The Open
University

Open Research Online

The Open University's repository of research publications
and other research outputs

The Application of Object-Oriented Views to an
Engineering Environment.

Thesis

How to cite:

Shao, Zhuang (1999). The Application of Object-Oriented Views to an Engineering Environment. MPhil
thesis. The Open University.

For guidance on citations see FAQs!

(© 1999 Zhuang Shao

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

UNRESTRICIE D)

The Application of Object-Oriented Views

to an Engineering Environment
by
Zhuaﬁg Shao

M.Phil.

Computer Science

0004

~ IN PARTIAL FULFILMENT
. OF THE REQUIREMENTS

~ OF THE OPEN UNIVERSITY

School of Information Systexﬁs‘and Computing

‘University of Wales Institute, Cardiff

. 2nd September, 1999

 AWARDING BODY: =
" THE OPEN UNIVERSITY

sl \ B

- -
A

| SE—

ProQuest Number: 27727936

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 27727936

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

With the increasing popularity of objgct-oriented technology, object-oriented database
systems are being used in design environments as central repositories. In this thesis,
we investigate the role of versioning and the characteristics of design ciatabases in.
design environments. In an effort to improve the configuration managefn'ent scheme
in a-design environment, we also investigate the use‘of database views. as a possible

configuration tool.

We propose a unified version management scheme that facilitates cooperative team
work and show that the use of database views provides a powerful configuration

management scheme for a design environment.

ACKNOWLEDGMENTS

Many people have influenced the work reported in this thesis, and it is my pleasure

and privilege to acknowledge their contributions.
Firstly, I am indebted to my supervisors Tom Carnduff, David Ball and Alex Gray,
who have helped to form many of the ideas reported in this thesis, and encouraged me

throughout their development.

My love and special thanks are due to Xi for her total support throughout the course of

this work. Without her encouragement this thesis would never have happened.

ii

Table of Contents

ABSTRACT i
ACKNOWLEDGMENTS ii
TABLE OF CONTENTS jii
TABLE OF FIGURES v
TABLE OF TABLES vi
TABLE OF LISTS ’ vi
CHAPTER 1 INTRODUCTION ' 1
1.1 THESIS AIMS AND OBJECTIVES ..vvvvsssvvveresevssssssssssssssssssssssssssssssssssssssseessssssessssssessssssessssssssssssses 2
1.2 STRUCTURE OF THE THESISooouiiiteeeeeeceeeeeeeeeeee e eeaee e eeee e e s em e e e e e e e e e eens 4
CHAPTER 2 INTEGRATED DESIGN ENVIRONMENT 6
2.1. ADVANTAGES OF USING A DATABASEcccciceeeeeeeteereereerrenseseesssessesssesssessesssessasessessesssassnseerssessasen 8
2.2. CHARACTERISTICS OF A DATA IN DESIGN ENVIRONMENTcccestesteisienersmransesasntssesassnesesseesessessenseses 9
2.3. OBJECTS AND DATABASES.coeeieeeecireceeecieeeeecneeseesnessesssesessssessesssessesassessesssasssessnesssossaesnesssens 13
2.3.1. Object and ObJect IAENLitycccocureeerereceerereeiererersteresessese st sttt e see st e s e an b nes 15
2.3.2. Encapsulation and MEtROGS.......................cccccccueemiennsceiensensisieiesiesesiesieieneeseessssess e sbesssssenes 15
2.3.3. Class Hierarchy and INREPItANCe.................c...cccoiveinesereenininienteesie ettt sae e 15
2.3.4. COMPOSItE OBJECL..........c.ooueeeeeiiiieieetee ettt ettt st ae s abanens 17
2.4. THE DESIGN ENVIRONMENT AND DATABASEScccveeiereiireesiereseesseesseesssessessessesssesssssssesssassssssssen 18
2.5. SUMMARYcccooiiriiieririiereteeesessnteseeeeseeessessee s seessssrseesaessesessessessssesssessesssssssesssesssessssssontesssessnsesnsan 22
CHAPTER 3 THE VERSIONING MECHANISM 24
3.1. INTRODUCTION.......coorurereeraesseessessasssmenasesssesasesssesasssssessserasesssssssassssesssssussssesssessssnsenssessseessersseesnsensen 24
3.2. THE CHANGING WORLDceceererrenmmermsnrassssatenccenssrsessssesessssassasassssassssasesssssssssssssasenssssassansesesessnns 25
3.2.1. DAtabase SCHEMA..................cooeeceeceeeeieeerieieiieiereetreiet st e e te et et s s essesane e st e sesesesessansenen 26
3.2.2. DAtADASE OBJECESecoeeeeneeneneeeteieecrseesresese sttt et st et et s s snsasessense e sassesaseenes 27
3.4. CONFIGURATION MANAGEMENTcccomriiiiiciiiininesetsts et sesse st sest st s sensssesssansseesesessesesessansasssansnsens 34
3.5. REVIEW OF VERSION MODELSccccceectiiiieiieeeeeatesseesesnesssesssssessressseensesesens et e 36
3.5.1 ZAONUKooveveeerereieerssiete ettt bbbt b et bbb e et be st eteaas 37
3.5.2. CROU GRA KIM ...ttt st st b bt aessan s sae st e saesrsersasbeentas 39
353 AGPAWAL. ...ttt ettt ba st 40
354 ARMEd ...ttt sttt sttt et s anr et et et sanbebat et esstans 42
3.5.5. SCIOTE ...ttt ettt st stttk et a et et e eaent et e banen 43
3.5.6. Summary of Version Modelscccoenreseceieesieeiesieesietesesssssessssisessesesesnsnsenns 45
3.6. OUR VERSION MODELcc.ceiiieiieitienerateaseestesseesssssasessessessassesssessassssssessasssemessessssssssessesssnsessesssernsnes 46
3.6.1. The Versioning Data Modei.......................ocoeomnrereriesieieissieieisessssssssssassssssssssesessesesans 46
3.6.2. States of Versions Qnd WOPKSDACEScovurevrereinrersereesiceniresnecesseiesensssesssessassssnanns 48
3.6.3. Change Notification and Propagation....................ccecocvvrvernrnnn. bbb 52
3.7. SUMMARYooiirirrereriersnnsessssossssenessesestasensasentes e ssaessssssssasessssesssaseressessasesesesessssessssnsessresasnsssensases 54
CHAPTER 4 DATABASE VIEWS AND OQL 56
4.1 INTRODUCTIONc.eccreermsrereereeseasaessaranssessasssesstsssesssesessnssssssestsssessessasssassensensensassensesssessssassssntassssssenss 56
4.2 TAXONOMY OF OBJECT-ORIENTED VIEWScecuerienrerreereriaessessessessassassassssssesssssesssssessnsssersessessssssens 62
4.2.1. Definition Of TEIMS:ccouuuieeereatriceieseaceteisisssesststesssssessasasasassessssssssesasssssssssasesensasesnasansas 62
4.2.2 VieW TAXONOMYo.ooeeereerrrieaeraeeeereesensessessssesesstssnssessesassansasessansessssansasassensesersssessensessensones 63
4.2.3. Semantics of View UpPdate..................ccoouoeeorreereeevrereeeseeiesesssessssssssesssenseseeesssssssssssesseans 67

iii

4.3 ODMG OBJECT QUERY LANGUAGE (OQL).....ccorenrrecercreinnnincntincsissisnsssessesiescsessssessssesssmsnsannnes 70

4.4 A MODEL OF A VIEW MECHANISM..........ccccioittteeeierereesanteeeessssssssessssssssssasaresssssessessesssnssnnsessassssrasasscs 72
4.4.1. The aims of the MOdel...................cccoooioiiceiniireecciccsnts ettt st sasrsse s 72
4.4.2. The View Model ..ottt ettt 73

4.5, SUMMARYcooviririieriiirereriirresesaeaeessssteeesaesaessssaasesssssstessassesessstssssstsssessssssssinssssessssnesssssssanesssssnessissss 76

CHAPTER 5 MATERIALIZATION OF THE OBJECT-ORIENTED VIEW 77

5.1 INTRODUCTIONuuierrrmunrnnereeeennnensaesasssonsnsssaseesssanssssssessnsssssssssssssssssasssssssssssassssesstassssssssnsstasssssssaranes 17

5.2 OBIECT-ORIENTED VIEW MATERIALIZATIONcccieiiiiirernieieisnssiscneeesssnssessossssnnssssnessssssansssssanses 79

5.3 OBJECT IDENTITY AND VIEW MATERIALIZATIONocecmrueieresninisiisiesissssneressesssssssssssensosesassssssressan 81
5.3.1 Taxonomy of Base Class Update Operations....................iiiminns 82
35.3.2 The View Maintenance Managercccoevuvivimineineerineeisiserssnesesssssssessens 85

5.4 - SUMMARY ...ccoovevnrerernraessenssnsnsstsessssctosestssssssesssnsetsmsssamessssssessssssiosssesssassssbass i ssssssesinsssssssssenssssesanas 88

CHAPTER 6 VIEWS IN INTEGRATED DESIGN ENVIRONMENT 90

6.1 INTRODUCGTIONcveeeeeerrnreeneseraneimsensesssssasesssssassesassessasassesssassesssssesessssessssssssssessssssssssssssesssssssesssnnnes 90

6.2 OBIJECT VERSIONS AND WORKSPACES......cccirioiriraeretaaraeessnsstssssssssssssssssssosssissssssssssssssssessssnsesssssanne 91
6.2.1 Partition of Design Database.........................ccoemeemmmineensisssisssisissssssssassssssisssssanssnsssssaens 92

6.3 UNIFIED VERSION MANAGEMENTcccoiiriiiaaetieieeeeetaenneesssastssssssessssssssssssaseesenssssnsssssnnesssssasessssssans 93
6.3] Version NAMEScccccouiviuiiiiiiii et b S R R R SRR R 97
6.3.2 Object Version Migrationcccoeevmeeneeeneeeieecccetnesssssseasessssssssssssssssasssssssssnens 98

6.4 CONFIGURATION MANAGEMENTccontimmimeimiiicccecstetitss st e ssssst s st sbsnes s sasaasasasesasssssassnsssssssnsns 99
6.4.1 Views in Configuration MAnagement.........................iiiiinniniiseesessssenes 100
6.4.2 ldentifying Object COMPONENLS...............oocconeeiiicuiniciiiiiiniininicsisstssisess st re st ens 102

6.5 SUMMARYcuvvvriererernrensiessssesesesessnsssssssssosesssstssestsesssssessstssssssessassesesenerereseadsnenessesssssssesssesessssssssens 104

CHAPTER 7 PROTOTYPE DESIGN AND IMPLEMENTATION 106

7.1 INTRODUCTIONvvrenrmnrereneennnes ettt bt tae e A AR bR bR bbbttt en 106

7.2 THE VERSION MODEL......cevueteiuueiininrersneissssesessnesesssnsenesasnnsssssssmsesssessssesssssssesssssssssssionesenssssssossssssse 107

7.3 THE VIEW MODELcuuutiiueiecnreroeinisneseseissseesesesessnesssesssseessssessssasssesesssstessessssesssssssesssnssssnessssnssnes 111
7.3.1. Example of View Definitioncccouvemccirccnciiniiiniiinisisiiiisis s 112

7.4 VIEW MAINTENANCE MANAGERcutiiiiiiiieeitereecnresseneesseses e s sresesansnessnesaesssssssisssse sessssessassessons 121
7.4.1 Implementation of the View Maintenance Manager (VMM)............cccoovvvviiiiinninininnnee. 123

T.5 SUMMARY ...cooteirnierrirrrierassssnnnsnreeeiamassssnsesesessarasssseeraessssssmnsasesaessmmsreseseeseammssassssssssssssessssisssasssessans 124

CHAPTER 8 EVALUATION ‘ 125

8.1 INTRODUCGTIONcooveeeereeeererenernsnmmeeesaassasessseesssassssasmeresersasssstosssesssssssnsesanns 125

8.2 OBJECT VIEW MODEL DEVELOPMENTccciivttttiiiaeteiecnreeaaeesssansseassenssssssessesesessssssssssssesssssassssssns 125

8.3 VERSION MANAGEMENT AND DESIGN ENVIRONMENTcocoosiuniiiissinesmsmsmsinssssssinssssassrsssssessnses 128
8.3.1 Version Managementcccccoceicniininiiseniininisnsisiinseseseissessaesenas e 128
8.3.2. DeSign ENVIFORMENL...............ooveuneeeeneerereeneareeeneaseastasesssesssssssssissassasassesisssennns e 130

8.4 CONFIGURATION MANAGEMENTucuiiiiiieeceeeecereeneeerestessesesssssssasssssssssessssssssssasssessssssssssnnnnesens 131 -

8.5 SUMMARYccccovmminrimmnriiisnsnscnesenins ettt ettt ettt asasaie 132

CHAPTER 9 CONCLUSIONS AND FUTURE WORK 133

9.1 CONCLUSIONS.....ceooeeoeverevevevsmerereesessessssesssessssssssssssssesessessessssssssssssssssssssssssees e 133

0.2 FUTURE WORKcciereruereneerensereisseseiasenmsseseseasssesessssessssserssesssssssssesssenssmststasessssessestssestsssassonessoncns 136

APPENDIX BIBLIOGRAPHY 139

Table of Figures

FIGURE 2.1 EXAMPLE OF CLASS HIERARCHYcoueuirerremeieeeienitiesesenesneseseeseseensssmessenesessesssnssesesessessons 16
FIGURE 2.2 EXAMPLE OF COMPLEX OBIECT.......coeessre v e serssrsssessesssesseessesesessee s e 17
FIGURE 2.3 SYSTEM ARCHITECTURE IN DESIGN ENVIRONMENTc.cccomssvversssnnnssssssssssssssessssessss e 19
FIGURE 2.4 HIERARCHY OF DATABASES IN A DESIGN ENVIRONMENT.............c..vvueeereeresensenenasssensannes 20
FIGURE 3. 1 VERSION EVOLUTION PATTERNS ..o eeses e sesses e 30
FIGURE 3. 2 HIERARCHY OF WORKSPACES & DISTRIBUTION OF VERSIONS......1-ersrrseessereseersersseren 32
FIGURE 3. 3 SLICES.....0v00rvvvvsveeeeeeeeeeeeeeeessseseeeseresessessseeses s sessnss S 38
FIGURE 3. 4 TRANSITION OF VERSION STATES worrrseeeereeeeeeee e eseere e oo 43
FIGURE 3. 5 VERSION MOVEMENT BETWEEN WORKSPACES........c0oc0ovvsseresssssssssssssssssssssssssnssssnees e 50
FIGURE 3. 6 EXAMPLE OF A COMPOSITE OBJECT CONFIGURATION HIERARCHY..........covorvonrerennrennnns .53
FIGURE 4. 1 TAXONOMY OF OODB VIEWS w....coooocrverssnmnenssssssesessssssssss s ssssssss s sssesssesseses e 63
FIGURE 4. 2 VIEW MODEL DEFINITIONrsco. SO ”
FIGURE 4. 3 RELATIONSHIPS BETWEEN THE VIEW OBJECT AND ITS BASE OBJECTS e 75
FIGURE 5. 1 STRUCTURE OF VMM....oo. oo eee s s e sesess e eesesess s sese s es s snsesess 87
FIGURE 6. 1 MAIN VERSION GRAPH IN PUBLIC WORKSPACE................. e 94
FIGURE 6. 2 VERSION GRAPH IN PRIVATE WORKSPACE ... ettt 95
FIGURE 6. 3 VERSION GRAPH IN PROJECT WORKSPACEov.ooooeeoeeerernnnnnnnnnes eeeeeeeeeeeeeennenen S 95
FIGURE 6. 4 VERSION GRAPH IN PUBLIC WORKSPACE ettt ettt et n et n s 96
FIGURE 6. 5 OBJECT REFERENCES DURING OBJECT MIGRATIONoonevereeeneeseeneeenscenee ettt99
FIGURE 7.1 CLASS RELATIONSHIPS FOR VERSION MODELivusussranssnsssssssssesssnssssesssesssssssssanssnns 108
FIGURE 7. 2 CAR OBJECT AND ITS VIEW ELEC_CAR.......... e 114
FIGURE 7. 3 THE JOIN OF ENGINE OBJECT AND GEARBOX OBJECToorvveerneresssssnsnsssnsssnssannsens 116
FIGURE 7. 4 EXAMPLE OF EXTENDED VIEWoooouoisieestesesienssnsses s sesssasssssssssssssssasssssssssssssssssssssens 118

" Table of Tables

TABLE 4. 1 COMPARISON OF DIFFERENT VIEW MODELS ereeereteeatebereneetereareseatenete st ennatneas 61

LIST 7.
LIST 7.
LIST 7.
LIST 7.
LIST 7.
LIST 7.
LIST 7.
LisT7.
LisT7.
LIST 7.

Table of Lists

1 CLASS FOR GENERIC OBJECTS............., . e e 109
2 CLASS FOR DESCRIPTOR OBJECTS ... esseeser e sees s sresee e e 110
3 CLASS VERSIONABLE OBIECTS..........corrrrervevvvssaensesssssssssnsnesesssssssssssssssessssnsanns S 110
4 OBJECT-PRESERVING VIEW IN SELECT VIEW............ccommmmrrvrvvvesmseernesssssssnen e 113
5 OBJECT-GENERATING VIEW IN PROJECTION VIEW........corereeeeeeeeeessssenesssssenessssseesssssssnnsssnes 115
6 QUERY DEFINITION FOR JOIN VIEW POWER_PLANT .o esesseseessrses e sresssesess 117
7 EXAMPLE OF EXTENDED VIEW ..o e e 119
8 EXAMPLE OF UNloﬁ VIEW........... eteteteaeset ettt a et et E e ettt R bk eb e s e et e e esene s 120
9 UNION VIEW IN OQL......oovmivmnriinsniiisssissssssssssessssssssesssssssssssssssessss s siss et s sssssssssssssssesens 121
10 VIEW MAINTENANCE CLASSoovvessrssecereeeversssssssmeseeeeeeeeessse e oot 122

- Vi

Chapter 1 Introduction

Chapter 1 Introduction

The development of a broduct is seen as the manipulation of a sét of complex objects.
To support complex design activities in modern society, a database is often used as
central repository to store ail the information. Object-oriented databases ‘(OODB) .
more naturally reflect the behavior and orgénization of complex. application domains
‘and therefore are ideal candidates for a design database. With the increasing
popularity of object-ori.ented database s.ystem, object-orien_ted views have attracteﬁ a
.lot of attention from the détébase research 90mmunity. Yiews have been recognised as

a way of virtually restructuring and customizing objects both in format and behaviour.

Object-Oriented datat;as;:s. are widely used in-CAD/CAM/CASE. These applications
require their databases to providé following capabilities[KATZ87]:

e Definition and manipulation of complex’obj.ect,

e Management of varia:_ﬁs and revisions of both the design artifaét and its

components.

One of the problems in a design process is that there are so many different ideas about
how a product should be designed. Iﬁ an uncontrolled environment, this leads to
incompatibility and inconsistencies. A versioning facﬂity in a database is there to
support the tentative aﬁd iterative nature of design activities where designers are
encouraged to experiment with different vﬁmts anq revisions of a design

[SCIORE91].

Chapter 1 Introduction

Configuration management is a form of organization that provides stability to the
production of complex objects by C(:.mtrolling the object evolution, i.e., continued and
concurrent changes. Configuration management provides a stable working
environment for changing the design objects, supports the assembly of a complex

design artefact from its components, and coordinates concurrent changes [FEILER91].

Cohﬁguraﬁon management ensures the consistency of and compatibility between
component objects 'ot; a complex design object.. A configuration can be genérated by
selecti_ng component objects tﬁat satisfy some selection criteria such as configurations
that incorporate spe;:iﬁed featureé, or check'whether. a user-specified configuration is

correct [AGRAWALS9].

In this thesis, we describe a conﬁguratioh management mechanism in a design
environment, which puts emphasis on the semantic relatidnship between the
components and the cofnplex object. The configuration management mecharﬁsm is
based on the assumption that a component object has to meet certain design criteria
' before it can Bc integrated i;lto a complex object’s configuration. A configuration
may be treated as a versioned object. The conﬁguration. management framework
incorporates object-oriented views to providt;. an expressive and flexible scheme for

defining configuration criteria..

1.1 Thesis Aims and Objectives

Chapter 1 Introduction

The aim of the research project was to investigate how an object-oriented database
could provide efficient support for cooperative work in an engineering design
environment with particular emphasis on the use of database views to support design

activities.

"~ To achieve the aim we will:

e Investigate the role of versioning and how it can be used to support design

activities in a design environment.

. _Analysé the éharacteristics of a design database when used as the central repository

of a design environment.

o Investigate the need for, and characteristic of a database view mechanism as an

integral ‘component of a design environment.
The hypothesis of this research is that object-oriented database systems provide better
support for change management in a design environment than second generation
" database systems, particularly through the use of database views.

Within this thesis we will prove the hypothesis by demonstrating that:

1. Object-Oriented Databases provide better support for design environments than

second generation databases.

Chapter 1 Introduction

2. Object-Oriented databases are able to provide a flexible version control that suits

the needs of an engineering design environment.

3. Object-Oriented views provide a flexible and efficient framework for organising a

design environment. -
4. View materialization provides an effective configuration management scheme.

5. Object-Oriented views provide a powerful and flexible configuration component

selection scheme for configuration management.

1.2 Structure of the Thesis

The thesis is organised as follows: .

