
Open Research Online
The Open University’s repository of research publications
and other research outputs

The Application of Object-Oriented Views to an
Engineering Environment.
Thesis
How to cite:

Shao, Zhuang (1999). The Application of Object-Oriented Views to an Engineering Environment. MPhil
thesis. The Open University.

For guidance on citations see FAQs.

c© 1999 Zhuang Shao

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

U M tZSTRlO e^

The Application of Object-Oriented Views

to an Engineering Environment

by

Zhuang Shao

M.Phil.

Computer Science

0004

j IN PARTIAL FULFILMENT
! OF THE REQUIREMENTS

OF THE OPEN UNIVERSITY

School of Information Systems and Computing

University of Wales Institute, Cardiff

2nd September, 1999

AWARDING BODY:
THE OPEN UNIVERSITY

ProQuest Number: 27727936

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27727936

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

With the increasing popularity of object-oriented technology, object-oriented database

systems are being used in design environments as central repositories. In this thesis,

we investigate the role of versioning and the characteristics of design databases in

design environments. In an effort to improve the configuration management scheme

in a design environment, we also investigate the use of database views as a possible

configuration tool.

We propose a unified version management scheme that facilitates cooperative team

work and show that the use of database views provides a powerful configuration

management scheme for a design environment.

ACKNOWLEDGMENTS

Many people have influenced the work reported in this thesis, and it is my pleasure

and privilege to acknowledge their contributions.

Firstly, I am indebted to my supervisors Tom Camduff, David Ball and Alex Gray,

who have helped to form many of the ideas reported in this thesis, and encouraged me

throughout their development.

My love and special thanks are due to Xi for her total support throughout the course of

this work. Without her encouragement this thesis would never have happened.

Table of Contents

ABSTRACT... i

ACKNOWLEDGMENTS.. ii

TABLE OF CONTENTS.. iii

TABLE OF FIGURES.. v

TABLE OF TABLES.. vi

TABLE OF LISTS.. vi

CHAPTER 1 INTRODUCTION .. 1
1.1 Thesis A ims and Objectives...2
1.2 Structure of the Th e s is ... 4

CHAPTER 2 INTEGRATED DESIGN ENVIRONMENT..6
2.1. Advantages of using a database...8
2.2. Characteristics of a Data in Design Environm ent..9
2.3. Objects and Databases..13

2.3.1. Object and Object Identity.. 15
2.3.2. Encapsulation and Methods.. 15
2.3.3. Class Hierarchy and Inheritance.. 15
2.3.4. Composite Object... 17

2.4. The D esign Environment and Da ta ba ses ...18
2.5. Su m m a ry .. 22

CHAPTER 3 THE VERSIONING MECHANISM... 24
3.1. Introduction ...24
3.2. The Changing Wo r l d .. 25

3.2.1. Database Schema... 26
3.2.2. Database Objects... 27

3.3. Basic Version Co n c ept ...29
3.4. Configuration Managem ent .. 34
3.5. Review of Version M odels... 36

3.5.1. Zdonik..37
3.5.2. Chou and Kim ..39
3.5.3. Agrawal..40
3.5.4. Ahmed..42
3.5.5. Sciore...43
3.5.6. Summary o f Version Models... 45

3.6. Our V ersion Mo d el ..46
3.6.1. The Versioning Data Model..46
3.6.2. States o f Versions and Workspaces... 48
3.6.3. Change Notification and Propagation.. 52

3.7. Su m m a ry .. 54

CHAPTER 4 DATABASE VIEWS AND OQL... 56
4.1 Introduction .. 56
4.2 Taxonomy of Object-Oriented V ie w s .. 62

4.2.1. Definition of Terms:... 62
4.2.2 View Taxonomy...63
4.2.3. Semantics o f View Update...67

4.3 ODMG Object Query Language (O Q L).. 70
4.4 A Model of a View Mechanism ..72

4.4.1. The aims o f the Model ..72
4.4.2. The View M odel...73

4.5. Su m m a ry ... 76

C H A PTER 5 M A TERIA LIZA TIO N O F TH E O B JECT-O RIEN TED V IE W 77

5.1 INTRODUCTION.. 77
5.2 Object-oriented V iew Materialization ...79
5.3 Object Identity and View Materialization .. 81

5.3.1 Taxonomy o f Base Class Update Operations...82
5.3.2 The View Maintenance Manager... 85

5.4 Su m m a ry .. 88

C H A PTER 6 VIEW S IN IN TEG RA TED D ESIGN EN V IR O N M EN T..90

6.1 Introduction .. 90
6.2 Object Versions and Workspaces... 91

6.2.1 Partition o f Design Database..92
6.3 Unified Version Mana g em en t ...93

6 3 I Version Names 97
6.3.2 Object Version Migration.. 98

6.4 Configuration Managem en t ... 99
6.4.1 Views in Configuration Management... 100
6.4.2 Identifying Object Components..102

6.5 Su m m a ry ... 104

C H A PTER 7 PR O TO TY PE DESIGN AND IM PL E M E N T A T IO N .. 106

7.1 Introduction .. 106
7.2 The version Model ...107
7.3 The View Mo d el .. 111

7.3.1. Example o f View Definition... 112
7.4 View Maintenance Ma na ger ... 121

7.4.1 Implementation o f the View Maintenance Manager (VMM).. 123
7.5 Su m m a ry .. 124

C H A P T E R S EV A LU A TIO N .. 125

8.1 Introduction ..125
8.2 Object V iew Model Development... 125
8.3 Version Management and Design Environm ent ... 128

8.3.1 Version Management.. 128
8.3.2. Design Environment... 130

8.4 Configuration Ma na gem ent .. 131
8.5 Su m m a ry .. :...132

C H A PTER 9 CONCLUSIONS AND FUTURE W O R K ...133

9.1 Conclusions...133
9.2 Future Wo r k .. 136

APPENDIX B IB L IO G R A PH Y ... 139

Table of Figures

Figure 2.1 Example of Class Hierarchy .. 16

Figure 2.2 Example of Complex Object ... 17

Figure 2.3 System Architecture in Design En vironm ent .. 19

Figure 2.4 H ierarchy of Databases in a Design Environm ent ..20

Fig u r e s . 1 Version Evolution Pa ttern s ..30

Figure 3 .2 H ierarchy of w orkspaces & Distribution of versions..32

FIGURE 3. 3 Slices.. 38

Figure 3 .4 transition of version states ... 43

Figure 3 .5 Version movement between workspaces... 50

F igure 3 .6 Example of a Composite Object Configuration H ierarchy.. 53

F igure 4 .1 Taxonomy of OODB Vie w s ..63

Figure 4 .2 V iew Model definition .. ,..74

Figure 4 .3 Relationships between the View Object and its Base Ob jec t s 75

Fig u r e s . 1 Structure of VM M ..!.............................87

Figure 6 .1 Main Version Graph in Public Workspace..................... 94

Figure 6 .2 Version Graph in Private Workspace 95

Figure 6 .3 version Graph in Project Workspace 95

Figure 6 .4 Version Graph in Public Workspace 96

Figure 6. 5 Object References during Object M ig ration .. 99

Figure 7.1 Class Relationships for Version M o d e l ...108

Figure 7 .2 Car Object and Its V iew Elec Ca r ... 114

Figure 7 .3 The Join of Engine Object and Gearbox Ob jec t ..116

Figure 7 .4 Example of Extended Vie w ... 118

v

Table of Tables

Table 4 .1 Comparison of different View M o d e l s 61

Table of Lists

List 7 .1 Class for Generic Objects ... 109

L ist 7 .2 Class for Descriptor Ob jec ts ... 110

L ist 7 .3 Class Versionable Objects... 110

L is t 7 .4 O b je c t-P re se rv in g View in SELECT V iew 113

L ist 7. 5 Object-Generating view in Projection V iew .. 115

List 7 .6 Query Definition for Join V iew Power_Plan t ...117

List 7 .7 Example of Extended Vie w 119

List 7. 8 Example of Union View .. 120

L is t 7 .9 U nion View in OQL..i................................121

L ist 7 .10 View Maintenance Cl a s s ... 122

vi

Chapter 1 Introduction

Chapter 1 Introduction

The development of a product is seen as the manipulation of a set of complex objects.

To support complex design activities in modem society, a database is often used as

central repository to store all the information. Object-oriented databases (OODB)

more naturally reflect the behavior and organization of complex application domains

and therefore are ideal candidates for a design database. With the increasing

popularity of object-oriented database system, object-oriented views have attracted a

lot of attention from the database research community. Views have been recognised as

a way of virtually restructuring and customizing objects both in format and behaviour.

Object-Oriented databases are widely used in CAD/CAM/CASE. These applications

require their databases to provide following capabilities[KATZ87] :

• Definition and manipulation of complex object,

• Management of variants and revisions of both the design artifact and its

components.

One of the problems in a design process is that there are so many different ideas about

how a product should be designed. In an uncontrolled environment, this leads to

incompatibility and inconsistencies. A versioning facility in a database is there to

support the tentative and iterative nature of design activities where designers are

encouraged to experiment with different variants and revisions of a design

[SCIORE91].

1

Chapter 1 Introduction

Configuration management is a form of organization that provides stability to the

production of complex objects by controlling the object evolution, i.e., continued and

concurrent changes. Configuration management provides a stable working

environment for changing the design objects, supports the assembly of a complex

design artefact from its components, and coordinates concurrent changes [FEILER91].

Configuration management ensures the consistency of and compatibility between

component objects of a complex design object. A configuration can be generated by

selecting component objects that satisfy some selection criteria such as configurations

that incorporate specified features, or check whether a user-specified configuration is

correct [AGRAWAL89].

In this thesis, we describe a configuration management mechanism in a design

environment, which puts emphasis on the semantic relationship between the

components and the complex object. The configuration management mechanism is

based on the assumption that a component object has to meet certain design criteria

before it can be integrated into a complex object’s configuration. A configuration

may be treated as a versioned object. The configuration management framework

incorporates object-oriented views to provide an expressive and flexible scheme for

defining configuration criteria.

1.1 Thesis Aims and Objectives

2

Chapter 1 Introduction

The aim of the research project was to investigate how an object-oriented database

could provide efficient support for cooperative work in an engineering design

environment with particular emphasis on the use of database views to support design

activities.

To achieve the aim we will:

• Investigate the role of versioning and how it can be used to support design

activities in a design environment.

• Analyse the characteristics of a design database when used as the central repository

of a design environment.

• Investigate the need for, and characteristic of a database view mechanism as an

integral component of a design environment.

The hypothesis of this research is that object-oriented database systems provide better

support for change management in a design environment than second generation

database systems, particularly through the use of database views.

Within this thesis we will prove the hypothesis by demonstrating that:

1. Object-Oriented Databases provide better support for design environments than

second generation databases.

3

Chapter 1 Introduction

2. Object-Oriented databases are able to provide a flexible version control that suits

the needs of an engineering design environment.

3. Object-Oriented views provide a flexible and efficient framework for organising a

design environment.

4. View materialization provides an effective configuration management scheme.

5. Object-Oriented views provide a powerful and flexible configuration component

selection scheme for configuration management.

1.2 Structure of the Thesis

The thesis is organised as follows:

Following the short introduction given in this chapter, chapter 2 looks in detail at the

requirements and characteristics of a database supporting a design environment,

showing how it can be used to effectively support team work in a constantly changing

environment.

Chapter 3 describes the concept of versioning and what is required to capture the

changes in a constantly changing world. The semantics of versioning and the need for

configuration management are discussed. Versioned complex objects need

4

Chapter 1 Introduction

configuration management to control changes in their components. Various

configuration management approaches are discussed in this chapter and the advantage

and disadvantage of each approach is compared.

Chapter 4 introduces the notion of views in an object-oriented database and a

taxonomy of object-oriented views is presented. The ODMG standard query language

OQL is introduced in this chapter since OQL is used to define views later in this

thesis.

Chapter 5 describes an object view materialization strategy capable of supporting

versions of design artefacts in different workspaces. In the context of this strategy,

some of the problems associated with views, such as view updates, are discussed.

Chapter 6 presents the use of object-oriented views in a design environment in order

to provide a unified version management scheme and goes on to show how to use the .

view in configuration management. In particular, the means of using views to identify

component objects are described together with the underlying structures which

support these operations.

Chapter 7 presents the prototype of our proposed model for a design environment.

Chapter 8 evaluates the effectiveness of the proposed model.

Chapter 9 reviews the aim of the thesis, and discusses possible further developments

of the work reported here.

5

Chapter 2 Integrated Design Environment

CHAPTER 2 Integrated Design Environment

A large engineering design project typically involves a team of designers working

cooperatively on distributed workstations in order to complete a composite design

task. These designers usually interact dynamically, sharing ideas, design data and

general information with each other. The key element in providing efficient support

within such a development environment is integration as it is essential for designers to

communicate their ideas efficiently to coordinate their design efforts. To facilitate

collaborative development, it is essential that the integrated design environment

supports the following features [PRESSMAN94, AHMED91a]:

e Composite information modelling capabilities. Engineering data is composite in

structure because of the complexity of the domain that is being modelled. Design

entities may be interrelated to each other, e.g., a design artefact consists of various

components where these components themselves may have components of lower

complexity.

• Able to capture rich semantic information in design entities. Because of inherited

complexity in engineering data, database schemes must reflect the design

semantics and hierarchy. It is important that the database can capture composite

inter-object relationships and dependencies in the data model.

6

Chapter 2 Integrated Design Environment

Provide constraint management. Due to the inter-object relationship and

dependencies in the engineering data, consistency of data in the database must be

maintained by enforcing design constraints and integrity constraints during the

development process.

Support information sharing. One of the key issues in collaborative engineering is

the sharing of design data between teams of designers. It should be possible to

partition or group data based on criteria, such as ownership, use and purpose of

creation, or any other meaningful purpose.

Provision of version control. Engineering design is an incremental process and

evolves with time. A versioning facility would provide a mechanism for capturing

the evolution history of a particular design over its development process. If any

version were found to be faulty at any stage, it should be possible to “rollback” the

design to a valid state. Versioning also promotes concurrency as designers may

work concurrently on different versions of the same object instead of waiting for

each other to release the resource.

Enable changes to one item to be tracked to other related items. Composite inter

object relationships in engineering data mean that changes to one design might

affect other objects. The capability will ensure that all the related objects can be

identified and notified about the changes and consequently the changes would not

invalidate the whole design.

Chapter 2 Integrated Design Environment

Many of these are the features that are normally found in Database Management

Systems (DBMS). Therefore, database management systems are often used as data

repositories in design environments. The use of databases in design environments is

based on the need to manage a wide range of design information efficiently, and

effectively. In the following section, we will discuss the advantages of using

databases in design environments.

2.1. Advantages of using a database

Using databases in design environments has the benefit that it provides centralised

control over all data in the environment. For engineering design applications, the data

will include all the information generated during the development life cycle, in

particular, design requirements, specifications, implementation, integration, testing

and error reports. In addition to data concerning the design artefact, details of the

project development process itself is stored in the database, such as which designer is

responsible for a particular design and how these designs are interrelated.

One of the consequences of central control of data is that we can greatly reduce

redundancy in data storage. Reducing redundancy is a great help in removing

inconsistencies in the data. When a change is made to a component, all larger

components that have been using this object must be notified and appropriate actions

have to be taken to respond to the change. This property of change control is much

easier in a centrally controlled environment, especially using a database that not only

stores the data items themselves, but also the relationships between them.

8

Chapter 2 Integrated Design Environment

One of the problems in the design environment is that there are so many different

ideas about how to achieve a design objective. In an uncontrolled environment, data

using different design approaches can lead to incompatibility and inconsistencies

between the data. This situation can be avoided by central control of all the

development data. Central control is an important method of enforcing a set of

development standards, providing a single point at which all design data entering the

database can be validated before it is stored.

Database systems must ensure integrity of all data stored. There are two aspects to

integrity. The first is that access to data can be monitored, so that each user is

presented with an individual subset of the completed data, by using a view

mechanism. This allows the user to get on with his/her work without distraction from

irrelevant data, and provides a mechanism for restricting access to privileged

inforination.

The second aspect is to ensure that the data recorded is accurate and conforms to

constraints the designers may wish to impose on it. This is partly covered by reducing

redundancy, but additional data validation is possible by defining a central set of

integrity constraints, which may be applied to data before entry to the database.

2.2. Characteristics of a Data in Design Environment

9

Chapter 2 Integrated Design Environment

The engineering design process is highly data intensive, and it involves composite

data representations to model the structure and behaviour of complicated entities.

Engineering information is not only complex in structure but also in terms of

relationships between data. For example, a complex design object, (also known as

aggregate object), may contain several components and these components may in turn

have their own components. These components form part-of relationships with the

aggregate object. Therefore, it is important to control the relationships between these

objects in order to meet design constraints or requirements.

A design process is both tentative and iterative. This has a profound effect on the

growth of a design database, since it is necessary to keep a record of all amendments

to a design object as a new version of that object. The database should be able to get

the appropriate object and the right version for each request of a design item. When

changes are to be made to a design object, the designer should be able to assess and

identify the effect these changes may have on other related objects. This helps

prevent unexpected side effects that would otherwise cause defects and

inconsistencies in a design.

The transaction is considered to be a unit of database consistency and concurrency. A

typical transaction in a traditional database application is of short duration.

Serializability is enforced for concurrent transactions in order to maintain database

consistency. In collaborative design environments, the notion of a transaction is very

different from its traditional sense, and has the following characteristics [BROWN89]:

10

Chapter 2 Integrated Design Environment

• Conversational, requiring frequent interaction with the system before completion.

• Long-lived transactions which may leave the database in an inconsistent state for

long periods of time. Cannot be conveniently used as locking units.

• May use many records, as the objects accessed may be complex and highly inter

related.

• The concept of atomic transactions is not very applicable, because rolling back a

long transaction in this environment may turn out to be impractical.

In a multiple-user environment, some forms of concurrency control must be provided

to prevent interference. In traditional databases, concurrency control ensures that only

one user can update a particular object at any time. However, in an engineering

design environment transactions are normally of long duration, refusing other user's

access to a locked record for a long time is unacceptable. A .more flexible locking

mechanism is needed to allow greater concurrency, so that transactions do not have to

wait indefinitely for each other to complete.

Relational database systems and their predecessors are designed for business

applications, to store such information as personal details or bank records. These

database systems are highly efficient in these application areas, but are not necessarily

suitable for other application areas whose characteristics differ greatly from business

applications. The relational database is good at handling data that is confined to a

small number of different types of data related in well-defined ways. For design

11

Chapter 2 Integrated Design Environment

applications, such as CAD/CAM, the relational data model has many limitations

[KENT79, KIM90]:

• Relational data models are severely restricted in their modelling power. The

relational model is not complex enough to capture nested entities. The relational

data model does not support some of the commonly useful semantic concepts, such

. as generalization and aggregation relationships.

• Relational data models assume horizontal homogeneity. This means that each

record of a certain record type is assumed to be composed of the exact same fields.

