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ABSTRACT 

 

Perceptual and Attentional Constraints on 1:1 Bimanual Coordination. (May 2010) 

Attila J. Kovacs, B.S., Transilvania University; 

M.Ed., Wayne State University 

Chair of Advisory Committee: Dr. Charles H. Shea 

 

 

Two experiments were conducted in an attempt to further the understanding of how 

previously identified intrinsic constraints and perceptual factors interact in influencing 

the learning and performance of various bimanual coordination patterns.  

The purpose of Experiment 1 was to determine the influence of Lissajous feedback 

on 1:1 bimanual coordination patterns (0o, 90o, 180o phase lags) when the movement 

amplitudes of the two limbs were different. Participants coordinated rhythmic 

movements of their forearms while being provided separate feedback for each limb (no- 

Lissajous group) or integrated feedback (Lissajous group). Data from Experiment 1 

supports the notion that the lead-lag relationship as well as amplitude assimilation 

between limbs observed in the literature can be partially attributed to the visual-

perceptual factors present in the testing environment. When participants are provided 

integrated feedback in the form of Lissajous plots and templates much of the lead-lag 

and amplitude assimilation effects were eliminated and relative phase error and 

variability were also greatly reduced after only 3 min of practice under each condition.  
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Results from recent experiments suggest that when the salient visual information 

(Lissajous feedback) is removed, performance in bimanual coordination tasks rapidly 

deteriorates. The purpose of Experiment 2 was to determine if reducing the frequency of 

feedback presentation will decrease the reliance on the feedback and will facilitate the 

development of an internal representation that will improve performance when visual 

feedback is removed. Participants receiving reduced frequency feedback presentation 

were able to perform a delayed retention test with the feedback removed as well as the 

test with feedback present. Data from Experiment 2 demonstrates that salient extrinsic 

Lissajous feedback can effectively be combined with reduced frequency feedback 

presentation in a way that performance levels, when tested without the availability of 

feedback, match those obtained when tested in the presence of Lissajous feedback. 

Taken together the present experiments add to the growing literature that supports 

the notion that salient perceptual information can override some aspects of the system’s 

intrinsic dynamics typically linked to motor output control. The strong tendencies 

toward the intrinsic dynamics found in numerous previous bimanual movement studies 

and the difficulties in producing various coordination patterns may actually represent 

detrimental effects attributable to the perceptual information available in the 

environment and the attentional focus participants adopt. Given external integrated 

salient visual information participants can essentially tune-in and learn difficult 

bimanual coordination patterns with relatively little practice. 
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CHAPTER I 

INTRODUCTION 

Dynamical pattern approach to biological motions dwells on two key concepts: the 

intrinsic dynamics of the system and the behavioral or environmental information. 

Intrinsic dynamics refer to those behavioral patterns that emerge spontaneously from the 

cooperation among the systems’ components as a result of nonspecific changes in an 

external control parameter (e.g. movement frequency). Behavioral information 

represents the influence of specific environmental parameters on the collective variable 

or order parameter dynamics. The extent to which intrinsic dynamics and environmental 

information cooperates or competes will determine the behavior pattern actually 

produced by the system. A dissipative dynamical system is one whose phase space 

decreases in time, phase space being all the possible states of the system and their 

evolution in time. For a given task and a given range of the control parameter, certain 

states of the system are more stable (preferred) than others. These states are named 

attractors and each attractor has a region in phase space to which all initial conditions 

will converge.  

Within the coordination dynamics framework, a theoretical model that captures how 

biological systems evolve from one state to another (phase transition) has been 

forwarded by Haken, Kelso and Bunz (1985). The behavioral task used was the 

oscillation of both index fingers at various pacing frequencies determined by an external 

___________ 
This dissertation follows the style of the Journal of Experimental Psychology: Human 
Perception and Performance. 
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control parameter. When the fingers are moving simultaneously towards or away from 

each other, and the movement is performed using homologous muscle groups, it is 

defined as in-phase (� = 0o). Movement in the opposite direction is defined as anti-phase 

(� = 180o). As the pacing frequency was increased so did the variability (standard 

deviation) of the relative phase between the fingers, when performing the anti-phase 

coordination pattern. For a given critical frequency a sudden qualitative change in 

movement pattern was observed from anti-phase to in-phase. The change occurs because 

the phase space of the attractor dissipates and the critical fluctuation pushes the system 

into the phase space of another attractor that is more stable at the given values of the 

control parameter (frequency). The resulting pattern is named a collective or cooperative 

effect which arises without any external instruction from the control parameter. 

According to this theoretical model (HKB model), the intrinsic coordination dynamics of 

bimanual movements are such that certain coordination patterns (in-phase and anti-

phase) are easier to perform than others (e.g., 90o relative phase) with the focal point 

being on the stability (low standard deviation) of the relative phase between the 

oscillating components. While the in-phase and anti-phase patterns have been shown to 

be relatively stable states, in-phase being more stable than anti-phase, a relationship of 

90o relative phase has been shown to be extremely unstable and consequently hard to 

perform and requiring extensive practice to learn (Swinnen, Lee et al., 1997, Zanone & 

Kelso, 1992; 1997).  

Difficulties in performing coordination patterns other than in-phase and anti-phase 

have been traditionally attributed to the attraction toward the intrinsic dynamics (in-
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phase and anti-phase), various structural constraints such as neural crosstalk (Kennerley 

et al., 2002) and/or time delays associated with the integration of the afferent and 

efferent signals due to anatomical connectivity (Banerjee & Jirsa, 2006). More 

importantly these limitations were thought to arise from the action components of the 

perception-action system. More recently, however, Kovacs and colleagues (Kovacs, 

Buchanan, & Shea, 2009a-c, in press) have demonstrated that some of the difficulties in 

performing a wide variety of bimanual coordination patterns should be viewed in terms 

of the perceptual information available and the attentional demands imposed by the 

testing environment.  

Experimental hypotheses 

Two experiments are proposed, which were designed in an attempt to further the 

understanding of how previously identified intrinsic constraints and perceptual factors 

interact in influencing the performance of various bimanual coordination patterns.  

Experiment 1 was designed to determine if the strong coupling asymmetries 

manifested between dominant/non-dominant limbs and between limbs moving with 

disparate amplitudes can be overcome with (a) the provision of salient integrated 

perceptual feedback (Lissajous plots and a cursor representing the current relative phase 

between the two limbs) and (b) the attentional demands (vision of limbs, metronome) are 

reduced. Previous research (Peper, de Boer, de Poel, & Beek, 2008) has shown that for 

bimanual coordination tasks amplitude manipulations whereby the limbs move at 

unequal amplitudes the strength of the asymmetric coupling increases with movement 

amplitude. That is, the limb moving at the smaller amplitude is more strongly affected 
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by the contralateral limb than vice versa. Additionally, there is evidence that not only 

differences in amplitude, but directing attention to one or the other limb also modulates 

the asymmetric coupling between the limbs (de Poel, Peper, & Beek, 2008). It is 

hypothesized that asymmetric coupling between the limbs arises in part from perceptual-

attentional demands present in the testing environment. 

The purpose of Experiment 2 was to determine the degree of reliance on the salient 

and integrated visual feedback used in recent experiments. Results from Kovacs et al. 

(2009a) suggest that when the salient visual information (Lissajous feedback) is 

removed, performance rapidly deteriorates. It was hypothesized that the presentation of 

this type of augmented visual feedback might result in increased reliance on the 

feedback during practice, to the detriment of developing an internal representation of the 

required coordination pattern. Therefore, the purpose was to determine if reducing the 

frequency of feedback presentation will facilitate the internalization of such 

representations. Consistent with the predictions of the guidance hypothesis (Salmoni, 

Schmidt, & Walter, 1984) it was hypothesized that presenting 50% reduced frequency 

feedback in a fading schedule will improve performance on a subsequent test when 

visual feedback will be removed (Winstein & Schmidt, 1990).  
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CHAPTER II 

LITERATURE REVIEW 

Major questions in motor control 

One of the most distinctive features of living organisms is the high degree of 

coordination among the constituting parts. Another fundamental characteristic is the 

ability to adjust behavioral patterns continuously to environmental requirements. At any 

level of description (i.e. molecular, cellular, muscular, systemic, biomechanical, 

behavioral etc.) many interacting components can be identified. Thus, the system has a 

multitude of degrees of freedom that are constantly interacting within and across levels. 

The complexity of this system can be addressed at many different levels, however, the 

identification of all the components across all levels of analysis might be too difficult. 

Even if knowing the identity of all the interacting components the reconstruction of the 

dynamics of their interaction would be a very difficult thing to do even if it addresses a 

simple task. In complex biological systems it is generally not possible to determine the 

detailed behavior of every degree of freedom. The problem is to try and identify only the 

relevant parameters of the system, thereby reducing the unnecessary information 

(Schöner & Kelso, 1988). Nevertheless, the manner by which complex biological 

systems are coordinated to produce functionally specific ordered behavior or 

spatiotemporal patterns remains one of the great unsolved problems of biology. 

Key concepts of Dynamic Patterns theory and the HKB model 

Within the motor neuroscience literature, coordination dynamics theory attempts to 

describe at the lowest possible dimension the largest number of empirically observed 
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features of temporal patterns and to provide a minimal set of dynamical laws for pattern 

generation in complex biological systems (Schöner & Kelso, 1988). The base of this 

approach is the concept that biological systems are self-organizing, non-linear dynamical 

systems described from a synergetic aspect. Dynamical Pattern theory dwells on two key 

concepts, the intrinsic dynamics and behavioral (environmental) information. Intrinsic 

dynamics refers to those behavioral patterns which emerge spontaneously from the 

cooperation among the system’s components as a result of nonspecific changes in an 

external control parameter (Haken et al., 1985). Behavioral information represents the 

influence of specific environmental parameters on the collective variable or order 

parameter dynamics. The extent to which environmental information and intrinsic 

dynamics cooperates or competes will determine the behavioral pattern actually 

produced.  

Rhythmical behaviors are ubiquitous in biological systems and they are considered a 

good model of time-dependent behavior in nature (Kelso, 1995). Bimanual rhythmic 

coordination tasks have been used extensively in the research of human motor control. 

The study of bimanual coordination can be viewed as a window that allows us to gain 

insight into the highly complex and redundant organization of the nervous system. 

A reference point in the development of the Dynamical Pattern approach was the 

seminal work of Haken et al., (1985), who developed a theoretical model of phase 

transitions in human bimanual movements (HKB model). The experimental system used 

was the bimanual finger coordination (Kelso, 1984), where the index fingers of both 

hands had to oscillate at a given frequency. Using this task as a reference, a few basic 
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concepts related to Dynamical Pattern approach can be defined. The oscillating 

frequency for the fingers is given by a metronome. When the fingers are moving 

simultaneously towards or away from each other, and the movement is performed using 

homologous muscle groups, it is defined as in-phase (� = 0o). Movement in the opposite 

direction is defined as anti-phase (� = 180o). As the pacing frequency is increased so 

does the instability (standard deviation of relative phase) of the anti-phase pattern and a 

sudden qualitative change in pattern or phase transition, from anti-phase to in-phase, is 

sometimes observed at a certain critical frequency. This phase transition occurs because 

the system is no longer able to perform the anti-phase pattern at the critical frequency 

and it switches to another pattern that is more stable at that frequency (Kelso, Scholz, & 

Schöner, 1986). The phase transition is called a collective or cooperative effect which 

arises without any external instruction. In this case the pacing frequency, referred to as 

control parameter, is an external variable that can induce changes in the system. 

However, the control parameter does not specify or contain the code for the emerging 

pattern, it simply pushes the system or promotes instabilities leading to a variety of 

possible states. Phase transition allows identifying the demarcation of various patterns 

while loss of stability is considered as evidence for self-organization. Thus, instabilities 

enables us to identify the dimension on which pattern changes occur, the so-called 

variable or order parameter (relative phase). Although the HKB model was originally 

developed to account for the transition observed in the coordination between two index 

fingers, the potential turned out to be generalizable to the coordination between different 

effector systems (e.g., arm and leg, Jeka & Kelso, 1995), single limb movement (Kelso, 
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Buchanan, & Wallace, 1991) and an external periodic stimulus (Byblow, Chua, & 

Goodman, 1995) and even the rhythmical swinging of limbs between persons (Schmidt, 

Carello, & Turvey, 1990).  The fact that the transition from anti-phase to in-phase 

coordination was observed in these rather different cases indicates that the identified 

coordination principles are more general than the system in which they are embodied. 

