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Abstract In 1985, Haken, Kelso and Bunz proposed a sys-

tem of coupled nonlinear oscillators as a model of rhythmic

movement patterns in human bimanual coordination. Since

then, the Haken–Kelso–Bunz (HKB) model has become

a modelling paradigm applied extensively in all areas of

movement science, including interpersonal motor coordi-

nation. However, all previous studies have followed a line

of analysis based on slowly varying amplitudes and rotat-

ing wave approximations. These approximations lead to a

reduced system, consisting of a single differential equa-

tion representing the evolution of the relative phase of the

two coupled oscillators: the HKB model of the relative

phase. Here we take a different approach and systemati-

cally investigate the behaviour of the HKB model in the

full four-dimensional state space and for general coupling

strengths. We perform detailed numerical bifurcation analy-

ses and reveal that the HKB model supports previously

unreported dynamical regimes as well as bistability between

a variety of coordination patterns. Furthermore, we iden-

tify the stability boundaries of distinct coordination regimes

in the model and discuss the applicability of our find-
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ings to interpersonal coordination and other joint action

tasks.
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1 Introduction

Many body movements are periodic in their nature [18].

For example, postural sway [2], walking [8,20], running

[37], swimming [54], galloping [8,20] and juggling [58]

have a cyclic pattern in the position of the end effectors

or joint angles. Synchronisation is a fundamental aspect

of oscillatory coordination dynamics in human and ani-

mal body movements [33] and has been found in many

different situations [48]. Coordination is characterised by

a bounded temporal relationship created by a convergent

dynamical process [26,44]. Coordination regimes depend

on symmetries and couplings between oscillators. Frequency

entrainment, where two oscillators adopt a central frequency,

occurs even with a very weak coupling. With a relatively

strong coupling or if the system is symmetrical, phase

entrainment can also take place. These processes may be

continuous or intermittent; that is, the phases of the two oscil-

lators may also align periodically [18,35,47].

In the case of two coupled oscillators, the regular patterns

of coordination are well captured by the properties of the

relative phase between the periodic movements of the two

subsystems [32,33]. The simplest pattern is observed when

the phase of the two oscillators coincide to give in-phase (0◦)

monostable coordination pattern. An example of this behav-

iour is given by iso-lateral limb movements [6]. Monostable

anti-phase (180◦) coordination can also occur, and an exam-
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ple of such behaviour is observed in team sports (competitive

games) [5,10,12,15]. In many real systems, anti-phase stabil-

ity coexists with in-phase stability [22,33,44,56]. Previous

studies address the modelling of the two coupled oscillators

as a nonlinear dynamical system, the fitting of its periodic

orbits to human movements [28] and the systematic analysis

of the effects of linear and nonlinear terms to the observed

limit cycles [4]. The observed relations between frequency

and amplitude [22] as well as peak velocities [44] in many

but not all [3] oscillatory movements turned out to be well

represented by a hybrid oscillator [22] formed by a com-

bination of Van der Pol and Rayleigh nonlinear damping

terms.

A classical example of model exhibiting bistability is

the so-called HKB model proposed in the seminal work

by Haken, Kelso and Bunz [18,22]. The model, which

was originally developed for bimanual finger coordination

[30], was found to be representative of a wide range of

applications in human movement [7,18], suggesting that

the dynamics that it produces are somehow fundamental

and make formal construct for the study of coordina-

tion dynamics [32,33]. Although the model was originally

developed in order to account for intra-personal phenom-

ena, the same patterns have been shown to be represen-

tative of both sensorimotor and interpersonal behaviours

[31,49,50]. The model successfully reproduces not only

the patterns of stability observed in bimanual coordina-

tion experiments but also their dependence upon frequency

[22]. The HKB model admits a potential function that

yields the experimentally observed change in attractors’

landscapes. Furthermore, the HKB model and its stochastic

extension reproduced the characteristic fluctuation increase

and slowing down observed experimentally near instabili-

ties [51].

The development of the HKB model has been inspired by

the in-phase and anti-phase coordination dynamics observed

in bimanual coordination in the context of the finger move-

ments experiment [30,52,53]. Therefore, most previous

research has focused on a fixed set of model parameters that

guarantees the stability of these particular dynamics. Fur-

thermore, significant contributions to understanding these

coordination patterns (albeit in a narrow parameter range and

with limiting assumptions on the parameters controlling the

coupling strength) have been made for different oscillator

frequencies and inputs [1,3,7,17,19,25] as well as noise in

the system [9,49,50]. All previous mathematical analyses of

the HKB model have focused on the relative phase dynam-

ics, under the assumption that the amplitude of the coupled

oscillators is constant [1,3,9,17,19,22]. Several recent arti-

cles have studied the phase-approximation dynamics in the

HKB model by considering the multiple stable states of the

system and the ability to switch between them by chang-

ing the frequency and the coupling parameters [38]. The

bifurcations leading to transitions between anti-phase and

in-phase dynamics in a reduced phase approximation of the

HKB model [16] have been also studied. To our knowledge,

however, a bifurcation analysis of the full four-dimensional

HKB model, considering all model parameters as well as

general (i.e. weak and strong) coupling strengths, has not

been performed. Such analysis could provide an insight into

other possible qualitative behaviours that the solutions of

the model might exhibit, as well as characterise the possi-

ble changes in the dynamics of the solutions corresponding

to any changes in the parameter values of the model. We

also note recent further developments of dynamical systems’

approaches for studying sensorimotor dynamics, involving

dynamical repertoires, hierarchies of timescales and struc-

tured flows on manifolds [23].