• Relational database systems assume vertical homogeneity, i.e., each field should be

from the same domain in all the records.

• Only a fixed set of operations are allowed on atomic data values, such as arithmetic

and comparison operations. It is not possible to add new operations and make

those operations appear syntactically similar to built-in operations.

• Meta-information is generally not accessible. This results in a program text that

includes hard coded data based on prior knowledge of the schema, making

alterations to both the schema and the program difficult to manage.

12

Chapter 2 Integrated Design Environment

• Dynamic objects such as sets have to be implemented using several records and

join operations, causing inefficiency.

• Transaction time for design objects (e.g., data from CAD) is often long, spanning

several hours or days, and not uncommonly, weeks or even months. This is in

strong contrast to business data processing transactions^ which are assumed to be

short lived. Concurrency control primitives and protocols (such as two-phase

locking) supported by relational databases are not particularly suitable for long-

lived transactions.

• The performance of a relational database system is not satisfactory for

computationally intensive applications.

Recognizing the inadequacies of relational databases, the database research

community has been trying to extend database systems with enhanced semantic data

modelling concepts. These research efforts have led to the development of Object-

Oriented Databases which offer better modelling semantics for complex data

structures such as those found in design environments.

2.3. Objects and Databases

The best candidate system upon which to base an integrated design environment is

one that supports rich modelling semantics and exhibits features required by design

13

Chapter 2 Integrated Design Environment

environments. Object-oriented databases are different from previous generations of

databases in that they offer greater flexibility in new type definition and data

abstraction. As well as having all the features found to be useful in relational

databases [STONEBRAKER90, ATKINSON89] object-oriented databases should

also offer features that are highly desirable in design environments.

Fundamental to the object-oriented data model is its ability to extend the class

hierarchy with new classes. In object-oriented database systems, data types are

represented as classes within a class hierarchy and can be extended easily.

Extensibility is a very powerful mechanism for building and evolving large and

complex design artefacts. Inheritance is the one of key features that supports

extensibility in object-oriented database systems.

Apart from the purely structural data model found in previous generations of

databases, the object-oriented data model embodies a more behavioural model,

combining representation and manipulation of data within the same model. Each

class of objects has a set of well-defined methods. Object states can only be modified

through designated methods of the object. This is guaranteed by a mechanism called

data encapsulation. Encapsulation not only protects data from unauthorised or

unintended modification but also minimises the impact of changes in implementation.

Although there is no formal definition for the object-oriented data model, the object-

oriented community has agreed that the object-oriented data models should possess

certain features, as follows.

14

Chapter 2 Integrated Design Environment

2.3.1. Object and Object Identity

The object is the basic unit of an object-oriented database. Everything is modelled as

an object in an object-oriented database. An object has a number of data properties,

known as attributes, associated with it which represent the current state of the object.

They can be manipulated through a set of well-defined fimctions of the object. Each

object is identified by a unique object identifier. In object-oriented databases, this

object identifier is system generated and is associated with the object throughout its

life time. Unlike the relational data model, the object identifier frees the user from the

need to define unique keys for objects and it allows equal objects (objects that have

the same attribute values) to coexist.

2.3.2. Encapsulation and Methods

Objects are manipulated by methods that are defined on their classes. Data in an

object can only be accessed through these well-defined methods. These methods are

invoked by messages sent to the object with which they associate. The

implementation of these methods may change without invalidating their use.

2.3.3. Class Hierarchy and Inheritance

In the object-oriented data model, objects are organized in taxonomies through

inheritance. In such a model, specialized objects inherit the attributes and methods of

more generalized ones, The inherited methods can be modified in the subclass. This

15

Chapter 2 Integrated Design Environment

is known as overriding. This feature enables the reuse and incremental redefinition of

a new class structure in terms of existing ones. Similar classes of objects sharing

common attributes and methods can be modelled by specifying a superclass, and then

deriving specialized classes (subclasses) from the superclass.

A class may have any number of subclasses. However, some object-oriented systems

allow a subclass to have only one superclass, i.e., single inheritance, while others

allow a subclass to have more than one superclass, i.e., multiple inheritance. The

class hierarchy captures the generalization/specialization relationships between a class

and its subclasses. Figure 2.1 shows example of a class hierarchy.

Person

Consultant

Software
Engineer

Consultant Software
Engineer

Employee /

Figure 2.1 Example of Class Hierarchy

16

Chapter 2 Integrated Design Environment

2.3.4. Composite Object

A composite object is a heterogeneous set of objects which form a part hierarchy. The

part-of relationship is superimposed on the aggregation relationship between an object

and the other objects it references [KIM90]. The attributes of a composite object may

be objects themselves. The value of the attribute is a reference to an object An object

may have a number of references to other objects.

In composite objects, the referenced object can be seen as a component of the object.

For example, a Car object has the components Engine and BodyWork. The Engine

object itself has a component GearBox. The structure of the composite object Car is

illustrated in Figure 2.2.

Car

Engine

GearBox

BodyWork /

Figure 2.2 Example of Complex Object

17

Chapter 2 Integrated Design Environment

From the above discussion, we can see that the object-oriented database system is a

more suitable data repository in design environments [KIM90, AHMED91a] than

previous generations of databases. In this thesis, an object-oriented database is used

as a supporting data repository for a design environment. We will investigate how

object-oriented databases can provide more efficient support in an engineering design

environment.

2.4. The Design Environment and Databases

Central to an integrated design environment is its database management system. The

database management system, often referred to as an Object Management System

(OMS) in design applications, is used as the central integrating component of a design

environment. The object management system handles all the information generated

during the design development life cycle. Having a central database facilitates

information sharing and can ensure data entered into the database can be validated to

meet the design requirements or other integrity constraints.

To conquer composite design problems, people often decompose them into several

smaller problems or modules which are easier to comprehend and manage. A module

should be small enough for the developers to comprehend its functionality and it

should be big enough to function independently. Modularity makes it possible for

changes in one module not to affect other modules as long as the module interface

remains the same.

18

Chapter 2 Integrated Design Environment

In a design environment, designers work on their own workstations individually on a

problem. However, communications between these designers are vital. A central

database is provided to facilitate teamwork and information exchange. Project

information and design data are all stored in the database. A system structure of such

a design environment is illustrated in figure 2.3.

□ □ □
1 --------------------------------Local Are* Networrk------------------------------ "

Database
Server

Figure 2.3 System Architecture in Design Environment

Generally, large design problems are not decomposed to a size that is suitable for one

designer to work on. Rather it is firstly decomposed into smaller modules according

to their functionality. These smaller modules are often organised as sub-projects

within a big design project. Designers are assigned design problems within each sub-

project. The solution to the original design problem occurs when the individual

solutions to all the modules are put together.

19

Chapter 2 Integrated Design Environment

To support such a project organization, the database server in figure 2.3 is actually

composed of a hierarchy of databases [CHOU86]. These include a public database,

project databases and private databases. This hierarchy of databases corresponds to

the decomposition of the design problem. Figure 2.4 depicts the organization of the

database hierarchy in a design environment.

The public database contains all the information about the whole project and also all

the designs that are released from the project databases and ready to be integrated with

other modules. The public database can be accessed by everyone working on the

project. Before any design data is put into the public database, it must go through a

validating process to ensure that it meets all the design requirement or integrity

constraints of the project. All the design information in the public database is

considered to be stable. The information can neither be deleted nor modified.

Public Database

ProjecM
Database

Project_2
Database

Project_n
Database

(CT 1 C7 T) c 1
Private

Database
Private

Database
Private

Database

fCZ
Private Private

Database Database

Figure 2.4 Hierarchy of Databases in a Design Environment

20

Chapter 2 Integrated Design Environment

The project databases provide support for module development. They contain

information about the modules and designs from individual designers that are ready to

be used within the project database. Before the data is checked into the project

database, it must be validated against the module design requirements and any other

integrity constraints, e.g., other design objects referenced by the checked-in design

object should also be put into the.design database. Only people working on the same

module are allowed access to the project database. Data in the project database cannot

be modified but it may be deleted by the database administrator.

At the lowest level of the hierarchy are private databases. Generally private databases

reside on the individual designers’ workstations. This is where the designers perform

much of their development work. The private databases can only be accessed by the

designers who own it. The data in the private database is considered to be unstable. It

may be deleted or updated by their owner at any time.

This organization of databases in the design environment suits the needs of different

development stages. In the initial stage, design data is subject to frequent changes as

designers experiment with different design ideas in their private databases. Because it

is unstable, this data cannot be shared with other designers on the team.

When the design matures, the data is checked into the project database where it can be

shared with other designers on the team. This data in the project database cannot be

modified. If a designer wants to modify a design in the project database, he/she will

21

Chapter 2 Integrated Design Environment

have to check out the design into his/her own private database and make the necessary

changes. The modified design is then checked back into the project database as a new

version. Versioning will be discussed in detail in chapter 3. When a module design

matures, it can be then checked into the public database.

The check-in/check-out model suits the needs of the design environment on long

transactions well. When a designer checks-in/checks-out a design data, he/she

actually makes a copy of the data and installs the copy into the destination database.

The designer then works on the copy instead of locking the object in the project/public

database over a long period of time. This mechanism increases concurrent usage of

design databases and facilitates collaborative team development.

2.5. Summary

Having examined the advantages of using databases in a design environment, the

above analysis of the requirements for a design database revealed a number of

problems with relational database technology. We then investigated what the object-

oriented databases have on offer for design applications. We can conclude that object-

oriented databases provide better data repository facilities for design environments

because object-oriented database can [KIM90, AHMED9la]:

• Model and manipulate composite nested objects which allow successive refinement

of composite objects.

22

Chapter 2 Integrated Design Environment

• Allow the users to define and manipulate arbitrary data types. Object data

representation is very flexible, and may be customized by users with little

restriction.

• Represent and manage changes over time. This is an extremely important feature

in a dynamically evolving design environment.

• Allow various semantic modelling concepts to be represented and manipulated,

e.g., composite objects in an assembly-part hierarchy.

Using object-oriented databases to support composite design development is an active

area of research. However, the remainder of the thesis is concerned with examining

one of the mechanisms, seen as important for a database system, but which has

received little attention in the context of engineering object databases - the use of the

View mechanism. We begin by looking at versioning and configuration management

mechanisms before defining and implementing a View mechanism for an integrated

design environment.

23

Chapter 3 The Versioning Mechanism

Chapter 3 The Versioning Mechanism

In Chapter 2 we discussed the role of the database in an engineering design

environment. In the first part of this chapter, we will justify the need for version

management in a design environment and present a literature review of some typical

version models in object-oriented databases. Configuration management is discussed

in the context of composite object versioning. Finally we present our version model

which we believe provides better support in composite object versioning.

3.1. Introduction

In an engineering design environment, an important requirement of its supporting

database is to support incremental and cooperative design. To support such a tentative

and iterative design process, the database management system must be able to capture

the semantics of design evolution. Systems without a versioning mechanism keep

only the most recent version of a design object. When there is an update to a design

item, the old design is replaced by a new updated design. In many business

applications this method is acceptable. However, in a design environment it is too

rudimentary and is not acceptable because crucially the design evolution history is lost

during such updates.

Versioning is seen as an important technique in managing evolution in a design

environment [ZDONIK86, KATZ87]. The purpose of supporting versioning in

24

Chapter 3 The Versioning Mechanism

database systems is to capture the various states of a design object during its

evolution. There are two types of changes to design objects as far as database

management systems are concerned. The first is schema modification which concerns

the changes in class definition of data models. The second is instance modification

which concerns changes in the state of object instances.

3.2. The Changing World

The aim of introducing versioning into a database management system is to manage

frequent changes to data and its schema in a dynamic world. Data in database systems

are created to model only a subset of real world. When trying to capture part of the

real world we would like it to stay still so we can capture a precise model of it. In

reality this is rarely the case.

The data model in a database system reflects its designers’ perception of the real

world object. This perception reflects the designers’ understanding of real world

abstractions and conceptual organization. However, the designers’ understanding as

an abstraction may change as new insights into the application area arise.

The real world itself does not stand still either. It may evolve over time. The data in a

database should adapt to the changes in the part of real world that it is modelling: The

model of the real world in the database may change to better reflect the application

domain, e.g., correction of errors or new requirements. From the database point of

25

Chapter 3 The Versioning Mechanism

view, there are two aspects that might be affected by these changes: the database

schema and instances of schema.

3.2.1. Database Schema

In object-oriented databases, the schema defines the data structure of objects, e.g.,

their domain and sizes, as well as their behaviour. Objects of the same class have the

same type of attribute and exhibit the same behaviour. The database schema in an

object-oriented database defines classes and their inheritance structure. Objects are

instances of these classes.

As the real world evolves the model in the database needs to adapt to these changes.

This may mean that the database schema needs to modified. There are various

approaches to schema modification [RODDICK96, LIU94]:

e Schema modification allows direct modification of a single schema. Schema

modification will make any former specification obsolete.

• Schema evolution allows the modification of a database schema without the loss of

existing data. Under schema evolution, existing objects must be converted to the

new format and therefore existing applications are no longer compatible with the

data.

• Schema versioning allows modifications to database schema without overwriting

the existing schema, rather new versions of the schema are created. Versioning

facilitates program compatibility by leaving the existing schema intact.

26

Chapter 3 The Versioning Mechanism

A database schema defines the contents and structure of a database. Objects in the

database are created according to its schema. Upon modification of a schema, several

aspects of the database may be affected and they are [ODBERG95]:

• Other parts of the schema. As database objects do not exist in isolation they inter

connect with other objects.

• Application programs. These programs are still expecting data organized according

to the old schema.

• Objects in the database, which must comply with their database specification, i.e.,

its schema.

In object-oriented databases, modification to the schema is carried out by changing.

their class definitions or by creating or moving a class definition within the class

inheritance hierarchy. [KIM90] summaries the taxonomy of schema modifications.

[KIM90, MONK92, MONK93, BTSDYRTH92, RA95, ODBERG95] discuss schema

modification and versioning in detail. Schema versioning is outside the scope of this

thesis.

3.2.2. Database Objects

Another aspect that is affected by the changing world is the database object

themselves. Analogously to schema changes, object modification can be achieved

27

Chapter 3 The Versioning Mechanism

through two different approaches. Object modification is the traditional approach to

object updates, where the updated object replaces the old object and the old object

ceases to exist in the database.

The second approach is object versioning where the updated object will be created as

a new version. In a design environment, designers often want to try different

approaches to a design. Ideally these different designs are grouped together therefore

it is transparent that they will have some sort of connection. Object versioning plays

an important role in such an environment as it is the object versions representing

different design approaches which helps to group them. In many circumstances,

modification to a design is reflected in updating the object in the database instead of

its schema. Versions of an object represent different aspects of the same object and

these representations are logically independent of each other [DITTRICH88].

Object versions are snapshots of an object over its evolution. Timestamped versions

cannot model all of the rich semantics of versions [KATZ90]. In a design

environment, a designer often has more than one design idea to fulfill a design

requirement, for example, several alternatives to a given design specification. When

the alternative designs are completed, revisions of prior designs are necessary because

of new requirements, better ideas, or error corrections. Versioning provides the

tracking of the evolution of a design object. It is crucially important to maintain

versions of design objects because it provides traceability and the possibility of “going

back” if a particular line of evolution does not work out. In a design environment,

28

Chapter 3 The Versioning Mechanism

versions are associated with a semantic that is known to the user and it is the user who

decides which version to use.

3.3. Basic Version Concept

Versions are distinct snapshots of a design object in different states during its

evolution history [AHMED91b, BEECH89]. There is a question when two instances

of the same type are different objects and when they are merely different versions of

the same object. Versions of the same object must share the same interface but may

have different implementations [CHOUS6, AHMED91b].

For a versioned object, each version must be uniquely identifiable through a version

identifier. There are many ways of defining version identifiers, e.g., temporal or

simple integer. The most popular one is to use the user defined unique version

numbers.

A version identifier alone is not enough to fully describe the relationships between

different versions of a versioned object [BILIRIS89]. Users may want to track the

evolution history of a design object. Each version of an object is derived from its

predecessor, except the first version. This kind of relationship between versions is

typically called a predecessor/successor or parent/child relationship.

In a typical design scenario, designers often follow different development routes

simultaneously starting from an initial design. The same designer might develop

29

Chapter 3 The Versioning Mechanism

several alternatives in order to study tradeoff, etc., at some stage in the evolution of a

design. Alternative design versions may even need to be merged at some stage in the

design process. This development scenario requires that the version history be a

directed acyclic graph rather than a linear succession in order to capture the evolution

history of versions of a design object. The version graph can capture different

evolution patterns as shown in figure 3.1 [CAKNDUFF94].

VersionVersion Version

A. Linear Version Evolution

Version

Version

Version

B. Alternative Version

Version

Version Version

Version

C. Merging Version Evolution

Figure 3. 1 Version Evolution Patterns

Figure 3.1 shows examples of various version graphs. Figure 3.1a shows a linear

version evolution history where versions are connected by relationships of a single

30

Chapter 3 The Versioning Mechanism

type, i.e., successor relationships. Here, version 2 is a successor of version 1. This

means that version 2 has been derived from version 1. Figure 3.1b shows a two-level

version evolution history where version 2 is an alternative of version 3. Figure 3.1c

depicts the merging of versions where version 4 is created by merging version 2 and

version 3.

A version branch in the version history may have one of the following implications:

• It represents an independent path of development

• It represents different variants of the component.

• It represents an experimental development which may be abandoned or included

into the primary development at a later stage.

• It accommodates the fact that two developers were required to concurrently make

changes to a component. In such a case the branch may be merged as soon as both

modifications are completed. A merge combines the modifications that occurred

independently in the two different versions into a new version.

For a large scale design project, a typical user scenario is that the design task is

decomposed into several smaller projects. This makes it easier for the people

involved to understand the problem and easier for the project manager to manage. The

smaller projects form sub-projects within the top level project. Within each sub-

project, a group of engineers are assigned to carry out the development work. As each

subproject is completed, the resulting designs are assembled and integrated together to

complete the final design project.

31

Chapter 3 The Versioning Mechanism

To facilitate object sharing and management of objects in a design environment,

version objects often have states assigned to them to provide update constraints.

There is no consensus on how many version states are needed. Some suggested two

[DITTRICH88, TALENS93], while others recommended three [BEECH88, KIM90].

We adopt the three states approach because we believe it meets the needs of most

design environments. The three version states are: the released, working and transient

versions. The states of the versions reflect their stability in the database.

Another concept that is closely related to version states is the workspace model which

provides a mechanism through which new versions are made available to designers

working on a project. Workspaces are named repositories for design objects

[KATZ90]. Each type of workspace is implemented in the same way, the only

difference being the status of version objects residing in them and who can access

these workspaces. Workspaces are organised in a hierarchic order, as private, project,

and public workspaces [CHOU86], illustrated in figure 3.2.