Researches employing a large number of experimental tasks have revealed 

remarkable temporal constraints (Kelso, 1984; Kelso & deGuzman, 1988) that limit 

spontaneous bimanual coordination to two relatively stable patterns. Coordination 

patterns of in-phase (relative phase between oscillating components, � = 0o) and anti-

phase (� = 180o) have repeatedly been found to be inherently more stable and easy to 

perform without extended practice. Other coordination patterns (e.g. � = 30o to 150o) are 

quite difficult to perform and require more practice in order to achieve relatively stable 

performance (Zanone & Kelso, 1992; Yamanishi, Kawato, & Suzuki, 1980). This pattern 

of results has been modeled as nonlinearly coupled limit cycle oscillators (Haken et al., 

1985) perturbed by stochastic forces (Schöner, Haken, & Kelso, 1986). The two stable 

states of the system (in-phase and anti-phase) have been labeled the intrinsic dynamics. 

Although such theoretical modeling initially did not link the functional aspect of the 

coupling between oscillators to any neuromuscular and/or cognitive process, researchers 

have been trying to reveal processes that may explain such functional coupling. Many 

studies have attempted to identify the nature of the constraints that limit the system to a 

bi-stable state as captured by the HKB model (Haken et al., 1985). Various constraints 

related to neuromuscular, perceptual and/or attentional factors have been identified. 
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Cognitive constraints on bimanual coordination 

Some researchers view the basis for the functional asymmetry as mediated by 

attentional factors (Peters, 1989, 1994; Kinsbourne, 1970). Indeed, the role of attention 

in bimanual movements has been subjected to a good deal of experimental investigation 

(e.g., Hiraga, Summers, & Temprado, 2004; Summers, Maeder, Hiraga, & Alexander, 

2008). Recent theorizing has attempted to link neural areas such as the anterior cingulate 

cortex to cognitive constraints that may impact the “functional representations” of 

muscles underlying sensorimotor coordination in general (Carson & Kelso, 2004). For 

example, when trained musicians (pianists) performed a familiar piece, increased 

activation was found in the SMA whereas when they performed unfamiliar pieces 

increased activation was found in the pre-SMA (Sergent, 1993) suggesting an increase in 

attention related processes. Further, Temprado, Zanone, Monno, and Laurent (1999) 

have demonstrated that the stability of the intrinsic dynamics (i.e. in-phase and anti-

phase) as well as the difference between them depends on the attentional priority given 

to the coordination task. When attention to the bimanual task was somehow released (i.e. 

shared attention in a dual-task condition or focus on the secondary task) both intrinsic 

patterns showed a consistent increase in variability with higher increase for the anti-

phase compared with the in-phase pattern. Conversely, when attention was directed to 

the bimanual task, variability of both patterns decreased with a stronger effect for the 

anti-phase pattern. Furthermore, these effects observed at the level of the coordination 

pattern were also reflected at the component level (individual limbs). However, there are 

also views arguing that while attentional factors undoubtedly play a role, they are not the 
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basis for the functional asymmetry (Carson, 1989; Allen, 1983; Amazeen, Amazeen, 

Treffner, & Turvey, 1997), but rather attention and handedness are related through their 

mutual effects on the bimanual coordination dynamics (de Poel et al., 2008) 

Neuromuscular constraints on bimanual coordination 

Another contribution to the coupling and stability characteristics of bimanual 

coordination has been argued to reside in forward commands and the interactions that 

arise from those commands as the result of shared neural pathways (Ridderikhoff, Peper, 

& Beek, 2005). The concept of neural crosstalk has been used to explain the findings of 

stability differences and phase transitions in various bimanual coordination patterns 

based on interactions in forward command streams in the highly interconnected and 

redundant organization of the nervous system (for review, see Swinnen, 2002). Neural 

crosstalk occurs during bimanual coordination when both hemispheres simultaneously 

send signals to the contralateral and the ipsilateral side of the body via the crossed and 

uncrossed cortico-spinal pathways. Depending on the type of coordination pattern 

performed the simultaneously descending signals to one limb via these pathways might 

be congruent, activating homologous muscles, or incongruent, activating non-

homologous muscles (Cattaert, Semjen, & Summers, 1999; Kagerer, Summers, & 

Semjen, 2003). Additionally, crosstalk has been shown to occur between hemispheres 

(Kennerley et al., 2002). Activation levels of brain areas differ depending on the types of 

coordination patterns performed, with higher activation levels in some motor and pre-

motor areas when an anti-phase coordination pattern was performed compared to when 

an in-phase pattern was performed (Jancke et al., 2000; Stephan et al., 1999). 
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Furthermore, de Oliviera, Gribova, Bergman and Vaadia (2001) have shown that during 

in-phase coordination the correlations between interhemispheric motor cortical areas (the 

motor areas activated simultaneously in both hemispheres) are much stronger than 

during anti-phase coordination. As Swinnen (2002) noted, this correlated activity 

between hemispheres could provide the neural basis of crosstalk between limbs, as 

observed at the behavioral level. Moreover, some research has shown that 

somatosensory feedback is not necessary to establish and maintain stable symmetric and 

asymmetric bimanual circle tracing patterns (Spencer, Ivry, Cattaert, & Semjen, 2005). 

Thus, one contribution to the coupling and stability characteristics of bimanual 

coordination clearly resides in forward commands and the interactions that arise from 

those commands as the result of shared neural pathways (Ridderikhoff, et al., 2005).  

Coalition of constraints influencing bimanual coordination 

Recent studies have favored the hypothesis that a coalition of constraints, ranging 

from high-level cognitive-perceptual to lower-level neuromuscular and directional, 

modulates stability of coordinated behavior. A debate still persists with respect to the 

nature (cooperative, competitive, or both) of these constraints. For example, 

neuromuscular constrains seem to modulate coordination stability differentially as a 

function of whether the movement occurs in an egocentric (Temprado et al., 2003, 

Experiment 2) or alocentric (Salesse, Oullier, & Temprado, 2005) frame of reference. 

Moreover, when visual perception is the only mediating factor of coordination pattern 

stability (i.e. between persons coordination), visual directional coupling takes 

precedence over the neuromuscular constraint (Salesse, Temprado, & Swinnen, 2005; 
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Temprado et al., 2003) by stabilizing the iso-directional movements. Thus it appears that 

directional and neuromuscular constrains are dissociable and depending on task context 

(i.e. plane of motion, Salesse et al., 2005) they may either cooperate or counteract each 

other to enhance or reduce the stability of intermanual coordination (Amazeen, DaSilva, 

& Amazeen, 2008). This dissociation of constraints and their context dependent nature 

has been shown during the coordination of both ipsilateral and heterolateral limbs 

coordination (Meesen, et al., 2006). For example, when non-isofunctional muscles are 

coupled, coordination accuracy is enhanced during iso-directional movements in 

extrinsic space. However, when isofuctional muscles are simultaneously activated, 

performance is more accurate compared with non-isofunctional muscle activation 

regardless of movement direction (Meesen et al., 2006; Salesse et al., 2005). Thus it 

appears that multiple constraints may coexist and there is evidence for combinability and 

exchangeability of these constraints. These are highly dependent on the nature of the 

task and environmental context in which specific coordination patterns are performed. 

Perceptual aspects of bimanual coordination 

The nature of non-linear coupling among the component oscillators that was 

represented in abstract mathematical terms (Haken et al., 1985; Schoner et al., 1986; 

Haken, Peper, Beek, & Daffertshofer, 1996) has also been repeatedly linked to the 

perceptual information available. For example research paradigms such as interpersonal 

coordination tasks (Schmidt et al., 1990), and unimanual tracking tasks (Wilson, Collins, 

& Bingham, 2005b), whereby a direct neuromuscular connection between oscillating 

components was not present, also exhibit stable coordination patterns at 0o and 180o 
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relative phase. These results suggest that coupling can occur at a perceptual level. 

Moreover, Bingham and colleagues (e.g., 1999; 2004a, b; Wilson, Collins, & Bingham 

2005a, b) have argued that bimanual coordination can be limited by the performer’s 

ability to detect a given relative phase pattern throughout visual perception. That is, if a 

participant rates a given observed pattern of behavior as uncoordinated and cannot 

distinguish the amount of variability in the pattern, then it is likely that they will not be 

able to produce the pattern. Consequently, the reason for poor performance in some 

bimanual tasks is that participants are unable to detect their errors and thus, are unable to 

initiate corrections. Using the same logic, the argument can be made that if perceptual 

information is provided that facilitates pattern detection then error detection (and 

correction) will follow allowing stable performance to be effectively tuned-in (Kovacs et 

al., 2009a). The work of Bingham and colleagues establishes a link between visual 

perception and the stability of symmetric and asymmetric coordination patterns. 

Similarly, Mechsner, Kerzel, Knoblich, & Prinz (2001) provided evidence that 

coordinated bimanual movements can be organized in terms of perceptual symmetry as 

well as motoric symmetry as previous work had shown (see Riek, Carson & Byblow, 

1992 for opposite findings). That is, Mechsner et al. have shown that a bimanual 

coordination pattern in which the simultaneous activation of non-homologous muscles is 

required can be performed as stably as a coordination pattern requiring simultaneous 

activation of homologous muscles, provided  the visual symmetry of movement 

direction. However, Mechsner’s dichotomous view whereby coordinated movements are 

purely perceptual–cognitive/ psychological in nature (Mechsner, 2004) has been 
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intensively questioned by many scientists (e.g. Commentaries on F. Mechsner (2004), 

“A psychological approach to human voluntary movements” and response of the author).  

Lissajous feedback 

One method that has been used for some time (e.g., Kelso & Scholz, 1985) to display 

bimanual coordination data and show stability differences in patterns is the angle-angle 

plot or Lissajous plot. The Lissajous plot integrates the position of the two limbs into a 

single point in one plane by plotting the movement of one limb on the horizontal axis 

and plotting the movement of the other limb on the vertical axis. Additionally, when the 

Lissajous plot is overlaid on the same plane with a Lissajous template depicting a goal 

coordination pattern participants are able to detect and correct deviations from the goal 

coordination pattern. In attempts to provide integrated limb movement feedback in 

bimanual 1:1 and polyrhythmic coordination experiments, Lissajous plots have been 

used to provide concurrent and/or terminal feedback (e.g., Lee, Swinnen, & 

Verschueren, 1995; Summers, Davis, & Byblow, 2002; Swinnen et al, 1998; Swinnen, 

Lee et al, 1997; Swinnen, Dounskaia et al., 1997). However, even with the use of 

Lissajous feedback, extensive practice was still required to effectively produce 

coordination patterns other than in-phase or anti-phase (e.g., Lee, et al., 1995; Swinnen 

et al., 1998; Swinnen, Lee et al., 1997). On the other hand, Kovacs and colleagues 

(Kovacs et al., 2009a, b) using Lissajous plot feedback have recently shown that 

participants can effectively (relative phase error and variability levels around 10o) 

perform continuous coordination patterns that traditionally required multiple days of 

practice, after only a limited (5 minutes) amount of practice. Kovacs and colleagues 
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argued that this level of performance was possible because distracting attentional 

demands in the environment (e.g. auditory or visual metronomes, vision of the limbs) 

were reduced allowing the participants to focus primarily on the concurrent feedback 

provided by the Lissajous plots. Indeed, previous studies that have used this same type 

of feedback have still required extensive practice to achieve stable performance because 

external pacing devices were used and/or vision of the limbs was permitted. In sum, it 

appears that unified and integrated perceptual information (Lissajous plot and template) 

allows participants to improve performance on bimanual coordination patterns that have 

traditionally been considered difficult to perform, provided that attentional distracters in 

the environment are reduced or eliminated.  
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CHAPTER III 

EXPERIMENT 1- 1:1 BIMANUAL COORDINATION WITH DIFFERENT 

AMPLITUDES 

Introduction 

Bimanual coordination has been modeled as non-linearly coupled limit cycle 

oscillators (Haken et al., 1985) perturbed by stochastic forces (Schöner et al., 1986). An 

important characteristic of a system of coupled oscillators is that the individual 

components (oscillators/limbs) constantly interact, and thus influencing the individual 

behavior as well as the collective component. Many experiments have revealed that due 

to this interaction bimanual coordination patterns are inherently limited to the stable 

patterns of in-phase (relative phase between oscillating components, � = 0o) and anti-

phase (� = 180o) (Tuller & Kelso, 1989; Yamanishi et al., 1980) while other patterns 

(e.g. � = 90o)  cannot be performed without additional practice (Fontaine, Lee, & 

Swinnen, 1997; Swinnen, Lee et al., 1997, Zanone & Kelso, 1992, 1997).  