Following the short introduction given in this chapter, chapter 2 looks in detail a‘i the
requirements and characteristics of a database supporting a design environment,
showing how it can be used to effectively support team work in a constantly changing

environment.

Chépter 3 describes the concept of versioning and what is required to capture the
changes in a constantly changing world. The semantics of versioning and the need for

configuration management are discussed. Versioned complex objects need

Chapter 1 Introduction

configuration management to control changes in their components. Various
configuration management approaches are discussed in this chapter and the advantage

and disadvantage of each approach is compared.

Chapter 4 introduces the notion of views in an object-oriented database and a
taxonomy of object-oriented views is presented. The ODMG standard query language
OQL is introduced in this chapter since OQL is used to define views later in this

thesis.

Chapter 5 describes an object view materialization strategy capable of supporting
versions of design artefacts in different workspaces. In the context of this strategy,

some of the problems associated with views, such as view updates, are discussed.

Chapter 6 presents the use of object-oriented views in a design environment in order
to provide a unified version managefnent scheme and goes on to show how to use the .
view in configuration management. In particular, the means of using views to identify
component objects are described together- with the underlying structures which

support these operations.

Chapter 7 presents the prototype of our proposed model for a design environment.

Chapter 8 evaluates the effectiveness of the proposed model.

Chapter 9 reviews the aim of the thesis, and discusses possible further developments

of the work reported here.

Chapter 2 Integrated Design Environment

CHAPTER 2 Integrated Design Environment .

A large engineering design project typically involves a team of designers working .
cooperatively on distributed workstations in order to complete a composite design
task. These designers usually interact dynamically, sharing ideas; design data and
general information with each other. The key element in providing 'efﬁcienf support
within such a develop'x.nent environment is integration as it is essential for desiéners to
commuhicate their ideas efficiently to coordinate their design efforts. To facilitate
collaborative development, it is essential that ihp integfated desigp environment

supports the following features [PRESSMAN94, AHMED91a]:

e Composite information modelling capabilities. Engineering data is composite in
structurc because-of the c;)mplexity of the domain that is being modelled. Desién
entities may be interrelated to e.a'ch other, e-.g., a design artefact consists of various
components where thesev components themselves may have components of lower

‘complexity.

e Able to capture rich semantic information in design entities. Because of inherited
complexity in engineering data, database schemes must reflect the design
semantics and hierarchy. It is important that the database can capture composite

inter-object relationships and dependencies in the data model.

Chapter 2 Integrated Design Environment

e Provide constraint management. Due to the inter-object relationship and
dependencies in the engineering data, consistency of data in the database must be
maintained by enforcing design constraints and integrity constraints during the

development process.

o Suppbrt information sharing. One of the key issues in collaborative engineering is
the sharing of design data between teams of designers. It should-be possible to
partition or group data based on criteria, such as ownership, use and purpose of

creation, or any other meaningful purpose.

e Provision of version con&ol. Engineering design is an incremental process and
evolves with time. A versioning facility 4would provide a mechanism for capturing
the evolution history of a part.icularl design oxller its development process. If aﬁy
version were found to be faulty at any stage, it should be:possible to “rollback” the
deéign to a valid state. Versioning also prombtés concurrency as designers may
work concurrently on different versions pf the samé object instead of waiting for

_each other to release the resource.

e Enable changes to one iterh to be tracked to other related items. Composite inter-
object relationships in éngineering datr;.t mean tﬁat changes to one design might
affect other objects. The capability will ensure that all the related objects can be
identified and hotiﬁed about the changes and consequently the changes wouid not

invalidate the whole design.

Chapter 2 Integrated Design Environment

Many of these are the features that are normally found in Database Management
Systems (DBMS). Therefore, database management systems are often used as data
repositories in design environments. The use of databases in design environments is
based on the need to manage a wide range of design information efficiently, and
effectively. In the. following section, we will discuss the advantages of using

databases in design environments.

2.1. Advantages of using a database

Using databases in design environments has the benefit that it provides centralised -
control over all aata in the environment. For engineering design applications, the data
will include all the information geqeratéd duriné the development life cycle, in
particular, design requirements, speciﬁcationé, implementation, integration, testing
and error reports. In additioﬁ to data concerning the design arte;fact,'details of the
“projciect development process itself is stored-in the dataBase, such as which designer is

responsible for a particular design and how these designs are interrelated.

One of the consequences 'of central control of data is that we can greatly reduce
. redundancy in data storage. Reducing redundancy is a great help in removing
" inconsistencies in the ‘data. When a change is made to a component, all larger
‘components that have'been using this object must be notified and appropriate actions
have to be taken to respond to the change. This property of change control is _much
easier in a centrally controlled environment, especially using a database that not only

stores the data items themselves, but also the relationships between them.

Chapter 2 Integrated Design Environment

One of the problems in the design environment is that there are so many different
ideas about how to achieve a design objective. In an uncontrolled énvironment, data
using different design approaches can lead to incompatibility and inconsistencies
between the data. This situation can be avoided by central control of all the
development data. Central control is an important method of enforcing a set of
development standards, broviding a single point at which all design data entering the

database can be validated before it is stored.

+ Database systems must ensure integrity of all data stored. There are two aspects to
integrity. The first is that access to data can be monitored, éo that each user is
presented with an .individual subset of the completed data, by using a view
mechanism. This allows the user to get on- with his/her work without distraction from
ineleyant data, and provides a mechanism for restricting access to privileged

- information.

The second aspect is to ensure that the data recorded is accurate and conforms to
constraints the designers may wish to impose on it. This is partly covered by reducing
| redundancy, but additional data validation is possible by defining a central set of

integrity constraints, which may be applied to data before entry to the database.

2.2. Characteristics of a Data in Design Environment

Chapter 2 Integrated Design Environment

The engineering design process is highly data intensive, and it involves composite
data representations to model ‘the structure and behaviour of complicated entities.
Engineering information is not only complex in structure but also in terms of
relationships between data. For example, a complex design object, (also known as -
aggregate object), may contain several components and these components may in turn
have their own components. These components form part-of relaﬁoﬁsﬁps with the’
aggregate object. Therefore, .it is important to coﬂ&ol the relationships between these

objects in order to meet design constraints or requirements.

A design process is both tentative and iterative. This has a profbund effect on the
grthh of a design database, since it is ﬁecessary to i(eep a record of all amendments
to a design object as a new version of that object. The database should be able to get

the appropriate object and the right version for each request of a design item. When
changes are to be made to a design object, the designer should be able to assess and
identify the effect these changes may have on other related objects. This helps
prevent unexpected side effects that would otherwise' cause defects and

inconsistencies in a design.

The transaction is considered to be a unit of database consiétency and concurrency. A
| typical transaction in a traditional database application is of short duration.
Serializability is enforced for concurrenf transactions in order to maintain database
consistency. In collaborgtive defsign environments, the notion of a transaction is very

different from its traditional sense, and has the .following characteristics [BROWNS89]:

10

Chapter 2 Integrated Design Environment

e Conversational, requiring frequent interaction with the system before completion.

e Long-lived transactions which may leave the database in an inconsistent state for

long periods of time. Cannot be conveniently used as locking units.

e May use many records, as the objects accessed may be complex and highly inter-

related.

e The concept of atomic transactions is not very applicable, because rolling back a

long transaction in this environment may turn out to be impractical.

In a multiple-user environment, some forms of concurrency control must be provided -
to prevent interference. In traditional databases, concurrency control ensures that only
one usef can update a particular object at any time. However, in an engineering
design environment transactions are normglly of long duration, refusing other user's
access to a lécked record for a long time is unacceptable. A .more flexible locking
mechanism is needed to allow greater concurrency, so that transactions dp not have to

wait indefinitely for each other to complete.

Relational database systems and their predecessors are designed for business
applications, to store such information as persénal details ;)r bank records. These
database systems are highly efficient in these application areas, but are not necessarily
suitable for other application areas whpse chmacteﬁsﬁcs differ greatly from business
applications. The relational databasé is good at handling data that is confined to a

small number of different types of data related in well-defined ways. For design

11

Chapter 2 Integrated Design Environment

applications, such as CAD/CAM, the relational data model has many limitations

[KENT79, KIM90]:

o Relational data models are severely restricted in their modelling power. The
relational model is not complex enough to capture nested entities. The relational
data model does not support some of the commonly useful semantic concepts, such

. as generalization and aggregation relationships.

e Relational data models assume horizontal homogeneity. This means that each

record of a certain record type is assumed to be composed of the exact same fields.

° Relational database systems assume vertical homogeneity, i.e., each field should be

from the same domain in all the records.

e Only a fixed set of operations are allowed on atomic data values, such as arithmetic
and comparison operations. It is not possible to add new operations and make

those operations appéar syntactically similar to built-in operations.

e Meta-information is generally not accessible. This results in a progi'ain text that
includes hard coded data based on prior knowledge of the schema, making

alterations to both the schema and the program difficult to manage.

12

Chapter 2 Integrated Design Environment

e Dynamic objects such as sets have to be implemented using several records and

join operations, causing inefficiency.

e Transaction time for design objects (e.g., data from CAD) is often long, spanning
- several hours or days, and not uncommonly, weeks or even months. This is in
strong contrast to business data processing transactions, which are assumed to be -
short live&. Concurrency control primitives and protocols (such as two-phase
locking) supported by relational databases are nof particularly suitable for long-

-lived transactions.

e The performance of a relational database system is not satisfactory for

computationally intensive applications.

Recognizing the inadequacies of relational databases, | the database research
communi& has Been trying to extend database systems with enhénced éémaﬂtic data
modelling concepts. These research efforts. have led to the development of Object-
Oriented ,Databases which offer better modelling semantics for complex data

structures such as those found in design environments.

2.3. Objects and Databases

The best candidate system upon which to base an integrated design environment is

one that supports rich modelling semantics and exhibits features required by design

13

Chapter 2 Integrated Design Environment

environments. Object-oriented databases are different from previous generations of
databases in that they offer greater flexibility in new type definition and data
abstraction. As well as having all the features found to be useful in relational
databases [STONEBRAKER90, ATKINSONS89] object-oriented databases should

also offer features that are highly desirable in design environments. |

Fundamental to the object-oriented data model is its ability to extend the class
hierarchy with new classes. In object-oriented database systems, data types are
represented as classes within a class hierarchy and can be extended casily.
Extensibility is a very powerful mechanism for building and evolving large an&
complex design artefacts. Inﬂeritance is the one of key features. that supports

extensibility in object-oriented database systems.

Apart from the purely structural data model found in previous generations of
databases, the object-oriénted data model embodies a more behavioural model, -
combining representati.on and manipulation of data within the same ‘model. Each_
class of objects has a set of well-defined methods. Object states can only be modified
through desigﬁated methods of the object. This is guaranteed by a mechanism called
data encapsulation. Enéapsulation pot only protects data from unauthorised or

unintended modification but also minimises the impact of changes in implementation.

Although there is no formal definition for the object-oriented data model, the object-
oriented community has agreed that the object-oriented data models should possess

certain features, as follows.

14

Chapter 2 Integrated Design Environment

2.3.1. Object and Object Identity

The object is the basic unit of an object-oriented database. Everything is modelled as
an object in an obj.ect-oriented database. An object has a number of data.properties,
known as éttributes, associated with it which represent the current‘ state of the object.
They can be manipulated through a set of well-defined functions of the object. Each
objectl is identified by a @que object identifier. In object-oriented databases, this
object identifier is system génerated and is associated with the object throughout its
life time. Unlike the relational data model, the object identifier frees the user from tile
need to define unique keys for objects and it allows equal objects (objects that have

the same attribute values) to coexist.

2.3.2. Encapsulation and Methods

Objects are manipulated by methods that are deﬁ‘ned.on their -classes. Data in an
object can only be accessed through these well-defined methods. These methods are
invoked by messages sent to the- object with which they associate. ~ The

implementation of these methods may change without invalidating their use.

2.3.3. Class Hierarchy and Inheritance

In the object-oriented data mddel, objects are organized' in taxonomies through
inheritance. In such a model, specialized objects inherit the attributes and methods of

more generalized ones., The inherited methods can be modified in the subclass. This

15

Chapter 2 Integrated Design Environment

is known as overriding. This feature enables the reuse and incremental redefinition of
a new class structure in terms of existing ones. Similar classes of objects sharing
common attributes and methods can be modelled by specifying a superclass, and then

deriving specialized classes (subclasses) from the superclass.

A class may have any number of subclasses. However, some object-oriented systems
allow a subclass to have 6n1y one sup;:rclass, i.e., single inheritance, while others -
allow a subclass to have more than one superclass, i.e., mulﬁple inheritance. The
class hierarchy captures the generalization/specialization relationships between ‘a class

and its subclasses. Figure 2.1 shows example of a class hierarchy.

Employee

Software
Engineer

Consultant Software
Engineer

Figure 2.1 Example of Class Hierarchy

16

Chapter 2 Integrated Design Environment

2.3.4. Composite Object

A composite object is a heterogeneous set of objects which form a part hierarchy. The
part-of relationship is superimposed on the aggrégation relationship between an object
and thé other obj ecfs it references [KIM90]. The attributes of a composite dbject may
be objects themselves. The value of the attribute is a reference to an object An object

may have a number of references to other objects.

In composite objects, the referenced object can be seen as a componelit of the object.
Fpr_éxample, a Car object has the components Engine and BodyWork. The Engine
object itself has a component GearBox. The structure of the composite object Car is

illustrated in Figure 2.2.

BodyWork

GearBox

Figure 2.2 Example of Complex Object

17

Chapter 2 Integrated Design Environment

From the above discussion, we can see that the object-oriented database system is a
more suitable data repository in design environments [KIM90, AHMED91a] than
previous generations of databases. In this thesis, an object-oriented database is used
as a supporting data repository for a design environment. We will investigate how
object-oriented databases can provide more efficient support in an engineering design

environment.

2.4. The Desfgn Environment and Databases

Centrél to an integrated design environment is its database mém';agement system. The
database management system, often referred to as an Object Management System
(OMS) in design applications, is used as thé central integrating componént of a design
environment. The object management system handles all the information generated
during the design development life c'.ycle. Having a central database facilitates
information sharing and can ensure data entered iﬁto the database can be validated to

meet the design requirements or other integrity constraints.

To conquer composite design problems, people often decompose them into several
smaller problems or modules which are easier to comprehend and manage. A module
should be small enough for the developers to’ comprehend its functionality and it
should be big enough to function independently. Modularity makes it possible for
changes in one module not to affect other modulés as long as the module interface

remains the same.

18

Chapter 2 Integrated Design Environment

In a design environment, designers work on their own workstations individually on a
problem. However, communications between these designers are vital. A central
database is provided to facilitate teamwork and information exchange. Project
information and design data are all stored in the database. A system structure of such

a design environment is illustrated in figure 2.3.

1 Local Are* Networrk "

Database
Server

Figure 2.3 System Architecture in Design Environment

Generally, large design problems are not decomposed to a size that is suitable for one
designer to work on. Rather it is firstly decomposed into smaller modules according
to their functionality. These smaller modules are often organised as sub-projects
within a big design project. Designers are assigned design problems within each sub-
project. The solution to the original design problem occurs when the individual

solutions to all the modules are put together.

19

Chapter 2 Integrated Design Environment

To support such a project organization, the database server in figure >2.'3 is actually
composed of a hierarchy of databases [CHOUS86]. These include a public database, - |
project databases and private databases. This hierarchy of databases corresponds to
the decomposition of the design problem. Figure 2.4 depicts the organization of the

database hierarchy in a design environment.

Thé public databasé contains all the informaﬁon about the whole projeét and also all
. the designs that are released from the project databases and ready to be integrated with
other modules. The public database can be accessed by everyone working on the
project. Before any design data is put into the public database, it must go through a
validating proéess to c;,nsure that. it meets all the design requireme.nt- or iﬂtegﬁty
constraints of | the project. All the design information in the public database is

considered to be stable. The information can neither be deleted nor modified.

Public Database

‘Project_2
Database

Project_1

Database

Private Private ’ Private Private Private
Database Database Database Database Database

Figure 2.4 Hierarchy of Databases in a Design Environment

20

Chapter 2 Integrated Design Environment

The project databases provide support for module development. They cqntain
information about the modules and designs from individual designers that are ready to
be used within the project database. Before the data is .checked into the project
database, it must be validated against the module design requirements and any other
integrity constraints, e.g., other design objects referenced by the checked-in design
object should also be put into the design database. Only peoplé working on the same
module are allowed access to the project database. Data in the project database cannot

be modified but it may be deleted by the database administrator.

At the l(;west levél of the hi;erarchy are private databases. G.ener.glly private databases
reside on the individual designers’ workstations. This is where the designefs perform
much of their development work. The pﬁvate databases can only be accessed by the
designers who own it. The data in the private database is considered to be unstable. It

- may be deleted or updated by their owner at any time.

" This organization of databases in the design environment suits the needs of different
development stages. In the initial stage, design data is subject to frequent changes as
designers experiment with different design ideas in their private databases. Because it

is unstable, this data cannot be shared with other designers on the team.

When the design matures, the data is checked into the project database where it can be
shared with other designers on the team. This data in the project database cannot be

modified. If a designer wants to modify a design in the project database, he/she will

21

Chapter 2 Integrated Design Environment

have to check out the design into his/her own private database and make the necessary
changes. The modified design is then checked back into the project database as a new
version. Versioning will be discussed in detail in chapter 3. When a module design

matures, it can be then checked into the public database.

The check-in/check-out model suits the needs of the design environment on long
transactions well. When a designer checks-in/checks-out a design data, he/she :
actually makes a copy of the data and installs the copy into the destination database.
"The designer then works 'onrthe copy instead of locking the object in the project/public
database dver a long period of time. This mechanism increases éoncunent' usage'kof

design databases and facilitates collaborative team dévelopment.

2.5. Summary

Having/examined the advantages of using databases in a deéign environment, the
above analysis of the requifements for a design database revealed a number of
problems wuh relaﬁopal database technolbgy. We then investiéated What the object-
oriented databases have on offer for design applications. We can conclude that object-
oriented databases. provide better dz;ta repository facilities for design environments

because object-oriented database can [KIM90, AHMEDY1a]: -

¢ Model and manipulate composite nested objects which allow successive refinement

of composite objects.

22

Chapter 2 Integrated Design Environment

o Allow the users to define and manipulate arbitrary data types. Object data
representation is very flexible, and may be customized by users with little

restriction.

e Represent and manage changes over time. This is an extremely important feature

in a dynamically evolving design environment.

e Allow various semantic modelling concepts to be represented and manipulated,

e.g., composite objects in an assembly-part hierarchy.

.Using object-oriented databases to support composite design development is an active
area of research. However, the remainder of the ‘thesis is concerned with examining
one of the mechanisms, seen as important for a database system, but which has
received liuie attention in the context of engineering object dafabasés - the use of the
View mechanism. We begin by looking at versioning and configuration management
rﬁechanisms before defining and implementing a View. mechanism for an 'infegrated

design environment.

23

Chapter 3 The Versioning Mechanism

Chapter 3 The Versioning Mechanism

In Chapter 2 we discussed the role of the database lin an engineering design
environment. In the first part of this chapter, we will justify the need for version
management in a design environment and present a literature review of some typicai
version models in object-oriented databases. Configuration management is discussed
in the context of composite object versioning. Finally we present our version model

which we believe provides better support in composite object versioning.

3.1. Introduction

In an.engineering design environment, an important requirement Qf its sﬁpporting
database is to support incremental and cooperative désigh. To support such a tentative
a‘nd iterative design process, the database management system must be able to capture
the semanticS of design evolution. Systems without a versioning mechanism keep
only the most recent version of a design object. When there is an update to a design
item, the old design is replaced by a new updated design. In many business
applicatiqns this method is acceptable. Howéver, in a design environment it is too
rudimentary and is not acceptéble because-crucially the design evolution history is lost

_ during such updates.

Versioning is seen as an important technique in managing evolution in a design

environment [ZDONIK86, KATZ87]. The purpose of supporting versioning in

24

Chapter 3 The Versioning Mechanism

database systems is to capture the various states of a design object during its
evolution. There are two types of changes to design objects as far as database
management systems.are concerned. The first is schema modification which concéms
the changes in class definition of data models. The second is instance modification

which concerns changes in the state of object instances.

3.2. The Changing World

The aim of introducing versioning into a database managément system is to manage
- frequent changes to data and its séhgma in a dynamic world. Data in database systems
.are created to model only a subset of real world. When trying to capture part of the
real ‘world we would like it to stay still so we can capture a precise model of it. In

reality this is rarely the case.

The data model in a database system reflects its designers’ perception of the real
world object. * This perception reflects the designers’ understanding of real world
abstractions and conceptual organization. However, the designers’ understanding as

an abstraction may change as new insights into the application area arise.

The real world itself does not stand still either. It may evolve over time. The data in a
database should adapt to the changes in the part of real world that it is modelling. The
model of the real world in the database may change to better reflect the application

domain, e.g., correction of errors or new requirements. From the database point of

25

Chapter 3 The Versioning Mechanism

view, there are two aspects that might be affected by these changes: the database

schema and instances of schema.

3.2.1. Database Schema

In object-oriented databases, the schema defines the data structure of objects, e.g.,
their domain and sizes, as well as their behaviour. Objects of the same class have the
same type of attribute and exhibit the same behaviour. The database schema in an

object-oriented database defines classes and their inheritance structure. Objects are

instances of these classes.