Given that the HKB model is a widely accepted tool in

this field, it is imperative to examine systematically all the

possible coordination regimes supported by this system. In

addition, classifying changes of dynamical regimes in terms

of positions and velocities of the two coupled oscillators

would undoubtedly shed light on the HKB model’s applica-

bility to explain movement coordination in joint actions

and human interactions with an adaptive virtual partner

(VP)[13,34,40,59–61]. In the present paper, we take a dif-

ferent approach in analysing the HKB model, as we study

the full four-dimensional system of first order differen-

tial equations describing the evolution of the positions and

velocities of the two coupled oscillators. We begin by char-

acterising the local and global dynamics of the single HKB

oscillator and reveal a global transition in the model that

governs the existence of periodic solutions in a range of

the oscillator’s parameter values. We proceed by system-

atically characterising the full HKB model dynamics not

only by varying the coupling strength parameters but also

the rest of the model parameters, i.e. the parameters govern-

ing the single oscillator’s properties. In addition to the very

well-studied coordination patterns, we find a stable phase-

locked solution that spans a wide range of relative phases and

persists for a wide range of model parameters’ values. We

also show that relaxing the constant amplitude assumption

allows for much richer coordination dynamics and coexis-

tence of various stable coordination attractors (multi-stability

regimes).

2 Results

2.1 Intrinsic properties of the oscillator in the HKB

model

Recently, a significant scientific effort has been put towards

the development of VP interaction systems. In particular, the

single HKB oscillator is being used to drive the movement
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dynamics exhibited by the VP [13,34,59–61]. The dynam-

ics of the model is an important consideration in designing

such systems and in particular for parametrising the ordi-

nary differential equation that governs the behaviour of the

VP. For example depending on the constraints of the experi-

mental set-up, a certain range of amplitude and/or frequency

for the VP periodic behaviour might be desirable. Although

some properties of the HKB oscillator have been measured

and studied both experimentally and analytically [28,29], the

dynamics of the single HKB oscillator has not been system-

atically investigated theoretically. To address this gap, we

begin by examining a single HKB oscillator:

ẍ = −ẋ
(

αx2 + β ẋ2 − γ

)

− ω2x,

which could be written as a planar autonomous dynamical

system of the form:

ẋ = y,

ẏ = −y
(

αx2 + βy2 − γ

)

− ω2x, (1)

where x represents the position, y the velocity, ω ∈ R
+ is

related to the natural frequency of the oscillator and α, β, γ ∈
R are parameters governing the intrinsic dynamics of Eq. (1).

The single HKB oscillator is a hybrid Rayleigh–Van der

Pol [22] planar system, and although the analysis of planar

systems of ordinary differential equations is very well estab-

lished [21,27,43], it has not been applied to the single HKB

oscillator model. Furthermore, whenever planar systems are

coupled, they are often studied in the weak coupling limit,

which we don’t require for the numerical continuation analy-

sis presented here. In our analysis, we focus on the global

dynamics of the system and aim to characterise all possible

dynamic states that the single HKB oscillator model sup-

ports, as well as their dependence on all model parameters.

System (1) admits the origin (0, 0) as a trivial steady state

for any parameter value ω ∈ R
+. Given ω > 0, the Jacobian

matrix at the trivial equilibrium (x, y) = (0, 0) is

J =
[

0 1

−ω2 γ

]

For |γ | ≥ 2ω, the Jacobian has a pair of nonzero real

eigenvalues:

λ =
γ ±

√

γ 2 − 4ω2

2

Thus, the equilibrium is a stable node (sink) for γ < 0 and

unstable node (source) for γ > 0. For |γ | < 2ω, the Jacobian

has a pair of complex conjugate eigenvalues of the form:

λ =
γ

2
± i

√

4ω2 − γ 2

2

Hence, the equilibrium is a stable focus (spiral sink) for

−2ω < γ < 0 and unstable focus (spiral source) for

0 < γ < 2ω.

Changing the value of the parameter γ near γ = 0

leads to a change in the sign of the eigenvalues’ real part,

which is associated with loss or gain of stability. The sys-

tem undergoes a Hopf bifurcation at γ = 0, which gives

rise to oscillations. We could analytically verify further the

sufficient conditions for the existence of Hopf bifurcation by

showing that:

∂λr(γ )

∂γ

∣

∣

∣

∣

γ=0

=
1

2
�= 0,

l1(γ )|γ=0 =
−(α + 3βω2)

2ω(ω2 + 1)
�= 0

⇐⇒ α + 3βω2 �= 0,

where λr and l1 are the real part of the eigenvalues and the

first Lyapunov coefficient [36], respectively. The sign of the

first Lyapunov coefficient [36] determines whether the Hopf

bifurcation is subcritical or supercritical; hence, we are in

the supercritical (subcritical) case if α + 3βω2 > 0 (< 0).

