
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

ADO: An Active Distributed Object-Oriented
Database Model
Ling Feng
University of Tilburg, ling@kub.nl

Allan Wong
Hong Kong Polytechnic University, csalwong@comp.polyu.edu.hk

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Feng, Ling and Wong, Allan, "ADO: An Active Distributed Object-Oriented Database Model" (2000). AMCIS 2000 Proceedings. 176.
http://aisel.aisnet.org/amcis2000/176

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/176?utm_source=aisel.aisnet.org%2Famcis2000%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ADO: An Act ive Dis tr ibuted Object -Oriented Database Mode l

Ling Feng, Tilburg University, InfoLab, PO Box 90153, 5000 LE Tilburg, The Netherlands, ling@kub.nl
Allan Wong, Dept. of Computing, Hong Kong Polytechnic University, China, csalwong@comp.polyu.edu.hk

Abstract

Object-oriented databases are emerging as a new-
generation database technology for complex applica-
tions. In this paper, we present an active distributed
object-oriented (ADO) database model, which can cap-
ture not only passive behaviors but also active behaviors
of complex objects. Besides, the distribution nature of
objects can be reflected from within the model as well.
Based on the model, we have developed a prototype ac-
tive distributed object-oriented database management
system, and applied it to a housing property manage-
ment application.

Keywords: Object-oriented database, object, active
object, object distribution, and database model.

1 Introduction

Object-oriented database systems are emerging as the
new-generation database technology especially for com-
plex applications (e.g., CAD/CAM, CASE, GIS, AI,
etc.) in terms of rich data types, efficient support for
complex objects, and computing power. Usually, these
non-standard application areas require timely responses
to critical situations, sophisticated constraint manage-
ment and adaptiveness to changing business policies.
It is thus desirable for the next-generation database
systems to be active in the sense that they are able
to react automatically rather than passively to certain
events by means of knowledge (e.g., triggers) stored in
the databases [KR98]. In addition, the rapid prolifera-
tion of computer networks has enabled users to easily
access a large number of data sources scattered around
different sites, making the distributed database manage-
ment more and more important in the new era.

In this paper, we present an active distributed object-
oriented (ADO) database model for our distributed object-
oriented database management system. In the model,
both passive and active behaviors of objects can be ex-

plicitly captured into classes. Moreover, different from
previous object-oriented database models, the distribu-
tion nature of objects across sites can also be reflected
in the database model. Based on the ADO model,
we have successfully developed a prototype active dis-
tr ibuted object-oriented database management system,
which can manage both distributed and active objects.
This system can be used in a number of complex appli-
cations, such as engineering design and manufacturing,
geographic information systems, knowledge-based sys-
tems, scientific and multimedia databases, etc.

2 Related Work

Database management systems (DBMSs) have been
available for three decades, originating in the form of
the hierarchical and network models. In 1970, the rela-
tional data model was introduced by Codd [Cod70]. It
is based on a simple and uniform data structure - the
relation, and view data as collections of records in these
relations. The relational data model revolutionized the
database field by separating logical da ta representation
from physical implementations. Its inherent simplicity
laid a solid theoretical foundation for relational DBMSs,
and led to the development of powerful, non-procedural
query language [Cod71, Cod72a, Cod72b, Cod79].

While the relational data model hides many imple-
mentational details, it is nonetheless closer to how the
DBMS stores data than to how a user thinks about the
underlying real-world enterprise. To bridge this gap,
several semantic data models have been proposed to
assist in the process of database design [Abr74, AM86,
HM81]. Semantic models allow the user to come up
with a good initial description of the data in an en-
terprise. Research in semantic modeling has articu-
lated a number of constructs which provide mechanisms
for representing structurally complex interrelations be-
tween data (e.g., ISA relationships), typically arising in
the real-world [HK87, HK90]. A widely used seman-
tic data model called the entity-relationship model can
facil itate pictorially description of entities and the rela-

373

tionships amongst them [Che76].
More recently, inspired by the object-oriented paradigm

from programming languages, database researchers turn
their attention towards incorporating the behavioral as-
pect of data into database models, and develop object-
oriented data models [KBC+88, Kim90b, Kim90a, LRV88,
PS87, MD90, Fe90, ADM+89, HtH98]. Basically, an
object-oriented data model is a set of object-oriented
concepts for modeling data. It allows the explicit rep-
resentation of object classes (or abstract data types).
Each object in a database is identified by its surrogate
rather than by its value. The methods (operations)
which are encapsulated within objects can be inher-
ited from one class to another [RBP+91, ZM90, Kim93,
DD95].