As the real world evolves the model in the database needs to adapt to these changes.
This may mean that the database schema neé:ds to modified: There are various
approaches to séhema modification [RODDICK96, LIU9%4]:

e Schema modification ‘allows direct mo&iﬁcation of a single schema. Schema

modification will make any former specification obsolete.

o Schema evolution allows the modification of a database schema without the loss of -
existing data. Under schema evolution, existing objects must be converted to the
new format and therefore existing applications aré no longer compatible with the

data.

e Schema versioning allows modifications to database schema without overwriting
the existing schema, rather new versions of the schema are created. Versioning

facilitates program compatibility by leaving the existing schema intact.

26

Chapter 3 The Versioning Mechanism

A database schema defines the contents and structure of a database. Objects in the
database are created according to its schema. Upon modification of a schema, several

aspects of the database may be affected and they are [ODBERG95]:

e Other parts_of the schema. As database objects do not exist in isolation they inter-

connect with other objects.

e Application programs. These programs are still expecting data organized according

to the old schema.

e Objects in the database, which must comply with their database specification, i.e.,

its schema.

In object-oriented databases, modification to the schema is carried out by changing
" their class definitions or by éreating or moving a class definition within the 'clAass :
inheritance hierarchy. [KIM90] summaries the taxonomy of scherﬁa modifications.
[KIM90, MONK92; MONK93, BTISDYRTH92, RA95, ODBERG95] discuss schéma
modification and versioning in détail. Schema versioning is outside the scope of this

thesis.
3.2.2. Database Objects
'Another aspect that is affected by the changing world is the database object

themselves.- Analogously to schema changes, object modification can be achieved

27

Chapter 3 The Versioning Mechanism

through two different approaches. Object modification is the traditional approach to
object updates, where the updated object replaces the old object and the old object

ceases to exist in the database.

The second approach is object versioning where the updated object will be created as
a new version. In a desigﬁ environment, designers often want to try different
.approaches to a design. Ideally these different designs are grouped together ﬂlerefore
it is transparent that they will have some sort of connection. Object versioning plays
an important role in such an cnvironmcnt as it is'thé object versions representing
different design approaches which Helps to group them. In many circumstances,
mociiﬁcation toa design is reflected in ﬁpdating the object in the dafcabase instead of
its schema. Versions of an object represent diﬁ'erént aspects of the same object and

these representations are logically independent of each other [DITTRICHSS].

Object versions are snapshots of an object over its evolution. Timestamped versions
cannot model all of the rich semantics of versions" [KATZ90]. In a design
environment, a designer often has more-than one design idea to fulfill a design
requirement, for exa:nple; several alternatives to a given deéign specification. When.
the alternative designs are completed, revision; of prior designs are necessary because
of new requirements, better ideas, or error corrections. ‘Versioning provides the
tracking of the evolution of a desigh object. It is crucially important to maintain
versions of design objects because it- provides traceability ;md the possibility of “going

back” if a particular line of evolution does not work out. In a design environment,

28

Chapter 3 The Versioning Mechanism

versions are associated with a semantic that is known to the user and it is the user who

decides which version to use.

3.3. Basic Version Concept

Versions are distinct snapshots of a design object in different states during its
evolution history [AHMEDO91b, BEECH89]. There is a questioﬁ when two instances
of the same type are different objects and when they are merely diffefent versions of
the same object. Versions of the same object must share the same interface but may

have different implementations [CHOU86, AHMED?91b)].

For a versioned object, each version must be uniquely .identifiable through a version
identifier. There are many ways of defining version identifiers, e.g., temporal or
simple integer. The most popular one is to use the user defined unique version

numbers.

A version identifier alone is not'enough to fully describe the relationships between
different versions of a versioned object [BILIRIS89]. Users may want to track the
evolu.tion Iﬁstory of a design object. Each version of an oﬁject js derived from its
predeccssor, cxeept the first vcrsior.l. :This kind of rclationship between versions is

typically called a predecessor/successor or parent/child relationship.

In a typical design scenario, designers often follow different development routes

simultaneously starting from an initial design. The same designer might develop

29

Chapter 3 The Versioning Mechanism

several alternatives in order to study tradeoff, etc., at some stage in the evolution of a
design. Alternative design versions may even need to be merged at some stagé in the
design process. This development scenario requires that the version history be a
directed acyclic graph rather than a linear succession in order to capture the evolutioq

history of versions of a design object. The version graph can capture different

evolution patterns as shown in figure 3.1 [CARNDUFF9%4].

A. Linear Version Evolution

B. Alternative Version °

C. Merging Version Evolution

Figure 3. 1 Version Evolution Patterns

Figure 3.1 shows examples of various version graphs. Figure 3.1a shows a linear

version evolution history where versions are connected by relationships of a single

30

Chapter 3 The Versioning Mechanism

type, i.e., successor relationships. Here, version 2 is a successor of version 1. This
means that version 2 has been derived from version 1. 'Figure 3.1b shows a two-level
version evolution history where version 2 is an alternative of version 3. Figure 3.1c
depicts the merging of versions where version 4 is created by merging version 2 and

version 3.

A version branch in the version history may have one of the following implications:

It represents an independent path of development '

e [t represents different variants of the component.

e It represents an expérimental development which may be abandoned or included
into thé primary development at a later stage.

e It accommodates the fact that two developers were required to cbncﬁrrently make

changes toa corﬂponent. Insuch a 'caée the branch may be merged as soon as both

modifications are completed. A merge combines the modifications that occurred

independently in the two different versions into a new version.

For a large scale design project, a typical user sceﬁa.rio is that the design task is
decomposed into several smaller projects. This makes it easier for the people
involved to understand the problem and easier for the project manager to manage. The
smaller projects form sub-projects within the fop level project. Within each sub-
project, a group of engineers are assigned to carry out the development work. As each
subproject is completed, the resulting designs are assembled and integrated together to

complete the final design project.

31

Chapter 3 The Versioning Mechanism

To facilitate object sharing and management of objects in a design environment,
version objects often have states assigned to them to provide update constraints.
There is no consensus on how many version states are needed. Some suggested two
[DITTRICH88, TALENS93], while others recommended three [BEECHS88, KIM90].
We adopt the three states approach because we believe it meets the needs of most
design environments. The three version states are: the released, working and transient

versions. The states ofthe versions reflect their stability in the database.

Another concept that is closely related to version states is the workspace model which
provides a mechanism through which new versions are made available to designers
working on a project. Workspaces are named repositories for design objects
[KATZ90]. Each type of workspace is implemented in the same way, the only
difference being the status of version objects residing in them and who can access
these workspaces. Workspaces are organised in a hierarchic order, as private, project,

andpublic workspaces [CHOUR6], illustrated in figure 3.2.

Public Workspace T: transient version

W: working version
R: released version

Project 1 Workspace Project ! Workspace Project ! Workspace
" (W) (W) (W)
Private Private Private Private
Workspace Workspace Workspace Workspace
(T&W) (T&W) (T&W) (T&W)

Figure 3. 2 Hierarchy of Workspaces & Distribution of versions

32

Chapter 3 The Versioning Mechanism

This arrangement of workspaces facilitates the development of large scale design
projects. Large scale design projects are often too big for individual designers to
comprehend fully. To make it humanly manageable, complex design problems are
often broken up into smaller design problems. This hiera;chy of workspaces meets
the needs of such a design strategy. Designers have their own private workspace for
creating, modifying and testing their design. At a certain point., the design is checked
into project/public workspace where further development continues. Access control
on workspaces guaraﬁtees that read and modification rights as well as rights to -
propagate changes to another wquspace are restricted- to appropriate project

personnel.

All newly created versions are transient versions. They are ownéd by the designer
who creates them. Transient versions are subject to frequenf[modification énd may be
even deleted by their owner. For this reason they are considered to be unstable and
cannot be shared with o;her people. No new versions can be derived from a transient
version. Transient versions reside in private workspaces where the designer performs
design and validation work. The private workspace can only be accessed by the
designer who_ owns it. This resuiqﬁon enables the designer to carry out design work
without fear of modification by other people. It also has the benefit thét other people

cannot reference unstable objects.

Working versions are promoted from transient versions. They are more stable than the

transient version. Working versions are object versions that have passed the initial

33

Chapter 3 The Versioning Mechanism

design stage and are ready to be tested when integrated with other design modules.
When a transient version is promoted to a working version a copy of the version is
checked-out of the private workspace and checked-in to the project workspace.
Working versions are considered to be stable. They cannot be modified but may be
deleted by the project workspace administrator. There can be any number of working
~versions for the same design object in a project database. This arrangement enables -
designers within a project to experiment with different design >a1ternatives. The

project database is accessible to all the‘ people on the same design project.

At the tob of the workspace hierarchy is the public workspace. 'The public database
holds released object versions.. Before an object version is checked-into the public
workspace it must go through a validation process to make sure that it meets all its
design requirements. A released version ca.n neither be updated nor deleted. All

authorised users of the design environment have access to data in the public database.

This classification of workspaces allows the developer to be isolated from changes in
other workspaces and from changes reaching higher level workspaces. Propagation of
changes both-out of and into workspaces are explicit operations and under the control

of the developer.

3.4. Configuration Management

A composite object is a recursively defined aggregation of its constituent objects.

Composite objects are configured by selecting individual component versions such

34

Chapter 3 The Versioning Mechanism

that participating versions of a component are consistent with each other
[ZELLER9S]. Different versions of a composite object have different configurations,
each of which has various references to its component versions. An important
requirement of configuration management is that it must ensure all the pa;ticipating

versions are compatible [AGRAWALS89].

Version management is the provision of a mechanism that can capture evolution in
design artifacts. The aim of configuration management is to try to solve some of the
probl;:ms pertaining to the evolution of design artefacts. These problems are caused
by the lack of control and understanding of all the components that make up a design
artefact. A further problem in the complex coordinaﬁ_on of the product’s evolution by
" its many developers. Conﬁ.guration management controls the evolution of an object
through the identification of the object’s comp;)nents and changes [HEILER91].

Configuration management provides a stable working context for changing the object.

Object éonﬁgu;ation contains a set of references to specific versions of components.
The process of selecting component versions is called binding. "There are two kinds of
bindings: static binding and dynamic binding [CONRADI9]. In Statjc binding
versions of components have already been bound before any object is accessed.
Dynamic binding is only performed when an object is actually abcessed and the

referenced objects may vary.

Configuration management allows a user to specify alternative configurations for a

complex object through the selection of appropriate versions of its components.

35

Chapter 3 The Versioning Mechanism

There are two different approaches to version selection. The first approach relies on a
labeling version graph. This requires ﬁlat the user explicitly specifies which variant
version is needed. The second approach allows the user to specify predicates on
attributes. The attribute can be as simple as a version nu_mber that is associated with
each of the versioned objects or as complex as a set of Boolean variables that specify

some selection criteria.

The selection predicate approach provides a more geﬂeral solution. It allows the
designer to express selection of alternatives in a natural way and provides more
flexibility and extensibility to adapt to different modelling requirements. When
selecting component versions, the conﬁguratioe management must provide a
mechanism to ensure that all the selected versions are compatible in order to maintain
configuration consistency. The underlying theories ef selection predicates permit

validation of consistent configurations to be expressed.

Ina eonsistent conﬁguratiorvly any modiﬁcation to a component of a.cqmpo_site object
may cause the consistency of the configuration to be broken. This is an issue that the
configuration management must address. Many-researcheré .have proposed various
approaches on how to react to changes in a configuration. Some of these approaches

are discussed in the following section.

3.5. Review of Version Models

36

Chapter 3 The Versioning Mechanism

Versioning is an important feature in third generation database systems and it has
attracted a lot of interest from the database research community [SCIORE94,
PARK9S, CHEVAL90]. These research interests .are divided into two broad areas.
Schema: versioning [RODDICK96, MONK93, AGRAWAL94] means different
versions of an object can have different schemas. On the other hand, object
versioning means djﬁ'erent'versions of an object have different values for some~ of the
attributes. Schema versioning is an interesting research area but is outside the scope
of this thesis. In the. following section, we present several typical version 'rnodels for

object versioning.

3.5.1. Zdonik

One of the early version models for an object-oriented database was présente_d by
[ZDONIKS86]. The version model is based on the object-oriented concept using
inheritance "as its base for defining version capabilities for entities in an object-

oriented database.

The Zdonik version model spaciﬁes a History-Bearing-Entity which is the basis oi‘ all
the version coni:rol operations and attributes. As objei:t versions evolve over time, a
conceptual objec;c is used to represent a design independent of time.” A ';lcfsion-sct is
created for each conceptual object containing all its versions. The ’vers-ion model
supports linear versioning as well as branching and conéolidation. In the model a
.design object can be a composite object referencing .other component objects that

form a design hierarchy.

37

Chapter 3 The Versioning Mechanism

Zdénik recognizes the need for system controlled version percolation management. In
an attempt to automate the version creation process, the model allows the user to
define some references to components as version sensitive. Apy change to these
version sensitive components will cause ncw versions to be created in the upper level
object. As it is not always desirable to propagate all changes at the lower level to all
the higher containing objects, the concept of a Slice is introduced. A Slice is a set of
versions that have been produced in a single transaction. A Slice also ensures that all
_ the component versions are configuration consistent. Figure 3.3 shows an example of

slices [ZDONIKS86], each grouping represents a Slice.

A4

C4

Figure 3. 3 Slices

The Slice concept is very similar to the group check-in/check-out model, where a set .
of related object versions are manipulated as a single transaction unit. The Slice is
used as the basic unit of operation for any composite object. The model does not

provide explicit support for referencing default versions.

38

Chapter 3 The Versioning Mechanism

3.5.2. Chou and Kim

[CHOUS86] presented a version model in the context of a design environment. In this
paper Chou and Kim considered a version model in a distributed development
environment where a group of designers cooperate with each other in order to achieve
a common design objective. The design environment is composed of a hierarchy of
workspaces where each level allows various of degrees of sharing of information.
These workspaces are the puBlic, project and pﬁvate wofkspace, as described in

section 3.2.

Coupled with workspaces are version states where versiqns of different states reside in
different workspaces (figure 3.2). Chou classifies versions into three states: transient,
working and released. Versions of the same object in different states have different
“version cdpabili}ies”, e.g., which indicates whether théy can be modified or deleted
and by whom. Object version_s are moved beﬁeen workspaces by check-in/check-out
operations. Version states are promoted while object versions are checked—into ﬁighef
level workspaces. New versions are also created by the check-in/check;out
operations.” The worksbace and version states provide a well-managed mechanism

for cooperative design environments.

A composite object can reference other objects through static binding or dynamic
binding via a context mechanism. The version model allows the. user to specify a
default version. This allows a more flexible dynamic binding in the design
environment. They also proposed a change management strategy for composite object

versions where a flag-based notification technique is used. Two time stamps are

39

Chapter 3 The Versioning Mechanism

maintained in each object version: change notification time and change approval time.
If the referencing object’s change approval time is later than the referenced object’s
change notification time, then the object is consistent, otherwise change propagation

will be needed.

To avoid version proliferation, Chou limited the scope of notification only to objects
| that directly reference the changed veréion. As it is very difficult, if not impossible, to
define a common policy for version propagation in a design envifonment, [CHOUS6]
left the designer with the responsii)ility of reacting to any changes in a configuration
instead of automating the process. In Chou’s 'model, only the designers of directly
referencing objects are notified about the changes. The ciesigners will then decide
whether to react to the changes. If they decide td react to the changes then change
notifications will be cascaded to the next level up. In [CHOUS86], equivalent

representation is mentioned but the author did not discuss its use in the version model.

3.5.3. Agrawal

[AGRAWALOYI1] presented a version mo&el in the Ode object-oriented database. In
ﬂﬁs model, which is differenf from ones discuésed in ﬁrevious sections, all databasé
objects can be versioned. The velfsioning capability is assigned to tl;ic pcrs{stcnt object
inst;aad of creating a separate version object. Therefore, the versioﬁ model is
embedded iﬁ the persistent object and there is no distinction between ifersioned object

and the unversioned object.

40

Chapter 3 The Versioning Mechanism

The version model maintains temporal and derivation relationships between versions.
The temporal relationship is a total ordering based on the creation time of object
versions. Unlike some of the other version models, new versions can only be created
by an explicit version creation function. Therefore, updates to an object do not result

in new versions being created.

A logical object id is used to refer to the latest version of an object. This approach
avoids using the Generic object as a dynamic binding to a particular object. The
drawback of this approach 1s that the latest version does not always necessarily mean

it is the most correct version especially when versions can have alternatives.

It is- important the | version models are extensible to best | meet user needs. In
Agrawal’s mode, as versioning is an object propéfty not a type property, it is &ifﬁcult
fo add more features to the version model. The author did not discuss.conﬁguration
management for composite objects, but in his early paper [AGRAWALS89]
configuration management of versioned object was discussed in the context of an Ode
object database. A transaction based model was proposed to ensure consistent
configuration. All configurations are generated dynamically and no configuration is

stored in the database.
We believe a configuration management system should provide a stable environment

in a changing world. With dynamically generated configurations, the designer has no

means of freezing a particular configuration which he/she might want to keep.

41

Chapter 3 The Versioning Mechanism

3.5.4. Ahmed

[AHMED91] proposed a version model for composite objects in CAD databases. The
model classifies its properties into external features and internal assembly. The model
explicitly defines internal assembly to identify components of a composite object and
to describe their interrelationships. The external features ére the non-structural

features that are visible to other object.

The version model consists of three system deﬁhed types: generic, versiéned and
unversic-med. The generic object represents the design object. It contains the invariant
external features for the design object. Objec.:ts in the database can be versioned or
unvérsioned. Unversioned objects are just like any other objrects in a database without
a versioning capability. |

v \ _
Versione;d objects can contain three differgnt kinds of attribute: invariant, version
signiﬁcant. and non version significant. The invariant attributes remain the same
across the version set of an object. Any .modiﬁcation of the invariant attributes will be
visible to the whole version set and Will not cause new versions to be generated.
Unversioned objects can be conveﬁed into versioned object when needed. In contrast
to Zdonik’s.model, updating a version signjﬁcant attribute doe; not cause new
versions to be created automatically. Instead the version significant attribute only
indicates the updatability of a particular attribute in diﬂ'erent version stafes. New.
versions can only be created by an explicit call to create function. The concept of

version states used in the model is similar to that of Chou but with different names.

42

Chapter 3 The Versioning Mechanism

Version states can be promoted by explicit calls to the promote function as shown in

figure 3.4. The invariant attribute cannot be modified within an object version.

Figure 3. 4 Transition of version states

The model deﬁnes all composite aggregation as version signiﬁcaﬁt. Therefore
modification to any component will cause version propagation. The version model
provides no comprehensive configuration management policy for controlling version
proliferation in comi)osite objects, although the use of design equivalents to avoid

version proliferation is discussed.

3.5.5. Sciore

[SCIORE94] proposed a version model that places emphasis on the manipulation of
object versiops. The ve;sion model gssociates each set of design .versions with a
. generic object. The generic object contains information that is common to all the
versions of the same object. The vérsion object can ha\}e two types of attribute:
versioned and unversioned attributes. Unversioned attributes are visible in all
versions. Updates to the unversioned attribute will be seen in the whole version set.
.The unversioned attribute is same as the invariant attribute in [AHMED91]. Mutating

versioned attrihutes causes a new version to he created.

43

Chapter 3 The Versioning Mechanism

To further automate the process of version creation, the model allows its user to define
some attributes as alternative attributes. Updates to these attributes cause alternative
versions to be created therefore database designers can decide the semantics of an
update operation i.e., whether it is a revision or an alternative. The version model
tries to unify the various apprdaches used in temporal databases, historical databases
and CAD/CASE databases by c.lassifying versions into three levels - physical,

conceptual and logical.

The version model distinguishes generic references from specific references. Specific
'references will bind to a partiqular version of the design object, i.e., static binding.
Whereas, Geheric references wﬂl be decided by a set of selection pred'icétes, i.e.,~
dynamic binaing. . These predicates are called dimensions. The use of dimensions
simplifies queries to the versioned objects. The problem associated with such an
~ approach is that the generic reference might return more than one version and it will

be difficult for the user to decide whether to expect an object or a set of objects.

Sciore also explores the use of database views in the configuration management of a
composite object. . The view approach provides richer selection semantics than other -
approaches. However, the model fails to address the problem of a selection returning

more than one object version for a configuration.

44

Chapter 3 The Versioning Mechanism

3.5.6. Summary of Version Models

We reviewed S different version models in the previous section 3.5. This review is by
no means exhaustive. They are however representative of version models presented in
the literature. From the review, we can see the trend is that more and more
researchers recognise the need for.version states in a version model to facilitate
cooperative design activities and configuration management [CHOUS86,

OUSSALAH93, BILIRIS89, AGRAWAL91].

There are generally two approaches to version generation. One is an explicit call to a
version creation function. The other is to define version sensitive attributes where any
change in the version sensitive attributes will cause new versions to be generated.
[AHMED?91] presented a compromise approach. This version model alléws the user
to define version sensitive attributes but new versions will only be created by calls to
the version creatién function. We bélieve this approach not only complicated the
version model but aléo limited the flexibility of the data model as the classification of

attributes is used to limit their updatability in different version states.

Agrawal attempted a novel approach towards versioning. Instead of defining a
version type as the basis for all other version objects, he embedded the version
management capability inside database object - persistent object. This approach has
the benefit that the user can create object versions as late as possible, i.e. whenever
he/she needs it, unlike in [AIIMED91] where unversioned objects have to be

explicitly converted to the versioned object. Compared to the separate version object,

45

Chapter 3 The Versioning Mechanism

this approach restricts the extensibility of the version model as it is difficult to extend

the version model to meet user needs.