The system (1) has a degenerate Hopf bifurcation when α +
3βω2 = 0.

Next we carry out bifurcation analysis using numerical

continuation in AUTO [11]. We set NTST = 50, NCOL = 4

for the mesh, and EPSL = 10−9, EPSU = 10−9 for the

tolerances of the Newton solver. In Fig. 1a, we continue the

trivial steady state (x, y) = (0, 0) in γ : oscillations arise at a

supercritical Hopf bifurcation at γ = 0 since for α = 1 and

β = 1, α + 3βω2 > 0. Stable periodic solutions exist for

various values of the intrinsic frequency ω: the lower ω, the

larger the oscillations amplitude and the longer the period

(see inset in Fig. 1b). Similar scenarios are found for various

combinations of α and β (Fig. 1c, d). The amplitude of the

periodic solutions increase as either α or β are decreased.

For α = −1, the Hopf bifurcation is supercritical and the

oscillatory branch is stable, whereas for β = −0.1 the Hopf

bifurcation is subcritical and oscillatory branches, which are

originally unstable, restabilise at a saddle node. We note that

system (1) exhibits bistability between a stable equilibrium

and a stable periodic states in the case of β = −0.1 (Fig. 1d).

The above analysis reveals that when parameters α and

β have opposite signs (Fig. 1c, d), there is a critical value

for γ at which the amplitude (and period) of the stable limit

cycle solutions in the model rapidly increase to infinity. As a

result, all periodic solutions vanish for values of γ above this

critical value. Furthermore, such transitions occur robustly

for a large range of α and β parameter values. We believe
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Fig. 1 Bifurcation diagrams for a single HKB oscillator. a The trivial

equilibrium becomes unstable at a supercritical Hopf bifurcation (HB)

in the continuation parameter γ for ω = 2, α = 1, β = 1. b The peri-

odic orbit for γ = 2 is continued in the parameter ω. The lower ω, the

larger the oscillations amplitude and the longer the period. c–d Contin-

uations in γ are repeated for various values of α and β. In panel c, for

α = −1, the periodic branch undergoes a global bifurcation (vertical

asymptote), whereas in panel d, for β = −0.1, the Hopf bifurcation

is subcritical, and the emanating branch restabilises at a saddle-node

bifurcation, before disappearing in a global bifurcation. Solid (dashed)

lines represent stable (unstable) states of (1)

it is important to understand where and why this singularity

occurs, as it corresponds to a non-physical behaviour. Since

this feature has not previously been reported in the literature

on the HKB model, we present a thorough investigation of

this phenomenon. In order to analyse the behaviour of the

system at infinity, we employ methods presented in Chapter

3.10 of reference [46]. We start by projecting system (1) on

the Poincaré sphere using the following transformation:

X =
x

√

1 + x2 + y2
, Y =

y
√

1 + x2 + y2
,

Z =
1

√

1 + x2 + y2
,

which defines one-to-one correspondence between points

(X, Y, Z) on the upper hemisphere S2 with Z > 0 and points

(x, y) in the plane defined by:

x =
X

Z
, y =

Y

Z
,

The points on the equator of S2 correspond to points at

infinity of R
2. Under the transformation above, the HKB

oscillator on S2 with Z > 0 is given by:

Ẋ =
Y

Z2

[

αX3Y +β XY 3+Z2
(

− γ XY +(ω2 − 1)X2+1
)]

Ẏ =
1

Z2

[

(Y 2 − 1)Y (αX2 + βY 2)

+ Z2
(

Y (−γ (Y 2 − 1) − XY ) + ω2 X (Y 2 − 1)
)

]

Ż =
Y

Z

[

αX2Y + βY 3 + Z2
(

(ω2 − 1)X − γ Y
)]

(2)

System (1) has eight equilibria on the equator X2+Y 2 = 1

of S2 (see Theorem 1 from Chapter 3.10 of [46]) that repre-

sents the limit x, y → ∞. In general, the equilibria are given

by the solutions of the following equation:

X Qm(X, Y ) − Y Pm(X, Y ) = 0 (3)
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(a)

α = −1, β = 1, γ = 2.6

(b)

α = −1, β = 1, γ = 3.6586

(c)

α = −1, β = 1, γ = 4

(d)

α = 1, β = −0.1, γ = −0.09

(e)

α = 1, β = −0.1, γ = −0.022618

(f)

α = 1, β = −0.1, γ = 0.5

Fig. 2 Global phase portraits of the system Eq. (2), projected on the

(X, Y )-plane, for different parameters values. Green dots indicate sta-

ble equilibria; red dots indicate unstable equilibria; black dots indicate

equilibria of a saddle type; red line indicates unstable periodic orbit;

thick black lines indicate heteroclinic connections between different

equilibria or between equilibria and stable periodic orbits; grey lines

indicate nullclines; dashed lines examples of trajectories; arrows indi-

cate direction of the flow (colour figure online)

where Pm and Qm are homogeneous m-th degree polynomi-

als in x and y according to the following representation of

the system (1):

ẋ = P(x, y) = P1(x, y) + · · · + Pm(x, y)

ẏ = Q(x, y) = Q1(x, y) + · · · + Qm(x, y)
(4)

In our case, the highest degree homogeneous polynomials

are:

P3(x, y) = 0

Q3(x, y) = −αx2 y − βy3
(5)

Hence, all equilibria at the equator are the solutions of the

following system of equations:

X2 + Y 2 = 1

X Q3(X, Y ) − Y P3(X, Y ) = −αX3Y − βY 4 = 0
(6)

and are given by:

X = 0, Y = ±1,

X = ±1, Y = 0,

X = ±
√

α
√

α − β
, Y = ±

√
β

√
β − α.

