
~ Pergamon
Information Systems Vol. 22, No. 2i3. pp. 121-138, 1997

f. 1997 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

PII: 80306-4379(97)00008-2 0306-4379/97 s11.oo + o.oo

DEGAS: A DATABASE OF AUTONOMOUS OBJECTS

JOHAN VAN DEN AKKER and ARNO SIEBES

CWI, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

(Received 15 October 1996; in final revised form 7 April 1997)

Abstract - In this paper we introduce DEGAS (Dynamic Entities Get Autonomous Status), an
active temporal data model based on autonomous objects. The natural combination of active and
temporal databases is discussed. The active dimension of DEGAS means that we define the behaviour
of objects in terms of production rules. The temporal dimension means that the history of an object
is included in the DEGAS data model. Further novel features of DEGAS are the encapsulation of the
complete behaviour of an object, both potential and actual. Thus, DEGAS combines dynamic and
structural specifications in one model. In addition, DEGAS allows easy evolution of object capabilities
through a clear distinction between inherent types and capabilities that can be acquired and lost.
This addon mechanism makes D£GAS very suitable as a formalism for role modelling. Finally, the rule
model in DEGAS is both simple, through the use of finite automata, and general, because it allows
different strategies for dealing with constraints and reacting to events in other objects. if,) 1997
Elsevier Science Ltd

Key words: Active Databases, Objects, Roles

1. INTRODUCTION

It is widely recognised that information systems (IS) modelling should include both static
and dynamic aspects of their universe of discourse. To facilitate effective IS design, integration
of these aspects must be supported in all phases of the IS development process. This includes
implementation platforms for informations systems, database management systems, that have
traditionally focussed on the static side of information systems.

Encapsulation of methods and data in object-oriented databases is a step forward in the in
tegration of the dynamic and static parts of an application. Active databases [32, 15] integrate
another dynamic element into databases, viz., production rules. Originally rules were introduced
to deal flexibly with constraints in a database. Much wider use, however, has been found for them.
In fact, it is possible to encode the entire dynamics of an information system as rules in an active
database system. In DEGAS we unify both approaches in one active, object-oriented data model.
Since both active and temporal databases are concerned with the evolution of an object over time,
we also include a temporal dimension in DEGAS for an effective unification.

The specification of a DEGAS object has a static part, attributes, and a dynamic part, described
by methods, production rules, and lifecycles. Thus, DEGAS achieves the encapsulation of the
complete dynamic aspect of an information system. This total encapsulation is a means to achieve
object autonomy. Systems built of autonomous components are necessary for the development of
networked information systems across multiple organisations.

Roadmap

In this paper, we first introduce the key concepts of DEGAS. Then, we give a further feel of
DEGAS by showing an example of its use. After that, we define the state of an object in DEGAS,
which means a discussion of the history of a.n active database. Next, we formalise lifecycles and
rules in DEGAS objects. After a discussion of the DEGAS relation and addon mechanism, we
conclude with a broad.er perspective on a database of autonomous objects.

121

122 JOHAN VAN DEN AKKER and ARNO SIEBES

2. MAIN CONCEPTS

In this section, we give a concise introduction to the main concepts of the DEGAS data model.
The concepts are discussed in-depth using an example in the next section. The main contributions
of DEGAS are:

• The integration of historical and active database functionality.

• A straightforward mechanism for object evolution, especially suited for implementing roles.

• Complete encapsulation of an object's behaviour, including rules.

• A good formalisation of rule semantics.

• A conceptual model for distributed information systems.

The fundamental notion of the DEGAS model is the object. It has structure and behaviour.
The structure of an object is determined by the attributes. The behaviour of an object has three
components: methods, lifecycles, and rules. Methods specify what an object can do. The lifecycles
specify what methods the object is willing to execute in a certain context, by specifying sequencing
and preconditions of method execution. A rule states when an object will execute a given action
as far as can be modelled within the system. In other words, rules specify actual actions to be
executed in certain situations, described in terms of events and object states.

Thus, methods and lifecycles specify potential behaviour of an object, whereas rules describe
actual behaviour. Traditionally, only potential behaviour is specified, whereas DEGAS objects
also contain their actual behaviour as far as that can be pre-determined. Hence, every aspect
of an object's behaviour is encapsulated by an object, which means that a DEGAS object is an
autonomous object.

The first section of an object specification specifies the attributes of a class. DEGAS supports
simple types, tu pie types and power types, i.e., sets. One of the simple types supported is the iden
tity of other objects. Hence, other object's attributes can be referred to through path expressions.

As usual in an object-based model, methods specify the possible state changes of an object.
In DEGAS, methods can either change attributes in the object, or call other methods, local and in
other objects. Method calls between objects are by way of non-blocking message passing.

An object's lifecycle specifies sequencing of methods and to specify pre-conditions to method
invocations. Hence, every method call is checked against the lifecycle of the object. A method call
will only be executed, if the current state of the lifecycle allows it. The formalism chosen to specify
lifecycles in DEGAS is guarded basic process algebraic expressions [8]. The basic actions in such an
expression are method names. Complex expressions are composed using sequential composition,
alternative composition, repetition, and parallel merge (or indifference) operators. The motivation
for choosing process algebra as an event algebra is, that it is well understood, and that it has found
broad application [7].

Rules in DEGAS follow the usual Event-Condition-Action (ECA) format. The informal seman
tics of an ECA rule is, that if the event occurs and the object satisfies the condition, the action is
performed. Like lifecycles, event specifications in DEGAS use process algebra. In addition to the
operators in a lifecycle, an event specification can use the negation of an event. This denotes any
other event, i.e., method, in the finite event set of an object than the negated event. The rule set
of an object is checked after every method invocation. The action of a rule is a method call, either
local or to a method in another object. Hence, the action is also subject to object lifecycles.

In DEGAS, relations are modelled as objects. Thus, we have a place for data and behaviour of a
relation. A more abstract motivation of this objectification is that a relation is a kind of contract,
a view also found in, for example, NIAM [24]. The fact that a relation object is an object itself,
also means that it can engage in relations itself.

