services
tailored for a specific language. These services provide programmers rapid, in-

Lennart C.L. Kats, Maartje de Jonge, Emma Söderberg, and Eelco Visser.
Accepted for publication in ACM Transactions on Programming Languages and Systems (TOPLAS).

142 Natural and Flexible Error Recovery for Generated Modular Language . . .

teractive feedback based on the syntactic structure and semantics of the language.
High expectations with regard to IDE support place a heavy burden on the shoul-
ders of developers of new languages.

One burden in particular for textual languages is the development of a parser.
Modern IDEs use a parser to obtain the syntactic structure of a program with every
change that is made to it, ensuring rapid syntactic and semantic feedback as a
program is edited. As programs are often in a syntactically invalid state as they
are edited, parse error recovery is needed to diagnose and report parse errors, and
to construct a valid abstract syntax tree (AST) for syntactically invalid programs.
Thus, to successfully apply a parser in an interactive setting, proper parse error
recovery is essential.

The development and maintenance costs of complete parsers with recovery
support are often prohibitive when general-purpose programming languages are
used for their construction. Parser generators address this problem by automati-
cally generating a working parser from a grammar definition. They significantly
reduce the development time of the parser and the turnaround time for changing it
as a language design evolves.

In this paper we show how generated parsers can both be general – supporting
the full class of context-free languages – and automatically provide support for
error recovery. Below we elaborate on these aspects, describe the challenges in
addressing them together, and give an overview of our approach.

Generalized parsers A limitation of most parser generators is that they only
support certain subclasses of the context-free grammars, such as LL(k) grammars
or LR(k) grammars, reporting conflicts for grammars outside that grammar class.
Such restrictions on grammar classes make it harder to change grammars – requir-
ing refactoring – and prohibit the composition of grammars as only the full class
of context-free grammars is closed under composition [Kat+10b].

Generalized parsers such as generalized LR support the full class of context-
free grammars with strict time complexity guarantees1. By using scannerless GLR
(SGLR) [Vis97b], even scanner-level composition problems such as reserved key-
words are avoided.

Error recovery To provide rapid syntactic and semantic feedback, modern
IDEs interactively parse programs as they are edited. A parser runs in the back-
ground with each key press or after a small delay passes. As the user edits a
program, it is often in a syntactically invalid state. Users still want editor feedback
for the incomplete programs they are editing, even if this feedback is incomplete
or only partially correct. For services that apply modifications to the source code
such as refactorings, errors and warnings can be provided to warn the user about

1Generalized LR [Tom88] parses deterministic grammars in linear time and gracefully copes with
non-determinism and ambiguity with a cubic worst-case complexity.

1 Introduction 143

the incomplete state of the program. These days, the expected behavior of IDEs is
to provide editor services, even for syntactically invalid programs.

Parse error recovery techniques can diagnose and report parse errors, and can
construct a valid AST for programs that contain syntax errors [DP95]. The recov-
ered AST forms a speculative interpretation of the program being edited. Since
all language specific services crucially depend on the constructed AST, the quality
of this AST is decisive for the quality of the feedback provided by these services.
Thus, to successfully apply a parser in an interactive setting, proper parse error
recovery is essential.

Challenges Three important criteria for the effectiveness and applicability of
parser generators for use in IDEs are 1) the grammar classes they support, 2) the
performance guarantees they provide for those grammar classes, and 3) the quality
of the syntax error recovery support they provide. Parse error recovery for gener-
alized parsers such as SGLR has been a long-standing open issue. In this paper we
implement an error recovery technique for generalized parsers, thereby showing
that all three criteria can be fulfilled.

The scannerless, generalized nature of SGLR parsers poses challenges for the
diagnosis and recovery of errors. We have identified two main challenges. First,
generalized parsing implies parsing multiple branches (representing different in-
terpretations of the input) in parallel. Syntax errors can only be detected at the
point where the last branch failed, which may not be local to the actual root cause
of an error, increasing the difficulty of diagnosis and recovery. Second, scan-
nerless parsing implies that there is no separate scanner for tokenization and that
errors cannot be reported in terms of tokens, but only in terms of characters. This
results in error messages about a single erroneous character rather than an unex-
pected or missing token. Moreover, common error recovery techniques based on
token insertion and deletion are ineffective when applied to characters, as many
insertions or deletions are required to modify complete keywords, identifiers, or
phrases. Together, these two challenges make it harder to apply traditional error
recovery approaches, as scannerless and generalized parsing increases the search
space for recovery solutions and makes it harder to diagnose syntax errors and
identify the offending substring.

Approach overview In this paper we address the above challenges by intro-
ducing additional “recovery” production rules to grammars that make it possible
to parse syntax-incorrect inputs with added or missing substrings. These rules are
based on the principles of island grammars (Section 3). We show how these rules
can be specified and automatically derived (Section 4), and how with small adapta-
tions to the parsing algorithm, the added recovery rules can be activated only when
syntax errors are encountered (Section 5). By using the layout of input files, we
improve the quality of the recoveries for scoping structures (Section 6), and ensure

144 Natural and Flexible Error Recovery for Generated Modular Language . . .

efficient parsing of erroneous files by constraining the search space for recovery
rule applications (Section 7).

Contributions This paper integrates and updates our work on error recovery
for scannerless, generalized parsing [Kat+09b; Jon+09] and draws on our work on
bridge parsing [NN+09b]. We implemented our approach based on the modular
syntax definition formalism SDF [Hee+89; Vis97c] and JSGLR2, a Java-based im-
plementation of the SGLR parsing algorithm. The present paper introduces general
techniques for the implementation of an IDE based on a scannerless, generalized
parser, and evaluates the recovery approach using automatic syntax error seeding
to generate representative test sets for multiple languages.

2 Composite Languages and Generalized Pars-
ing

Composite languages integrate elements of different language components. We
distinguish two classes of composite languages: language extensions and em-
bedded languages. Language extensions extend a base language with new, often
domain-specific elements. Language embeddings combine two or more existing
languages, allowing one language to be nested in the other.

Examples of language extensions include the addition of traits [Duc+06] or
aspects [Kic+97] to object-oriented languages, enhancing their support for adap-
tation and reuse of code. Other examples include new versions of a language,
introducing new features to an existing language, such as Java’s enumerations and
lambda expressions.

Examples of language embeddings include database query expressions inte-
grated into an existing, general-purpose language such as Java [Bra+10]. Such an
embedding both increases the expressiveness of the host language and facilitates
static checking of queries. Figure 1 illustrates such an embedding. Using a special
quotation construct, an SQL expression is embedded into Java. In turn, the SQL
expression includes an anti-quotation of a Java local variable. By supporting the
notion of quotations in the language, a compiler can distinguish between the static
query and the variable, allowing it to safeguard against injection attacks. In con-
trast, when using only a basic Java API for SQL queries constructed using strings,
the programmer must take care to properly filter any values provided by the user.

Language embeddings are sometimes applied in meta-programming for quo-
tation of their object language [Vis02]. Transformation languages such as Strat-
ego [Bra+08] and ASF+SDF [Bra+02a] allow fragments of a language that under-
goes transformation to be embedded in the specification of rewrite rules. Figure 2

2http://strategoxt.org/Stratego/JSGLR/.

2 Composite Languages and Generalized Parsing 145

public class Authentication {
public String getPasswordHash(String user) {

SQL stm = <| SELECT password FROM Users
WHERE name = ${user} |>;

return database.query(stm);
}

}

Figure 1: An extension of Java with SQL queries.

webdsl-action-to-java-method:
|[action x_action(farg*) { stat* }]| ->
|[public void x_action(param*) { bstm* }]|
with param* := <map(action-arg-to-java)> farg*;

bstm* := <statements-to-java> stat*

Figure 2: Program transformation using embedded object language syntax.

shows a Stratego rewrite rule that rewrites a fragment of code from a domain-
specific language to Java. The rule uses meta-variables (written in italics) to match
“action” constructs and rewrites them to Java methods with a similar signature.
SDF supports meta-variables by reserving identifier names in the context of an
embedded code fragment.

2.1 Parsing Composite Languages

The key to effective realization of composite languages is a modular, reusable
language description, which allows constituent languages to be defined indepen-
dently, and then composed to form a whole.

A particularly difficult problem in composing language definitions is composi-
tion at the lexical level. Consider again Figure 2. In the embedded Java language,
void is a reserved keyword. For the enclosing Stratego language, however, this
name is a perfectly legal identifier. This difference in lexical syntax is essential for
a clean and safe composition of languages. It is undesirable that the introduction
of a new language embedding or extension invalidates existing, valid programs.

The difficulty in combining languages with a different lexical syntax stems
from the traditional separation between scanning and parsing. The scanner recog-
nizes words either as keyword tokens or as identifiers, regardless of the context. In
the embedding of Java in Stratego this would imply that void becomes a reserved
word in Stratego as well. Only using a carefully crafted lexical analysis for the
combined language, introducing considerable complexity in the lexical states to be
processed, can these differences be reconciled. Using scannerless parsing [SC89;
SC95], these issues can be elegantly addressed [Bra+06].

The Scannerless Generalized-LR (SGLR) parsing algorithm [Vis97b] realizes
scannerless parsing by incorporating the generalized-LR parsing algorithm [Tom88].

146 Natural and Flexible Error Recovery for Generated Modular Language . . .

GLR supports the full class of context-free grammars, which is closed under com-
position, unlike subsets of the context-free grammars such as LL(k) or LR(k).
Instead of rejecting grammars that give rise to shift/reduce and reduce/reduce con-
flicts in an LR parse table, the GLR algorithm interprets these conflicts by effi-
ciently trying all possible parses of a string in parallel, thus supporting grammars
with ambiguities, or grammars that require more look-ahead than incorporated in
the parse table. Hence, the composition of independently developed grammars
does not produce a grammar that is not supported by the parser, as is frequently
the case with LL or LR based parsers.3

Language composition often results in grammars that contain ambiguities.
Generalized parsing allows declarative disambiguation of ambiguous interpreta-
tions, implemented as a filter on the parse tree, or rather the parse forest. As an
alternative to parsing different interpretations in parallel, backtracking parsers re-
visit points of the file that allow multiple interpretations. Backtrack parsing is
not generalized parsing since a backtracking parser only explores one possible in-
terpretation at a time, stopping as soon as a successful parse has been found. In
the case of ambiguities, alternative parses are hidden, which precludes declarative
disambiguation.

Non-determinism in grammars can negatively affect parser performance. With
traditional backtracking parsers, this would lead to exponential execution time.
Packrat parsers use a form of backtracking with memoization to parse in linear
time [For02]; but, as with other backtracking parsers, they greedily match the
first possible alternative instead of exploring all branches in an ambiguous gram-
mar [Sch06]. In contrast, GLR parsers explore all branches in parallel and run in
cubic time in the worst case. Furthermore, they have the attractive property that
they parse the subclass of deterministic LR grammars in linear time. While scan-
nerless parsing tends to introduce additional non-determinism, the implementation
of parse filters during parsing rather than as a pure post-parse filter eliminates most
of this overhead [Vis97a].

2.2 Defining Composite Languages

The syntax definition formalism SDF [Hee+89; Vis97c] integrates lexical syn-
tax and context-free syntax supported by SGLR as the parsing algorithm. Un-
desired ambiguities in SDF2 definitions can be resolved using declarative dis-
ambiguation filters specified for associativity, priorities, follow restrictions, re-
ject, avoid and prefer productions [Bra+02b]. Implicit disambiguation mechanisms
such as ‘longest match’ are avoided. Other approaches, including PEGs [For02],
language inheritance in MontiCore [Kra+08], and the composite grammars of
ANTLR [PF11], implicitly disambiguate grammars by forcing an ordering on the

3Note that [SVW09] have shown that for some LR grammars it is possible to statically determine
whether they compose. They claim that if you accept some restrictions on the grammars, the composi-
tion of the “independently developed grammars” will not produce conflicts.

3 Island Grammars 147

module Java-SQL
imports

Java
SQL

exports context-free syntax
"<|" Query "|>" -> Expr {cons("ToSQL")}
"${" Expr "}" -> SqlExpr {cons("FromSQL")}

Figure 3: Syntax of Java with embedded SQL queries, adapted from [Bra+10].
The ‘cons’ annotation defines the name of the constructed ATerm.

alternatives of a production — the first (or last) definition overrides the others. En-
forcing explicit disambiguation allows undesired ambiguities to be detected, and
explicitly addressed by a developer. This characteristic benefits the definition of
non-trivial grammars, in particular the definition of grammars that are composed
from two or more independently developed grammars.

SDF has been used to define various composite languages, often based on
mainstream languages such as C/C++ [WY07], PHP [Bra+10], and Java [BV04;
Kat+08]. The example grammar shown in Figure 3 extends Java with embedded
SQL queries. It imports both the Java and SQL grammars, adding two new produc-
tions that integrate the two. In SDF, grammar productions take the form p1...pn

-> s and specify that a sequence of strings matching symbols p1 to pn matches the
symbol s. The productions in this particular grammar specify a quotation syntax
for SQL queries in Java expressions, and vice versa an anti-quotation syntax for
Java expressions inside SQL query expressions. The productions are annotated
with the {cons(name)} annotation, which indicates the constructor name used to
label these elements when an abstract syntax tree is constructed.

3 Island Grammars

Island grammars [DK99; Moo01; Moo02] combine grammar production rules for
the precise analysis of parts of a program and selected language constructs with
general rules for skipping over the remainder of an input. Island grammars are
commonly applied for reverse engineering of legacy applications, for which no
formal grammar may be available, or for which many (vendor-specific) dialects
exist [Moo01]. In this paper we use island grammars as inspiration for error recov-
ery using additional production rules.

Using an island grammar, a parser can skip over any uninteresting bits of a file
(“water”), including syntactic errors or constructs found only in specific language
dialects. A small set of declarative context-free production rules specifies only the
interesting bits (the “islands”) that are parsed “properly”. Island grammars were
originally developed using SDF [DK99; Moo01]. The integration of lexical and
context-free productions of SDF allows island grammars to be written in a single,

148 Natural and Flexible Error Recovery for Generated Modular Language . . .

module ExtractCalls
exports

context-free start-symbols
Module

context-free syntax
Chunk* -> Module {cons("Module")}
WATER -> Chunk {cons("WATER")}
"CALL" Id -> Chunk {cons("Call")}

lexical syntax
[\ \t\n] -> LAYOUT
~[\ \t\n]+ -> WATER {avoid}
[a-zA-Z][a-zA-Z0-9]* -> Id

lexical restrictions
WATER -/- [A-Za-z0-9]

Figure 4: An island grammar for extracting calls from a legacy application;
adapted from [Moo01].

declarative specification that includes both lexical syntax for the definition of water
and context-free productions for the islands. A parser using an island grammar
behaves similar to one that implements a noise-skipping algorithm [LT93]. It can
skip over any form of noise in the input file. However, using an island grammar,
this logic is entirely encapsulated in the grammar definition itself.

Figure 4 shows an SDF specification of an island grammar that extracts call
statements from COBOL programs. Any other statements in the program are
skipped and parsed as water. The first context-free production of the grammar
defines the Module symbol, which is the start symbol of the grammar. A Module is
a sequence of chunks. Each Chunk, in turn, is parsed either as a patch of WATER or
as an island, in the form of a Call construct. The lexical productions define pat-
terns for layout, water, and identifiers. The layout rule, using the special LAYOUT
symbol, specifies the kind of layout (i.e. whitespace) used in the language. Layout
is ignored by the context-free syntax rules, since their patterns are automatically
interleaved with optional layout. The WATER symbol is defined as the inverse of the
layout pattern, using the ~ negation operator. Together, they define a language that
matches any given character stream.

The parse tree produced for an island is constrained using disambiguation fil-
ters that are part of the original SDF specification [Bra+02b]. First, the {avoid}
annotation on the WATER rule specifies a disambiguation filter for these productions,
indicating that the production is to be avoided, e.g., at all times, a non-water Chunk
is to be preferred. Second, the lexical restrictions section specifies a restriction for
the WATER symbol. This rule ensures that water is always greedily matched, and
never followed by any other water character.

The following example illustrates how programs are parsed using an island
grammar:

4 Permissive Grammars 149

Figure 5: The unfiltered abstract syntax tree for a COBOL statement, constructed
using the ExtractCalls grammar.

CALL CKOPEN USING filetable, status

Given this COBOL fragment, a generalized parser can construct a parse tree —
or rather a parse forest — that includes all valid interpretations of this text. Inter-
nally, the parse tree includes the complete character stream, all productions used,
and their annotations. In this paper, we focus on abstract syntax trees (derived
from the parse trees) where only the {cons(name)} constructor labels appear in
the tree. Figure 5 shows the complete, ambiguous AST for our example input pro-
gram. Note in particular the amb node, which indicates an ambiguity in the tree:
CALL CKOPEN in our example can be parsed either as a proper Call statement
or as WATER. Since the latter has an {avoid} annotation in its definition, a dis-
ambiguation filter can be applied to resolve the ambiguity. Normally, these filters
are applied automatically during or after parsing.