(7)

The flow between the nodes is determined using the fol-

lowing equation (see Theorem 1 from Chapter 3.10 of [46]):

Gm+1 = cos θ Qm(cos θ, sin θ) − sin θ Pm(cos θ, sin θ)=0,

(8)

where θ is an angle along the equator.

The flow between the equilibria on the equator of the

Poincaré sphere is counterclockwise if Gm+1 > 0 and clock-

wise where Gm+1 < 0. We find that only the equilibria

X = 0, Y = ±1 are hyperbolic. They are stable nodes

for β < 0 and are unstable nodes for β > 0. The other

six equilibria as given in (7) are non-hyperbolic. We estab-

lished their types by combining information gathered from

the flow on the equator and from numerical integration of the

transformed system (2). We summarise our findings in two

representative cases in which, as the parameter γ increases,

the period and amplitude of the stable periodic orbit grows to

infinity exponentially fast and the periodic orbit disappears.

More specifically, at the critical value γ ∗, the stable periodic

orbit becomes a heteroclinic cycle connecting four equilibria

of saddle type at the equator on the Poincaré sphere.

In Fig. 2, we illustrate how the structure of the global phase

portrait of the system (2), projected on the (X, Y )-plane,

changes with increasing γ . Fig. 2a–c, for α = −1, β = 1,
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shows the transition occurring as γ is varied in the bifurca-

tion diagram of Fig. 1c; and Fig. 2d–f, for α = 1, β = −0.1

shows the transition occurring as γ is varied in the bifurca-

tion diagram of Fig. 1d. In both cases, the disappearance

of the stable limit cycle solution in the model is due to

the same mechanism. However, depending on the signs of

the parameters α, β, different invariant objects are involved

in the transition. Panels (a–c) in Fig. 2 show that there

are two types of connecting orbits in the phase space of

the HKB oscillator. The first type connects the unstable

equilibria (0,±1) (red dots) with the saddle points (±1, 0)

(black dots) and the second connects the saddle points

(∓
√

α/
√

α − β,±
√

β/
√

β − α) (black dots) with the sta-

ble periodic orbit surrounding the unstable equilibrium at

the origin (0, 0). As the parameter γ increases, the two

types of connections become tangent and the periodic orbit

stretches along the X axis as depicted in panel (b) for value

of γ = 3.65860608978 (just before the transition). At the

critical value, γ = γ ∗, the periodic orbit becomes a het-

eroclinic cycle connecting four saddle equilibria. After the

transition, the heteroclinic cycle disappears and the global

phase portrait changes. In panel (c), we show that after the

transition there are connections between the saddle points

(∓
√

α/
√

α − β,±
√

β/
√

β − α) and the stable equilibria

(±
√

α/
√

α − β,±
√

β/
√

β − α), and between the saddle

points (±1, 0) and the unstable equilibrium at the origin

(0, 0). In this case, the single HKB oscillator has stable

periodic solutions only for γ ∈ (0, γ ∗). Panels (d, e) in

Fig. 2 demonstrate that, for α = 1, β = −0.1, in addi-

tion to the stable periodic orbit there is also an unstable

periodic orbit (red loop) surrounding the stable equilibrium

at the origin (0, 0) (green dot). Although unstable periodic

orbits could not be observed experimentally, such objects

are important from dynamical systems point of view. For

example, in this case the branch of unstable periodic orbits

forms the boundary between the basins of attraction of the

coexisting stable equilibrium and stable periodic orbit for

γ ∈ (γSN, γ ∗) (see Fig. 1d). Irrespective of the presence

of unstable limit cycle, we find again two types of con-

necting orbits in the phase space for γ < γ ∗ as shown

in panel (d). The first type connects the unstable equilibria

(∓
√

α/
√

α − β,±
√

β/
√

β − α) (red dots) with the saddle

points (±
√

α/
√

α − β,±
√

β/
√

β − α) (black dots). The

second type connects the saddle points (±1, 0) (black dots)

with the stable periodic orbit. Here we observe again that

the connections become tangent to the periodic orbit, as it

stretches along the X -axis growing into a heteroclinic cycle

between four saddle equilibria (black dots) for γ = γ ∗, as

depicted in panel (e) where γ = −0.022618 (just before the

transition). After the transition γ > γ ∗, the heteroclinic cycle

disappears and the invariant objects of the system recon-

nect. This, however, occurs in a different manner compared

to the case presented in panels (a–c). The saddle equilibria

(±1, 0) are now connected with stable nodes (0,±1) and

the unstable periodic orbit is connected to the saddle points

(±
√

α/
√

α − β,±
√

β/
√

β − α). In panel (f), we show the

phase portrait for γ = 0.5, which illustrates the connections

after the unstable periodic orbit disappeared in a subcritical

Hopf bifurcation (at γ = 0, compare with Fig. 1). In this

case, the single HKB oscillator has stable periodic solutions

only for γ ∈ (γSN, γ ∗).