An object of a class has a number of intrinsic, fixed, capabilities, i.e., attributes, methods, rules
and lifecycles. Besides these fixed capabilities an object can have transient capabilities. These
are grouped in addons. Addons can be added to and deleted from an object during its lifetime.
As we will discuss later on in this article, addons can be likened to roles. They are DEGAS' only
mechanism for object specialisation.

DEGAS: A Data.base of Autonomous Objects 123

3. AN EXAMPLE

Challenging applications to model are those with high dynamics. An application with fast
changing data and rapidly evolving relations is the stock market. New data emerges constantly
in the form of buying and selling orders, economic news items through newsreels etc. Both new
and historical data influence the behaviour of the parties in the market. In order to introduce the
concepts of DEGAS, we model this example. Our example is a simplification of the system used in
the Netherlands.

Let us briefly describe the example in more detail. Companies are owned by persons through
shares. A person can buy shares and sell them again. He can subscribe to a newspaper to get
news about the companies he is interested in. The buying and selling of shares goes through a
marketmaker. If a person wants to buy or sell, he informs the marketmaker. Periodically, the
marketmaker determines the price that balances supply and demand. Buying and selling orders
that agree with this price are fulfilled.

We start to model this example with the marketmaker. The marketmaker matches supply and
demand for his market. This means that the actions he can execute are to accept buying and
selling orders and to try to match these. This is specified by the following DEGAS definition of the
marketmaker object's attributes and methods. The methods in this object only contain actions to
engage in a relation or to extend the object with an addon.

Object Marketmaker
Attributes

currentPrice : real
Methods

takeSell Order = {
SupplyClass.initiate

}
takeBuyOrder = {

Demand Class.initiate
}
makeMarket = {

Supply DemandAddon.extend
}

This defines possible actions the object may execute, but we know more about the actions of a
marketmaker. Therefore, an object includes a lifecycle description. Lifecycles are specified by
guarded basic process algebraic expressions [8] with method names as basic actions. The following
operators are used in lifecycle specification:

Sequence
Choice
Repetition
Merge

A;B
A+B
A*
AllB = A;B +B;A

A followed by B
A orB
One or more times A
A and B in parallel

Each basic action can be prefixed by a condition as a guard as follows.

[(C andition)](M ethodname)

It can be used to express a precondition of a method, or to restrict access to the method by other
objects. To this purpose, we can refer to a variable sender, which contains the object sending the
method call.

The lifecycle of a marketmaker consists of taking buying and selling orders. If these are both
present, he is allowed to match supply and demand.

Lifecycles
((takeSellOrder• II takeBuyOrder*);makeMarket)*

124 JOHAN VAN DEN AKKER and ARNO SIEBES

The specification of the actual execution of actions by a DEGAS object is given by rules. The
behaviour of a marketmaker is to extend himself, if he has both supply and demand relations.
This is specified by the following rule, that completes the definition of the marketmaker object.

Rules
On {takeSellOrderlltakeBuyOrder) do makeMarket

End Object

This rule extends the Marketmaker with the SupplyDemandAddon. This addon contains a rule
that periodically triggers the necessary actions to clear the market.

In our example a person can buy shares. To do this he places a buying order. If this order can
be met by supply in the market, he will actually buy the shares. If it is unsuccessful, a cancellation
will be the result. In addition to buying shares, a person can take a subscription to a newspaper in
order to obtain information. If he owns shares and also reads a newspaper, he uses the information
from the newspaper to influence his decisions about his shares. This is specified in the person
object given in Figure 1.

Object Person
Attributes

name : string
birthday : time
birthplace : string

Methods
tryToBuy(company:string, number:integer, maxPrice:real) = {

Demand Class.initiate(company,number ,max:Price)
}
readPaper(paper:string) = {

SubscriptionClass.initiate(paper)
}
useNews = {

Informed Owner Addon.extend()
}

Lifecycles
(tryToBuyr
((extend-Shareholder!lextend-InformedPerson) ;useNews)•

Rules
On (extend-Shareholder I jextend-InformedPerson) do useN ews

EndObject

Fig. 1: The Person Object

The person and marketmaker objects have relations specifying that the object engages in a
relation. Relations in DEGAS are objects themselves. A relation object can have the same capabil
ities as an ordinary object. For example, a share is modelled as an ownership relation between a
person and a company. In the relation object, the partners in the relation are present as implicit
attributes by the Relation line. Other information it contains, is the price of the share when it
was bought. The definition of the share relation object shows the use of guard conditions in the
lifecycle. The action after a condition can only be executed, if the condition is satisfied. In the
Share relation object given in Figure 2, guards are used to restrict access to its methods.

A person object does not have the capability to deal with the share relation built-in. Instead
it acquires these when it engages in this relation. Thj.s is represented by the shareholder addon in
Figure 3. An addon defines a temporary specialisation of an object, which is lost when the relation
is terminated. In this example, a person who is also a shareholder gains capabilities to sell the
shares again.

DEGAS: A Database of Autonomous Objects

Object Share
Relation Person, Company
Attributes

buy Price : real
currentPrice : real
value: real

Methods
transferOwnership(newOwner:oid,price:real) = {

Person = newOwner
buyPrice =price

}
payDividend(div:real) = {

value = value + div
}

Lifecycles
([sender==Person}transferOwnership)*
([sender==Company}pay Dividend)"

EndObject

Addon Shareholder
Extends Person
Attributes

share: oid
Methods

Fig. 2: The Share Relation Object

tryToSell(company:string, number:integer, minPrice:real) = {
SupplyClass.initiate(company, number ,minPrice)

}
Sell(buyer,price) = {

share.transferOwnership(buyer ,price)
Supply.drop

}
cancelSupply = {

Supply.drop
}

Lifecycles
(tryToSell;{Sell+cancelSupply))"

EndAddon

Fig. 3: The Shareholder Addon

125

126 JOHAN V.AN DEN AKKER and ARNO SIEBES

The Supply Class. initiate action in this addon specification also occurred in the specification of
the Marketmaker object. A call to an initiate method is done by an object to express its wish to
engage in a relation. Since the relation object does not exist at this time, initiate is a. method of
the relation class object. In this case a Shareholder object will send an initiate call to the Supply
class object. In response it will send a takeBuyOrder message to the marketmaker to ask, if it is
willing to accept the relation. As we can see in the specification of the Marketmaker object, it will
respond with an initiate call to express its agreement. The Supply class object v.ill then proceed
to instantiate the relation.

As we can see above in the specification of the Person object, an addon can also be used to
link two relations. In our example, the information a person reads in the paper will influence his
decisions as a shareholder. This is achieved by extending the person with a further addon, if he
owns shares and reads a newspaper. In Figure 4, we give the specification of the InformedPerson
addon, that extends a person who has a subscription to a newspaper.

Addon InformedPerson
Extends Person
Attributes

subscription : Oid
transactionPrice : real

Methods
goodNews(company: string) = {

transactionPrice = subscription.priceAdvice(company)
}
badNews(company : string) = {

transactionPrice = subscription. priceAdvice(company)
}

Lifecycles
([sender==subscription]goodNews•)
([sender==subscription]badNews"')
(ExtendlnformedPerson;DroplnformedPerson) •

Rules
On goodNews(company) (t 1) ;goodN ews(company) (t 2)

if t2 - ti ~ 7 days
do tryToBuy(company,transactionPrice)

EndAddon

Fig. 4: The InformedPerson Addon

The rule specification in these addon definitions shows the use of time in DEGAS. Historical
values of attributes can be referenced by a time parameter. Likewise, we can refer to the timestamp
of an event. The addon specification in Figure 5 gives an example of how the informed owner of
shares would deal with bad news. This addon extends a person, if it has both the Shareholder and
the InformedPerson addons. Therefore, the extends specification gives two original object names.
Please note, that this does not introduce a form of multiple inheritance. It simply specifies, what
the addon may assume to be present in the object it extends.

The diagram in Figure 6 shows the complete model of the stock market example. In this
picture, large boxes represent objects and small boxes represent addons. The dashed boxes are
relation objects. The outgoing arrows from relation objects indicates the partners in the relation,
they do not imply any arity constraint on the relation.

DEGAS: A Database of Autonomous Objects

Addon InformedOwner
Extends lnformedPerson,Shareholder
Attributes

Key: P(Subscription: Oid, Share: Oid)
Lifecycles

ExtendlnformedOwner*
DroplnformedOwner•

Rules
On badNews{company)(t1);badNews(company)(t2)
if (t2 - t 1) :S 7 days && transactionPrice(t2) :S transactionPrice(t 1)

do tryToSell(transactionPrice)
On goodNews(t1);badNews(t2)
if t2 - t1 :S 7 days && transa.ctionPrice(ti) == max(transactionPrice, ti, t2)
do tryToSell(transactionPrice)
On DropShareHolder do DroplnformedOwner
On DropSubscription do DroplnformedOwner

EndAddon

Fig. 5: The InformedOwner Addon

Demand

l lnDemand

MarketMaker

'-~~~...-~-'-~~1

Supply

Share

Company

Gone Public

I

: Suh.tcription

Sub.<crihed

Newspaper

Fig. 6: The DEGAS Model for a Financial Market

127

128 JOHAN VAN DEN AKKER and ARNO SJEBES

4. INTEGRATION OF TEMPORAL FUNCTIONALITY

Through the inclusion of Event-Condition-Action rules in objects, DEGAS is an active database
system. Although the natural combination of temporal and active databases has been suggested
by different authors [14, 32], there are very few active data models that incorporate the history of
a database. Work on the temporal specification of rules has been done by Sistla and Wolfson [29].
This approach is based on temporal logic. It focuses only on the condition of the rules, leaving out
the event specification of a rule. Another approach is that in (16], which gives a model for derived
data in a temporal database.

This section describes the temporal element of DEGAS, which is formed by the history of an
object. First, we will investigate the link between active and temporal databases. Then, we will
look at the way temporal functionality is integrated in DEGAS

4 .1. Time in Active Databases

The temporal element in an active database is mainly introduced through the event specification
in rules. The event specification may be a complex event expression composed of multiple basic
events, such as method calls [13, 17] and time events [13, 21, 17]. Since rule definitions specify
sequences of events over time, an active database has an inherent temporal element, as observed·
by Dittrich [14) and Widom and Ceri [32].

We can also see this by looking into rule triggering in more detail. In order to detect complex
events, we need to store the basic events occurring in the database. These make up an event queue
or event pool. Since a complex event expression usually specifies a sequence of events, the record
of basic events must store information about the order in which events occurred.

This inherent temporal element in active databases gives rise to the question of the relation
to databases that keep historical data. To that end, we examine what temporal data needs to be
stored in an active databases. Not surprisingly, this depends on the rule language.

Many active databases include time in an event expression. This can be in relative form, such
as "5 days after event A" or absolute such as "every day at midnight". Orthogonally, we can put
time in event specifications in different ways. We can add a time parameter to all events or we
can have explicit time events in the event specifications. The latter choice will make a difference
in the way we check the temporal part of the rule specification. In the former case, we can check
temporal conditions in the condition of the rule. In the latter, the time events are included in the
event detection mechanism.

Since most active database management systems offer the possibility to specify parameters of
events, we also need to store the parameters of a method call in addition to the time it occurred.
In this way a rule can be triggered on method calls only for certain parameter values. For example,
we may have a rule on a bank account that is only invoked if a debit action of more than 1000
guilders is executed.

Every extension of event specification in the definition of rules beyond single basic events
necessitates a record of the recent history of the database. If we wish to offer all facilities described
above in an active DBMS, i.e., time in event specifications and parameters to events, we have to
store all method calls with their parameters and timestamps. It is obvious that we can reconstruct
all historical states of the database, if we have all state transitions in the form of method calls.
Hence, it is a small step from an active database to a historical database.

A historical database is a restricted form of temporal data.base. Temporal databases [30} record
data relative to time. A full temporal database has two temporal dimensions. Valid time denotes
the time a value held in the real world. Transaction time denotes the time a value was entered into
the database. The combination of these two dimensions allows us to alter data retrospectively, for
example, to correct errors. Historical databases are temporal databases with only one temporal
dimension. In other words, a historical database only records the states a database went through
over time.

DEGAS: A Database of Autonomous Objects 129

4.2. The History of a DEGAS Object

DEGAS is a historical database by recording the complete history of an object, represented as a
sequence of snapshot states. In temporal database research [30), the term snapshot state denotes
the state of an object at a point in time when we abstract from the temporal dimension [23].

For the definition of a snapshot state, we first need to define the type of an object at a given
time. The type of an object is defined by its attributes. Attributes in a DEGAS object are typed.
From a number of simple types, like integers, reals, strings, and object identifiers, additional types
are formed using set and tuple constructors. The type system underlying DEGAS follows Cardelli
[10] and Balsters [9].

The underlying type of an object is a tuple type containing the attributes. The underlying type
of an object definition contains at least its own identifier this. An operator Type(D) can be applied
to an object definition to obtain the underlying type of the object. For example, the underlying
type of the share object from Section 3 is

Type(share) = (this : Oid, currentPrice : real, person : oid, company : aid)

A DEGAS object is brought from one state into another by the execution of a method. The
actions that can be included in a DEGAS method specification are assignment to attributes and
calls to other methods. In addition, we can map a method over a set, i.e., a method can be applied
to all elements of a set.

A snapshot state records the time the object came in this state, the type of the object, a
valuation for the type and the method call that brought the object into this snapshot state. More
formally, a snapshot state of an object 0 is a quadruple (t,r,1(1),MC), where t is a timestamp
giving the start time of the validity of this state, T the type of 0 at time t, I(r) is the valuation of
rand MC is a method call, which consists of a method name and a parameter list. The inclusion
of the type of an object in the snapshot state is motivated by the evolution over time of an object's
type through the addon mechanism. For example, we might have a Person object o , that is
extended by a Shareholder addon at time t. Then, before t the type of o is:

(this : oid, name : string, birthday : time, lYirthplace : string)

After extensions by a Shareholder addon, the type of o is:

(this : oid, name : string, bi,rthday : time, bi,rthplace : string, share : aicI)

State History

The state history of a DEGAS object records the snapshot states the object went through during
its existence. This means that a state history
SH is a sequence of snapshot states:

SH = SH(O); SH(l); ... ; SH(n)

whereV'i,O:::; i :'.S n-1: ti < ti+l· Thisdefi.nitionofanobjecthistoryislargelysi.milartothatfound
in [18]. The main difference is that a DEGAS object history deals directly with DEGAS methods calls
and attributes, instead of the more abstract notions of actions and input and evaluation attributes
in [18]. As an example, the following is a piece of the history of a share object:

(13 : 00 : 00, (current Price : real, per son : aid, campany : oid,),
(currentPrice = 54.25,person = Johan, campany =Philips),
transferOwnership(Johan, 54.25)}

(13 : 02: 00, (currentPrice: real, person : aid, company : oid),
(currentPrice = 55.25,person =Arno, company =Philips),
transferOwnership(Arno, 55.25))

130 JOHAN VAN DEN AKKER and ARNO SIEBES

The information in the snapshot state is valid from the given time until the time given in the next
snapshot state. The last snapshot state gives the information valid at the current time.

Historical values of attributes are accessed in DEGAS through the addition of a time parameter.
This can be used, for example, in the condition of a rule:

Rules
On share.new Price
if price(Tnow - 15 min) - price(Tnow) > 10
do tryToSell

The meaning of this rule is that we try to sell shares after a new quotation, if the current price is
more than 10 guilders less than the price 15 minutes ago.

Event History

Lifecycles and the event expressions of rules are checked using a projection of the state history,
the event history. It only contains timestamp-method call pairs. H we have a state history SH =
SH(O); SH(l); ... ; SH(n), then the event history EH is the sequence EH(O); EH(l); ... ; E(n) of
time-event pairs, where:

\fi, SH(i) = (ti, Ti, l(ri), MCi) :

EH(i) d;f (si,e,(p1, ... ,pm)),

Si= ti /\ ei(p1, ... ,pm)= MCi

The example state history above gives us this event history:

(13: 00: 00, transferOwnership(Johan,54.25)));
(13: 02: 00, transferOwnership(Arno,55.25)))

5. THE BEHAVIOUR OF A DEGAS OBJECT

The history of a DEGAS, defined in the previous section, is the central element in the formali
sation of its behaviour. In this section, we see how sequencing of method calls is restricted by the
lifecycles of an object. In addition, rule triggering is defined in terms of the history of an object.

Lifecycles

A method call can be executed on an object, if it satisfies the object's lifecycle. The semantics
of lifecycles is defined using process algebra [8]. Suppose we have defined the following set of
lifecycles on an object 0.

Lifecycles
C1
C2

This means that the execution of methods on 0 must follow the process

with communication function "'(defined by: Va E M : 1(a, a) = a, where M is the set of
methods of 0. In process algebra a communication function 'Y specifies synchronisation between
two processes. 'Y(A, B) = C means that the actions A and B have to take place simultaneously and

DEGAS: A Database of Autonomous Objects 131

a replaced in the trace of the process by the single action C. For example, if we have the process
(A; B)l(C; D) and 'Y(B, D) = E, then a resulting trace might be: A; C; E. In practical terms the
communication function defined for a DEGAS object means, that if an action occurs in more than
one lifecycle, the execution of that action is a step forward in all lifecycles.

Lifecycles can be checked using finite automata. This follows from the fact that lifecycles
are regular expressions. The transitions in this automaton are labelled with method names and
conditions. If there is an appropriate transition available, a method call can be executed.

The formalisation is, that a method call MC = m(q1, ... , qk) is executed on an oh ject 0 with
state history EH= EH(O); ... ; EH(n) at time t, iff the event history that would result from the
execution of MC satisfies the lifecycle of the object. In process algebraic terms, we say that:

EH= EH(O); ... ; EH(n); MC

must be a trace of the process specified by the lifecycle. The resulting new state of the object is

SH' = SH; (t, M(m(qi, ... ,qk), I(r)), MC)

Here M(m(q1 , ... , qk), J(r)) denotes the result of the execution of m(q1 , ... , qk) on attribute val
uation l(T).

Rules

In the specification of rules, DEGAS follows the ECA format, originally introduced by Dayal [13)
and now commonly accepted in the active data.base community. Rules are specified a.s an Event
Condition-Action (ECA) triple. If the event occurs and the database state satisfies the condition,
the action is executed. This is specified in a DEGAS object as:

On (Event) if (Condition) do (Action)

The event specification is a basic process algebraic (8] expression constructed from a set of
method calls. The event expression of a rule differs from a lifecycle by the absence of guard
conditions. In addition, a negation operator can be used in the event specification of a rule:

Negation -iA = l:eet: e An event that is not A

where & is the, finite, set of all basic actions.
A rule's condition is a condition on the state of the object. The action is a method call, either

local or to a method in another object.
A rule is triggered by an event occurring in the event history as a result of a method call. H we

have an event history EH= EH(O); ... ;EH(m) and a method call MC= µ(pi, ... ,pk) at a time t.
Rule R = (E, C, A) is triggered at time t, if E parses the new event history EH; (t, µ(pi, ... ,pk), t)
correctly.

The presence of rules means that there are two possible sources of actions in an object. The first
consists of method calls from other objects. The second is the execution of actions from triggered
rules. Both are subject to the lifecycles specified on the object. This is reflected in the execution
model of an object. Basically, an object first executes a method and then executes triggered rules
until no more rules are triggered. This loop is depicted in Figure 7.

The execution of rules is a two phase process. During a method call, a set of rules that are
triggered by that method call is built up. After a method has terminated, one rule is picked at
random for execution from the set of triggered rules at random. H the condition of the rule is
satisfied at the time it is picked, its action is executed. The rules in the triggered set that were not
picked are dropped. During execution of a rule's action, a new set of triggered rules is constructed.

In more formal terms, we can define rule execution a.s follows. Given a triggered rule set 'Rµ
after the execution of methodµ on an object 0. The rule execution phase follows the algorithm:

1. R = Rµ

2. A rule R = (E, C, A) is picked at random from n.

132 JOHAN VAN DEN AKKER and ARNO SIEBES

3. If C is true and A satisfies the lifecycle of the object, A is executed. Otherwise, discard R
and goto step 2.

4. Generate a new set n of rules triggered by the action of R.

5. If n ::f:. 0, then goto step 2.

Execute Method

Generate set of

No rules triggered Triggered Rules

Exist triggered rules

Pick Rule

for Execution

Fig. 7: The Execution of an Autonomous Object

The rule model ensures both simplicity and generality. The former originates from the fact
that all event specifications can be checked using finite automata. The latter can be found in the
different strategies that can be applied to the interaction of lifecycles and rules. ff the action of
a rule is not allowed by any lifecycle the moment it is triggered, we have two options. Either the
action is tried again later, or the action is simply dropped. DEGAS offers both strategies through
the negation operator ..., in event expressions. ff we want the action of a rule to be retried, the
event includes the negation of the rule's action. For example, the marketmaker might have the
rule that he mmt clear the market after he has determined a price:

Rules
On determinePrice;..., clearMarket do clearMarket

Rules where only an immediate reaction is of interest, are, for example, those rules defining the
reactions to news events in the InformedOwner addon in the previous section. In this case, the
reaction is only useful if it is executed immediately.

A number of design issues are simplified by the DEGAS rule model. An example is the risk of
non-termination, which is already undecidable for very simple rule languages [28]. In DEGAS this
risk is taken explicitly by the designer by using the negation operator. Thus, he knows that a
certain rule will be triggered again and again until it is executed. This assists in the identification
of possibly problematic rule sets.

Other examples of object-based active database systems are HiPAC [13), SAMOS [17] and
Chimera (12]. SAMOS and Chimera offer encapsulation of rules, but the object is not the exclusive
location of rule definition. HiPAC treats rules as separate objects, thus separating part of the
behaviour from the objects. The motivation given for this objectification of rules is that it allows
easy run-time manipulation of rules. In other active databases, this is facilitated by the introduction
of rule sets as manipulable units. In DEGAS this kind of manipulation is offered through the addon
mechanism, which allows rules to be added to objects, i.e. activated, when necessary. Hence,
DEGAS offers a modularisation of rules, while retaining the encapsulation of object behaviour.

DEGAS: A Database of Autonomous Objects 133

6. RELATIONS AND ADDONS

Relations in DEGAS a.re objects themselves. Hence, the discussion of the elements of DEGAS

objects above also applies to relation objects. The initiative for a relation comes from one of the
partners. To this end it sends a message to the class object of that relation. Before the relation
is established, there might be a number of conditions that need to be satisfied. These are checked
by the relation class object. If the relation class object approves, it instantiates the relation object
and instructs the partners to extend themselves with the appropriate addon.

An addon specifies an extension to an object's capabilities. It is a general purpose object
specialisation mechanism. Hence, it is not tied to one particular form of specialisation, such as
e.g. roles. An addon can be added to an object, if the object has a method to do this. This means
that the object knows the name of the ad.don, but does not know anything about the contents of
an addon. Thus, changes in an addon are transparent to the object.

An addon can add attributes, if it does not duplicate names. Usually, the ad.don will contain
the identity of the relation object it is tied to. In case of an 1 - n relation, this attribute is a set.
The addon is only added the first time an object engages in a relation. When the object engages
in more relations of the same typet extension with an addon only means that an element is added
to this set.

Methods can only be added. There is no mechanism to modify the behaviour of existing
methods, other than specifying a rule on an existing method. Rules are treated the same as
methods with regard to specialisation.

The addon mechanism offers a number of advantages over using inheritance to specialise objects.
The key to these advantages is the observation that object specialisation is related to the role of
an object. An object is specialised in order to play a role. In an inheritance hierarchy we would
need a separate class for each possible combination of object extensions. Clearly, this leads to a
combinatorial explosion of the number of classes in the hierarchy (22]. In DEGAS, this observation
has lead to the extension of an object with an addon, when it engages in a relation. The addon
defines the role the object plays in the relation. It gains methods to deal with the relation. Rules
specify what information must be passed to the relation, while lifecycles define the access of the
relation to the methods of the object.

A number of other approaches are based on this observation. For example, Aspects by Richard
son and Schwarz (25] are also dynamic extensions to objects. There is no link between aspects
and relations. Although aspects can have aspects themselves, there is no possibility of interaction
between aspects of the same object. This means that interaction between relations of an object,
or multiple roles, in the way shown in our example is not possible using aspects. A database pro
gramming language offering an extensive role mechanism is Fibonacci [6]. Its object specialisation
mechanism is more complex than the DEGAS addon mechanism. For example, it has multiple
inheritance between roles. This is caused by the strongly typed functional nature of Fibonacci. In
DEGAS multiple inheritance is not needed, since addons need no information about other ad.dons.
There is no treatment of rules or time in both Aspects and Fibonacci.

Another extension of an object oriented language with roles is given by Gottlob in (19]. Here,
an implementation of an object specialisation mechanism in Smalltalk is given. A number of
characteristics of roles are given by Gottlob:

• Various roles of an entity may share common structure and behaviour.

• Entities can acquire and abandon roles dynamically.

• Roles can be acquired and abandoned independently of each other.

• Entities exhibit role-specific behaviour.

• Roles restrict access to a particular context.

• Entities may occur repeatedly in the same type of role.

134 JOHAN VAN DEN AKKER a.nd ARNO StEBES

These characteristics also apply to DEGAS addons except for the role-specific behaviour. Gottlob
allows roles to redefine methods of the object they are extending. This is not allowed in DEGAS.
Gottlob's approach, however, does not take the link between roles and relations into account.

An extensive conceptual study and formalisation of objects with roles can be found in [33].
Here it is observed that there are static classes, dynamic classes and roles. Objects cannot migrate
between static classes. Hence, these are equivalent to the classes in DEGAS. Dynamic classes
are based on dynamic partitions of a static object class. Objects can migrate between dynamic
classes, although this may be subject to lifecycles. Roles are dynamic classes that do not partition
an object class. In addition an object can play multiple roles. In DEGAS the latter two are both
modelled using ad.dons. Dynamic class migration is specified in the lifecycle of an object. Migration
is achieved through the gain and loss of ad.dons. Roles a.re tied to relations. When engaging in a
relation an object will gain the ad.don that specifies its role in the relation. The main difference is
that DEGAS only distinguishes between inherent and transient capabilities of an object.

Lifeeycle specification in addons

The semantics of object specialisation through addons in DEGAS is relatively straightforward,
if we consider attributes, methods, and rules. These are simply added to the capabilities already
present. The combination of the lifecycles of an object and an extending ad.don is more complicated.
This is due to two potentially conflicting requirements on lifecycle specification by addons.

The main requirement is that the lifecycle of the extended object must conform to the original
object. In other words, the lifecycles specified in an addon must not violate the lifecycle of the
original object. To put it in process algebraic terms using the abstraction operator, we require:

where Co is the lifecycle of the original object 0, CA the lifecycle of 0 extended with addon A,
and H is the set of methods defined in the ad.don. The effect of the abstraction operator 8 is to
filter away the actions in the set that we abstract from. For example,

8{Y,z}(A;B;Y;C;Y;Z) = A;B;C

A simple strategy to satisfy this requirement is to put the lifecycle of the addon in parallel with
the original lifecycle and only allow methods of the addon itself to appear in the addon's lifecycle.
An example of this approach is found in MOKUM (26). This, however, is a severe restriction, since
it prevents the redefinition of the original lifecycle of an object. This redefinition is necessary, if
we wish to intersperse the actions of the ad.don with those of the original object. An example of
this is constraint checking in a graphical database, as described in [3].

The solution chosen in DEGAS allows redefinition, while respecting the original lifecycle of an
object, by using communication merge as a combination operator with a communication function
that merges identical actions, i.e., 'Y(a, a) =a, as defined in the previous section. To show that
we thus satisfy the first requirement, suppose object 0 has the lifecycle:

A;B;C

H we specify in addon A the lifecycle:

A;X;B;Y;C

then the resulting lifecycle for the extended object will be:

(A. B· G)l(A· X· B· Y· 0) - A- X· B· Y· C , ' ' ' ' , - ' ' , '
Thus, we can extend the lifecycle of an object with methods from an addon.

Communication merge also helps to a.void conflicts of liiecycle redefinition in different ad.dons
to an object. To illustrate this, consider the following situation, where two addons try to modify

DEGAS: A Database of Autonomous Objects 135

an object's lifecycle. An example are multiple constraints added to objects in a graphical database
as shown in (3]. The original object 0 has the lifecycle: '

A;B

Object 0 engages in a relation that demands that 0 must execute action C between A and B.
Thus, the addon A1 requires 0 to follow:

A;C;B

A second addon A2 desires an action D to be inserted in the lifecycle of 0:

A;D;B

With communication merge, the result is that the extended object O:r. follows:

A;(CllD);B

Since 0 abstracts from G and D, A1 from D, and A2 from C, this lifecycle satisfies all defined
lifecycles.

7. DEGAS IN A BROADER CONTEXT

In this section we show DEGAS in a broader context than active databases. Not only is the
DEGAS notion of object autonomy the natural consequence of the integration of rules in an object
database, it also supports currently foreseen developments in computing, networking and inte
gration of information systems. These contribute to the need for systems built of autonomous
components. Autonomy in this case implies extreme distribution. A more elaborate motivation
for object autonomy can be found in (2].

Developments in Technology

Extreme distribution is motivated by a number of developments foreseen in computer systems
in the nearby future. These are the emergence of massively parallel computer systems and the
coupling of existing computer systems over networks. These have in common that any form
of central control will pose a large amount of overhead on the system. In a massively parallel
computer centralisation of decisions, for example regarding resource allocation or invocation of
active rules, poses overhead on the system. Enough overhead to make it a considerable factor in
the performance of such a system.

Similar problems are posed by the possibility of information systems running on networks of
mobile computers, in its ultimate form known as ubiquitous computing. A lot of effort has been
put into malting databases interoperable over a network. Still, it will be very difficult to come up
with a scheme that can keep up with the sheer size of such a network and the speed of changes in
the network caused by its mobile character. It seems a better idea to build an inherent flexibility
into the components, such that they can function with as little global information as possible.

Because of the problems of central control in these environments, control must be distributed
to components of the system. In other words, the components are forced to be autonomous.

Integration of Information Systems

There is a strong trend to increasing integration of systems in chain information systems or
through a public information infrastructure. Such systems merge (parts of) information systems
of various owners into one big information system. Examples are integrated information systems
for suppliers and customers and the trading system at the stock exchange, as shown in this article.
However, nobody wants to give up control over his part of such a system. In addition one organi
sation may want to integrate its information system with a number of inter-organisation systems.

136 JOHAN VAN DEN AKKER aud ARNO SIEBES

An example of this is a supplier of tyres, who sells these to several car manufacturers, that all have
an information system for their own chain of suppliers and resellers.

An inter-organisation information system is made up of parts that are not subject to any form
of central control. This means that we need information systems that function without central
control of the components. In addition, different parts of an organisation's information system
may be exported to different inter-organisation systems. This means that access control can differ
at a very fine grain in the system. For ea.eh component we want to be able to define who has access
to what.

These developments again force components of a system to function without central control.
In addition they point at a need to be able to define access control in a system at a very fine grain.
Autonomy of components makes this possible.

Autonomy is the Solution

All the developments mentioned above foster a need for systems composed of autonomous
components. The difficulties with central control of a system can be overcome by distributing
control to parts of the system, or by building inherent flexibility into the parts of the system. The
result will be autonomy for the components of such a system. We also signalled a development
towards the sharing of data with outsiders. Approaching data from multiple sources as one database
while the owners retain control, means autonomy for the components. Exporting data to multiple
inter-organisation information systems at a time, asks for an inherent flexibility that autonomous
components can offer.

DEGAS offers a formal model to support the development of systems of autonomous components.
This is achieved by basing the DEGAS model on autonomous objects. We have chosen object as the
level of autonomy, because of its obvious advantages in modelling an information system. Object
autonomy also has the advantage of generality, because the complexity of the objects may be
arbitrary. This means that the model can also be used for autonomous components at a higher
abstraction level, SB long as its behaviour can be described in DEGAS.

Autonomous objects and Agents

In recent years the notion of agents has received considerable attention as a paradigm for
software development. Research has focussed either on the specification of agents by logic, see for
example [27], or on the implementation of special purpose agents, for example to schedule meetings
(see [1]). Since the logics used to specify agents are relatively complex, there is a gap between
these two approaches. To bridge this gap, we need simple general purpose agents. Autonomous
objects are a first step towards such agents, since they implement weak agency, as discussed in [5).

Another area where agents can be useful, is the design and analysis of information systems.
For example, Yu et al (34] propose an agent-oriented framework for the specification of information
systems. This framework consists of two parts, one, Albert, to specify agents in an information
system and the other, i", to understand and redesign the organisational context of the information
system. If we want to apply this framework also to the design and implementation phase of
information system development, we need a database programming language that supports the
modelling notions used in the specification phase. Autonomous objects in DEGAS offer such support
through their rule and lifecycle specifications.

Object Architectures

DEGAS provides a conceptual model for distributed object systems. An important architecture
for distributed object systems is provided by CORBA [20]. It provides middleware to shield
applications from interoperability problems across different systems. The use of CORBA as a
platform for the implementation of database systems was suggested in {31). An advantage of this
is that a DEGAS implementation on top of CORBA needs not deal with such interoperability issues.
In such an implementation, the CORBA part provides the DEGAS point-to-point communication
mechanism.

DEGAS: A Data.base of Autonomous Objects 137

Another important standard in object-based systems is the ODMG standard [11] for object
databases. ODMG provides a standard for schema definition, database manipulation and database
query languages. Due to the additional capabilities of a DEGAS object, such as rules and lifecycles,
we cannot completely represent a DEGAS object in ODMG. A further fundamental difference is
that DEGAS does not include inheritance, as ODMG does. The DEGAS addon mechanism, that is
used instead of inheritance, can also not be represented in ODMG.

8. CONCLUSION

In this paper we introduced DEGAS, an active temporal data model, using an application with
a highly dynamic content, the stock market, as an example. The relation and addon mechanism of
DEGAS, where capabilities a.re only present when they are needed makes DEGAS especially useful for
this kind of applications. In addition addons and relations offer a clean mechanism to implement
roles.

DEGAS emphasises the integration of the dynamic and static parts of an application. This
integration is achieved through the complete encapsulation of an object's behaviour. This con
tributes to the autonomy of objects, an important factor in the construction of highly distributed
information systems.

An important contribution in the field of active databases is the temporal element of DEGAS.
The notion that the state of an object is formed by its complete history makes it possible to achieve
temporal database functionality in DEGAS. The benefits of the inclusion of the object history in
an active database are found in a direct definition of the semantics of rules and lifecycles in terms
of process algebra.

Further research on DEGAS is concerned with a query model for DEGAS. We are focussing on
the consequences of object autonomy for query processing and on the use of the addon mechanism
to help counter impedance mismatch between query and programming language. A prototype
DEGAS object kernel has been implemented with the execution cycle shown in this paper as the
central element.

Acknowledgements - This research is supported by SION, the Foundation for Computer Science Research in
the Netherlands through Project no. 612-323-424. This article is an extended version of a. paper presented at the
CAiSE*96 conference [4].

REFERENCES

[l] Special issue on intelligent agents. Communications of the ACM, 37{7) (1994).

[2] J.F.P. va.n den Akker and A.P.J.M. Siebes. Ada.ta model for autonomous objects. Technical Report CS-R9539,
CWI, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands, Available through WWW
(http: //vvv. cwi .nlrvdakk.er/) {1995).

[3] J.F.P. va.n den Akker and A.P.J.M. Siebes. Applying a.n advanced da.ta model to graphic constraint handling.
In Remco Veltkamp a.nd Edwin Blake, editors, Proceedings of the 5th Eurographics Workshop on Programming
Paradigms in Graphics, pp. 1-16, Maastricht, The Netherlands (1995).

[4] J.F.P. va.n den Akker and A.P.J.M. Siebes. DEGAS: Capturing dynamics in objects. In P. Constantopoulos,
J. Mylopoulos and Y. Va.ssiliou, editors, Ad11anced Informations Systems Engineering - Proc. of CAiSE'96, pp.
82-98, Springer, Hera.klion, Crete, Greece, LNCS 1080 (1996).

[5] J.F.P. va.n den Akker and A.P.J.M. Siebes. Enriching active da.taba.ses with agent technology. In Peter Kandzia
and Matthias Klusch, editors, Proceeaings of the First International Workshop on Cooperative Information
Agents (CIA '91), pp. 116-125, Springer, Kiel, Germany, LNAI 1202 (1997).

(6] A. Albano, R. Bergamini, G. Ghelli and R. Orsini. An object data model with roles. In Ra.kesh Agrawal,
Sea.n Baker and David Bell, editors, Proc. of the 19th Intl. Con/. on Very Large Data Bases (VLDB), Dublin,
Ireland (1993).

(7] J.C.M. Baeten. Applications of Proce11s Algebra. Number 17 in Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, Cambridge, UK (1990).

(8] J.C.M. Baeten a.nd W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, Cambridge, UK (1990).

{9] H. Balsters and M. M. Fokkinga. Subtyping can ha.ve a simple semantics. Theoretical Computer Science,
87:81-96 (1991).

138 JOHAN VAN DEN AKKER and AR.No SIEBES

[10] L. Cardelli. A sema.ntics of multiple inheritance. In G. Kahn, D.B. MacQueen and G. Plotkin, editors,
Proceedings of the International Symposium on the Semantics of Data Types, pp. 51-£8, Springer, Berlin,
Germany (1984).

[11) R.G.G. Ca.tell. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Ma.teo, CA, USA (1994).

[12] S. Ceri et a.I. Active Rule Management in Chimera, chapter 6 in [32] (1996).

[13] U. Dayal et a.I. The HiPAC project: Combining active <la.ta.bases and timing constraints. SIGMOD Record,
17(1):51-70 (1988).

[14] K. R. Dittrich and S. Ga.tziu. Time issues in active data.base systems. In Proc. of the InU. Workshop on an
Infrastructure for Temporal Databases, Arlington, TX, USA (1993).

[15] K. R. Dittrich, S. Gatziu and A. Geppert. The active data.base management system manifesto: A ruleba.se of
ADBMS features. In T. Sellis, editor, Rules in Databases: Proc. of the 2nd International Workshop, pp. 3-17,
Springer, Athens, Greece (1995).

[16] A. Gal, 0. Etzion and A. Segev. TALE: A temporal active language and execution model. In P. Constantopou
los, J. Mylopoulos and Y. Va.ssiliou, editors, Advanced Informations Systems Engineering - Proc. of CAiSE'96,
pp. 60-81, Springer, Hera.klion, Crete, Greece, LNCS 1080 (1996).

(17] S. Gatziu, A. Geppert and K. R. Dittrich. Integrating active concepts into an object-oriented database sys
tem. In Paris Kanella.kis and Joachim W. Schmidt, editors, The Third International Workshop on Database
Programming Languages: Bulk Types and Persistent Data, pp. 399-415. Morga.n Kaufmann (1991).

(18] S. Ginsburg. Object and Spreadsheet Histories, chapter 12 in [30].

[19] G. Gottlob, M. Schrefl and B. Rock. Extending object-oriented systems with roles. ACM '1hmsactions on
Information Systems, 14(3):268-296 (1996).

[20] Object Management Group. The Common Object Request Broker: Architecture and Specification - version
2.0. Technical Document PTC/96-08-04 (1996).

(21] E. N. Hanson. The design and implementation of the Ariel active da.ta.b~ rule system. IEEE '.lhmsactions
on Knowledge and Data Engineering, 8(1) (1996).

(22] D. McAllester and R. Zabih. Boolean classes. In M. Meyrowitz, editor, Proceedings OOPSLA '86, pp. 417-423
(1986).

[23] L. E. McKenzie Jr. and R. T. Snodgrass. Evaluation of relational algebras incorporating the time dimension
in databases. ACM Computing Surveys, 23(4):501-543 (1991).

[24] G.M. Nijssen and T.A. Halpin. Conceptual schema and relational database design ; A fact oriented approach.
Third editionPrentice-Ha.11, New York, USA (1990).

(25) J. Richardson and P. Schwarz. Aspects: Extending objects to support multiple, independent roles. In Proceed
ings of the ACM SIGMOD International Conference on the Management of Data, pp. 298-307 (1991).

[26] R.P. van de Riet. MOKUM: An object-oriented active knowledge base system. Data and Knowledge Engineer
ing, 4:21-42 (1989).

(27] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92 (1993).

[28] A.P.J.M. Siebes, J.F.P. van den Akker and M.H. van der Voort. (Un)decidability results for trigger de
sign theories. Technical Report CS-R9556, CWI, Amsterdam, The Netherlands, Available through WWW
(http://www.cwi.nlrvdakker/) (1995).

[29] A. Prasad Sistla a.nd 0. Wolfson. Tempora.J conditions and integrity constraints in active databases. In Proc. of
the 1995 SIGMOD International Conference on the Management of Data, pp. 269-280, San Jose, CA, USA
(1995).

[30] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. Snodgrass. Temporal Databases: Theory,
Design, and Implementation. Benjamin/Cummings, Redwood City, CA, USA (1993).

(31] G. Vossen. The CORBA specification for cooperation in heterogeneous information systems. In Peter Kandzia
and Matthias Klusch, editors, Proceedings of the First International Workshop on Cooperative Information
Agents (CIA '97), pp. 101-ll5, Springer, Kiel, Germany, LNAI 1202 {1997).

[32] J. Widom and S. Ceri. Active Database Systems: Trig9ers and Rules for Advanced Database Processing.
Morgan Kaufmann, San Francisco, CA, USA (1995).

(33] R. Wieringa., W. de Jonge and P. Spruit. Using dynamic classes and role classes to model object migration.
Theory and Practice of Object Systems, 1(1):61-83 (1995).

(34] E. Yu, P. Du Bois, E. Dubois and J. Mylopoulos. From organization models to system requirements: A
"cooperating a.gents" approach. In Proc. of the Third International Conference on Cooperative Information
Systems (CoopIS'95}, Wien, Austria. (1995).