Public Workspace

Private
Workspace

(T & W)

Private
Workspace

(T & W)

Private
Workspace

(T & W)

Private
Workspace

(T & W)

Project ! Workspace
(W)

Project_l Workspace
" (W)

Project ! Workspace
(W)

T: transient version
W: working version
R: released version

Figure 3. 2 Hierarchy of Workspaces & Distribution of versions

32

Chapter 3 The Versioning Mechanism

This arrangement of workspaces facilitates the development of large scale design

projects. Large scale design projects are often too big for individual designers to

comprehend fully. To make it humanly manageable, complex design problems are

often broken up into smaller design problems. This hierarchy of workspaces meets

the needs of such a design strategy. Designers have their own private workspace for

creating, modifying and testing their design. At a certain point, the design is checked

into project/public workspace where further development continues. Access control

on workspaces guarantees that read and modification rights as well as rights to

propagate changes to another workspace are restricted to appropriate project

personnel.

All newly created versions are transient versions. They are owned by the designer

who creates them. Transient versions are subject to frequent modification and may be

even deleted by their owner. For this reason they are considered to be unstable and

cannot be shared with other people. No new versions can be derived from a transient

version. Transient versions reside in private workspaces where the designer performs

design and validation work. The private workspace can only be accessed by the

designer who owns it. This restriction enables the designer to carry out design work

without fear of modification by other people. It also has the benefit that other people

cannot reference unstable objects.

Working versions are promoted from transient versions. They are more stable than the

transient version. Working versions are object versions that have passed the initial

33

Chapter 3 The Versioning Mechanism

design stage and are ready to be tested when integrated with other design modules.

When a transient version is promoted to a working version a copy of the version is

checked-out of the private workspace and checked-in to the project workspace.

Working versions are considered to be stable. They cannot be modified but may be

deleted by the project workspace administrator. There can be any number of working

versions for the same design object in a project database. This arrangement enables

designers within a project to experiment with different design alternatives. The

project database is accessible to all the people on the same design project.

At the top of the workspace hierarchy is the public workspace. The public database

holds released object versions. Before an object version is checked-into the public

workspace it must go through a validation process to make sure that it meets all its

design requirements. A released version can neither be updated nor deleted. All

authorised users of the design environment have access to data in the public database.

This classification of workspaces allows the developer to be isolated from changes in

other workspaces and from changes reaching higher level workspaces. Propagation of

changes both out of and into workspaces are explicit operations and under the control

of the developer.

3.4. Configuration Management

A composite object is a recursively defined aggregation of its constituent objects.

Composite objects are configured by selecting individual component versions such

34

Chapter 3 The Versioning Mechanism

that participating versions of a component are consistent with each other

[ZELLER95]. Different versions of a composite object have different configurations,

each of which has various references to its component versions. An important

requirement of configuration management is that it must ensure all the participating

versions are compatible [AGRAWAL89].

Version management is the provision of a mechanism that can capture evolution in

design artifacts. The aim of configuration management is to try to solve some of the

problems pertaining to the evolution o f design artefacts. These problems are caused

by the lack of control and understanding of all the components that make up a design

artefact. A further problem in the complex coordination of the product’s evolution by

its many developers. Configuration management controls the evolution of an object

through the identification of the object’s components and changes [HEILER91].

Configuration management provides a stable working context for changing the object.

Object configuration contains a set of references to specific versions of components.

The process of selecting component versions is called binding. There are two kinds of

bindings: static binding and dynamic binding [CONRADI96]. In Static binding

versions of components have already been bound before any object is accessed.

Dynamic binding is only performed when an object is actually accessed and the

referenced objects may vary.

Configuration management allows a user to specify alternative configurations for a

complex object through the selection of appropriate versions of its components.

35

Chapter 3 The Versioning Mechanism

There are two different approaches to version selection. The first approach relies on a

labeling version graph. This requires that the user explicitly specifies which variant

version is needed. The second approach allows the user to specify predicates on

attributes. The attribute can be as simple as a version number that is associated with

each of the versioned objects or as complex as a set of Boolean variables that specify

some selection criteria.

The selection predicate approach provides a more general solution. It allows the

designer to express selection of alternatives in a natural way and provides more

flexibility and extensibility to adapt to different modelling requirements. When

selecting component versions, the configuration management must provide a

mechanism to ensure that all the selected versions are compatible in order to maintain

configuration consistency. The underlying theories of selection predicates permit

validation of consistent configurations to be expressed.

In a consistent configuration any modification to a component of a composite object

may cause the consistency of the configuration to be broken. This is an issue that the

configuration management must address. Many researchers have proposed various

approaches on how to react to changes in a configuration. Some of these approaches

are discussed in the following section.

3.5. Review of Version Models

36

Chapter 3 The Versioning Mechanism

Versioning is an important feature in third generation database systems and it has

attracted a lot of interest from the database research community [SCIORE94,

PARK95, CHEVAL90]. These research interests are divided into two broad areas.

Schema versioning [RODDICK96, MONK93, AGRAWAL94] means different

versions of an object can have different schemas. On the other hand, object

versioning means different versions of an object have different values for some of the

attributes. Schema versioning is an interesting research area but is outside the scope

of this thesis. In the following section, we present several typical version models for

object versioning.

3.5.1. Zdonik

One of the early version models for an object-oriented database was presented by

[ZDONIK86]. The version model is based on the object-oriented concept using

inheritance as its base for defining version capabilities for entities in an object-

oriented database.

The Zdonik version model specifies a History-Bearing-Entity which is the basis of all

the version control operations and attributes. As object versions evolve over time, a

conceptual object is used to represent a design independent of time. A version-set is

created for each conceptual object containing all its versions. The version model

supports linear versioning as well as branching and consolidation. In the model a

design object can be a composite object referencing other component objects that

form a design hierarchy.

37

Chapter 3 The Versioning Mechanism

Zdonik recognizes the need for system controlled version percolation management. In

an attempt to automate the version creation process, the model allows the user to

define some references to components as version sensitive. Any change to these

version sensitive components will cause new versions to be created in the upper level

object. As it is not always desirable to propagate all changes at the lower level to all

the higher containing objects, the concept of a Slice is introduced. A Slice is a set of

versions that have been produced in a single transaction. A Slice also ensures, that all

the component versions are configuration consistent. Figure 3.3 shows an example of

slices [ZDONIK86], each grouping represents a Slice.

The Slice concept is very similar to the group check-in/check-out model, where a set

of related object versions are manipulated as a single transaction unit. The Slice is

used as the basic unit of operation for any composite object. The model does not

provide explicit support for referencing default versions.

A4

C4

Figure 3. 3 Slices

38

Chapter 3 The Versioning Mechanism

3.5.2. Chou and Kim

[CHOU86] presented a version model in the context of a design environment. In this

paper Chou and Kim considered a version model in a distributed development

environment where a group of designers cooperate with each other in order to achieve

a common design objective. The design environment is composed of a hierarchy of

workspaces where each level allows various of degrees of sharing of information.

These workspaces are the public, project and private workspace, as described in

section 3.2.

Coupled with workspaces are version states where versions of different states reside in

different workspaces (figure 3.2). Chou classifies versions into three states: transient,

working and released. Versions of the same object in different states have different

“version capabilities”, e.g., which indicates whether they can be modified or deleted

and by whom. Object versions are moved between workspaces by check-in/check-out

operations. Version states are promoted while object versions are checked-into higher

level workspaces. New versions are also created by the check-in/check-out

operations. The workspace and version states provide a well-managed mechanism

for cooperative design environments.

A composite object can reference other objects through static binding or dynamic

binding via a context mechanism. The version model allows the. user to specify a

default version. This allows a more flexible dynamic binding in the design

environment. They also proposed a change management strategy for composite object

versions where a flag-based notification technique is used. Two time stamps are

39

Chapter 3 The Versioning Mechanism

maintained in each object version: change notification time and change approval time.

If the referencing object’s change approval time is later than the referenced object’s

change notification time, then the object is consistent, otherwise change propagation

will be needed.

To avoid version proliferation, Chou limited the scope of notification only to objects

that directly reference the changed version. As it is very difficult, if not impossible, to

define a common policy for version propagation in a design environment, [CHOU86]

left the designer with the responsibility of reacting to any changes in a configuration

instead of automating the process. In Chou’s model, only the designers of directly

referencing objects are notified about the changes. The designers will then decide

whether to react to the changes. If they decide to react to the changes then change

notifications will be cascaded to the next level up. In [CHOU86], equivalent

representation is mentioned but the author did not discuss its use in the version model.

3.5.3. Agrawal

[AGRAWAL91] presented a version model in the Ode object-oriented database. In

this model, which is different from ones discussed in previous sections, all database

objects can be versioned. The versioning capability is assigned to the persistent object

instead of creating a separate version object. Therefore, the version model is

embedded in the persistent object and there is no distinction between versioned object

and the unversioned object.

40

Chapter 3 The Versioning Mechanism

The version model maintains temporal and derivation relationships between versions.

The temporal relationship is a total ordering based on the creation time of object

versions. Unlike some of the other version models, new versions can only be created

by an explicit version creation function. Therefore, updates to an object do not result

in new versions being created.

A logical object id is used to refer to the latest version of an object. This approach

avoids using the Generic object as a dynamic binding to a particular object. The

drawback o f this approach is that the latest version does not always necessarily mean

it is the most correct version especially when versions can have alternatives.

It is important the version models are extensible to best meet user needs. In

Agrawal’s mode, as versioning is an object property not a type property, it is difficult

to add more features to the version model. The author did not discuss configuration

management for composite objects, but in his early paper [AGRAWAL89]

configuration management of versioned object was discussed in the context of an Ode

object database. A transaction based model was proposed to ensure consistent

configuration. All configurations are generated dynamically and no configuration is

stored in the database.

We believe a configuration management system should provide a stable environment

in a changing world. With dynamically generated configurations, the designer has no

means of freezing a particular configuration which he/she might want to keep.

41

Chapter 3 The Versioning Mechanism

3.5.4. Ahmed

[AHMED91] proposed a version model for composite objects in CAD databases. The

model classifies its properties into external features and internal assembly. The model

explicitly defines internal assembly to identify components of a composite object and

to describe their interrelationships. The external features are the non-structural

features that are visible to other object.

The version model consists of three system defined types: generic, versioned and

unversioned. The generic object represents the design object. It contains the invariant

external features for the design object. Objects in the database can be versioned or

unversioned. Unversioned objects are just like any other objects in a database without

a versioning capability.

Versioned objects can contain three different kinds of attribute: invariant, version

significant and non version significant. The invariant attributes remain the same

across the version set of an object. Any modification of the invariant attributes will be

visible to the whole version set and will not cause new versions to be generated.

Unversioned objects can be converted into versioned object when needed. In contrast

to Zdonik’s model, updating a version significant attribute does not cause new

versions to be created automatically. Instead the version significant attribute only

indicates the updatability of a particular attribute in different version states. New.

versions can only be created by an explicit call to create fiinction. The concept of

version states used in the model is similar to that of Chou but with different names.

42

Chapter 3 The Versioning Mechanism

Version states can be promoted by explicit calls to the promote function as shown in

figure 3.4. The invariant attribute cannot be modified within an object version.

(^5ansiem^ promQte (validate^) prQmote^

Figure 3. 4 Transition of version states

The model defines all composite aggregation as version significant. Therefore

modification to any component will cause version propagation. The version model

provides no comprehensive configuration management policy for controlling version

proliferation in composite objects, although the use of design equivalents to avoid

version proliferation is discussed.

3.5.5. Sciore

[SCIORE94] proposed a version model that places emphasis on the manipulation of

object versions. The version model associates each set of design versions with a

generic object. The generic object contains information that is common to all the

versions of the same object. The version object can have two types of attribute:

versioned and unversioned attributes. Unversioned attributes are visible in all

versions. Updates to the unversioned attribute will be seen in the whole version set.

. The unversioned attribute is same as the invariant attribute in [AHMED91]. Mutating

versioned attributes causes a new version to be created.

43

Chapter 3 The Versioning Mechanism

To further automate the process of version creation, the model allows its user to define

some attributes as alternative attributes. Updates to these attributes cause alternative

versions to be created therefore database designers can decide the semantics of an

update operation i.e., whether it is a revision or an alternative. The version model

tries to unify the various approaches used in temporal databases, historical databases

and CAD/CASE databases by classifying versions into three levels - physical,

conceptual and logical.

The version model distinguishes generic references from specific references. Specific

references will bind to a particular version of the design object, i.e., static binding.

Whereas, Generic references will be decided by a set of selection predicates, i.e.,

dynamic binding. These predicates are called dimensions, the use of dimensions

simplifies queries to the versioned objects. The problem associated with such an

approach is that the generic reference might return more than one version and it will

be difficult for the user to decide whether to expect an object or a set of objects.

Sciore also explores the use of database views in the configuration management of a

composite object. The view approach provides richer selection semantics than other

approaches. However, the model fails to address the problem of a selection returning

more than one object version for a configuration.

44

Chapter 3 The Versioning Mechanism

3.5.6. Summary of Version Models

We reviewed 5 different version models in the previous section 3.5. This review is by

no means exhaustive. They are however representative of version models presented in

the literature. From the review, we can see the trend is that more and more

researchers recognise the need for version states in a version model to facilitate

cooperative design activities and configuration management [CHOU86,

OUSSALAH93, BILIRIS89, AGRAWAL91].

There are generally two approaches to version generation. One is an explicit call to a

version creation function. The other is to define version sensitive attributes where any

change in the version sensitive attributes will cause new versions to be generated.

[AHMED91] presented a compromise approach. This version model allows the user

to define version sensitive attributes but new versions will only be created by calls to

the version creation function, We believe this approach not only complicated the

version model but also limited the flexibility of the data model as the classification of

attributes is used to limit their updatability in different version states.

Agrawal attempted a novel approach towards versioning. Instead of defining a

version type as the basis for all other version objects, he embedded the version

management capability inside database object - persistent object. This approach has

the benefit that the user can create object versions as late as possible, i.e. whenever

he/she needs it, unlike in [AHMED91] where unversioned objects have to be

explicitly converted to the versioned object. Compared to the separate version object.

45

Chapter 3 The Versioning Mechanism

this approach restricts the extensibility of the version model as it is difficult to extend

the version model to meet user needs.

3.6. Our Version Model

Our application aims to support a cooperative design environment for engineering

design. Inevitably, there will be a lot of composite objects in such an environment.

Therefore, a version control mechanism is crucial. From our previous discussions, it

is essential that the version model supports the following features:

• Versioning of individual objects. This includes the maintenance of its evolution

history, and the definition of default versions

• Change propagation in the composite object. . This involves: how to react to

changes in a lower level component and how far should the propagation go without

resulting in generating unnecessary versions.

• Sharing of the design object in a design environment. This requires that we

provide multiple level workspaces and version states associated with these

workspaces.

3.6.1. The Versioning Data Model

Our version model is based on [CARNDUFF94] which consists of three different

types of object: generic object, versionable object and descriptor object. For each set

46

Chapter 3 The Versioning Mechanism

of versions of the same design object, there is one generic object associated with

them. The generic object is the conceptual representation of the design object.

Attributes of a generic object are common to all versions of the design object and any

update will not cause a new version of generic object to be created. For users who are

not interested in versions of design object, he/she can simply reference the generic

object without specifying any version specific information. The generic object will

simply return the default version. Apart from default version number, the generic

object also keeps a record of the last version number, the version evolution history

and the methods for version creation.

The version evolution history records the derived-from relationships between

versions. A version can be a refinement or alternative of its parent version. Further, a

new version can be created by merging two previous versions. Therefore the version

evolution history is a directed acyclic graph instead of a tree. The version graph

consists of a set of version descriptors. The version descriptor has a one-to-one

correspondence to the object version. The version descriptors keep a flag to indicate

whether the corresponding version has been deleted. As some object versions may

have other versions derived from them, it is not possible to delete them all. In our

version model if the version is a non-leaf node in the version graph, the deleted flag

will be set to true without actually deleting the object, otherwise the version will be

deleted.

The versionable object keeps all the versioning information, a list of its component

objects and also the configuration information if it is a composite object. Many

47

Chapter 3 The Versioning Mechanism

version models [SCIORE91, AHMED91] define the invariant attribute in their version

model and these invariant attributes are visible throughout the version set. In our

model, we put all the attributes that are common to the whole version set in a generic

object. We believe this simplifies our version model without losing information.

Creating a new version is a complicated design decision. Updating the same attribute

with a different value under different circumstances may have a different design

implication.. We consider the approach of using version sensitive attributes to create

new versions as too primitive and restrictive. For such a complicated design activity,

it is very difficult to define a common policy as when to create a new version and

whether it is an alternative or a refinement version. We think it is more appropriate to

leave the decision making to the designers. Only the designer knows the semantics of

the update.

3.6.2. States of Versions and Workspaces

In a design environment, the designer’s goal is to complete the design effectively.

This implies that designers should not unnecessarily interfere with each other’s work.

But at the same time, the designer needs to communicate and coordinate efficiently.

Our organization of workspaces supports this design activity well. The designers

have their own workspace for carrying out their work. At a certain point, the design is

made available to other designers on the team for further development and test.

48

Chapter 3 The Versioning Mechanism

The state of a version determines the stability of a particular version. In our model

versions can be in one of the three states: transient, working and released. The basic

idea behind this classification of versions is that unstable versions cannot be shared

with other people as this may lead to an unstable configuration.

This provision of workspaces supports the sharing of objects among the design team.

Objects and object versions are moved between workspaces as the result of check

in/check-out operations. The workspaces are arranged hierarchically as illustrated in

figure 3.2. There have been various of levels of workspaces in the literature. Most

researches agree that a minimum of three levels is needed to provide the necessary

support [KATZ90]. In our model we classify the three levels as private workspace,

project workspace and public workspace.

Versions in different workspaces reflect their states as well. Our approach to the

classification of version states and workspaces is consistent with Chou and Kim’s

model. Each version state has a set of properties that define its behaviour. We will

discuss the characteristics of each version state in the context of workspace. The state

reflects that the version satisfies certain conditions.

At the lowest level of the workspace hierarchy is the private workspace. This is the

private workspace for the individual designer, where he/she performs much of the

design and design validation work. The private workspace can only be accessed by the

designer who owns it. The states of object versions in the private workspace are

transient. Transient versions in private databases are considered to be unstable

49

Chapter 3 The Versioning Mechanism

therefore they cannot be shared with other designers. They can be updated or deleted

at any time by the owner of the database.

All newly generated versions are transient states. A new version is created when the

designer checks out a copy of a design from a public/project database and checks it

into the private database as a new transient version. No new versions can be derived

from a transient version. The private workspace holds non-released designs that a

designer is currently working on and any other information the designer wishes to

maintain. When a design becomes stable and unlikely to be changed again, it can be

checked into databases higher in the hierarchy and the state of the checked out version

will be changed as well.

Figure 3.5 shows the movement of object versions between workspaces. A state

transition occurs when an object version is checked into another workspace which

represents the new state. Therefore, object versions migrate up the workspace

hierarchy as their state is promoted.