The difficulty in performing other phase relations has typically been attributed to the 

attraction toward the intrinsic dynamics of in-phase and anti-phase (Schöner & Kelso, 

1988), the instability associated with the activation of homologous and non-homologous 

muscles via crossed and uncrossed corticospinal pathways (Cattaert et al., 1999; Kagerer 

et al., 2003; Kennerley et al., 2002; for review see Swinnen, 2002) as well as the time 

delays associated with the integration of the afferent and efferent signals due to 

anatomical connectivity (Peper & Beek, 1999; Banerjee & Jirsa, 2006). Additionally, the 

coupling between limbs has been shown to be asymmetrical in that the dominant hand 
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exerts greater influence on the nondominant hand than vice-versa (DePoel, Peper, & 

Beek, 2007). Indeed, experimental evidence indicates that handedness and attentional 

focus directed to one or the other limb have a similar influence on the symmetry of the 

coupling between the components (e.g., Peters, 1989; Treffner & Turvey, 1995, 1996; 

Amazeen et al., 1997). For example, Amazeen et al. (1997) have provided evidence for 

handedness-related coupling asymmetry in a 1:1 frequency locked bimanual 

coordination task with left-handed participants tending to lead with their left hand while 

right-handed participants tended to lead with their right hand, (also see Treffner & 

Turvey, 1995, 1996). Additionally, the results of Amazeen et al. (1997) extend previous 

findings, indicating that attentional focus to one or the other limb is a mediating variable 

that influences asymmetric coupling between limbs. Peters (1989) suggested that the 

expression of handedness in bimanual coordination may be the reflection of an inherent 

attentional bias, with right-handed participants preferentially attending to their right limb 

and left-handed participants preferentially attending to their left limb. However, the 

results of Amazeen et al. (1997) indicate that the effects of an imposed attentional 

asymmetry are similar to those resulting from the intrinsic bilateral asymmetry 

(handedness), but this symmetry does not necessarily imply causality, suggesting that 

attention and handedness are related through their mutual effects on the bimanual 

coordination dynamics (for similar results see de Poel et al., 2008).  

Another source of asymmetry in coupling strength which has received extensive 

experimental attention, is amplitude disparity between the movements of two limbs (e.g. 

Peper & Beek, 1998; Post, Peper, & Beek, 2000), whereby the limb moving at smaller 
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amplitude is more strongly influenced by the contralateral limb moving with a larger 

amplitude than vice versa (Peper et al., 2008). When two limbs are required to 

simultaneously perform movements of disparate amplitudes, spatial assimilation has 

been observed whereby the limb moving with the smaller amplitude tends to overshoot 

while the limb moving with the larger amplitude tends to undershoot. Amplitude 

assimilation (amplitude coupling) has been documented for discrete (Sherwood, 1994; 

Marteniuk, MacKenzie, & Baba, 1984) as well as continuous (Spijkers & Heuer, 1995; 

Buchanan & Ryu, 2006) bimanual movements. As early as 1980, Marteniuk & 

MacKenzie introduced a model of two-hand control in which they propose that the 

magnitude of amplitude coupling is directly related to the interlimb difference in 

amplitudes. In other words, the larger the amplitude disparity, the larger the interaction 

between the limbs. In an attempt to directly test the predictions of the Marteniuk & 

MacKenzie (1980) model, Sherwood (1994) found that amplitude assimilation occurs 

but only when amplitude difference is double, That is one limb has to move double the 

distance of the other (for similar results see Marteniuk et al., 1984). Additionally, in an 

experiment where participants had to perform bimanual continuous movements in the 

horizontal plane Spijkers & Heuer (1995) have found evidence of amplitude 

assimilation. It is noteworthy that in the Spijkers and Heuer experiment amplitude 

disparity was also double (10 and 20 cm). Not only was the amplitude related coupling 

found to be asymmetric in that the limb moving at the larger amplitude influenced more 

the limb moving at the smaller amplitude, but the coupling was found to be asymmetric 

in terms of handedness. In other words, for right handed participants, when the left limb 
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performed the smaller amplitude movement the increase in amplitude (Constant Error) 

was larger than when the right limb performed the smaller amplitude. Conversely, while 

performing the larger amplitude movement the left limb tended to undershoot to a lesser 

extent compared with the right limb (Sherwood, 1994; Marteniuk et al., 1984; Spijkers 

& Heuer, 1995). Furthermore, movement frequency and amplitude are inversely related, 

in that an increase in movement frequency is accompanied by a decrease in movement 

amplitude for externally paced (Beek, Rikkert, & van Wieringen, 1996) movements, as 

well as for movements performed at a preferred frequency (Rosenbaum, Slotta, 

Vaughan, & Plamondon, 1991). Alternatively, an asymmetry in movement amplitudes 

between the limbs may be inversely associated with a difference in preferred movement 

frequency (Ryu & Buchanan, 2004). Recent studies supporting this hypothesis indicate 

that a disparity in movement amplitude may influence the lead-lag relationship between 

limbs (Heuer & Klein, 2005; Buchanan & Ryu, 2006, de Poel, Peper, & Beek, 2009), 

where the limb performing the smaller amplitude tends to lead in time the limb 

performing the larger amplitude. Additionally, this lead-lag relation yielded phase 

relations that are slightly but systematically shifted away from the intended coordination 

patterns (Buchanan & Ryu, 2006). Thus, amplitude disparity seems to affect bimanual 

coordination at the collective level (relative phase) as well as at the component level 

(amplitude of individual limbs).  

Although the exact neurophysiological sources of the interlimb interactions are still 

to be determined, candidate mechanisms and/or processes have been identified (for 

reviews see Carson, 2005; Swinnen, 2002) for which the strength of the neural signal 
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may be associated with the strength of coupling between the limbs. For example, it has 

been argued that enhanced neural activity (e.g. increased movement amplitude, increased 

load) increases the level of neural crosstalk at the level of cerebral hemispheres via the 

corpus callosum (Kennerley et al., 2002) and also at the spinal level via the ipsilateral 

corticospinal pathways (Preilowski, 1975; Kagerer et al., 2003), having a strong effect 

on the contralateral limb. Consistent with this expectation, Walter & Swinnen (1990) 

found that adding additional load to an arm that performs a reversal movement greatly 

influenced the contralateral arm performing a unidirectional movement, in that the latter 

had strong reversal tendencies. Although neurophysiological accounts (such as neural 

crosstalk) for the bimanual coordination dynamics emphasize constraints primarily 

related to the action component of the perception-action system, perceptual influences 

have also been shown to have a significant influence on the coordination dynamics 

(Kovacs et al., 2009a, b, c, in press; Zaal, Bingham, & Schmidt, 2000; Swinnen, Lee et 

al., 1997; Bingham, 2004a). In a series of recent experiments Kovacs and colleagues 

(Kovacs et al., 2009a, b, c, in press) have demonstrated that certain coordination patterns 

that have been deemed difficult or almost impossible to perform, can if fact be 

performed quite easily provided attentional demands in the testing environment are 

substantially reduced (e.g., no external pacing, vision of the limbs is not allowed) and 

movement feedback is provided in a very specific way (Lissajous plots) that facilitates 

error detection and allows corrections to be made easily. The Lissajous plots integrates 

the position of the two limbs into a single point in one plane by having the movement of 

one limb move the cursor horizontally while the motion of the other limb moves the 
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cursor vertically. Lissajous feedback has been used to provide concurrent (e.g. Amazeen 

et al., 2008; Swinnen, Lee et al., 1997; Lee et al., 1995) and/or terminal (e.g. Hurley & 

Lee, 2006; Swinnen, Verschueren et al., 1998) feedback information to the performer in 

bimanual experiments requiring individuals to learn novel 1:1 coordination patterns with 

various phase lags (e.g. Kovacs et al., 2009a, b) and multi-frequency coordination 

patterns (e.g., Summers et al., 2002; Swinnen, Dounskaia et al., 1997; Kovacs et al., 

2009c, in press). For example, Kovacs and colleagues (Kovacs et al., 2009a, b) have 

demonstrated that participants can produce with low error and variability relative phase 

patterns between 0o and 180o relative phase (Yamanishi et al., 1980; Zanone & Kelso, 

1992) with very little practice when provided salient integrated feedback (Lissajous 

plots) and other perceptual (vision of the limbs) and/or attentional distractions 

(metronome) were reduced. Note that the difficulty in producing relative phase patterns 

other than in-phase and anti-phase has typically been attributed to phase attraction that 

draws the coordination between the limbs toward the intrinsic dynamics (Schöner & 

Kelso, 1988) and/or the instability associated with neural cross-talk during the activation 

of homologous and non-homologous muscles via crossed and un-crossed cortico-spinal 

pathways (Kennerley et al., 2002). In the Kovacs et al. (2009b) experiment participants 

produced relative phase patterns between 30o and180o with remarkably low levels of 

error (~10o) and variability (~10o) with only the in-phase pattern (0o relative phase) 

having lower error and variability (~4o-5o). In other words, what the Kovacs and 

colleagues experiments demonstrate is that the difficulty in performing certain 
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coordination patterns is attributable to a certain degree to perceptual and attentional 

factors present in the testing environment.  

The main purposes of the present experiment were to determine if salient perceptual 

feedback and reduced attentional demands in a 1:1 bimanual coordination task might 

alter the coordination dynamics of the two limbs moving at different amplitudes and 

more importantly whether the dynamics of the individual components (limbs) might 

change due to changes in the perceptual information provided during performance. For a 

given movement time, an increase in movement amplitude requires an increased 

movement velocity, which in turn can be achieved by increasing the magnitude of 

contraction forces. An increase in contraction forces is associated with an increase in the 

strength of the neural signal. It is likely that enhanced neural activity leads to stronger 

contralateral effects due to increased neural crosstalk via the corpus calossum 

(Kennerley et al., 2002) and ipisilateral corticospinal pathways (Kagerer et al., 2003). 

Based on the notion of increased crosstalk due to increased neural activity induced by 

the amplitude disparity, it would be expected that in a testing condition in which salient 

integrated feedback is not provided, amplitude assimilation would occur. In other words, 

if for example the limbs are to perform rhythmical movements, and the left limb is 

required to move at half the amplitude of the right limb, it would be expected that the 

left limb will increase its amplitude while the right limb will decrease its amplitude 

compared to a required amplitude. However, if amplitude assimilation is not primarily 

resulting from crosstalk, but arises in part from perceptual-attentional demands present 

in the testing environment, it would be expected that providing salient integrated 
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feedback (Lissajous plot) would reduce this effect. Moreover, consistent with the idea 

that coupling between the dominant and nondominant limbs is asymmetric (Peper et al., 

2008) amplitude assimilation has also been found to be asymmetric depending on which 

limb performs the larger amplitude (e.g. Marteniuk et al., 1984; Buchanan & Ryu, 2006). 

Therefore, in the present experiment, it was expected that the presentation of Lissajous 

feedback would have a greater effect when the dominant (right) limb performs the larger 

amplitude. 

Method 

Participants 

College students (N=20) received academic credit for participation in the 

experiment. The participants had no prior experience with the experimental task and 

were informed of the specific purpose of the study. Participants were strong right-hand 

dominant (mean laterality quotient [LQ] = 79) as determined by the Edinburgh 

handedness inventory (Oldfield, 1971). Informed consent approved by the IRB for the 

ethical treatment of experimental participants at Texas A&M University was obtained 

prior to participation in the experiment.  