2.2 Bifurcation analysis of the full HKB model

2.2.1 Full system model equations

Previous analysis of the HKB model has focussed on the

dynamics of the relative phase that is given by the differ-

ence of the two oscillators’ phases. However, in applications

involving VP interaction environments [13,60,61], other

properties of the HKB model dynamics become crucial. Such

properties include the amplitude and phase of the oscillatory

solutions, as well as their existence, parameter dependence

and stability. In order to address these questions, we focus

below on the full HKB system. The original HKB model

evolves in time (measured in seconds) according to a set of

nonlinear differential Equations [22]:

ẍ1 + ẋ1

(

αx2
1 + β ẋ1

2 − γ

)

+ ω2x1 = I12(ẋ1, ẋ2, x1, x2)

ẍ2 + ẋ2

(

αx2
2 + β ẋ2

2 − γ

)

+ ω2x2 = I21(ẋ1, ẋ2, x1, x2),

(9)

where x1 and x2 represent the position of the two agents’ end

effectors and

I12(ẋ1, ẋ2, x1, x2) = (a + b(x1 − x2)
2)(ẋ1 − ẋ2)

I21(ẋ1, ẋ2, x1, x2) = (a + b(x2 − x1)
2)(ẋ2 − ẋ1), (10)

are coupling functions with coefficients a, b ∈ R. The above

system of two coupled second order ordinary differential

equations (ODEs) (9) can be written as a four-dimensional

autonomous system of first order ODEs:

ẋ1 = y1

ẋ2 = y2

ẏ1 = (a + b(x1 − x2)
2)(y1 − y2)

− (y1

(

αx2
1 + β y1

2 − γ

)

+ ω2x1)

ẏ2 = (a + b(x2 − x1)
2)(y2 − y1)

− (y2

(

αx2
2 + β y2

2 − γ

)

+ ω2x2), (11)

where xi and yi represent position and velocity of the i th

agent’s end effector, respectively. The resulting dynamical
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system has a four-dimensional state space [7]. The parame-

ter ω (commonly referred to as eigenfrequency) defines, in

conjunction withα, β and γ , the intrinsic dynamics of the two

coupled oscillators. The oscillators’ positions and velocities

are coupled via the parameters a and b, commonly referred

to as coupling strengths. The HKB model behaviour then

depends on the intrinsic dynamics parameters as well as the

coupling strengths. Although coordination/synchronisation

in system (11) emerges as a consequence of coupling, its

dynamics (i.e. number, type and stability of coordination pat-

terns) depends not only on the nature of the coupling but also

on the intrinsic properties of each coupled oscillator. In the

HKB system (11), both the intrinsic dynamics and the cou-

plings are highly nonlinear, opening up the possibility of

obtaining multi-stability and hence multi-functionality.

2.2.2 Coordination regimes in the HKB model

In this section, we study the existence and stability of the

possible coordination regimes in the full HKB model (11)

by conducting a systematic analysis in all model (control)

parameters. The numerical bifurcation analysis is carried out

using numerical continuation in AUTO [11]. We set NTST =
50, NCOL = 4 for the mesh, and EPSL = 10−9, EPSU =
10−9 for the tolerances of the Newton solver. We perform

time-stepping simulations of the model (11) in MATLAB

[39], using theode45 solver with default numerical settings.

In the simulations presented below, we use the following

typical intrinsic dynamics parameter values as default, α =
1, β = 1, γ = 1 and ω = 0.2, unless otherwise stated in the

figure legends.

In agreement with previously performed analysis on the

HKB relative phase dynamics [1,3,9,17,19,22], we confirm

existence and study the stability of the well-characterised in-

phase and anti-phase oscillatory solutions. Moreover, we find

a new family of stable periodic phase-locked solutions char-

acterised by relative phase in the interval (0◦, 180◦). These

solutions are found to be stable in a wide range of parame-

ter values. We note that this family of solutions is unstable

for the commonly used set of model parameters based on

[22]. Examples of the three solution types described above

are plotted in Fig. 3. We show how such solutions are born

when we vary γ for various combinations of the parame-

ters a and b in the bifurcation diagrams of Fig. 4, whose

branches are colour-coded as in Fig. 3. Here and henceforth,

we use subscripts I, A, L (or combinations thereof) to indi-

cate bifurcations occurring on solution branches of in-phase,

anti-phase and phase-locked solutions, respectively. We also

keep the corresponding colour-code convention for branches

of solutions and solutions profiles of in-phase, anti-phase and

phase-locked type.