— promote— promote

create new versions'

create new versions"

Public Database
(released
versions)

Private Database
(transient &

working versions)

Project Database
(working
versions)

Figure 3. 5 Version movement between workspaces

50

Chapter 3 The Versioning Mechanism

Object versions checked out from the private workspace are checked-in to the project

workspace, which is the next level up in workspace hierarchy. Before private versions

can be checked-in to the project database, they have to go through a validation process

to make sure that they meet the criteria for working versions. The project workspace

is accessible to all the people working on the same project but not to people working

outside that particular project. Object versions in the project database are working

versions and they are considered to be stable. They cannot be updated but may be

deleted by the project database administrator.

People working on the same project may check these objects into their private

workspace and modify them. A modification results in new versions of a transient

state being created. If any of the news version meets the design requirements, they

may be checked back into the project workspace in order to allow access by other

designers. There can be any number of working versions for the same design object

in a project database. This arrangement allows people within a project to work on

alternative versions.

At the top of the hierarchy is the public workspace. The public workspace holds

released design objects. A released object can neither be updated nor deleted. All the

authorised users in the integrated design environment have access to data in the public

database. A working version can be promoted into the public database as a released

version, if it passes the validation test for released objects. There can be any number

of versions in the released state for any particular object.

51

Chapter 3 The Versioning Mechanism

3.6.3. Change Notification and Propagation

Composite objects hierarchically contain other objects as its components. If any of

the component objects have been updated, the upper level object designer needs to

know that this component has been modified and he needs to react to the changes in

order to maintain the object consistency. Various attempts have been made to provide

limited support for a system managed change propagation process [AHMED91,

BEECH88, SCIORE94]. In our model we adopt the approach that the user decides

when and how to react to changes in the lower level object as it is not always desirable

to automate the version propagation process.

When there is a change in the component object, the change may be relevant to other

objects referencing it, but it may also be likely that the change does not affect any

referencing objects. For either the flag-based or the message-based change

notification scheme, the upper level object will be informed irrespective of the effect

of the change. In such a scheme, the designers are often inundated with many change

notifications, some of which are relevant and others not.

Recognizing this problem, we have developed a new change notification scheme that

can solve the above problem. Configuration constraints are used in our model to

check if changes in the lower level object will affect other objects. For example, a

Car object contains components Engine and BodyWork. Recursively, Engine and

BodyWork have their own component, as shown in figure 3.6. For the composition in

figure 3.6, it is the Car designer’s responsibility to specify configuration constraints

on its components Engine and BodyWork. In turn, it is the Engine and BodyWork

52

Chapter 3 The Versioning Mechanism

designers’ responsibility to specify configuration, constraints for their components.

Further, it is the referencing object designers’ responsibility to ensure that all

participating components are consistent.

Car

Body
WorkEngine

GearBox Door

Figure 3. 6 Example of a Composite Object Configuration Hierarchy

Configuration constraints are a set of conditions set by object designers to check the

respective components. Configuration constraints are specified in the version level.

Therefore, they may vary in different versions. If any change in a component fails to

meet its configuration constraints, then the object designer will be alerted about the

change. The designer will consequently need to react to this change in order to

accommodate it in the design. Otherwise, the designer will not be informed of the

change. Therefore, the configuration constraints act like a filter for change

notification. Only relevant ones are passed to the next level object. The use of

configuration constraints also has the benefit that all the components have to meet

their design requirements before they can be assembled.

53

Chapter 3 The Versioning Mechanism

For example, for a car BodyWork designer, it is more important to him/her that the

Doors will fit into the BodyWork. If the size of window on the door has been changed,

then to the car BodyWork designer this change is not significant. He/she may choose

to set the configuration constraints in such a way that this sort of change will not be

propagated back to his/her level. Therefore, the BodyWork designer can target the

configuration constraints on aspect of the design which are important to him/her

alone.

3.7. Summary

Versioning is an important feature in object-oriented database systems [CHEVL90].

In this chapter we established the requirements for a versioning mechanism in a

design environment. In such an environment, cooperative and concurrent design is

carried out. To support these activities, the supporting database is organised in a

hierarchical form.

The provision of workspaces and classification of version states, as outline above

supports composite object evolution in a natural way. It provides stable workspaces

with control over isolation from external change and scopes of visibility for changes.

The workspaces can support developers in an active development environment.

We discussed several version models for various environments. We presented our

version model which is based on [CARNDUFF94]. The model improves change

54

Chapter 3 The Versioning Mechanism

management for composite design objects by using configuration constraints.

Configuration constraints not only alert the upper level object designers (should there

any change which affects the object) but also it guarantees that any component objects

in a configuration have to meet their designated conditions before they can be

accepted into an assembly. Configuration constraints are specified at version level.

Thus, different versions of the same object may have different configuration

constraints.

55

Chapter 4 Database Views and OQL

Chapter 4 Database Views and OQL

Object-Oriented views are more powerful than their relational counterpart [KÏM88]

because of the data models they are based on. In this chapter, we will discuss the

semantics of object-oriented views and their roles in a design environment. A

taxonomy of object-oriented views is presented. Query languages are an

indispensable part of any view model. We will briefly introduce the ODMG standard

query language OQL [CATELL97] which will be used as part of our view definition

Finally we will introduce our view model for a design environment.

4.1 Introduction

Views have been used for data protection and as a shorthand for queries in relational

databases. They are an indispensable means of achieving logical data independence.

It is recognised that views have an important role to play in object-oriented databases

per se [AGRAWAL94, MARIANI93, MONK94, BRATSBERG92]. Object-oriented

views should provide all the functions that are provided by relational views, plus some

additional ones, which arise as a result of the higher expressive power of the object-

oriented data model.

In a design environment, people often have different requirements for the data they

need. The ability to provide multiple concurrent views of the same underlying

information is vital to the usefulness of a database system, and means that application

56

Chapter 4 Database Views and OQL

programs can be written to a view of the data that is suited to that applications

particular needs.

One of the main objectives of introducing an integrated design environment is to

reduce the amount of redundancy in stored information, in order to maintain the

consistency of information. It is inappropriate to maintain multiple copies of the same

data at different abstract levels to suit different users’ individual needs. It is much

more desirable, where possible, to hold data in a single canonical form with different

views provided Lo suit each end user’s needs [BROWN88].

In relational databases views are exclusively defined by queries. However, in the

object-oriented world, there is no agreement on how object-oriented views should be

defined. Various view models have been proposed for object-oriented databases

[ABITEBOUL91, BERTIN092, HEILER91, SCHOLL91]. A view mechanism

should allow programmers to restructure base objects and modify their behaviors. In

the object-oriented world, it should be possible to use views to provide different

interfaces to the same object as a general abstraction mechanism [DAYAL89].

Generally, there are two main approaches to the definition of object-oriented views,

depending on whether or not the view classes create new view objects:

• Object-generating views: instances of view classes are new objects with their own

object identifiers (oids). These objects are generated as a result of the view query.

57

Chapter 4 Database Views and OQL

• Object-preserving views: no new object is created for the view class, instead

existing base class(es) objects that satisfy the view query are regarded as instances

of view classes.

One of the reasons for this diversity of OODB view models is due to lack of standards

in the object-oriented world. Some researchers believe that the view classes should be

integrated into their base classes inheritance hierarchies [ABITEBOUL91,

HEILER90], to enable the view classes to use as much information from the base

classes as possible. Others believe that the view classes should be orthogonal to the

base classes [BERTIN092, SCHOLL91] to achieve greater data independence.

The integration approach provides a uniform structure for both view classes and base

classes as semantically some view classes naturally form sub/super class relationships

with their base classes. This approach enables view classes to take advantage of all

the information contained in their base classes. One of the problems associated with

the integration approach is how and where to position view classes in the base class

inheritance hierarchy without affecting the semantics of base Class inheritance

structures. Integrating view classes into base classes inheritance also exposes views to

the effect of changes in the base classes schema.

Proponents of the separation approach argue that views serve as interfaces to base

class objects and the separation will result in complete logical data independence

[KIM95]. In our view model, view classes are used to provide multiple levels of

58

Chapter 4 Database Views and OQL

abstraction to base classes. Therefore, we believe it is appropriate to keep view

classes orthogonal to base classes.

Object-preserving views allow view updates to propagate to the corresponding base

class objects unambiguously, since the view objects have the same oids as the base

class objects. On the other hand the object-generating view provides a more flexible

approach for defining view classes since view classes are not limited by the structure

of their base classes. In the object-generating view, view updates are not always

possible, as there is no guarantee that a view object always corresponds to a single

base object.

View updates are an essential requirement of object-oriented views [ATKINSON89].

Many researchers believe that the support of the object-generating view and the

unconstrained updatability of views are conflicting requirements that cannot be

simultaneously met [MOTSCHNIG96]. Later in this chapter, we will introduce a

view model that allows view updates in an object-generating view. Table 4.1

compares a few. view models. These models are compared by considering:

• What data model they are based on. Many of the view models are designed for a

particular object model and the data model plays a key role in defining views.

• How they are defined. Some of the view models are defined exclusively by

queries. Others use a query language as well as features from their object data

model in order to define views.

59

Chapter 4 Database Views and OQL

• Whether they are part of the base class inheritance hierarchy. This is a

fundamental issue in the definition of a view model. Integration provides well

integrated information while separation has the advantage of higher logical data

independence.

• Whether it is object-generating view or object-preserving view. The salient

point here is whether new objects are generated as result of running a view, which

has considerable impact on view updatability.

The comparison in table 4.1 shows the different approaches adopted by different view

models. It is based on four representative view mechanisms from the literature.

60

Ch
ap

te
r

4
D

at
ab

as
e

vi
ew

s
an

d
u

y
c

Is
B

i

I

B

■S
i
I
e

«

I
i

I
I
I

If
ë I

I
I1

.1
i
g0

1

J
1 1

<D < u
Ph ÙÛ

5 1-IICZ)

I I !

CMo

0

1

1

I

!
i$
u

I

!
g

I

T3

i
I
u V

•5
1

CO Vm

1
O
"5
a
s

T3O ■ 1—4
o
<u a£ <u

IB> CO o

< u

I
I

I
131
'g.

I
I

8 S

8 23

^ °

i
0) c/3

l l

J 3 .S3
u ^ **
(U

I
1s

I
f
if
D O

-§■•5 • §

0 >

I

gI
U

l
O)

VO

1
B

Chapter 4 Database Views and OQL

4.2 Taxonomy of Object-Oriented Views

The aim of our project is to develop a view mechanism that can provide efficient

support for a cooperative design environment. Earlier in the thesis we discussed the

requirements for integrated design environments. Before going into the details of our

view mechanism, we present a taxonomy of the view model. This taxonomy only

considers the semantics of view operations, not any implementation details. Because

there is a lack of consensus on the definition of object-oriented terminology, we firstly

define the terms used in our taxonomy to avoid any confusion.

4.2.1. Definition of Terms:

Abstract Data Type: defines the interface to a data abstraction without specifying

implementation details. For reasons of brevity, we use ‘type’ instead of ‘abstract data

type’ in the following passages, unless otherwise indicated.

Objects: are instances of abstract data types.

Classes: are collections of objects that belong to the same abstract data type. A class

can be derived from existing classes using class inheritance. The newly

derived class is the sub-class of the parent class. A class hierarchy represents he

relationships between parent classes and sub-classes. A class defines the

object’s internal state and the implementation of its methods.

62

Chapter 4 Database Views and OQL

4.2.2 View Taxonomy

Our taxonomy of views is similar to that in [SCHOLL91]. We extend it to handle

object-versioning. The view classes can either be populated by objects that already

exist in the database or by newly created ones. Since object-oriented views should at

least fulfill the functionality of relational views [MOTSCHNIG96], set-oriented

algebra is used to define our view semantics where people can see the relevance

between the two is clear. Figure 4.1 shows our taxonomy of views.

Join
UnionProjection

Selection

Difference
Extended Intersection

Object-Oriented Views

Figure 4. 1 Taxonomy of OODB Views

Before going into more detail about our view taxonomy, we identify the possible basic

modifications that might happen between a view class and its base classes:

a) A view class may use different attribute names from that of its base class, e.g. a

view class may change the attribute a d d re s s in its base class S tu d e n t to, say,

hom e_address;

b) A view class may use different method names from that of its base class;

63

Chapter 4 Database Views and OQL

c) A view class may transform the value of its base class attribute, e.g. convert inches

into centimeters.

d) A view class may have more/less attributes/methods than its base classes; ■

e) A view class may transform values returned by its base class methods, e.g. convert

temperature from Fahrenheit to Celsius centigrade.

f) A view class may materialize the return value u f a base class methud and store it as

an attribute value.

g) A view class may overload the methods of its base class;

h) A view class may only use part of an aggregate attribute as its attribute. For

example, a Person class contains an aggregate attribute address which itself is

another object. If the user is only interested in the nationality of the person, then,

instead of listing their full addresses, the view class only displays their Country

attribute in the address object.

• Selection View [SCHOLL91]

A selection view returns a subset of all instances of its base class satisfying the

selection predicates. For example, the user may create a view n e w _ stu d e n t that

returns all the first year students. For a composite object, a selection view should be

able to retrieve component objects from its base class(es) without the user specifying

64

Chapter 4 Database Views and OQL

how. A selection view only applies to a single base class. For versioned objects, all

versions of the base class that meet the selection predicate will be instances of the

view class.

>

• Projection View [SCHOLL91]

A projection view returns the whole set of object of the base class with some attributes

hidden in the view class. For projection view, any method that uses the hidden

attribute should also be inaccessible. As result of projection, a new type is created for

view objects. Projection only applies to a single base class. For aggregate attributes, a

projection view should be able to either hide or retrieve the aggregate attribute as

whole.

For versioned objects, projection is at the class level. Therefore, all versions of the

base class object will be included in the view class, However, as a result of

projection, some object versions in the view class may lose their distinctive attributes.

• Extended View [BERTIN092]

An extended view contains attributes which are not part of its base class(es). The

extended attributes only exist in view objects and cannot be derived from its base

class(es). The extended attribute may be another object which forms an aggregate

attribute of the view class. An extended view allows users to augment the definition

of its base class(es). A new type is created for extended view objects. For versioned

objects, each version of the base class instances will also be versioned in the extended

view class.

65

Chapter 4 Database Views and OQL

• Join View [SCHOLL91]

A Join view returns a matching pair of objects from the involved base classes. The

involved base classes must share a common attribute. The result of a join is a new

class that includes attributes and methods from both base classes. For versioned

objects, only those versions that can be joined are included as instances of the view

class. Semantically, the join view produces the same type as multiple inheritance.

• Union View [SCHOLL91]

A Union view class contains instances from both base classes. The involved base

classes must be unionable, i.e., they must have a sub/super class relationship in the

class inheritance hierarchy. The view class contains attributes that are an intersection

of the two sets of attributes of the base classes. Semantically, a union view class is a

super class of its base classes.

For the versioned object, the versions of view class instances are the sum of both base

classes versions if the new instances of the view class do not have duplicate values.

For example, if base class A has 4 versions and base class B has 2 versions and each

view object has unique values, then the view class will have 6 versions.

• Intersection View [SCHOLL91]

An intersection view returns all the objects that are members of both base classes. An

intersection view produces a sub-class of its base classes. The view class contains

66

Chapter 4 Database Views and OQL

attributes and methods that are unions of attributes and methods of both base classes.

An intersection view class is a sub-type of its base classes.

The resulting type of join view and intersection view are very similar. For a join view

the two base classes must share a common attribute to be joinable. The result of an

intersection view includes objects that are members of both base classes. This implies

that the base classes must share a common super-class in their inheritance hierarchy.

All versions of base class objects that satisfy the intersection condition will be visible

in the view class.

• Difference View [SCHOLL91]

A difference view returns all the objects that are members of the first base class but

not members of the second base class. The semantics of a difference view requires

that the base classes must have a common super-class and those members that belong

to both base classes are filtered out. The view object is of the same type as that of its

first base class. The view class is sub-class of the first base class. All versions of the

first base class object that satisfy the difference condition will be visible in the view

class.

4.2.3. Semantics of View Update

View update is a desirable feature for all view models [SCHOLL91,

MOTSCHNIG96]. In an object-oriented database, because of the data encapsulation

enforced by the object data model, it is not desirable to use query languages to update

67

Chapter 4 Database Views and OQL

view objects directly. This will infringe the encapsulation of the data model which is

one of the basic principles of object-oriented theory. We believe it is more

appropriate to an object-oriented database that updates are handled by methods of a

view class rather than by query language.

• Views that Modify Attributes o f Base Class

When a view class updates an attribute of its base class, its update method should

know how to propagate the update to its corresponding base object correctly. If there

is more than one base class object involved in the view, the view class update method

should be able to propagate the update to the correct base object. Any change made in

the view is effectively updating the view object’s base objects. If the view is trying to

update an extended attribute which only exists in the view, the change should only be

confined to the view objects and never propagate to the base objects.

If the updated attribute in the base object is an aggregate, the corresponding object

should be updated correctly. If the base of a view is another view, the view update

should propagate to the appropriate base class object. All the view updates are under

the control of the version manager so an appropriate version may be created. This is

another important reason why we do not allow direct updates from a query language

as it is difficult if not impossible to enforce version control and object encapsulation.

* Views that Modify Methods o f its Base Class/View

It is possible that a view class has a different set of methods from its base classes.

This can be because the view class has more methods than it base class or the view

68

Chapter 4 Database Views and OQL

class overloads some of its base class methods. Because methods belong to the data

type not the individual object, changes in view class methods have no effect on

individual object versions.

• Views that Insert Objects

Sometimes a view class may create new objects. Because view classes are virtual,

their instances should not be stored in the database. Therefore, a new view object is

actually a reflection of new objects being inserted into its base class. When new

objects are created, the view class should be able to insert these objects into the

appropriate base class if more than one base class is involved. The creation of new

view objects must be under the control of the version manager so the newly inserted

object could be a version of an existing base class object.

If the base of a view class is another view, the insertion must propagate until the new

objects are inserted into the appropriate base class. For composite objects, when they

are inserted their aggregate attribute must also have new members inserted if they do

not already exist.

* Views that Delete Objects.

A view class should be able to specify methods that delete objects. When deleting

objects from a view class, the view class delete method must correctly remove objects

from the appropriate base class. The delete operation must be under the control o f the

version manager and must comply with the semantics set out in Chapter 3, e.g. only

versions at the leaf of the version graph get deleted, and so on.

69

Chapter 4 Database Views and OQL

4.3 ODMG Object Query Language (OQL)

OQL is a part of the Object Database Management Group (ODMG) standard for

object-oriented database management systems. The ODMG is a consortium of object-

oriented database management system (ODBMS) vendors and interested parties. The

primary aim of the standard is to provide a set of standards that enable portability of

customer software across ODBMS products.

The ODMG standard includes an Object Model, an Object Definition language, an

Object Query Language (OQL), and Language bindings to C++, Smalltalk and Java.