Apparatus 

The apparatus consists of two horizontal levers and a projector. The levers were 

affixed at the proximal ends to near frictionless vertical axles. The axles, which rotated 

freely in ball-bearing supports, allowed the levers to move in the horizontal plane over 

the table surface. Near the distal end of each lever, a vertical handle was attached. The 

positioning of the handle was adjustable. When the participant rested their forearm on 
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the lever with their elbow aligned over the axis of rotation the position of the handle was 

adjusted so they could comfortably grasp the handle (palm vertical) (Figure 1A). The 

participant’s limbs were covered throughout the experiment. The horizontal movement 

of the levers was monitored (200 Hz) by potentiometers that were attached to the lower 

ends of the axles.  

Procedure 

All participants were informed that they had to attempt to flex and extend their left 

and right limbs about the elbow in order to produce the desired amplitude and relative 

phase relationship. Participants were assigned to a Lissajous or no-Lissajous condition 

prior to entering the testing room. In the Lissajous condition on-line data was used to 

project a cursor (small circle) on a screen directly to the front of the participant with the 

position of the left lever moving the cursor up (extension) and down (flexion). The 

movement of the right lever resulted in moving the cursor left (flexion) and right 

(extension). Also projected onto the screen was one of the Lissajous plots that 

represented a 1:1 pattern of continuous sinusoidal motion with the required relative 

phase for that trial (Figure 1C). The current position of the limbs was indicated by the 

cursor overlaid on the template with the participant’s goal defined as moving the cursor 

in a way to match the general shape of the Lissajous template projected on the screen in 

front of them. In the no-Lissajous condition, two horizontal line pairs were projected on 

the screen representing the target amplitudes. Two horizontal blue lines represented the 

target amplitudes for the left limb while two horizontal red lines represent the target 

amplitude of the right limb (Figure 1B). The current position of the participant’s limbs 
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was indicated by a blue (left limb) and a red (right limb) cursor. The movement of the 

left and right levers resulted in moving the corresponding cursors up (extension) and 

down (flexion). Participants in the no-Lissajous group were instructed to move the 

cursors between the corresponding target pairs. It was emphasized that the movements of 

both limbs should be continuous. After each trial, in which the cycling frequency of the 

limbs was below 1Hz, the experimenter encouraged the participants to increase their 

movement speed without disrupting the intended movement pattern. Participants were 

informed that Blocks 1-3 are considered training blocks and only data from Block 4 was 

to be retained for further analysis. All participants were required to perform three 1:1 

phase relationships: 0o relative phase (in-phase), 90o relative phase and 180o relative 

phase (anti-phase) in the following serial schedule: 0o – 90o – 180o – 180o – 90o – 0o.  

Participants in the no-Lissajous condition were instructed that during in-phase 

coordination the cursors corresponding to the right and left limb displacement should 

reach simultaneously the two lower and the two upper target lines representing the 

amplitude for each limb. Similarly, during anti-phase coordination when one of the 

cursors reached the lower target line, the cursor representing the opposite limb’s 

displacement had to reach the upper target line. In order to achieve the 90o relative phase 

coordination pattern, participants were explained that one of the limbs should always be 

half way through the motion cycle when the opposite limb reaches the lower or the upper 

target line. 
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Figure 1. View of the set-up for Experiment 1. Illustration of the experimental setup (A) and the 
visual feedback provided during the experiment for the no-Lissajous group (B) and the Lissajous 
group (C) under both amplitude conditions (see text for detailed explanation). 
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 Each relative phase was performed for 30 seconds. This schedule was repeated two 

times within a block: first with the left limb moving at twice the amplitude of the right 

(L2:R1) and, second with the right limbs moving at twice the amplitude of the left 

(L1:R2), counterbalanced between participants. The corresponding movement amplitude 

was 60o for the limb moving at the larger amplitude and 30o for the limb moving at 

smaller amplitude.  

Measures and data reduction 

All data reduction was performed using MATLAB. The potentiometer signals 

representing the limbs’ displacements were low-pass filtered with a second order dual 

pass Butterworth with a cutoff frequency of 10 Hz. Velocity signal was computed with 

the displacement signal filtered (Butterworth, 10 Hz) before performing the 

differentiation. The analyses was focused on both bimanual coordination performance of 

the required phase relationship and unimanual motion performance of the right and left 

limbs.   

Bimanual measures  

To examine the spatial-temporal coordination of the limbs’ motion, the continuous 

relative phase (φ) between the two limbs was computed. Prior to computation of the 

continuous relative phase, displacement and velocity data for each limb was normalized 

in two steps. First the mean of each data series was subtracted from each data point in 

the series to mean center the time series around zero. Second, amplitude rescaling was 

done by dividing the positive and negative amplitudes with the maximum positive or 

negative amplitude value. The phase angle (θi) for each limb (i = r, l) was computed for 
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each sample of the displacement time series using the following formula adapted from 

Kelso et al. (1986):  

θi = tan-1[(dXi/dt)/Xi] 

with Xi  representing normalized limb position and dXi/dt normalized instantaneous 

velocity. Next, the continuous relative phase was computed by subtracting the phase 

angle of the left limb (�l) from the phase angle of the right limb (�r), φ = �r – �l. Root 

mean square error (RMSErph) of the continuous relative phase was used as a measure of 

the degree to which the goal relative phase (e.g. 90°) was achieved. The standard 

deviation (VErph) of the performed relative phase was used as a measure of stability of 

the performed pattern and, the constant error of relative phase (CErph) was used as a 

measure for the lead-lag relationship of the two limbs performing the coordination task. 

Unimanual measures 

 Using the time series of displacement that was mean centered around zero, cycle 

duration was computed on a cycle basis with each cycle representing every other zero 

crossing (ZC) in the displacement trace (Cycle duration = ZCi+2 - ZCi). To examine the 

attainment of the required amplitude for each limb, the mean amplitude was computed 

for each trial. Next, constant error of amplitude (CEamp) was computed for each limb as 

the signed error from the target amplitude. A positive constant error would indicate that 

the limb was overshooting (higher amplitude) while a negative error would indicate that 

the limb was undershooting the required amplitude. 
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Results 

Root mean square error (RMSErph), constant error (CErph) and variability (VErph) of 

the performed relative phase were analyzed in a 2 Group (Lissajous, no-Lissajous) x 2 

Amplitude condition (L2:R1, L1:R2) x 3 Goal phase (0o, 90o, 180o) ANOVAs with 

repeated measures on amplitude condition and goal phase. These results are presented in 

the bimanual performance section. Mean cycle duration and constant error of individual 

limb amplitudes (CEamp) were analyzed in a 2 Group (Lissajous, no-Lissajous) x 2 Limb 

(Left, Right) x 2 Amplitude condition (L2:R1, L1:R2) x 3 Goal phase (0o, 90o, 180o) 

ANOVAs with repeated measures on limb, amplitude condition and goal phase. These 

measures are presented in the unimanual performance section. Duncan’s new multiple 

range test and simple main effect post-hoc tests were performed when appropriate (� = 

0.05).  

Bimanual performance 

The analysis of RMSErph of relative phase detected a main effect of Goal phase, 

F(2,36) = 7.57, p < 0.01,  with Duncan’s new multiple range test indicating that φ = 90o 

was produced with more error than φ = 0o and φ = 180o which were not different from 

each other. The main effect of Group, F(1,18) = 11.01, p < 0.01, as well as the Group x 

Amplitude condition interaction, F(1, 18) = 18.17, p < 0.01 were also significant. Simple 

main effect analysis indicated that the Lissajous group performed the task with less error 

compared with the no-Lissajous group under both amplitude conditions, suggesting that 

participants in the Lissajous group were able to more closely match the required relative 

phase (Figure 2).  
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Additionally, no difference in RMSErph was found between the two amplitude 

conditions for the Lissajous group, but a difference was found for the no-Lissajous group 

which produced lower error under the L1:R2 amplitude condition (M=20.36 deg, 

SEM=3.43 deg) compared with the L2:R1 condition (M=25.88 deg, SEM=3.42 deg).  

In terms of constant error of relative phase (CErph), a measure of the lead-lag 

relationship between limbs, the analysis detected a main effect of Goal phase, F(2,36) = 

8.26, p < 0.01,  with Duncan’s new multiple range test indicating more bias (higher 

CErph) when producing φ = 90o and φ = 0o, which were not different from each other, and 

L2:R1                                           L1:R2 

Figure 2. RMS error of relative phase. RMSErph for participants in the Lissajous and no-Lissajous 
groups. Results are grouped by the goal relative phases and by the amplitude conditions. Error bars 
represent the standard error of the mean. 
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less bias when producing φ = 180o. The main effect of Group was also significant, F(1,18) 

= 4.83, p < 0.05, with the Lissajous group having less bias compared to the no-Lissajous 

group (Figure 3). The Group x Amplitude condition interaction failed to reach 

significance, F(1,18) = 3.30, p < 0.08, but gives an indication relative to the lead-lag 

tendencies of the individual limbs under the different Amplitude conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ANOVA on relative phase variability (VErph) detected a main effect of Goal 

phase, F(2,36) = 128.11, p < 0.01, with Duncan’s new multiple range test indicating that 

performance at φ = 90o was more variable than performance at φ = 180o, which in turn 

Figure 3. Constant error of relative phase. CErph for participants in the Lissajous and no-
Lissajous groups. Results are grouped by the amplitude conditions. Error bars represent 
standard error of the mean. 
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was more variable than performance at φ = 0o. The main effect of Amplitude condition, 

F(1,18) = 9.25, p < 0.01, as well as the Group x Amplitude condition interaction, F(1, 18) = 

5.34, p < 0.05, were also significant. Simple main effect analysis indicated that 

performance of the Lissajous group was less variable (M=9.47 deg, SEM=0.72 deg) 

compared with that of the no-Lissajous group (M=12.19 deg, SEM=0.74 deg) under the 

L2:R1 amplitude condition but not different under the L1:R2 condition. Additionally, no 

difference in variability was found between the two amplitude conditions for the no-

Lissajous group, but a difference was found for the Lissajous group which had lower 

variability of relative phase under the L2:R1 amplitude condition (M=9.47 deg, 

SEM=0.72 deg) compared with the L1:R2 condition (M=11.8 deg, SEM=0.85 deg.) 

(Figure 4). All other interactions in the bimanual measures failed to reach significance.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Variability of relative phase. VErph for participants in the Lissajous and no-Lissajous 
groups. Results are grouped by the goal relative phases and by the amplitude conditions. Error 
bars represent standard error of the mean. 

L2:R1                                           L1:R2 
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Unimanual performance 

The analysis of the mean cycle duration data failed to detect a difference between the 

Lissajous and no-Lissajous groups F(1,18) = 1.84, p > 0.1, as well as between the right and 

left limbs F(1,18) < 1, p > 0.1. However, the analysis did detect a main effect of 

Amplitude condition F(1,18) = 19.2, p < 0.01 indicating that participants in general had 

shorter cycle durations under the L2:R1 condition (M = 989 ms, SEM = 5.65 ms) 

compared with the L1:R2 condition (M = 1030.75 ms, SEM = 5.75 ms). Similarly, the 

analysis detected a main effect of Goal phase F(2,36) = 7.07, p < 0.01, with Duncan’s new 

multiple range test indicating longer cycle duration while performing at φ = 90o  (M = 

1034.3 ms, SEM = 7.65 ms) pattern compared with the φ = 0o  (M = 998.95 ms, SEM = 7.6 

ms) and with the φ = 180o (M = 995.6 ms, SEM = 7.8 ms) patterns which were not 

different from each other. On average, participants in both groups performed the cyclical 

movements at the required frequency (1Hz) and had similar profiles of cycle durations 

across all conditions. Therefore this aspect will not be further addressed in the discussion 

section. 

The main measure of interest for unimanual measures was the constant error (CEamp) 

of displacement for each limb. A negative value for CEamp of the limb performing at the 

larger amplitude and/or a positive value of CEamp for the limb performing at the smaller 

amplitude would indicate an amplitude assimilation effect that exerts an attraction in 

amplitude of the two limbs. The ANOVA detected a main effect of Goal phase, F(2,36) = 

3.96, p < 0.05, with higher constant error during the anti-phase (φ = 180o) coordination 
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pattern (M = 1.18 deg, SEM = 0.26 deg) compared with the φ = 90o coordination pattern 

(M = 0.65 deg, SEM = 0.28 deg).  