In-phase and anti-phase coordination regimes are born via

Hopf bifurcations (HBI, HBA) of the trivial steady state. In

−1.5

1.5

T = 3.5

x1, x2

−0.75

0.75

T = 3.1

x1

x2

−2

2

T = 3.8

x1

x2

I

A

L

Fig. 3 Examples of stable in-phase (I), anti-phase (A) and phase-

locked (L) solutions. Solutions and parameter values are also indicated

in the bifurcation diagrams of Fig. 4

the first quadrant (where the coupling strength parameters

are both positive), anti-phase coordination is the only stable

state: a branch of unstable in-phase solutions is born at HBI

and bifurcates at a symmetry-breaking bifurcation, BPII, giv-

ing rise to a secondary branch of unstable in-phase solutions

where the oscillation amplitudes for agent 1 and 2 differ. In

the third quadrant (where the coupling strength parameters

are both negative), the scenario is specular: in-phase oscilla-

tions are now stable, while anti-phase solutions are unstable

and bifurcate at BPAA. In the first and third quadrants of the

(a, b)-plane (a = 0.5, b = 0.5 and a = −0.5, b = −0.5,

respectively), there are no branches of phase-locked solu-

tions.

Phase-locked coordination regimes arise in the second and

fourth quadrants of the (a, b)-plane, at symmetry-breaking

bifurcations of anti-phase solutions (BPAL). Phase-locked

solutions are found to be always stable (unstable) in the fourth

(second) quadrant. We note that, in these quadrants, the cou-

pling non-linearities I12 and I21, as functions of x1 − x2,

attain both negative and positive values as opposed to what

happens in the first and third quadrants, where such func-

tions are strictly positive and strictly negative, respectively.

Stable phase-locked solutions, spanning relative phases in the

range of (0◦, 180◦), exist for a > 0 and b < 0. Such parame-

ter settings could be used to model experiments displaying

coordination regimes different from the canonical in-phase

and anti-phase ones (see Discussion section for more details).

In Fig. 5, we summarise the behaviour of the representa-

tive examples reported above, for selected values of a and

b, by continuing in (γ, a) and (γ, b) all bifurcation points

found in Fig. 4. The two-parameter continuations are per-
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Fig. 4 Representative bifurcation diagrams in the parameter γ for all possible combinations of coupling strengths, a and b. Solid (dashed) lines

represent stable (unstable) states of (11)
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IS
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Fig. 5 Two-parameter continuations of bifurcations occurring in

Fig. 4. Panel a We fix b = 0.5 and continue in the (γ, a)-plane the

bifurcations of the top panels of Fig. 4; shaded areas represent regions

of stability for steady states (S), anti-phase (A) and in-phase (I) periodic

solutions. Panel b We fix a = 0.5 and continue in the (γ, b)-plane the

bifurcations in the right panels of Fig. 4; stable phase-locked solutions

are indicated by (L)

formed so as to show how the solution landscape changes as

we pass from the first to the second quadrant (continuation in

(γ, a)-plane) and from the first to the fourth quadrant (con-

tinuation in (γ, b)-plane). In these two-parameter bifurcation

diagrams, we highlight areas where stationary and oscillatory

solutions are stable. In the (γ, a)-plane, the organising cen-
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Fig. 6 Continuation in the parameter a, for b = −0.5 and γ = 1,

ω = 2, α = β = 1. The branches show that, with suitable combination

of the parameters, it is possible to have stable in-phase, anti-phase and

phase-locked oscillations by varying a. Solid lines represent stable and

dashed lines unstable states of (11)

tre is at γ = 0, a = 0: at this point, the eigenvalues of

the linearised Jacobian at the trivial state (x1, x2, x3, x4) =
(0, 0, 0, 0) are purely imaginary, equal to ±2i , each with

multiplicity 2, corresponding to eigenvalues (0,∓i/2, 0, 1)

and (∓i/2, 0, 1, 0). For low positive values of the damping

γ , the system supports stable in-phase solutions (for nega-

tive values of a) and stable anti-phase solutions (in a wedge

delimited by the locus of SNA and BPAA). In a sizeable region

of parameter space, stable in-phase and anti-phase solutions

coexist (see intersection between magenta- and blue-shaded

areas). We note that the original set of parameter values based

on [22] could be found in this region.

In the (γ, b)-plane, the organising centre is a fold–Hopf

bifurcation around γ = −1, b ≈ 1.625 (FH in Fig. 5) where

the locus of saddle nodes of the anti-phase solutions, SNA,

collides with the locus of Hopf bifurcations HBA. In this

region of parameter space, phase-locked solutions are found

for sufficiently high damping and sufficiently negative val-

ues of b. It should be noted, however, that phase-locked and

anti-phase oscillations do not coexist for the default choice

of intrinsic dynamics parameter values. As it can also be ver-

ified analytically, the locus of bifurcations HBA and HBB

of the stationary steady state do not depend on b. It should

be also noted that, for suitable combination of the parame-

ters, it is possible to visit stable in-phase, anti-phase and

phase-locked oscillations by varying a. An example of con-

tinuation in a for b = −0.5 and γ = 1, ω = 2, a = b = 1

is depicted in Fig. 6. It can be clearly seen in the inset of

Fig. 6 that, as a increases, the stable in-phase coordination

regime (characterised by relative phase 0◦) loses stability;

then, a phase-locked coordination regime emerges (ranging

over relative phases in (0◦, 180◦) in a continuous fashion) and

eventually a stable anti-phase coordination regime (charac-

ϕ1 − ϕ2a−0.1 0.25

a−0.1 0.25

0

0.03

0

0.04

0

0.07

0

0.18
U(0.05, 0.2)

N (0.075, 0.05)