4 Permissive Grammars

As we have observed in the previous section, there are many similarities between a
parser using an island grammar and a noise-skipping parser. In the former case, the
water productions of the grammar are used to “fall back” in case an input sentence
cannot be parsed, in the latter case, the parser algorithm is adapted to do so. While
the technique of island grammars is targeted only towards partial grammar defi-

150 Natural and Flexible Error Recovery for Generated Modular Language . . .

module Java-15
exports
lexical syntax

[\ \t\12\r\n] -> LAYOUT
"\"" StringPart* "\"" -> StringLiteral
"/*" CommentPart* "*/" -> Comment
Comment -> LAYOUT
...

context-free syntax
"if" "(" Expr ")" Stm -> Stm {cons("If")}
"if" "(" Expr ")" Stm "else" Stm -> Stm {cons("IfElse"), avoid}
...

Figure 6: Part of the standard Java grammar in SDF; adapted from [Bra+06].

nitions, this observation suggests that the basic principle behind island grammars
may be adapted for use in recovery for complete, well-defined grammars.

In the remainder of this section, we illustrate how the notion of productions for
defining “water” can be used in regular grammars, and how these principles can
be further applied to achieve alternative forms of recovery from syntax errors. We
are developing this material in an example-driven way in the sections 4.1 to 4.3.
Then, in Section 4.4, we explain how different forms of recovery can be combined.
Finally, in Section 4.5 we discuss automatic derivation of recovery rules from the
grammar, while Section 4.6 explains how the set of generated recovery rules can
be customized by the language developer.

Without loss of generality, we focus many of our examples on the familiar
Java language. Figure 6 shows a part of the SDF definition of the Java lan-
guage. SDF allows the definition of concrete and abstract syntax in a single
framework. The mapping between concrete syntax trees (parse trees) and abstract
syntax trees is given by the {cons(name)} annotations. Thus, in the given ex-
ample, the {cons("If")} and {cons("IfElse")} annotations specify the name of
the constructed abstract syntax terms. Furthermore, the abstract syntax tree does
not contain redundant information such as layout between tokens and literals in
a production. The {avoid} annotation in the second context-free production is
used to explicitly avoid the “dangling else problem”, a notorious ambiguity that
occurs with nested if/then/else statements. Thus, the {avoid} annotation states
that the interpretation of an IfElse term with a nested If subterm, must be avoided
in favour of the alternate interpretation, i.e. an If term with a nested IfElse sub-
term. Indeed, Java can be parsed without the use of SGLR, but SGLR has been
invaluable for extensions and embeddings based on Java such as those described
in [BV04; Bra+06].

4 Permissive Grammars 151

4.1 Chunk-Based Water Recovery Rules

Island grammars rely on constructing a grammar based on coarse-grained chunks
that can be parsed normally or parsed as water and skipped. This structure is
lacking in normal, complete grammars, which tend to have a more hierarchical
structure. For example, Java programs consist of one or more classes that each
contain methods, which contain statements, etc. Still, it is possible to impose a
more chunk-like structure on existing grammars in a coarse-grained fashion: for
example, in Java, all statements can be considered as chunks.

Figure 7 extends the standard Java grammar with a coarse-grained chunk struc-
ture at the statement level. In this grammar, each Stm symbol is considered a
“chunk,” which can be parsed as either a regular statement or as water, effectively
skipping over any noise that may exist within method bodies. To ensure that water
is always greedily matched, a follow restriction is specified (-/-), expressing that
the WATER symbol is never followed by another water character.

From Avoid to Recover Productions As part of the original SDF specifi-
cation, the {avoid} annotation is used to disambiguate parse trees produced by
grammar productions. An example is the “dangling else” disambiguation shown
in Figure 6. In Figure 7, we use the {avoid} annotation on the water produc-
tion to indicate that preference should be given to parsing statements with regular
productions. The key insight of permissive grammars is that this mechanism is
sufficient, in principle, to model error recovery.

However, in practice, there are two problems with the use of {avoid} for
declaring error recovery. First, {avoid} is also used in regular disambiguation
of grammars. We want to avoid error recovery productions more than ‘normal’
{avoid} productions. Second, {avoid} is implemented as a post-parse filter
on the parse forest produced by the parser. This is fine when ambiguities are
relatively local and few in number. However, noise-skipping water rules such as
those in Figure 7 cause massive numbers of ambiguities; each statement can be
interpreted as water or as a regular statement, i.e. the parse forest should represent
an exponential number of parse trees. While (S)GLR is equipped to deal with
ambiguities, their construction has a performance penalty, which is wasteful when
there are no errors to recover from.

Thus, we introduced the {recover} annotation in SDF to distinguish be-
tween the two different concerns of recovery and disambiguation (Figure 8). The
annotation is similar to {avoid}, in that we are interested in parse trees with
as few uses of {recover} productions as possible. Only in case all remaining
branches contain recover productions, a preferred interpretation is selected heuris-
tically by counting all occurrences of the {recover} annotation in the ambigu-
ous branches, and selecting the variant with the lowest count. Parse trees produced
by the original grammar productions are always preferred over parse trees contain-
ing recover productions. Furthermore, {recover} branches are disambiguated

152 Natural and Flexible Error Recovery for Generated Modular Language . . .

module Java-15-Permissive-Avoid
imports Java-15
exports
lexical syntax

~[\ \t\12\r\n]+ -> WATER {avoid}
lexical restrictions

WATER -/- ~[\ \t\12\r\n]
context-free syntax

WATER -> Stm {cons("WATER")}

Figure 7: Chunk-based recovery rules for Java using avoid.

module Java-15-Permissive-ChunkBased
imports Java-15
exports
lexical syntax

~[\ \t\12\r\n]+ -> WATER {recover}
lexical restrictions

WATER -/- ~[\ \t\12\r\n]
context-free syntax

WATER -> Stm {cons("WATER")}

Figure 8: Chunk-based recovery rules using recover.

at runtime, and, to avoid overhead for error-free programs, are only explored when
parse errors occur using the regular productions. The runtime support for parsing
and disambiguation of recover branches is explained in Section 5.

Throughout this section we use only the standard, unaltered SDF specification
language, adding only the {recover} annotation.

Limitations of Chunk-Based Rules We can extend the grammar of Fig-
ure 8 to introduce a chunk-like structure at other levels in the hierarchical structure
formed by the grammar, e.g. at the method level or at the class level, in order to
cope with syntax errors in different places. However, doing so leads to a large num-
ber of possible interpretations of syntactically invalid (but also syntactically valid)
programs. For example, any invalid statement that appears in a method could then
be parsed as a “water statement.” Alternatively, the entire method could be parsed
as a “water method.” A preferred interpretation can be picked based on the number
of occurrences of the {recover} annotation in the ambiguous branches.

The technique of selectively adding water recovery rules to a grammar allows
any existing grammar to be adapted. It avoids having to rewrite grammars from the
ground up to be more “permissive” in their inputs. Grammars adapted in this fash-
ion produce parse trees even for inputs with syntax errors that cannot be parsed by
the original grammar. The WATER constructors in the ASTs indicate the location
of errors, which can then be straightforwardly reported back to the user.

4 Permissive Grammars 153

While the approach we presented so far can already provide basic syntax error
recovery, there are three disadvantages to the recovery rules as presented here.
Firstly, the rules are language-specific and are best implemented by an expert of
a particular language and its SDF grammar specification. Secondly, the rules are
rather coarse-grained in nature; invalid subexpressions in a statement cause the
entire statement to be parsed as water. Lastly, the additional productions alter the
abstract syntax of the grammar (introducing new WATER terminals), causing the
parsed result to be unusable for tools that depend on the original structure.

4.2 General Water Recovery Rules
Adapting a grammar to include water productions at different hierarchical levels
is a relatively simple yet effective way to selectively skip over “noise” in an input
file. In the remainder of this section, we refine this approach, identifying idioms
for recovery rules.

Most programming languages feature comments and insignificant whitespace
that have no impact on the logical structure of a program. They are generally not
considered to be part of the AST. As discussed in Section 3, any form of layout,
which may include comments, is implicitly interleaved in the patterns of concrete
syntax productions. The parser skips over these parts in a similar fashion to the
noise skipping of island grammars. However, layout and comments interleave the
context-free syntax of a language at a much finer level than the recovery rules we
have discussed so far. Consider for example the Java statement

if (temp.greaterThan(MAX) /*API change pending*/)
fridge.startCooling();

in which a comment appears in the middle of the statement.
The key idea discussed in this section is to declare water tokens that may occur

anywhere that layout may occur. Using this idea, permissive grammars can be de-
fined with noise skipping recovery rules that are language-independent and more
fine grained than the chunk-based recovery rules above. To understand how this
can be realized, we need to understand the way that SDF realizes ‘character-level
grammars’.

Intermezzo: Layout in SDF In SDF, productions are defined in lexical syntax
or in context-free syntax. Lexical productions are normal context-free grammar
productions, i.e. not restricted to regular grammars. The only distinction between
lexical syntax and context-free syntax is the role of layout. The characters of an
identifier (lexical syntax) should not be separated by layout, while layout may
occur between the sub-phrases of an if-then-else statement, defined in context-free
syntax.

The implementation of SDF with scannerless parsing entails that individual
characters are the lexical tokens considered by the parser. Therefore, lexical pro-
ductions and context-free productions are merged into a single context-free gram-

154 Natural and Flexible Error Recovery for Generated Modular Language . . .

mar with characters as terminals. The result is a character-level grammar that
explicitly defines all the places where layout may occur. For example, the If pro-
duction is defined in Kernel-SDF [Vis97c], the underlying core language of SDF,
as follows4:

syntax
"if" LAYOUT? "(" LAYOUT? Expr LAYOUT? ")" LAYOUT? Stm ->

Stm {cons("If")}

Thus, optional layout is interleaved with the regular elements of the construct. It
is not included in the construction of abstract syntax trees from parse trees. Since
writing productions in this explicit form is tedious, SDF produces them through a
grammar transformation, so that, instead of the explicit rule above, one can write
the If production as in Figure 6:

context-free syntax
"if" "(" Expr ")" Stm -> Stm {cons("If")}

Water as Layout We can use the notion of interleaving context-free produc-
tions with optional layout in order to define a new variation of the water recovery
rules we have shown so far. Consider Figure 9, which combines elements of the
comment definition of Figure 6 and the chunk-based recovery rules from Figure 8.
It introduces optional water into the grammar, which interleaves the context-free
syntax patterns. As such, it skips noise on a much finer grained level than our
previous grammar incarnation. To separate patches of water into small chunks,
each associated with its own significant {recover} annotation, we distinguish
between WATERWORD and WATERSEP tokens. The production for the WATERWORD to-
ken allows to skip over identifier strings, while the production for the WATERSEP

token allows to skip over special characters that are neither part of identifiers nor
whitespace characters. The latter production is defined as an inverse pattern, using
the negation operator (~). This distinction ensures that large strings, consisting of
multiple words and special characters, are counted towards a higher recovery cost.

As an example input, consider a programmer who is in the process of intro-
ducing a conditional clause to a statement:

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Still missing the closing bracket, the standard SGLR parser would report an error
near the missing character, and would stop parsing. Using the adapted grammar,
a parse forest is constructed that considers the different interpretations, taking into
account the new water recovery rule. Based on the number of {recover} anno-
tations, the following would be the preferred interpretation:

if (temp.greaterThan)
fridge.startCooling();

4We have slightly simplified the notation that is used for non-terminals in Kernel-SDF.

4 Permissive Grammars 155

module Java-15-Permissive-Water
imports Java-15
exports
lexical syntax

[A-Za-z0-9_]+ -> WATERWORD {recover}
~[A-Za-z0-9_\ \t\12\r\n] -> WATERSEP {recover}
WATERWORD -> WATER
WATERSEP -> WATER
WATER -> LAYOUT {cons("WATER")}

lexical restrictions
WATERWORD -/- [A-Za-z0-9_]

Figure 9: Water recovery rules.

In the resulting fragment both the opening (and the identifier MAX are discarded,
giving a total cost of 2 recoveries. The previous, chunk-based incarnation of our
grammar would simply discard the entire if clause. While not yet ideal, the new
version maintains a larger part of the input. Since it is based on the LAYOUT
symbol, it also does not introduce new “water” nodes into the AST. For reporting
errors, the original parse tree, which does contain “water” nodes, can be inspected
instead.

The adapted grammar of Figure 9 no longer depends on hand-picking particu-
lar symbols at different granularities to introduce water recovery rules. Therefore,
it is effectively language-independent, and can be automatically constructed using
only the LAYOUT definition of the grammar.

4.3 Insertion Recovery Rules

So far, we have focused our efforts on recovery by deletion of erroneous substrings.
However, in an interactive environment, most parsing errors may well be caused
by missing substrings instead. Consider again our previous example:

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Our use case for this has been that the programmer was still editing the phrase,
and did not yet add the missing closing bracket. Discarding the opening (and the
MAX identifier allowed us to parse most of the statement and the surrounding file,
reporting an error near the missing bracket. Still, a better recovery would be to
insert the missing).

One way to accommodate for insertion based recovery is by the introduction
of a new rule to the syntax to make the closing bracket optional:

"if" "(" Expr Stm -> Stm {cons("If"), recover}

This strategy, however, is rather specific for a single production, and would sig-
nificantly increase the size of the grammar if we applied it to all productions. A
better approach would be to insert the particular literal into the parse stream.

156 Natural and Flexible Error Recovery for Generated Modular Language . . .

module Java-15-Permissive-LiteralInsertions
imports Java-15
exports
lexical syntax

-> ")" {cons("INSERT"), recover}
-> "]" {cons("INSERT"), recover}
-> "}" {cons("INSERT"), recover}
-> ">" {cons("INSERT"), recover}
-> ";" {cons("INSERT"), recover}

Figure 10: Insertion recovery rules for literal symbols.

Literal Insertion SDF allows us to simulate literal insertion using separate pro-
ductions that virtually insert literal symbols. For example, the lexical syntax sec-
tion in Figure 10 defines a number of basic literal-insertion recovery rules, each
inserting a closing bracket or other literal that ends a production pattern. This ap-
proach builds on the fact that literals such as ")" are in fact non-terminals that are
defined with a production in Kernel-SDF:

syntax
[\41] -> ")"

Thus, the character 41, which corresponds to a closing brace in ASCII, reduces
to the nonterminal “)”. A literal-insertion rule extends the definition of a literal
non-terminal, effectively making it optional by indicating that they may match
the empty string. Just as in our previous examples, {recover} ensures these
productions are deferred. The constructor annotation {cons("INSERT")} is
used as a labeling mechanism for error reporting for the inserted literals. As the
INSERT constructor is defined in lexical syntax, it is not used in the resulting
AST.

Insertion Rules for Opening Brackets In addition to insertions of closing
brackets in the grammar, we can also add rules to insert opening brackets. These
literals start a new scope or context. This is particularly important for composed
languages, where a single starting bracket can indicate a transition into a different
sublanguage, such as the |[and <| brackets of Figure 1 and Figure 2. Consider
for example a syntax error caused by a missing opening bracket in the SQL query
of the former figure:

SQL stm = // missing <|

SELECT password FROM Users WHERE name = ${user}
|>;

Without an insertion rule for the <| opening bracket, the entire SQL fragment
could only be recognized as (severely syntactically incorrect) Java code. Thus, it
is essential to have insertions for such brackets:

4 Permissive Grammars 157

lexical syntax
-> "<|" {cons("INSERT"), recover}

On Literals, Identifiers, and Reserved Words Literal-insertion rules can
also be used for literals that are not reserved words. This is an important property
when considering composed languages since, in many cases, some literals in one
sublanguage may not be reserved words in another. As an example, we discuss the
insertion rule for the end literal in the combined Stratego-Java language.

In Stratego, the literal end is used as the closing token of the if ... then
... else ... end construct. To recover from incomplete if-then-else
constructs, a good insertion rule is:

lexical syntax
-> "end" {cons("INSERT"), recover}

In Java, the string end is not a reserved word and is a perfectly legal identifier. In
Java, identifiers are defined as follows:5

lexical syntax
[A-Za-z_\$][A-Za-z0-9_\$]* -> ID

This lexical rule would match a string end. Still, the recovery rule will strictly be
used to insert the literal end, and never an identifier with the name “end”. The
reason why the parser can make this distinction is that the literal end itself is
defined as an ordinary symbol when normalized to kernel syntax:

syntax
[\101] [\110] [\100] -> "end"

The reason that SDF allows this production to be defined in this fashion is that in
the SGLR algorithm, the parser only operates on characters, and the end literal
has no special meaning other than a grouping of character matches.