The ANOVA also detected a main effect of Limb, F(1,18) = 170.4, p < 0.01 as well as 

a significant Limb x Amplitude condition, F(1,126) = 381.36, p < 0.01, interaction. Simple 

main effect analysis detected significant differences between the left and right limbs 

under the L1:R2 amplitude condition with the left limb overshooting (M=3.35 deg, 

SEM=0.26) and the right limb undershooting (M= -1.39 deg, SEM=0.2) the target 

amplitude. Also the amplitude bias of the left limb was significantly higher under the 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Amplitude assimilation. CEamp for the right and left limbs of participants in the 
Lissajous and no-Lissajous groups. Results are grouped by the amplitude conditions. Error bars 
represent standard error of the mean. 



35 
 

L1:R2 (M=3.35, SEM=0.26) compared with the L2:R1 amplitude condition (M=0.81, 

SEM=0.18). Similarly, the amplitude bias of the right limb was significantly different 

under the L1:R2 (M= -1.39 deg, SEM=0.2) compared with the L2:R1 (M=1.01, 

SEM=0.19) amplitude condition.  

The Group x Limb, F(1,18) = 40.1, p < 0.01, Group x Amplitude, F(1,18) = 4.75, p < 

0.05, and Group x Limb x Amplitude, F(1,126) = 120.69, p < 0.01, interactions were also 

significant (Figure 5). The simple main effect analysis indicated that participants in the 

Lissajous group had less bias with their left (M=1.61 deg, SEM=0.2) and right (M=0.44 

deg, SEM=0.19) limb compared with the left (M=2.54, SEM=0.32) and right (M= -0.82, 

SEM=0.27) limbs of the no-Lissajous group. Simple main effect analysis failed to detect 

difference between the Lissajous and no-Lissajous groups under the two amplitude 

conditions. 

Discussion 

The present experiment was designed to examine how salient perceptual feedback in 

the form of a Lissajous plot and template influences the amplitude assimilation between 

two limbs during a rhythmic bimanual coordination task that requires each limb to 

perform a movement with different amplitude. Participants coordinated rhythmic 

movements of their forearms while being provided separate feedback for each limb (no-

Lissajous group) or integrated feedback (Lissajous group). Attentional demands were 

reduced by allowing participants to self-pace their cyclical movements (no external 

pacing metronome) while also blocking vision of the limbs which has also been shown 

to have a disrupting effect on successfully performing a bimanual coordination task 
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when Lissajous feedback is provided (Kovacs et al., 2009a, b, c). The task was to 

maintain a 00 (in-phase), 1800 (anti-phase) or 900 phase relationship between limbs while 

also matching the required disparate amplitudes for each limb. By comparing the 

amplitude bias (CEamp) of each limb under different conditions it was possible to 

determine the degree of amplitude assimilation exerted by what has been termed the 

asymmetric coupling between the limbs. Note that, amplitude disparity between 

coordinating limbs has been shown to have distinct effects on the behavior at the 

collective level (performed relative phase) as well as at the individual component (limbs) 

level. These aspects will be discussed next. 

Effects at the collective level 

As expected based on previous results (Kovacs et al., 2009a, b), participants in the 

Lissajous group were quite successful in achieving the required coordination patterns (� 

= 0o, � = 180o, and � = 90o) under both amplitude conditions (Figure 2). Variability 

(VErph)of relative phase and RMSErph of relative phase (~ 12o) of participants in the 

Lissajous group, although comparable, were slightly increased (~ 4o) compared with our 

previous experiments using the same experimental setup (Kovacs et al., 2009 b). A 

potential source for the observed increase in relative phase RMSErph and variability 

could be the fact that in the present experiment the amplitudes of the oscillating limbs 

were not equal. Asymmetry in movement amplitudes between the limbs has been found 

to be inversely associated with movement frequency (Beek et al., 1996) such that large 

movement amplitudes are related to low preferred oscillation frequencies. A difference 

between the preferred oscillation frequencies, in turn, can influence the relative phasing 
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between limbs such that the limb with the higher preferred frequency tends to lead the 

limb with the lower preferred frequency (Buchanan & Ryu, 2006; de Poel et al., 2009). 

This yields a slight but systematic shift away from the intended phase relation (Fuchs, 

Jirsa, Haken, & Kelso, 1996). In the Lissajous condition however, this systematic shift 

might have been corrected soon enough to only yield minor (~ 3o) deviations from the 

intended phase relation. Note that one of the advantages of the Lissajous template and 

the overlaid real-time Lissajous plot is that it provides in the same plane the to-be-

performed template and the actual performed pattern, so that error detection and 

subsequent corrections are facilitated.  

In the no-Lissajous condition, however, relative phase RMSErph and variability were 

substantially higher compared with the Lissajous group, especially under the L2:R1 

amplitude condition. While such high levels of RMSErph for the no-Lissajous group 

might be expected for coordination patterns of � = 90o (Kovacs et al., 2009b), it is quite 

surprising that RMSErph levels were so elevated when performing in-phase coordination 

under the L2:R1 amplitude condition. Previous research using similar experimental 

setting (Kovacs et al., 2009b) found no differences between a Lissajous and no-Lissajous 

group when performing in-phase coordination pattern with equal amplitudes. In the 

present experiment however, the disparate amplitudes might have accentuated the drift 

of the actual relative phase pattern from the required pattern. Such results have been 

reported for example by Buchanan & Ryu (2006) using circle tracing tasks and Heuer & 

Klein (2005) using linear movements. In the Buchanan & Ryu experiments participants 

had to trace circle pairs of different diameters with their right and left limb either in in-
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phase or anti-phase coordination pattern. Their results indicated consistent shift from the 

required fixed point values of 0o and 180o and the larger the difference in circle 

diameters the larger the shift (for similar results but different task see de Poel et al., 

2009). Additionally these shifts were consistent with the expected lead-lag relation 

between limbs based on which limb was tracing the circle with the smaller diameter.  

In the present experiment CErph of relative phase was not found to be significantly 

different between the two amplitude conditions for the Lissajous or no-Lissajous group. 

Values of CErph were positive under both amplitude conditions, indicative that the 

dominant right limb was always leading the non-dominant left limb. However, as 

presented in Figure 2C, there appears to be a tendency for the right limb to decrease the 

lead when the left limb is performing the smaller amplitude (L1:R2 condition) in the no-

Lissajous group. Conversely, there is an increase of the right limb lead when the right 

limb is performing the movement with the smaller amplitude. Interestingly however, this 

tendency is not present in the Lissajous group. While CErph for the Lissajous group was 

greatly reduced compared to the no-Lissajous group, the lead of the right limb, in the 

Lissajous group, was similar in magnitude under the two amplitude conditions. It 

appears that the availability of the Lissajous plot, allowed participants to detect and 

correct deviations of relative phase from the intended pattern. Such deviations were not 

found in our previous work where amplitudes were the same. Although contrary to the 

prediction that the limb performing the smaller amplitude should lead the limb 

performing the larger amplitude, the results can be interpreted in light of previous 

experiments that have reported similar findings (Swinnen, Jardin, & Meulenbroek, 1996; 
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Amazeen et al., 1997; Amazeen, Ringenbach, & Amazeen, 2005). The Swinnen et al. 

(1996) experiment, for example, found consistent right limb lead for right handers in a 

circle tracing task. Although in the Swinnen et al experiment there was no disparity 

between the target amplitudes, the consistent right hand lead has been attributed to 

manual dominance and attentional bias. They found that attentional bias modulated the 

magnitude of the dominant (right) limb lead in a similar pattern as did amplitude 

disparity in the present experiment. More specifically, in the Swinnen et al experiment, 

when participants directed their attention to the right limb, the right hand lead increased 

compared to when attention was directed to the non-dominant (left) limb. In a more 

recent experiment, de Poel et al., (2009), have argued however that not attention 

manipulation (i.e. directing attention to one or the other limb) per se influences the lead-

lag relationship between limbs, but rather attention modulates an increase in amplitude 

of the attended limb. In other words, the attended limb tends to increase its movement 

amplitude and as such influencing the relative phasing between limbs. In the present 

experiment directing attention to one or the other limb was not manipulated per se, in 

fact it was attempted to reduce as much as possible attentional demands by covering the 

limbs and not providing external pacing signals. These two factors have been shown to 

have detrimental effects on the performance of bimanual coordination patterns (Kovacs 

et al., 2009a, b, c). However, it might be possible that participants involuntarily directed 

their attention more or less towards one of their limbs. Indeed, the present set of results 

at the collective level (relative phase) suggest that participants in the no-Lissajous 



40 
 

condition might have directed their attention predominantly toward their right limb, and 

more so when they performed under the L2:R1 amplitude condition. 

Effects at the component level 

The main question of interest at the individual limb level was whether the limb 

moving at the smaller amplitude would overshoot and/or the limb moving at the larger 

amplitude would undershoot the target amplitudes as a result of asymmetric coupling 

between the limbs. In terms of the constant error of movement amplitude, the left limb 

on average performed at a higher than required amplitude (overshoot) while the right 

limb in general undershot the required amplitude. However, this effect was not 

consistent across the different amplitude conditions. The results show an asymmetric 

pattern in terms of amplitude bias, with both limbs overshooting under the L2:R1 

condition but not under the L1:R2 condition (Figure 3). This pattern of results was 

similar for the Lissajous and no-Lissajous groups. Therefore amplitude assimilation will 

be discussed in terms of the general asymmetry between the L2:R1 and the L1:R2 

conditions as well as the effect of the Lissajous feedback under the L1:R2 condition.  

First, the pattern of results under the L1:R2 amplitude condition confirms the initial 

predictions. That is, when the dominant right limb performed the larger amplitude, the 

left limb tended to overshoot while the right limb tended to undershoot the required 

target amplitude. Moreover, amplitude bias was more pronounced for the left limb in 

that the left limb overshot to a greater extent than did the right limb undershoots. This 

asymmetry in amplitude assimilation is consistent with the notion that interlimb coupling 

strength scales with movement amplitude, with the limb performing the larger amplitude 



41 
 

influencing to a greater extent the limb moving at the smaller amplitude than vice versa. 

Indeed, several experiments reported similar findings using bimanual discrete aiming 

movements (Sherwood, 1994; Marteniuk et al., 1984; Weigelt & de Oliveira, 2003) or 

rhythmic cycling movements (Spijkers & Heuer, 1995; Peper et al., 2008; Amazeen et 

al., 2005; Buchanan & Ryu, 2006).  This asymmetric amplitude assimilation was more 

pronounced for the no-Lissajous group compared with the Lissajous group. In other 

words participants in the Lissajous group overshot with their left limb and undershot 

with their right limb to a lesser extent than participants in the no-Lissajous group (Figure 

3). It appears that the availability of the integrated Lissajous feedback allowed 

participants to more accurately monitor their performance and errors and initiate 

subsequent corrections. Indeed, the Lissajous plot integrates the displacement of both 

limbs into a single point, which hypothetically makes it easier to visually track and 

detect any deviations from the intended displacement. On the other hand, participants in 

the no-Lissajous group had to constantly monitor the amplitude accuracy of two limbs, 

much as in a bimanual Fitts task (Riek, Tresilian, Mon-Williams, Coppard, & Carson, 

2003), which might have caused a constant shift of attention between the two limbs or 

the preferential allocation of attention to one of the limbs. For example, Spijker & Heuer 

(1995) have reported similar effects on amplitude assimilation, caused by both the 

amplitude disparity and the preferential focus of attention to one of the limbs. Moreover, 

in a recent experiment Shea & Kovacs (2009) have reported that during a discrete 

bimanual aiming task, the availability of Lissajous feedback greatly reduced the 

coupling in timing between limbs, but this effect was not observed for a group that was 
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not provided Lissajous feedback. It is important to note that in the present and most of 

the previous experiments, required amplitude manipulations were also confounded with 

spatial constraints, that is with fixed point locations where amplitude reversal had to be 

performed. This might have contributed to why participants preferentially direct their 

attention to the larger amplitude movement (the more difficult one) while allowing 

higher error (overshoot) of the limb performing the smaller amplitude.  Indeed, de Poel 

et al. (2009) addressed this question using a bimanual cyclical movement of disparate 

amplitudes in which they solely manipulated the required movement amplitudes, rather 

than other spatial features of performance (e.g. fixed spatial location for movement 

reversal). Their results show that the overshooting and undershooting of the required 

amplitudes was similar for the two limbs when amplitude disparity was not spatially 

constrained.  