(a)

(b)

0 π

ϕ1 − ϕ20 π

Fig. 7 Distribution of the phase difference between x1(t) and x2(t)

(left panels) obtained when the control parameter a is randomly dis-

tributed (right panels) with values close to the inset of Fig. 6. a The

parameter a is sampled from a uniform distribution (left) and 2000

independent simulations are performed; the histogram for the relative

phase ϕ1 −ϕ2 is bimodal and sharply peaked around 0◦ and 180◦, with

a small but nonzero probability of finding an intermediate phase lag. b

The experiment is repeated with a normal distribution, which causes a

third peak to develop around 90◦ in the distribution for the phase lag;

the latter peak is inherited from the distribution of the control parameter

a

terised by relative phase 180◦) is established. The bifurcation

diagram implies that, in an experimental set-up where a were

to be assigned randomly, we would observe trajectories with

relative phases distributed in the interval (0◦, 180◦), and with

peaks at 0◦ and 180◦. To verify this prediction, we performed

an uncertainty quantification study, in which a is assigned

randomly, near the inset of Fig. 6, and histograms of relative

phases between x1(t) and x2(t) are computed a posteriori. In

Fig. 7a, we perform 2000 independent simulations, where a

is sampled from the uniform distribution between 0.05 and

0.2 and plot the resulting phase lag histogram: the distribu-

tion for the phase difference ϕ1 − ϕ2 (right) is bimodal and

sharply peaked around 0◦ and 180◦, as expected, with a small

but nonzero probability of finding an intermediate phase lag.

The likelihood that experiments display such intermediate

relative phases is deeply affected by the distribution of a:

if we pass from a uniform to a normal distribution for a,

(Fig. 7b), the resulting phase lag distribution develops also

a peak around 90◦, which is inherited from the parameter

distribution.

It is interesting to study the behaviour of various periodic

solutions as the common eigenfrequency of the oscillators,

ω, varies. We selected stable in-phase, anti-phase and phase-

locked solutions and continued them in ω (Fig. 8). We found

that such solutions behave essentially as in the single oscil-

lator case (Fig. 1b): low frequencies elicit large amplitude

oscillations with abrupt time transitions, whereas large fre-

quencies induce smoother small amplitude oscillations. In

123



210 Biol Cybern (2016) 110:201–216

L

A

1 100

3.5

ω

m
ax

x
1
(t

)

L2

L1

L2

x1

x2

0 1.9
t

0

1

L1

0

1

x2

x1

0 1.9
t

I

Fig. 8 Continuation of in-phase, anti-phase and phase-locked solu-

tions in the frequency ω. Solutions behave similarly to the single HKB

oscillator case (Fig. 1b), except they have various phase behaviours.

The branch of phase-locked solutions undergoes a series of saddle-node

bifurcation, giving rise to stable solutions in which the phase difference

is reversed (see solutions profiles L1,2). We note that the branches in

this figure do not coexist, as they are found in different regions of para-

meter space: α = β = 1 and a = −0.5, b = −0.5, γ = 5 (in-phase),

a = 0.5, b = −0.5, γ = 1.2 (anti-phase) and a = 0.5, b = −0.5,

γ = 6.2 (phase-locked)

this case the changes in the oscillation patterns occur to

both agents, with various phase differences. The branch of

phase-locked solutions undergoes a series of saddle-node

bifurcations, giving rise to stable solutions in which the phase

difference is reversed (see solutions profiles L1,2 in Fig. 8).

Finally we investigate the impact of intrinsic oscillator

dynamics on the collective behaviour of the HKB model

by performing bifurcation analysis in the intrinsic dynam-

ics parameters α and β. Instead of presenting two-parameter

bifurcation diagrams for different cases, we report here only

notable examples of our computations (see Figs. 9 and 10a).

The bifurcation structures found in these cases have com-

mon traits with the ones discussed above for the coupling

strengths parameters a and b, that is, the trivial steady state

undergoes Hopf bifurcations to anti-phase and in-phase peri-

odic states, and various symmetry-breaking bifurcations give

rise to phase-locked solutions. Interestingly, when varying α

and β we could find period-doubling cascades, which are

found robustly when α and β have opposite signs, as evi-

denced in Fig. 9a, where α = −0.5, β = 0.5, and Fig. 10a,

where α = 0.5, β = −0.05. Representative stable solutions

on the period-doubling cascade are also shown in Fig. 10a.

Using direct numerical simulations we explored the sys-

tem behaviour close to the period-doubling cascade, finding

chaotic regimes (see Fig. 10b) in which the solution remains

bounded and features sudden erratic phase transitions, dur-

ing which the agents alternate as leaders and followers. In

this regime, the velocities y1 and y2 undergo fast switches.