The literal-insertion recovery rule simply adds an additional derivation for the
"end" symbol, providing the parser with an additional way to parse it, namely by
matching the empty string. As such, the rule does not change how identifiers (ID)
are parsed, namely by matching the pattern at the left hand side of the production
rule for the ID symbol. With a naive recovery strategy that inserts tokens into
the stream, identifiers (e.g., end in Java) could be inserted in place of keywords.
With our approach, these effects are avoided since the insertion recovery rules only
apply when a literal is expected.

Insertion Rules for String and Comment Closings Figure 11 specifies
recover rules for terminating the productions of the StringLiteral and Comment

symbols, first seen in Figure 6. Both rules have a {recover} annotation on
their starting literal. Alternatively, the annotation could be placed on the complete
production:

5In fact this production is a simplified version of the actual production. Java allows many other
(Unicode) letters and numbers to appear in identifiers.

158 Natural and Flexible Error Recovery for Generated Modular Language . . .

module Java-15-Permissive-LexicalInsertions
imports Java-15
exports
lexical syntax
INSERTSTARTQ StringPart* "\n" -> StringLiteral {cons("INSERTEND")}
"\"" -> INSERTSTARTQ {recover}
INSERTSTARTC CommentPart* EOF -> Comment {cons("INSERTEND")}
"/*" -> INSERTSTARTC {recover}

Figure 11: Insertion recovery rules for lexical symbols.

lexical syntax
"\"" StringPart* "\n" -> StringLiteral

{cons("INSERTEND"), recover}

However, the given formulation is beneficial for the runtime behavior of our adapted
parser implementation, ensuring that the annotation is considered before construc-
tion of the starting literal. The recovery rules for string literals and comments
match either at the end of a line, or at the end of the file as appropriate, depending
on whether newline characters are allowed in the original, non-recovering produc-
tions. An alternative approach would have been to add a literal insertion produc-
tion for the quote and comment terminator literals. However, by only allowing the
strings and comments to be terminated at the ending of lines and the end of file,
the number of different possible interpretations is severely reduced, thus reducing
the overall runtime complexity of the recovery.

Insertion Rules for Lexical Symbols Insertion rules can also be used to
insert lexical symbols such as identifiers. However, lexical symbols do have a
representation in the AST, therefore, their insertion requires the introduction of
placeholder nodes that represent a missing code construct, for example a NULL()
node. Since placeholder nodes alter the abstract syntax of the grammar, their intro-
duction adds to the complexity of tools that process the AST. However, for certain
use cases such as content completion in an IDE, lexical insertion can be useful.
We revisit the topic in Section 8.

4.4 Combining Different Recovery Rules

The water recovery rules of Section 4.2 and the insertion rules of Section 4.3 can
be combined to form a unified recovery mechanism that allows both discarding
and insertion of substrings:

module Java-15-Permissive
imports
Java-15-Permissive-Water
Java-15-Permissive-LiteralInsertions
Java-15-Permissive-LexicalInsertions

4 Permissive Grammars 159

Together, the two strategies maintain a fine balance between discarding and insert-
ing substrings. Since the water recovery rules incur additional cost for each water
substring, insertion of literals will generally be preferred over discarding multi-
ple substrings. This ensures that most of the original (or intended) user input is
preserved.

4.5 Automatic Derivation of Permissive Grammars
Automatically deriving recovery rules helps to maintain a valid, up-to-date re-
covery rule set as languages evolve and are extended or embedded into other lan-
guages. Particularly, as languages are changed, all recovery rules that are no longer
applicable are automatically removed from the grammar and new recovery rules
are added. Thus, automatic derivation helps to maintain language independence
by providing a generic, automated approach towards the introduction of recovery
rules.

SDF specifications are fully declarative, which allows automated analysis and
transformation of a grammar specification. We formulate a set of heuristic rules for
the generation of recovery rules based on different production patterns. These rules
are applied in a top-down traversal to transform the original grammar into a per-
missive grammar. The heuristics in this section focus on insertion recovery rules,
since these are language specific. The water recovery rules are general applicable
and added to the transformed grammar without further analysis. The heuristics
discussed in this section are based on our experience with different grammars.

So far, we only focused on a particular kind of literals for insertion into the
grammar, such as brackets, keywords, and string literals. Still, we need not restrict
ourselves to only these particular literals. In principle, any literal in the grammar
is eligible for use in an insertion recovery rule. However, for many literals, auto-
matic insertion can lead to unintuitive results in the feedback presented to the user.
For example, in the Java language “synchronized” is an optional modifier at the
beginning of a class declaration. We don’t want the editor to suggest to insert a
“synchronized” keyword. In those cases, discarding some substrings instead may
be a safer alternative. The decision whether to consider particular keywords for
insertion may depend on their semantic meaning and importance [DP95]. To take
this into account, expert feedback on a grammar is needed.

Since we have aimed at maintaining language independence of the approach,
our main focus is on more generic, structure-based properties of the grammar. We
have identified four different general classes of literals that commonly occur in
grammars:

• Closing brackets and terminating literals for context-free productions.

• Opening brackets and starting literals for context-free productions.

• Closing literals that terminate lexical productions where no newlines are
allowed (such as most string literals).

160 Natural and Flexible Error Recovery for Generated Modular Language . . .

module Java-15
...
context-free syntax
"{" BlockStm* "}" -> Block {cons("Block")}
"(" Expr ")" -> Expr {bracket}
"while" "(" Expr ")" Stm -> Stm {cons("While")}
...
"void" "." "class" -> ClassLiteral {cons("Void")}
(Anno | ClassMod)* "class" Id ... -> ClassHead
{cons("ClassHead")}

Figure 12: A selection of context-free productions that appear in the Java gram-
mar.

• Closing literals that terminate lexical productions where newlines are al-
lowed (such as block comments).

Each has its own particular kind of insertion rule, and each follows its own par-
ticular definition pattern. We base our generic, language independent recovery
technique on these four categories.

By grammar analysis, we derive recovery rules for insertions of the categories
mentioned above. With respect to the first and second category, we only derive
rules for opening and closing terminals that appear in a balanced fashion with
another literal (or a number of other literals). Insertions of literals that are not
balanced with another literal can lead to undesired results, since such constructs
do not form a clear nesting structure. Furthermore, we exclude lexical produc-
tions that define strings and comments, for which we only derive more restrictive
insertion rules given by the third and fourth category.

Insertion rules for the first category, closing bracket and terminating literal in-
sertions, are added based on the following criteria. First, we only consider context-
free productions. Second, the first and last symbols of the pattern of such a pro-
duction must be a literal, e.g., the closing literal appears in a balanced fashion.
Finally, the last literal is not used as the starting literal of any other production.
The main characteristic of the second category is that it is based on starting lit-
erals in context-free productions. We only consider a literal a starting literal if it
only ever appears as the first part of a production pattern in all rules of the gram-
mar. For the third category, we only consider productions with identical starting
and end literals where no newlines are allowed in between. Finally, for the fourth
category we derive rules for matching starting and ending literals in LAYOUT pro-
ductions. Note that we found that some grammars (notably the Java grammar of
[Bra+06]) use kernel syntax for LAYOUT productions to more precisely control
how comments are parsed. Thus, we consider both lexical and kernel syntax for
the comment-terminating rules.

As an example, consider the context-free productions of Figure 12. Looking
at the first production, and using the heuristic rules above, we can recognize that

4 Permissive Grammars 161

} qualifies as a closing literal. Likewise,) satisfies the conditions for closing
literals we have set. By programmatically analyzing the grammar in this fashion,
we collected the closing literal insertion rules of Figure 10 which are a subset of
the complete set of closing literal insertion rules for Java. From the productions
of Figure 12 we can further derive the { and (opening literals. In particular, the
while keyword is not considered for deriving an opening literal insertion rule,
since it is not used in conjunction with a closing literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuristic, an example can
be constructed where it fails. We have encountered a number of anomalies that
arose from our heuristic rules. For example, based on our heuristic rules, the Java
class keyword is recognized as a closing literal6, which follows from the “void”
class literal production of Figure 12, and from the fact that the class keyword is
never used as a starting literal of any production. In practice, we have found that
these anomalies are relatively rare and in most cases harmless.

We evaluated our set of heuristic rules using the Java, Java-SQL, Stratego,
Stratego-Java and WebDSL grammars, as outlined in Section 10. For these gram-
mars, a total number of respectively 19 (Java), 43 (Java-SQL), 37 (Stratego), 47
(Stratego-Java) and 32 (WebDSL) insertion rules were generated, along with a
constant number of water recovery rules as outlined in Figure 9. The complete set
of derived rules is available from [Kat+11].

4.6 Customization of Permissive Grammars
Using automatically derived rules may not always lead to the best possible recov-
ery for a particular language. Different language constructs have different seman-
tic meanings and importance. Different languages also may have different points
where programmers often make mistakes. Therefore a good error recovery mech-
anism is not only language independent, but is also flexible [DP95]. That is, it
allows grammar engineers to use their experience with a language to improve re-
covery capabilities. Our system, while remaining within the realm of the standard
SDF grammar specification formalism, delivers both of these properties.

Language engineers can add their own recovery rules using SDF productions
similar to those shown earlier in this section. For example, a common “rookie”
mistake in Stratego-Java is to use [| brackets |] instead of |[brackets]|. This
may be recovered from by standard deletion and insertion rules. However, the cost
of such a recovery is rather high, since it would involve two deletions and two
insertions. Other alternatives, less close to the original intention of the program-
mer, might be preferred by the recovery mechanism. Based on this observation, a
grammar engineer can add substitution recovery rules to the grammar:

lexical syntax
"[|" -> "|[" {recover, cons("INSERT")}
"|]" -> "]|" {recover, cons("INSERT")}

6Note that for narrative reasons, we did not include an insertion rule for this keyword in Figure 10.

162 Natural and Flexible Error Recovery for Generated Modular Language . . .

These rules substitute any occurrence of badly constructed embedding brackets
with the correct alternative, at the cost of only a single recovery. Similarly, gram-
mar engineers may add recovery rules for specific keywords, operators, or even
placeholder identifiers as they see fit to further improve the result of the recovery
strategy.

Besides composition, SDF also provides a mechanism for subtraction of lan-
guages. The {reject} disambiguation annotation filters all derivations for a
particular set of symbols [Bra+02b]. Using this filter, it is possible to disable some
of the automatically derived recovery rules. Consider for example the insertion
rule for the class keyword, which arose as an anomaly from the heuristic rules
of the previous subsection. Rather than directly removing it from the generated
grammar, we can disable it by extending the grammar with a new rule that dis-
ables the class insertion rule.

lexical syntax
-> "class" {reject}

It is good practice to separate the generated recovery rules from the customized
recovery rules. This way, the generated grammar does not have to be adapted and
maintained by hand. A separate grammar module can import the generated defi-
nitions, while adding new, handwritten definitions. SDF allows modular composi-
tion of grammar definitions.

5 Parsing Permissive Grammars with Backtrack-
ing

When all recovery rules are taken into account, permissive grammars provide
many different interpretations of the same code fragment. As an example, Fig-
ure 13 shows many possible interpretations of the string i=f(x)+1;. The alter-
native interpretations are obtained by applying recovery productions for inserting
parentheses or removing text parts. This small code fragment illustrates the explo-
sion in the number of ambiguous interpretations when using a permissive grammar.
The option of inserting opening brackets results in even more possible interpreta-
tions, since bracket pairs can be added around each expression that occurs in the
program text.

Conceptually, the use of grammar productions to specify how to recover from
errors provides an attractive mechanism to parse erroneous fragments. All possible
interpretations of the fragment are explored in parallel, using a generalized parser.
Any alternative that does not lead to a valid interpretation is simply discarded,
while the remaining branches are filtered by disambiguation rules applied by a post
processor on the created parse forest. However, from a practical point of view, the
extra interpretations created by recovery productions negatively affect time and
space requirements. With a generalized parser, all interpretations are explored in

5 Parsing Permissive Grammars with Backtracking 163

i = f (x) + 1 ;
i = f (x + 1);
i = f (x) ;
i = f (1);
i = (x) + 1 ;
i = (x + 1);
i = x + 1 ;
i = f ;
i = (x) ;
i = x ;
i = 1 ;

f (x + 1);
f (x) ;
f (1);

;

Figure 13: Interpretations of i=f(x)+1; with insertion recovery rules (under-
lined) and water recovery rules.

parallel, which significantly increases the workload for the parser, even if there are
no errors to recover from.

In this section we address the performance problems introduced by the multiple
recover interpretations. We extend the SGLR algorithm with a selective form of
backtracking that is only applied when actually encountering a parsing error. The
performance problems during normal parsing are simply avoided by ignoring the
recover productions.

5.1 Backtracking

As it is not practical to consider all recovery interpretations in parallel with the
normal grammar productions, we need a different strategy to efficiently parse with
permissive grammars. As an alternative to parsing different interpretations in par-
allel, backtracking parsers revisit points of the file that allow multiple interpre-
tations (the choice points). Backtrack parsing is not a correct implementation of
generalized parsing, since a backtracking parser only produces a single possible
parse. However, when applied to error recovery, this is not problematic. For typ-
ical cases, parsing only a single interpretation at a time suffices; ultimately, only
one recovery solution is needed.

To minimize the overhead of recovery rules, we introduce a selective form of
backtracking to (S)GLR parsing that is only used for the concern of error recov-
ery. We ignore all recovery productions during normal parsing, and employ back-
tracking to apply the recovery rules only once an error is detected. Backtracking

164 Natural and Flexible Error Recovery for Generated Modular Language . . .

void methodX() {
if (true)

foo();
}
int i = 0;
while (i < 8)

i=bar(i);
}

Figure 14: The superfluous closing bracket is detected at the while keyword.

parsers exhibit exponential behavior in the worst case [Joh+04]. For pathological
cases with repetitive backtracking, the parser is aborted, and a secondary, non-
correcting, recovery technique is applied.

5.2 Selecting Choice Points for Backtracking

A parser that supports error recovery typically operates by consuming tokens (or
characters) until an erroneous token is detected. At the point of detection of an
error, the recovery mechanism is activated. A major problem for error recovery
techniques is the difference between the actual location of the error and the point
of detection [DP95]. Consider for example the erroneous code fragment in Fig-
ure 14. The superfluous closing bracket (underlined) after the foo(); statement
is obviously intended as a closing bracket for the if construct. However, since
the if construct misses an opening bracket, the closing bracket is misinterpreted
as closing the method instead of the if construct. At that point, the parser simply
continues, interpreting the remaining statements as class-body declarations. Con-
sequently, the parser fails at the reserved while keyword, which can only occur
inside a method body. More precisely, with a scannerless parser, it fails at the un-
expected space after the characters w-h-i-l-e; the character cannot be shifted
and all branches (interpretations at that point) are discarded.

In order to properly recover from a parse failure, the text that precedes the
point of failure must be reinterpreted using a correcting recovery technique. Using
backtracking, this text is inspected in reverse order, starting at the point of de-
tection, gradually moving backwards to the start of the input file. Using a reverse
order helps maintain efficiency, since the actual error is most likely near the failure
location.

As generalized LR parsers process different interpretations in parallel, they use
a more complicated stack structure than regular LR parsers. Instead of a single,
linear stack, they use a graph-structured stack (GSS) that efficiently stores the
different interpretation branches, which are discarded as input tokens or characters
are shifted [Tom88]. All discarded branches must be restored in case the old state
is revisited, which poses a challenge for applying backtracking.

5 Parsing Permissive Grammars with Backtracking 165

To make it possible to resume parsing from a previous location, the complete
stack structure for that location is stored in a choice point. We found that it is
prohibitive (in terms of performance) to maintain the complete stack state for each
shifted character. To minimize the overhead introduced, we only selectively record
the stack structure. Lines have meaning in the structure of programs as units of
editing. Typically, parse errors are clustered in the line being edited. We base our
heuristic for storing choice points on this intuition. In the current implementation,
we create one backtracking choice point for each line of the input file.

5.3 Applying Recovery Rules

A parse failure indicates that one or more syntax errors reside in the prefix of
the program before the failure location. Since it is unlikely that the parser can
consume many more tokens after a syntax error, these errors are typically located
near the failure location. To recover from multiple errors, multiple corrections are
sometimes required. To recover from syntax errors efficiently, we implement a
heuristic that expands the search space with respect to the area that is covered and
with respect to the number of corrections (recover rule applications) that are made.

Figure 15 illustrates how the search heuristic is applied to recover the Java frag-
ment of Figure 14. The algorithm iteratively explores the input stream in reverse
order, starting at the nearest choice point. With each iteration of the algorithm,
different candidate recoveries are explored in parallel for a restricted area of the
file and for a restricted number of recovery rule applications. For each follow-
ing iteration the size of the area and the number of recovery rule applications are
increased.

Figure 15a shows the parse failure after the while keyword. The point of
failure is indicated by the triangle. The actual error, at the closing bracket after the
if statement, is underlined. The figure shows the different choice points that have
been stored during parsing using circles in the left margin.

The first iteration of the algorithm (Figure 15b) focuses on the line where the
parser failed. The parser is reset to the choice point at the start of the line, and en-
ters recovery mode. At this point, only candidate recoveries that use one recovery
production are considered; alternative interpretations formed by a second recovery
production are cut off. Their exploration is postponed until the next iteration. In
this example scenario, the first iteration does not lead to a valid solution.

For the next iteration, in Figure 15c, the search space is expanded with respect
to the size of the inspected area and the number of applied recovery rules. The new
search space consists of the line that precedes the point of detection, plus the error
detection line where the recovery candidates with two changes are considered,
resuming the interpretations that were previously cut off.

In Figure 15d, the search space is again expanded with the preceding line.
This time, a valid recovery is found: the application of a water recovery rule that
discards the closing bracket leads to a valid interpretation of the erroneous code

166 Natural and Flexible Error Recovery for Generated Modular Language . . .

Figure 15: Applying error recovery rules with backtracking. The initial point of
failure and the start of the recovery search space is indicated by a triangle. The
entire search space is indicated using dashed lines, where the numbers to the side
indicate the number of recovery rules that can be applied at that line.

fragment. Once the original line where the error was detected can be successfully
parsed, normal parsing continues.

5.4 Algorithm

The implementation of the recovery algorithm requires a number of (relatively
minor) modifications of the SGLR algorithm used for normal parsing. First, pro-
ductions marked with the {recover} attribute are ignored during normal pars-
ing. Second, a choice point is stored at each newline character. And finally, if all
branches are discarded and no accepting state is reached, the Recover function
is called. Once the recovery is successful, normal parsing resumes with the newly
constructed stack structure.

Figure 16 shows the recovery algorithm in pseudo code. The Recover func-
tion controls the iterative search process described in Section 5.3. The function
starts with some initial configuration (line 2–3), initializing the candidates
variable, and selecting the last inserted choice point. The choice points are then
visited in reverse order (line 4–7), until a valid interpretation (non-empty stack
structure) is found (line 7).

For each choice point that is visited, the ParseCandidates function is
called. The ParseCandidates function has a twofold purpose (line 16, 17):

5 Parsing Permissive Grammars with Backtracking 167

RECOVER(choicePoints, failureOffset)

1 � Constructs a recovery stack structure (GSS) for the parse input
2 after the failure location
3 candidates ← {}
4 choicePoint ← Last inserted choicepoint
5 do
6 (stacks, candidates)← PARSECANDIDATES(candidates,
7 choicePoint , failureOffset)
8 choicePoint ← Preceding choicepoint (or choicePoint if none)
9 until | stacks | > 0

10 return stacks

PARSECANDIDATES(candidates, choicePoint , failureOffset)

9 � Parses in parallel previously collected candidate recover branches,
10 while cutting off and collecting new recover candidates
11 � Input:
12 candidates - Unexplored recover branches that were created
13 in previous loop
14 choicePoint - The start configuration for the parser
15 failureOffset - Location were the parser originally failed
16 � Output:
17 stacks - recovered stacks at the accept location
18 newCandidates - new unexplored recover branches for
19 the parsed fragment
20
21 stacks ← choicePoint .stacks
22 offset ← choicePoint .offset
23 newCandidates ← {}
24 do
25 stacks ← stacks ∪ { c | c ∈ candidates ∧ c.offset = offset}
26 (stacks, recoverStacks)← PARSECHARACTER(stacks,
27 offset , true)
28 newCandidates ← newCandidatess ∪ recoverStacks
29 offset = offset +1
30 until offset = (failureOffset +ACCEPT _INTERVAL)
31 return (stacks,newCandidates)

PARSECHARACTER(stacks, offset , inRecoverMode)

29 � Parses the input character at the given offset.
30 � Output:
31 parseStacks - stacks created by applying the normal
32 grammar productions
33 recoverStacks - stacks created by applying recover productions
34 (in recover mode)
35 return (parseStacks, recoverStacks)

Figure 16: A backtracking algorithm to apply recovery rules.

168 Natural and Flexible Error Recovery for Generated Modular Language . . .

first, it tries to construct a valid interpretation (line 16) by exploring candidate
recover branches; second, it collects new candidate recover branches (line 17)
the exploration of which is postponed until the next iteration. Candidate recover
branches are cut off recover interpretations of a prefix of the program. The Parse-
Candidates function reparses the fragment that starts at the choice point loca-
tion and ends at the accept location (line 19–26). We heuristically set the ACCEPT_-
INTERVAL on two more lines and at least twenty more characters being parsed after
the failure location. For each character of this fragment, previously cut off candi-
dates are merged into the stack structure (line 23) so that they are included in the
parsing (line 24); while new candidates are collected by applying recover produc-
tions on the stack structure (line 24–25, line 31).

The main idea, implemented in line 23-25 and the ParseCharacter func-
tion (line 28–32), is to postpone the exploration of branches that require multiple
recover productions, thereby implementing the expanding search space heuristic
described in Section 5.3.

After the algorithm completes and finds a non-empty set of stacks for the
parser, it enters an optional disambiguation stage. In case more than one valid
recovery is found, stacks with the lowest recovery costs are preferred. These costs
are calculated as the sum of the cost of all recovery rules applied to construct the
stack. We employ a heuristic that weighs the application of a water recovery rule as
twice the cost of the application of an insertion recovery rule, which accounts for
the intuition that it is more common that a program fragment is incomplete during
editing than that a text fragment was not intended and therefore should be deleted.
Ambiguities obtained by application of a recovery rule annotated with {reject}
form a special case. The reject ambiguity filter removes the stack created by the
corresponding rule from the GSS, thereby effectively disabling the rule.

6 Layout-Sensitive Recovery of Scoping Struc-
tures

In this section, we describe a recovery technique specific for errors in scoping
structures. Scoping structures are usually recursive structures specified in a nested
fashion [Cha91]. Omitting brackets of scopes, or other character sequences mark-
ing scopes, is a common error made by programmers. These errors can be ad-
dressed by common parse error recovery techniques that insert missing brackets.

However, as scopes can be nested, there are often many possible positions
where a missing bracket can be inserted. The challenge is to select the most ap-
propriate position.

As an example, consider the Java fragment in Figure 17. This fragment could
be recovered by inserting a closing bracket at the end of the line with the second
opening bracket, or at any line after this line. However, the use of indentation
suggests the best choice may be just before the int x; declaration.

6 Layout-Sensitive Recovery of Scoping Structures 169

class C {
void m() {
int y;

int x;
}

Figure 17: Missing }.

One approach to handle this problem is to take secondary notation like indenta-
tion into account during error recovery. Bridge parsing, introduced by [NN+09b]7,
uses this particular approach. This scope recovery approach can be combined with
the permissive grammar approach presented in the previous section.

6.1 Bridge Parsing

Bridge parsing provides a technique specifically targeted at improved recovery of
scope errors using secondary notation such as indentation. The technique as such
is independent of any specific parsing formalism. It may be used as a standalone
processor of erroneous files where recovery otherwise fails: given an erroneous
file, or section of a file, the bridge parser analyses the content and provides sug-
gestions on where to insert missing brackets. Based on a set of rules that describe
the typical relation between scopes and layout for Java, a bridge parser can cor-
rectly recover cases such as the example above.

Internally, a bridge parser contains three parts: a tokenizer, a model builder,
and a repairer. The tokenizer provides a list of interesting tokens from an input
text. Tokens starting and ending scopes are referred to as islands; tokens interest-
ing for construction of scopes, or recovery of scopes, are referred to as reefs; and
remaining tokens are considered to be water. The terms island and water are used
in the same fashion as in island grammars [DK99; Moo01; Moo02]. Reefs, added
for bridge parsing, are tokenwise like islands, but have a different role in the model
constructed from the token list. Figure 18 shows an example of a token list for the
program fragment in Figure 17. Each part of the fragment is mapped to either an
island, reef, or water. For the benefit of the model builder algorithm, the token list
is padded with some additional tokens at the start and end.

After tokenization, the model builder constructs scopes based on information
in the token list. For instance, each reef in the token list in Figure 18 has a number
indicating indentation level.8 This indentation information is key to construction of
scopes, represented as bridges, connecting two islands, in the model. The model

7Emma Nilsson-Nyman, the first author of the cited bridge parser paper, has changed her name to
Emma Söderberg and is one of the authors of this paper.

8Note that in our implementation, we determine the indentation level by counting the number of
spaces, treating tabs as a fixed number of spaces. The relation between tabs and spaces could also be
determined from the editor settings.

170 Natural and Flexible Error Recovery for Generated Modular Language . . .

"class C " "{" IND "void m() " "{" IND "int y;" IND "int x;" IND "}"

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

Figure 18: A tokenization of the example program in Figure 17 where text is
mapped to islands (double edges), water (W), and reefs (R(n)). The number n in a
reef R(n) represents the indentation level of the reef.

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

broken
}

recovery

Figure 19: A bridge parser model with bridges (arches) between matching is-
lands (double edged nodes). Islands missing a bridge correspond to broken scopes
(broken). The bridge repairer will try to recover such scopes by insertion of new
matching islands (recovery).

builder decides which two islands to connect using an algorithm that considers
patterns of tokens surrounding islands, and rules for when patterns match. For
instance, in Figure 19 bridges have been added to the token list in Figure 18. The
added bridges connect the start and end of the fragment, and two of the islands,
while one island remains unmatched. In this example, islands are matched based
on the indentation of the first reef to their left. For the two matched islands their
corresponding reef shares the same indentation, while their is no such match for
the island without a bridge. Islands like this one, without a bridge, are considered
broken and representatives of broken scopes.

After construction of bridges, the repairer takes over. The purpose of the re-
pairer is to recover broken scopes based on as set of patterns and rules. The pur-
pose of the patterns is to identify appropriate so called construction sites for a
recovery. Once such a construction site has been found, the rules are used to de-
cide how to insert a matching so called artificial island and create a bridge. For
instance, in Figure 19 a construction site is found based on a pattern identifying
indentation shifts, and an artificial islands is inserted to match the broken island
and recover the scope error. Insertion of islands, like in this example, correspond
to the recovery suggestions a bridge parser provides after it is done.

A more complete description of the algorithm, incrementally constructing mul-
tiple bridges, is given by [NN+09b].

7 Layout-Sensitive Region Selection 171

6.2 Combining Permissive Grammars and Bridge Pars-
ing

As a recovery technique, bridge parsing forms a supplementary approach that can
be used together with permissive grammars introduced in Section 4. Permissive
grammars and bridge parsing share their inspiration from island grammars [DK99;
Moo01; Moo02], with the difference that a bridge parser employs a scanner.

The use of a scanner in bridge parsing may appear contrary to the scanner-
less nature of SGLR. One could imagine that a scannerless version of a bridge
parser would be better suited for an integration to SGLR. That is, based on an ac-
curate (scannerless) lexical analysis, additional reefs could be identified using the
keywords of a language. However, previous results showed that doing so only
marginally improves recovery quality [Jon+09]. Also, practical experience has
shown that a bridge parser is most time and memory-efficient when independent
from a specific grammar, focusing just on the scoping structures of the language.
For this reason and for simplicity, the bridge parsers used in this paper only include
scope tokens and layout reefs.

This combined approach has limitations with regard to embedded languages,
where a token may have different syntactic meanings: { might be a scope delim-
iter in one language and an operator in another. Still, the layout-sensitive bridge
model gives an approximation of the scoping structure in those cases, which can
improve recovery results when used in combination with recovery rules. As a
layout-sensitive technique, bridge parsing served as an inspiration to the layout-
sensitive regions discussed in the next section.

7 Layout-Sensitive Region Selection
In this section we describe a layout-sensitive region recovery algorithm that im-
proves recovery efficiency and helps cope with pathological cases not easily ad-
dressed with only permissive grammars, backtracking, and bridge parsing. Re-
lying on the increasing search space of permissive grammars and backtracking,
it is not always feasible to provide good recovery suggestions in an acceptable
time span. Problems can arise when the distance between the error location and
the detection location is exceptionally large, or when the recovery requires many
combined recovery rule applications. The latter can occur when multiple errors
are tightly clustered, or when no suitable recovery rule is at hand for a particular
error. In general, a valid parse can be found after expanding the search space, but
at a risk of a high performance cost, and potentially resulting in a complex network
of recovery suggestions that do not lead to useful feedback for programmers. Sec-
tion 4.3 discusses an example in which an entire SQL fragment would be parsed
as (severely incorrect) Java code.

To address these concerns, this section introduces an approach to identify the
region in which the actual error is situated. By constraining the recovery sugges-

172 Natural and Flexible Error Recovery for Generated Modular Language . . .

class X {
int i;

void method() {
i = 1;
if (true) {

foo();
bar();

}
return;

}
}

Figure 20: Indentation closely resembles the hierarchical structure of a program.

tions to a particular part of the file, region selection improves the efficiency as well
as the quality of the recovery, avoiding suggestions that are spread out all over the
file.

In some cases it is better to ignore a small part of the input file, rather than to try
and fix it using a combination of insertions and discarded substrings. As a second
application of the regional approach, region skipping is used as a fallback recovery
strategy that discards the erroneous region entirely in case a detailed analysis of
the region does not lead to a satisfactory recovery.

7.1 Nested Structures as Regions

Language constructs such as statements and methods are elements of list struc-
tures. List elements form free standing blocks, in the sense that they can be omit-
ted without influencing the syntactic interpretation of other blocks. It follows that
erroneous free standing blocks can simply be skipped, providing a coarse recov-
ery that allows the parser to continue. We conclude that list elements are suitable
regions for regional error recovery.

The bridge parsing technique discussed in Section 6 exploits layout charac-
teristics to detect the intended nesting structure of a program. In this section,
we present a region selection technique that, inspired by bridge parsing, uses in-
dentation to detect erroneous structures. Indentation typically follows the logical
nesting structure of a program, as illustrated in Figure 20. The relation between
constructs can be deduced from the layout. An indentation shift to the right in-
dicates a parent-child relation, whereas the same indentation indicates a sibling
relation. The region selection technique inspects the parent and sibling structures
near the parse failure location to detect the erroneous region.

Indentation usage is not enforced by the language definition. Proper use of
layout is a convention, being part of good coding practice. We generally assume
that most programmers apply layout conventions, which is reinforced by the appli-
cation of automatic formatters. Furthermore we assume that indentation follows

7 Layout-Sensitive Region Selection 173

Figure 21: TODO

the logical nesting structure. However, we should keep in mind the possibility of
inconsistent indentation usage which decreases the quality of the results. The sec-
ond assumption we make is that programs contain free standing blocks, i.e. that
skipping a region still yields a valid program. Most programming languages seem
to meet this assumption. If both assumptions are met, layout-sensitive region se-
lection can improve the quality and performance of a correcting technique, and
offer a fallback recovery technique in case the correcting technique fails.

7.2 Regions based on Indentation

We view the source text as a tree-structured collection of lines, whereby the parent-
child relation between lines are determined by indentation shifts. Thus, given a
line l, line p is the parent of l if and only if l is strictly more indented than p, and
line l succeeds line p, and no lines exist between l and p that have less indentation
than l. Lines with the same parent are siblings of each other. Figure 21 illustrates
the parent-child relation for some small code fragments. The line if(true){
in the left fragment is the parent of the sibling lines foo(); and bar();. The
mid and right fragment illustrate how the parent-child relation applies in case of
inconsistent indentation; by definition, child nodes are more indented than their
parent, however, the siblings in these fragments do not all have the same indent
value.

A parent-child relation between two lines is a strong indication that the code
constructs associated to these lines are also in parent-child relation. Similarly, a
sibling relation between two lines indicates that either their associated code con-
structs are siblings as well, or that both lines belong to the same multi-line con-
struct. Figure 22 provides some examples of multi-line constructs with various
indentation patterns. For all constructs in the figure it holds that a parent-child
relation between two lines reflects a parent-child relation between the code con-
structs associated to these lines. The shown constructs are different with respect
to the number of siblings (of the first line) that are part of the construct. Another
type of multi-line constructs are constructs that wrap over to the subsequent, more
indented line. In that case, a parent child relation exists between two lines that
actually belong to the same construct. This is an example of a small inconsistency
that is not harmful to the overall approach.