The object model in the ODMG standard is built upon the Object Management Group

(OMG) standard [OMG97] which provides a common architectural framework for

object-oriented applications. The standard also involves other existing standards, e.g.,

SQL-92 and the ANSI programming language standards to define a framework for

application portability between object database systems. In this section, we briefly

discuss the query language - OQL. For a detailed introduction of the standard ODMG

2.0 please refer to [CATELL97].

In an effort to provide a query language for object databases which is similar to the all

familiar relational query language SQL, OQL is defined as a standard query language

for object-oriented databases. OQL is an SQL. like high level declarative query

language that provides a rich environment for the efficient query of database objects.

The OQL is a superset of the SQL-92 SELECT syntax. Therefore most SQL

70

Chapter 4 Database Views and OQL

SELECT statements can be used in object databases. To take the compatibility issue

between the two query languages one step further, the ODMG is working with the

ANSI X3H2 committee, which is defining the SQL-3 standard, with the aim of

converging OQL and SQL-3.

To handle objects in object databases, OQL also includes object extensions that

include: object identity, complex objects, path expressions, operation invocation and

inheritance. To maintain the encapsulation of the object data model, OQL does not

define any update operator but uses update operations defined on database objects.

An OQL SELECT statement will return a collection of objects with or without object

identities depending upon the way the query is specified. Should the query return

objects with their identity, the user can then invoke operations defined for the object.

An object database view is not defined in the latest ODMG standard ODMG2.0

[CATELL97]. One of the aims of this thesis is to define an object-oriented view that

uses OQL as part of its view definition and to explore the advantages offered by the

richer semantics of object data model. In the relational world, a view is a query. In

the object-oriented world, however, the situation is much more intricate because of the

more complex model employed. We defined an object-oriented view which consists

of a type and a query. The type defines the intent of the view and the query specifies

the extent of the view class. The design andimplementation of our view model will be

discussed in Chapter 7.

71

Chapter 4 Database Views and OQL

4.4 A Model of a View Mechanism

4.4.1. The aims of the Model

Earlier in this thesis particular problems and requirements o f a design environment

that support object versioning were identified and discussed. Now we describe a view

model designed specifically to support design activities in an integrated design

environment. We developed a view mechanism with the following explicit objectives

in mind:

• To provide a flexible mechanism capable of supporting design interactions at

different levels of abstraction that are suited to the individual designer’s needs and

support cooperative design activities in an integrated design environment.

• To provide facilities that allow users to tailor the design environment in a

controlled fashion to suit a designer’s individual requirements;

• To use the view mechanism as a management tool for controlling access to design

data by restricting the data that each user can access, and by explicitly defining

operations that different groups of users can perform on particular data.

• To use this model to assist the integration of new tools into a design environment

by providing abstract interfaces through which such tools can access design data in

a design environment.

72

Chapter 4 Database Views and OQL

• To use the view as a mechanism that facilitates controlled information sharing

between teams of designers, maintaining the integrity of design data and also

provide a unified versioning framework throughout a design environment.

4.4.2. The View Model

To achieve the above objectives in our view model, we cannot limit ourselves to

existing view approaches. New objects are needed to provide the extra modelling

power required by design environments. Meanwhile we want to maintain the

convenience of an object preserving view where the user does not need to worry about

creating a view object schema and view updates. Therefore, it is our intention to

combine both object-generating and object-preserving strategies in our view model in

order to achieve the maximum flexibility required by an integrated design

environment. The definition of our view mode (figure 4.2) is composed of two parts:

• A view schema definition. This specifies the schema for view objects. The users

can either use existing base class objects as view objects, i.e. an object preserving

view, or they can define a new schema for a view class. A view schema is defined

in the same way as its base class. This will invoke new objects being generated by

the view class. The view schema specification defines the intent of a view.

73

Chapter 4 Database Views and OQL

• A view query definition. This specifies the condition whereby the base class

objects can be selected to initialise view objects. The view query definition defines

the extent of a view class.

View Model

View schema specification

View query definition

Figure 4. 2 View Model definition

The query language, OQL, used to define the extent of our view is not

computationally complete. Therefore, it is difficult to use it to define a view object’s

behaviour without extending the query language. The advantage of separating the

definition of view intent and extent is that it allows the user the freedom of using

either existing objects or creating new view objects, should the user need it. The

generated view objects are defined just like any other base classes in the database.

Therefore, the objects behave exactly like any other database objects such that we can

take full advantage of the richer semantics provided by the object-oriented data model.

The view query decides the number of instances in a view class. The view schema

definition decides the characteristics and behaviour of view objects. The view

designer may choose to use an existing schema as view schema. In this case, no new

74

Chapter 4 Database Views and OQL

object is created by the view class. This is called an object-preserving view. In an

object-preserving view, there is no need for the view designer to specify how to

update the base object through the view as the view object is the same as its base

object. If the application requirements cannot be met directly by base objects, the

view designer can define a new schema for the view class which uses base class

objects to instantiate view objects. In this case, new objects are generated by the view

class. The new view objects are not stored in the database. They are dynamically

created when accessed. Therefore they reflect any changes in the base objects.

For the object generating view in our model, while designing the view schema the

user needs to specify how to instantiate view objects from base objects. Every view

object maintains the object identifier of its base object. This will allow view updates

to propagate to the correct base object even if the view objects have more than one

base objects. The view designers can explicitly define update methods for view

classes by specifying which base object need to be updated for a particular update

operation. Figure 4.3 shows the relationship between the view object and its base

objects.

View Object \
base oid i \
base oidj /

Figure 4. 3 Relationships between the View Object and its Base Objects

75

Chapter 4 Database Views and OQL

4.5. Summary

In this chapter we presented a taxonomy of view semantics. The taxonomy specifies

the full semantic requirements for a view model. The pros and cons of an object-

generating view and an object-preserving view were discussed. We developed a view

model which consists of two separate definition schemes that allows the model take

full advantage of the object-oriented data model and gives us the freedom to choose

either an object-preserving or an object-generating view in a single view model. To

achieve logical data independence, the view class is orthogonal to the base class

inheritance hierarchy. We contend that that our view model is able to attain the

objectives stated earlier in this section.

Data encapsulation is maintained in our view model to ensure that other user special

requirements, e.g. version management, will not be violated by a direct query update

as in a relational view.

76

Chapter 5 Materialization of Object-Oriented View

Chapter 5 Materialization of The Object-Oriented
View

The object-oriented paradigm provides a more powerful view model than its relational

counterpart. From the discussions in chapter 4, we can see that the object-oriented

view model can be used as a suitable means to provide multi-level abstractions in a

design environment. Views have been recognized as an effective mechanism to

virtually restructure the database schema [ABITEBOUL91, BERTIN092].

In relational databases, views are typically defined by stored queries. Each time a

query is issued against the extent of the view, it is translated into a query against the

view’s base tables [DATE95]. Although object-oriented views differ from relational

views, they will still inevitably impose some performance overhead because of the

recomputation involved upon accessing the view.

5.1 Introduction

View materialization has long been used by the relational database community as a

means of performance enhancement. Materialized views store the extent of the view

in the database as opposed to recomputing them upon demand [Gupta93]. One of the

basic requirements of views, whether they are materialized or not, is that they must

reflect changes in its base classes.. This means that view objects must be consistent

77

Chapter 5 Materialization of Object-Oriented View

with their base class objects. This requirement presents a challenge to materialized

views, as their instances are physically stored in the database.

The objective of maintaining a materialized view is to keep the view objects

consistent with their base class objects with the least maintenance overhead. The

maintenance overhead includes the re-evaluation and re-materialization of the

materialized views when inconsistency between a view and its base occurs. The

question to answer is when to evaluate and how much to update? Many techniques for

improving the efficiency o f relational view maintenance have been reported in the

literature [LU95, GUPTA93, GUPTA95, PIROTTE94, STAUDT96, COLBY96].

Although the object-oriented data model is different from the relational data model,

we can still learn some view maintenance techniques from the relational database

community. Currently materialized object-oriented view have not received much

attention from object database community. Multi View [KUN095a] is the only object-

oriented view model that we have come across, discussing the issue of object view

materialization.

View maintenance techniques are classified into two categories depending upon when

the view is refreshed. If a view is refreshed within the transaction that updates its

base, it is called immediate view maintenance [COLBY96]. Otherwise, a view can be

refreshed periodically or on-demand when certain conditions arise. This is called

deferred view maintenance or lazy view maintenance. The immediate view

maintenance approach increases the overhead of updating the base as the view needs

78

Chapter 5 Materialization of Object-Oriented View

to be updated at the same time. This overhead increases with the number of views and

their complexity. On the other hand, deferred view maintenance may increase the

view access time. This occurs when views are accessed. Each view object has to be

checked against their base objects or even recomputed if necessary to maintain view-

base consistency.

5.2 Object-oriented View Materialization

The view mechanism offers greater flexibility in organising schema and managing

data in database systems. Each time a view is accessed, its extents will be re

computed. The recomputation process will induce some performance overhead. View

materialization is a well-known optimization technique in relational database systems

[HANSON87]. View materialization is used to store the extents of a view class in a

database. Because the view extents do not need to be computed upon access, access to

materialized views may be substantially faster than non-materialized views. However,

we must maintain the consistency between the view class and its base classes upon

updates to bases.

Multi View [KUN095a] supports view materialization in object-oriented databases.

Multi View uses an object slicing technique [KUN095b] to define its object data

model. Multi View adopts an object-preserving approach where view objects are the

same as base objects. In MultiView, each object is composed of two parts; a

conceptual object that decides the type of the object, and an implementation object

which is used to represent an object’s membership in a class. An implementation

79

Chapter 5 Materialization of Object-Oriented View

object can be associated with more than one conceptual object. Therefore, an object

can gain membership to more than one class which means that an object can gain or

drop a type dynamically.

In [KUN095a], view-class consistency upon update is achieved by propagating

updates to both the base and view class at the same time. This is basically an

immediate view maintenance strategy. To achieve this simultaneous update to both

base and view class each view class is registered with those base classes whose

updates might affect the view class. When â base class is updated, its registration

table will be processed. Every view class that has an entry in this table will be

updated as well to maintain the view-base class consistency.

As pointed out earlier in this chapter, the immediate view maintenance incurs an

update overhead when each view class is processed. Although view materialization is

based on the assumption that the materialized view will be used, it may happen that a

view is not accessed between two updates to a base class. In such a circumstance, the

update overhead is not justified and is not necessary. The MultiView view

maintenance approach is based on the so called object-slicing technique where an

object can gain or drop a type dynamically. Therefore its materialization approach

cannot be applied to other object-oriented data models.

[CARNDUFF93, KEMPER94, KEMPER91] presents a strategy for function

materialization in object database. We believe function materialization can be part of

view materialization as a view designer may decide to add an attribute in the view

80

Chapter 5 Materialization of Object-Oriented View

class to store the value returned by a base object function. [KEMPER94,91] exploits

object encapsulation in his strategy where objects can be updated through a designated

channel. Associated with these update methods are triggers which will invalidate the

materialized value. A table is created to keep track of the relation between an update

method and a materialized function value.

In [KEMPER94, KEMPER91] the user can choose either immediate or deferred

maintenance. However, extra effort and overhead are needed to maintain the update

table which is crucial to the maintenance o f materialization. The table will inevitably

grow larger when many materializations take place and the maintenance overhead will

increase.

5.3 Object Identity and View Materialization

In this section, we present our view materialization technique for object-oriented

databases. Our object materialization strategy enables efficient view maintenance and

is not specific to any particular object data model. Thus it can be applied to other

object-oriented data models.

Efficient view maintenance is achieved by incremental maintenance [GUPTA93], in

which only the changed base objects are evaluated and computed, without extensive

evaluation and full recomputation of the whole view class. View maintenance

happens only when base class object updates occur. When an update on base classes

occurs, we need to know which object has been updated so that the appropriate view

81

Chapter 5 Materialization of Object-Oriented View

object will be refreshed. It does not affect the base class in any way, e.g., the base

class update method does not need to trigger any function.

We adopt the deferred view maintenance approach where views are only re-evaluated

on-demand. The benefit of this approach is that people do not use the view will not

pay any penalty, i.e., those not using view will not have to worry how to keep them up

to date.

Updates to base classes have considerable impact on the performance of materialized

views. To minimize the impact on performance of materialized views: on the one

hand we adopt an optimized view materialization technique whereas on the other hand

we only want to materialize those views whose base classes are in a stable state, e.g.,

not subject to frequent changes. Transient versions in our object database are

considered to be unstable and subject to frequent update operations. We make the

restriction that only those view objects based on working versions and released

versions can be materialized. This limitation means that sometimes our

materialization is a partial one.

5.3.1 Taxonomy of Base Class Update Operations

When update operations are performed on a view’s base class, we would like to know

how it affects view objects based on it. However, update operations on a view’s base

object do not always have the same effect on the view class. For example, we define a

view ‘luxury cars’ which has the extent of all the cars valued over £20,000. Now

82

Chapter 5 Materialization of Object-Oriented View

suppose two update operations are performed on Carl and Car2. We increase the price

of Carl from £19,000 to £20,500 and reduce the price of Car2 from £21,000 to

£19,000. Carl was not in the view class. After the update Carl is inserted into the

view class, while the effect of the second one is to remove Car2 from the view class.

We classify update operations into the following categories and discuss what effect

these operations have on the view class:

• Insert: this operation adds new instances into the base class. If the newly added

objects meet the view query predicate then another insert operation will be

performed on the view class, otherwise, no action will be taken.

• Delete: this operation removes an instance from the base class. If this instance was

involved in the view class then it is removed from the view class as well,

otherwise, this operation has no effect on the view class.

• Set: this operation updates the value of the base class attribute through the update

method of the class. We may classify base class attributes into two categories:

(i). relevant attributes are those used as part of the view class properties or as part

of the view query predicate, and

(ii). irrelevant attributes, e.g. base attributes projected out in the view.

83

Chapter 5 Materialization of Object-Oriented View

• Promote ï version status plays some role in our view materialization. We stated

that view objects based on transient versions cannot be materialized. If the transient

version is promoted to a working or released version, then we need to insert it into

our materialized view class.

If the updated attribute is a relevant attribute then the following scenario will lead

to different operations being performed on the view class depending on the

attribute’s role in the view:

(i) If the attribute is part of the view property then this view object needs to be

re-materialized.

(ii) this attribute is used as part of the view query, if its value does not cause the

view predicate to become false, then the change will be propagated to the view

object, otherwise, the corresponding view object will be inserted/deleted from

the view class.

For the irrelevant attributes, as its name suggests, these attributes are not involved

in the view class in any way, therefore, changes in these attributes will have no

effect on the view class.

In [CERI91] all the update operations on the base relations that affect the view are

translated into insert/delete operations. Since our view model is object-generating, if

we adopt the same approach, the object ids of the affected view objects will change

which is undesirable.

84

Chapter 5 Materialization of Object-Oriented View

We have the restriction that only view objects that are based on working versions and

released versions can be materialized for performance reasons. For these two types of

object versions, updates will create new versions rather than change the base version.

Therefore, the set operation is not considered in our view maintenance. In our

database, only the delete and update operations are considered on the base classes and

they are translated to an insert/delete operation on the view classes of the materialized

view.

5.3.2 The View Maintenance Manager

A view maintenance manager (VMM) has been developed to act as a mediator

between view classes and their base classes in order to maintain their consistency. A

VMM keeps information about views and their base classes in a database. When a

view is created, it registers with the view manager together with its associated base

classes.

The base class has a flag indicating whether a view has been derived from it. The base

class will send a message to the VMM when an update operation occurs if the view

flag has been set to true. The message contains the information of the base class id,

the updated object id, and the type of update operation. If the updated base class id is

registered in the VMM as an associated base class, the VMM will keep that

information, otherwise the VMM will set the view flag in the base class to false. .

85

Chapter 5 Materialization of Object-Oriented View

Generally there are two different materialization strategies for the timing of view

updates:

• Immediate mode: the view update will be carried out immediately after a base class

update.

• Deferred mode: the view update will only be carried out when it is required.

In the immediate mode, a view is kept consistent with its base class all the time. An

update to the base class will trigger the update operation on the view. Therefore

whenever we access the view, we know it is consistent with the base class(es). This

will improve the performance of the materialized view access. However, the

immediate mode will increase the update overhead to base classes as the system needs

to not only update the base class objects, but also update all the view classes that are

affected by the update.

In the deferred mode, the update view will only be carried out when the view is

accessed. The disadvantage of this approach is that consistency evaluation must be

carried out before the view is accessed, or even worse it may be necessary to re-

materialize the view if an inconsistency is found. This will hamper the performance of

view access.

Different materialization strategies perform differently under different situations.

[BOTZER96] has a detailed discussion of when to use which materialization strategy

for functions in the object-oriented data model. For the framework we have set up for

our view materialization, we believe the deferred materialization mode is more

86

Chapter 5 Materialization of Object-Oriented View

appropriate to our application domain as it achieves the balanced of performance for

both view classes and base classes.

In our deferred mode, the view will interrogate the VMM upon being accessed to

check if any of its base classes have been updated. The type of corrective action taken

will depend on the type of update operation on the base class, as discussed above.

After a view update, the corresponding message will be removed from the VMM to

avoid redundant update operations on the view. Figure 5.1 shows the structure of the

VMM.

change
messages check

changes

View ClassesBase Classes

View Maintenance Manager

Figure 5. 1 Structure of VMM

Because a base class may be involved in more than one view definition, we keep one

copy of the change notification in the VMM for each view class to avoid possible

inconsistency between view classes and base classes.

The view manager provides an incremental maintenance of the materialized view in

an engineering database. It enables the view maintenance be carried out at the object

level instead of class level. Although we limited our view maintenance only to

87

Chapter 5 Materialization o f Object-Oriented View

insert/delete operations, our materialization strategy can easily be extended to cover

the situation where an attribute update is required.

5.4 Summary

The view mechanism offers greater flexibility in organising schema and managing

data in database systems. However, view classes are computed upon access. This

incurs performance overhead on views. The materialized view is seen as an

optimization method which can improve the performance of views. The great

challenge in view materialization is to maintain the materialized views consistent with

its base when the base is updated.

We have presented a view materialization strategy that is applied to a design database

where objects in the database may be versioned. The application of versioning

implies that objects in the database may endure frequent changes. For view objects

frequent updates to base classes will greatly decrease the benefit of view

materialization. For optimal performance of our materialized views, we only allow

view objects based on working versions and released versions to be materialized.

To facilitate the incremental maintenance of materialized views, we introduced a view

maintenance manager to mediate between view classes and base classes. The view

maintenance manager approach enables us to transfer the task of maintaining

consistency from base class to the VMM. Our argument is that the base class designer

88

Chapter 5 Materialization of Object-Oriented View

does not know which view will be using the class and it should not the base class

designer’s responsibility to maintain consistency.

Unlike the MultiView approach, our approach is applicable to other general object-

oriented data models. Because of the framework of our view model: we limited the

update operation on the base class(es) to insert and delete, we discussed the impact of

modification on base class attributes and we believe the function of the VMM can

easily be extended to cover such update operations.