Second, somewhat unexpectedly, the amplitude bias observed under the L2:R1 

condition was quite different from that observed under the L1:R2 condition. Participants 

in both the Lissajous and no-Lissajous group overshot the required amplitude with both 

limbs when the left limb was performing the larger amplitude. While an increase in 

amplitude of the limb performing the smaller amplitude (right) was expected, an 

overshoot of the limb performing the larger amplitude (left) was not. Thus clearly 

amplitude assimilation did not occur in this condition. In spite of several reports of 

assimilation effect their absence is not a unique result (e.g., Heuer & Klein, 2006; 

Marteniuk et al., 1984). For example in the Marteniuk et al. experiments participants 

were required to perform rapid bimanual aiming movements of either same or disparate 
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amplitudes (amplitudes of 10 and 30 cm respectively). Their results indicate that 

amplitude assimilation occurred only when the right hand was performing the longer 

amplitude but not when the left hand performed the longer amplitude. In fact, when the 

left hand was assigned the larger amplitude, both hands overshot the target amplitude, 

similar to the results in the present experiment under the L2:R1 condition. Similarly, 

Heuer & Klein (2006) found no evidence of amplitude assimilation. Although the failure 

to find amplitude assimilation has not been discussed in these manuscripts, the question 

of why this occurs under one (L1:R2) but not under the other (L2:R1) condition is quite 

challenging. Some of the common factors across experiments and/or conditions that 

failed to demonstrate amplitude assimilation is that all participants were right hand 

dominant and attention focus to one or the other limb was not controlled for. Although 

the present experiment does not provide direct evidence, it seems plausible to consider 

the possibility that inherent interlimb asymmetry (handedness) might interact with 

attentional focus preferentially directed towards one or the other limb (or shifting 

between the two), and such differentially affect interlimb interaction in terms of 

amplitude assimilation. 

In sum, the present set of data supports the notion that the lead-lag relationship as 

well as amplitude assimilation between limbs can be partially attributed to the visual 

perceptual factors present in the testing environment and, when provided a salient visual 

feedback these factors can be reduced or eliminated. 
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CHAPTER IV 

EXPERIMENT 2- LEARNING OF A BIMANUAL 1:1 COORDINATION PATTERN 

WITH 90O CONTINUOUS RELATIVE PHASE: 

FEEDBACK FREQUENCY 

 

Introduction 

Bimanual movements have been used extensively in the study of interlimb 

coordination, especially with respect to developing theories of temporal order. 

Researches employing a large number of experimental tasks have revealed remarkable 

temporal constraints (Kelso & deGuzman, 1988) that limit spontaneous bimanual 

coordination to two relatively stable patterns. Coordination patterns of in-phase (relative 

phase between oscillating components, � = 0o) and anti-phase (� = 180o) have 

repeatedly been found to be inherently more stable and easy to perform without extended 

practice. Other coordination patterns (e.g. � = 30o - 150o) are quite difficult to perform 

and require more practice in order to achieve relatively stable performance (Zanone & 

Kelso, 1992; Yamanishi et al., 1980). In other words, relative phase patterns other than 

in-phase and anti-phase are not inherently stable and when trying to perform 

coordination patterns with other phase relations, the motor system shows a bias towards 

what has been labeled the intrinsic dynamics of in-phase and anti-phase coordination 

(Schöner & Kelso, 1988). The difficulty in performing other phase relations has 

typically been attributed to the attraction toward the intrinsic dynamics of in-phase and 

anti-phase (SchÖner & Kelso, 1988), the instability associated with the activation of 

homologous and non-homologous muscles via crossed and uncrossed corticospinal 
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pathways (Cattaert et al., 1999; Kagerer et al., 2003; Kennerley et al., 2002) as well as 

the time delays associated with the integration of the afferent and efferent signals due to 

anatomical connectivity (Peper & Beek, 1999; Banerjee & Jirsa, 2006).  

Recent experiments however, have demonstrated that changes in the perceptual 

information available in the testing environment can greatly influence bimanual 

coordination, e.g., stabilize anti-phase and destabilize in-phase coordination patterns by 

changing the orientation of the hand (Mechsner et al., 2001). Moreover, in recent 

experiments Kovacs and colleagues (Kovacs et al., 2009a, b) have demonstrated that 

when attention splitting features of a task are greatly reduced (i.e. visual or auditory 

metronome, vision of the limbs) and a salient integrated visual feedback is provided 

(Lissajous plot and template), perception can free the perception-action system from 

constraints that typically limit it to the bi-stable regime of the intrinsic dynamics. For 

example, participants in the Kovacs et al. (2009a) experiment were asked to perform a 

1:1 bimanual coordination task with a 90o relative phase while receiving concurrent 

Lissajous feedback in the form of a cursor representing the joint position of the two 

limbs overlaid on the Lissajous template depicting the required phase relation between 

the limbs. The results showed that participants were quite effective in performing the 

required coordination pattern after only 5 minutes of practice when an auditory 

metronome was not used and vision of the limbs was not permitted. Similarly, Kovacs et 

al. (2009b) have demonstrated that when provided the Lissajous feedback participants 

can perform various 1:1 coordination patterns between 30o – 150o relative phase after 

only 4 minutes of practice at each relative phase with patterns of relative phase error and 
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variability substantially reduced to levels observed in previous experiment only after 

multiple days of practice, and then only for the relative phase pattern that was practiced 

(Zanone & Kelso, 1992). In contrast, participants that were paced by a visual metronome 

and allowed vision of their limbs had much poorer performance. Although Lissajous 

plots have been used in a number of bimanual coordination experiments, results showed 

only moderate success compared with those reported by Kovacs and colleagues. That is, 

even with concurrent Lissajous information provided 1:1 bimanual coordination patterns 

with 90o relative phase requires several days of practice for this coordination pattern to 

be produced with relatively small relative phase error and variability (e.g., Hurley & 

Lee, 2006; Lee et al., 1995; Swinnen et al., 1997a, b). Typically in these experiments 

external pacing devises were used and/or vision of the limbs was permitted during the 

task. What the Kovacs et al. (2009a, b) experiments have demonstrated is that when 

attention splitting features of a task are reduced in the testing environment, the effect of 

the Lissajous feedback is very powerful allowing participants to tune-in their motor 

capabilities and perform various difficult patterns of bimanual coordination with very 

low relative phase error and variability. An interesting feature however is that 

participants are apparently highly dependent on the information that the Lissajous 

feedback provides. Indeed, Kovacs et al. (2009a) found that levels of continuous relative 

phase error and variability where remarkably low when tested after 5 minutes of practice 

with concurrent Lissajous feedback available, suggesting that, the Lissajous plot and 

template provided participants a means by which they were able to detect their errors 

and perform the necessary corrections, in other words a short-term adaptation. On a 
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subsequent test however, when Lissajous feedback was removed, values of error and 

variability increased significantly indicating that participants were not able to perform 

the required coordination pattern. Participant’s dependence on the concurrent feedback 

suggests that they had not developed an internal representation of the task, which they 

could rely on in the absence of concurrent feedback. This observation is consistent with 

the findings that suggest the existence of distinct cortico-cortical and subcortico-cortical 

neural pathways for externally (augmented feedback) and internally guided cyclical 

bimanual movements (e.g., Debaere et al., 2001, 2003) providing a neurophysiological 

account for the beneficial effect of providing augmented visual feedback to optimize 

movements. 

Concurrent and terminal feedback information regarding the outcome of the 

movement has been perceived as one of the most important variables in the learning of 

motor skills (Adams, 1971; Bilodeau & Bilodeau, 1958). The guidance hypothesis 

postulates that although frequent feedback presentation provided during practice guides 

the learner toward the correct response, it also leads toward a dependency on that source 

of extrinsic feedback and blocks the processing of other important sources of 

information (Bjork, 1988; Schmidt, 1991) that are necessary to produce the movement 

when feedback is withdrawn on retention and transfer tests (Salmoni et al., 1984). For 

example, Winstein & Schmidt (1990) found no differences in performance between a 

100% and 50% relative KR frequency group during acquisition. However, on a 5 

minutes and 24 hours delayed retention test with no KR, a clear learning effect was 

shown that favored the 50% group, suggesting that reduced relative frequency feedback 
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was  beneficial to learning. Additional experiments have also demonstrated the 

beneficial influence of reduced frequency KR (e.g., Lee, White, & Carnahan, 1990; 

Sparrow & Summers, 1992; Weeks, Zelaznik, & Beyak, 1993). 

In sum, there is compelling experimental evidence indicating that concurrent 

Lissajous plot is a very effective way of providing feedback during bimanual 

coordination tasks (e.g., Swinnen, Lee et al., 1997), however extensive practice is still 

required for participants to be able to perform the task with relatively low error and 

variability when metronomes are used to pace the movement and vision of the limbs is 

permitted. Additionally, Kovacs et al. (2009a, b) have demonstrated that by eliminating 

the metronome and covering the limbs performance levels after only 5 minutes of 

practice are comparable with those previously obtained after several days of practice. 

However, participants dependence on the extrinsic information provided by the 

Lissajous plot was demonstrated when this information was withdrawn (Kovacs et al., 

2009a).  

Therefore, the main purpose of this experiment was to determine if reduced 

frequency of Lissajous feedback will facilitate the internalization of a representation that 

will allow participants to effectively perform the bimanual coordination task in the 

absence of extrinsic feedback. It is hypothesized that presenting 50% KR in a fading 

schedule will improve performance on a subsequent test when visual feedback is 

removed. The method of presenting feedback in a fading schedule involves providing 

feedback relatively often during the initial stages of practice and then gradually 

withholding the presentation of feedback more and more toward the end of practice 
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(Winstein & Schmidt, 1990; Wulf & Schmidt, 1989). A secondary purpose of the 

present experiment was to determine if by simply increasing the amount of practice 

when providing 100% feedback will also facilitate the internalization of a representation 

of the required coordination pattern. 

Method 

Participants 

College students (N=63) received academic credit for participation in the 

experiment. The participants had no prior experience with the experimental task and 

were informed of the specific purpose of the study. Participants were right-hand 

dominant as determined by self report. Informed consent approved by the IRB for the 

ethical treatment of experimental participants at Texas A&M University was obtained 

prior to participation in the experiment.  

Apparatus 

The apparatus used was the same as described in Experiment 1. 

Procedure 

Participants were randomly assigned to a 100% feedback (KR), 50% feedback or 0% 

Lissajous feedback conditions and to a 5, 10 or 20 minutes practice group prior to 

entering the testing room. All participants were informed that they had to attempt to 

continuously flex and extend their left and right limbs about the elbow in order to 

produce the desired relative phase relationship. The on-line data was used to project a 

cursor (small circle) on a screen directly to the front of the participant with the position 

of the left lever moving the cursor up (extension) and down (flexion). The movement of 
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the right lever resulted in moving the cursor left (flexion) and right (extension). Also 

projected onto the screen was a circle that represents a 1:1 pattern of continuous 

sinusoidal motion with a 90o relative phase between two signals. The current position of 

the limbs was indicated by the cursor overlaid on the template with the participant’s goal 

defined as moving the cursor in a way to match the general shape of the Lissajous 

template projected on the screen in front of them. The 100% feedback group was 

provided KR throughout every practice trial while the 0% feedback group received no 

KR whatsoever. For the 50% feedback group KR was presented in a fading schedule. 

Trials were of 30 seconds duration. For a block of ten trials feedback presentation under 

the fading schedule was presented as follows: 25-25-20-20-15-15-10-10-5-5 seconds for 

each consecutive trial. Participants in the 5 minutes condition practiced one block of 10 

trials, while participants in the 10 and 20 minutes condition practice two and four blocks 

of ten trials respectively. After each trial, in which the cycling frequency of the limbs 

was less than 1Hz, the experimenter encouraged the participants to increase their 

movement speed without disrupting the intended movement pattern. Stability of the 

newly learned coordination pattern was assessed on a delayed (24 h) retention test with 

(KR test) and without the augmented feedback (no KR test), counterbalanced between 

participants.  