We decompose a code fragment into candidate regions, based on the assump-
tion that parent-child relations between lines reflect parent-child relations between

174 Natural and Flexible Error Recovery for Generated Modular Language . . .

Figure 22: Multi-line Java constructs with various indentation patterns. The
solid bars indicate layout regions that correspond to code regions, the hatched bars
indicate layout regions that are in fact unwished artifacts.

the associated constructs, e.g., if a line is contained in a region then its child lines
are also contained in that region. Unfortunately, indentation alone does not provide
sufficient information to demarcate regions exactly. The main limitation is the am-
biguous interpretation of sibling lines, which, by assumption, either belong to the
same code construct or to separate constructs that are siblings. Given a single line,
we construct multiple indentation-based regions: the smallest region consist of the
line plus its child lines, the alternate regions are obtained by subsequently includ-
ing sibling lines, including their children. The bars in Figure 22 show the different
regions that are constructed for the first line of the given fragments. Only the re-
gions corresponding to the solid bars represent actual code constructs or (sub)lists
of code constructs. The other bars are unwanted artifacts that, based on indenta-
tion alone, can not be distinguished from real regions. Notice that most of these
ambiguities could be solved by using language specific information, for example
about the use of curly braces in Java; lines that start with a curly brace are most
likely to be part of the region being constructed. However, we implemented the
algorithm in a language independent way.

7.3 Region Selection
We follow an iterative process to select an appropriate region that encloses a syntax
error. In each iteration, a different candidate region is considered. This candidate
is then validated and either accepted as erroneous or rejected; in case of a rejected
candidate, another candidate is considered.

The selection of candidate regions faces two challenges: First, the start line of
the erroneous code construct is not known, second, multiple unsuitable regions are
constructed because of the ambiguous interpretation of sibling lines. We adopt a
pragmatic approach, subsequently selecting candidate regions for a different start
line location with a different number of sibling lines. We start with validating

7 Layout-Sensitive Region Selection 175

Figure 23: A candidate region is validated and successfully discarded.

(a) A candidate region is rejected.

(b) An alternative candidate region is validated and successfully discarded.

Figure 24: Iterative search for a valid region.

small regions near the failure location, then we continue with validating regions of
increased size as well as regions that are located further away from the failure lo-
cation. More details are provided in Section 7.4 that describes the region selection
algorithm.

A region is validated as erroneous in case discarding of that region solves the
syntax error, e.g., parsing continues after the original failure location. We show
example scenarios in Figure 23 and Figure 24. Figure 23 shows a syntax error and
the point of detection, indicated by a triangle (left). A candidate region is selected
based on the alignment of the void keyword and the closing bracket (middle fig-
ure), and validated by discarding the region. Since the parsing of the remainder
of the fragment is successful (right), the region is accepted as erroneous. Fig-
ure VII.24(a) shows an example where a candidate region is rejected. Based on
the point of detection, an obvious candidate region is the m2 method (middle),
which is discarded (right). However, the attempt to parse the succeeding construct
leads to a premature parse failure (right), therefore the region is rejected. In Fig-

176 Natural and Flexible Error Recovery for Generated Modular Language . . .

ure VII.24(b) an alternative candidate region is selected. This region is validated
as erroneous.

The region validation criterion should balance the risk of evaluating a syntacti-
cally correct candidate region as erroneous, and the risk of evaluating an erroneous
candidate region as syntactically correct. Both cases lead to large regions and/or
spurious syntax errors, which should be avoided. The underlying problem are
multiple errors; it is not possible to distinguish a secondary parse failure from a
genuine syntax error that happens to be close-by. We address the issue of multiple
syntax errors by implementing a heuristic accept criterion. The criterion consid-
ers a candidate region as erroneous if discarding results in two more lines of code
parsed correctly. The criterion is established after some experimentation and has
shown good practical results.

7.4 Algorithm

Figure 25 shows the region selection algorithm in pseudo-code. The function
SelectErroneousRegion takes as input the failure line and returns as output the
erroneous region described by its start line and end line. The nested for loops (line
6,7) implement the iterative search process described in Section 7.3. The iteration
starts with the smallest region (line 6, sibCount=0) that can be constructed for
the failure line (line 7, bwSibIndex=0). In the first iteration (line 7), regions are
selected at increasing distance from the failure location. The second iteration (line
6) increases the size of the selected regions. The iteration stops in case a selected
region is validated as erroneous (lines 11-13). If no erroneous region is found, the
search process continues by recursively visiting the parent of the failure line (line
16). For performance reasons, we restrict the maximum size of the visited regions
(line 4) and the maximum number of backtracked lines (line 5). Good practical
results were obtained with a maximum size of 5 sibling lines and 5 backtracking
steps.

Figure 26 illustrates the region selection procedure applied to a small code
fragment with a parse failure at the marked line. The vertical bars represent
the regions that are subsequently visited by increasing the backtracking distance
(bwSibIndex) and the region size (sibCount). The right most bar represents
the parent region visited in the recursion step.

7 Layout-Sensitive Region Selection 177

SELECTERRONEOUSREGION(failureLine)

1 � Input: Line where the parse failure occurs (or a parent of this line)
2 � Output: Region that contains the error
3
4 � MAX _SIBLINES_COUNT : Max number of sibling lines in
5 the candidate regions
6 � MAX _BW _INDEX : Max number of sibling lines that are
7 backtracked
8 for sibCount in 0 to MAX _SIBLINES_COUNT
9 for bwSibIndex in 0 to MAX _BW _INDEX

10 startLine ← GETPRECEDINGSIBLINE(failureLine,
11 bwSibIndex)
12 sibLine ← GETFOLLOWINGSIBLINE(startLine,
13 sibCount)
14 endLine ← GETLASTDESCENDANTLINE(sibLine)
15 if startLine , endLine exist and TRYSKIPREGION(
16 startLine, endLine)
17 then return (startLine, endLine)� erroneous region
18 end
19 end
20 end
21 return SELECTERRONEOUSREGION(GETPARENTLINE(failureLine))

TRYSKIPREGION(startline, endline)

17 � Output: true iff discarding the region startline . . . endline
18 lets parsing continue after the failure location

GETPRECEDINGSIBLINE(line, bwCount)

18 � Output: Sibling line that preceeds line by bwCount siblings

GETFOLLOWINGSIBLINE(line, fwCount)

19 � Output: Sibling line that succeeds line by fwCount siblings

GETLASTDESCENDANTLINE(line)

20 � Output: Last descendant line of line, or line if no descendants exist

GETPARENTLINE(line)

21 � Output: Parent line of line

Figure 25: Algorithm to select a discardable region that contains the syntax error.

178 Natural and Flexible Error Recovery for Generated Modular Language . . .

Figure 26: Candidate regions subsequently tested for the indented code fragment
at the left. Candidate regions are selected by backtracking (bwSibIndex) and by
extending the number of sibling lines that are contained in the region (sibCount).
Finally, the parent line is visited in the recursion step.

7.5 Practical Considerations

Separators and Operators Region selection
works for structures that form free standing blocks
in the grammar, e.g., list elements and optional el-
ements such as the else block in an if-else state-
ment. A practical consideration are separators and op-
erators that may reside between language constructs.
For example, the constructs FAILED and score <= 8

in this Java fragment can only be discarded if the sep-
arator (,), respectively the operator (&&) that connects
these constructs with their preceding constructs are
discarded as well. To address this issue, we have ex-
tended the region selection schema with a candidate
region consisting of the original region plus the lexi-
cal token at the end of the preceding sibling line.

public enum Grade {
EXCELLENT ,

PASSED ,

FAILED
}

Grade getGrade(){
...
if(

6 <= score &&

score <= 8

) return Grade.PASSED;
...

}

8 Applying Error Recovery in an Interactive Environment 179

Multi-line Comments and Strings The selec-
tion procedure can generally select erroneous regions
that are not located at the failure location. However, if
the distance between the error and the failure location
is too large, the region selection schema fails to locate
the error. A particularly problematic case commonly
seen in practice are unclosed flat structures such as
block comments or multi-line strings. After the open-
ing of the block comment (/*), the parser accepts all
characters until the block comment is ended (*/) or
the end of the file is reached. As a consequence, a
missing block comment ending is typically detected
at a large distance from the error location. The stack
structure of the parser in these scenarios is charac-
terized by a reduction that involves many characters
starting from the characters that open the flat construct
(/*). If this stack structure is recognized, a candidate
region is selected from the start of the reduction, mak-
ing it possible to cope with flat multi-line structures
such as block comments for which errors may cause a
parse failure far from the actual error location.

/* Comments ...
int foo(){

...
}
...
EOF

8 Applying Error Recovery in an Interactive En-
vironment

A key goal of error recovery is its application in the construction of IDEs. Modern
IDEs rely heavily on parsers to produce abstract syntax trees that form the basis
for editor services such as the outline view, content completion, and refactoring.
Users expect these services even when the program has syntactic errors, which is
very common when source code is edited interactively. Experience with modern
IDEs shows that for most services it is not a problem to operate on inaccurate or
incomplete information as a consequence of syntax errors; for some services such
as refactorings, errors and warnings can be presented to the user. In this section, we
describe the role of error recovery in different editor services and show language-
parametric techniques for using error recovery with these services.

8.1 Efficient Construction of Languages and Editor Ser-
vices

While IDEs for languages have been constructed and used for several decades,
only recently did they become significantly more sophisticated and indispensable
for productivity of software developers. In early 2001, IntelliJ IDEA [Sau+06]

180 Natural and Flexible Error Recovery for Generated Modular Language . . .

revolutionized the IDE landscape [Fowb], setting a new standard for highly in-
teractive and language-specific IDE support for textual languages. Since then,
providing good IDE support for new languages has become mandatory, posing a
significant challenge for language engineers.

As IDEs become both more commonplace and more sophisticated, it becomes
increasingly important to lower the threshold of creating new languages and de-
veloping IDEs for these languages. In order to make this possible, language work-
benches have been developed that combine the construction of languages and ed-
itor services. Language workbenches improve the productivity of language engi-
neers by providing specialized languages, frameworks, and tools [Fowa]. Exam-
ples of language workbenches for textual languages include EMFText [Hei+09],
MontiCore [Kra+08; Grö+08], Spoofax [KV10], TCS [Jou+06], and Xtext [EV06].

The central artifact that language engineers define in a language workbench
is the grammar of a language, which is used to generate a parser. The generated
parser runs in the background with each key press or after a small delay passes,
and provides a basis for all interactive editor services. Traditionally, IDEs used
handwritten parsers or only did a lexical analysis of source code for syntax high-
lighting in real-time. By using a generated parser that runs every time the source
code changes, they have access to more accurate, more up-to-date information, but
they also crucially depend on the parser’s performance and its support for error re-
covery.

8.2 Guarantees on Recovery Correctness

Using permissive grammars, bridge parsing and regional recovery, the parser can
construct ASTs for syntactically incorrect inputs. These trees can be constructed
using generated or handwritten recovery rules, and may have gaps for regions that
could not be parsed. Ultimately, error recovery provides a speculative interpreta-
tion of the intended program, which may not always be the desired interpretation.
As such, it is both unavoidable and not uncommon that editor services operate
on inaccurate or incomplete information. Experience with modern IDEs shows
that this is not a problem in itself, as programmers are shown both syntactic and
semantic errors directly in the editor.

While error recovery is ultimately a speculative interpretation of an incorrect
input, our approach does guarantee well-formedness of ASTs. That is, it will
only produce ASTs with tree nodes that conform to the abstract structure imposed
by production rules of the original (non-permissive) grammar. This property is
maintained for all our recovery techniques. With respect to permissive grammars
(Section 4 and 5), water recovery rules (Section 4.2) and literal insertion recovery
rules (Section 4.3 and 4.5) do not contribute AST nodes, while insertion recovery
rules for lexical productions (Section 4.3, 4.5) only contribute lexical tree nodes
that correspond to the recovered lexicals. Bridge parsing (Section 6) and region
recovery (Section 7) do not compromise the well-formedness property of the parse

8 Applying Error Recovery in an Interactive Environment 181

Figure 27: An editor for Stratego with embedded quotations of Java code.

result since both techniques only modify the input string respectively by adding a
literal and by skipping over a text fragment.

The property of well-formedness of trees significantly simplifies the imple-
mentation and specification of editor services, as they do not require any special
logic to handle badly parsed constructs with missing nodes or special construc-
tors. This approach also ensures separation of concerns: error recovery is purely
performed by the parser, while editor services do not have to treat syntactically
incorrect programs differently. This separation of concerns means that all editor
services could be implemented without any logic specific for error recovery. Still,
there are a number of editor services that inherently require some interaction with
the recovery strategy, which we discuss next.

8.3 Syntactic Error Reporting

Syntax errors are reported to users by means of an error location and an error
message. In traditional compilers, the error location was reported as a line/column
offset, while modern IDEs use the location for the placement of error markers in
the editor. We use generic error messages that depend on the class of recovery
(Section 4.5). For water recovery rules and for region recoveries, we use “[string]
not expected,” for insertion rules we use “expected: [string],” and for insertion
rules that terminate a construct we use “construct not terminated.” The location at
which the errors are reported is determined by the location at which a recovery rule
is applied, rather than by the location of the parse failure. For region recoveries,
where no recovery rule is applied, the start and end location of the region, plus the
original failure location is reported instead.

Figure 27 shows a screenshot of an editor for Stratego with embedded Java.
The shown code fragment contains two syntax errors. Due to error recovery, the
editor can still provide syntax highlighting and other editor services, while it marks
all the syntax errors inline with red squiggles.

182 Natural and Flexible Error Recovery for Generated Modular Language . . .

8.4 Syntax Highlighting

Syntax highlighting has traditionally been based on a purely lexical analysis of
programs. The most basic approach is to use regular expressions to recognize
reserved words and other constructs and assign them a particular color. Unfor-
tunately, for language engineers the maintenance of regular expressions for high-
lighting can be tedious and error prone; a more flexible approach is to use the
grammar of a language. Using the grammar, a scanner can recognize tokens in a
stream, which can be used to assign colors instead.

More recent implementations of syntax highlighting do a full context-free syn-
tax analysis, or even use the semantics of a language for syntax highlighting. For
example, they may assign Java field accesses a different color than local variable
accesses.

Scannerless syntax highlighting When using a scannerless parser such as
SGLR, a scanner-based approach to syntax highlighting is not an option; files
must be fully parsed instead. This makes it important that a proper parse tree is
available at all times, even in case of syntactic errors. To illustrate this, consider
the following incomplete Java statement:

Tree t = new

Using a scanner, the word new can be recognized as one of the reserved keywords
and can be highlighted as such. In the context of scannerless parsing, a well-
formed parse tree must be constructed for the keyword to be highlighted. In situ-
ations like this one, that may not be possible, resulting in no highlighting for the
new keyword.

Fallback syntax highlighting Syntax highlighting is equally or possibly more
important for syntactically incorrect programs than for syntactically correct pro-
grams, as it indicates how the editor interprets the program as a programmer is
editing it. A fallback syntax highlighting mechanism is needed to address this
issue.

A natural way of implementing fallback syntax highlighting is by using a lex-
ical analysis for those cases where the full context-free parser is unable to distin-
guish the different words to be highlighted. This analysis can be performed by
a rudimentary tokenizer that can recognize separate words such that they can be
distinguished for colorization. Simple coloring rules can then be applied to any to-
kens that do not belong to recovered tree nodes, e.g. highlighting all the reserved
keywords and string literals. Consequently, programmers get highly responsive
syntax highlighting as they are typing, even if the program is not (yet) syntactically
correct. A limitation of the approach is that with a tokenizer it cannot distinguish
between keywords in different sublanguages, making the approach only viable as
a fall-back option. We use the fallback syntax highlighting for discarded regions

8 Applying Error Recovery in an Interactive Environment 183

and in case the combined recovery technique fails, e.g. no AST is constructed for
the erroneous program.

8.5 Content Completion

Content completion, sometimes called content assist, is an editor service that pro-
vides completion proposals based on the syntactic and semantic context of the ex-
pression that is being edited. Where other editor services should behave robustly
in case of incomplete or syntactically incorrect programs, the content completion
service is almost exclusively targeted towards incomplete programs. Content com-
pletion suggestions must be provided regardless of the syntactic state of a program:
an incomplete expression ‘blog.’ does not conform to the syntax, but for content
completion it must still have an abstract representation.

Completion recovery rules In case context completion is applied to an in-
complete expression, the syntactic context of that expression must be recovered.
This is especially challenging for language constructs with many elements, such
as the “for” statement in the Java language. Even if only part of such a statement is
entered by a user, it is important for the content completion service that there is an
abstract representation for it. Based on the recovery rules of Section 4 this is not
always the case. Water recovery rules interpret the incomplete expression as lay-
out. As a consequence, the syntactic context is lost. Insertion recovery rules can
recover some incomplete expressions, but only insert missing terminal symbols.

We introduce specific recovery rules for content completion that specify what
abstract representation to use for incomplete syntactic constructs. These rules use
the {ast(p)} annotation of SDF to specify a pattern p as the abstract syntax to
construct. Figure 28 shows examples of these rules. The first rule is a normal
production rule for the Java “for each” construct. The second rule indicates how
to recover this statement if the Stm non-terminal is omitted, using a placeholder
pattern NULL() in place of the abstract representation of the omission. The third
rule handles the case where both non-terminals are omitted.