3.6. Our Version Model

Our application aims to support a cooperative design environment for engineering
design. Inevitably, there will be a lot of composite objects in such an environment.
Therefore, a version control mechanism is crucial. From our previous discussions, it

is essential that the version model supports the following features:

e Versioning of individual objects. This includes the maintenance of its evolution

history, and the definition of default versions

e Change propagation in the corriposite object. . This involves: how to react to
‘cha;nge'.s in a lower level cémponent and how far shoﬁid_ thé propagatioﬁ go without
resulting in generating unnecessary versions.

e Sharing of the design object in a design environment. This fequires that we
provide multiple level | workspaces and version states associated Awith these

workspaces.

3.6.1. The Versioning Data Model

Our version model is based on [CARNDUFF94] which consists of three different

types of object: generic object, versionable object and descriptor object. For each set

46

Chapter 3 The Versioning Mechanism

of versions of the same design object, there is one generic object associated with
them. The generic object is the conceptual representation of the design object.
Attributes of a generic object are common to all versions of the design objecf and any
- update will not cause a new version of generic object to be created. For users who are
not interested in versions of design object, he/she can simply reference the generic
object without specifying any version specific information. The generic object will
simply return the default version. Apart from default version number, the generic
object also keeps a record of the last vefsion number, the version evolution history

~ and the methods for version creation.

The version evolution histbry records the derived-from relationships between
versions. A version can be.a refinement or alternative of its parent Yersion. Furthef, a
new version can be created by merging two previous versions. Therefore the version
evolution hi_story is a directed acyclic graph instead of a tree. The version graph
“consists of a set of version descriptors. The version descriptor has a one-to-one
correspondence to the object ve;sion. The version descriptors' keép a flag to indicate
whether the corresponding version has been dele_ted. As some object versions may
have other versions derived from tﬁqm, it is not possible to delete them _all. In our
version model if the version is a non-leaf node in the version graph, the deleted flag
will be set to true withdut actually -deleting the object, otherwise the version will be

deleted.

The versionable object keeps all the versioning information, a list of its component

objects and also the configuration information if it is a composite object. Many

47

Chapter 3 The Versioning Mechanism

version models [SCIORE91, AHMED?91] define the invariant attribute in their version
model and these invariant attributes are visible throughout the version set. In our
model, we put all the attributes that are common to the whole version set in a generic

object. We believe this simplifies our version model without losing information.

Creating a new version is a complicated design decision. Updating the same yattribute
with a different value under diffe'rent circumstance;s may have a different design
implication. . We consider the approach of usmg version sensitive attributes to create
new versions as too brimitive and restrictive. For such a complicated design activity,
it is very difficult to define a common policy as when to create a new .version and
whether it is an alternative or a reﬁneme;nt version. We think it is more appropriate to
leave the decision making to the desigpers. Only the designer knows the semantics of

the update.

3.6.2. St.ates (;f Versions and Workspacés

In a design envirdnment, the designer’s goal is to complete the design Effectively.
This implies that desiéners should not unnecessarily interfere with each othef’; work.
But at the. same time, the désigner needs to communicate and coordinate efﬁéientiy.
Our organization of workspaces supports this design acti';’ity' well. The designers
have their owﬁ workspace for carrying out their work. At a certain point, the design is

made available to other designers on the team for further development and test.

48

Chapter 3 The Versioning Mechanism

The state of a version determines the stability of a particular version. In our model
versions can be in one of the three states: transient, working and released. The basic
idea behind this classification of versions is that unstable versions cannot be shared

with other people as this may lead to an unstable configuration.

This provision of workspaces supports the sharing of objects among the design team.
Objects and object versions are moved-between workspaces as the result of check-
in/check-out operatigns. The workspaces are arranged hierarchically as illustrated in
figure 3.2. There have been various of levels of workspaces in the literature. Most
researches agree that a minimum of three levels is needed to provide the necessary
support [KATZ90]. In our model we classify the threé levels as private wor,ksbace,

project workspace and public workspace.

. Versions in different workspaces reflect their states as well. ~Our approach to the
classification of version states and wor.kspaces is consistent with Chou and Kim’s
model. Each vérsion state has a set of properties that define its behaviour. We will
discuss the characteristics of each version state in the context of workspace. The state

reflects that the version satisfies certain conditions.

At the lowest level of the worksbace hierarchy is the private workspace. This is the
private workspace for the individual designer, where ‘he/s.he performs much of the
_ design and design validation work. The private workspace can only be accessed by the
designer who owns it. The states of object versions in the private workspace are

transient. Transient versions in private databases are considered to be unstable

49

Chapter 3 The Versioning Mechanism

therefore they cannot be shared with other designers. They can be updated or deleted

at any time by the owner of the database.

All newly generated versions are transient states. A new version_is created when the
designer checks out a copy of a design from a public/project database and checks it
into the private database as a new transient version. No new versions can be derived
from a transient version. The private workspace holds non-released designs that a
designer is currently working on and any other information the designer wishes to
maintain. When ; design becomes stable and unlikely (o be changed again, il can be
checked into databases higher in the hierarchy and the state of the checked out version

will be changed as well.

Figure 3.5 shows the movement of object versions between workspaces. A state
transition occurs when an object version is checked into another workspace which
represents the new state. Therefore, object versions migrate up the workspace

hierarchy as their state is promoted.

Public Database
(released
versions)

Project Database
(working
versions)

Private Database
(transient &
working versions)

promote

create new versions

create new versions

Figure 3. 5 Version movement between workspaces

50

Chapter 3 The Versioning Mechanism

Object versions checked out from the private workspace are checked-in to the project
workspace, which is the next level up in workspace hierarchy. Before private versions
can be checked-in to the_ project database, they have to go through a validation process
to make sure that they meet the criteria for working versions. The project workspace
is accessible to all the people working on the séme project but not to people worhng
outside that particular project. Object versions in the project database are working
versions and they are considerea to be stable. They cannot be updated but may be

delefed by the project database administrator.

People working on the same project may check these objects into their private
workspace and modify them. A modification results in new ‘versions of a transient
state being created. If any of the news version meets the design requirements, they
may be checked back into the project workspace in order to a110\.v access by other
designers. There can be any number of working versions for the same design object
in a project database. This arrangement alloWs people within a project to work on

alternative versions.

At the top of the hiera;chy is the public workspace.” The public workspacerholds
feleased design objects. A released object can neither be updated nor deleted. All the
authorised users in the integrated design environment have access to data in the public -
| database. A working version can be promoted into the public database as a released
version, if it passes the validaﬁon test for released 6bjects; Thqe 'c.an be any number

of versions in the released state for any particular object.

51

Chapter 3 The Versioning Mechanism

3.6.3. Change Notification and Propagation

Composite objects ﬁierarchically contain other objects as its com};onents. If any of
the component objects have been updated, the upper level object designer needs to
know that this component has been modified and he needs to react to the changes in
order to maintain the object consistency. Various attempts have been made to provide
limited support for a system managed change propagation process [AHMEDO91,
| BEECHS8, SCIORE94]. In our mbdel we adopt the. approach that the user decides
when and how to react to changes in the lower level object as it i§ not always desirable

to automate the version propagation process.

When there is a change in the component object, the change may be relevant to other
objects referencing it, but it may also be likely that the change does not affect any
referencing objects. - For either the ﬁag-based or the message-based change
notification scheme, the upper level ohject will be informed irrespective of the effect
of the change. In such a scheme, the designers are often inundated with many change

notifications, some of which are relevant and others not.

‘Recognizing this problem, we have developed a new change notification scheme that
can solve the above problem. Configuration constraints are used in our model to
check if changes in the lower level object will affect other objects. For example, a -
Car object contains components Engine and BodyWork. Recursively, Engine and
BodyWork have their own component, as shown in figure 3.6. [or the composition in
figure 3.6, it is the Car designer’s responsibility to specify configuration constraints

on its components Engine and BodyWork. In turn, it is the Engine and BodyWork

52

Chapter 3 The Versioning Mechanism

designers’ responsibility to specify configuration. constraints for their components.
Further, it is the referencing object designers’ responsibility to ensure that all

participating components are consistent.

GearBox

Figure 3. 6 Example of a Composite Object Configuration Hierarchy

Configuration constraints are a set of conditions set by object designers to check the
respective components. Conﬁgufation constraints are speciﬁed in the version level.
Therefore, they may vary in diffefent versi‘on's. If any change in a component fails to
meet its éonﬁguration constraihts, then the object designer will be alerted about £he
change. The designer will consequently need to react to this change in order to
accommodate it in the design. Otherwise, the designer will not be informed of the
change. Therefore, the conﬁguration' constraints act like a filter for change
notification. Only relevant ones are passed to the next level object. ~ The use of
configuration constraints also has the benefit that all the components have to meet

their design requirements before they can be assembled.

53

Chapter 3 The Versioning Mechanism

For example, for a car BodyWork designer, it is more important to him/her that the
Doors will fit into the BodyWork. If the size of window on the door has been changed,
then to the car BodyWork designer this change is not significant.. He/she may choose
to set the configuration constraints in such a way that this sort of change will not be
propagated back to his/her level. Therefore, thé BodyWork designer can target the
conﬁgufation constraints on aspect of the de;ign which are important to him/her

alone.

3.7. Summary

Versioning is an important feature in object-oriented dami)ase systems [CHEVL90].
In this chapter we established the requirements for a vérsioning mechanism in a
design environment. ’In' such an environment, cooperative and concurrent design is
carried out. To support these activﬁies, .the supporting database is organised in a

hierarchical form.

The provision of workspaces and classification of version states, as outline above
supports comi)osite object evolution in a natural way. It provides stable workspaces
with control over isolation from external change and scopes of visibility for changes.

The workspaces can support developers in an active development environment. -

We discussed several version models for various environments. We presented our

version model which is based on [CARNDUFF94]. The model improves change

54

Chapter 3 The Versioning Mechanism

management for composite design objects by using configuration constraints.
Configuration constraints not only alert the upper level object designers (should there
any change which affects the object) but also it guarantees that any component objects
in a configuration have to meet their designated conditions before they can be
accepted into an assembly. Configuration constraints are specified at version lével.
Thus, different versions of the same object may have different - configuration

constraints.

55

 Chapter 4 Database Views and OQL

Chapter 4 Database Views and OQL

Object-Oriented views are more powerful than their relational counterpart [KIM88]
because of the data models they are based on. In this chapter, we will discuss the
semantics of object-oriented views and their roles in a design environment. A
‘ faxonomy of object-oriented viewS is presented. Quéry languages are “an
indispensable part of any view model. We will briefly introduce the ODMG standard
'query language OQL [CATELL97] which will be used as part of 011f view definition.

Finally we will introduce our view model for a design environment.

4.1 Introduction

Views have i)een used for data pfdtection and as a shorthand for queries in relational
databases. They are an indispensable means of achieving logical data independence. -
It is recognised that views have an important role to play in object-oriented databases
per se [AGRAWAL94, MARIANI93, MONK94, BRATSBERG92]. Object-oriénted
views should provide éll the ﬁmctioné thaf are provided by relational views, plus sohe
additional ones, which aﬁse as a result of the highér expressive power of the 'objeqt-

oriented data model.

In a design cnvironment, people often have different requirements for the data they .
need. The ability to provide multiple concurrent views of the same underlying

information is vital to the usefulness of a database system, and means that application

56

Chapter 4 Database Views and OQL

programs can be written to a view of the data that is suited to that applications

particular needs.

One of the main objectives of introducing an integrated design environment is to
reduce the amount of redundancy in stored information, in order to maintain the
consistency of information. It is inappropriate to maintain multiple copies of the same
data 'at different abstract levels to suit different users’ indi\-/idual needs. It is much
more desirable, where possible, to hold data in a single f:anonical form with different

views provided (o suil cach end user’s needs [BROWNSS].

In relétional databases views are exclusively defined by queries. However, in the
object-oriented world, theré is no agreement on how objg:ct—oriented vieWs should be
defined. Various view models have been proposed for object-oriented databases
[ABITEBOUL91, BERTINO92, HEILER91, SCHOLL91]. A view mechanism
should allow programmers to restructl‘lre base objects and modify their behaviors. In
the object-oriented world, it should be possible to use views to provide different
iﬂterfaces to the same object as a general abstraction mechanism [DAYALS9].
Generally, tl;ere are two main approaches to ﬁle definition of object-oriented vie'v'vs,

depending on whether or not the view classes create new view objects:

o Object-generating views: instances of view classes are new objects with their own

object identifiers (oids). These objects are generated as a result of the view query.

57

Chapter 4 Database Views and OQL

o Object-preserving views: no new object is created for the view class, instead
existing base class(es) objects that satisfy the view query are regarded as instances

of view classes.

One of the reasons for this diversity of OODB view models is due to lack of standards
in the object-oriented world. Some researchers believe that the vigw classes should be
integrated into their base classes inheritance hierarchies [ABITEBOUL91,
4 HEILER90], to enable the view classes to use as mgch information from the base
classes as possible. Others believe that the view classes should be orthogonal to the

base classes [BERTINO92, SCHOLL91] to achieve greater data independence.

The integration approach provides a uniform structure for both view classes and base
classes as semantically some view classes naturally form sub/super class relationships
with their base classes. This approach enéhles view classes to take advantage of all
the information contained in their base classes.- One of the problems associated with
the integration approach is how and where to position view classes in the base class
inheritance- hierarchy without. affecting the semantics of base class inheritance
structures. Integrating view classes into base classés inheritance also exposes views to

the effect of changes in the base classes schema.
Proponents of the separation approach argue that views serve as interfaces to base

class objects and the separation will result in complete logical data independence

[KIM95]. In our view model, view classes are used to provide multiple levels of

58

Chapter 4 Database Views and OQL

abstraction to base classes. Therefore, we believe it is appropriate to keep view

classes orthogonal to base classes.

Object-preserving views allow view updates to propagate to the corresponding base
class objects unambiguously, since the view objects have the same oids as the base
class objects. On the other hand the object-generating view provides a more flexible
ai)proach for deﬁnihg view clésses since view classes are not limited by the structure
of their base classes. In the object-generating view, view updates are not always
possible, as there is no guarantee that a view object always corresponds to a single

base object.

View updates are an esseﬁtial requirement of object-oriented views [ATKINSON89]: :
. Many researchers believe that the support of Athe object-generating view and the
uncons;rained updatability of views are conflicting requirements that cannot be -
sirnulfaneously met [MOTSCHNIGY96]. Later in this.chapter, we will introduce a
view quel that allows view updates 1n an object-generating view. Table 4.1

compares a few view models. These models are compared by considering:

e What data model they are based on. Many of the view models are designed for a

particular object model and the data model plays a key role in defining views.

e How they are defined. Some of the view models are defined exclusively by
queries. Others use a query language as well as features from their object data

model in order to define views.

59

Chapter 4 Database Views and OQL

e Whether they are part of the base class inheritance hierarchy. This is a
fundamental issue in the definition of a view model. Integration provides well
integrated information while separation has the advantage of higher logical data

" independence.

o Whether it is object-generating view or object-preserving view. The salient
point here is whether new objects are generated as result of running a view, which

has considerable impact on view updatability.

The comparison in table 4.1shows the different approaches adopted by different view

models. It is based on four representative view mechanisms from the literature.

60

19

S[OPOJAl M3IA JUAIQJIP Jo uosuredwo) ["¢ J[qel,

s109[qo
aseq Sunepdn AjoAnooge
St s392[qo mara unepdn

1001q0
MIIA 0} pau3isse s1 pIo
Mau ‘osimIoylQ “1eelqo
aseq pue 193[q0 M3lA

‘syoalqo sse[> aseq | usamlaq 2ouspuodsarIod
IIoY) Se SpIO Swres oy | suo 0 auo * 98en3ue]
asn §)93(q0 MI1A J0UIS | B SI 2I9U) JI pIO Sures ad£) paaraq | Aranb 2p wiyshs adKy NOODOD 16 TIOHDS
139(qo : .
aseq JO jeq) Se pIo aures .
passaIppe 10N | oy} sasn 103[q0 .MalA od£) 1odns/qng | ®1qa8[e pajusLo 19s 1nong - 169ATIH
o8en3ue|
. p1o uBisse Kxonb snnores
possaIppe J0N | 01 1oyoym saproop Iesn odf) poauag | syeorpaid pspuaixo [BISUAD) Z60ONLLYAd
A[ewoue 9jepdn proae o) Butpeojroso
MITA oY) Sururyop uaym UoneZI[eIaUa3 [RINOIABYSq pue souejLISYUI I
popew depdn suysd paugisse SI pro mau pue ad£) 1adns/qng ‘a3en3ue| L1onb 70 6 1NOgALIgY
193[qQ MIIA asBg YHIM UoneYy UOLIULI(] MIIA PPOIN Bl [PPOJAl MIIA

aepd) MIIA

AN DUB SMIIA asearied + 1a1deun

Chapter 4 Database Views and OQL

4.2 Taxonomy of Object-Oriented Views

The aim of our project is to develop a view mechanism that can provide efficient
support for a cooperative design environment. Earlier in the thesis we discussed the
requirements for integrated design environments. Before going into the details of our
view mechanism, we present a taxonomy of the view model. This taxonomy only
considers the sémantics of view operations, not any implementation details. Because
there is a lack of consensus on the definition of object-c;riented terminology, we firstly

define the terms used in our taxonomy to avoid any confusion.

4.2.1. Definition of Terms:
Abstract Data Type: defines the interface to a data abstraction without specifying
implementation details. For reasons of brevity, we use ‘type’ instead of ‘abstract data

type’ in the following passages, unless otherwise indicated.
Objects: are instances of abstract data types.

Classes: are collections of objects that Belong to the same abstract data tybe. A class
can be derived .from existing classes using class inheritance. ‘The | hewly

derived class is the sub-class of the parent class. A class hierarchy represents he
relationships betv's{ee‘n parent classes and sub-classes. A class defines the -

object’s internal state and the implementation of its methods.

62

Chapter 4 Database Views and OQL

4.2.2 View Taxonomy

Our taxonomy of views is similar to that in [SCHOLL91]. We extend it to handle
object-versioning. The view classes can either be populated by objects that already
exist in the database or by newly created ones. Since object-oriented views should at
least fulfill the functionality of relational views [MOTSCHNIG96], set-oriented
algebra is used to. define our view-semantics where people can see the relevance

between the two is clear. Figure 4.1 shows our taxonomy of views.

Object-Ornented Views

Jomn

Selection
Projection Union
/ -
Extended Intersection
Difference

Figure 4. 1 Taxonomy of OODB Views

Before going into more detail about our view taxonomy, we identify the possible basic

modifications that might happen between a view class and its base classes:
a) A view class may use different attribute names from that of its base class, e.g. a
view class may change the attribute address in its base class Student to, say,

home_address;

~b) A view class may use different method names from that of its base class;

63

Chapter 4 Database Views and OQL

c) A view class may transform the value of its base class attribute, e.g. convert inches

into centimeters.
d) A view class may have more/less attributes/methods than its base classes;

" e) A view class may transform values returned by its base class methods, e.g. convert

temperature from Fahrenheit to Celsius centigrade.

) A view class may maierialize the return value of a base class method and store it as

an attribute value.
g) A view class may overload the methods of its base class;

h) A view class may only use part of an aggregate attribute as its attribute. For
example, a Person class cox;tains an aggregate attribute address which itself is
another object. If the user is only. interested in the‘nationality of the person, then,
instead of listing their full addresses, the view class only displays their Country

attribute in the address object.

o Selection View [SCHOLLO91]

A selection view returns a subset of all instances of its base class satisfying the
.selection predicates. For cxample, the uscr may creatc a vicew new_student that
returns all the first year students. For a composite object, a selection view should be

able to retrieve component objects from its base class(es) without the user specifying

64

Chapter 4 Database Views and OQL

how. A selection view only applies to a single base class. For versioned objects, all
versions of the base class that meet the selection predicate will be iﬁstances of the
view class.

e Projection View [SCHOLL91]

A projection view returns the whole set of pbj ect of the base class with some attributes
hidden in the view class. For projection view, any method that uses the hidden
attribute should also be inaccessible. As result of projection, a new type is created for
" view objects. Projection only applies to a single base class. For aggregate attributes, a
projection view should be able to either hide or retrieve the aggregate attribute as -

whole.

For versioned objects, projection is at the class level. Therefore, all versions ofthe
base class object will be included in the view class, However, as a result of

projection, some object versions in the view class may lose their distinctive attributes.

e Extended View [BERTINO92]

An extended view contains attributes which are not part of its base claés(es). The
extended attributes onl-y exist iﬁ'view objects and cannot be derived from its base
class(es). The extended attribute may be another object which forms an aggregate
attribute of the view class. An extended view allows users to augment the definition
of its base class(es). A new type 1s created for extended view objects. For versioned
objects, each version of the base class instances will also be versioned in the extended

view class.

65

Chapter 4 Database Views and OQL

e Join View [SCHOLL91]

A Join view returns a matching pair of objects from the involved base classes. The
involved base classes must share a common attribute. The result of a join is a new
class that includes attributes and methods from both base classes. For Qersioned
objects, only those versions that can be joined are includeci as instances of the vicf.w.

class. Semantically, the join view produces the same type as multiple inheritance.