The VMM allows view maintenance to be carried out at the object level instead of the

class level. This avoids extensive re-evaluation and re-materialization which can

improve the performance of the materialized view substantially.

89

Chapter 6 Views in Integrated Design Environment

Chapter 6 Views in Integrated Design Environment

Object-Oriented views provides a powerful re-structuring tools for design

environments. In previous chapters, we presented a view model that is developed for

design environments. In this chapter, we will discuss how to use our view model to

provide a flexible design environment and we argue that object-oriented views

provide a powerful technique for configuration management.

6.1 Introduction

In a product development environment (e.g. software development) , engineers

normally work in groups. These engineers cooperate with each other in order to

achieve the products design goal. While at the same time, they need to work on their

own un-interrupted by other team members. Normally databases are used support

design activities at different levels. When engineers are working on a product, not all

the information of each individual’s work is relevant to other people on the team. One

team’s design data may not be relevant to another team. For these reasons, there is a

need to divide a design database into different partitions. Now the research

community come to consensus that three levels of workspaces provide sufficient

support to design activities [KIM95].

90

Chapter 6 Views in Integrated Design Environment

Object versioning provides the ability to keep track of an object’s evolution path. A

complex object is composed of simpler component objects. For complex objects, a

configuration management tool is need to help designers to choose correct component

objects. The role of configuration management is more complex in a version capable

environment. A configuration is created by composing the system from its

components and selecting individual component versions such that the resulting

systems is consistent [ZELER95]. Although the user may get an object without

specifying a version number, e.g. through default version, it is desirable that the user

is able lu select a particular version o f an object to configure a complex design object.

Object-oriented views can be used in configuration management to identify the

appropriate component object through query predicate. Query languages are generally

more expressive than other means of selection used by. other configuration

management tools. In chapter 4, we have presented an object-oriented view model

that can be used in configuration of a complex object. We will show in this chapter

that our technique offers a flexible mechanism towards configuration management.

6.2 Object Versions and Workspaces

Versions are distinct snapshots of a design object in different states [AHMED91b].

Version management involves the definition of versioned objects, version

identification and organization, and operations for creating new versions and

retrieving existing versions. Object versions are organised in version space. A

version represents a state of an object during its evolving process. Each version

91

Chapter 6 Views in Integrated Design Environment

within an versioned object, must have a unique version identifier. There are many

ways of naming a version, we adopt the one that use consecutive integers as our

version identifier. Detailed semantics of versioning has been discussed in Chapter 3.

6.2.1 Partition of Design Database

Our database system is partitioned into three workspaces, i.e. private workspace,

project workspace and public workspace. The private workspaces are managed by

individual designers and project workspaces are associated with each projects. The

public workspace is where all released versions are located and can be accessed by

people from different projects.

In [CHOU86] the private workspace, project workspace and public workspace each

maintains their separate versioning system. The version numbers of a design artefact

are independent of each other in different workspaces although they are versions of

the same object in different workspace. The separate versioning scheme in different

workspaces introduces added complexity into version management and may introduce

inconsistency between versions in different workspaces.

In the separate versioning scheme, the user has to assign an appropriate parent version

to an object version when it is checked out one workspace and checked into a new

one. There is not any mechanism in the database that ensures appropriate parent

version is assigned to the object version. This provides a chance of introducing

inconsistency into the object’s evolution history.

92

Chapter 6 Views in Integrated Design Environment

As most engineering artefacts are complex objects, these complex objects have

references to other lower level component objects. There are two ways that a complex

object can be bound to its versioned components: static and dynamic. Static binding

means that the reference to a component object is bound before any object is accessed,

e.g. the full path name is included. Dynamic binding means component binding is

only performed when the component object is actually accessed.

Because of the separation of workspaces, the binding of an object version requires not

only its version number but also the name of the workspace it is located in. In

[CHOU86] a triplet of <object name, workspace name, version number> is used to name

a version. The separate versioning scheme used in [CHOU86] means that when an

object migrates between workspaces any static references it has to other component

versions have to be converted to new static references that is meaningful in the new

workspace.

6.3 Unified Version Management

We have developed a unified version management mechanism that allows efficient

and consistent version management throughout the workspaces in a design

environment. Consistent version numbers are used for versions of a versioned object

throughout different workspaces, i.e., an object version maintains its version number

no matter in which workspace it resides. We also unified the version graph in

different workspaces which means integrity of an object’s version history is

maintained.

93

Chapter 6 Views in Integrated Design Environment

The Version Maintenance Manager(VMM) that allocates version numbers and

maintains version graph is located in public workspace. This arrangement facilitates

the share of designs between different projects and it also allows supervisors to

examine the entire version set without being confined to a particular workspace.

Each workspace has virtual version graphs which are database views on the main

version graphs in public workspace. The private workspace version graph refers to all

versions developed by the workspace owner. The project workspace version graph

has all the working versions designed by the project team and the public workspace

version graph includes all released versions which may be released by different

project team. Figure 6.1 to Figure 6.4 illustrate the structure of version graphs in

different workspaces.

Version 5

Version 1

Version 2

Version 4

Version 3

Version 8Version 6 Version 7

Transient Version

Working Version

Public Version

Figure 6. 1 Main Version Graph in Public Workspace

Figure 6.1 shows a main version graph for a versioned object in public workspace. It

contains the complete version derivation history for the object. Because all new

94

Chapter 6 Views in Integrated Design Environment

versions are generated from private workspace, the private version graph contains all

the versions created in this workspace irrespective of their current states in the

environment.

Version 1

ersion 2

Version 6 ersion

Transient Version

Working Version

Public Version

 Versions developed by
C y the workspace owner

Figure 6. 2 Version Graph in Private Workspace

Figure 6.2 shows a version graph in a private workspace. This is a virtual version

graph. It is defined by a database view on the main version graph for the same object

with all the versions developed by the workspace owner. These versions may be in

transient states or working state. The ovals in the diagram represent versions

developed by the workspace owner.

ersion 2

Version 1

Version 3

Version 4

Version 8

Transient Version

Working Version

Public Version

Versions developed by
the workspace owner

Figure 6. 3 Version Graph in Project Workspace

95

Chapter 6 Views in Integrated Design Environment

The version graph in project workspace (shown in Figure 6.3) is also a database view.

This view is based on the object’s main version graph with all the versions in working

states. As shown in 1c, version 3, 4, 8 are not in the private workspace shown in

figure 6.1. These versions are developed by other designer working on the project.

Version 1

(^VersionT) Version 8 O

Transient Version

Working Version

Public Version

Versions developed
by the workspace
owner

Figure 6. 4 Version Graph in Public Workspace

Figure 6.4 illustrates the version graph for public workspace. It has only released

versions. A released version may be created by another development team working

on a different project.

In our version model version 1 is the root version from which all versions of an object

are derived. If version 1 is not included in figure 6.3 then to the users of the public

workspace that version 2 and version 8 are not unrelated. In such a circumstance

some semantic information is lost during the conversion process. To avoid the loss of

semantic information in a unified version graph, version 1 is always included in all

version graphs. If version 1 is not visible in a particular workspace, it will not be

accessible from the version graph in the workspace. If the users have to create a new

version graph in the public workspace as described in [CHOU86], then they would

96

Chapter 6 Views in Integrated Design Environment

face a very difficult decision on how to relate version 2 and version 8 in their version

graph.

As can be seen from figure 6.1, version numbers in different workspaces are not

necessarily consecutive. In a version model, version identifier represents the partial

time order of creation of each version. These version identifiers in our environment

still reflect the partial orders of these versions, i.e., no semantic information is lost

during the unifying process. Using unified version identifiers means that only one

version manager is needed for each object in the develop environment. This will

make our version management less complicated than that of Chou’s. More

importantly all the versions maintain the intrinsic relationships with their parent

versions. We say an object version x is a parent version of version y if there is a path

from x to 3/ in the version graph of the object.

6.3.1 Version Names

In our version model, integer numbers are used as the version identifier. Versions are

assigned consecutive integers in the order of their creation. As there are various levels

of workspaces in our development environment, an object’s name and its version

identifier may not provide enough information to locate the object.

We use a name tuple <workspace, version number> to identify an object version in our

environment. The workspace indicate which workspace the version is located. The

version number is the version identifier of the object version.

97

Chapter 6 Views in Integrated Design Environment

6.3.2 Object Version Migration

As unified version identifiers are used throughout our database environment, when an

object version migrates from one workspace to another, the only information that

needs to be updated to keep object references meaningful is the workspace name.

The workspace name and its category can be updated automatically when the object is

checked into a new workspace. Because an object in the lower category workspace

may reference objects in the higher category workspaces, e.g., an object version in a

private workspace has reference to a component version in a project workspace, it is

not always necessary to update the reference to a component.

For example, a version of Car object in private workspace has references to a version

of Engine object and a version of Bodywork object (Figure6.5). The Engine object

version is a working version and is located in a project workspace. In this example,

the designer who is working on the Car object happens to be working on the

Bodywork as well. The version of Bodywork object, therefore, is also in his/her

private workspace (figure 6.5a).

When the designer decides to release the version of Car object into the project

workspace, the referenced Bodywork object version needs to be released as well.

When the Car object is checked into the project workspace, the Bodywork object

version is also released into project workspace and the reference from the Car object

98

Chapter 6 Views in Integrated Design Environment

version to the Bodywork object version has to be updated at the same time. Since the

Engine object version is already in the project workspace, this reference to the Engine

object version will remain unchanged (figure 6.5b).

Car

EngineBodywork

Project databasePrivate database

Car

EngineBodywork

Private database Project database

a). Object references before migration b) Object references after Migration

Figure 6 . 5 Object References during Object Migration

Unified version management in a multi-level workspace environment provides

consistent version identifiers throughout the whole environment without further

complicating the management of version identifiers. Consistent version evolution

history is maintained in all the participating workspaces. The use of database views

for version graph in project workspace and public workspace provide up to date

information about the changes in these workspaces and no extra work is needed to

maintain separate version graphs in project and public workspace.

6.4 Configuration Management

A complex object comprising a set of components is configured by selecting a version

for each of the component objects that constitute the complex object

99

Chapter 6 Views in Integrated Design Environment

[AGRAWAL89]. If any of the component has been modified, the database needs to

react to the changes that have impact on the complex object. Version management

defines the object to be versioned, version identification and organisation, as well as

operations for retrieving existing versions and constructing new versions

[CONRADI96] while configuration management is the art of selecting and controlling

modifications to a complex object.

Configuration management allows a user to specify alternative configuration of a

complex object through the selection of appropriate versions of its components. A

configuration can be specified and constructed by describing a set of desired

attributes. The attribute can be a version number that is associated with each of the

versioned object.

6.4.1 Views in Configuration Management

Tradition configuration management uses version label to select components for a

complex object (as discussed in Chapter 3). This approach has limited expressive

power as in many circumstances the user might want to use selection criteria other

than version numbers. We see that a database view as an ideal tool for selecting

component objects in a configuration management as it uses query language, e.g.,

OQL, to define the selection criteria. Query languages are more expressive than other

means of selection.

100

Chapter 6 Views in Integrated Design Environment

We have developed a view model that supports configuration management in a design

environment. It provides a flexible approach towards complex object configuration.

The use of database views not only facilitates the selection of components but also

allows us to adapt the complex object towards new user requirements.

For example, in a design object Car has components Bodywork and Engine as shown

in figure 6.5. The designer wants to try a version of Engine from another source. The

Engine object may be belong to a different abstract data type than the in-house one.

Normally a new Car object would need to be created to cater the change in design.

With capacity for an augmented view in our view model, the designer only needs to

define the view object other than creating a new Car object. With the view approach

the user can use any other selection predicate to choose object configuration that is

supported by the query language.

The query language can be used to define a selection criteria which describes a set of

desired features of components versions. The selection may return an empty set,

indicating that no component that meets the configuration requirement. The selection

may also return more than one versions of a component that meet the configuration

requirement. When such a case arises, the user need to develop a mechanism that

allows the user to specify more specific selections to make it unambiguous.

The system has several options when faced with multiple choice of components:

1) Choose one at random;

2) Create the cross product of all possible configurations;

101

Chapter 6 Views in Integrated Design Environment

3) Provide the user with the appropriate operational mechanisms to describe the

desired configuration.

Choice (1) provides a simple but limited solution to get a single version for a

configuration. Choice (2) will result in exponential explosion of configurations when

faced with multiple choice of component in more than one components. [SCIORE94]

allows multiple component for a configuration. Choice (3) allows the user to refine

the query and select a single version from the result list.

6.4.2 Identifying Object Components

Configuration constraints are rules to check against when a component is included

into a configuration. If an object fails its configuration constraints then it means that

the object does not meet the design requirement and its inclusion in the configuration

will be rejected.

Configuration constraints are conditions specified by designers to ensure the

consistency of a design object configuration. Our version model allows designers to

specify configuration constraints for lower-level objects. In our model, it is the

responsibility of higher-level object to ensure that its components meet their

configuration constraints.

When a configuration query returns more than one versions of a particular object, the

configuration view will check these objects against configuration constraints. If any

of them fail the test, they will be removed from the result list thus reduce the number

102

Chapter 6 Views in Integrated Design Environment

of available object versions for a configuration. If there are still more than one

versions for any component, then the user will have the choice to view through these

objects and manually pick up one for the configuration or revise the query condition

to provide stricter criteria.

If the user chooses to manually select the available component, then the configuration

criteria will be modified to include the selected object’s version number. Thus

guarantee the configuration with one version for each component object.

For a configuration specification, when multiple versions for a component are

returned by a query, if the user does not have any preference among these versions,

he/she could simply choose the most recent version. This is supported by our view

model and the specification for the configuration will be automatically updated.

Should the designer choose to revise the configuration specification, i.e., the query

condition, we have to go through the above procedure until a single version is

selected.

The view approach is similar to that of dynamic binding. Selected object versions

might be different each time the configuration is accessed. This implies that a

complex object configuration can automatically take advantage of new versions of its

components. At some stage, however, the user may need to freeze a configuration.

The frozen configuration will become a new version of a complex object. All

dynamic bindings in the configuration will be converted to static ones, i.e., all the

103

Chapter 6 Views in Integrated Design Environment

selection criteria will change to version numbers that uniquely identify the

components, e.g., configuration numbers.

From the above discussion, we can see that the view approach towards configuration

management not only facilitates the users in experimenting with all possible

configurations but also allows the user to take advantage of latest development. On

the other hand it still allows the user to freeze a particular configuration whenever

needed.

This part of the work has not been implemented due to the limitations of object-

database being used in this project. The reason POET was chosen as development

tool at the begining of the project was because it was the only object database

available for PC platform and it supports ODMG standard.

6.5 Summary

In this chapter, we presented the unified version management in design environment.

The unified version management maintains consistent version numbers throughout the

develop environment. Although version numbers in each workspace may not

consecutive, no semantic information is lost during the process.

For each versioned object, only one version manager is needed in the environment.

This reduces the complexity of version management in the environment. The

relationships between versions are maintained even when an object version migrates

104

Chapter 6 Views in Integrated Design Environment

from one workspace to another. We believe our approach provide consistent version

management in a develop environment. The user no longer needs to assign a parent to

a new version when it migrates into a new workspace which carries the risk of

introducing inconsistency.

We argue that database views are a better tool for configuration management. The use

of query language in the selection of components have more expressive power than

the use of version number list and can assure the consistency of the configuration.

Database views provides a more flexible approach towards configuration

management.

105

Chapter 7 Prototype Design and Implementation

Chapter 7 Prototype Design and Implementation

This chapter presents the design and implementation of a prototype for unified version

management in a design environment. The prototype includes the version model

presented in chapter 3, the view model presented in chapter 4 and the architecture of

view maintainence manager discussed in chapter 6 . The prototype presented in this

chapter is simplified as it is used to demonstrate the feasibility of our design.

7.1 Introduction

The primary objectives of the prototype are:

• Demonstrate the feasibility of our VMM model. There are novel contributions of

the model and it is important to demonstrate that they are actually applicable in .

practice.

• A prototype can give some indications of the usefulness of theory used in the

research. The prototype provides a testbed to experiment with various scenarios

and give some indications of their value.

• A prototype may help to detect possible design flaws in the model. This will

provide valuable feedback to the development of the model. The implementation

106

Chapter 7 Prototype Design and Implementation

may also highlight possible areas of future work and it provides an environment for

experimenting with different design possibilities.

The prototype has several components:

• Version Model provides the versioning capability to objects that are derived from

versionable classes. It provides functionality for keeping the semantic

relationships between versions of an object. In a design database, a design artefact

is generally multi-versioned.

• View Model is composed of two parts. A view query definition class provides

storage for query conditions that define the extent of a view class and it keeps the

information about which schema to use to initialise view objects. The view

schema definition class, as it name implies, defines the schema for view objects.

• View Maintenance Manager(VMM) provides a mechanism for efficient

maintenance of materialized views. The VMM acts as a mediator between view

classes and their base classes to keep them synchronised upon view access.

7.2 The Version Model

The version model consists of three classes: Generic, Descriptor and

Versionable classes. Figure 7.1 shows graphically the relationship between these

three classes. The Generic class provides the version management functionality for

107

Chapter 7 Prototype Design and Implementation

the version model. There is only one Generic object (List 7.1) for each set of

versions. It will allocate the next available version number to new versions and put

the new version onto an appropriate place on the version history graph according to its

relationships with its base version(s).

Generic Object

Version Graph
version descriptor versionable

version descriptorversion descriptor versionable

versionable

Figure 7.1 Class Relationships for Version Model

The version graph is implemented as a Direct Acyclic Graph due to the nature of

version semantics. For each version set, there is a default version. The default

version number is stored in the Generic object for easy access. The Generic

object provides methods for creating new versions (e.g. merge_versions ()).

108

Chapter 7 Prototype Design and Implementation

persistent class Generic
private :

int 1ast_vers ion_no;
int de f au1t_vers ion_no;
DAG version_history;

public :
Generic () ;
~Generic();

h___ :__

List 7. 1 Class for Generic Objects

The Descriptor class (List 7.2)acts as a flag for instances of a Versionable

class. Each instance of a Versionable class has a corresponding Descriptor

object. The main function of a Descriptor object is to hold a flag to indicate

whether the corresponding Versionable object has been deleted. If a Versionable

object has other versions derived from it, it cannot be physically deleted. The flag in

the Descriptor object will stop new versions being derived from it. It is the

Descriptor object that is actually stored on the version graph of a Generic

object. The reason that a separate descriptor object is kept on the version graph

instead of the version object itself is because the descriptor object is a lot smaller than

a vesionable object.