The completion recovery rules are automatically derived by analyzing the orig-
inal productions in the grammar, creating variations of existing rules with omitted
non-terminals and terminals marked as optional patterns. For best results, we gen-
erate rules that use placeholder patterns that reflect the signature of the original
production. Since these rules preserve the wellformedness property, they are also
applicable for normal error recovery. For example, in the second rule of Figure 28,
the pattern Block([]) can be used instead of the NULL() placeholder (Fig-
ure 29). Sensible placeholder patterns are constructed by recursively analyzing the
production rules for the omitted non-terminals. In the given example, the produc-
tion rule "{" Stm* "}" -> Stm {cons("Block")} provides the pattern
Block([]) as a placeholder for the Stm non-terminal, using the the empty list
[] as the basic default for list productions.

184 Natural and Flexible Error Recovery for Generated Modular Language . . .

context-free syntax

"for" "(" FormalParam ":" Expr ")" Stm ->
Stm {cons("ForEach")}

"for" "(" FormalParam ":" Expr ")"? ->
Stm {ast("ForEach(<1>, <2>, NULL())"), completion}

"for" "(" FormalParam ":"? ")"? ->
Stm {ast("ForEach(<1>, NULL(), NULL())"), completion}

Figure 28: Java ForEach production and its derived completion rules.

context-free syntax

"for" "(" FormalParam ":" Expr ")"? ->
Stm {ast("ForEach(<1>, <2>, Block([]))"), completion}

Figure 29: Java ForEach completion rule with placeholder pattern that matches
the signature of the original production.

Runtime support Completion recovery rules are designed to support the spe-
cial scenario of recovering the expression where content completion is requested.
The cursor location provides a hint about the location of the (possible) error. In-
stead of backtracking after an error is found, we apply completion recovery rules
if they apply to a character sequence that overlaps with the cursor location. This
approach adequately completes constructs at the cursor location and minimizes the
overhead of completion rules in normal parsing and other recovery scenarios. It
also ensures that the completion recovery rules have precedence over the normal
water and insertion recovery rules for the content completion scenario.

9 Implementation

We implemented our approach in Spoofax [KV10], which is a language develop-
ment environment that combines the construction of languages and editor services.
Using SDF and JSGLR9, Spoofax has the distinguishing feature that it supports
language compositions and embeddings. In this section we give an overview of
the general system and we discuss the adaptations we made for error recovery.

Figure 30 gives a general overview of the tool chain that handles parsing in
Spoofax with integrated support for error recovery. Given a grammar definition
in SDF, the make-permissive tool generates a permissive version of this grammar,
for which a parse table is constructed by sdf2table. This parse table is used by
the JSGLR parser, which constructs a parse tree for a (possible erroneous) input

9http://strategoxt.org/Stratego/JSGLR/

9 Implementation 185

source code jsglr parse forest
apply

disambiguation
filters

parse tree implode abstract syntax
tree

permissive
parse table

sdf2table

permissive
syntax definition

make
permissive

syntax definition

Figure 30: Overview tool chain. Make-permissive generates a permissive version
of the original grammar, for which a parse table is constructed by sdf2tbl. The
(permissive) parse table is used by JSGLR to construct a parse tree for a (possible
erroneous) input file, which is then imploded into an AST.

file. The parse tree is first disambiguated by applying post-parse filters, and then
imploded into an AST.

The make-permissive tool was added to the tool chain specifically for the con-
cern of error recovery. The tool implements a grammar-to-grammar transforma-
tion that applies the heuristic rules described in Section 4.5 and Section 8.5 that
guide the generation of recovery rules. The tool is implemented in Aster [Kat+09a],
a language for decorated attribute grammars that extends the Stratego transforma-
tion language.

We adapted the JSGLR parser implementation so that it can efficiently parse
correct and incorrect syntax fragments using the productions defined by the per-
missive grammar. For this reason, we implemented a selective form of back-
tracking specificly for recover productions. Furthermore, we implemented two
additional recovery techniques, namely, bridge parsing and region selection. All
mentioned techniques are implemented in Java and integrated in the JSGLR im-
plementation. To summarize, we made the following adaptations to the Java based
JSGLR parser:

• ignore productions labeled with the recover annotation during normal pars-
ing

• ignore productions labeled with the completion annotation, unless the pro-
duction applies to a character sequence that overlaps with the cursor loca-

186 Natural and Flexible Error Recovery for Generated Modular Language . . .

RS: select
erroneous region

BP: repair
scopes

recovery
succeeded? PG: recover

recovery
succeeded?

RR: skip
erroneous region

recovery
succeeded?

parser fails

continue parsing continue parsing continue parsing

recovery
fails

yes yes yes

no no no

Figure 31: Overview integrated recovery approach implemented in JSGLR.

tion, and the completion service is triggered by the user.

• runtime disambiguation filter that selects the branch with the lowest number
of recover/completion productions, preferring insertions over water produc-
tions.

• implementations for the different recovery techniques described in Sections
5, 6, and 7.

• some code to integrate the different recovery techniques, as described below.

Integrating recovery techniques We combine the different techniques de-
scribed in this paper in a multi-stage recovery approach (Figure 31). Region se-
lection (RS) is applied first to detect the erroneous region. In case region selection
fails to select the erroneous region, the whole file is selected instead. In the second
stage, the erroneous region is inspected by one of the correcting techniques, bridge
parsing (BP) or permissive parsing (PG). Since bridge parsing provides the most
natural recoveries from a user perspective, it is applied first. The bridge parser re-
turns a set of recovery suggestions based on bracket insertions, which are applied
during a re-parse of the erroneous region. In case the bridge parser suggestions do
not lead to a successful recovery, the permissive grammars approach described in
Sections 4 and 5 is used, where backtracking is restricted to the erroneous region.
In case both correcting techniques fail, the erroneous region is skipped (region
recovery, RR) as a fallback recovery strategy.

10 Evaluation

We evaluate our approach with respect to the following properties:

• Quality of recovery: How well does the environment recover from input
errors?

10 Evaluation 187

• Performance and scalability: What is the performance of the recovery
technique? Is there a large difference in parsing time between erroneous
and correct inputs? Does the approach scale up to large files?

• Editor feedback: How well do editor services perform based on the recov-
ered ASTs?

In the remainder of this section we describe our experimental setup, experimen-
tally select an effective combination of techniques and recovery rules, and show
the quality and performance results of the selection.

10.1 Setup
In this section we describe our experimental setup; we explain how we construct a
realistic test set, and how we measure recovery quality and performance.

Syntax Error Seeding

The development of representative syntax error benchmarks is a challenging task,
and should be automated in order to minimize the selection bias. There are many
factors involved for selecting the test inputs, such as the type of grammar, the type
of error, distribution of errors over the file, and the layout characteristics of the test
files. With these factors in mind, we have taken the approach of generating a rea-
sonably large set of syntactically incorrect files from a smaller set of correct base
files. We seed syntax errors at random locations in the base files, using a set of rules
that cover different types of common editing errors. These rules were established
after a statistical analysis of collected edit data for different languages [JV12]. We
distinguish the following categories for seeded errors:

• Incomplete constructs, language constructs that miss one or more symbols
at the suffix, e.g. an incomplete for loop for (x = 1; x.

• Random errors, constructs that contain one or more token errors, e.g. miss-
ing, incorrect or superfluous symbols.

• Scope errors, constructs with missing or superfluous scope opening or clos-
ing symbols.

• String or comment errors, block comments or string literals that are not
properly closed, e.g., /*...*

• Large erroneous regions, severely incorrect code fragments that cover mul-
tiple lines.

• Language specific errors, errors that are specific for a particular language.

• Combined errors, two or more errors from the above mentioned categories,
randomly distributed over the source file.

188 Natural and Flexible Error Recovery for Generated Modular Language . . .

Test Oracle

To measure the quality and performance of a recovery, we compare the results ob-
tained for the recovered file against the results for the base file or expected file. In
some cases, the base file does not realistically reflect the expected result, as infor-
mation is lost in the generated erroneous file. For these cases we construct an ex-
pected result, a priori. For example, for a “for” loop with an Incomplete construct
error – such as for (x = 1; x – the original body of the construct is lost. For
this “for” loop, we complete the construct with the minimal amount of symbols
possible, which results in the expected construct for (x = 1; x;) {}.

Measuring Quality

We use two methods to measure the quality of the recovery results. First, we do
a manual inspection of the pretty-printed results, following the quality criteria of
[PD78]. Following these criteria, an excellent recovery is one that is exactly the
same as the intended program, a good recovery is one that results in a reasonable
program without spurious or missed errors, and a poor recovery is a recovery that
introduces spurious errors or involves excessive token deletion. The Pennello and
DeRemer criteria represent the state of the art evaluation method for syntactic error
recovery applied in, amongst others, [PD78; PK80; DP95; Cor+02].

Since human criteria form an evaluation method that is arguably subjective,
as a second method, we also do an automated comparison of the abstract syn-
tax. For this, we print the AST of the recovered file to text using the ATerm for-
mat [Bra+00], formatted so that nested structures appear on separate lines. We then
count the number of lines that differ in the recovered AST compared to the AST
of the expected file (the “diff”). The advantage of this approach is that it is objec-
tive, and assigns a larger penalty to recoveries for which a larger area of the text
does not correspond to the expected file, where structures are nested improperly, or
when multiple deviations appear on what would be a single line of pretty-printed
code. Furthermore, using this approach the comparison can be automated, which
makes it feasible to apply to larger test sets.

The scales for the figures we show are calibrated such that “no diff” corre-
sponds to the excellent qualification, a “small diff” (1–10 lines of abstract syntax)
roughly corresponds to the good qualification, and a “large diff” (> 10 lines) ap-
proximately corresponds to the poor qualification. After a selection of recovery
techniques and recovery rule sets, we show both metrics together in a comprehen-
sive benchmark in Section 10.2.

Measuring Performance

To compare the performance of the presented recovery technique under different
configurations, we measure the additional time spent for error recovery. That is,
we compute the extra time it takes to recover from one or more errors (the recovery

10 Evaluation 189

time) by subtracting the parse time of the correct base file or expected file from the
parse time of the incorrect variation of this file.

To evaluate the scalability of the technique, we compare the parse times for
erroneous and correct files of different sizes in the interval 1, 000–15, 000 LOC.

For all performance measures included in this paper, an average, collected after
three runs, is used. All measuring is done on a “pre-heated” JVM running on a
laptop with an Intel(R) Core(TM) 2 Duo CPU P8600, 2.40GHz processor, 4 GB
Memory.

Test sets

To evaluate quality and performance of the suggested recovery techniques we use a
test set of programs written in WebDSL, Stratego-Java, Java-SQL and Java, based
on the following projects:

• YellowGrass: A web-based issue tracker written in the WebDSL language.10

• The Dryad compiler: An open compiler for the Java platform [Kat+08] writ-
ten using Stratego-Java.

• The StringBorg project: A tool and grammar suite that defines different em-
bedded languages [Bra+10], providing Java-SQL code.

• JSGLR: A Java implementation of the SGLR parser algorithm.11

We selected five representative base files from each project, and generated test files
using the error seeding technique. We applied a sanity check to ensure that gener-
ated test cases are indeed syntactically incorrect and that there are no duplicates.
In total, we generated 334 Stratego-Java test cases, 190 WebDSL test cases, 195
Java-SQL test cases, and 329 Java test cases. In addition, we generated a second
test set consisting of 314 Stratego-Java test cases in the Incomplete construct and
Erroneous context categories specifically to evaluate the content completion edi-
tor service. Finally, for testing of scalability, we manually constructed a test set
consisting of 28 erroneous Stratego-Java files of increasing size in the interval of
1, 000–15, 000 LOC.

10.2 Experiments
There are a large number of configurations to consider in evaluating the presented
approach: combinations of languages, recovery rule sets, and recovery techniques.
In order to limit the size of the presented results, we first concentrate on one lan-
guage and experiment with different configuration of recovery rule sets and recov-
ery techniques. For these initial experiments we use the Stratego-Java language –

10http://www.yellowgrass.org/.
11http://strategoxt.org/Stratego/JSGLR/.

190 Natural and Flexible Error Recovery for Generated Modular Language . . .

0 20 40 60 80 100

WCO
WC
CO

C
W

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

WCO
WC
CO

C
W

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 32: Quality and performance (recovery times) using a permissive grammar
with different recovery rule sets for Stratego-Java. W - Water, C - Insertion of
closing brackets, O - Insertion of opening brackets.

a fairly complex language embedding. After selecting an effective configuration,
we perform additional experiments with other languages.

Selecting a Recovery Rule Set

In this experiment we focus on selecting the most effective recovery rule set for
a permissive grammar with respect to quality and performance. The permissive
grammar technique is used in combination with region selection, described in Sec-
tion 7. That is, the recovery rules are applied on a selected erroneous region, but
the fallback region recovery technique is disabled since it obscures failed recover-
ies obtained for the evaluated rule sets. In this experiment, we set a time limit of 5
seconds to cut off recoveries that take an (almost) infinite time to complete.

For the permissive grammars approach of Section 4, there are three recovery
rule sets that we evaluate in isolation and in combination – Water (W), insertion
of Closing brackets (C), and insertion of Open brackets (O). Results from the ex-
periment are shown in Figure 32. The figure includes results for W, C, CO, WC
and WCO for a Stratego-Java grammar. The remaining combinations, O and WO,
were excluded since it is arguably more important to insert closing brackets than
to insert open brackets in an interactive editing scenario.

The results show that the insertion of closing brackets (C) and the application
of water rules (W) both contribute to the quality of a recovery. Combined together
(WC) they further improve recovery results. The insertion of opening brackets

10 Evaluation 191

(O) does improve the recovery quality for insertion-only grammars, which fol-
lows from comparing C to CO. However, when all rules are combined (WCO),
the recovery quality decreases in comparison with the WC grammar. This slightly
unexpected result is partly explained by the fact that the insertion rules for open-
ing brackets prove to be too costly with respect to performance, which leads to
failures because of exceeding of the time limit set. A second explanation is that
the combined rule set (WCO) allows many creative recoveries that often do not
correspond to the human intended recoveries. We conclude that WC seems to be
the best trade off between Quality and Performance.

In this experiment we only set a limit on the number of lines (75) that were
inspected during backtracking, and a time limit of 5 seconds to cut off recoveries
that take an (almost) infinite time to complete. The performance diagram shows
that this leads to objectionable parse times in certain cases, 4.4% > 1.0 seconds
and 15.2% > 5.0 seconds (failures) for WC. For these cases, a practical imple-
mentation would opt for an inferior recovery result obtained by applying a fallback
strategy (region skipping in our approach). We apply this strategy in the remainder
of this section, setting a time limit of 1000 milliseconds on the time spent applying
recovery rules.

Selecting Recovery Techniques

In this experiment, we focus on selecting the best parser configuration combin-
ing the recovery techniques presented in this paper: the permissive grammars and
backtracking approach of Section 4 and 5 (PG), bridge parsing of Section 6 (BP),
and the region selection technique of Section 7 (RS), which can be applied as a
fall back recovery technique (RR) by skipping the selected region. We use the WC
recovery rule set of Section 10.2. and the Stratego-Java test set. We first applied
the techniques in isolation: first regional recovery by skipping regions (RR), and
then parsing with permissive grammars (PG). Bridge parsing is not evaluated sep-
arately, since it has a limited application scope and only works as a supplementary
method. We then evaluate the approaches together: first parsing with permissive
grammars applied to a selected region (RS-PG), then adding region recovery (RR)
as a fallback recovery technique (RS-PG-RR), and finally the combination of all
three techniques together (RS-BP-PG-RR). Throughout this experiment, we set
a time limit of 1 second for applying recovery rules (PG). The results from the
experiment are shown in Figure 33.

Figure 33 (Performance) shows the performance results for the different com-
binations of techniques. The results show that region recovery (RR) gives good
performance in all cases, and that region selection (RS) positively affects the per-
formance of the permissive grammar technique (RS-PG versus PG). Furthermore,
applying the bridge parsing technique (BP) does not negatively affect performance
according to Figure 33 (RS-PG-BP-RR versus RS-PG-RR). Since all techniques

192 Natural and Flexible Error Recovery for Generated Modular Language . . .

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

RS-PG
PG
RR

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

RS-PG
PG
RR

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 33: Quality and performance (recovery times) using combinations of tech-
niques for Stratego-Java. RR - Region selection and recovery, PG - Permissive
grammars, RS - Region selection, BP - Bridge parsing.

give reasonable performance, we focus on quality to find the best combination of
techniques.

Considering the Quality part of Figure 33 and the results of PG, we see that
it has the largest number of failed recoveries (17%), but regardless of this fact it
still leads to reasonable recoveries (< 10 diff lines) in the majority of cases (75%).
Restricting PG to a selected erroneous region (RS-PG) leads to more excellent
recoveries (48% versus 44%). For regional recovery (RR), the situation is exactly
the opposite. As expected, skipping a whole region in most cases does not lead
to the optimal recovery. However, the skipping technique does provide a robust
mechanism, leading to a successful parse in most cases (94%). Combining both
techniques (RS-PG-RR), improves the robustness (96%), as well as the precision
(80% small or no diff) compared to both individual techniques.