Besides building a completely new object-oriented
data model from the ground up, database researchers
pursue other alternative approaches, including the de-
velopment of object-oriented middleware to provide a
object programming layer on top of relational database
systems, and the extension of relational data model with
built-in object capabilities to object-relational data mod-
els [CD96, CCN+99, Sto96, LOL98]. Different from
object-oriented data models, object-relational data mod-
els start with the relational model and SQL query lan-
guage. The attractiveness of this approach is that ob-
ject capabilities can be added to industrially-proven
database systems that already offer many valuable data
management functions [CCN+99].

Nowadays, object-based data models have strongly
enhanced database support for applications where com-
plex objects play a central role [DHR96]. In the area
of standards, SQL3 is moving in the direction to in-
corporate objects into relational data model. The Ob-
ject Database Management Group (ODMG) has drafted
object-oriented database standards for an object data
language (ODL), an object query language (OQL), and
a C + + programming interface for manipulating and
querying object databases [Cat96].

3 The ADO Database Model

The constituent components of the ADO database
are objects, classes and their partial relationships. Each
object is instantiated from a class. The class defines the
structure of an object, as well as its dynamic behaviors.
All classes in the database form an inheritance hier-
archy, where a class can inherit all the structures and
behaviors from its superclasses. In addition, a class can
reference other classes to become an aggregate class.

We start a formal description of the ADO database
model with the following notations:

* A series of basic types T)I,--- , T),, whose domains
are denoted as dora(T)1) , . . . , dom(T)n).

Let :DO]v[= Ui= I n dom(7)i) .

• A finite set of attribute names A T 7 - .

• A countably infinite set of identifiers 2"/).

3.1 Values

Definition 3.1 A value can be
1) an a t o m i c va lue v E DOJVi; or
2) a c o n s t r u c t i o n a l va lue v, where

• v = { v l , v 2 , . . . , v m } , f o r V j (1 < j < m) , ei ther
v i e Z D or v i e dom(T)i) (l < i < n) , called a
set value; or

• v = < v l , v 2 , . . . , v m >, f o r V j (1 < j < m) , either
Vj E Z ~) o r v j E d o m (D i) (1 < i < n) , called a

l ist va lue ; or

• v = [a l : v l , . . . , ara:Vm], f o r V j (l < _ j < _ m) ,
aj E A T T and vj E 7)0J~¢i U ZT), called a tuple
value.

f3

An empty value is the only value that can be used
as an atomic value, a set value, a list value, or a tuple
value, denoted as ¢, { }, <> , or [], respectively. Cor-
responding to atomic values, we call set, list and tuple
values uniformly as constructional values. Let ~; denote
the set of all possible values in the database system,
including both atomic and constructional values.

3.2 Objects

Any real-world entity is an object with a system-
wide unique identifier. An object encapsulates a static
state and dynamic behaviors. The values of attributes
of an object constitute the state of the object, and the
methods associated with the object operate on its state.
Since all the objects of a class have the same meth-
ods, we delegate the behavioral capabilities of objects
to their classes, and simplify the object definition as
follows:

Definit ion 3.2 A n object o is a 2- tuple (Oid, Oval),
consisting of an identifier Oid and a value oval, where
oid E Z D and Oval E ~ . []

Definition 3.3 Given two objects, o and o ~, they are
1) identical, /] and only i] oid = o~d;

t [] 2) equ iva len t , i f and only i f oval = Ova l •

The values of two identical objects are the same. In
" then t~Ova I ¢ :: H o w - other words, if "Old = Old , ---- Ova I •

" does not imply "Oid ' " ever, ~Oval = Ova I ---- Old •

Assume function r e f (o) return a set of identifiers,
referenced within the value of object o.