109

Chapter 7 Prototype Design and Implementation

persistent class Descriptor
private :

int version_no;
bool deleted; //deletion flag
Versionable* ver;

public :
Descriptor();
^Descriptor();

List 7. 2 Class for Descriptor Objects

The Versionable object (List 7.3) is at the core of the version model. All classes

that require versioning capability are derived from Versionable. Each

Versionable object has a reference to its generic object.

persistent class Versionable
private :

STATE state ; //version state transient, ...
int version_no;
Generic* pGen;

public :
Versionable();
^Versionable();

h____________________ :___________________;____________ ____

List 7. 3 Class Versionable Objects

The design of the version model allows the user to impose versioning capability by

deriving their classes from the Versionable class. The Generic class provides the

basic version management scheme. This version model can be easily extended should

the user require more than what is offered by the base model.

110

Chapter 7 Prototype Design and Implementation

7.3 The View Model

For relational databases, a view is a stored query. A view set is returned by running

the query against base table when the view is accessed. In object-oriented databases, a

view is composed of two parts. The first part is inherited from the previous

generation database, as a stored query. The second part is unique to the object data

model - the schema definition for the view class. This split of function is due to the

need to define methods for view objects in view schemas. The query languages such

as OQL, are not computationally complete. It is very difficult to define methods using

just a query language. In our view model, the two parts are implemented as two

separate classes. This approach gives the user greater flexibility in defining a view.

The user can either define a new view schema or use an existing schema for their

database views, which in turn means a view can either be object-generating or object

preserving.

The query part of the view only defines the extent of a view. Because the object-

oriented database stores everything as objects, the stored query part of a view is stored

in the form of an object. It is also possible to tell the database which schema to use to

populate the view class.

This design of a view model not only provides full support to existing view semantics

but also enables the user to extend view semantics from those in the previous

generation database. Chapter 4 has a detailed discussion of view semantics. In the

111

Chapter 7 Prototype Design and Implementation

following section, we use several examples to demonstrate how various view

semantics are implemented in our view model.

7.3.1. Example of View Definition

To illustrate the structure of our view model, a few examples are developed to

demonstrate how our view model works. We use the POET™ object database to

implement our view model. The POET database is ODMG compliant therefore we

are able to use OQL to define our view query. C++ is the data definition language in

POET. Because only a subset of the ODMG OQL is supported by POET, the view

model is implemented using query functions provided by POET. However, the

semantics of these queries is fully supported by ODMG OQL and we use OQL in our

examples to specify our view query definition.

Example 1: Selection view using an Object-Preserving View

Firstly, we illustrate how to create an object-preserving-view in our view model.

Generally an object-preserving view is used in SELECT view where the view objects

are a subset of the base objects. This is because SELECT view does not need a new

schema for its view objects since the view object is of the same type as its base

objects.

112

Chapter 7 Prototype Design and Implementation

//view query definition
class HatchBacks
{ private :

view_class Car
string query_spec select car from cars

in all car
where BodyWork=\ ' ' Hatch\ " "

public :
Activate();

List 7.4 Object-Preserving View in SELECT View

In our example, the designer wants to look at all the cars that are hatchbacks. Because

in an object-preserving view, the schema of the view object is the same as that of base

objects, the schema definition part in this example is not needed. The user only needs

to specify that the view class is a set of cars and then specify the query condition .

List 7.4 shows the view definition.

In an object-preserving view, there is no need for the user to create a view schema

definition as it is the same as its base class schema. The view objects share the same

oids as their base objects and the view class contains a subset of objects from their

base class. Thus our approach provides a simple solution to a selection view.

Example 2: Projection view using an Object-Creating View

In our second example, we illustrate how to use an object-generating view in a

projection view. Suppose, in our database there is a Car class which has four

attributes: make, model, e n g in e , and carBody as shown in figure 7.2.

113

Chapter 7 Prototype Design and Implementation

Car: Elec Car:make based on Car-oidmodel * modelengine
carBody engine

instantiate *

Figure 7. 2 Car Object and Its View Elec Car

The view Elec_Car is a projection view based on Car. The view class contains all

cars that are powered by electric engines. The user of the view is not interested in the

bodywork of the car so the attribute carBody is projected out of the view. The

definition of the view is shown in List 7.5:

In the view query definition class, the method Activate () is called automatically

to instantiate view objects each time the view query class is accessed. All methods of

views are defined in schema classes. As all update operations are carried out through

view methods instead of query statements we can eliminate the update anomaly

associated with the traditional view approach.

114

Chapter 7 Prototype Design and Implementation

//view schema definition
class Elec Car
{private :

oid car_oid;
string model;
Engine elec_engine;

public :
//constructors and methods defined for the view

}

//view query definition
class elec car view
{ " " private :

view_class Elec_Car;
string query_spec=" select car

from cars in allCar
where car.engine.type =
\ 11Electric\11 11 ;

Elec_Car_Set view_objects;
public :

Activate ();
]__

List 7. 5 Object-Generating view in Projection View

Example 3: Join View

In our third example, we present a join view which combines two base objects to

create a new one. For a join view, an object-generating view is used as semantically a

join view creates a new type for its view class. Figure 7.3 shows the two base classes,

Engine and GearBox. In figure 7.3 the bold attributes in both base classes are

used to join two base objects.

115

Chapter 7 Prototype Design and Implementation

Engine:
capacity
size
version no
c o n f ig no

join

GearBox:
ratio
gears
version no
c o n f ig _ n o

 1

Power_Plant:
capacity
size
• ratio
gears
Eversion_no
Gversion_no
config_no

base class

1
i

' view class

Figure 7. 3 The Join of Engine Object and GearBox Object

In the example, the result of our join created a new view class, Power_Plant

which contains the attributes and methods from both base classes. While specifying

the schema for a view class the user can project out any attributes or methods if he/she

wishes to. In this example, there is a name conflict for version_no in both classes.

The view designer is responsible for resolving the name conflict in view classes. The

conf ig_no seems like a conflicting attribute name as well, but it is used as the

joinable attribute which is treated as a single attribute in the view class. The

definition of the view query is shown in List 7.6

116

Chapter 7 Prototype Design and Implementation

//view query definition for Power_Plant
class Power Plant view
{ private :

view class Power_Plant;
string query_spec = ""select engine, gearbox

from engines in allEngine
gearboxes in allGearBox
where engine.config_no =
gearbox.config_no;

Powe r_P1ant_Set view_obj ects;
public :

Activate(); .
}

List 7. 6 Query Definition for Join View Power Plant

The similarity between a relational join view and an object-oriented join view can be

seen from the query definition. In an object-oriented view the user has to define the

view schema before any view object can be used, although semantically the result of

the join view is the same as that of deriving a subclass from both base classes. For

reasons discussed earlier in this chapter, the view classes are part of the inheritance

hierarchy of its base classes.

Example 4: Extended View

From the last 3 examples, the reader can find corresponding views in relational form.

This next example (figure 7.4), however, is unique to the object-oriented paradigm.

An extended view contains attributes that are not part of its base class objects and

cannot be derived from its base class object attributes. The extended part of the view

is created as a new object and stored in the database to enable the view to be

initialised each time it is called.

117

Chapter 7 Prototype Design and Implementation

Engine :
c a p a c i ty
s i z e
v e rs io n _ n o
c o n f ig _no

ExtendObj.
Fuel ;
O b jld m a s te r ld

ExtEngine:
c a p a c i ty
s i z e
v e rs io n _ n o
c o n f ig _no

• • F u e l

Figure 7. 4 Example of Extended View

The extended part of the object contains extra attributes, plus the object Id of its

associated base object in order to guarantee that the extended view is initialised

correctly each time it is accessed. Since there is no existing schema in the database

which can be used as the view schema, the new view schema has to be specified as in

previous object-generating examples. The view query specification is basically a join

query, to join the base object oid with the extended object m a s te r ld as shown in

List 7.7.

118

Chapter 7 Prototype Design and Implementation

//view query definition for extended view
class Ext Engine view
{ .private :

view_class Ext_Engine;
string query_spec=""select engine extend_obj

from engines in allEngine
extend_objs in. allExtendObj
where engine.oid
= extend_obj.masterldpublic :

Activate();
}

List 7. 7 Example of Extended View

Example 5. Union View

Union view is quite, straight forward in the Object-Oriented paradigm. From the

semantics of union, the result of a union includes instances of both the classes

involved. The semantic constraint on union means that the resulting class must be the

superclass of both classes taking part in the union. We use a typical college database

to illustrate how a union query is formulated in our database (Figure 7.5).

Academic Stall Technical Staff

University Employee

Administrative statf

Figure 7.5 Class Hierarchy for Union Example

119

Chapter 7 Prototype Design and Implementation

For a query to concerning support staff, we need the union of administrative staff and

technical staff. The view query would involve putting instances from both classes

into the view class as shown in List 7.8.

//view query definition for union view
class Support_Staff_View

private :
view_class support_staff

public :
Support_Staff_View();
~Support_Staff_View();
Activate()

//implementation of Activate method
Support_Staff_View: :Activate()
{ //Sets contains all instances of each classes
Administraive_StaffAllSet admin;
Technical_StaffAllSet tech;
University_Employee* pEmployee .
for(int 1=0; admin.Get(pEmployee, i, PtStart);

I + +)
{ support_staff.Append(pEmployee);

} ___________________

List 7. 8 Example of Union View

In the above example, the view class Support_Staf f could be

University_Employee or the user may wish to define a new view class which

would be the super class of Administrative Staff and Technical Staff.

Because POET only supports a subset of OQL [CATTELL97], this example looks

more like a C++ program than a demonstration of view semantics. This is due to the

limited support of set operations in the version of POET we used to implement our

120

Chapter 7 Prototype Design and Implementation

view model. If future versions of the POET were to support binary set operations,

then the above union would look a lot simpler as shown in List 7.9.

Class Support_Staff_View
private :

view_class support_staff
Administraive_StaffAllSet admin;
Technical_StaffAllSet tech;
string query_spec = "support_Staff union

tech ' ' ;
public :

Support_Staff_View();
^Support_Stafl_View();
Activate()

};

List 7. 9 Union View in OQL

For Intersection View and Difference View, we had to implement a very crude C++

solution to achieve the semantics of these views. The operation basically involves

getting the OID of the first class and then finding out if it is in the second class. In the

ODMG OQL the intersection operator is i n t e r s e c t and the difference operator is

e x c e p t.

7.4 View Maintenance Manager

The main objective of the View Maintenance Manager (VMM) is to provide an

efficient view maintenance mechanism for materialized views. Ideally the VMM

should impose no impact on those base classes that have no views based on them. We

121

Chapter 7 Prototype Design and Implementation

have added an extra attribute which acts as a flag indicating whether a view is derived

from it. A simple check on this flag will indicate whether to update the VMM. This

will minimize performance overheads on those base classes with no view derived

from them.

The View Maintenance Manager acts as a mediator between views and their base

classes. For each base class, there will be a list that contains all the view classes that

are based on it (List 7.10). For each list there is a time stamp associated with it

indicating the time of base updates.

class base view list
private :

Date timestamp;
Cstring base_class_id
List ViewClàssIds

public :
base_view_list();
~base_view_list();
Add(view_class_id);
Remove(view class id);

List 7. 10 View Maintenance Class

Each time a view is accessed, the VMM checks its time stamp against the time stamp

of the base view list. If the time stamp in the base view list is later than that of the

view then a re-materialization will occur.

122

Chapter 7 Prototype Design and Implementation

As discussed in chapter 5, this is a very primitive view maintenance approach. A

more elaborate approach is envisaged and discussed in chapter 5 as future work. Due

to time constraints, only the primitive time stamp approach has been implemented

Using the VMM, we can implement different view maintenance approaches, i.e.

immediate or deferred. This is achieved by adding a mode attribute indicating

whether the user wants the immediate view update or deferred. If it is set to the

immediate mode, the VMM can be set to call a method to re-materialize the views. If

it is set to the deferred mode, the view class will only check its consistency upon view

access.

7.4.1 Implementation of the View Maintenance Manager (VMM)

The VMM has been implemented using Borland C++ and the POET object database.

As an earlier version of POET has very limited functionality in supporting object

queries and other aspects of object storage, we . were forced to use demonstration

versions of POET because this allowed us to take advantage of the latest functionality

offered in new versions of POET database.

The VMM keeps the view maintenance information in the database. When a base

class object is being updated, the new update message will simply replace the old one

if a view class has not been accessed since last base update. When a view class is

accessed, the VMM will re-materialize it to ensure consistency with its base and

remove the message entry for this view class. At the moment, we have only

123

Chapter 7 Prototype Design and Implementation

implemented a simple message scheme to indicate an update in the base. As regards

future work, the message should contain more information about the base update, e.g.

a list of attributes that have been updated. The extra information would enable the

VMM to reduce unnecessary re-materialization of the view class and thus further

improve the performance of our view model.

7.5 Summary

This chapter has presented the design and implementation of the main components in

our design environment. We have demonstrated that the whole model can be

implemented using an appropriate programming language. However the effectiveness

of our model has not been properly evaluated. Only extensive experimentation with a

large, evolving application could contribute in this aspect as discussed in the next

chapter.

124

Chapter 8 Evaluation

Chapter 8 Evaluation

8.1 Introduction

This chapter evaluates the version and view models in a design environment. The

evaluation considers the achievements of the system. Consider how our models might

be used in a design environment to support the process of engineering development.

The ideal would be Lo allow the models to be used in a project o f realistic size and

complexity, and to investigate their performance in terms of ease of use, physical

performance statistics, and so on. However, for a project of this scale, it was difficult

to set up a realistic test environment due to limited resources and time. In the

following sections of this chapter, we compare our work with existing work to

demonstrate that our approach provides better support for design activities.

8.2 Object View Model Development

The view mechanism provides the presentation model for our system. The successful

development of a comprehensive object view model provides a solid foundation for a

flexible system. Our view model is defined by two separate classes. The first class

defines the schema of a view class and the second class defines the extent of a view

class. This strategy allows the user to either use an existing schema as the view

schema or to define a new view schema. Unlike many other view models which are

either object-generating or object-preserving [ABITEBOUL91, BERTIN092,

125

Chapter 8 Evaluation

HEILER90, SCHOLL91] this view model allows the view object to be created either

with a new object id or using its base objects’ id. This means that our view model is

not limited to one view semantics rather it can take advantage of both semantics. An

object preserving view simplifies the view definition and allows direct view updates.

On the other hand, an object generating view allows an extended view schema to be

defined which gives greater flexibility to the view model. Therefore, our view model

can provide all the view semantics set out in our view taxonomy.

As in the relational world, defining object-oriented views involves a query language.

Because the object-oriented data model offers richer semantics, it is natural to expect

object-oriented views to offer richer semantics than relational views. On the other

hand, the object query language standard (OQL) does not offer any more than a

relational query language (SQL). To circumvent this limitations of OQL, two

different approaches were adopted to extend the semantics of object-oriented views.

[BERT91, HEIL91] both only use a query language to define their view model. To

overcome the limited semantics of the existing query language, Bertino extended the

semantics of the query language to provide support for schema changes. [HEIL91]

simply provided a view model that could do no more than relational views.

The other camp [ABIT91, SCH091] combine the query language and object data

model to define their view models. As their object data model offers more than the

relational model, object views using the object data model can be easily extended.

The disadvantage of this approach is that it has loses the simplicity of using a query

126

Chapter 8 Evaluation

language to define the schema of a view, and data models must be used as a part of

view schema definition.

[ABIT91] defines his view model with virtual classes. Instances of the virtual classes

are assigned their own Oids. The virtual classes are integrated into the inheritance

hierarchy of the base classes. Abiteboul incorporates the view into a coherent

framework. There are a few problems with the integration approach. Firstly, it

exposes views to the effects of schema changes in the database. In an inheritance

hierarchy of only base classes, any schema change is propagated down the inheritance

tree automatically. However, it is generally impossible for a database system to

change a view specification in a view definition to reflect schema changes. Secondly,

the semantics of the inheritance hierarchy may be violated if a view class is placed

without first considering its type definition and extent.

Scholl’s [SCH091] view model allows view updates which is a desirable feature in a

view mechanism. The view model is defined using a query language and the type

system for the object data model. The view class is virtually populated by the same

objects from the base class which means it is an object preserving view. For this type

of view, it is difficult to modify the behaviour of a view object.

To overcome the above existing problems associated with object generating and

object preserving views, our view model allows the user to specify which one to use at

design time. In the meantime it allows view updates to be propagated to their base

classes regardless of whether new Oids are generated for view objects.

127

Chapter 8 Evaluation

8.3 Version Management and Design Environment

8.3.1 Version Management

Version management involves the management of version creation and the

relationships between the versions. There is no consensus on when a new version of

an object should be created. [AHME91, BEEC88, SCI094] proposed to use version

sensitive attributes to control the creation of new versions. A new version is created

when any of the version sensitive attributes have been updated. This approach may

automate the process of creating new versions but we think it is too restrictive.

Creating a new version is a complex design decision. To say some attributes are more

version sensitive than others is an oversimplification. If some version sensitive

attributes are defined, then a new version is created whenever a version sensitive

attribute has been modified irrespective of the semantics of the change. Defining

version sensitive attributes also forces the database designer to decide how a new

version can be created at an early stage in development which may later prove to be

inappropriate. We argue it is more appropriate to let the application user decide when

a new version needs to be created, as it is complicated design decision. In our version

model we adopt the approach that the user decides when to create new. versions.

Sometimes it may be undesirable to automate the version creation process.

[CHOU86] proposed another approach to solve the problem of version proliferation.

Whenever a component has a new version created, it informs all the objects that are

128

Chapter 8 Evaluation

directly one level up in the configuration hierarchy. The user of the upper level object

then decides if any changes need to be made and informs the object at the higher level.

The change notification approach prevents version proliferation in complex objects.

This approach requires that the lower level object has to maintain a table that lists all

its direct upper level objects. When a component object is being designed, it may not

have been designed to be used by the complex object. This means that the component

object needs to be informed about its inclusion in the complex object and needs to

update the object’s table. This complicates the management of object versioning. We

argue that it should be the complex object designer’s responsibility to check if any of

its components have been modified. Sometimes even though the changes at the lower

level object may not have any effect at the upper level, the designer of the upper level

object still needs to look into the changes made to the object to decide whether to

respond to the change. In a dynamic design environment this may mean many

distractions to the designer of the upper level object with a lot of irrelevant

notifications.

In our version model, instead of making the lower level object responsible for

notifying the upper level object of any change, it is the responsibility of the upper

level object designer to specify a set of conditions by which to check its components.

If any of the changes in a component fails to meet any of these conditions then the

complex object designer is alerted about the change. If the changes in the lower

component do not break any of these conditions then those changes will go unnoticed

by the upper level object designer. Because the upper level object designer knows

129

Chapter 8 Evaluation

which parameters in the component are more important to the design, he may target

these by checking on those important aspects of the component object. Imagine a very

complex object with a lot of components, if any change in the direct components leads

to a need to inform the upper level object designer, then in Chou’s system the upper

level designer may spend a lot of time checking all these change notifications,

whereas, in our model, he works only on meaningful ones.