Interestingly, Figure 33 shows little beneficial effects of the bridge parsing
method (BP). There is a strong use case for bridge parsing, as it can pick the most
likely recovery in case of a syntax error that affects scoping structures. However,
the technique is most effective for programs that use deep nesting of blocks, which
are relatively rare in Stratego-Java programs. Still, the approach shows no harmful
effects. For other languages its positive effects tend to be more pronounced, as
we have shown in [Jon+09]. In this previous study, a test set with focus on scope
errors is used; showing that bridge parsing improves the results of the permissive
grammar technique in 21% of the cases where one or more scope errors occur. The
cases where the bridge parser contributes to a better recovery are cases where the

10 Evaluation 193

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

JDT

% of Files

Quality (diffs)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

JDT

% of Files

Quality (manual assessment)

Excellent
Good
Poor
Failed

Figure 34: Quality of our approach compared to JDT. RS - Region selection, RR
- Region recovery, PG - Permissive grammars, BP - Bridge parsing, JDT - Java
Developer Toolkit.

region selection technique does not detect the erroneous scope as precisely on its
own, which is typical for fragments with multiple clustered scope errors.

Overall benchmark

As an overall benchmark, we compare the quality of our techniques to the parser
used by Eclipse’s Java Development Tools (JDT). It should be noted that, while our
approach uses fully automatically derived recovery specifications, the JDT parser
in contrast, uses specialized, handwritten recovery rules and methods. We use the
JDT parser with statement-level recovery enabled, following the guidelines given
by [KT].

Both Eclipse and our approach apply an additional recovery technique in the
scenario of content completion. Both techniques use specific completion recovery
rules that require the completion request (cursor) location as additional informa-
tion, also, these rules construct special completion nodes that may not represent
valid Java syntax. We did not include these techniques in this general benchmark
section since they specifically target the use case of content completion and do not
work in other scenarios.

Figure 34 shows the quality results acquired for the Java test set, using diff
counts and applying the criteria of [PD78]. To ensure that all the results are ob-
tained in a reasonable time span, we set a parse time limit of 1 second. The results

194 Natural and Flexible Error Recovery for Generated Modular Language . . .

show that the SGLR recovery, using different steps and granularity, is in particular
successful in avoiding large diffs, thereby providing more precise recoveries com-
pared to the JDT parser. The JDT parser on the other hand managed to construct
an excellent recovery in 67% of the cases, which is a bit better than the 62% of
the SGLR parser. The SGLR parser failed to construct an AST in less than 1% of
the cases, while the JDT parser constructed an AST in all cases. However, manual
inspection revealed that in most large diff cases only a very small part of the orig-
inal file was reconstructed, e.g. only the import lines or the import lines plus the
class declaration whereby all declarations in the body were skipped. We conclude
that our automatically derived recovery technique is at least on par with practical
standards.

Cross-language quality and performance

In this experiment we test the applicability of our approach to different languages,
using the RS-BP-PG-RR configuration and the WC rule set. For simplicity and
to ensure a clear cross-language comparison, we focus only on syntax errors that
do not require manual reconstruction of the expected result, i.e., Random errors,
Scope errors and String or comment errors. This allows for a fully automated com-
parison of erroneous and intended parser outputs. The results of the experiment
are shown in Figure 35. The figure shows good results and performance across the
different languages. From the diagram it follows that the quality of the recoveries
varies for the different test sets. More specifically, the recoveries for Java-SQL,
in general, are better than the ones for Stratego-Java. Differences like these are
both hard to explain and predict, and depend on the characteristics of a particular
language, or language combination, as well as the test programs used.

Performance and Scalability

In this experiment we focus on the performance of our approach. We want to study
scalability and the potential performance drawbacks of adding recovery rules to a
grammar, i.e., the effect of increasing the size of the grammar. We use the Stratego-
Java language throughout this experiment with the RS-BP-PG-RR recovery con-
figuration.

To test scalability, we construct a test set consisting of files of different size
in the interval 1, 000–15, 000 LOC, obtained by duplicating 500-line fragments
from a base file in the Stratego-Java test set. For each test file, the same number
of syntax errors are added manually, scattered in such a way that clustering of
errors does not occur. We measure parse times as a function of input size, both
for syntactically correct files and for files that contain syntax errors. The results,
shown as a plot in Figure 36, show that parse times increase linearly with the size
of the input, both for correct and for incorrect files. Furthermore, the extra time
required to recover from an error (recovery time) is independent of the file size,
which follows from the fact that both lines in the figure have the same coefficient.

10 Evaluation 195

0 20 40 60 80 100

WebDSL
Java-SQL

Str.-Java
Java

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

WebDSL
Java-SQL

Str.-Java
Java

Performance (% of Files)
0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 35: Quality and performance (recovery times) for different languages.

As an additional experiment we study the performance drawbacks in the in-
creased size of a permissive grammar. The extra recovery productions added to a
grammar to make it more permissive also increase the size of that grammar, which
may negatively affect parse times of syntactically correct inputs. We measure this
effect by comparing parse times of the syntactically correct files in the test set, us-
ing the standard grammar and the WC permissive grammar. The results show that
the permissive grammar has a small negative effect on parse times of syntactically
correct files. The effect of modifying the parser implementation to support back-
tracking was also measured, but no performance decrease was found. We consider
the small negative performance effect on parsing syntactically correct files accept-
able since it does not significantly affect the user experience for files of reasonable
size.

Content Completion

Error recovery helps to provide editor services on erroneous input. Especially
challenging is the content completion service, which almost exclusively targets in-
complete programs. In Section 8.5 we discussed the strengths and limitations of
our current approach with respect to content completion. To overcome the limita-
tions, we introduced a technique to automatically derive special completion rules
that are applied near the cursor location. In this section we evaluate how well the
current approach (water and insertion rules) serve the purpose of content comple-
tion, and how the completion rules improve on this.

196 Natural and Flexible Error Recovery for Generated Modular Language . . .

0 0.25 0.5 0.75 1 1.25 1.5

·104

0

2,000

4,000

6,000

LOC

Pa
rs

e
tim

e
(m

s)

5 Errors (RR-BP-PG)
0 Errors (RR-BP-PG)
0 Errors (Standard)

Figure 36: Parse times for files of different length with and without errors. The
files are written in the Stratego-Java language and parsed with the RR-BP-PG re-
covery configuration.

We evaluated completion recovery on a set of 314 test cases that simulate the
scenario of a programmer triggering the content completion service. Accurate
completion suggestions require that the syntactic context, the tree node where
completion is requested, is available in the recovered tree. To evaluate the ap-
plicability with respect to content completion, we distinguish between recoveries
that preserve the syntactic context required for content completion and those that
do not.

Figure 37 shows the results for our recovery technique with and without the use
of completion recovery. Using the original approach (with the WC rule set), the
syntactic context was preserved in 77 percent of the cases, which shows that the
recovery approach is useful for content completion, but is prone to unsatisfactory
recoveries in certain cases. Furthermore, recovering large incomplete constructs
can be inefficient since it requires many water and insertion rule applications.

Both problems are addressed by the completion recovery technique, which
is specifically designed to handle syntax errors that involve incomplete language
constructs. Figure 37 shows the results for the completion recovery strategy of
Section 8.5, using a permissive grammar with the WC rule set plus completion
rules. Using this strategy, the syntactic context is preserved in all cases, with-
out noticeable time overhead. The low recovery times are a consequence of the
(adapted) runtime support that exploits the fact that the cursor location is part of
the erroneous construct.

A disadvantage of the completion rules is that they significantly increase the

10 Evaluation 197

0 20 40 60 80 100

Completion

WC

% of Files

Context Preservation

Context
No context

0 20 40 60 80 100

Completion

WC

% of Files

Performance

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms

Figure 37: Context preservation and performance (recovery times) of the
Stratego-Java grammar extended with completion rules (Completion) and ex-
tended with recovery rules (WC).

size of the grammar, which can negatively affect the parsing performance for syn-
tactically correct inputs. We compared parse times of syntactically correct inputs
for the WC/Completion grammar with parse times for the WC grammar, and mea-
sured an overhead factor of 1.2. Given that completion rules are highly effective
and essential for the content completion functionality, this overhead seems ac-
ceptable. For normal editing scenarios, the completion rules can also be applied
as an additional recovery mechanism that is effective only at the cursor location,
although we have not focused on this capability in the experiments in this section.

10.3 Summary

In this section we evaluated the quality and performance of different rule sets
for permissive grammars, and different configurations for parsing with permissive
grammars, region recovery, and bridge parsing. Through experimental evaluation
we found that the WC rule set provides the best balance in quality and perfor-
mance. The three techniques each have their merits in isolation, and work best in
combination. Through additional experiments we showed that the recovery qual-
ity and performance hold up to the standard set by the JDT, that our approach is
scalable, and that it works across multiple languages. In addition, we showed its
effectiveness for content completion.

198 Natural and Flexible Error Recovery for Generated Modular Language . . .

11 Related Work

The problem of handling syntax errors during parsing has been widely studied
[L7́1; MF88; PK80; BH82; Tai78; Fis+80; DP95; McK+95; Cor+02]. We focus on
LR parsing for which there are several different error recovery techniques [DP95].
These techniques can be divided into correcting and non-correcting techniques.

The most common non-correcting technique is panic mode: on detection of an
error, the input is discarded until a synchronization token is reached. When a syn-
chronizing token is reached, states are popped from the stack until the state at the
top enables the resumption of the parsing process. Our layout-sensitive regional
recovery algorithm can be used in a similar fashion, but selects discardable regions
based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or delete
tokens nearby the location of an error, until parsing can resume [Tai78; McK+95;
Cer02]. There may be several possible corrections of an error which means a
choice has to be made. One approach applied by [Tai78] is to assign a cost (a
minimum correction distance) to each possible correction and then choose the cor-
rection with the least cost. This approach of selecting recoveries based on a min-
imum cost is related to recovery selection in our permissive grammars, where the
number of recovery rules used in a correction decides the order in which recoveries
are considered (Section 4).

Successful recovery mechanisms often combine more than one technique [DP95].
For example, panic mode is often used as a fall back method if correction attempts
fail. [BF87] present a correcting method based on three phases of recovery. The
first phase looks for simple correction by the insertion or deletion of a single token.
If this does not lead to a recovery, one or more open scopes are closed. The last
phase consists of discarding tokens that surround the parse failure location. In our
work we take indentation into account, for the regional recovery technique and for
scope recovery using bridge parsing. In addition, by starting with region selec-
tion, the performance as well as the quality of the permissive grammars approach
recovery is improved.

Regional error recovery methods [L7́1; MF88; PK80; BH82] select a region
that encloses the point of detection of an error. Typically, these regions are selected
based on nearby marker tokens (also called fiducial tokens [PK80], or synchroniz-
ing symbols [BH82]), which are language-dependent. In our approach, we assign
regions based on layout instead. Layout-sensitive regional recovery requires no
language-specific configuration, and we showed it to be effective for a variety of
languages. Similar to the fiducial tokens approach, it depends on the assumption
that languages have recognizable (token or layout) structures that serve for the
identification of regions.

[BH82] presents an hierarchic error repair approach using phases correspond-
ing to lists of lines. For instance, a phase may be a set of declarations that must
appear together. These phases are similar to our regions, with the difference that

11 Related Work 199

regions are constructed based on layout. Both approaches have some kind of local
repair within phases or regions, and may skip parts of the input.

The LALR Parser Generator (LPG) [Cha91] is incorporated into IMP [Cha+07]
and is used as a basis for the Eclipse JDT parser. LPG can derive recovery behavior
from a grammar, and supports recovery rules in the grammar and through seman-
tic actions. Similar to our approach, LPG detects scopes in grammars. However,
unlike our approach, it does not take indentation into account for scope recovery.

11.1 Recovery for Composite Languages

Using SGLR parsing, our approach can be used to parse composed languages and
languages with a complex lexical syntax. In related work, only a study by [Val07],
based on substring parsing [RK91], offered a partial approach to error recovery
with SGLR parsing. To report syntactic errors, Valkering inspects the stack of the
parser to determine the possible strings that can occur at that point. Providing good
feedback this way is non-trivial since scannerless parsing does not employ tokens;
often it is only possible to report a set of expected characters instead. Furthermore,
these error reports are still biased with respect to the location of errors; because of
the scannerless, generalized nature of the parser, the point of failure rarely is a good
indication of the actual location of a syntactic error. Using substring parsing and
artificial reduce actions, Valkering’s approach could construct a set of partial, often
ambiguous, parse trees, whereas our approach constructs a single, well-formed
parse tree.

[LT93] developed GLR*, a noise skipping algorithm for context-free gram-
mars. Based on traditional GLR with a scanner, their parser determines the max-
imal subset of all possible interpretations of a file by systematically skipping se-
lected tokens. The parse result with the fewest skipped words is then used as the
preferred interpretation. In principle, the GLR* algorithm could be adapted to be
scannerless, skipping characters rather than tokens. However, doing so would lead
to an explosion in the number of interpretations. In our approach, we restrict these
by using backtracking to only selectively consider the alternative interpretations,
and using water recovery rules that skip over chunks of characters. Furthermore,
our approach supports insertions in addition to discarding noise and provides more
extensive support for reporting errors.

Composed languages are also supported by parsing expression grammars (PEGs)
[For02; Gri06]. PEGs lack the declarative disambiguation facilities [Vis97c] that
SDF provides for SGLR. Instead, they use greedy matching and enforce an explicit
ordering of productions. To our knowledge, no automated form of error recovery
has been defined for PEGs. However, existing work on error recovery using parser
combinators [SD96] may be a promising direction for recovery in PEGs. Further-
more, based on the ordering property of PEGS, a “catch all” clause is sometimes
added to a grammar, which is used if no other production succeeds. Such a clause

200 Natural and Flexible Error Recovery for Generated Modular Language . . .

can skip erroneous content up to a specific point (such as a newline) but does not
offer the flexibility of our approach.

11.2 IDE support for Composite Languages

We integrated our recovery approach into the Spoofax [Kat+10a] language work-
bench. A related project, also based on SDF and SGLR, is the Meta-Environment
[Bra+02a; Bra+07]. It currently does not employ interactive parsing, and only
parses files after a “save” action from the user. Using the traditional SGLR im-
plementation, it also does not provide error recovery.

Another language development environment is MontiCore [Kra+07; Kra+08].
Based on ANTLR [PQ95], it uses traditional LL(k) parsing. As such, MontiCore
offers only limited support for language composition and modular definition of
languages. Combining grammars can cause conflicts at the context-free or lexical
grammar level. For example, any keyword introduced in one part of the language
is automatically recognized by the scanner as a keyword in another part. Monti-
Core supports a restricted form of embedded languages through run-time switch-
ing to a different scanner and parser for certain tokens. Using the standard error
recovery mechanism of ANTLR, it can provide error recovery for the constituent
languages. However, recovery from errors at the edges of the embedded fragments
(such as missing quotation brackets), is more difficult using this approach. This
issue is not addressed in the papers on MontiCore [Kra+07; Kra+08]. In contrast to
MontiCore, our approach is based on scannerless generalized-LR parsing, which
supports the full set of context-free grammars, and allows composition of gram-
mars without any restrictions.

11.3 Island Grammars

The basic principles of our permissive grammars and bridge parsing are based on
the water productions from island grammars. Island grammars [DK99; Moo01]
have traditionally been used for different reverse and re-engineering tasks. For
cases where a baseline grammar is available (i.e., a complete grammar for some
dialect of a legacy language), [KL03] present an approach of deriving tolerant
grammars. Based on island grammars, these are partial grammars that contain only
a subset of the baseline grammar’s productions, and are more permissive in nature.
Unlike our permissive grammars, tolerant grammars are not aimed at application in
an interactive environment. They do not support the notion of reporting errors, and,
like parsing with GLR*, are limited to skipping content. Our approach supports
recovery rules that insert missing literals and provides an extensive set of error
reporting capabilities.

More recently, island grammars have also been applied to parse composite lan-
guages. [Syn+03] composed island grammars for multiple languages to parse only
the interesting bits of an HTML file (e.g., JavaScript fragments and forms), while

12 Conclusion 201

skipping over the remaining parts. In contrast, we focus on composite languages
constructed from complete constituent grammars. From these grammars we con-
struct permissive grammars that support tolerant parsing for complete, composed
languages.

12 Conclusion
Scannerless, generalized parsers support the full set of context-free grammars,
which is closed under composition. With a grammar formalism such as SDF, they
can be used for declarative specification and composition of syntax definitions.
Error recovery for scannerless, generalized parsers has previously been identified
as an open issue. In this paper, we presented a flexible, language-independent
approach to error recovery to resolve this issue.