Measures and data reduction 

All data reduction was performed using MATLAB. The potentiometer signals 

representing the limbs’ displacements were low-pass filtered with a second order dual 

pass Butterworth with a cutoff frequency of 10 Hz.  
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Bimanual measures 

To examine the spatial-temporal coordination of the limbs’ motion, the continuous 

relative phase (φ) between the two limbs was computed. Prior to computation of the 

continuous relative phase, displacement and velocity data for each limb was normalized 

in two steps. First the mean of each data series was subtracted from each data point in 

the series to mean center the time series around zero. Second, amplitude rescaling was 

done by dividing the positive and negative amplitudes with the maximum positive or 

negative amplitude value. The phase angle (θi) for each limb (i = r, l) was computed for 

each sample of the displacement time series using the following formula adapted from 

Kelso et al. (1986):  

θi = tan-1[(dXi/dt)/Xi] 

with Xi  representing normalized limb position and dXi/dt normalized instantaneous 

velocity. Next, the continuous relative phase was computed by subtracting the phase 

angle of the left limb (�l) from the phase angle of the right limb (�r), φ = �r – �l. Root 

mean square error (RMSE) of the continuous relative phase was used as a measure of the 

degree to which the goal relative phase (φ = 90°) was achieved. The standard deviation 

(VE) of relative phase was used as a measure of stability of the performed coordination 

pattern. 

Unimanual measures  

Using the time series of displacement that was mean centered around zero, cycle 

duration was computed on a cycle basis with each cycle representing every other zero 

crossing (ZC) in the displacement trace (Cycle duration = ZCi+2 - ZCi).  
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Results 

Root mean square error (RMSE), and variability (VE) of the performed relative 

phase were analyzed in a 3 KR condition (100%, 50% and no KR) x 3 Practice time (5, 

10 and 20 minutes) x 2 Test (Lissajous and no-Lissajous) ANOVAs with repeated 

measures on Test. These results are presented in the bimanual performance section. 

Mean cycle duration was analyzed in a 3 KR condition (100%, 50% and no KR) x 3 

Practice time (5, 10 and 20 minutes) x 2 Test (Lissajous and no-Lissajous) x 2 Limb (left 

and right) ANOVAs with repeated measures on Test and Limb. These measures are 

presented in the unimanual performance section. Duncan’s new multiple range test and 

simple main effect post-hoc tests were performed when appropriate (� = 0.05).  

The main question of interest in the present experiment was whether a reduced 

feedback frequency can facilitate the development of an internal representation of the 

coordination task, that will enable participants to have similar levels of performance 

when Lissajous feedback is presented and when this feedback is withdrawn. Based on 

previous experiments (e.g., Kovacs et al., 2009a, b) it was anticipated that participants 

receiving feedback 100% of the practice time will perform the Lissajous test 

significantly better than the no-Lissajous test. Additionally, no differences in 

performance on the two tests were expected for participants who did not receive 

Lissajous feedback during practice. However, high levels of variability were expected 

during both tests for participants who did not receive extrinsic feedback, and also for 

participants receiving 100% feedback during the no-Lissajous test. These high levels of 

variability in turn might mask any improvement in performance related to practice effect 
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(and interaction for that matter) that was expected to occur for the group receiving 

feedback 50% of their practice time. Therefore an apriori comparison at various stages 

of practice (t-test) was planned on the performance error measures (RMSE) between 

participant receiving 50% feedback on the no-Lissajous test and participants receiving 

100% feedback on the Lissajous test. The comparison was made between performance 

on the no-Lissajous test for participants receiving 50% feedback and performance on the 

Lissajous tests for participants receiving 100% feedback.  

Bimanual performance 

The analysis of RMSE of relative phase detected a main effect of Test, F(1,54) = 

20.43, p < 0.01, with Duncan’s new multiple range test indicating that participants had 

lower RMSE values during the Lissajous test compared with the no-Lissajous test 

(Figure 6A and 6B). The KR condition x Test interaction was also significant, F(2,54) = 

10.01, p < 0.01. Simple main effect analysis indicated that participants in the 100% KR 

and the 50% KR conditions made fewer errors when Lissajous feedback was available 

during testing compared to when Lissajous feedback was not available (Figure 6C). No 

such differences were detected for participants in the 0% KR condition, which 

performed the tests similarly under both feedback conditions. Additionally, participants 

in the 0% KR group made more errors during the Lissajous test compared to participants 

in the 100% and 50% KR groups which were not different from each other. During the 

no-Lissajous test, participants in the 100% feedback group performed the task with more 

errors than participants in the 50% and 0% feedback group which were not different 

from each other. All other main effects and interactions failed to reach significance.  
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Figure 6. Relative phase error. RMSE for participants during the Lissajous (A) and no-
Lissajous tests (B) as a function of practice time, and as a function of feedback condition 
(C). Error bars represent standard error of the mean. 

A 

B 

C 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Relative phase variability. VE for participants during the Lissajous (A) and no-
Lissajous tests (B) as a function of practice time, and as a function of feedback condition 
(C). Error bars represent standard error of the mean. 
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In terms of variability of performance (VE), the analysis detected a main effect of 

Practice time, F(2,54) = 5.02, p < 0.05, with Duncan’s new multiple range test indicating 

that performance in general was less variable after 20 minutes of practice compared with 

5 minutes of practice. Also variability of performance after 10 minutes of practice was 

not significantly different compared with the 20 minutes and 5 minutes practice 

conditions. Main effect of Test was also significant, F(1,54) = 14.67, p < 0.01, participants 

being more variable in their performance when Lissajous feedback was not available 

during testing compared to when Lissajous feedback was available (Figure 7A and 7B). 

Additionally, the analysis detected a significant KR condition x Test interaction, F(2,54) = 

7.00, p < 0.01. Simple main effect analysis indicated that participants who received 

100% KR were more variable during the no-Lissajous test compared with the Lissajous 

test. Similarly, participants who received 100% KR were more variable during the no-

Lissajous test compared with participants who received 50% KR and 0% KR, which in 

turn were not different from each other (Figure 7C). Although as expected, the analysis 

did not detect a practice effect suggesting that in general no improvement was made with 

additional practice, participants who received 50% feedback did improve their 

performance. This is best illustrated by the apriori comparisons at various stages of 

practice between participants receiving 50% feedback (no-Lissajous test) and 

participants receiving 100% feedback (Lissajous test). The analysis indicated that after 5 

minutes of practice participants who received feedback 50% of the time in a fading 

schedule had considerably higher RMSE values compared with participants who 

received feedback 100% of the time t(12) = 4.63, p < 0.05. After 10 minutes of practice, 
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although the performance of the 50% feedback group has improved, the difference 

compared to the group receiving 100% feedback was still significant, t(12) = 3.26, p < 

0.05. After 20 minutes of practice however, the analysis failed to detect a difference 

between the two groups, t(12) = 1.33, p > 0.05. In other words, after 20 minutes of 

practice participants who received feedback 50% of the time they practiced, performed a 

test where no Lissajous feedback was available equally well as participants who had 

received 100% feedback have performed a test where Lissajous feedback was provided 

(Figure 8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Relative phase RMS error. RMSE values at various stages of practice for 
participants receiving 50% feedback (no-Lissajous test) and participants receiving 100% 
feedback (Lissajous test). Error bars represent standard error of the mean. 



58 
 

Unimanual performance 

The analysis of the mean cycle duration data failed to detect a difference between the 

groups that received different amounts of feedback, F(2,54) = 0.73, p >0.05 as well as 

between the groups that practiced for a different amount of time, F(2,54) = 0.84, p >0.05. 

Similarly, no differences between the left and right limbs were detected, F(1,54) = 0.26, p 

> 0.05, and, mean cycle duration was also similar during the Lissajous and no-Lissajous 

tests, F(2,54) = 1.94, p > 0.05. All interactions failed to reach significance, therefore the 

discussion will resume addressing the findings of the bimanual measures. 

Discussion 

The present experiment was designed to examine whether reduced feedback 

frequency presented in a fading schedule facilitated the internalization of a 1:1 bimanual 

coordination pattern with a 90o relative phase offset. The purpose was to determine if 

participants were able to perform the required coordination pattern when the extrinsic 

Lissajous feedback was removed, after having received a reduced amount of feedback 

during practice. Note that previous research using Lissajous plots found remarkably low 

levels of relative phase error and variability while performing various difficult bimanual 

coordination patterns after only a few minutes of practice (Kovacs et al. 2009a, b), but 

also demonstrated participants dependence on the feedback as illustrated by dramatically 

increased levels of error and variability when the extrinsic information was removed. 

Thus, the main purpose was to determine whether the powerful effect of the Lissajous 

feedback can be combined with a feedback presentation schedule that will facilitate 

learning of a bimanual coordination task.  
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Participants coordinated rhythmic movements of their forearms while being provided 

concurrent Lissajous feedback with either 100% frequency, 50% frequency in a fading 

schedule or 0% frequency (no feedback). The task was to maintain a 900 phase 

relationship between limbs, and the amount of practice was 5, 10 or 20 minutes. By 

comparing relative phase error and variability on delayed retention and transfer tests, 

with and without Lissajous feedback, after various amounts of practice, it was possible 

to determine the extent to which participants were able to develop an internal 

representation of the required bimanual coordination task.  

As previous research has shown (Kovacs et al., 2009a, b), after only 5 minutes of 

practice participants receiving 100% feedback were very effective (low error and 

variability) in producing the required coordination pattern when Lissajous feedback was 

provided. However, when the feedback was withdrawn, error and variability of relative 

phase increased, indicating considerable decrease in performance. The same pattern of 

results was observed after 10 minutes and 20 minutes of practice. Additionally, 

regardless of the amount of practice, participants receiving 100% feedback did not 

improve their performance on the delayed test with Lissajous feedback available. 

Similarly, when Lissajous feedback was not available during testing, performance did 

not improve with additional practice. In other words, more practice while receiving 

100% feedback did not help participants to develop an internal representation of the task. 

This result in itself is quite surprising, considering the ubiquitous findings that in general 

more practice benefits learning. That is, all things being equal, more learning will occur 

if there are more practice trials. It is possible, however, that the availability of the 
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Lissajous feedback prompted participants to primarily rely on this source of information 

to guide their movements (Blandin, Toussaint, & Shea, 2008), which might also have 

prevented them to process information necessary for learning the task in a relatively 

permanent way (e.g. Schmidt & Bjork, 1992). Indeed, the guidance hypothesis 

postulates that on no KR trials in reduced frequency of feedback conditions (i.e. 50%) 

participants must rely and/or explore other sources of information during the practice 

phase. This additional processing results in participants learning something 

additional/different, such as the capability to detect one’s own errors or to be consistent. 

In other words, too much feedback during practice is detrimental if the goal is to be able 

to produce the movement without the availability of feedback on a delayed test. 

Indeed, participants who received reduced frequency feedback (50%) improved 

considerably their performance on a delayed test, when Lissajous feedback was 

withdrawn. In fact, after 20 minutes of practice, relative phase error and variability on 

the no-Lissajous test were comparable to the values of the group receiving 100% relative 

frequency feedback during the Lissajous test. The effect of reduced frequency feedback 

advantages in learning a novel motor task is not particularly remarkable in itself, many 

studies having reported similar findings (e.g., Armstrong, 1970; Lee et al., 1990; 

Sparrow & Summers, 1992; Weeks et al., 1993; Winstein & Schmidt, 1990). However, 

research typically testing the effects of various reduced frequency feedback schedules 

have assessed the degree of internalization of a novel motor task by using a delayed 

retention test where feedback was not provided (Schmidt & Wulf, 1997). Thus, 

participants who received 100% relative frequency feedback were facing a novel 
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situation during testing with no feedback available. In general the role of reduced 

frequency feedback is to facilitate the internalization of a novel motor task to the point 

where levels of performance when tested without feedback are comparable to 

performance levels obtained when feedback is available during testing. Using this logic, 

results from previous research are not as straightforward in illustrating the advantages of 

reduced frequency feedback. Although such a direct comparison has not usually been 

made it appears that, given a similar amount of practice, performance of a group 

receiving 100% feedback frequency is considerably better compared with the 

performance of a group that received reduced relative frequency feedback. Therefore, 

the results of the present experiment showing that participants are capable of performing 

a difficult coordination pattern when feedback is withdrawn as well as when feedback is 

available, is quite remarkable.  

