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ADO: An Act ive  Dis tr ibuted  Object -Oriented  Database  Mode l  

Ling Feng, Tilburg University, InfoLab, PO Box 90153, 5000 LE Tilburg, The Netherlands, ling@kub.nl 
Allan Wong, Dept. of Computing, Hong Kong Polytechnic University, China, csalwong@comp.polyu.edu.hk 

Abstract 

Object-oriented databases are emerging as a new- 
generation database technology for complex applica- 
tions. In this paper, we present an active distributed 
object-oriented (ADO) database model, which can cap- 
ture not only passive behaviors but also active behaviors 
of complex objects. Besides, the distribution nature of 
objects can be reflected from within the model as well. 
Based on the model, we have developed a prototype ac- 
tive distributed object-oriented database management 
system, and applied it to a housing property manage- 
ment application. 

Keywords: Object-oriented database, object, active 
object, object distribution, and database model. 

1 Introduction 

Object-oriented database systems are emerging as the 
new-generation database technology especially for com- 
plex applications (e.g., CAD/CAM, CASE, GIS, AI, 
etc.) in terms of rich data  types, efficient support for 
complex objects, and computing power. Usually, these 
non-standard application areas require timely responses 
to critical situations, sophisticated constraint manage- 
ment and adaptiveness to changing business policies. 
It is thus desirable for the next-generation database 
systems to be active in the sense that they are able 
to react automatically rather than passively to certain 
events by means of knowledge (e.g., triggers) stored in 
the databases [KR98]. In addition, the rapid prolifera- 
tion of computer networks has enabled users to easily 
access a large number of data  sources scattered around 
different sites, making the distributed database manage- 
ment more and more important in the new era. 

In this paper, we present an active distributed object- 
oriented (ADO) database model for our distributed object- 
oriented database management system. In the model, 
both passive and active behaviors of objects can be ex- 

plicitly captured into classes. Moreover, different from 
previous object-oriented database models, the distribu- 
tion nature of objects across sites can also be reflected 
in the database model. Based on the ADO model, 
we have successfully developed a prototype active dis- 
tr ibuted object-oriented database management system, 
which can manage both distributed and active objects. 
This system can be used in a number of complex appli- 
cations, such as engineering design and manufacturing, 
geographic information systems, knowledge-based sys- 
tems, scientific and multimedia databases, etc. 

2 Related Work 

Database management systems (DBMSs) have been 
available for three decades, originating in the form of 
the hierarchical and network models. In 1970, the rela- 
tional data  model was introduced by Codd [Cod70]. It 
is based on a simple and uniform data structure - the 
relation, and view data as collections of records in these 
relations. The relational data model revolutionized the 
database field by separating logical da ta  representation 
from physical implementations. Its inherent simplicity 
laid a solid theoretical foundation for relational DBMSs, 
and led to the development of powerful, non-procedural 
query language [Cod71, Cod72a, Cod72b, Cod79]. 

While the relational data model hides many imple- 
mentational details, it is nonetheless closer to how the 
DBMS stores data than to how a user thinks about the 
underlying real-world enterprise. To bridge this gap, 
several semantic data models have been proposed to 
assist in the process of database design [Abr74, AM86, 
HM81]. Semantic models allow the user to come up 
with a good initial description of the data  in an en- 
terprise. Research in semantic modeling has articu- 
lated a number of constructs which provide mechanisms 
for representing structurally complex interrelations be- 
tween data  (e.g., ISA relationships), typically arising in 
the real-world [HK87, HK90]. A widely used seman- 
tic data  model called the entity-relationship model can 
facil itate pictorially description of entities and the rela- 
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tionships amongst them [Che76]. 
More recently, inspired by the object-oriented paradigm 

from programming languages, database researchers turn 
their attention towards incorporating the behavioral as- 
pect of data into database models, and develop object- 
oriented data models [KBC+88, Kim90b, Kim90a, LRV88, 
PS87, MD90, Fe90, ADM+89, HtH98]. Basically, an 
object-oriented data model is a set of object-oriented 
concepts for modeling data. It allows the explicit rep- 
resentation of object classes (or abstract data types). 
Each object in a database is identified by its surrogate 
rather than by its value. The methods (operations) 
which are encapsulated within objects can be inher- 
ited from one class to another [RBP+91, ZM90, Kim93, 
DD95]. 

Besides building a completely new object-oriented 
data model from the ground up, database researchers 
pursue other alternative approaches, including the de- 
velopment of object-oriented middleware to provide a 
object programming layer on top of relational database 
systems, and the extension of relational data model with 
built-in object capabilities to object-relational data mod- 
els [CD96, CCN+99, Sto96, LOL98]. Different from 
object-oriented data models, object-relational data mod- 
els start with the relational model and SQL query lan- 
guage. The attractiveness of this approach is that ob- 
ject capabilities can be added to industrially-proven 
database systems that already offer many valuable data 
management functions [CCN+99]. 

Nowadays, object-based data  models have strongly 
enhanced database support for applications where com- 
plex objects play a central role [DHR96]. In the area 
of standards, SQL3 is moving in the direction to in- 
corporate objects into relational data  model. The Ob- 
ject Database Management Group (ODMG) has drafted 
object-oriented database standards for an object data 
language (ODL), an object query language (OQL), and 
a C + +  programming interface for manipulating and 
querying object databases [Cat96]. 

3 The ADO Database Model 

The constituent components of the ADO database 
are objects, classes and their partial relationships. Each 
object is instantiated from a class. The class defines the 
structure of an object, as well as its dynamic behaviors. 
All classes in the database form an inheritance hier- 
archy, where a class can inherit all the structures and 
behaviors from its superclasses. In addition, a class can 
reference other classes to become an aggregate class. 

We start a formal description of the ADO database 
model with the following notations: 

* A series of basic types T)I,--- ,  T),, whose domains 
are denoted as dora(T)1) , . . . ,  dom(T)n).  

Let :DO]v[ = Ui= I n  dom(7)i) .  

• A finite set of attribute names A T 7 - .  

• A countably infinite set of identifiers 2"/). 

3.1 Values 

Definition 3.1 A value  can be 
1) an a t o m i c  va lue  v E DOJVi; or 
2) a c o n s t r u c t i o n a l  va lue  v, where 

• v = { v l , v 2 , . . . , v m } ,  f o r V j  (1 < j < m ) ,  ei ther 
v i e  Z D  or v i e  dom(T)i) ( l < i < n ) ,  called a 
set value;  or 

• v = <  v l , v 2 , . . . , v m  >, f o r V j  (1 < j < m ) ,  either 
Vj  E Z ~ )  o r  v j  E d o m ( D i )  (1 < i < n) ,  called a 

l ist  va lue ;  or 

• v = [ a l : v l ,  . . . ,  ara:Vm],  f o r V j  ( l < _ j < _ m ) ,  
aj  E A T T  and  vj  E 7)0J~¢i U ZT), called a tuple 
value.  

f3 

An empty value is the only value that  can be used 
as an atomic value, a set value, a list value, or a tuple 
value, denoted as ¢, { }, <> ,  or [ ], respectively. Cor- 
responding to atomic values, we call set, list and tuple 
values uniformly as constructional values. Let ~; denote 
the set of all possible values in the database system, 
including both atomic and constructional values. 

3.2 Objects 

Any real-world entity is an object with a system- 
wide unique identifier. An object encapsulates a static 
state and dynamic behaviors. The values of attributes 
of an object constitute the state of the object, and the 
methods associated with the object operate on its state. 
Since all the objects of a class have the same meth- 
ods, we delegate the behavioral capabilities of objects 
to their classes, and simplify the object definition as 
follows: 

Definit ion 3.2 A n  object o is a 2- tuple  (Oid, Oval), 
consisting of  an identifier Oid and a value oval, where 
oid E Z D  and Oval E ~ .  [] 

Definition 3.3 Given two objects, o and o ~, they are 
1) identical, /] and only i] oid = o~d; 

t [] 2) equ iva len t ,  i f  and only i f  oval = Ova l • 

The values of two identical objects are the same. In 
" then t~Ova I ¢ :: H o w -  other words, if "Old = Old , ---- Ova I • 

" does not imply "Oid ' " ever, ~Oval = Ova I ---- Old • 

Assume function r e f ( o )  return a set of identifiers, 
referenced within the value of object o. 
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D e f i n i t i o n  3.4 A set of  objects 0 is c losed  i f  and only 
i f  the following conditions hold: 

1) O is finite; 
2) Vo, o' • O, o i d #  O~d; 
3) Vo • O, t e l ( o )  C_ {xid I x • 0 } .  [] 

3.3 Structures 

Values are instances of types, which can be either 
basic types (e.g., integer, float, char, boolean, etc.), or 
constructional types. We call the structure of a basic 
type a basic structure, and the structure of a construc- 
tional type a constructional structure. A constructional 
structure can be built using the set, list and tuple con- 
structors. Let B and C denote the set of basic and con- 
structional structures, respectively. The whole set of 
structures in the system S (= /~  U C) can be recursively 
defined as follows: 

De f in i t i on  3.5 A s t r u c t u r e  s can be 
1) a basic structure; or 
2) a constructional structure, where 

• s = {x}, where x is a structure (x  • S ) ,  called set 
structure; or 

• s = <  x >, where x is a structure (x • S), called 
list structure; or 

• s = [ a ~  : z ~ ,  . . . ,  am : x ~ ] , f o r V j ( l _ < j  < 
m), aj • A T T ,  and x j  is a structure (xj  • S) ,  
called t u p l e  structure.  

[] 

De f in i t i on  3.6 Given two tuple structures in C, s = 
[al : sl ,  . . . ,  am : sin, . . . ,  an : s,] a n d s '  = [al : 
Sl , . . . ,  am : Sm], s is a s u b - s t r u c t u r e  ors ' ,  denoted 
as s <st s', if  and only i f  s has more attributes than s', 
i.e., m < n. In other words, the sub-structure s' o r s  is 
more specific, while structure s is more general. [] 

Assume function r e f e r ( s )  return the set of struc- 
tures, referenced within the structure s. 

De f in i t i on  3.7 A set of structures A is called a schema, 
if and only if the following conditions hold: 

1) A is finite; 
2) Each structure has a unique structure name; 
3) Vs • A, r e f e r ( s )  C_ A.  [] 

D e f i n i t i o n  3.8 Let A be a schema and 0 be a closed 
object set. An  i n t e r p r e t a t i o n  of structure s • A on 0 
can be defined using a mapping funct ion I : A -4 0 as 
follows: 

1) when s is a basic structure (assume s is the struc- 
ture of the basic type Di without loss of generality), then 
, (s)  = (o I (o e o )  ^ (ovot • dom(V~))}; 

2) when s is a constructional structure, 

• i f s = < x  > ( x  • A ) ,  then I ( s )  = { o l  ( o •  
O) ^ (o~t  is a l ist  value) A ( f o r  any list  e l e me n t  
ei in  Oval, ei • I ( x ) ) } ;  

• if s = {x} (x • A), then I (s )  = {o ] (o • 
O) A (owl is a set value) A ( f o r  any set  e l e me n t  
el in  o~at, ei • I ( x ) ) } ;  

• i f  s = [al : x~, . . . ,  am : Xm] (x~ • A , . . . , X , , ,  • 
A) ,  then I ( s )  = {o I (o • O) ^ (Owl is a tuple value) 
A ( fo r  any  attribute value  ea~ in  oval, ea~ • 
I(x~))). 

[] 

D e f i n i t i o n  3.9 Let A be a schema and O be a closed 
object set. 

1) A n  interpretation I (s )  of structure s • A on 0 is 
smaller than another interpretation I t (s) ,  i f  and only 
q I(s) c_ I'(s). 

2) The model of schema A on 0 is the ma x imu m in- 
terpretation I*, where for  Vs • A,  I*(s)  = M a x ( I ( s ) ) .  

[] 

T h e o r e m  3.1 The model of a schema A on a closed 
object set 0 always exists. 

P r o o f  3.1 Since 0 is a closed object set, according to 
Definition 3.4, there exists a finite set of interpretations 
on O. The theroem holds if we can prove that the union 
of two interpretations is also an interpretation, as the 
m a x i m u m  interpretation is just  the union of all the in- 
terpretations. 

Without  loss of generality, let I and I t be any two 
interpretations, and I "  = I U I t. For Vs • A ,  F ' ( s )  
satisfies the property 1) in Definition 3.8 when s is a 
basic structure. 

In  the case that s is a set structure (s = {x}, x • A), 
according to Definition 3.8, any e lement  in [(s)  or I ' ( s )  
is in I ( x ) ,  thus, any element  in I " ( s ) ( =  I ( s )  UP(s) )  is 
also in I ( x ) ,  satisfying the property 2) in Definition 3.8. 
Similarly, we can prove the tenability of the property 2) 
for  I " ( s )  when s is a list or tuple structure. [] 

3.4 Passive Behaviors 

We use methods to describe the passive behaviors of 
objects. On receipt of a message consisting of a name 
and some arguments, the object will search the match- 
ing method, and then execute the corresponding pro- 
gram code of the method. 

D e f i n i t i o n  3.10 Let A be a schema. A s i g n a t u r e  on 
A is a mapping sl × . . .  x Sn "-+ s, where s x , . . . , S n ,  
s E A .  [] 

D e f i n i t i o n  3.11 A m e t h o d  m is a 3-tuple (rename, 
msio, mcode), consisting of a method name rename, a 
signature msig, and a program code mcode. I'3 
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3.5 Active Behaviors 

The active behaviors of objects are expressed by 
means of triggers, i.e., event/condition/action (ECA) 
rules IBM91]. When a certain event arises and the con- 
dition holds, the action will be triggered for execution. 

De f in i t i on  3.12 A t r i g g e r  9 is a 5-tuple (gnome, gewm,  
gcond, gaction , grime), consisting of a trigger name gnarne , 
an event  in terms of a method g~wnt, a predicate gcond 
defined on attributes, a triggered method gactio,~, and the 
t ime gtime to execute gaction. The t ime grime can be ei- 
ther immediately  following the triggering method gevent, 
or before the commit  of gevent. [] 

3.fi Classes 

A class is used to create a set of objects that  share 
the same structure, and the same passive and active 
behaviors. 

De f in i t i on  3.13 Let A be a schema. A class c is a 
~-tuple (Cname, Cstruct, Crnethods, Ctrigoers), consisting 
of a class n a m e  Cnarne, a t u p l e  structure Cstruct E A ,  a 

set  of methods Crnethods, and a set  of triggers ctriga~r, 
associated with class c. [] 

We define two partial relationships (i.e., is-a and 
part-of)  of classes as follows: 

De f in i t i on  3.14 Class c is a subc lass  of class c', de- 
noted as e <is -a  c', i f  and only if  the following condi- 
t ions hold: 

1) Cstruct <st c'struct; 
' ~m E Crnethods, such that 2) ~ m  I E Cmethods, 

m n o l ~  e ~--- I . m n a / 7 ~ e  

3) Vg' E d~ig0~r,, 3g E ct~igg~s, such that 
g~m~ = g~m~;  [] 

Def in i t i on  3.15 Let Is1 : sz, . . . ,  an : sn] be the 
structure of class d .  Class c is an aggregate  class 
of c', denoted as c <par t -o /c l ,  i f  and only i f  3sk(1 < 
k < n) (sk = cstruct). [] 

Def in i t i on  3.16 Two classes c and c ~ are r e l evan t ,  

denoted as c (rel) cl ' i f  and only i f  either of the fol- 
lowing conditions holds: 

1) c <_is-a ct , OF C t <_is--a C; 
2) C <~__part--oJ Ct , or  C J <~_part-o.f C. [] 

Def in i t i on  3.17 A class latt ice  F is a set  of  classes, 
i f  and only i f  the following conditions hold: 

1) r is finite; 
2) Each class has a unique class name. That is, 

Vc, c' e r ,  C~rn~ # c'.~.~e. 
3) Vc e F, {c'lc' ~ , o s .  c} c r ;  
4) From a unique root class c~oot 6 F, all other 

classes in F-{Croo t }  can be traced. That is, for  Vc E F, 

either c (tel) Croot, or 3cl, . . . ,Cn  E F, such that 
C t e l }  Cl rel) . . .  (rel) Cn (tel) Croot. [] 

3.7 Distributed Databases 

A database schema is a class lattice, whose instances 
are objects belonging to the classes in this lattice. The 
value of each such object, in terms of its attributes, 
matches the structure of the associated class. In other 
words, the object value must be within the maximum 
interpretation of the tuple structure of the class. 

In our system, objects of a class can be horizon- 
tally partitioned based on either the class itself or its 
relevant class. The former self-class-based partition is 
similar to the traditional horizontal method used in re- 
lational databases, where partitioning is performed ac- 
cording to a predicate defined on attributes of this class. 
For the latter relevant-class-based partition, partition- 
ing of a class arises from the fragmentation of its rele- 
vant classes. Thus, the partitioning predicate is defined 
on the attributes of its relevant class instead. 

Def in i t i on  3.18 Let F denote a class lattice. A frag- 
m e n t a t i o n  f of class e E Y is a t u p l e  (fPred, fnodel, 
• . . ,  fnode / .  ), specifying the partitioning predicate fPred  
and the nodes f noae l , . . . ,  fnoaef, to which the corre- 
sponding partition is distributed. [] 

Assume function Object(c)  return the whole set of 
objects in class c, and function FObjec t (c ,  f i )  return a 
set of objects in the fragment fi of class c. 

Def in i t i on  3.19 Let F denote a class lattice. A frag-  
m e n t a t i o n  s c h e m a  of class c E F is a tup le  

A = (Atype, Are/, A/~, . . . ,Ay.~) ,  where 
1) Atupe is the partitioning method, which can be 

either "self-class-based" or "relevant-class-based"; 
2) i f  Atupe = "relevant-class-based', then A r e / i s  the 

relevant class where the partit ioning predicates apply; 
3) A / , , . . . ,  A/.o is a list of  fragments  of  class c, sub- 

ject  to the following constraints: 

• For Vo E FObjec t ( c ,  fi) (1 < i < no), it satis- 
fies the predicate of  fragmentat ion Aft i f  Atvpe = 
"self-class-based'; Otherwise, its relevant object o' 

(where o' E FObjec t ( c ' ,  f i )  and o <rft> o') satisfies 
the predicate of fragmentat ion Af t .  

• For Vo E Object(c) ,  there exists only one fragment  
fi (1 < i < nc), such that o E FObjec t (c ,  f i ) .  

• Object(c)  = Ui= 1"~ FObjec t (c ,  f i )  

• Vf,,fj e {fx,.-.,fno}, 
FObjec t (c ,  f i )  n FObjec t (c ,  f j )  = ¢ 

[] 

Def in i t i on  3.20 A database is a 4-tuple D B  = (NDB, 
F, O, T),  consisting of a database name NDB,  a class 
lattice F, a closed object set  O, and a class fragmenta- 
tion schema set  T in F, where for  Vo E O, there exists 
a class c E F, such that o E I*(cstruce). [] 

376



4 A Housing Property Management Application 

Based on the ADO database model, we have built up 
a housing property manal ;ement application for a newly 
developed region. The core functions of the system in- 
clude: 

• effectively storing all the housing information, such 
as housing type (state, private, commercial), loca- 
tion, construction company, time of completion, 
architecture, number of rooms, decoration, etc., in 
the area. 

• multidimensionally viewing all the transportation 
facilities, such as roads, railways, gas stations, etc., 
in the area. 

• demonstrating all services, such as shops, hotels, 
etc., in the area. 

• easily querying and managing housing information 
and surrounding facilities. 

denotes "ts-a' relat£onah£p 

. . . . .  danotea " p e _ r t - O f "  r e l a t i o n ~ p  

Figure 1: One portion of the application database 
schema 

Figure 1 shows part of the application database schema. 
Each entity in the schema is represented by a class. 

void soundIntroduce (VOICE sound) {...} 

class-trigger: 
name: 
event: 
condition: 
time: 
action: 

) 

synBroadcast 
showPicture (IMAGE picture) 

TRUE 
IMMEDIATE-AFTER 

soundIntroduce (VOICE sound) 

AREA is the class name. IMAGE and VOICE are 
two additional data types introduced for handling image 
and audio multimediate objects in the system. As their 
values are actually big sequences of characters, we view 
them as a special kind of basic data types. Inside the 
AREA class structure, the attributes transport, service, 
livin9 get values from the structures of class TRANS- 
PORT, SERVICE, HOUSE, respectively. Two methods 
of the class AREA, showPicture and soundlntroduce, 
introduce the area in visual-audio ways. One trigger 
of the class AREA is named synBroadcast. Its active 
function is that once the showPicture method is called 
and executed, immediately following it, the soundlntroduce 
method will be automatically invoked. 

2) class-name: TRANSPORT 
class-structure: 

[ trafficMap: IMAGE; 
road: ROAD-ST; 
railway: RAILWAY-ST; 
gasStation: STATION-ST; 
. . . . . .  

class-method: 
void displayRoad (ROAD-ST road) {...} 
void displayRail (RAILWAY-ST railway) {...} 

void displayGasStation (STATION-ST gasStation) 
{...} 

1) class-name: AREA 
class-structure: 

[ areaNo: integer; 
name: char[12]; 
position: char[4]; 
picture: IMAGE; 
sound: VOICE; 
transport: Struct(TRANSPORT); 
service: Struct (SERVICE); 
living: Struct(HOUSE); 
. . . . . .  

class-method: 
void showPicture (IMAGE picture) {...} 

ROAD-ST, RAILWAY-ST, and STATION-ST are 
three constructional data structures, defined as follows: 

ROAD-ST = 
{ [roadName: char[12], roadPosi: { <float, float> } ] }. 

RAILWAY-ST = 
{ [railName: char[12], railPosi: { <float, float> } ] }. 

STATION-ST = 
{ [stationName: char[12], stationPosi: { <float, float> } ] }. 

3) class-name: SERVICE 
class-structure: 

[ name: char[24]; 
kind: char[12]; 
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location: 
payMethod: 
serviceScope: 
. . . . . .  

char[3 ]; 
char[24]; 
TEXT; 

TEXT is another special basic data type introduced 
for handling strings of variable lengths• 

4) class-name: HOTEL 
superclass: SERVICE 
class-structure: 

[ star: integer; 
entertain: char[36]; 
brealdast: char[36]; 
diet: chax[24]; 
facility: TEXT; 
. . . . . .  

5) class-name: SHOP 
superclass: SERVICE 
class-structure: 

[ kind: char[24]; 
goodsOnSale: TEXT; 
guide: TEXT;  
. . . . . .  

6) class-name: HOUSE 
class-structure: 

[ constructCompany: 
completeTime: 
architecture: 
roomNumber: 
type: 
decorate: 
location: 
. . . . . .  

cha [3O]; 
DATE; 
char[12]; 
integer; 
char[12]; 
TEXT; 
char[24]; 

7) class-name: PRIVATE 
superclass: HOUSE 
class-structure: 

[ ownerName: char[24]; 
ownerAddr: char[36]; 
. . . . . .  

8) class-name: STATE 
superclass: HOUSE 
class-structure: 

[ organization: chax[36]; 
purpose: TEXT; 
. . . . . .  

9) class-name: COMMERCIAL 
superclass: HOUSE 
class-structure: 

[ price: float; 
deal: BOOLEAN; 
payMethod: char[24]; 
. . . . . .  

class-method: 
int DealStatistic (int price) {...} 

/* count the number of houses above a certain price 
that have been dealt. */ 

Due to space limitation, we illustrate the fragmenta- 
tion design of class HOUSE and its subclasses, and omit 
the details of other classes' fragmentation schemas. The 
objects of class HOUSE, STATE, PRIVATE, COM- 
MERCIAL are distributed based on the following schemas. 

fragment-of-class: HOUSE 
fragment-type : self-class-based 
reference-class : nil 
partitions: ( . location = "nor th" ,  node1,4; 

• location = " s o u t h " ,  nodes; 
• location -- "east" ,  node3; 
• location = "wes t " ,  node4; 

) 

fragment-of-class: STATE/PRIVATE/COMMERCIAL 
fragment-type : relevant-class-based 
reference-class : HOUSE 
partitions: ( . HOUSE.location = " n o r t h " ,  node1,4; 

. HOUSE.location -- " sou th" ,  nodes; 
• HOUSE.location = "eas t" ,  node3; 
• HOUSE.location = "wes t " ,  node4; 

) 

5 Conclusion 

In this paper, we present an active distributed object- 
oriented (ADO) database model, based on which a pro- 
totype active distributed object-oriented database man- 
agement system has been developed. We have applied 
the system to a housing property management applica- 
tion, which can handle complex objects including texts, 
graphics, images, audio and video objects. 
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