374

D e f i n i t i o n 3.4 A set of objects 0 is c losed i f and only
i f the following conditions hold:

1) O is finite;
2) Vo, o' • O, o i d # O~d;
3) Vo • O, t e l (o) C_ {xid I x • 0 } . []

3.3 Structures

Values are instances of types, which can be either
basic types (e.g., integer, float, char, boolean, etc.), or
constructional types. We call the structure of a basic
type a basic structure, and the structure of a construc-
tional type a constructional structure. A constructional
structure can be built using the set, list and tuple con-
structors. Let B and C denote the set of basic and con-
structional structures, respectively. The whole set of
structures in the system S (= /~ U C) can be recursively
defined as follows:

De f in i t i on 3.5 A s t r u c t u r e s can be
1) a basic structure; or
2) a constructional structure, where

• s = {x}, where x is a structure (x • S) , called set
structure; or

• s = < x >, where x is a structure (x • S), called
list structure; or

• s = [a ~ : z ~ , . . . , am : x ~] , f o r V j (l _ < j <
m), aj • A T T , and x j is a structure (xj • S) ,
called t u p l e structure.

[]

De f in i t i on 3.6 Given two tuple structures in C, s =
[al : sl , . . . , am : sin, . . . , an : s,] a n d s ' = [al :
Sl , . . . , am : Sm], s is a s u b - s t r u c t u r e ors ' , denoted
as s <st s', if and only i f s has more attributes than s',
i.e., m < n. In other words, the sub-structure s' o r s is
more specific, while structure s is more general. []

Assume function r e f e r (s) return the set of struc-
tures, referenced within the structure s.

De f in i t i on 3.7 A set of structures A is called a schema,
if and only if the following conditions hold:

1) A is finite;
2) Each structure has a unique structure name;
3) Vs • A, r e f e r (s) C_ A. []

D e f i n i t i o n 3.8 Let A be a schema and 0 be a closed
object set. An i n t e r p r e t a t i o n of structure s • A on 0
can be defined using a mapping funct ion I : A -4 0 as
follows:

1) when s is a basic structure (assume s is the struc-
ture of the basic type Di without loss of generality), then
, (s) = (o I (o e o) ^ (ovot • dom(V~))};

2) when s is a constructional structure,

• i f s = < x > (x • A) , then I (s) = { o l (o •
O) ^ (o~t is a l ist value) A (f o r any list e l e me n t
ei in Oval, ei • I (x)) } ;

• if s = {x} (x • A), then I (s) = {o] (o •
O) A (owl is a set value) A (f o r any set e l e me n t
el in o~at, ei • I (x)) } ;

• i f s = [al : x~, . . . , am : Xm] (x~ • A , . . . , X , , , •
A) , then I (s) = {o I (o • O) ^ (Owl is a tuple value)
A (fo r any attribute value ea~ in oval, ea~ •
I(x~))).

[]

D e f i n i t i o n 3.9 Let A be a schema and O be a closed
object set.

1) A n interpretation I (s) of structure s • A on 0 is
smaller than another interpretation I t (s) , i f and only
q I(s) c_ I'(s).

2) The model of schema A on 0 is the ma x imu m in-
terpretation I*, where for Vs • A, I*(s) = M a x (I (s)) .

[]

T h e o r e m 3.1 The model of a schema A on a closed
object set 0 always exists.

P r o o f 3.1 Since 0 is a closed object set, according to
Definition 3.4, there exists a finite set of interpretations
on O. The theroem holds if we can prove that the union
of two interpretations is also an interpretation, as the
m a x i m u m interpretation is just the union of all the in-
terpretations.

Without loss of generality, let I and I t be any two
interpretations, and I " = I U I t. For Vs • A , F ' (s)
satisfies the property 1) in Definition 3.8 when s is a
basic structure.

In the case that s is a set structure (s = {x}, x • A),
according to Definition 3.8, any e lement in [(s) or I ' (s)
is in I (x) , thus, any element in I " (s) (= I (s) UP(s)) is
also in I (x) , satisfying the property 2) in Definition 3.8.
Similarly, we can prove the tenability of the property 2)
for I " (s) when s is a list or tuple structure. []

3.4 Passive Behaviors

We use methods to describe the passive behaviors of
objects. On receipt of a message consisting of a name
and some arguments, the object will search the match-
ing method, and then execute the corresponding pro-
gram code of the method.