- o Union View [SCHOLL91]

A Union view class contains instances from both base classes. The involved base
classes must be unionable, i.e., they must have a sub/super class relationship in the
class inheritance hierarchy. The view class contains attributes that are an mtersgctidn
of the two sets of attributes of the base classes. Sémantically, a union view class is a -

super class of its base classes.

For the versioned object, the versions of view class instances are the sum of both base
classes versions if the new instances of the view class do not have duplicate values.
For example, if base class A has 4 versions and base class B has 2 versions and each

view object has unique values, then the view class will have 6 versions.

e Intersection View.[SCHOLLI1]
An intersection view returns all the objects that are members of both base classes. An

intersection view produces a sub-class of its base classes. The view class contains

66

Chapter 4 Database Views and OQL

attributes and methods that are unions of attributes and methods of both base classes.

An intersection view class is a sub-type of its base classes.

The resulting type of join view and intersection view are very similar. For a join view
the two base classes must share a common attribute to be joinable.. The result of an
intersection view includes objects that are members of both base classes. This implies
that the base classes must share a common super-class in their inheritance hierarchy.
All versions of base class objects that satisfy the intersection condition will be visible

in the view class.

o Difference View ‘[SCHOLL91]

A difference view returns all the objects that are members of ;che first base class but
not members- of the second base class. The semantics of a difference view requires
that the base classes must have a common super-class a.nd those members that belong
to both base classes are filtered out.. The. view object is of the same type as that of its
first base class. The view class is sub-clasé of the first base class. All versions of the
first base class object that satisfy the difference condition will be visible in the view

class.

4.2.3. Semantics of View Update

View update is a desirable feature for all view models [SCHOLL9I,
MOTSCHNIG%]. In an object-oriented database, because of the data encapsulation

enforced hy the ohject data madel, it is not desirable to use query languages to update

67

Chapter 4 Database Views and OQL

view objects directly. This will infringe the encapsulation of the data model which is
one of the basic principles of object-oriented theory. We believe it is more
appropriate to an object-oriented database that updates are handled by methods of a

view class rather than by query language.

o Views that Modify Attributes of Bwe Class

‘When a view class updatés an attribute of ifs base class, its update rﬁethod should
know how to propagate the update to its corresponding base object correctly. If there
is more than one base class object involved 1n the view, the view class update method
should be able to propagate ;Lhe update to the correct base obj éct. Any change made in
the view is effectively updating the view obj'ect’s l;ase objects.. If the .view is trying to
update an extended attribute which only éxists m the view, the change should only be:

confined to the view objects and never propagate to the base objects. '

- If the updated attribute in the base: objec.t ié an aggregate, the-corresponding object
should be updéted correctly. If the base of a view is another view, the view update
‘should propagate to the appropriate base class object. All the view updates are under . -
_ the'control. of the version manager so-an appropriafe' version may be éreate_d. This is -

another important reason why we do not allow direct updates from a quer}; language

as it is difficult if not impossible to enforce version control and object encapsulation.

e Views that Modify Methods of its Base Class/View
It is possible that a view class has a different set of methods from its base classes.

This can be because the view class has more methods than it base class or the view

68

Chapter 4 Database Views and OQL

class overloads some of its base class methods.” Because methods belong to the data
type not the individual object, changes in view class methods have no effect on

individual object versions.

o Views that Insert Objects

Sometimes a view class may crea.te new objects. Because view classes are virtual,
their instances should not be stored in the databasé. Therefore, a new view object is
actually a reflection of new objects being inserted into its'b'ase class. When new
objects are created, the view class should be able to insert these objects into the
appropriate base class if more tflan one Base class is involved. The creation of new
view objects must be under the control of t}.le.vérsion -manager_S(.) the newly inserted

object could be a version of an existing base class object.

If the base of a view class is another view, the insertion must propagate until the new - ‘
. objects are inserted into the appropriate base class. For composite objects., when they
are inserted their aggregate attribute must also have new members insertedif they do

not already exist.

o Views thét Delete Objects.

A view class shouid be able to specify méthods that delete objects. - When deleting
objf:cts from a view class, the view class delete method mu§t correctly remove objects
from the appropriate base class. The delele operation must be under the control of the
version manager and must comply with the semantics set out in Chapter 3, e.g. only

versions at the leaf of the version graph get deleted, and so on.

69

Chapter 4 Database Views and OQL

4.3 ODMG Object Query Language (OQL)

OQL is a part of the Objecf Database Management Group (ODMG) standard for
object-oriented database management systems. The ODMG is a consortium of objéct—
oriented database management system (ODBMS) vendors and interested parties. The
primary aJm of the standard is to provide a set of stan&ards that enable portability of

customer software across ODBMS products.

Thg ODMG standard includes an Oi)ject Mode}, an -Objecf Definition language, an
Object Quéry Language (OQL), and Language bindiﬁgs to C++, Smalltalk and Java.
The object model in the ODMG standard is built ul.)on the Object Management Group
(OMG) standard [OMG97] which provides a common architectural framework for
object-oriented éf)plications.‘ The standard also involves other existing sté.ndards, e.g.,
SQL-92 and ‘the ANSi 'programming language standards to define a ﬁ'amew'ork for
application portability betweer.1 object database sy;stems.. In this section, we briefly
discuss the query languége - OQL. For é detailed introduction of the.sta.nda.rd ODMG

2.0 please refer to [CATELL97].

In an effort to provide a query language for object databases which is similar to the ail
familiar relational query language SQL, OQL isv defined asa standard query langgage
for _ object-oriented databases. OQL is an SQL.like high level declarative query
language that provides a rich environment for the efficient query of database objects.

The OQL is a. superset of the SQL-92 SELECT syntax. Therefore most SQL

70

Chapter 4 Database Views and OQL

SELECT statements can be used in object databases. To take the compatibility issue
between the two query languages one step further, the ODMG is working with the
ANSI X3H2 committee, which is defining the SQL-3 standard, with the aim of

converging OQL and SQL-3.

To handle objects in object databases, OQ.L also includes object extensions that
include: object identity, complex objects, péth expressions; operation invocatiort and
inheritance. To maintain the encapsulation of the object data model, OQL does not
define any update operator but tlses update operations defined on- database objects.
An OQL SELECT statement will return a collection of objects with or without object
identitie‘s depending upon the way the query is specified. Should the query retutn

objects with their identity, the user can then invoke operations defined for the object.

An object database view is not defined in the latest ODMG standard ODMG2.0
[CATELL97]. One of the aims of this:thesis is to. deﬁne an object-oriented view that
uses _OQL as part of its view deﬁnition and to explore the gdva.ntages o'ffered' by the
richer semantics of object data model. In the relational world, a view is a query. In
the object-oriented world, howeve_r, the situation is much more intricate because of the
more complex model employed. We ‘d‘eﬁned an object-oriented view which consists
of a type and a query. The type defines the intent of the view and the query specifies
the extent of the view class. The design andimplementation of our view model will be

discussed in Chapter 7.

71

Chapter 4 Database Views and OQL

4.4 A Model of a View Mechanism

44,1, The aims of the Model

Earlier in this thesis particular problems and requirements of a design environment
that support object versioning were identified and discussed. Now we describe a view
fnodel designed specifically to support desigﬁ activities in an integrated design .
environment. We 'd.eveloped a view mechanism with the following explici.t objectives

in mind:

e To provide a flexible mechanism capable of supporting design interactions at
different levels of abstraction that are suited to the individual designer’s needs and

support cooperative design activities in an integrated design environment.

e To provide facilities that allow users to tailor the design environment in a

controlled fashion to suit a designer’s individual requirements;

e To use the view mechanism as a management tool for controlling access to design
data by restricting the data that each user can access, and by explicitly defining

operations that different groups of users can perform on particular data.

e To use this model to assist the integration of new tools into a design environment
by providing abstract interfaces through which such tools can access design data in

a design environment.

72

Chapter 4 Database Views and OQL

e To use the view as a mechanism that facilitates controlled information sharing
between teams of designers, maintaining the integrity of design data and also

provide a unified versioning framework throughout a design environment.

4.4.2. The View Model

To achieve the above.objectives in our view model, we cannot limit ourseives to
- existing view appi'oaches. New objects are needed to provide the extra modelling
power required by .design environments'. Meanwhile we want to maintain the
convenienc_:e of an object preserving view where the user does not néed to worry _ébout ,
éreating‘a view object schema and view updates. Therefore, it is our intention to
combine both dbject—generating and object-preservfng strategies in our iview model in
order to achieve the maximum flexibility requiréd" by an integrated design .

environment. The definition of our view mode (ﬁgure 4.2) is composed of two parts:

. A view schema deﬁpition. This specifies the schem?. for view objects. The ﬁsers
can either use eﬁsﬁng base class objects as view objects,.i.e. an object preserving
view, or they cah define a new schema for a view class. A viéw schema is defined
ih the same wéy as its base class. This will invoke new objects being generatcd by

the view class. The view schema specification defines the intent of a view.

73

Chapter 4 Database Views and OQL

o A view query definition. This specifies the condition whereby the base class
objects can be selected to initialise view objects. The view query definition defines

the extent of a view class.

View Model

View schema specification

View query Jdefnition

Figure 4. 2 View Model definition

The query language, OQL, usea to .define the éxtent. of our view is not
computationally complete. Therefore, it is difficult to use it to define a view object’s
behaviour without extending the query language. The advantage of separating the
deﬁnition of view ‘intent and extent is that it allows the user the freedom of using
either existing objects or (':reat'mg new view objects, should the user need it. The
'gener_ateci view objecté are ‘deﬁned just like any other base classes in the détgbase.
_ Therefore, the objects behave exactly like any other database objects such that we can

take full advantage of the richer semantics provided by the object-driented data model.

The view query decides the number of instances in a view class. The view schema
definition decides the characteristics and behaviour of view objects. The view

designer may choose to use an existing schema as view schema. In this case, no new

74

Chapter 4 Database Views and OQL

object is created by the view class. This is called an object-preserving view. In an
object-preserving view, there is no need for the view designer to specify how to
update the base object through the view as the view object is the same as its base
object. If the application requirements cannot be met directly by base objects, the
view designer can define a new schema for the view class ‘which uses base class
objects to instantiate view objects. In this case, new objects are .generated by the view
class. The new view' objects are not stored in the database. They are dynamically

created when accessed. Therefore they reflect any changes in the base objects.

For .the object generating view in our model, while designing the view schema the
user needs to specify hov.v to instan_tiate view.objects from baée objects. Every view
object maintains the object identifier of its base object. This will allow §iew updates
to propagéte to the correct base object even if the view objects have more than one
base objects. The. view designers can explicitly define update methods for view
classes by specifying which base object need to be updated for a particular update
operation. Figure 4.3 shows tﬁe relationship between tﬁe view object and its base

objects. -

— -

-~ View Object™~,
base oid 1)
. baseoidj /

Base object i
- Ibs

Base object j

\

S~ -

Figure 4. 3 Relationships between the View Object and its Base Objects

75

Chapter 4 Database Views and OQL

4.5. Summary

In this chapter we presented a taxonomy of view. semantics. The taxonomy specifies
the full semantic requirements f'or a view model. The .pros and cons of an object-
generating view and an object-preserving view Were discussed. We developed a vig:w
model which consists of two separate definition schemes that allows the model take
full advanfage of the object-oriented data model and gives us the freedom to choose
either an object-preserving or an object-generating view iq -a single view model. To
achieve logical data independence, the view class is orthogoné.l to the base class
inheritance hierarchy. We conter-ld that that our view model is able to attain the

objectives stated earlier in this section.

Data encapsulation is maintained in our view model to ensure that other user special
requirements, €.g. version management, will not be violated by a direct query update

as in a relational view.

76

Chapter 5 Materialization of Object-Oriented View

Chapter 5 | Materialization of The Object-Oriented
View

The object-oriented paradigm provides a more powerful view model than its relational
counterpart. From the discussions in chapter 4, we can see that the object-oriented
view model can be used as a suitable means to provide multi-level abstractions in a
design environment. Views. have been recognized as an eﬁ'ectiv.e mechanism to

virtually restructure the database schema [ABITEBOUL91, BERTINO92].

In relational dat'abases,-views are typically defined by stored queries.' Each ﬁr_ne a
query is issued against the .ex.tent of the view, it is translated into a query against ﬁe
view’s base tables [DATE95]. Although object-prierited views differ from relational
viéws, they will still inevitably impése some performancé ovefhead because of the

recomputation involved upon accessing the view.

5.1 Introdbction

View materializationkhas long been uéed by the relational database community as a
means of performance enhancement. Materialized views store the extent of the view
in the database as opposed to recomputing them upon demand [Gupta93]. One of the
basic fequirements of views, whether they are materialized or not, 1s that they must

reflect changes in its base classes. . This means that view objects must be consistent

77

Chapter 5 Materialization of Object-Oriented View

with their base class objects. This requirement presents a challenge to jmaterialized

views, as their instances are physically stored in the database.

The objective of maintaining a materialized view is to keep the view objects
consistent with their base Qlass objects with the least maintenance overhead. The
maintenance overhee;d includes the re-evaluation and re-materialization of the
materialized views Qhen inconéistency between a view and its base oécurs. The
question to answer is when to evaluate and how much to update? Many_technjques for

improving the efficiency of relational view mainienance have been reported in the

literature [LU95, GUPTA93, GUPTA95, PIROTTE94, STAUDT96, COLBY96].

Although the obje_ct-oriented déta model is different from the relational data model,
we can still learn some view maintenance techm'qu(;:s from the relational database
community. Currently materialized object-oriented view have not received much
attention from object database community. MultiView [KUNQO95a] is the only object-
oriented view model that we have come across, discussing the issue of object view

materialization.

View maintenance techniques are classified into two categories depending upon when
the view is refre'shed. If a view is refreshed within the transaction that updates its
| base, it is called immediate view maintenance [COLBY96]. Otherwise, a view can be
refreshed periodiczﬂly or on-demand.when .certajn conditions arise. This is called
deferred view maintenance or lazy view maintenance. The immediate view

maintenance approach increases the overhead of updating the base as the view needs

78

Chapter 5 Materialization of Object-Oriented View

to be updated at the same time. This overhead increases with the number of views and
their complexity. On the other hand, deferred view maintenance may increase the
view access time. This occurs when views are accessed. Each view object has to be
checked against their base objects or even rgcomputed if necessary to maintain view-

base consistency.

5.2 Object-oriented View Materialization

The view mechanism offers greater flexibility in organising schema and managing
. data in database systems. Each time a vigw is accessed, its extents will be re-
computed. The recomputation process ﬁll induce some performance overhead. View
materialization is a well-known optimization technique in relational database systems
[HANSONS87]. View materialization is used to store the extents of a view class in a
database. Because the view extents do not need to be combuted upon access, acéess to
: materialized views may be substantially faster than non-materialized v’iews..However,
we must maintain the consistency between the view, claés and its base classes upon

updates to bases.

MultiView [KUNO95a] supports view materialization in object-oriented databases.
MultiView uses an object slicirig techniquc;, [KUNQO95b] to define its object datél
model. MultiView adopts an object-preserving approach where view objects are the .
same as base objects. In MultiView, each object is composed of two parts: a
conceptual object that decides the type of tile object, and an implementation object

which is used to represent an object’s membership in a class. An implementation

Chapter S Materialization of Object-Oriented View

object can be associated with more than one conceptual object. Therefore, an object
can gain membership to more than one class which means that an object can gain or

drop a type dynamically.

In [KUNO95a], view-class consistency upon update is achieved by propagating
updates to both the base anci view class at the same time. This is basically an
immediate view maintenance strateéy. To échieve this simultaneous update to botil
base and view class each view class is registered with those base classes whose
updates might affect the view class. When a base class is updated, its registration
table will. be processed. Every view class that has an entry in this table will .be

updated as well to maintain the view-base class consistency.

As pointed out earlier in this chapter, the immediate view maintenance incurs an
update overhead when each view class is i)rocessed. Although view materialization is
based on the assumption that the materialized view will be used, it may hai)pen that a
view is not accessed between two updates to a_base class. In such a circumstance, the
update overhead is not justified and is not necessary. The MultiView view
maintenance approach is based on the so called objeét-slicing technique where an
object can gain or drop a type dynamically. Therefore its materialization approach

cannot be applied to other obj ect-oriexited data models.

[CARNDUFF93, KEMPER94, KEMPERO91] presents a strategy for function
materialization in object database. We believe function materialization can be part of

view materialization as a view designer may decide to add an attribute in the view

80

Chapter 5 Materialization of Object-Oriented View

class to store the value returned by a base object function.l [KEMPER94,91] exploits
object encapsulation in his strategy where objects can be updated through a designated
channel. Associated with these update methods are triggers which will invalidate the
materialized value. A table is created to keep track of the relation between an update

method and a materialized function value.

In [KEMPER%94, KEMPER91] the user can choose either immediate or deferred |
maintenance. However, extra effort and overhead are'needéd to maintain the update
table which is crucial to the maintenance of materialization. The table will inc-;vitably
grow larger when many materializations take place and the maintenance ove;rhead will

increase.

5.3 Object Identity and View Materialization

In this section, we present our view materialization technique for object-oriented
databases. Our object materialization strategy enables efficient view maintenance and
is not specific to any pérticular object data model. Thus it can be applied to other

object-oriented data models.

Efficient view maintenance is ,achieved by incremental maintenance [GUPTA93], in
which only the changed base objects are evaluated and computed? without extensive
evaluation énd full recomputation of the whole view class. View - maintenance -
happens only when base class object updates occur. When an update on base classes

occurs, we need to know which object has been updated so that the appropriate view

81

Chapter 5 Materialization of Object-Oriented View

object will be refreshed. It does not affect the base class in any way, e.g., the base

class update method does not need to trigger any function.

We adopt the deferred view maintenance approach where views are only re-evaluated
on-demand. The benefit of this approach is that people do not use the view will not
‘pay any penalty, i.e., those not using view will not haveto worry how to keep them up

to date.

Updates to base classes have considerable impact on the performance of materialized
views.. To minimize the irnpact’ on performance of materialized views: on the one
hand we adopt an optimized view materialization technique whereas on the other hand
we only want to materialize those views whose base classes are in a stable state, e.g.,
ﬂot subject to frequent changés. Transient versions in our object database are
considered to be unstable and subject to frequent update operations. We make the‘
restriqtion that only those view: objects based on working ver_sions and released
versions can be materialized. This limitation means that sometimes our

materialization is a partial one.

5.3.1 Taxonomy of Base Class Update Operations

When update operations are'perf(')rmed on a view’s base class, we would like to know
how it affects view objects based on'it. However, update operations on a view’s base
object do not always have the same effect on the view class: For example, we define a

view ‘luxury cars’ which has the extent of all the cars valued over £20,000. Now

82

Chapter 5 Materialization of Object-Oriented View

suppose two update operations are performed on Carl and Car2. We increase the price
of Carl from £19,000 to £20,500 and reduce the price of Car2 from £21,000 to
£19,000. Carl was not in the view class. After the update Carl is inserted into the

view class, while the effect of the second one is to remove Car2 from the view class.

We classify update operations into the following ;:ategories and discuss what effect

these operations have on the view class:

¢ Insert: this operation adds new instances into the base class. If the newly added
objects meet the view quefy prédicatc then another insert operation will be

performed on the view class, otherwise, no action will be taken.

e Delete: this operation removes an instance from the base class. If this instance was
involved in the view class then it is removed from the view class as well,

otherwise, this operation has no effect on the view class.

e Set: this operation updates the value of the base class attribute through the updéte

method of the class. We may classify base class attributes into two categories:

(). relevant attributes are those used as part of the view class properties or as part.

of the view query predicate, and

(ii). irrelevant attributes, e.g. base attributes projected out in the view. -

83

Chapter 5 Materialization of Object-Oriented View

e Promote: version status plays some role in our view materialization. We stated
that view objects based on transient versions cannot be materialized. If the transient
version is promoted to a working or released version, then we need to insert it into

our materialized view class.

If the updated attribute is a relevant attribute then the following scenario will lead
to different operations being performed on the view class depending on the
attribute’s role in the view:

(i) If the attribute is part of the view property then this view object needs to be

re-materialized.

(ii) this attribute is used as part of the view query, if its value does not cause the
view predicate to become- false, then the change will be propagated to the view -
object, otherwise, the corresponding view ohject will be inserted/deleted from

the view class.

For the irrelevant attributes, as its name suggests, these attributes are not involved
in the view class in any way, therefore, changes in these attributes will have no

effect on the view class.

In [CERI91] all the update operations on the base relations that affect the view are
translated into insert/delete operations. Since our view model is object-generating, if
we adopt the same.approach, the object ids of the affected view objects will change

which is undesirable.

84

Chapter 5 Materialization of Object-Oriented View

We have the restriction that only view objects that are based on working versions and
released versions can be materialized for performance reasons. For these two types of
object versions, updates will create new vérsions rather than changc the bésc version.
Therefore, the set operation is not considered in our view main';enance. In our
database, only the delete and update operations are considered on the base classes and
they are translated to an insert/delete operation on the view classes of the materialized

view.

5.3.2 The View Maintenance Manager

A view maintenance manager (VMM) has been develop‘edlto' act as a mediator
between view classes and their base classes in order to maintain their consistency. A
VMM keeps information about views and their base.classes in a database. When a
view ig created, it registers with the view manager together with its asséciatcd basc

classes.

- The base class has a flag indicating whether a view has been derived from it. The base
class will send a 'message to the VMM when an update operation occuré‘-if the view
flag has been set to true. The message contains the information of the base class id,
the ﬁpdated object id, and the type of update operation. If thé updated base class id is
registered in the VMM as an associated base class, the VMM will keep that

information, othcrwisc the. VMM will sct the view flag in the base class to false.