8.3.2. Design Environment

In this project versioning is viewed from a design environment perspective, that is.

how it is being used in a design environment. We consider such a design environment

consists of three levels, i.e. private, project and public workspace. Unlike [CHOU86]

where versions are confined to each individual workspace, we provide a globally

consistent view of versions in a design environment (called unified version

management). In CHOU’s approach, when an object checks out of one workspace

and checks into another, it is the user’s responsibility to decide the relationship

between the new version and existing versions already in that workspace. This can

lead to inappropriate version semantics being defined in that workspace and there is

no mechanism to prevent it from happening.

Unified version management allows consistent version numbers to be used for

versions of a versioned object in different the workspaces, i.e. an object version

maintains its version number no matter in which database it resides. Unified version,

management in a multi-level database environment provides consistent version

130

Chapter 8 Evaluation

identifiers throughout the whole environment. Consistent version evolution history is

maintained in all the participating databases. The use of database views for version

graphs in the project database and public database provides up to date information

about the changes in these databases and no extra work is needed to maintain separate

version graphs in the project and public database.

8.4 Configuration Management

In this project we explored the expressive power of object-oriented views. Views are

used to produce the appropriate version graph in various workspaces. We also

explored their use in configuration management. The use of database views in

configuration management allows the user to specify a list of configuration criteria in

the query language instead of using some arbitrary attribute, e.g. version numbers, to

identify a configuration component. In this project, we have developed a view model

that supports configuration management. It provides a flexible approach for complex

object configuration.

The aim of our view model is to support complex object configuration management.

The view approach offers greater flexibility than other configuration management

systems [SCIORE94]. Traditionally freezing a configuration is achieved by

converting all the generic references to an object into specific references, and

consequently is an expensive operation. A view definition can be specified such as to

achieve the effect of the frozen configuration when needed. Alternatively, view

materialization can be used to freeze a configuration.

131

Chapter 8 Evaluation

8.5 Summary

In this chapter, we have evaluated our project against existing approaches by

considering the following aspects: version model, view model and configuration

management. By considering each aspect separately while bearing in mind the aim of

the project, we have evaluated them against existing work carried out by other

researchers. By means of these comparisons, we have now demonstrated that our

project provides a novel approach for version management and configuration

management in a design environment.

132

Chapter 9 Conclusions and Future Work

Chapter 9 Conclusions and Future Work

In this the final chapter of the thesis we review the work that has been carried out,

demonstrate that the hypothesis has been proved, and discuss the areas in which the

research may continue in the future.

9.1 Conclusions

The aim of the research project was to investigate how object-oriented database could

provide efficient support for cooperative work in an engineering design environment,

with particular emphasis on the use of database views. To achieve the aim of the

research, we have investigated several areas including the role of versioning,

characteristics of design databases and database view mechanism used as part of

design database. Through the investigations, we concluded that object-oriented

database system is suitable repository for design environment and database views

allow configuration to be specified by a set of desired features. This method expresses

a higher semantic level than the alternative method of associating a configuration

number with each of the components of a configuration.

The hypothesis of the research, as stated in chapter 1, is that object-oriented database

systems provide better support for change management in a design environment than

second generation database systems, particularly through the use of database views.

133

Chapter 9 Conclusions and Future Work

Chapter 2 of this thesis presented an analysis of the needs of design environment

through examining version models and configuration management scheme. From this

analysis, the importance of flexible configuration management tool in design

environment was advanced.

A structured repository for recording all design data is at the heart of a design

environment. In chapters 2, we examined the advantages of using database systems in

a design environment and investigated how object-oriented database system could

satisfy the requirements of design environments. We showed that OODBs provide

better support for design environments than second generation databases

Design activities are intrinsically iterative in nature. In chapter 3 we established the

versioning requirements in a design context. A version model was developed to

capture the changes during the evolution of a design artefact that follow during those

iterations. The provision of workspaces and classification of version states supports

composite object evolution in a cooperative design context. We conclude that OODB

can provide flexible version control that suits the needs o f an engineering design

environment.

In chapter 4, we continued by analysing the advantage of using object-oriented views

in object database in a design environment. A taxonomy of the view model was

presented in this chapter which clearly shows that using object-oriented data model

the object-oriented views offer more to design environment than its predecessors. We

134

Chapter 9 Conclusions and Future Work

showed that object-oriented views provide a flexible and efficient framework for

organising design environments.

View models offers great flexibility in organising schema and managing data in

design environments. However, view classes are computed upon access which

imposes overhead on view access time. View materialization is seen as an

optimization technique which can improve view performance. In chapter 5, we

presented a view materialization strategy that can be applied to versioned objects in a

design database. We demonstrated that view materialization in a design environment

provides an effective configuration management scheme.

Modem design projects are complex as they often require more than one person to

work on them. To best support team work in a design environment, the supporting

database needs to be partitioned into different levels. In chapter 6 we introduced the

concept of three-level workspace into our design environment. To achieve a common

design objective, it is usually required to put work of different designers together.

This requires configuration management which will enable designers to identify

different components of an object.

To avoid the loss of information during object evolution, we developed a unified

version management scheme in the partitioned design environment. The unified

version management combines object-oriented views with our version model to

provide the designers with a consistent version management tool throughout a design

environment. The unified version management is achieved by using object-oriented

135

Chapter 9 Conclusions and Future Work

views. We demonstrated in chapter 6 that object-oriented views provide a powerful

and flexible configuration component selection scheme for configuration

management.

To demonstrate that our model is achievable with existing programming tools, we

presented a prototype of our model in chapter 7 and in chapter 8 we evaluate the

effectiveness of the model. In these two chapters we have proved that our model does

not only exist on paper but also it can be implemented in a real world scenario.

Having met these objectives we have proved the hypothesis.

9.2 Future Work

Following on from the work reported in this thesis, there is scope for continued

research in a number of directions:

Firstly, we only investigated the use of instance versioning in design environment.

Schema versioning is a potential area to support major design changes in a

development environment. As with objects, class schema evolves as well. Simply

modifying a class schema will invalidate all previous instances of the class as class

modification does not support forward compatibility. The combination of instance

versioning and schema versioning will greatly complicate version management in

design environment but it also offers better support to iterative design activities.

136

Chapter 9 Conclusions and Future Work

Secondly, the partition of workspaces could be achieved logically by using database

views. The logical partition of workspaces would give the database owner greater

flexibility in dynamically control the level of information available to each individual

and will also enable him to control the level of abstraction to different users.

Thirdly, further investigate how to react to changes in a configuration management.

During a design life cycle, not only the top level object changes. Component objects

which are referenced by a complex object also changes. The effects of these changes

need to be better understood in order to improve change management in a

configuration.

On the implementation side of the project, a more comprehensive message regime can

be implemented. The message will provide more information on which attribute has

been updated. This information would allow the VMM to decide whether the update

will affect any of the view classes based on it. Thus this will further reduce

unnecessary re-materialization. To fully assess the benefit of view materialization, a

comprehensive performance metric needs to be established. The result of the metrics

will provide an indication on what kind of change on base classes will have greater

impact on the performance of materialized views. This information will enable us to

improve the materialization strategy accordingly.

Finally, the view mechanism facilities are made available through a set of C++

libraries, which the user must link to use. Clearly there is a need to be able to define

views using declarative query languages, e.g., OQL, instead of programming

137

Chapter 9 Conclusions and Future Work

language. This will require the extension of OQL in order to support definition of

database views.

138

Appendix Bibliography

[ABITEBOUL91]

[AGRAWAL89]

[AGRAWAL94]

[AHMED91a]

[AHMED91b]

[ATKINSON89]

[BEECH88]

Appendix Bibliography

Abiteboul, Serge and Bonner, Anthony
Objects and Views.
SIGMOD Record 20, pp 238 - 247.
1991

Agrawal, Rakesh and Jagadish, H.V.
On Correctly Configuring Versioned Objects
Proceedings of the 5th International Conference on VLDB
1989

Agrawal, Rakesh and DeMichiel, Linda.G
Type Derivation Using the Projection Operation
Proceedings of International Conference on Extending
Database Technology, pp 7 -14
1994

Ahmed, Shamim; Wong, Albert; Sriram, Duyvuru; Logcher,
Robert
A Comparison of Object-Oriented Database Management
Systems for Engineering Applications
Massachusetts Institute of Technology Research Report R91-
12
1991

Ahmed, Rafi and Navathe, Shamkant B
Version Management of Composite Objects in CAD
Databases
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp 218 - 227
1991

Atkinson, Malcolm; Bancilhon, Francois DeWitt, David;
Dittrich, Klaus; Maier, David and Zdonik, Stanley
The Object-Oriented Database Manifesto
Proceedings of DOOD
1989

Beech, David and Malibud, Brom
Generalized Version Control in an Object-Oriented Database
IEEE Transactions on Knowledge and Data Engineering
pp 14-22
1988

139

Appendix Bibliography

[BERTIN092]

[BILIRIS89]

[BOTZER96]

[BRATSBERG92]

[BROWN88]

[BROWN89]

[BTSDYRTH92]

[CARNDUFF93]

Bertino,Elisa
A View Mechanism for Object-Oriented Databases.
EDBT 3rd, pp 136-151.
1992

Biliris, Alexandras
Database Support for Evolving Design Objects
Proceedings of 26th ACM/IEEE Design Automation
Conference, pp 258-263
1989

Botzer, David and Etzion, Opher
Optimization of Materialization Strategies for Derived Data
Elements
IEEE Transactions on Knowledge and Data Engineering
Vol. 8; pp. 260-272,
.1996

Bratsberg, Svein Erik
Unified Class Evolution by Object-Oriented Views.
ER 11th, pp 423-439.
1992

Brown, AW
A View Mechanism for An Integrated Project Support
Environment
Ph.D. Thesis
Computing Laboratory
University of Newcastle Upon Type
1988

Brown, AW
Object-Oriented Databases and their use within an Integrated
Project Support Environment.
University of York Technical Report YCS124
1989

Btsdyrth, Svein Erik
Unified Class Evolution by Object-Oriented Views
Proceedings of International Conference on the Entity
Relationship Approach, pp 421-439
1992

Camduff, T W and Gray, W A
Function Materialization Through Object-Versioning in
Object-Oriented Database

140

Appendix Bibliography

[CARNDUFF94]

[CATTELL97]

[CERI91]

[CHEVAL90]

[CHOU86]

[COLBY96]

[CONRADI96]

[DATE95]

BNCOD. 11, Springer_Verlag, pp 111-128.
1993

Camduff, TW
Supporting Engineering Design with Object-Oriented
Databases
Ph.D. Thesis
University of Wales College, Cardiff
1994

Cattell, R.G.G.
The Object Database Standard: ODMG - 93 Release 2.0
Morgan Kaufinann Publishers, Inc
1997

Ceri, Stefano and Widom, Jennifer
Deriving Production Rules for Incremental View Maintenance
Proceedings of 17th VLDB, pp 577-589
1991

Cheval, Jean Louis
A Version Model for Object-Oriented Databases
Proceedings of the 8th British National Conference on
Databases
1990

Chou, Hong-Tai and Kim, Won
A Unifying Framework for Version Control in a CAD
Environment
Proceedings of VLDB
1986

Colby, Latha S; Griffin, Timothy and Libkin, Leonid
Algorithms for Deferred View Maintenance
Proceedings of ACM SIGMOD, pp 469 - 480
1996

Conradi, Reidar and Bernhard Westfechtel
Version Models for Software Configuration Management
Technical Report AIB96-10
Norwegian University of Science and Technology
1996

Date, CJ
An Introduction to Database Systems (6th Edition)
Addison-Wesley
1995

141

Appendix Bibliography

[DAYAL89]

PITTRICH88]

[GUPTA93]

[GUPTA95]

[HANSON87]

[HEILER90]

[HEILER91]

[KATZ87]

Dayal, Umeshwar
Queries and Views in an Object-Oriented Data Model
Proceedings of the 2nd International Workshop on Database
Programming Languages
pp 80-102
1989

Dittrich, Klaus R and Lorie, Ramond A
Version Support for Engineering Database Systems
IEEE Transactions on Software Engineering
Vol. 14, No. 4, pp 429 - 437
1988

Gupta, Ashish; Mumick, Inderpal S and Subrahmanian, V.S.
Maintaining Views Incrementally,
SIGMOD Record; vol. 22, pp. 157-166;
1993

Gupta, Ashish; Mumick, Inderpal S and Ross, Kenneth A
Adapting Materialized Views After Redefinitions
SIGMOD Record, vol. 24; pp. 211-222;
1995

Hanson, EN
A Performance Analysis of View Materialization Strategies
SIGMOD, pp 440-453
1987

Heiler, Sandra and Zdonik, Stanley
Object Views: Extending the Vision.
IEEE International Conference on Data Engineering, pp 86-93
1990

Heiler, Peter H
Configuration Management Models in Commercial
Environments
Software Engineering Institute Technical Report
CMU/SEI-91 -TR-7
Carnegie Mellon University .
1991

Katz, RH
Managing Change in a Computer-Aided Design Database
Proceedings of VLDB, pp 455 - 462
1987

142

Appendix Bibliography

[KATZ90]

[KATZ97]

[KEMPER91]

[KEMPER94]

[KENT79]

[KIM88]

[KIM90]

[KIM95]

Katz, R. H.
Towards a Unified Framework for Version Modeling in
Engineering Databases
ACM Computing Surveys, Vol. 22, No. 4, pp 375 - 408
1990

Katz, R. H. and Chang, E
Managing Change in a Computer-Aided Design Database
Proceedings of the 13th VLDB Conference, pp 455-462
1987

Kempter, Alfon; Kilger, Christoph and Moerkotte, Guido
Function Materialization in Object Bases.
ACM SIGMOD Record
Vol. 20, Issue 2, pp 258- 267
1991

Kempter, Alfon; Kilger, Christoph and Moerkotte, Guido
Function Materialization in Object Bases: Design Realization
and Evaluation
IEEE Transaction on Knowledge and Data Engineering
vol. 6 ; no. 4; 587 - 608
1994

Kent, W
Limitations of Record-Based Information Models
ACM Transactions on Database Systems
Vol. 4 No. 1
March 1979

Kim, Hyoung Joo
Issues in Object-Oriented Database Schemas
Ph D. Thesis
University of Texas at Austin
1988

Kim, Won
Introduction to Object-Oriented Databases
The MIT Press
1990

Kim, Won and Kelley, William
On View Support in Object-Oriented Database Systems
Modem Database Systems - The Object Model,
Interoperability, and Beyond
Chapter 6, pp 108-129
ACM Press, 1995

143

Appendix Bibliography

[KUN095a]

[KUN095b]

[LIU94]

[LU95]

[MARIANI93]

[MONK92]

[MONK93]

[MOTSCHNIG96]

Kuno, H.A. and Rundensteiner, E.A.
Materialized Object-Oriented View in Multi View;
RIDE-DOM, pp. 78-85;
1995

Kuno, H.A.; Ra, Young-Gook and Rundensteiner, E.A.
The Object Slicing Technique: A Flexible Representation and
its Evaluation;
University of Michigan Technical Report,
1995

Liu, Chien-Tsai; Chrysanthis, Panos K and Chang, Shi-Kuo
Database Schema Evolution through the Specification and
Maintenance of Changes on Entities and Relationships
Proceedings of the 13th International Conference on Entity-
Relationship Approach,, pp 132-149
1994

Lu, James J; Moerkotte, Guido and Schue, Joachim and
Subrahmanian, V.S.
Efficient Maintenance of Materialized Mediated Views;
SIGMOD Record, vol. 24; pp. 340 351;
1995

Mariani, J. A.
Realizing relational style operators and views in the
Oggetto object-oriented database system.
Information and Software Technology 35 April, pp 207-216.
1993

Monk, Simon and Sommerville Ian
A Model for Versioning of Classes in Object-Oriented
Databases
Proceedings of 10th BNCOD, pp 41 - 58
1992

Monk, Simon and Sommerville, Ian
Schema Evolution in OODBs Using Class Versioning
SIGMOD Record, Vol. 22, No. 3, pp 16-22
1993

Motschnig-Pitrik, Renate
Requirements and Comparison of View Mechanisms for
Object-Oriented Databases.
Information Systems, Vol. 21
1996

144

Appendix Bibliography

[ODBERG95]

[OMG97]

[OUSSALAH93]

[PARK95]

[PIROTTE94]

[PRESSMAN94]

[RA95]

[RODDICK96]

Odberg, Erik
MultiPerspectives: Object Evolution and Schema Modification
Management for Object-Oriented Databases
Ph.D. Thesis
Norwegian Institute of Technology
1995

Object Management Group
A Discussion of the Object Management Architecture
Available from http://www.omg.org/ [Accessed August 1997]
1997

Oussalah, C; Talens G and Colinas, MF
Concepts and Methods for Version Modeling
IEEE Transactions on Knowledge and Data Engineering
pp 332 -337
1993

Park, Hyun-Ju and Suk, I
Implementation of a Version Manager on an Object-Oriented
Database Management System
Proceedings of International Conference on Object-Oriented
Information Systems
1995

Pirotte, Alain; Zimanyi, Esteban; Massart, David and
Yakusheva, Tatiana
Materialization: A Powerful and Ubiquitous Abstraction
Pattern. .
Proceedings of VLDB, pp. 630-641;
1994

Pressman, Roger S.
Software Engineering - A Practitioner’s Approach
Third Edition (European Edition)
McDraw-Hill Book Company Europe
1994

Ra, Young-Gook and Rundensteiner, Elke A
A Transparent Object-Oriented Schema Change Approach
Using View Evolution
IEEE Transactions on Knowledge and Data Engineering
Vol. 11; pp 165 -172
1995

Roddick, John F
A Survey of Schema Versioning Issues for Database Systems
Information and Software Technology

145

http://www.omg.org/

Appendix Bibliography

[SCHOLL91]

[SCIORE91]

[SCIORE94]

[STAUDT96]

[STONEBRAKER90]

[TALENS93]

[ZDONIK86]

Programming .

[ZELLER95]

Vol. 37, pp 383-393
1996

Scholl, M.H.; Laasch, C and Tresch
Updatable Views in Object-Oriented Databases.
Proceedings International Conference on Extending Database
Technology
1992

Sciore, Edward
Multidimensional Versioning for Object-Oriented Databases
Proceedings ofDOOD’91, pp 355 - 370
1991

Sciore, Edward
Versioning and Configuration Management in an Object-
Oriented Data Model
VLDB Journal, Vol. 3
1994

Staudt, Martin and Jarke, Matthia
Incremental Maintenance of External Materialized Views;
VLDB; pp. 227-238;
1996

The Committee for Advanced DBMS Function
The Third-Generation Database System Manifesto
SIGMOD RECORD, VOL. 19, pp 31-44
1990

Talens, G; Oussalah, G and Colinas, M. F.
Versions of Simple and Composite Objects
Proceedings of the 19th VLDB Conference
1993

Zdonik, Stanley B
Version Management in an Object-Oriented Database
Proceedings International Worship on Advanced
Environments, pp 405-422
1986

Zeller, Andreas
A Unified Configuration Management Model
Informatik-Bericht Nr. 95-03
Institut fur Programmierspracheh und Informations Système
Technische University Nraiscjweog
1995

146