D e f i n i t i o n 3.10 Let A be a schema. A s i g n a t u r e on
A is a mapping sl × . . . x Sn "-+ s, where s x , . . . , S n ,
s E A . []

D e f i n i t i o n 3.11 A m e t h o d m is a 3-tuple (rename,
msio, mcode), consisting of a method name rename, a
signature msig, and a program code mcode. I'3

375

3.5 Active Behaviors

The active behaviors of objects are expressed by
means of triggers, i.e., event/condition/action (ECA)
rules IBM91]. When a certain event arises and the con-
dition holds, the action will be triggered for execution.

De f in i t i on 3.12 A t r i g g e r 9 is a 5-tuple (gnome, gewm,
gcond, gaction , grime), consisting of a trigger name gnarne ,
an event in terms of a method g~wnt, a predicate gcond
defined on attributes, a triggered method gactio,~, and the
t ime gtime to execute gaction. The t ime grime can be ei-
ther immediately following the triggering method gevent,
or before the commit of gevent. []

3.fi Classes

A class is used to create a set of objects that share
the same structure, and the same passive and active
behaviors.

De f in i t i on 3.13 Let A be a schema. A class c is a
~-tuple (Cname, Cstruct, Crnethods, Ctrigoers), consisting
of a class n a m e Cnarne, a t u p l e structure Cstruct E A , a

set of methods Crnethods, and a set of triggers ctriga~r,
associated with class c. []

We define two partial relationships (i.e., is-a and
part-of) of classes as follows:

De f in i t i on 3.14 Class c is a subc lass of class c', de-
noted as e <is -a c', i f and only if the following condi-
t ions hold:

1) Cstruct <st c'struct;
' ~m E Crnethods, such that 2) ~ m I E Cmethods,

m n o l ~ e ~--- I . m n a / 7 ~ e

3) Vg' E d~ig0~r,, 3g E ct~igg~s, such that
g~m~ = g~m~; []

Def in i t i on 3.15 Let Is1 : sz, . . . , an : sn] be the
structure of class d . Class c is an aggregate class
of c', denoted as c <par t -o /c l , i f and only i f 3sk(1 <
k < n) (sk = cstruct). []

Def in i t i on 3.16 Two classes c and c ~ are r e l evan t ,

denoted as c (rel) cl ' i f and only i f either of the fol-
lowing conditions holds:

1) c <_is-a ct , OF C t <_is--a C;
2) C <~__part--oJ Ct , or C J <~_part-o.f C. []

Def in i t i on 3.17 A class latt ice F is a set of classes,
i f and only i f the following conditions hold:

1) r is finite;
2) Each class has a unique class name. That is,

Vc, c' e r , C~rn~ # c'.~.~e.
3) Vc e F, {c'lc' ~ , o s . c} c r ;
4) From a unique root class c~oot 6 F, all other

classes in F-{Croo t } can be traced. That is, for Vc E F,

either c (tel) Croot, or 3cl, . . . ,Cn E F, such that
C t e l } Cl rel) . . . (rel) Cn (tel) Croot. []

3.7 Distributed Databases

A database schema is a class lattice, whose instances
are objects belonging to the classes in this lattice. The
value of each such object, in terms of its attributes,
matches the structure of the associated class. In other
words, the object value must be within the maximum
interpretation of the tuple structure of the class.

In our system, objects of a class can be horizon-
tally partitioned based on either the class itself or its
relevant class. The former self-class-based partition is
similar to the traditional horizontal method used in re-
lational databases, where partitioning is performed ac-
cording to a predicate defined on attributes of this class.
For the latter relevant-class-based partition, partition-
ing of a class arises from the fragmentation of its rele-
vant classes. Thus, the partitioning predicate is defined
on the attributes of its relevant class instead.

Def in i t i on 3.18 Let F denote a class lattice. A frag-
m e n t a t i o n f of class e E Y is a t u p l e (fPred, fnodel,
• . . , fnode / .), specifying the partitioning predicate fPred
and the nodes f noae l , . . . , fnoaef, to which the corre-
sponding partition is distributed. []

Assume function Object(c) return the whole set of
objects in class c, and function FObjec t (c , f i) return a
set of objects in the fragment fi of class c.