We presented three techniques for error recovery. First, permissive grammars,
to relax grammars with recovery rules so that strings can be parsed that are syn-
tactically incorrect according to the original grammar. Second, backtracking, to
efficiently parse files without syntax errors and to gracefully cope with errors lo-
cally. Third, region recovery, to identify regions of syntactically incorrect code,
thereby constraining the search space of backtracking and providing a fallback re-
covery strategy. Using bridge parsing, this technique takes indentation usage into
account to improve recoveries of scoping constructs. We evaluated our approach
using a set of existing, non-trivial grammars, showing that the techniques work
best when used together, and that they have a low performance overhead and good
or excellent recovery quality in a majority of the cases.

Acknowledgments This research was supported by NWO/JACQUARD
projects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank Karl Trygve Kalleberg,
whose Java-based SGLR implementation has been invaluable for this work, and
Mark van den Brand, Martin Bravenboer, Giorgios Rob Economopoulos, Jurgen
Vinju, and the rest of the SDF/SGLR team for their work on SDF.

References
[BH82] David T. Barnard and Richard C. Holt. “Hierarchic syntax error re-

pair for LR grammars”. In: International Journal of Computer and
Information Sciences 11.4 (1982), pp. 231–258.

[Bra+00] Mark G. J. van den Brand et al. “Efficient Annotated Terms”. In:
Software, Practice & Experience 30.3 (2000), pp. 259–291.

202 Natural and Flexible Error Recovery for Generated Modular Language . . .

[Bra+02a] Mark G. J. van den Brand et al. “Compiling language definitions:
the ASF+SDF compiler”. In: ACM Trans. Program. Lang. Syst. 24.4
(2002), pp. 334–368.

[Bra+02b] Mark G. J. van den Brand et al. “Disambiguation Filters for Scan-
nerless Generalized LR Parsers”. In: CC. Ed. by R. Nigel Horspool.
Vol. 2304. Lecture Notes in Computer Science. Springer, 2002,
pp. 143–158.

[Bra+07] Mark G. J. van den Brand et al. “Using The Meta-Environment for
Maintenance and Renovation”. In: CSMR. Ed. by René L. Krikhaar,
Chris Verhoef, and Giuseppe A. Di Lucca. IEEE Computer Society,
2007, pp. 331–332.

[BV04] Martin Bravenboer and Eelco Visser. “Concrete syntax for objects:
domain-specific language embedding and assimilation without re-
strictions”. In: OOPSLA. Ed. by John M. Vlissides and Douglas C.
Schmidt. ACM, 2004, pp. 365–383.

[Bra+06] Martin Bravenboer, Éric Tanter, and Eelco Visser. “Declarative, for-
mal, and extensible syntax definition for AspectJ”. In: OOPSLA. Ed.
by Peri L. Tarr and William R. Cook. ACM, 2006, pp. 209–228.

[Bra+08] Martin Bravenboer et al. “Stratego/XT 0.17. A language and toolset
for program transformation”. In: Science of Computer Programming
72.1-2 (2008), pp. 52–70.

[Bra+10] Martin Bravenboer, Eelco Dolstra, and Eelco Visser. “Preventing in-
jection attacks with syntax embeddings”. In: Science of Computer
Programming 75.7 (2010), pp. 473–495.

[BF87] Michael G. Burke and Gerald A. Fischer. “A practical method for
LR and LL syntactic error diagnosis and recovery”. In: ACM Trans.
Program. Lang. Syst. 9.2 (1987), pp. 164–197.

[Cer02] Carl Cerecke. “Repairing Syntax Errors in LR-based Parsers”. In:
ACSC. Ed. by Michael J. Oudshoorn. Vol. 4. CRPIT. Australian Com-
puter Society, 2002, pp. 17–22.

[Cha91] Philippe Charles. “A practical method for constructing efficient
LALR(k) parsers with automatic error recovery”. PhD thesis. New
York, NY, USA: New York University, 1991.

[Cha+07] Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton, Jr.
“IMP: a meta-tooling platform for creating language-specific IDEs
in Eclipse”. In: ASE. Ed. by R. E. Kurt Stirewalt, Alexander Egyed,
and Bernd Fischer. ACM, 2007, pp. 485–488.

[Cor+02] Rafael Corchuelo et al. “Repairing syntax errors in LR parsers”. In:
ACM Trans. Program. Lang. Syst. 24.6 (2002), pp. 698–710.

12 Conclusion 203

[DP95] Pierpaolo Degano and Corrado Priami. “Comparison of syntactic er-
ror handling in LR parsers”. In: Journal of Software: Practices and
Experience 25.6 (1995), pp. 657–679.

[DK99] Arie van Deursen and Tobias Kuipers. “Building Documentation
Generators”. In: IEEE International Conference on Software Main-
tenance. 1999, pp. 40–49.

[Duc+06] Stéphane Ducasse et al. “Traits: A mechanism for fine-grained
reuse”. In: ACM Trans. Program. Lang. Syst. 28.2 (2006), pp. 331–
388.

[EV06] Sven Efftinge and Markus Völter. “oAW xText: a framework for tex-
tual DSLs”. In: Eclipse Summit Europe, Eclipse Modeling Sympo-
sium. Esslingen, Germany, 2006.

[Fis+80] Charles N. Fischer, D. R. Milton, and S. B. Quiring. “Efficient LL(1)
Error Correction and Recovery Using Only Insertions”. In: Acta In-
formatica 13 (1980), pp. 141–154.

[For02] Bryan Ford. “Packrat parsing: : simple, powerful, lazy, linear time,
functional pearl”. In: ICFP. Ed. by Mitchell Wand and Simon L. Pey-
ton Jones. ACM, 2002, pp. 36–47.

[Fowa] Martin Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? http : / / www . martinfowler . com /
articles/languageWorkbench.html.

[Fowb] Martin Fowler. PostIntelliJ. http://martinfowler.com/
bliki/PostIntelliJ.html.

[Gri06] Robert Grimm. “Better extensibility through modular syntax”. In:
PLDI. Ed. by Michael I. Schwartzbach and Thomas Ball. ACM,
2006, pp. 38–51.

[Grö+08] Hans Grönniger et al. “MontiCore: a framework for the development
of textual domain specific languages”. In: ICSE. 2008, pp. 925–926.

[Hee+89] Jan Heering et al. “The syntax definition formalism SDF”. In: SIG-
PLAN Notices 24.11 (1989), pp. 43–75.

[Hei+09] Florian Heidenreich et al. “Derivation and Refinement of Textual
Syntax for Models”. In: ECMDA-FA. 2009, pp. 114–129.

[Joh+04] Adrian Johnstone, Elizabeth Scott, and Giorgios Economopoulos.
“Generalised Parsing: Some Costs”. In: CC. Ed. by Evelyn Duester-
wald. Vol. 2985. Lecture Notes in Computer Science. Springer, 2004,
pp. 89–103.

[JV12] Maartje de Jonge and Eelco Visser. “Automated evaluation of syntax
error recovery”. In: ASE. Ed. by Michael Goedicke, Tim Menzies,
and Motoshi Saeki. ACM, 2012, pp. 322–325.

204 Natural and Flexible Error Recovery for Generated Modular Language . . .

[Jon+09] Maartje de Jonge et al. “Natural and Flexible Error Recovery for Gen-
erated Parsers”. In: SLE. Ed. by Mark G. J. van den Brand, Dragan
Gasevic, and Jeff Gray. Vol. 5969. Lecture Notes in Computer Sci-
ence. Springer, 2009, pp. 204–223.

[Jou+06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. “TCS: a DSL for
the specification of textual concrete syntaxes in model engineering”.
In: GPCE. Ed. by Stan Jarzabek, Douglas C. Schmidt, and Todd L.
Veldhuizen. Portland, Oregon, USA: ACM, 2006, pp. 249–254.

[KV10] Lennart C. L. Kats and Eelco Visser. “The spoofax language work-
bench: rules for declarative specification of languages and IDEs”. In:
OOPSLA. Ed. by William R. Cook, Siobhán Clarke, and Martin C.
Rinard. ACM, 2010, pp. 444–463.

[Kat+08] Lennart C. L. Kats, Martin Bravenboer, and Eelco Visser. “Mixing
source and bytecode: a case for compilation by normalization”. In:
OOPSLA. Ed. by Gail E. Harris. ACM, 2008, pp. 91–108.

[Kat+09a] Lennart C. L. Kats, Anthony M. Sloane, and Eelco Visser. “Dec-
orated Attribute Grammars: Attribute Evaluation Meets Strategic
Programming”. In: CC. Ed. by Oege de Moor and Michael I.
Schwartzbach. Vol. 5501. Lecture Notes in Computer Science.
Springer, 2009, pp. 142–157.

[Kat+09b] Lennart C. L. Kats et al. “Providing Rapid Feedback in Generated
Modular Language Environments. Adding Error Recovery to Scan-
nerless Generalized-LR Parsing”. In: OOPSLA. Ed. by Gary T. Leav-
ens. Vol. 44. ACM SIGPLAN Notices. Orlando, Florida, USA: ACM
Press, 2009, pp. 445–464.

[Kat+10a] Lennart C. L. Kats, Karl Trygve Kalleberg, and Eelco Visser.
“Domain-Specific Languages for Composable Editor Plugins”. In:
Electr. Notes Theor. Comput. Sci. 253.7 (2010), pp. 149–163.

[Kat+10b] Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. “Pure and
declarative syntax definition: paradise lost and regained”. In: OOP-
SLA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
Reno/Tahoe, Nevada: ACM, 2010, pp. 918–932.

[Kat+11] Lennart C. L. Kats et al. The Permissive Grammars Project. http:
//strategoxt.org/Stratego/PermissiveGrammars.
2011.

[Kic+97] Gregor Kiczales et al. “Aspect-Oriented Programming”. In: ECOOP.
Ed. by Mehmet Akşit and Satoshi Matsuoka. Vol. 1241. LNCS.
Springer, 1997, pp. 220–242.

[KL03] Steven Klusener and Ralf Lämmel. “Deriving tolerant grammars
from a base-line grammar”. In: ICSM. IEEE Computer Society, 2003,
p. 179.

12 Conclusion 205

[Kra+07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Efficient Edi-
tor Generation for Compositional DSLs in Eclipse”. In: Proceedings
of the 7th OOPSLA Workshop on Domain-Specific Modeling. ACM,
2007, pp. 218–228.

[Kra+08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore:
Modular Development of Textual Domain Specific Languages”. In:
TOOLS (46). Ed. by Richard F. Paige and Bertrand Meyer. Vol. 11.
Lecture Notes in Business Information Processing. Springer, 2008,
pp. 297–315.

[KT] Thomas Kuhn and Olivier Thomann. Eclipse Corner: Abstract Syn-
tax Tree. http://eclipse.org/articles/article.
php ? file = Article - JavaCodeManipulation _ AST /
index.html.

[LT93] Alon Lavie and Masaru Tomita. “GLR*-an efficient noise skipping
parsing algorithm for context free grammars”. In: Third International
Workshop on Parsing Technologies. 1993, pp. 123–134.

[L7́1] Jean-Pierre Lévy. “Automatic Correction of Syntax Errors in Pro-
gramming Languages”. PhD thesis. Ithaca, NY, USA: Cornell Uni-
versity, 1971.

[MF88] Jon Mauney and Charles N. Fischer. “Determining the Extent of
Lookahead in Syntactic Error Repair”. In: ACM Trans. Program.
Lang. Syst. 10.3 (1988), pp. 456–469.

[McK+95] Bruce J. McKenzie, Corey Yeatman, and Lorraine De Vere. “Error
Repair in Shift-Reduce Parsers”. In: ACM Trans. Program. Lang.
Syst. 17.4 (1995), pp. 672–689.

[Moo01] Leon Moonen. “Generating Robust Parsers using Island Grammars”.
In: Proceedings. Eighth Working Conference on Reverse Engineer-
ing. IEEE Computer Society Press, 2001, pp. 13–22.

[Moo02] Leon Moonen. “Lightweight Impact Analysis using Island Gram-
mars”. In: Proceedings of the 10th IEEE International Workshop of
Program Comprehension. IEEE Computer Society, 2002, pp. 219–
228.

[NN+09b] Emma Nilsson-Nyman, Torbjörn Ekman, and Görel Hedin. “Prac-
tical Scope Recovery Using Bridge Parsing”. In: Proceedings of
the Internation Conference on Software Language Engineering (SLE
2008). Ed. by Dragan Gasevic, Ralf Lämmel, and Eric Van Wyk.
Vol. 5452. LNCS. Springer, 2009, pp. 95–113.

[PK80] Ajit B. Pai and Richard B. Kieburtz. “Global Context Recovery: A
New Strategy for Syntactic Error Recovery by Table-Drive Parsers”.
In: ACM Trans. Program. Lang. Syst. 2.1 (1980), pp. 18–41.

206 Natural and Flexible Error Recovery for Generated Modular Language . . .

[PQ95] Terence John Parr and Russell W. Quong. “ANTLR: A Predicated-
LL(k) Parser Generator”. In: Softw., Pract. Exper. 25.7 (1995),
pp. 789–810.

[PF11] Terence Parr and Kathleen Fisher. “LL(*): the foundation of the
ANTLR parser generator”. In: PLDI. Ed. by Mary W. Hall and David
A. Padua. ACM, 2011, pp. 425–436.

[PD78] Thomas J. Pennello and Frank DeRemer. “A Forward Move Algo-
rithm for LR Error Recovery”. In: POPL. Ed. by Alfred V. Aho,
Stephen N. Zilles, and Thomas G. Szymanski. ACM Press, 1978,
pp. 241–254.

[RK91] Jan Rekers and Wilco Koorn. “Substring parsing for arbitrary
context-free grammars”. In: SIGPLAN Notices 26.5 (1991), pp. 59–
66.

[SC89] Daniel J. Salomon and Gordon V. Cormack. “Corrections to the pa-
per: Scannerless NSLR(1) Parsing of Programming Languages”. In:
SIGPLAN Notices 24.11 (1989), pp. 80–83.

[SC95] Daniel J. Salomon and Gordon V. Cormack. The disambiguation and
scannerless parsing of complete character-level grammars for pro-
gramming languages. Tech. rep. TR 95/06. University of Manitoba,
Winnipeg, Canada, 1995.

[Sau+06] Stephen Saunders, Duane K. Fields, and Eugene Belayev. IntelliJ
IDEA in Action. Manning, 2006.

[Sch06] Sylvain Schmitz. Modular Syntax Demands Verification. Tech. rep.
I3S/RR-2006-32-FR. Laboratoire I3S, Université de Nice-Sophia
Antipolis, France, 2006.

[SVW09] August C. Schwerdfeger and Eric R. Van Wyk. “Verifiable composi-
tion of deterministic grammars”. In: SIGPLAN Notices 44.6 (2009),
pp. 199–210.

[SD96] S. Doaitse Swierstra and Luc Duponcheel. “Deterministic, Error-
Correcting Combinator Parsers”. In: Advanced Functional Program-
ming, Second International School. Ed. by John Launchbury et al.
Vol. 1129. LNCS. Springer, 1996, pp. 184–207.

[Syn+03] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. “Robust
multilingual parsing using island grammars”. In: CASCON. IBM,
2003, pp. 266–278.

[Tai78] Kuo-Chung Tai. “Syntactic Error Correction in Programming Lan-
guages”. In: IEEE Trans. Software Eng. 4.5 (1978), pp. 414–425.

[Tom88] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Al-
gorithm for Practical Systems. Vol. 14. Kluwer Academic Publishers,
1988.

12 Conclusion 207

[Val07] Ron Valkering. “Syntax Error Handling in Scannerless Generalized
LR Parsers”. MA thesis. University of Amsterdam, 2007.

[Vis97a] Eelco Visser. “A Case Study in Optimizing Parsing Schemata by Dis-
ambiguation Filters”. In: International Workshop on Parsing Tech-
nology (IWPT 1997). Massachusetts Institute of Technology. Boston,
USA, 1997, pp. 210–224.

[Vis97b] Eelco Visser. Scannerless Generalized-LR Parsing. Tech. rep. P9707.
Programming Research Group, University of Amsterdam, 1997.

[Vis97c] Eelco Visser. “Syntax Definition for Language Prototyping”. PhD
thesis. University of Amsterdam, 1997.

[Vis02] Eelco Visser. “Meta-programming with Concrete Object Syntax”.
In: GPCE. Ed. by Don S. Batory, Charles Consel, and Walid Taha.
Vol. 2487. Lecture Notes in Computer Science. Springer, 2002,
pp. 299–315.

[WY07] Daniel Waddington and Bin Yao. “High-fidelity C/C++ code trans-
formation”. In: Science of Computer Programming 68.2 (2007),
pp. 64–78.