85

Chapter 5 Materialization of Object-Oriented View

Generally thére are two different materialization strategies for the timing of view

updates:

e Immediate mode: the view update will be carried out immediately after a base class
update.

o Deferred mode: the view update will only be carried out when it is required.

In the immediaté mode, a view is kept consistent with its base class all~the time. An
update to the base class will trigger the update operation on the view. Therefére
whenever we access the view, we know it is consistent with the base class(es).. This
will improve the performance of the materialized view access. However, the
immediate mode will increase the update overhead to base classes as thé system needs
to not only update the base class objects, but also update all the view classes that_ are

affected by the update.‘ '

In the deferred mode, the update view will 6nly be carried out when the view is
accessed. The disadvantage of this approach 1s that coﬁsistency evaluation must be
carried out before the view is accessed; or even worse -it may be necessary to re-
materialize the view if an inconsistency is found. This will hamper the perforrﬁance of

view access.

Different materialization strategies perform differently under different situations.
[BOTZERY96] has a detailed discussion of when to use which materialization strategy .
for functions in the object-oriented data model. For the framework we have set up for

our view materialization, we believe the deferred materialization mode is more

86

Chapter 5 Materialization of Object-Oriented View

appropriate to our application domain as it achieves the balanced of performance for

both view classes and base classes.

In our deferred mode, the view will interrogate the VMM upon being accessed to
check if any of its base classes have been updated. The type of corrective action taken
will depend on the type of' update operation on the base class, as discussed above.
After a view update, .the corresponding message will be rerﬁoved from the VMM to
avoid redundant update operations on the view. Figure 5.1 shows the structure of the

VMM.

View Maintenance Manager

change

" messages check

changes

Base Classes —|_' View Classes h
|
| |

Figure 5. 1 Structure of VMM

Because a base class may be involved in more than one view deﬁnition, we keep one
copy of the change notification in the VMM for each view class to avoid possible

inconsistency between view classes and base classes.
The view manager provides an incremental maintenance of the materialized view in-

an engineering database. It enables the view maintenance be carried out at the object

level instead of class level. Although we limited our view maintenance only to

87

Chapter 5 Materialization of Object-Oriented View

insert/delete operations, our materialization strategy can easily be extended to cover

the situation where an attribute update is required.

5.4 Summary

The view mechanism offefs greater flexibility in organising schema and managing
data in database systems. However, view classes are éomputed upon access. This
_incurs performance overhead - on views. The materialized view is seen as an
optimizgtion ‘method 'which can improve the performance qf views. The great
‘challenge in view materialization is to maintain the materialized views consistent with

its base when the base is updated.

We have presented a view materialization strategy that is applied to a design (_iatabase
‘where objects in the database may be vr;rsioncd. -The application of versioning
.impli;zs that objects in the database may endure frequel.it' chz.mges. For view objects
freciuent - updates to basé classes will greatly decrease the benefit of viéw
materialization. For optimal performance of our'materialized vi.e‘ws, we only allow

view objects based on working versions and released versions to be materialized.

To facilitate the incremental maintenance of materialized views, we introduced a view
maintenance manager to mediate between view classes and base classes. The view
maintenance manager approach enables us to transfer the task of maintaining

consistency from base class to the VMM. Our argument is that the base class designer

88

Chapter 5 Materialization of Object-Oriented View

does not know which view will be using the class and it should not the base class

designer’s responsibility to maintain consistency.

Unlike the MultiView approach, our approach is applicable to other general object-
oriented data models. Because of the framework of our view model: we limited the
update operation on the base class(es) to insert and delete, we discussed‘the impact of
modification on base 'class attributes and we believe the function of the VMM can

easily be extended to cover such update operations.
The VMM allows view maintenance to be carried out at the object level instead of the

class level. This avoids extensive re-evaluation and re-materialization which can

improve the performance of the materialized view substantially.

89

Chapter 6 Views in Integrated Design Environment

Chapter 6 Views in Integrated Design Environment

Object-Oriented views provides a powerful re-structuring tools for design
environments. In previous chapters, we presented a view model that is developed for
design environments. In this chapter, we will discuss how to usé our view _m(;del to
provide a flexible design environment and we argue that object-oriented views

provide a powerful technique for configuration management.

6.1 Introduction

In a product development environment (e.g. software development) ,- engineers
normally work in groups. These engineers cooperate with each other in order to
achieve the products desigﬂ goal. While at the same time, they need to work on their
own un-iﬁterrupted by other team members. Normally databaée_s are used support
design activities at different levels. When engineers are working on a product, not all
the information of each individual’s work is relevant t.o other people on the team. One
team’s désign data may not be relevant to another team. For tﬁese reasons, there is a
need to divide a design database into different partitions. Now.the research
community come to consensus that three levels of workspaces provide sufficient

support to design -activities. [KIM95]..

90

Chapter 6 Views in Integrated Design Environment

Object versioning provides the ability to keep track of an object’s evolution path. A
complex object is composed of simpler component objects. For cbmplex objects, a
configuration management tool is need to help designers to choose correct component
objects. The role of conﬁguraﬁon management is more complex in a version capable
. environment. A4 configuration is created by composing the system from its
components and selecting individual component versions such that the resulting
systems is consistent [ZELER9S5]. Although the user may get an object witiwut
specifying a version number, e.g. through default version, it is desirable thgt the user

is able (o selecl a particular version of an object to confligure a complex design object.

Object-oriented views can be used in conﬁgurati(_)n management to identif-y the
appropriate component object throﬁgh query predicate. Query languages are generally
more expressive than other means of selection use;d by. other configuration
management tools. In chapter 4, we have presented an object-oriented view model
that can be used in configuration of a complex object. We will show in this chapter

that our technique offers a flexible mechanism towards configuration management.

6.2 Object Versions ahd Workspaces |

Versions are distinct snapshots of a design object in different states [AHMED91b].
Version management involves the definition of .versiohed objects, version
identification and organization, and ope;ations for creating new versions and
retrieving existing versions. Object versions are organised in version space. A

version represents a state of an object during its evolving process. Each version

91

Chapter 6 Views in Integrated Design Environment

within an versioned object, must have a unique version identifier. There are many
ways of naming a version, we adopt the one that use consecutive integers as our

version identifier. Detailed semantics of versioning has been discussed in Chapter 3.

6.2.1 Partition of Design Database

Our database system is partitioned into thrée workspaces, i.e. private workspace,
project workspace. and public workspace. The privafe workspaces are managed by
individual designers .and project workspaces are associated with each projects. The
public workspace is where all released versions are located and can be accessed by

people from different projects.

In [CHOUS6] the priyate workspace, project' workspace and 'pubiic workspzice each
maintains théir separate versioning system. The version numbers of a design artefact
are independent of each other in different workspacés although they are versions of
the same objéct 1n different workspace. The .separ%.ne \./ersioning séheme' in different
workspaces introduces added complexity into version maﬁagement and may introduce

inconsistency between versions in different workspaces.

In the separatc vcr_sibning scheme, the uscr has to assign an appropriate parcnt version
to an object version when it is checked out oﬁe workspace and checked into‘ a new
one. There is not any rﬂechanisﬁ in the database @t ensures appropriate pérent
vefsion is assigned to the object version. This provideé a chance of introducing

inconsistency into the object’s evolution history.

92

Chapter 6 Views in Integrated Design Environment

As most engineering artefacts are complex objects, these complex objects have
references to other lower level component objects. There are two ways that a complex
object can be bound to its versioneci components: static and dynamic. Static binding
means that the reference to a component object is bound before any object is accessed,
e.g. the full path name is included. Dynamic binding means component binding is

only performed when the component object is actually accessed.

Because of the separatién of workspaces, the binding of an qu ect version requires not
only its version number but also the name of the Workspace it is located in. In
[CHOUS86] a triplet of <object name, wofkspace name, version number> is used to name .
a version. The separate versioning scheme .uséd in [CHOUS86] means that when an
object migrates between workspaces any static references it has to other component
versions have to be converted to new static referénces that is meaningful in the new

workspace.

6.3 Unified Version Management

We have developed a unified version management mechanism thét allows efficient
and consistent version management thrbughout tﬁe workspaces in a design
environment_. Consistent version numbers are used for versions of a versioned object
throughout different workspaces, i.e., an object version maintains its version number

no matter in which workspéce' it resides. We also unified 'the version éraph in
different workspaces which means integrity of an object’s version history is

maintained.

93

Chapter 6 Views in Integrated Design Environment

The Version Maintenance Manager(VMM) that allocates version numbers and
maintains version graph is located in public workspace. This arrangement facilitates
the share of designs between different projects and it also allows supervisors to

examine the entire version set without being confined to a particular workspace.

Each workspace has virtual version graphs which are database views on the main
version graphs in public workspace. The private workspace version graph refers to all
versions developed by the workspace owner. The project workspace version graph
has all the working versions designed by the project team and the public workspace
version graph includes all released versions which may be released by different
project team. Figure 6.1 to Figure 6.4 illustrate the structure of version graphs in

different workspaces.

Version 1

Transient Version

Working Version

Version 2 Version 3 Public Version

Version 4 Version 5

Version 6 Version 7 Version 8

Figure 6. 1 Main Version Graph in Public Workspace

Figure 6.1 shows a main version graph for a versioned object in public workspace. It

contains the complete version derivation history for the object. Because all new

94

Chapter 6 Views in Integrated Design Environment

versions are generated from private workspace, the private version graph contains all

the versions created in this workspace irrespective of their current states in the

environment.
Version 1
Transient Version
Working Version
ersion 2 .)
Public Version
Versions developed by
C y the workspace owner
Version 6 ersion

Figure 6. 2 Version Graph in Private Workspace

Figure 6.2 shows a version graph in a private workspace. This is a virtual version
graph. It is defined by a database view on the main version graph for the same object
with all the versions developed by the workspace owner. These versions may be in
transient states or working state. The ovals in the diagram represent versions

developed by the workspace owner.

Version 1

Transient Version

ersion 2 Version 3 Working Version

Public Version

Version 4 Versions developed by
the workspace owner

Version 8

Figure 6. 3 Version Graph in Project Workspace

95

Chapter 6 Views in Integrated Design Environment

The version graph in project workspace (shown in Figure 6.3) is also a database view.
This view is based on the object’s main version graph with all the versions in working
states. As shown in lc, version 3, 4, 8 are not in the private workspace shown in

figure 6.1. These versions are developed by other designer working on the project.

Transient Version
Version 1 Working Version
Public Version

O Versions developed
by the workspace
owner

(“VersionT) Version 8

Figure 6. 4 Version Graph in Public Workspace

Figure 6.4 illustrates the version graph for public workspace. It has only released
versions. A released version may be created by another development team working

on a different project.

In our version model version 1 is the root version from which all versions of an object
are derived. If version 1 is not included in figure 6.3 then to the users of the public
workspace that version 2 and version 8 are not unrelated. In such a circumstance
some semantic information is lost during the conversion process. To avoid the loss of
semantic information in a unified version graph, version 1 is always included in all
version graphs. If version 1 is not visible in a particular workspace, it will not be
accessible from the version graph in the workspace. Ifthe users have to create a new

version graph in the public workspace as described in [CHOUS86], then they would

96

Chapter 6 Views in Integrated Design Environment

face a very difficult decision on how to relate version 2 and version 8 in their version

graph.

As can be seen from figure 6.1, version numbers in different workspaces are not
neqessan’ly consecutive. In a version model, version identifier represents the partial
time order of creation of each version. These version identifiers in our environment
still rcﬂectvthe partial orders of these versions, i.e., no semantic information is lost
during the unifying process. Using uniﬁéd version identifiers means that only one
version manager 15 needed for each object in the develop environment. This will
make our version management less complicated than that of Chou’s. = More
importé.ntly all the versjons majﬂtain the intrinsi.c relatioﬁships with their parent
versions. We say an object version x is a parent version of vefsion y if there is a path

from x to y in the version graph of the object.

6.3.1 Version Names

In our version model, integer numbers are used as the version identifier. Versions are
éssigned consecutive integers in the order of their creation. As there are various levels
of workspac';es in our dévclopment envﬁonment, an object’s name and its version

identificr may not providc cnough information to locatc the object.
We use a name tuple <workspace, version number> to identify an object version in our

environment. The workspace indicate which workspace the version is located. The

version number is the version identifier of the object version.

97

Chapter 6 Views in Integrated Design Environment

6.3.2 Object Version Migration

As unified version identifiers are used throughout our database environment, when an
object version migrates from one workspace to another, the only information that

needs to be updated to keep object references meaningful is the workspace name.

The workspace @ne' and ‘it.s category can be updated automatically when the object is
checked into a.new Workspace. Because an object in the lower category workspace
may reference objects iﬁ the higher category workspaces, e.g., an object versio:n ina-
private workspace has reference to a component version in a project workspace, if is

not always necessary to update the reference to a component.

For example, a version of Car object in i)rivate ‘workspace has references to a version
of Engine objept and a version of Bodywork objept (Figure6.5). The Engine object
version is a worl;ihg ve;r.sion aﬁd is loca;ted 1n a project workspace. In thls exémple,
the designer who is working on the Car‘ object happens to be working on the
B;o.dywork as well. The version of -Bodywork object,.tilcrefore, is also in his/her

private workspace (figure 6.5a).

When the designer decides to release the version of Car object into the project
- workspace, the referenced Bodjrwork object version needs to be released as well.
When the Car object is checked into the project workspace, the Bodywork object

version is also released into project workspace and the reference from the Car object

98

Chapter 6 Views in Integrated Design Environment

version to the Bodywork object version has to be updated at the same time. Since the
Engine object version is already in the project workspace, this reference to the Engine

object version will remain unchanged (figure 6.5b).

. . -
S i ——
— |
t Car |) S b ! ,
T T |
| V Bodywork 1 Engine Bodywork Engine
Private database Projecf database Private database Project database
a). Object references before migration b) Object references after Migration

Figure 6. 5 Object References during Object Migration

Unified version management in a multi-level vyorkspace eqvironment provides
consistent .ver‘sion identifiers throughout the whole environmept without further
complicating the fnanagement of version identifiers. "Consistent version evolution
history is maintained in all the partic'ipating. workspaces. The use of database views
for version graph in project workspace and public workspace provide up to date
information about the changes in these workspaces and no extra work is neededfto

maintain separate version graphs in project and public workspace.

6.4 Configuration Management

A complex object comprising a set of components is configured by selecting a version

for each of the component objects that constitute the complex object

99

Chapter 6 Views in Integrated Design Environment

[AGRAWALS9]. If any of the component has been modified, the database needs to
react to the changes that have impact on the complex object. Version management
defines the object to be versioned, version ideﬁtiﬁcaﬁon and organisation, as well as
operations for retrieving existing versions and constructing new versions
[CONRADI96] while configuration management is the art of selecting and controlling

modifications to a complex object.

Conﬁgmation management allows a user to specify alternative configuration of a
comple;(object through the selection of appropriate versions of its components. A
configuration can be specified and constructed by descriﬁing a set of desired
attributes.. The attribute can be a version number that is associated with each of the

versioned object.

6.4.1 Views in Configuration Management

Tradition conﬁguraﬁon mgﬁagement uses version label to select components for a
comple)i object (as discussed in Chapter 3). This approachlhas limited expressive
power as in many circumstances the user might want to use selec.tion criteria other
than version nurﬁbers. We see that a database view'as an ideal tool .for. selecting
component objects in a configuration management as 'it uses query language, e.g.,
OQL, to define the selectioﬁ <':riteria. Query languages are more expressive than other

means of selection.

100

Chapter 6 Views in Integrated Design Environment

We have developed a view model that supports configuration management in a design
environment. It provides a flexible approach towards complex object configuration.
The use of database views not only facilitates the selection of components but also

allows us to adapt the complex object towards new user requirements.

For example, m a design object Car has components Bodywork an(i Engine as shown -
in figure 6.5. The designef w;cmts to try a version of Engine from anot‘her source. The
Engine object may be belong to aldiffefent abstract data type than the in-house one.
Nc;rmally a new Car object would need to be created to cater the change in design.
With capacity for an augmented view in our view model, the designer only needs to
define the viev‘v object other than creating a new Car object. With thé view approach
the user can use any otﬁer selegtion predicate to choose object configuration that is

. supported by the query language.

The query language.can be used to define a selection criteria which describes a set of
desired features of components versions.‘ The selection ﬁay return an empty set,
- indicating that no component that meets the configuration requirement. ‘The selection
’ may also return more than one versions of a component that meet the ;:onﬁguration.
requirement. When such a case arisés, the user need to develop a mechanism that

allows the user to specify more specific selections to make it unambiguous.

The system has several options when faced with multiple choice of components:
1) Choose one at random;

2) Create the cross product of all possible configurations;

101

Chapter 6 Views in Integrated Design Environment

3) Provide the user with the appropriate operational mechanisms to describe the

desired configuration.

Choice (1) provides a simple but limited solution to- get a single version for a
configuration. Choice (2) will result in exponential explosion of configurations when
faced with multiple éhoice of component in more than one components. [SCIORE94]
allows multiple component for a configuration. Choicé (3) allows the uéer to refine

the query and select a single version from the result list.

6.4.2 Identifying Object éompdnents-

Configuration constraints are rules to check against when a component is included
into a conﬁguratioﬁ. If an object fails its configuration constraints then it means that
the object does not meet the design requirement and its inélusion in the configuration.

will be rejected.

Configuration constraints are conditions specified by desigﬁers to ensure the
consistency of a design object configuration. Our version model allows designers to
specify configuration constraints for lower-level objects.. In our model, it is the
responsibility of higher-level object to ensure that its corhponents meet their

conﬁguratioh constraints.

When a configuration query returns more than one versions of a particular object, the
configuration view will check these objects against configuration constraints. If any

of them fail the test, they will be removed from the result list thus reduce the number

102

Chapter 6 Views in Integrated Design Environment

of available object versions for a configuration. If there are still more than . one
versions for any component, then the user will have the choice to view through these
objects and manually pick up one for the configuration or revise the query condition

to provide stricter criteria.-

If the user chooses to manually select the available component, then the configuration
criteria will be modified to include the selected object’s version number. Thus

guarantee the configuration with one version for each component object.

For a conﬁguration' specification, when multiple versions for a compdnerit are
returned by a query, if Athe user does not ﬁave any preference among these ve;sions,
he/she could simply choose the rﬁbst recent version. This is supported by our view
rﬁodel and the speciﬁcatibn for the configuration will be automatically upd_ated.
Should the designer choose to revise the configuration specification, i.e., the query
condition, we have to go through the above procedure until a single version is

selected.

The view approach is similar to that of dyf;arnjc binding. Selected object versions -
might be different each time the conﬁguratién is accessed. This implies that a
complex object configuration can automatically take advantage 6f new versions of its
components. At some stage, however? the user may need to freeze a configuration.
The frozen conﬁguraﬁon will bgcome a new version of a complex objeét. All

dynamic bindings in the configuration will be converted to static ones, i.e., all the

103

Chépter 6 Views in Integrated Design Environment

selection criteria will change to version numbers that uniquely identify the

components, e.g., configuration numbers.

From the above discussion, we can see that the view approach towards configuration
managemént not only facilitates the users in experimenting. with all possible
co.nﬁgurations but also allows the user to take advantage of latest deve.lopment. On
the other hand it still allows the user to freez;: a particular configuration whenever

needed.

This part of the work has not been implemented due to the limitations of object-
database being used in this project. - The reason POET was chosen as development
tool at the begining of the project was because it was the only object database

available for PC platform and it supports ODMG standard.

6.5 Summary

In this chapter, we presented the unified version management in design environment.
- The unified version management maintains consistent version numbers throughout the
develop environment. Although version numbers in each workspace may not

consecutive, no semantic information is lost during the process.
For each versioned object, only one version manager is needed in the environment.

This reduces the complexity of version management in the environment. The

relationships between versions are maintained even when an object version migrates

104

Chapter 6 Views in Integrated Design Environment

from one workspace to another. We believe our approach provide consistent version
management in a develop environment. The user no longer needs to assign a parent to
a new version when it migrates into a new workspace which carries the risk of

introducing inconsistency.

We argue thaf database views are a better tool for configuration management. The use
of query language in the selecﬁoﬁ of componeﬁts have more expressive power than
the use of version number'liét and can assure the consisfency of the conﬁgﬁration.
Database views provides a more flexible approach towards configuration

management.

105

Chapter 7 Prototype Design and Implementation

Chapter 7 Prototype Design and Implementation

This chapter presents the design and implementation of a prototype for unified version
~ management in a design environment. The prototype includes the versi_on model
presented in chapter 3, the view model presented in:chapter 4 and the architecture of
view rﬁaintainence manager discussed in chapter 6. The prototype presented in this

chapter is simplified as it'is used to demonstrate the feasibility of our design.

7.1 Introduction

The primary objectives of the prototype are:
e Demonstrate the feasibility of our VMM model. There are novel contributions of
the model and it is important to demonstrate that they are actually applicable in

practice.

e A prototype can give some indications of the usefulness of theory used in the
research. The prototype provides a testbed to experiment with various scenarios |

and give some indications of their value.

e A prototype may help to detect possible design flaws in the model. This will

provide valuable feedback to the development of the model. The implementation

106

Chapter 7 Prototype Design and Implementation

may also highlight possible areas of future work and it provides an environment for

experimenting with different design possibilities.

The prototype has several components:
e Version Model pfovides the versioning capability to objects that are derived from
‘versionable classes. It provides functionality for keeping the semantic
~ relationships between versions of an objecf. Ina desién database, a design artefact

is generally multi-versioned.

e View Model is composed of two parts. A view query definition class provides
storage for query conditions that define the extent of a view class and it keeps the
information about which schema to use to initialise view objects. The view

schema definition class, as it name implies, defines the schema for view objects.

e View Maintenance Manager(VMM) provides a mechanism’ for efficient
maintenance of materialized views. ‘The VMM acts as a mediator between view

classes and their base classes to keep them synchronised upon view access.

7.2 The Version Model

The version model consists of three classes: Generic, Descfiptof and
Versionable classes. Figure 7.1 shows graphically the relationship between these

three classes. The Generic class provides the version management functionality for

107

Chapter 7 Prototype Design and Implementation

the version model. There is only one Generic object (List 7.1) for each set of

versions. It will allocate the next available version number to new versions and put

the new version onto an appropriate place on the version history graph according to its

relationships with its base version(s).

Generic Object

Version Graph

version descriptor

N

version descriptor version descriptor

I

versionable

Figure 7.i Class Relationships for Version Model

versionable

— versionable

The version graph is implemented as aiDireét Acyclic Graph .due to the nature of

version semantics. For each version set, there is a default version. The default

version number is stored in the Generic object for easy access. The Generic

object provides methods for creatihg new versions (e.g. merge_versions ()).

108

Chapter 7 Prototype Design and Implementation

persistent class Generic

private:
int last version_no;
int default version_no;
DAG version_history;
public:
Generic () ;
“Generic() ;

List 7. 1 Class for Generic Objects

The Descriptor class (List 7.2)acts as a flag for instances of a Versionable
class. Each instaince of a Versionable class has a corresponding Descriptor
object. The main fuﬁction of a Descriptor object is to hold a flag to ‘indicate '
whether the corresponding Vers ionable object has been deleted. If a Versionable
object has other versions derived from it, it cannot be physically deleted. The flag in
the Descriptor object will stbp new versions being derived from it. It is the
Descriptor object that is actﬁa.lly .stored_ on the version graph of a Generic
<;bject. The reason tilat a separafe deécriptor object is kept on thé ve‘rsio'n graph
instead of the version 6bj ect itself is because thé d;:_scriptor object is a lot smaller than

a vesionable object.

109

Chapter 7 Prototype Design and Implementation

persistent class Descriptor

{
private:
int version no;
bool deleted; //deletion flag

Versionable* ver;
public:

Descriptor () ;

~“Descriptor() ;

List 7. 2 Class for Descriptor Objects

The Versionable object (List 7.3) is at the core of the version model. All classes
that require versioning capability are derived from Versionable. Each

Versionable object has a reference to its generic object.

persistent class Versiocnable

private:
-STATE state; //version state transient, ...
int version no; ' C

Generic* pGen;
public:

Versionable () ;

“Versionable () ;

......

List 7. 3 Class Versionable Objects

The design of the version model allows the user to impose versioning cépability by
deriving their classes from the Versionable class. The Generic class provides the
basic version management scheme. This version model can be easily extended should

the user require more than what is offered by the base model.

110

Chapter 7 Prototype Design and Implementation

7.3 The View Model

For relational databases, a view is a stored query. A view set is returned by running
the query against base table when thé view is accessed. In object-oriented databases, a
view is composed of two parts. The first part is inherited from the 'previous
generation database, as a stored query. The second part is unique to the object daté
~model - the schema definition for the view class. This split of function is due to the
need to define methods for view objects in view schemas. Tile query lénguages such
as O.QL, are not computationally complete. It is very difficult to define methods using
jﬁst a query lm@age. In our view model, the two parts are implemeﬁted as two
separate classes. This approach gives the user greatér flexibility in defining a view.
The user can either define a new view schema or use an exisﬁng schema for their
~database views, which in turn means a view can either be object-generating or object

preserving.

The query part of the view only defines the extent of a view. Because the object-
oriented database stores everything as objects, the stored query part of a view is stored
in the form of an object. It is also possible to tell the database which schema to usé to

populate the view class.

This design of a view model not only provides [ull supporl (o exisling view scmantics
but also enables the user to extend view semantics from those in the previous

generation database. Chapter 4 has a detailed discussion of view semantics. In the

111

Chapter 7 Prototype Design and Implementation

following section, we use several examples to demonstrate how various view

semantics are implemented in our view model.

7.3.1. Example of View Definition

To illustrate the structure of our viéw mode], a few examples are developed to
demonstrate how our view model works. We use _the ’POETTM object database to
implement our view model. The.'POET database is ODMG compliant therefore we
are able to use OQL to define our view query. C++ is the data definition language in
POET. Because' only a subset 6f the ODMG OQL is supported by PQET, the view
model is implemented using query functions -provided by POET. Howevér, the
semantics of these queries is fully supported by ODMG ‘OQL and we use OQL in our

examples to specify our view query definition. .

Example 1: Selection view using an Object-Preserving View
Firstly, we illusﬁate how to c.reate. an object—preseﬁing—view in our view model.
Generally an object-preserving view is used in SELECT view where the view objects
are a ‘subée't of the base objects. This is because SELECT view déeé not need a new
schema for its \.riew objécts since the view object is of the same type as its 'base'

objcets.

112

Chapter 7 Prototype Design and Implementation

//view query definition
class HatchBacks

private:
view_class Car
string query spec =" select car from cars
in all car

where BodyWork=\‘'‘Hatch\’’’’

Activate () ;

List 7. 4 Object-Preserving View in SELECT View

In our example, the designer wants to look at all the cars that are hatchbacks. Because

in an object-preserving view, the schema of the view object is the same as that of base

objects, the schema definition part in this éxample is not needed. The user only needs

to specify that the view class is a set of cars and then specify the query condition .

List 7.4 shows the view definition.

In an object-preserving view, there is no need for the user to create a view schema
definition as it is the same as its base class schema. The view objects share the same

oids as their base objects and the view class contains a subset of objects from their

base class. Thus our approach provides a simplé solution to a selection view.

Example 2: Projection view using an Object-Creating View

In our second example, we illustrate how to use an object-generating view in a

projection view. Suppose, in our database there is a Car class which has four -

" attributes: make, model, engine, and carBody as shown in figure 7.2.

113

Chapter 7 Prototype Design and Implementation

Car: | Elec_Car: |
make basedon ! G~ r_oid !
+-—————+ !

model model :
engine engine |

I
]
carBody |
|
[}

-Figure 7.2 Car Object and Its View Elec_Car

The view Elec_Car is a projection view based on Car. The view class contains all
cars that are powered by electric engines. The user of the view is not interested in the
bodywork of the car so the attribute carBody is projected out of the view. The

definition of the view is shown in List 7.5:

In the view query definition class, the method Activate () is called automatically
to instantiate view objects each time the view query class is accessed. All ﬁethods of
views are defined in schema clas;cs._ As all update operations are carried out through
view meth(;ds instead of query statements we can eliminate the uptiate anomaly

associated with the traditional view approach.

114

Chapter 7 Prototype Design and Implementation

//view schema definition

?lass Elec_Car

private:
oid car_oid;
string model;
Engine elec_engine;

public:
//constructors and methods defined for the view

//view query definition:
class elec_car_ view

private:
view class Elec_Car;

string query spec=""select car
: from cars in allCar
where car.engine.type = .
\'"'Electric\'''';

Elec_Car_Set -view_objects;
public:

Activate () ;

List 7. 5 Object-Generating view in Projection View

.lhmone3:ﬁﬁnlﬁéw

In our third example, we present a join view which combines two base objects to

create a new one. For a join view, an object-generating view is used as semantically a

Jjoin view creates a new type for its view class. Figure 7.3 shows the two base classes,

Engine and GearBox. In figure 7.3 the bold attributes in both base classes are

- used to join two base objects.

115

Chapter 7 Prototype Design and Implementation

Engine: GearBox:
capacity ratio

size . gears
version no jom version_no

config no | »| config mo

Power Plant:
capacity
size

base class

gears
Eversion_no
Gversion_no
config_no

view class

1
]
]
]
1
[}
1
]
]
' rratio
]
]
]
]
1
1
]
]
]
]
1
1

Figure 7. 3 The Join of Engine Object and GearBox Object

In the exa;nple, the result of our join created a new view clas's, Power Plant
which contains the attributes and methods from both base classes. While specifying
the schema for a view class the user can proj_ect out any attﬁ'butes or methods if he/she
wishes to. In tﬁis example, there is a name conflict for vers ion_ﬁo in both classes.
The view designer is respoﬂsible for resolving thg name conflict in vieyv classes. The
config no sééms like a conflicting attribute name as well, but it is used as the

joinable attribute which is treated as a single attribute in the view class.” - The

definition of the view query is shown in List 7.6

116

Chapter 7 Prototype Design and Implementation

//view query definition for Power Plant
class Power_ Plant_view

{
private:
view class Power Plant; .
string query spec = ““select engine, gearbox
from engines in allEngine
gearboxes in allGearBox
where engine.config no =
gearbox.config no;
Power_ Plant Set view_objects;
public: ~
Activate() ;- .
}

List 7. 6 Query Definition for Join View Power_Plant

The similarity between a relaﬁonal join view and an object-oriented join _/iew can be
seen from the query definition. In an object-.oriented view the user has to define the
view schema before any view object can be used, although semantically the result of
the join vic;.w is the same as that of deriving a subclass from both base classes. For

reasons discussed earlier in this chapter, the view classes are part of the inheritance

hierarchy of its base classes.

Ekanqﬂé4:Ekkmdbdlﬁéw

* From the last 3 éxamples, the reader can find corresbonding‘views in relational form.
This next example (figure 7.4), however, is unique to .the' object-oriented paradigm.
An extended view contains attributes that are not part of its base class objects and
f:annot be derived from its base class object attributes. The extended part of the viev;'
is crcatcd as a ncw objcct and storcd in the databasc to cnable the view to be

initialised each time it is called.

117

Chapter 7 Prototype Design and Implementation

Engine:
capacity
size
version_no [Extend Ob7,
config “no Fuel;
""" ObjId masterId

F=—-

Ext Engine:
capacity
size
version_no
config no

* *Fuel

Figure 7. 4 Example of Extended View

The extended part. of the object contains extra attributes, plus' the object Id of its
associated base object in order té guarantee that the extended view is initialised
correctly each time .it is accessed. Since there is no existing schema in the database
which can be used as ﬂ1é view sc;hema, the new view schema has to be specified as in .
previous object-generating examplés. The view query speciﬁca.tion is basically a join
query, to join the basé object oid With the extended object masterId as shown in

List 7.7.

118

Chapter 7 Prototype Design and Implementation

//view query definition for extended view
class Ext_Engine_ view

private:
view_class Ext_Engine;
string query spec=""sgelect englne extend_obj
from engines in allEngine
extend ObJS in. allExtendObj

where engine.oid
= extend_obj.masterId -

public:
Activate() ;

............

List 7. 7 Example of Extended View

Examplé S. Union View

"Union view is quite. straight forward in the Object-Oriented paradigm. From the

semantics of union, the result of a union includes instances of both the classes

involved. The semantic constraint on union means that the resulting class must be the

superclass of both classes taking part in the union. We use a typical college database

to illustrate how a union query is formulated in our database (Tigure 7.5).

University Employee

. Support_Staﬂ"1

.._ ________

Academic dStatt

dmimstrative Staft

"Technical Staﬁ_l

Figure 7.5 Class Hierarchy for Union Example

119

Chapter 7 Prototype Design and Implementation

For a query to concerning support staff, we need the union of administrative staff and
technical staff. The view query would involve putting instances from both classes

into the view class as shown in List 7.8.

//view query definition for union view
class Support Staff View

private: :
view class support_staff

public: 5
Support_ Staff Vview(); '
“Support_Staff View() ;
Activate ()

s

//implementation of Activate method
Support_Staff View::Activate()

//Sets contains all instances of each classes
"Administraive StaffAllSet admin; -
Technical_StaffAllSet tech;

University Employee* pEmployee .

for(int I=0; admin.Get (pEmployee, i, PtStart);
I++)

support_staff.Append(pEmployee);

List 7. 8 Example of Union View

In the above exainpl;e,‘ the viéw class Support Staff could be
University Employee or the user may wish to define a new view class which
would be the super class of Administrative Staff and Technical Staff.
Because POET only supports a subse‘; of OQL [CATTELL97], this example looks -
more like a C++ program than a demonstration of view semantics. This is due to the

limited support of set operations in the veréion of POET we used to implement our

120

Chapter 7 Prototype Design and Implementation

view model. If future versions of the POET were to support binary set operations,

then the above union would look a lot simpler as shown in List 7.9.

Class Support Staff View

private
view_class support_staff
Administraive StaffAllSet admln,
Technical StaffAllSet tech;

string query spec = ~~support_Staff union
tech'’';
public:
Support__ Staff _View() ;
“Support_Staff View();
Activate ()

List 7. 9 Union View in OQL

For Intersection View and Difference View, we had to implément a very crude C++
solutipn to achieve the semantics of these views. The operation basically involves
getting the OID of the first class and then' finding but if it is in the second class. In the
- ODMG OQL the intersection operator is intersect and the difference operator is

except.

7.4 View Maintenance Manager

The main objective of the View Maintenance 'Manager (VMM) is to provide an
efficient view maintenance mechanism for materialized views. Ideally the VMM

should impose no impact on those base classes that have no views based on them. We

121

Chapter 7 Prototype Design and Implementation

have added an extra attribute which acts as a flag indicating whether a view is derived
from it. A simple check on this flag will indicate whether to update the VMM. This
will minimize performance overheads on those base classes with no view derived

from them.

The View Maintenance Manager acts as a mediator between views and their base
classes. For each base class, there will be a list that contains all the view classes that
are based on it (List 7.10). For each list there is a time stamp associated with it

indicating the time of base updates.

class base view list

private:)
Date timestamp;
Cstring base_class_id
List ViewClassIds
public:
base view list();
“base view list();
Add(view_class_id);
Remove (view_class_id);

List 7. 10 View Maintenance Class

Each time a view is accessed, the VMM checks its time stamp against the time stamp
of the base_view_list. If the time stamp in the bése_view_list is later than that of the

view then a re-materialization will occur.

122

Chapter 7 Prototype Design and Implementation

As discussed in chapter 5, this is a very primitive view maintenance approach. A
more elaborate approach is envisaged and discussed in chapter 5 as future work. Due -

to time constraints, only the primitive time stamp approach has been implemented

Using thé VMM, we can implement different view maintenance approaches, i.e.
immediate or deferred. This is achieved by adding a mode attribute indicating
wﬂether tﬁe user wants the immediate view update or déferred. If it ié set to the
_ immediat-e mode, the VMM éan be set to call a method to re-materializé the views. If
it is set to the deferred .mode, the view class will only check its consistency upon view

access.

7.4.1 Implementation of the View Maintenance Manager (VMM)

The VMM has been implemented using Bérland C++ and the POET object database.
.As an earlier version of POET has very limited fupctionality in supporting object
queries and other as;;ects of bbject storagé, w.e _were fércgd to use demoﬁs&aﬁon
versions of POET because this allowed us to take advaritage of the latest functionality

offered in new versions of POET database.

The VMM keeps the view maintenance Llfox‘xnatioil in the database. When a base
class object is being ﬁpdated, the new update message will simply replace thé éld one
if a view class has not been accessed since last base update. When a view class is
accessed, the VMM will re-maferialize it to ensure consistency‘ with its base and

remove the message entry for this view class. At the moment, we have only

123

Chapter 7 Prototype Design and Implementation

implemented a simple message scheme to indicate an update in the base. As regards
future work, the message should contain more infoﬁnation about the base update, e.g.
a list of attributes that have been updated. The extra information would enable the
VMM to reduce unnecessary re-materialization of the view class and thus further

improve the performance of our view model.

7.5 Summary

This chaptef has presented the design and implementation of the main components in -
our design environment. .We have demonstrated. that the whole model -can be
- implemented using an appropriate programming language. However the eﬂ’ectiveness
~ of our model has not been properly evaluated.- Only extensive experimentation with a
large, evolving application could contribute in this aspect as disc;ussed in the nexf

chapter.

124

Chapter 8 Evaluation

Chapter 8 Evaluation

8.1 In'troduction

This chapter evaluates the version and view models in a design environment. The
evaluation considers the achievements of the system. Consider how our models might
be used in a design environment to support the process of engineering development.
The ideal would be (o allow the models to be used in a project of realistic size and
complexit.y, and to investigate their performance in terms of eése of use, physical
performance statistics, and so oﬁ. However, for a proje;:t of this scale, it was difficult
to set up a realistic test environment due to limited resources and time. in the
follqwing sections of this chapter, we compare our work with existing work to

demonstrate that our approach provides better support for design activities.

8.2 Object View Model Development

The view mechanism provides the presentation model for our system. The successful
development of a comprehensive object view model provides a solid foundation for a
ﬂéxible system. Our view model is defined by two separate classes. The first class
defines the schema of a view class and the second class defines the extent of a view
class. This strategy allows the user to either use an existing schema as the view
schema or to define a new view schema. Unlike many other view models which are

either object-generating or object-preserving [ABITEBOUL91, BERTINO92,

125

Chapter 8 Evaluation

HEILER90, SCHOLL91] this view model allows‘the vie\y object to be created either
with a new object id or using its base objects’ id. This means that our view model is
not limited to one view semantics rather it can take advantage of both semantics. An
object preserving view simplifies the view definition and allows direct view updates.
On the other hand, an object generating view allowé an extended view schema to be
defined which gives greater flexibility to the view model. Therefore, our Qiew model

" can provide all the view semantics set out in our view taxonomy.

As in the relational -world, defining object-oriented views involves a query language.
Because the object-oriented data model offers richer semantics, it is natural to expect
(;bject-oriented vi‘ews to offer richer semantics than relational views. Qn the other
hand, the object query language standard (OQL) does not offer any more than a
relational query laﬂguage (SQL). To circumveht this limitgtions -of OQL, two

different approaches were adopted to extend the semantics of object-oriented views.

[BERT91, HEIL91] both only use a query language to define fheir view model. To
overcome the limited. semantics of the existing query language, Bertino extended the

semantics of the query language to provide support for schema changes. [HEIL91]

simply provided a view model that could do no more than relational views.

The other camp [ABIT91, SCHOS1] combine the query language and object data
model to define their view models. As their object data model offers more than the
relational model, object views using the object data model can be easily extended.

The disadvantage of this approach is that it has loses the simplicity of using a query

126

Chapter 8 Evaluation

language to define the schema of a view, and data models must be used as a part of

view schema definition.

[ABIT91] defines his view model with virtual classcs. Instances of the virtual classcs:
are assigned their own Oids. The virtual classes are integrated into the inheritance
hiera:chy of the bas;e classes. Abiteboul incorporates the view into a coherent
framework. There are a few problems with the integration approach. Firstly, it
exposes views to the effects of schema changes in the database. In an inheritance
hierarchy of only base classes, any schemé change is propagated down the inheritance
tree automatically.” However, it is generaliy impossible for a database system to
change a view specification in a view definition to feﬂect schema changes. Secondly,
the semantics of the inheritance hierarchy may bé violated if a view class is placed

‘without first considering its type definition and extent. '

Scholl’s [SCHO91] view model allows yiew updétes which is a desirable feature. in a
view mechanism. The view model is defined using a query language and the type
system for the object data. model. Thé view class .is virtually populated by- the same
objeéts from the base class which means it is an object ﬁreserving view. For this type

of view, it is difficult to modify the behaviour of a view object.’

To overcome the above existing problems associated with object generating and
~ object preserving views, our view model allows the user to specify which one to use at
design time. In the meantime it allows view updates to be propagated to their base

classes regardless of whether new Oids are generated for view objects.

127

Chapter 8 Evaluation

8.3 Version Management and Design Environment

8.3.1 Version Management

Version management involves the management of version ‘creation and .the
relationships between the versions. There is no consensus on when a new version of
an object shéuld be created. [AHME91, BEEC88, SCIO94] proposed to use version
sensitive attributes to control the creation of new versions. A new version is created
when any of the version sensitive attributes have been updated. This approach may

‘automate the process of creating new versions but we think it is too restrictive.

Creating a new version is a complex ‘design decision. To say some attributes are more
version sensitive than others is an oversimplification. if somie version sen.sitive'
attributes are deﬁned,. then a new version is created whenever a version sensitive
attribute has been modified irrespective of the semantics of the change. Deﬁniﬂg
version sensitive attributes also forces the database designer to decide how a new
‘'version can be created at an. early stage in development whjch may later prove to be
.mapprbpﬁate. We argue it i§ mo're appropriate tp lef the applicat.iori user decide when
a new version needs to be created, as it is complicéted design decision. In our version.
model we édop't the a.pproach that the user .decides when to create new.versions.

Sometimes it may be undesirable to automate the version creation process.

[CHOUS86] proposed another approach to solve the problem of version proliferation.

Whenever a component has a new version created, it informs all the objects that are

128

Chapter 8 Evaluation

directly one level up in the configuration hierarchy. The user of the upper level object
then decides if any changes need to be made and informs the object at the higher level.

The change notification approach prevents version proliferation in complex objects.

This approach requires that the lower level object has to maintain a table that lists all
its direct upper level objects. When a component object is being designed, it may nét
have been designed to be us'e.d by the complei object. This means tilat the component
object needs to be informed about its inclusion in the éomplex object and needs to
update the object’s table. This complicates the management of object versioning. We
argue that it should be the cbmplex object designer’s responsibility to check if any 6f
its coﬁponents have been modiﬁed. Sqmétifnes ex}en though the changes at the lower
level object may not have any effect at the. upper level, the designer of the upper level
object still needs to logk into the changes made to the object fo decide whether to
respond to the change. In a dynamic design environment this may mean many
distractions to the designer of the upper level object with a 10t of irrelevant

notifications.

In our version model, insteéd of -making the lower level objéct résponsible for
notifying the upper level object of any change, it is the responsibility of the upper
level object designer to spe;:ify a set of conditions by which to check its componen.ts.
If any of the changes in a component fails to meet any of these conditions then the
complex object designer is ;alerted ahout the change. If the changes in the lower
component do not break :any of these conditions tﬁen those changes will go unnoticed

by the upper level object designer. Because the upper level object designer knows

129

Chapter 8 Evaluation

which parameters in the component are more important to the design, he may target
these by checking on those important aspects of the component object. Imagine a very
complex object with a lot'of components, if any change in the direct components Ieads
to a need to inform the upper level object designer, then in Chou’s system the upper
level designer may spend a lot of time checking all these change notifications,

- whereas, in our model, he works only on meaningful ones.

8.3.2. ‘Design Environment

In this project versioﬁing is viewed from a debsign environment perspective, that is.
how it'is being used in a design environment. We'coﬁsider such a design environment
consists of three levels, i.e. private, project aqd public workspace. Unlike [CHOU86]
where versions are confined to each individual workspace, we prpvidé a globally
consistent view of versioﬁs in a deéign environmént (called wunified .version
management). In CHOU’s approach, when an object checks out of one workspace.
and checks into aﬁotheﬂ it is the user’s responsibility to decide the ¥elationship'
between the new version and existing versions already in that workspace. This can
lead to inappropriafe version semantics being defined in that workspace and there is

no mechanism to prevent it from happening.

Unified version management allows consistent version numbers to be used for
versions of a versioned object in different the workspaces, i.e. an object version =
maintains its version number no matter in which database it resides. Unified version.

management in a multi-level database environment provides .consistent version

130

Chapter 8 Evaluation

identifiers throughout the whole environment. Consistent version evolution history is
maintained in all the participating databases. The use of database views for version
graphs in the project database and public database provides up to date information
about the changes in these databases and no extra work is needed to maintain separate

version graphs in the project and public database.

8.4 Configuration Management

In this project we explored the expressive power of object-oriented views. Views are .
- used to produpe the appropriate version graph in varioqs workspaces. ~We also
explored their use in configuration management.. .The use of database views in
configuration management allows the user to specify a list of configuration criteria in
the query langﬁage instead of using some arbitrary attribute, ‘e.g. version numbers, to
identify a configuration component. In this project, we have developed a. view tnodel
that supports configuration rltanagement. It provides a flexible approach for complex

object configuration.

The aim of our view model is to support complex object cot1ﬁguration management.
The view approach offers greater flexibility than other configuration management '
systems [SCIORE94]. Traditionally freezing a configuration is achievetl by
cqnverting all the generic references to an object into specific references, and
consequently is an expensive operation. A view definition can be specified such as to
achieve the effect of the frozen configuration when needed. Alternatively, view

materialization can be used to freeze a configuration.

131

Chapter 8 Evaluation

8.5 Summary

In this chapter, we have evaluated our project against existing approaches by
considering the following aspects: version model, view model and configuration
management . By considering each‘ aspect separately while béaring in mind the aim of
the -project, we have evaluated them against existing work carried out by other
researchers. By means of these comparisons, we have now demonétrated' that our
project provides a novel approach for version maﬁagement and conﬁguration.

management in a design environment.

132

12 #

Chapter 9 Conclusions and Future Work

Chapter 9 Conclusions and Future Work

In this the final chapter of the thesis we review the work that has been carried out,
demonstrate that the hypothesis has been proved, and discuss the areas in which thé

research may continue in the future.

9.1 1Conclusions

The aim of the research.project was to investigate how object-oriented database could
providé efficient support for cooperative work in an engineering design environment,
with particular emphasis on the use of database views. To achieve the aim of the
research, we have investigated séveral areas including the role of versioning,
characteristics of design ~cilatabases and database view mechanism used as pan of
design database. Through the" inveétigafions, we concluded that object-oriented

database system is suitable repository'for design environment and database views

" allow configuration to be speciﬁéd by a set of desired features. This method expresses

a higher semantic level than the alternative methiod of associating a configuration

number with each of the components of a configuration.
The hypothesis of the research, as stated in chapter 1, is that object-oriented database

systems provide better support for change management in a design environment than

second generation database systems, particularly through the use of database views.

133

Chapter 9 Conclusions and Future Work

Chapter 2 of this thesis presented an analysis of the needs of design environment
through examining version models and configuration management scheme. From this
analysis, the importance of flexible configuration management tool in design

environment was advanced.

A structured repository for recording all design data is at the heart of a design
environment. In chapteré 2, we examined _the advantages of using database systehs in
a design environment and investigated how object-oriented database system could
satisfy the requirements -of design environments. We showed that OODBS profide

better support for design environments than second generation databases

Design activities are intrinsically iterative in nature. In chapter 3 we established the
versioning requirements in a. design context. A version model was developed to-
capture the changes during the evoluﬁon ofa désign artefact that follow during those
iterations. The provision of workspaces and. classiﬁéaﬁon of ‘version states supports
* composite object evolution in a,coopérativel design cont'gxt. We conclude that OODB
can provide ﬂexib.le version control 'that suits the needs .of an engineering design

environment.

In chapter 4, we continued by analysing the 'advantage of using object-oriented views:
in object database in a design environment. A taxonomy of the view model was
presented in this chapter which clearly shows that using object-oriented data model

the object-oriented views offer more to design environment than its predecessors. We

134

Chapter 9 Conclusions and Future Work

showed that object-oriented views provide a flexible and efficient framework for

organising design environments.

View models offers great’ flexibility in organising schema and managing data in
design environments. However, view classes are computed upon access which
imp.oses overhead on view access time. View materialization is seen as an
‘optimization techﬁique which can improve view pedoﬁnmce. In chapter 5, we
presented a view materialization strategy that can be gpplied to versioned objects in a
design database. We demonstrated that view materialization in a design environment

provides an effective configuration management scheme.

Modem design projects are complex as they often require more thaﬁ one person to
work on them. To best support team work in a design environment, the supporting
database needs to be partitioned into different levels. In chapter 6 we introduced the
concept of three-level workspace into our design environment. To achieve a common -
design objective,'it is usually required to put vs;ork of .diﬁ'erent designers together.
This- requires configuration management which will enable. designers to identify

different components of an object.

To avoid the loss of information during object evolution, we developed a-unified
~ version management scheme in the partitioned design environment. The unified-
-version management comhines ohject-oriented vievs-'s vwith our version .model to
provide the designers with a consistent version management tool throughout %.1 design

environment. The unified version management is achieved by using object-oriented

135

Chapter 9 Conclusions and Future Work

views. We demonstrated in chapter 6 that object-oriented views provide a powerful
and flexible configuration component selection scheme for configuration

management.

To demonstrate that our model is achievable with existing programming tools, we
presented a prototype of our model in chapter 7 and in chapter 8 we evaluate the
effectiveness of the model. In these two chapters we have proved that our model does

not only exist on paper but also it can be implemented in a real world scenario.

Having met these objectives we have proved the hypothesis.

9.2 Future Work R

Following on from the work reported in this thesis, there is scope for continued -

research in a number of directions.

Firstly, we only investigated the use of instance versioning m design environment.
Schema versioning is" a pdtential area to support major design changes in. a .
~ development environment. As with objects, class schema evolves as well. Simpfy
modifying a class schema will invalidate all previous instances of the class as class
modification does not support forward compatibility. The ‘combination of i11§tance _
versioning and schema versioning will greatly complicate version management -in

design environment but it also offers better support to iterative design activities.

136

~ Chapter 9 Conclusions and Future Work

Secondly, the partition of workspaces could be achieved logically by using database
views. The logical partition of workspaces would give the database owner greater
flexibility in dynamically control the level of information available to each individual

.and will also enable him to control the level of abstraction to different users.

Thirdly, further investigate how to react to changes in a configuration management.
During a design life cycle,'not only the top level object changes. Component objects
which are referenced by a complex object also changes. The effects of these changes
need to be better understood in order to improve change management in a

configuration.

On the implementation side of the project, a more comprehensive message regime can
be implemented. The message will provide r.nore information on which attribute has
‘been updated. This information would allow the VMM to decide whether the update
will affect any of the view classes based on it. Thus this will further reduce .
unhecessary re-materialization. To fully assess the beneﬁf of view materialization,:a
comprehensive performance metric needs to be established. The result of the metrics
‘will provide an indication on wh_at kmd of changeion base classes will have greater
impact on the performance of materialized views. This information will enable us to

improve the materialization strategy accordingly.

Finally, the view mechanism facilities are made available through a set of C++
libraries, which the user must link to use. Clearly there is a need to be able to define

views using declarative query languages, e.g., OQL, instead of programming

137

Chapter 9 Conclusions and Future Work

language. This will require the extension of OQL in order to support definition of

database views.

138

[ABITEBOULY1]

[AGRAWALS9]

[AGRAWAL94]

[AHMED91a]

[AHMED91b]

[ATKINSONS9]

[BEECHS8]

Appendix Bibliography

Appendix Bibliography

Abiteboul, Serge and Bonner, Anthony
Objects and Views.
SIGMOD Record 20, pp 238 - 247.

. 1991

Agrawal, Rakesh and Jagadish, H.V.
On Correctly Configuring Versioned Objects
Proceedings of the Sth International Conference on VLDB

1989

Agrawal, Rakesh and DeMichiel, Linda G

Type Derivation Using the Projection Operation
Proceedings of International Conference on Extending
Database Technology, pp7- 14

1994

Ahmed, Shamim; Wong, Albert; Sriram, Duvvuru; Logcher,
Robert ‘

A Comparison of Object-Oriented Database Management
Systems for Engineering Applications

Massachusetts Institute of Technology Research Report R91-
12

1991

Ahmed, Rafi and Navathe, Shamkant B '
Version Management of Composite Objects in CAD
Databases

- Proceedings of the ACM SIGMOD International Conference

on Management of Data, pp 218 - 227
1991

Atkinson, Malcolm; Bancilhon, Francois DeWitt, David;
Dittrich, Klaus; Maier, David and Zdonik, Stanley

The Object-Oriented Database Manifesto

Proceedings of DOOD

1989

Beech, David and Mahbod, Brom

Generalized Version Control in an Obj ect-Onented Database
IEEE Transactions on Knowledge and Data Engineering

pp 14 -22 '

1988

139

[BERTINO92]

[BILIRIS89]

[BOTZERY6]

[BRATSBERG92]

[BROWNSS]

[BROWNS9]

[BTSDYRTH92]

[CARNDUFF93]

Appendix Bibliography

_Bertino,Elisa

A View Mechanism for Object-Oriented Databases.
EDBT 3rd, pp 136 - 151.
1992

Biliris, Alexandros
Database Support for Evolving Design Objects
Proceedings of 26th ACM/IEEE Design Automation

~ Conference, pp 258 263

1989

Botzer, David and Etzion, Opher

Optimization of Materialization Strategies for Derived Data
Elements

IEEE Transactions on Knowledge and Data Engineering
Vol. 8; pp. 260-272,

1996

Bratsberg, Svein Erik

Unified Class Evolution by Ob_]ect-Onented Views.
ER 1lth, pp 423-439.

1992

Brown, AW

A View Mechanism for An Integrated Proj ect Support
Environment

Ph.D. Thesis

Computing Laboratory

University of Newcastle Upon Type

1988 '

Brown, AW

Object-Oriented Databases and their use within an Integrated
Project Support Environment.

University of York Technical Report YCS124

1989

Btsdyrth, Svein Erik

Unified Class Evolution by Object-Oriented Views
Proceedings of International Conference on the Entlty
Relationship Approach pp 421-439

1992

Carnduff, T W and Gray, W A

Function Materialization Through Object-Versioning in
Object-Oriented Database

140

[CARNDUFF94]

[CATTELLY7]

[CERI91]

[CHEVAL90]

[CHOUS6]

[COLBY96]

[CONRADI®6]

[DATE95]

Appendix Bibliography

BNCOD.11, Springer Verlag, pp 111-128.
1993

Carnduff, T W

Supporting Engineering Design with Object-Oriented
Databases

Ph.D. Thesis

University of Wales College, Cardiff

1994

Cattell, R.G.G.
The Object Database Standard: ODMG - 93 Release 2. 0
Morgan Kaufmann Publishers, Inc

1997

Ceri, Stefano ahd Widom, Jennifer _
Deriving Production Rules for Incremental View Maintcnance
Proceedings of 17th VLDB, pp 577-589
1991

Cheval, Jean Louis

A Version Model for Object-Oriented Databases
Proceedings of the 8th British National Conference on
Databases . '
1990

Chou, Hong-Tai and Kim, Won
A Unifying Framework for Version Control in a CAD
Environment

. Proceedings of VLDB

1986 -

Colby, Latha S; Griffin, Timothy and Libkin, Leonid
Algorithms for Deferred View Maintenance -
Proceedings of ACM SIGMOD, pp 469 - 480

1996

Conradi, Reidar and Bernhard Westfechtel ,

Version Models for Software Configuration Management
Technical Report AIB96-10

Norwegian University of Science and Technology

1996.

Date cJ :

An Introduction to Database Systems (6th Edition)
Addison-Wesley

1995

141

[DAYALS9]

[DITTRICHSS]

[GUPTA93]
[GUPTA?S]
[HANSONS7]
[HEILER90]

[HEILER91]

[KATZ87] '

Appendix Bibliography

Dayal, Umeshwar

Queries and Views in an Object-Oriented Data Model
Proceedings of the 2nd International Workshop on Database
Programming Languages

pp 80-102

1989

Dittrich, Klaus R and Lorie, Ramond A

Version Support for Engineering Database Systems
IEEE Transactions on Software Engineering

Vol. 14, No. 4, pp 429 - 437 .

1988 :

Gupta, Ashish; Mumick, Inderpal S and Subrahmanian, V.S.
Maintaining Views Incrementally,

SIGMOD Record; vol. 22, pp. 157-166;

1993

Gupta, Ashish; Mumick, Inderpal S and Ross, Kenneth A

- Adapting Materialized Views After Redefinitions

SIGMOD Record, vol. 24; pp- 211-222;
1995

Hanson, EN

A Performance Analysis of View Matenahzatlon Strategies
SIGMOD, pp 440-453

1987

Heiler, Sandra and Zdonik, Stanley

Object Views: Extending the Vision. :

IEEE International Conference on Data Engmeenng PP 86 93
1990

Heiler, Petef H

" Configuration Management Models in Commercial

Environments

Software Engineering Institute Technical Report
CMU/SEI-91-TR-7

Carnegie Mellon University . -

1991

Katz, RH.

Managing Change in a Computcr-Alded DNesign Natahase
Proceedings of VLDB, pp 455 - 462

1987

142

[KATZ90]

[KATZ97]

[KEMPER91]

[KEMPER94]

[KENT79]

[KIMS88]

[KIM90] .

' [KIM95]

Appendix Bibliography

Katz, R. H.

Towards a Unified Framework for Version Modeling in
Engineering Databases

ACM Computing Surveys, Vol. 22, No. 4, pp 375 - 408
1990

Katz, R. H. and Chang, E

Managing Change in a Computer-Aided Design Database
Proceedings of the 13th VLDB Conference, pp 455-462
1987

Kempter, Alfon; Kilger, Christoph and Moerkotte, Guido
Function Materialization in Object Bases.

ACM SIGMOD Record

Vol. 20, Issue 2, pp 258- 267

1991 '

Kempter, Alfon; Kilger, Christoph and Moerkotte, Guido
Function Materialization in Object Bases: Design Realization
and Evaluation o : . '
IEEE Transaction on Knowledge and Data Engineering

vol. 6 ; no. 4; 587 - 608

1994

Kent, W

Limitations of Record-Based Information Models
ACM Transactions on Database Systems

Vol. 4 No. 1

March 1979

Kim, Hyoung Joo

Issues in Object-Oriented Database Schemas
Ph.D. Thesis

University of Texas at Austin

1988 . :

Kim, Won

Introduction to Objcct-Oricnted Databases
The MIT. Press

1990

Kim, Won and Kelley, William -

On View Support in Object-Oriented Database Systems
Modemn Database Systems - The Object Model,
Interoperability, and Beyond

Chapter 6, pp 108-129

ACM Press, 1995

143

[KUNO95a]

[KUNO95b)

[LIU94]

[LU95]

[MARIANIO3]

[MONK92]

[MONK93]

[MOTSCHNIG96]

Appendix Bibliography

Kuno, H.A. and Rundensteiner, E.A.

Materialized Object-Oriented View in MultiView;
RIDE-DOM, pp. 78-85;

1995

Kuno, H.A.; Ra, Young-Gook and Rundensteiner, E.A.

The Object Slicing Technique: A Flexible Representatlon and
its Evaluation;

University of Mlch1gan Technical Report,

1995

Liu, Chien-Tsai; Chrysanthis, Panos K and Chang, Shi-Kuo
Database Schema Evolution through the Specification and
Maintenance of Changes on Entities and Relationships
Proceedings of the 13th International Conference on Entity-
Relationship Approach,, pp 132-149

1994

Lu, James J; Moerkotte, Guido and Schue Joachim and
Subrahmanian, V.S.

Efficient Maintenance of Materialized Medlated Views;
SIGMOD Record, vol. 24; pp. 340 351;

1995

Mariani, J. A.

Realizing relational style operators and views in thé
Oggetto object-oriented database system.

Information and Software Technology 35 Apnl pp 207-216.
1993 '

Monk, Simon and Sommerville Ian

A Model for Versioning of Classes in Ob_]ect-Onented
Databases

Proceedings of 10th BNCOD, pp 41 - 58 .

1992

Monk, Simon and Sommerville, Ian

Schema Evolution in OODBs Using Class Versioning
SIGMOD Record, Vol. 22, No. 3, pp 16-22

1993 '

Motschnig-Pitrik, Renate

Requirements and Comparison of View Mechamsms for
Object-Oriented Databases.

Information Systems, Vol. 21 -

1996

144

[ODBERG95]

[OMG97]

[OUSSALAH93]

[PARK95]

[PIROTTEY4]

[PRESSMAN94]

[RAS5]

[RODDICK96]

Appendix Bibliography

Odberg, Erik

MultiPerspectives: Object Evolution and Schema Modification
Management for Object-Oriented Databases

Ph.D. Thesis

Norwegian Institute of Technology

1995

Object Management Group

A Discussion of the Object Management Architecture
Available from http://www.omg.org/ [Accessed August 1997]
1997 '

Oussalah, C; Talens G and Colinas, MF

Concepts and Methods for Version Modeling

IEEE Transactions on Knowledge and Data Engineering
pp 332-337 - :

1993 '

Park, Hyun-Ju and Suk, I

- Implementation of a Version Manager on an Object-Oriented

Database Management System

Proceedings of International Conference on Object-Oriented
Information Systems

1995

Pirotte, Alain; Zimanyi, Esteban; Massart, David and
Yakusheva, Tatiana

Materialization: A Powerful and Ubiquitous Abstraction
Pattern. . o

Proceedings of VLDB, pp. 630-641;

1994 '

Pressman, Roger S.

Software Engineering - A Practitioner’s Approach
Third Edition (European Edition)

McDraw-Hill Book Company Europe

1994

Ra, Young-Gook and Rundensteiner, Elke A :
A Transparent Object-Oriented Schema Change Approach
Using View Evolution

IEEE Transactions on Knowledge and Data Engineering

Vol 11;pp 165-172

1995
Roddick, John F

A Survey of Schema Versioning Issues for Database Systems
Information and Software Technology

145

http://www.omg.org/

[SCHOLL91]

[SCIOREO1]

[SCIORE94]

[STAUDTO6]

[STONEBRAKER90]

[TALENS93]

[ZDONIKS6]

Programming .

[ZELLERY5]

Appendix Bibliography

Vol. 37, pp 383-393
1996

Scholl, M.H.; Laasch, C and Tresch

Updatable Views in Object-Oriented Databases.

Proceedings International Conference on Extending Database
Technology

1992

Sciore, Edward

Multidimensional Versioning for Object-Oriented Databases
Proceedings ofDOOD’91, pp 355 - 370

1991

Sciore, Edward

Versioning and Configuration Management in an Object-
Oriented Data Model

VLDB Journal, Vol. 3

1994

Staudt, Martin and Jarke, Matthia

Incremental Maintenance of External Materialized Views;
VLDB; pp. 227-238;

1996

The Committee for Advanced DBMS Function
The Third-Generation Database System Manifesto
SIGMOD RECORD, VOL. 19, pp 31-44

1990

Talens, G; Oussalah, G and Colinas, M. F.
Versions of Simple and Composite Objects
Proceedings ofthe 19th VLDB Conference
1993

Zdonik, Stanley B

Version Management in an Object-Oriented Database
Proceedings International Worship on Advanced
Environments, pp 405-422

1986

Zeller, Andreas

A Unified Configuration Management Model
Informatik-Bericht Nr. 95-03

Institut fur Programmierspracheh und Informations Systéme
Technische University Nraiscjweog

1995

146