Def in i t i on 3.19 Let F denote a class lattice. A frag-
m e n t a t i o n s c h e m a of class c E F is a tup le

A = (Atype, Are/, A/~, . . . ,Ay.~) , where
1) Atupe is the partitioning method, which can be

either "self-class-based" or "relevant-class-based";
2) i f Atupe = "relevant-class-based', then A r e / i s the

relevant class where the partit ioning predicates apply;
3) A / , , . . . , A/.o is a list of fragments of class c, sub-

ject to the following constraints:

• For Vo E FObjec t (c , fi) (1 < i < no), it satis-
fies the predicate of fragmentat ion Aft i f Atvpe =
"self-class-based'; Otherwise, its relevant object o'

(where o' E FObjec t (c ' , f i) and o <rft> o') satisfies
the predicate of fragmentat ion Af t .

• For Vo E Object(c) , there exists only one fragment
fi (1 < i < nc), such that o E FObjec t (c , f i) .

• Object(c) = Ui= 1"~ FObjec t (c , f i)

• Vf,,fj e {fx,.-.,fno},
FObjec t (c , f i) n FObjec t (c , f j) = ¢

[]

Def in i t i on 3.20 A database is a 4-tuple D B = (NDB,
F, O, T), consisting of a database name NDB, a class
lattice F, a closed object set O, and a class fragmenta-
tion schema set T in F, where for Vo E O, there exists
a class c E F, such that o E I*(cstruce). []

376

4 A Housing Property Management Application

Based on the ADO database model, we have built up
a housing property manal ;ement application for a newly
developed region. The core functions of the system in-
clude:

• effectively storing all the housing information, such
as housing type (state, private, commercial), loca-
tion, construction company, time of completion,
architecture, number of rooms, decoration, etc., in
the area.

• multidimensionally viewing all the transportation
facilities, such as roads, railways, gas stations, etc.,
in the area.

• demonstrating all services, such as shops, hotels,
etc., in the area.

• easily querying and managing housing information
and surrounding facilities.

denotes "ts-a' relat£onah£p

. danotea " p e _ r t - O f " r e l a t i o n ~ p

Figure 1: One portion of the application database
schema

Figure 1 shows part of the application database schema.
Each entity in the schema is represented by a class.

void soundIntroduce (VOICE sound) {...}

class-trigger:
name:
event:
condition:
time:
action:

)

synBroadcast
showPicture (IMAGE picture)

TRUE
IMMEDIATE-AFTER

soundIntroduce (VOICE sound)

AREA is the class name. IMAGE and VOICE are
two additional data types introduced for handling image
and audio multimediate objects in the system. As their
values are actually big sequences of characters, we view
them as a special kind of basic data types. Inside the
AREA class structure, the attributes transport, service,
livin9 get values from the structures of class TRANS-
PORT, SERVICE, HOUSE, respectively. Two methods
of the class AREA, showPicture and soundlntroduce,
introduce the area in visual-audio ways. One trigger
of the class AREA is named synBroadcast. Its active
function is that once the showPicture method is called
and executed, immediately following it, the soundlntroduce
method will be automatically invoked.

2) class-name: TRANSPORT
class-structure:

[trafficMap: IMAGE;
road: ROAD-ST;
railway: RAILWAY-ST;
gasStation: STATION-ST;
.

class-method:
void displayRoad (ROAD-ST road) {...}
void displayRail (RAILWAY-ST railway) {...}

void displayGasStation (STATION-ST gasStation)
{...}

1) class-name: AREA
class-structure:

[areaNo: integer;
name: char[12];
position: char[4];
picture: IMAGE;
sound: VOICE;
transport: Struct(TRANSPORT);
service: Struct (SERVICE);
living: Struct(HOUSE);
.

class-method:
void showPicture (IMAGE picture) {...}

ROAD-ST, RAILWAY-ST, and STATION-ST are
three constructional data structures, defined as follows:

ROAD-ST =
{ [roadName: char[12], roadPosi: { <float, float> }] }.

RAILWAY-ST =
{ [railName: char[12], railPosi: { <float, float> }] }.

STATION-ST =
{ [stationName: char[12], stationPosi: { <float, float> }] }.

3) class-name: SERVICE
class-structure:

[name: char[24];
kind: char[12];

377

location:
payMethod:
serviceScope:
.

char[3];
char[24];
TEXT;

TEXT is another special basic data type introduced
for handling strings of variable lengths•

4) class-name: HOTEL
superclass: SERVICE
class-structure:

[star: integer;
entertain: char[36];
brealdast: char[36];
diet: chax[24];
facility: TEXT;
.

5) class-name: SHOP
superclass: SERVICE
class-structure:

[kind: char[24];
goodsOnSale: TEXT;
guide: TEXT;
.

6) class-name: HOUSE
class-structure:

[constructCompany:
completeTime:
architecture:
roomNumber:
type:
decorate:
location:
.

cha [3O];
DATE;
char[12];
integer;
char[12];
TEXT;
char[24];

7) class-name: PRIVATE
superclass: HOUSE
class-structure:

[ownerName: char[24];
ownerAddr: char[36];
.

8) class-name: STATE
superclass: HOUSE
class-structure:

[organization: chax[36];
purpose: TEXT;
.

9) class-name: COMMERCIAL
superclass: HOUSE
class-structure:

[price: float;
deal: BOOLEAN;
payMethod: char[24];
.

class-method:
int DealStatistic (int price) {...}

/* count the number of houses above a certain price
that have been dealt. */

Due to space limitation, we illustrate the fragmenta-
tion design of class HOUSE and its subclasses, and omit
the details of other classes' fragmentation schemas. The
objects of class HOUSE, STATE, PRIVATE, COM-
MERCIAL are distributed based on the following schemas.

fragment-of-class: HOUSE
fragment-type : self-class-based
reference-class : nil
partitions: (. location = "nor th" , node1,4;

• location = " s o u t h " , nodes;
• location -- "east" , node3;
• location = "wes t " , node4;

)

fragment-of-class: STATE/PRIVATE/COMMERCIAL
fragment-type : relevant-class-based
reference-class : HOUSE
partitions: (. HOUSE.location = " n o r t h " , node1,4;

. HOUSE.location -- " sou th" , nodes;
• HOUSE.location = "eas t" , node3;
• HOUSE.location = "wes t " , node4;

)

5 Conclusion

In this paper, we present an active distributed object-
oriented (ADO) database model, based on which a pro-
totype active distributed object-oriented database man-
agement system has been developed. We have applied
the system to a housing property management applica-
tion, which can handle complex objects including texts,
graphics, images, audio and video objects.

References

[Abr74] J.R. Abrial. Data semantics. In Data Base Manage-
ment, North-Holland, 1974.

[ADM+89] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon,
K. Dittrich, and S.B. Zdonik. The object-oriented
database system manifesto. In Proc. of the 1st Intl.

378

JAMS6]

[BM91]

[Cat96]

[CCN+99]

[CD96]

[Che76]

[Cod70]

[Cod71]

[Cod72~

[Cod72b]

[Cod79]

[DD95]

[DHR96]

[Fe90]

[HK87]

[nKg0]

[HM81]

Conf. on Deductive and Object-Oriented Databases,
l~ges 40-57, Kyoto, Japan, 1989.

H. Afsarmanesh and D. McLeod. A framework for
semantic database models. In New Directions for
Database Systems, (G. Ariav and J. Clifford (ed.),
Ablex Publishing Company, 1986.

C. Beeri and T. Milo. A model for active object-
oriented database. In Proc. of the 17th Intl. Conf.
on Very Large Data Bases, pages 337-349, Barcelona,
Spain, September 1991.

1%. Cattell. The Object Database Standard: ODMG-
93 (Release 1.~). Morgan Kaufmann Publishers,
1996.

M. Carey, D. Chamberlln, S. Narayanan, B. Vance,
D. Doole, S. Rielau, R. Swagerma, and N. Mattos. O-
O, what's happening to DB2. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages
511-512, Philadelphia, USA, June 1999.

M. Carey and D. DeWitt. Of objects and databases:
A decade of turmoil. In Prec. of the Intl. Conf. on
Very Large Data Bases, pages 3-14, Bombay, India,
September 1996.

P. Chen. The entity-relationship model: Towards a
unified view of data. A CM Transactions on Database
Systems, 1(1):9-36, January 1976.

E. Codd. A relational model of data for large shared
data banks. Communications of the A CM, 13(6):377-
387, June 1970.

E. Codd. A data base sublanguage founded on the
relational calculus. In Proc. oft the ACM SIGFIDET
Workshop on Data Description, Access, and Control,
pages 35-68, November 1971.

E. Codd. Further normalization of the data base rela-
tional model. In Data Base Systems, R. Rustin (ed.),
Prentice-Hall, 1972.

E. Codd. Relational completeness of data base sub-
languages. In Data Base Systems, R. Rustin (ed.),
Prentice-Hall, 1972.

E. Codd. Extending the database relational model
to capture more meaning. A C M Transactions on
Database Systems, 4(4):397-434, December 1979.

H. Darwen and C. Date. The third manifesto. SIG-
MOD Record, 24(1):39-49, March 1995.

M. Doherty, R. Hull, and M. R.upawalla. Structures
for manipulating proposed updates in object-oriented
databases. In Prec. of the A C M SIGMOD Intl. Conf.
on Management of Data, pages 306-317, Montreal,
Canada, June 1996.

D.H. Fishman and etc. Iris: An object-oriented
database management system. In Readings in Object-
Oriented Database Systems, (S.B. Zdonik and D.
Mater (ed.), Morgan Kaufinann, Inc., 1990.

It. Hull and R. King. Semantic database modeling:
Survey, applications, and research issues. A CM Com-
puting Surveys, 19(3):201-260, September 1987.

R. Hull and R. King. A tutorial on semantic
database modeling. In Research Foundations in
Object-Oriented and Semantic DataBase Systems,
A.F. Cdrdenas and D. McLeod (ed.), Prentice-Hall,
1990.

M. Hammer and D. McLeod. Database description
with SDM: A semantic data model. IEEE Transac-
tions on Database Systems, 6(3):351-386, September
1981.

[HtH98]

[KBC+88]

[Kim90a]

[Kimg0b]

[Kim93]

[KR98]

[LOL98]

~RV8~

[MDg0]

[PS87]

[RBP+91]

[Sto96]

[ZMg0]

J.W.G.M. Hubbers and A.H.M. ter Hofstede. Ex-
ploring the jungle of object-oriented conceptual data
modeling. In Proe. of the 9th Australian Database
Conference, pages 65-76, Perth, Australia, February
1998.

W. Kim, N. Ballou, H.T. Chou, J.F. Garza, D. Woelk,
and J. Banerjee. Integrating an object-oriented pro-
gramming system with a database system. In Proc.
of the 3rd Intl. Conf. on Object-Oriented Program-
ming Systems, Languages, and ApplicatiOns, pages
142-152, San Diego, California, September 1988.

W. Kim. Architecture of the OR.ION next-generation
database system. IEEE 7~nsact ions on Knowledge
and Data Engineering, 2(1):109-124, March 1990.

W. Kim. Introduction to Object-Oriented Databases.
The MIT Press, 1990.

W. Kim. Object-oriented database systems:
Promises, reality, and future. In Proc. of the Intl.
Conf. on Very Large Data Bases, pages 676-687,
Dublin, Ireland, August 1993.

G. Kappel and W. Retschitzegger. The TriGS ac-
tive object-oriented database system - an overview.
SIGMOD Record, 27(3):36-41, September 1998.

H. Li, M.E. Orlowska, and C. Liu. A query system
for object-relational databases, in Prec. of the 9th
Australian Database Conference, pages 39-50, Perth,
Australia, February 1998.

C. Lecluse, P. Richard, and F. Velez. 02, an object-
oriented data model. In Proe. of the A CM SIGMOD
Intl. Conf. on Management of Data, pages 424-433,
Chicago, June 1988.

F. Manola and U. Dayal. PDM: an object-oriented
data model. In Readings in Object-Oriented Database
Systems, (S.B. Zdonik and D. Mater (ed.), Morgan
Kau.hnann, Inc., 1990.

J. Penney and J. Stein. Class modification in the
GemStone object-oriented DBMS. In Proc. of the
Intl. Conf. on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 111-117,
Florida, October 1987.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorenson. Object-Oriented Modeling and De-
sign. Prentice-Hall, Englewood Cliffs, New Jersey,
1991.

M. Stonebraker. Object-Relational Database Sys-
tems: The Next Great Wave. Morgan Kaufmann
Publishers, 1996.

Z. Zdonik and D. Mater. Readings in Object-Oriented
Database Systems. Morgan Kaufmann Publishers,
1990.

379

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	ADO: An Active Distributed Object-Oriented Database Model
	Ling Feng
	Allan Wong
	Recommended Citation