Finally, performance of participants receiving 0% feedback during practice was 

similar on both tests (with and without Lissajous feedback). Continuous relative phase 

error was relatively high, indicating that participants were not performing the required 

phase relation. This finding is consistent with the notion that performing a coordination 

pattern with 90o relative phase is quite difficult for a system whose intrinsic dynamics 

exhibit stability at 0o and 180o relative phase (Kelso et al., 1986) but not at other phase 

relations. Additionally, in the absence of extrinsic feedback, it is quite obvious that 

participants were not able to significantly improve their performance with the limited 

amount of practice provided in the present experiment. However, even with limited 

practice participants were able to reduced their variability, especially when tested 
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without the Lissajous feedback. In sum, when Lissajous feedback was not provided 

during practice, performance did not improve, but movement variability decreased as a 

function of practice indicating that participant’s performance became more stable.  

When attentional demands are decreased through the absence of metronomes to pace 

the movements (Kovacs et al., 2009a), the limbs are covered to avoid distractions 

(Kovacs et al., 2009c), and Lissajous feedback (goal pattern and cursor representing the 

position of the limbs) is presented, participants are capable of tuning-in their motor 

responses to produce difficult patterns of bimanual coordination with low levels of 

continuous relative phase error and variability, comparable to levels typically attained 

after several days of practice (Swinnen, Lee et al., 1997). However, when the salient 

Lissajous feedback was removed, performance levels considerably deteriorated (Kovacs 

et al., 2009a). What the present experiment demonstrates is that salient extrinsic 

feedback (in the form of Lissajous plot and template) can be effectively combined with 

reduced frequency feedback presentation in a way that performance levels, when tested 

without the availability of feedback, match those obtained when tested in the presence of 

Lissajous feedback. 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

 

Two experiments were proposed, aimed at providing further understanding of how 

previously identified intrinsic constraints and perceptual factors interact in influencing 

the performance of various bimanual coordination patterns. Experiment 1 was intended 

to determine if the strong coupling asymmetries manifested between dominant/non-

dominant limbs and between limbs moving with disparate amplitudes can be overcome 

when salient integrated perceptual feedback is provided and attentional demands are 

reduced. It was hypothesized that asymmetric coupling between the limbs arises in part 

from perceptual-attentional demands present in the testing environment. Experiment 2 

was aimed at determining the degree of reliance on the salient and integrated visual 

feedback, more specifically to determine whether the powerful effect of the Lissajous 

feedback can be combined with a feedback presentation schedule that will facilitate 

learning of a bimanual coordination task. It was hypothesized that presenting 50% 

reduced frequency feedback in a fading schedule will improve performance on a 

subsequent test when visual feedback will be removed.  

The findings from the present experiments are consistent with recent bimanual 

coordination research (Kovacs et al., 2009a-c, in press; Mechsner et al., 2001), visuo-

motor tracking research (Wilson et al., 2005a, b; Ryu & Buchanan, 2009), and even 

rapid aiming research constrained by Fitts’ Law (Kovacs, Buchanan, & Shea, 2008) 

which report that salient perceptual information can override some aspects of the 

system’s intrinsic dynamics typically linked to motor output control. The strong 
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tendencies toward the intrinsic dynamics found in numerous previous bimanual 

movement studies and the difficulties in producing various coordination patterns may 

actually represent detrimental effects attributable to the perceptual information available 

in the environment and the attentional focus participants adopt. Given external integrated 

salient visual information participants can essentially tune-in difficult bimanual 

coordination patterns with little practice.  

Note that much of the difficulty in performing various coordination patterns has been 

attributed to intrinsic neuromuscular constraints that tend to pull the system toward more 

stable intrinsic coordination patterns. Moreover, when performing coordination patterns 

with disparate amplitudes, the intrinsic neuromuscular constraints are thought to be 

“enhanced” due to increased neural activity required by an increase in movement 

amplitude. However, given salient visual information, participants can very effectively 

perform (low error and variability of relative phase) coordination patterns when the 

limbs are required to move at different amplitudes. These findings suggest that the 

notion of neural crosstalk (forward command streams as well as the integration of 

proprioceptive feedback) must be viewed as a highly dynamic concept, susceptible to 

perceptual interferences, and not as rigid “prewired” neuro-anatomical constraints. 

Moreover, this notion seems to be supported also by the finding that participants are 

capable of rapidly developing an internal representation of a relatively difficult 

coordination pattern (� = 90o) that allows them to perform the task quite effectively in 

the absence of the Lissajous feedback. 
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The notions of increased difficulty and increased variability of various coordination 

patterns have been consistent with much of the previous research on bimanual 

coordination. Data from the present experiments however, and that of other recent 

experiments using a similar protocol (Kovacs et al., 2009b-c, in press) provide a quite 

different picture (see Figure 9). When attentional demands are reduced, and Lissajous 

feedback is presented errors and variability in continuous relative phase remain 

remarkably low and relatively constant across a wide variety of coordination 

requirements with only the 1:1 in-phase coordination pattern resulting in lower errors 

and variability. In Figure 9 continuous relative phase errors and variability are plotted 

for the bimanual tasks used in the present experiments (B) and bimanual task used in 

recent experiments (Kovacs et al., 2009b-c, in press) using similar protocols (A). What 

this comparison yields is the finding that 1:1 in-phase results in approximately 5o-6o 

continuous relative phase error and variability, while all other bimanual conditions tested 

with Lissajous feedback resulted in roughly 10o-12o errors and variability. Note that 

proprioceptive feedback and neural crosstalk arising from forward command streams are 

thought to be complementary for 1:1 in-phase (� = 0o), but not for other phase 

relationships. However, in the present experiments and other recent experiments using 

similar protocol (Kovacs et al., 2009b-c, in press), these potential constraining factors 

(proprioception and neural crosstalk) that might be contributing to error and variability 

of performance, were not controlled. Therefore, by minimizing attentional factors and 

increasing the saliency of the perceptual factors during bimanual coordination, 

dramatically decreases levels of relative phase error and variability across a wide variety 
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of coordination patterns, it appears that there is a relatively constant source that 

contributes to increasing these levels of variability and error in all the coordination 

patterns relative to the 1:1 in-phase pattern.  
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Figure 9. Cross experiment comparison of error and variability. Absolute error (AE) and variability 
(VE) in continuous relative phase from the present experiments (B) are compared with recent 
experiments using similar protocols testing phase lags of 0o – 1800 in 30o increments (Kovacs et al. 
2009b) and multi-frequency 2:1 and 3:2 (Kovacs et al. 2009c) bimanual coordination patterns, and  
5:3 and 4:3 (Kovacs et al. in press) bimanual coordination patterns. 
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The experimental protocols used in the present and more recent experiments (Kovacs et 

al., 2009a-c, in press) can potentially provide for future research a basis to evaluate the 

magnitude of additional constraints (i.e., proprioception and neural crosstalk) by 

essentially minimizing the error and variability due to attentional and perceptual factors.  

The development of equations of motions in the form of non-linear coupled 

oscillator models and potential function models to capture the formation of stable 

coordination patterns and transitions between stable coordination patterns has been a 

primary feature of the dynamic pattern approach (Kelso, 1995; Kelso et al. 1986; Haken 

et al. 1985). The phase transitions from anti-phase to in-phase coordination, as well as 

the accompanying stability-related phenomena, have been modeled by Haken et al. 

(1985), arguing that the simplest potential function (HKB model) that can account for 

the observed transition in coordination is 

V (�) = - a cos� – b cos(2�), 

with � denoting relative phase (Figure 10).  

Although the original formulation of the HKB model assumed identical oscillators 

and symmetrical coupling functions, Haken et al. (1985) already acknowledged the 

possibility of functional asymmetries in these respects. Indeed, a number of studies have 

shown that the coordination dynamics is influenced by particular characteristics of the 

moving limbs, handedness and focus of attention to one or the other limb. For example, 

difference in eigenfrequencies of the limbs results in changes in pattern stability and 

phase drift (e.g., Jeka & Kelso, 1995). 
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To capture the influence of different eigenfrequencies an additional component, referred 

to as the detuning parameter (��), was introduced into the order parameter equation 

(Kelso, DelColle, & Schöner, 1990): 

d�/dt   = �� - a sin� – 2b sin(2�) 

Note that the order parameter equation was derived to express the dynamics of the order 

parameter (relative phase) given the relation: 

d�/dt  = - dV(�)/d�, 

Figure 10. The HKB model of coordination. The potential, V(�), as the ratio b/a changes.  
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thus  

d�/dt  = - a sin� – 2b sin(2�). 

More importantely, a difference in eigenfrequency (preferred movement frequency) has 

been shown to be mediated by disparate movement amplitudes of the two component 

oscillators (Beek et al., 1996). Other studies have observed asymmetries in the 

performed relative phase as an effect of handedness (e.g., Treffner & Turvey, 1995; de 

Poel et al., 2007) with the right limb on average leading the left limb in time for right-

handers, and the left limb leading the right for left-handers. Similarly, when attention 

was directed toward the dominant limb, the phase lead of the dominant limb was found 

to be larger than when the non-dominant limb was attended (e.g., Amazeen et al., 1997). 

To account for these effects, the original symmetry of the HKB model was broken by 

incorporating additional terms into the order parameter equation. For example, to 

accommodate the handedness related asymmetries, Treffner & Turvey (1995) 

incorporated two additional cosine terms to the order parameter equation: 

d�/dt  = - a sin� – 2b sin(2�) – c cos� – 2d cos (2�). 

In the extended model, the parameter d was proposed to capture the influence of 

handedness (Treffner & Turvey, 1995), as well as the influence of asymmetric attention 

(Amazeen et al., 1997) on the relative phase dynamics.  

Combining the additional terms introduced into the order parameter equation leads to  

d�/dt   = �� - a sin� – 2b sin(2�) – c cos� – 2d cos (2�). 

More recently, Bingham (2004a) has argued that the origin of the potential function in 

the HKB model resides in the informational coupling between the limbs, and therefore 



70 
 

proposed a perceptually driven nonlinear dynamical model. At the basis of the 

perceptually driven model was the hypothesis that relative phase (�) and relative phase 

variability are perceptible properties, with the perceived phase variability being 

dependent on the velocity differences between oscillators. Similarly, Wilson & Bingham 

(2008) found that relative direction is the information used to perceive relative phase 

during in-phase and anti-phase coordination, and in order to be able to perceive a 

coordination pattern with 90o relative phase, a new variable composed of position and 

speed needs to be learned. The work of Bingham and colleagues (Bingham et al., 1999; 

Bingham, 2004a, b; Wilson et al., 2005a, b; Wilson & Bingham, 2008) has provided a 

major contribution to linking perception and action in bimanual coordination tasks. 

Nevertheless the perceptually driven model of coupled oscillators produces patterns of 

stability and attraction similar to the HKB model. 

The primary purposes of extending the basic HKB model were to accommodate 

functional asymmetries and/or constraints that have been experimentally shown to 

influence the coordination dynamics. What the present experiments and other recent 

experiments using similar protocols (Kovacs et al., 2009a, b) demonstrate, is that some 

of the functional constraints found in previous research might actually be attributable to 

attentional and perceptual factors present in the testing environment. These findings 

suggest that when attentional demands are reduced and salient visual feedback is 

provided, participants can override some aspects of the system’s intrinsic dynamics 

typically linked to motor output control. Thus, future models of bimanual coordination 

must take into account how perceptual factors can free the action component of the 
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perception-action system from previously identified constraints. Indeed, a variety of 

coupled oscillator systems, involving different coupling functions, may result in the 

potential function identified by the HKB and other extended models. What future 

research needs to determine is whether the results of the present experiments and other 

recent experiments using similar protocols (Kovacs et al., 2009a, b) can be 

accommodated by further extensions of the HKB model, or new models need to be 

developed.   

Complementing recent research showing that provided the above testing conditions 

participants can perform various difficult coordination patterns with low levels of error 

and variability, the present research shows that participants can also develop an internal 

representation of the required coordination pattern and perform the task without 

receiving concurrent feedback at similar levels of performance as when feedback is 

provided.  Therefore, future models of bimanual coordination must take into account 

whether or not the task is primarily requiring a long-term modification in motor output, 

or just a tuning of motor capabilities within a given context.  
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