113 research outputs found

    Degas: A Database of Autonomous objects

    Get PDF
    In this paper we introduce DEGAS (Dynamic Entities Get Autonomous Status), an active temporal data model based on autonomous objects. The natural combination of active and temporal databases is discussed. The active dimension of DEGAS means that we define the behaviour of objects in terms of production rules. The temporal dimension means that the history of an object is included in the DEGAS data model. Further novel features of DEGAS are the encapsulation of the complete behaviour of an object, both potential and actual. Thus, DEGAS combines dynamic and structural specifications in one model. In addition, DEGAS allows easy evolution of object capabilities through a clear distinction between inherent types and capabilities that can be acquired and lost. This addon mechanism makes DEGAS very suitable as a formalism for role modelling. Finally, the rule model in DEGAS is both simple, through the use of finite automata, and general, because it allows different strategies for dealing with constraints and reacting to events in other objects

    ADO: An Active Distributed Object-Oriented Database Model

    Get PDF
    Object-oriented databases are emerging as a newgeneration database technology for complex applications. In this paper, we present an active distributed object-oriented (ADO) database model, which can capture not only passive behaviors but also active behaviors of complex objects. Besides, the distribution nature of objects can be reflected from within the model as well. Based on the model, we have developed a prototype active distributed object-oriented database management system, and applied it to a housing property management application

    An object query language for multimedia federations

    Get PDF
    The Fischlar system provides a large centralised repository of multimedia files. As expansion is difficult in centralised systems and as different user groups have a requirement to define their own schemas, the EGTV (Efficient Global Transactions for Video) project was established to examine how the distribution of this database could be managed. The federated database approach is advocated where global schema is designed in a top-down approach, while all multimedia and textual data is stored in object-oriented (O-O) and object-relational (0-R) compliant databases. This thesis investigates queries and updates on large multimedia collections organised in the database federation. The goal of this research is to provide a generic query language capable of interrogating global and local multimedia database schemas. Therefore, a new query language EQL is defined to facilitate the querying of object-oriented and objectrelational database schemas in a database and platform independent manner, and acts as a canonical language for database federations. A new canonical language was required as the existing query language standards (SQL: 1999 and OQL) axe generally incompatible and translation between them is not trivial. EQL is supported with a formally defined object algebra and specified semantics for query evaluation. The ability to capture and store metadata of multiple database schemas is essential when constructing and querying a federated schema. Therefore we also present a new platform independent metamodel for specifying multimedia schemas stored in both object-oriented and object-relational databases. This metadata information is later used for the construction of a global schemas, and during the evaluation of local and global queries. Another important feature of any federated system is the ability to unambiguously define database schemas. The schema definition language for an EGTV database federation must be capable of specifying both object-oriented and object-relational schemas in the database independent format. As XML represents a standard for encoding and distributing data across various platforms, a language based upon XML has been developed as a part of our research. The ODLx (Object Definition Language XML) language specifies a set of XMLbased structures for defining complex database schemas capable of representing different multimedia types. The language is fully integrated with the EGTV metamodel through which ODLx schemas can be mapped to 0-0 and 0-R databases

    Converting relational databases into object relational databases

    Get PDF
    This paper proposes an approach for migrating existing Relational DataBases (RDBs) into Object-Relational DataBases (ORDBs). The approach is superior to existing proposals as it can generate not only the target schema but also the data instances. The solution takes an existing RDB as input, enriches its metadata representation with required semantics, and generates an enhanced canonical data model, which captures essential characteristics of the target ORDB, and is suitable for migration. A prototype has been developed, which migrates successfully RDBs into ORDBs (Oracle 11g) based on the canonical model. The experimental results were very encouraging, demonstrating that the proposed approach is feasible, efficient and correct

    Visually querying object-oriented databases

    Get PDF
    Bibliography: pages 141-145.As database requirements increase, the ability to construct database queries efficiently becomes more important. The traditional means of querying a database is to write a textual query, such as writing in SQL to query a relational database. Visual query languages are an alternative means of querying a database; a visual query language can embody powerful query abstraction and user feedback techniques, thereby making them potentially easier to use. In this thesis, we develop a visual query system for ODMG-compliant object-oriented databases, called QUIVER. QUIVER has a comprehensive expressive power; apart from supporting data types such as sets, bags, arrays, lists, tuples, objects and relationships, it supports aggregate functions, methods and sub-queries. The language is also consistent, as constructs with similar functionality have similar visual representations. QUIVER uses the DOT layout engine to automatically layout a query; QUIVER queries are easily constructed, as the system does not constrain the spatial arrangement of query items. QUIVER also supports a query library, allowing queries to be saved, retrieved and shared among users. A substantial part of the design has been implemented using the ODMG-compliant database system O₂, and the usability of the interface as well as the query language itself is presented. Visual queries are translated to OQL, the standard query language proposed by the ODMG, and query answers are presented using O₂ Look. During the course of our investigation, we conducted a user evaluation to compare QUIVER and OQL. The results were extremely encouraging in favour of QUIVER

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct

    Development of an Assertion Model of Integrity Constraints in Object-Oriented Databases

    Get PDF
    Object-Oriented Databases (OODBs) have been designed to support large and complex programming projects. The data accuracy, consistency, and integrity in OODBs are extremely important for developers and users. Checking the integrity constraints in OODBs is a fundamental problem in database design. Existing OODB Management Systems (OODBMSs) lack to a capability of an ad-hoc declarative specification of enforcing and maintaining integrity constraints that are appeared among attributes in association, composition, and inheritance hierarchies' relationships. A critical problem in the existing OODBs is that they cannot support User-Defmed Constraints (UDCs) that can be defmed in classes with composition (logical or physical composition) and inherence (single or mUltiple inheritance) hierarchies. Integrity constraints in the current OODBMSs are maintained either by disallowing and rolling back transaction or modifying operations that may produce a violation. The constraints must be maintained in the backward direction along the class composition hierarchy as well as in the forward direction. In this work an Assertion Model of Integrity Constraints (AMIC) is proposed. The AMIC keeps the derivation path along with the attributes' relationships that are derived from association, composition, and inheritance hierarchies. The AMIC techniques are designed to implement the needed functions that are collecting the attributes' relationships and checking the integrity constraints. Moreover, AMIC keeps UDCs with their relationships in both single classes and multilevel classes (intra-class and inter-class). Furthermore, the AMIC can maintain constraints in a single object and a set of distributed objects (intra-object and inter-object). Therefore, this makes the new model extendable and can be integrated with any existing constraints' service. A new technique called Detection Method (DM) isdesigned to check the Object Meta Data (OMD) to detect the constraints violation before it occurs. The AMIC is designed for both Centralized Integrity Maintenance (CIM) and Application-Oriented Integrity Maintenance (AOIM). The AMIC can also enforce and maintain structural and logical integrity constraints, in addition to enforce and maintain redundant, inconsistent, and duplicate constraints

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore