23 research outputs found

    Mass perturbation of a body segment: 2. Effects on interlimb coordination

    Get PDF
    The shifts in relative phase that are observed when rhythmically coordinated limbs are submitted to asymmetric mass perturbations have typically been attributed to the induced eigenfrequency difference (DLoM) between the limbs. Modeling the moving limbs as forced linear oscillators, however, reveals that asymmetric mass perturbations may induce a difference not only in eigenfrequency (i.e., DLoM 0) but also in the covarying low-frequency control gains (i.e., DLk 0). Because the inverse of the lowfrequency control gain (k) reflects the level of muscular torque (input) required for a particular displacement from equilibrium (output), asymmetric mass perturbations may result in an imbalance in the muscular torques required for task performance (related to DLk 0). Thus, it is possible that the effects attributed to DLoM were in fact mediated by DLk. In 2 experiments, the authors manipulated DLk and DLoM separately by applying mass perturbations to the lower legs of 9 participants. The relative phasing between the legs was not affected by DLk, but manipulation of DLoM (while DLk remained approximately 0) induced systematic relative phase shifts that were more pronounced for antiphase than for in-phase coordination. That indication that the coordination dynamics is indeed influenced by an imbalance in eigenfrequency is discussed vis-Ă -vis the question of how such a merely peripheral property may affect the underlying coordination process

    Beyond in-phase and anti-phase coordination in a model of joint action

    Get PDF
    In 1985, Haken, Kelso and Bunz proposed a system of coupled nonlinear oscillators as a model of rhythmic movement patterns in human bimanual coordination. Since then, the Haken–Kelso–Bunz (HKB) model has become a modelling paradigm applied extensively in all areas of movement science, including interpersonal motor coordination. However, all previous studies have followed a line of analysis based on slowly varying amplitudes and rotating wave approximations. These approximations lead to a reduced system, consisting of a single differential equation representing the evolution of the relative phase of the two coupled oscillators: the HKB model of the relative phase. Here we take a different approach and systematically investigate the behaviour of the HKB model in the full four-dimensional state space and for general coupling strengths. We perform detailed numerical bifurcation analyses and reveal that the HKB model supports previously unreported dynamical regimes as well as bistability between a variety of coordination patterns. Furthermore, we identify the stability boundaries of distinct coordination regimes in the model and discuss the applicability of our findings to interpersonal coordination and other joint action tasks

    Perceptual and Attentional Constraints on 1:1 Bimanual Coordination

    Get PDF
    Two experiments were conducted in an attempt to further the understanding of how previously identified intrinsic constraints and perceptual factors interact in influencing the learning and performance of various bimanual coordination patterns. The purpose of Experiment 1 was to determine the influence of Lissajous feedback on 1:1 bimanual coordination patterns (0°, 90°, 180° phase lags) when the movement amplitudes of the two limbs were different. Participants coordinated rhythmic movements of their forearms while being provided separate feedback for each limb (no- Lissajous group) or integrated feedback (Lissajous group). Data from Experiment 1 supports the notion that the lead-lag relationship as well as amplitude assimilation between limbs observed in the literature can be partially attributed to the visualperceptual factors present in the testing environment. When participants are provided integrated feedback in the form of Lissajous plots and templates much of the lead-lag and amplitude assimilation effects were eliminated and relative phase error and variability were also greatly reduced after only 3 min of practice under each condition. Results from recent experiments suggest that when the salient visual information (Lissajous feedback) is removed, performance in bimanual coordination tasks rapidly deteriorates. The purpose of Experiment 2 was to determine if reducing the frequency of feedback presentation will decrease the reliance on the feedback and will facilitate the development of an internal representation that will improve performance when visual feedback is removed. Participants receiving reduced frequency feedback presentation were able to perform a delayed retention test with the feedback removed as well as the test with feedback present. Data from Experiment 2 demonstrates that salient extrinsic Lissajous feedback can effectively be combined with reduced frequency feedback presentation in a way that performance levels, when tested without the availability of feedback, match those obtained when tested in the presence of Lissajous feedback. Taken together the present experiments add to the growing literature that supports the notion that salient perceptual information can override some aspects of the system's intrinsic dynamics typically linked to motor output control. The strong tendencies toward the intrinsic dynamics found in numerous previous bimanual movement studies and the difficulties in producing various coordination patterns may actually represent detrimental effects attributable to the perceptual information available in the environment and the attentional focus participants adopt. Given external integrated salient visual information participants can essentially tune-in and learn difficult bimanual coordination patterns with relatively little practice

    Emergent coordination between humans and robots

    Get PDF
    Emergent coordination or movement synchronization is an often observed phenomenon in human behavior. Humans synchronize their gait when walking next to each other, they synchronize their postural sway when standing closely, and they also synchronize their movement behavior in many other situations of daily life. Why humans are doing this is an important question of ongoing research in many disciplines: apparently movement synchronization plays a role in children’s development and learning; it is related to our social and emotional behavior in interaction with others; it is an underlying principle in the organization of communication by means of language and gesture; and finally, models explaining movement synchronization between two individuals can also be extended to group behavior. Overall, one can say that movement synchronization is an important principle of human interaction behavior. Besides interacting with other humans, in recent years humans do more and more interact with technology. This was first expressed in the interaction with machines in industrial settings, was taken further to human-computer interaction and is now facing a new challenge: the interaction with active and autonomous machines, the interaction with robots. If the vision of today’s robot developers comes true, in the near future robots will be fully integrated not only in our workplace, but also in our private lives. They are supposed to support humans in activities of daily living and even care for them. These circumstances however require the development of interactional principles which the robot can apply to the direct interaction with humans. In this dissertation the problem of robots entering the human society will be outlined and the need for the exploration of human interaction principles that are transferable to human-robot interaction will be emphasized. Furthermore, an overview on human movement synchronization as a very important phenomenon in human interaction will be given, ranging from neural correlates to social behavior. The argument of this dissertation is that human movement synchronization is a simple but striking human interaction principle that can be applied in human-robot interaction to support human activity of daily living, demonstrated on the example of pick-and-place tasks. This argument is based on five publications. In the first publication, human movement synchronization is explored in goal-directed tasks which bare similar requirements as pick-and-place tasks in activities of daily living. In order to explore if a merely repetitive action of the robot is sufficient to encourage human movement synchronization, the second publication reports a human-robot interaction study in which a human interacts with a non-adaptive robot. Here however, movement synchronization between human and robot does not emerge, which underlines the need for adaptive mechanisms. Therefore, in the third publication, human adaptive behavior in goal-directed movement synchronization is explored. In order to make the findings from the previous studies applicable to human-robot interaction, in the fourth publication the development of an interaction model based on dynamical systems theory is outlined which is ready for implementation on a robotic platform. Following this, a brief overview on a first human-robot interaction study based on the developed interaction model is provided. The last publication describes an extension of the previous approach which also includes the human tendency to make use of events to adapt their movements to. Here, also a first human-robot interaction study is reported which confirms the applicability of the model. The dissertation concludes with a discussion on the presented findings in the light of human-robot interaction and psychological aspects of joint action research as well as the problem of mutual adaptation.Spontan auftretende Koordination oder Bewegungssynchronisierung ist ein häufig zu beobachtendes Phänomen im Verhalten von Menschen. Menschen synchronisieren ihre Schritte beim nebeneinander hergehen, sie synchronisieren die Schwingbewegung zum Ausgleich der Körperbalance wenn sie nahe beieinander stehen und sie synchronisieren ihr Bewegungsverhalten generell in vielen weiteren Handlungen des täglichen Lebens. Die Frage nach dem warum ist eine Frage mit der sich die Forschung in der Psychologie, Neuro- und Bewegungswissenschaft aber auch in der Sozialwissenschaft nach wie vor beschäftigt: offenbar spielt die Bewegungssynchronisierung eine Rolle in der kindlichen Entwicklung und beim Erlernen von Fähigkeiten und Verhaltensmustern; sie steht in direktem Bezug zu unserem sozialen Verhalten und unserer emotionalen Wahrnehmung in der Interaktion mit Anderen; sie ist ein grundlegendes Prinzip in der Organisation von Kommunikation durch Sprache oder Gesten; außerdem können Modelle, die Bewegungssynchronisierung zwischen zwei Individuen erklären, auch auf das Verhalten innerhalb von Gruppen ausgedehnt werden. Insgesamt kann man also sagen, dass Bewegungssynchronisierung ein wichtiges Prinzip im menschlichen Interaktionsverhalten darstellt. Neben der Interaktion mit anderen Menschen interagieren wir in den letzten Jahren auch zunehmend mit der uns umgebenden Technik. Hier fand zunächst die Interaktion mit Maschinen im industriellen Umfeld Beachtung, später die Mensch-Computer-Interaktion. Seit kurzem sind wir jedoch mit einer neuen Herausforderung konfrontiert: der Interaktion mit aktiven und autonomen Maschinen, Maschinen die sich bewegen und aktiv mit Menschen interagieren, mit Robotern. Sollte die Vision der heutigen Roboterentwickler Wirklichkeit werde, so werden Roboter in der nahen Zukunft nicht nur voll in unser Arbeitsumfeld integriert sein, sondern auch in unser privates Leben. Roboter sollen den Menschen in ihren täglichen Aktivitäten unterstützen und sich sogar um sie kümmern. Diese Umstände erfordern die Entwicklung von neuen Interaktionsprinzipien, welche Roboter in der direkten Koordination mit dem Menschen anwenden können. In dieser Dissertation wird zunächst das Problem umrissen, welches sich daraus ergibt, dass Roboter zunehmend Einzug in die menschliche Gesellschaft finden. Außerdem wird die Notwendigkeit der Untersuchung menschlicher Interaktionsprinzipien, die auf die Mensch-Roboter-Interaktion transferierbar sind, hervorgehoben. Die Argumentation der Dissertation ist, dass die menschliche Bewegungssynchronisierung ein einfaches aber bemerkenswertes menschliches Interaktionsprinzip ist, welches in der Mensch-Roboter-Interaktion angewendet werden kann um menschliche Aktivitäten des täglichen Lebens, z.B. Aufnahme-und-Ablege-Aufgaben (pick-and-place tasks), zu unterstützen. Diese Argumentation wird auf fünf Publikationen gestützt. In der ersten Publikation wird die menschliche Bewegungssynchronisierung in einer zielgerichteten Aufgabe untersucht, welche die gleichen Anforderungen erfüllt wie die Aufnahme- und Ablageaufgaben des täglichen Lebens. Um zu untersuchen ob eine rein repetitive Bewegung des Roboters ausreichend ist um den Menschen zur Etablierung von Bewegungssynchronisierung zu ermutigen, wird in der zweiten Publikation eine Mensch-Roboter-Interaktionsstudie vorgestellt in welcher ein Mensch mit einem nicht-adaptiven Roboter interagiert. In dieser Studie wird jedoch keine Bewegungssynchronisierung zwischen Mensch und Roboter etabliert, was die Notwendigkeit von adaptiven Mechanismen unterstreicht. Daher wird in der dritten Publikation menschliches Adaptationsverhalten in der Bewegungssynchronisierung in zielgerichteten Aufgaben untersucht. Um die so gefundenen Mechanismen für die Mensch-Roboter Interaktion nutzbar zu machen, wird in der vierten Publikation die Entwicklung eines Interaktionsmodells basierend auf Dynamischer Systemtheorie behandelt. Dieses Modell kann direkt in eine Roboterplattform implementiert werden. Anschließend wird kurz auf eine erste Studie zur Mensch- Roboter Interaktion basierend auf dem entwickelten Modell eingegangen. Die letzte Publikation beschreibt eine Weiterentwicklung des bisherigen Vorgehens welche der Tendenz im menschlichen Verhalten Rechnung trägt, die Bewegungen an Ereignissen auszurichten. Hier wird außerdem eine erste Mensch-Roboter- Interaktionsstudie vorgestellt, die die Anwendbarkeit des Modells bestätigt. Die Dissertation wird mit einer Diskussion der präsentierten Ergebnisse im Kontext der Mensch-Roboter-Interaktion und psychologischer Aspekte der Interaktionsforschung sowie der Problematik von beiderseitiger Adaptivität abgeschlossen

    Laterally focused attention modulates asymmetric coupling in rhythmic interlimb coordination.

    Get PDF
    Peters (J Motor Behav 21:151-155, 1989; Interlimb coordination: neural, dynamical and cognitive constraints, Academic, Orlando, pp 595-615, 1994) suggested that expressions of handedness in bimanual coordination may be reflections of an inherent attentional bias. Indeed, previous results indicated that focusing attention on one of the limbs affected the relative phasing between the limbs in a manner comparable to the effects of hand dominance. The present study extended the comparison between the effects of attentional focus and handedness by testing their impact on the interactions between the limbs. Both left-handed and right-handed participants performed rhythmic bimanual coordination tasks (in-phase and antiphase coordination), while directing attention to either limb. Using brief mechanical perturbations, the degree to which the limbs were influenced by each other was determined. The results revealed that the non-dominant limb was more strongly affected by the dominant limb than vice versa and that, in line with Peters' proposition, this handedness-related asymmetry in coupling strength was reduced when attention was focused on the non-dominant limb, thereby highlighting the potential relation between inherent (handedness-related) asymmetries and voluntary attentional asymmetries. In contrast to previous findings, the (commonly observed) phase lead of the dominant limb was attenuated (rather than accrued) when attention was focused on this limb. This unexpected result was explained in terms of the observed attention-related difference in amplitude between the limbs. © 2006 Springer-Verlag

    Interaction dynamics and autonomy in cognitive systems

    Get PDF
    The concept of autonomy is of crucial importance for understanding life and cognition. Whereas cellular and organismic autonomy is based in the self-production of the material infrastructure sustaining the existence of living beings as such, we are interested in how biological autonomy can be expanded into forms of autonomous agency, where autonomy as a form of organization is extended into the behaviour of an agent in interaction with its environment (and not its material self-production). In this thesis, we focus on the development of operational models of sensorimotor agency, exploring the construction of a domain of interactions creating a dynamical interface between agent and environment. We present two main contributions to the study of autonomous agency: First, we contribute to the development of a modelling route for testing, comparing and validating hypotheses about neurocognitive autonomy. Through the design and analysis of specific neurodynamical models embedded in robotic agents, we explore how an agent is constituted in a sensorimotor space as an autonomous entity able to adaptively sustain its own organization. Using two simulation models and different dynamical analysis and measurement of complex patterns in their behaviour, we are able to tackle some theoretical obstacles preventing the understanding of sensorimotor autonomy, and to generate new predictions about the nature of autonomous agency in the neurocognitive domain. Second, we explore the extension of sensorimotor forms of autonomy into the social realm. We analyse two cases from an experimental perspective: the constitution of a collective subject in a sensorimotor social interactive task, and the emergence of an autonomous social identity in a large-scale technologically-mediated social system. Through the analysis of coordination mechanisms and emergent complex patterns, we are able to gather experimental evidence indicating that in some cases social autonomy might emerge based on mechanisms of coordinated sensorimotor activity and interaction, constituting forms of collective autonomous agency

    Asymmetric interlimb coupling strength in rhythmic bimanual coordination

    Get PDF
    Beek, P.J. [Promotor]Peper, C.E. [Copromotor
    corecore