The existence of such complex solutions is perhaps not sur-

prising from a dynamical systems viewpoint; however, the

behaviour described above has not been reported nor inves-
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Fig. 9 Bifurcation diagram in γ for ω = 2, a = 0.5, b = −0.5 and

various values of α and β. Solid lines represent stable and dashed lines

unstable states of (11)
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Fig. 10 Period-doubling

cascade. a Branch with

period-doubling cascade and

stable non-trivial periodic

solutions. We plot one period of

several stable solutions along

the branch, whereas we omit the

unstable branch emanating from

HBI. Solutions feature

increasing solution periods,

T1 ≈ 12.6, T2 ≈ 13.8,

T3 ≈ 14.9, T4 ≈ 28.9,

corresponding to Ω1 ≈ 0.500,

Ω2 ≈ 0.455, Ω3 ≈ 0.422,

Ω4 ≈ 0.217, respectively.

Parameters ω = 0.5, a = 0.5,

b = −0.5 α = 0.5 and

β = −0.05. b Attractor found

for γ = 3.42; the coordination

regime shows erratic phase

changes, during which x1 and x2

alternate in the leading position.

This regime involves fast

velocity switches, as evidenced

by the time traces of y1 and y2.

Solid lines represent stable and

dashed lines unstable states of

(11)
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tigated previously, and can be used to model experiments

where the movement coordination is irregular in nature. Last

but not least, knowledge about the existence of such solutions

is critical when designing virtual player interaction environ-

ments [34,59–61] and/or planning human dynamic clamp

experiments based on the HKB model [13].

2.2.3 Bistability and hysteresis

In this section, we explore further the dependence of the

HKB model dynamics on the intrinsic properties of the cou-

pled oscillators. In suitable regions of parameter space we

find coexisting stable periodic states characterised by dif-

ferent relative phases or phase lags. In Fig. 11a, we run a

continuation similar to the ones presented above, but we

set α = −1.7. The branches of this bifurcation diagram

are qualitatively similar to the ones of the previous sec-

tions; however, the in-phase periodic branch originating at

the Hopf bifurcation HBI undergoes a symmetry-breaking

bifurcation (BPIL). Such branch is initially unstable, under-

goes 2 other symmetry-breaking bifurcations, restabilises at a

saddle-node bifurcation and then features a period-doubling

cascade. The stable portion of this branch (solid green branch

between SNL and PDLL) coexists with a branch of stable anti-

phase solutions originating from the trivial state at HBA (red

branch).

This bifurcation structure opens up the possibility of

observing abrupt relative phase transitions between phase-

locked (at any relative phase between 0◦ and 180◦) and

anti-phase (at relative phase equal to 180◦) coordination

regimes as a function of the eigenfrequency ω. We find that

bistability is observed in a significant region of parameter

space: in the inset of Fig. 11b we report overlapping stable

portions of phase-locked and anti-phase branches as we vary

the eigenfrequencies ω. As ω is varied, the anti-phase branch

(red) changes only slightly, while the stable phase-locked

branch moves to the left and expands. Our analysis pre-

dicts coexistence in the region (γ, ω) ∈ [1.2, 3.2] × [2, 2.8]
(which was found robustly in other parameter regions, not

shown). It is important to note that this phase transition is

qualitatively different from the transition addressed by the

original HKB model [22], where an increase in frequency
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Fig. 11 Bistability and hysteresis between anti-phase and phase-

locked solutions. a The in-phase branch (blue) undergoes a symmetry-

breaking bifurcation (BPIL) and the resulting unstable phase-locked

branch, featuring two further symmetry-breaking bifurcations (BPIL),

restabilises at a saddle-node bifurcation, before a period-doubling cas-

cade takes place. A stable portion of the phase-locked branch (solid

green line between SNL and PDLL) coexists with the anti-phase branch

originating at HBI (solid red branch). Parameters: a = 0.5, b = 0.5,

ω = 3, α = −1.7, β = 0.5. b We repeat the experiment for ω ∈ [2, 2.8]
and plot stable branches to highlight the bistability region. c ω is varied

by continuation and by quasi-static sweeps in direct numerical sim-

ulations (blue dots), for γ = 1.7; the time simulation follows the

phase-locked branch up to the saddle node at ω ≈ 2.4, where an abrupt

and hysteretic transition to an anti-phase solution is observed. d Phase

lag during numerical simulation in c (colour figure online)

leads to transition from anti-phase to in-phase coordination.

In the parameter regime described above, an increase in fre-

quency leads to transition from phase-locked to anti-phase

coordination behaviour.

To illustrate the dynamical switch between solution types,

we perform time-stepping simulations in which the eigen-

frequency ω is varied quasi-statically and compare with the

bifurcation analysis. In Fig. 11c, we continued an anti-phase

(red) and phase-locked (green) solution for γ = 1.7, ω = 2.3

in the parameter ω; the phase-locked branch destabilises at

a saddle-node bifurcation, whereas the anti-phase branch

remains stable for ω ∈ [2.3, 2.5]. We then initialised a time

simulation on the phase-locked branch (blue dots in Fig. 11c)

and changed ω in slow increments (from ω = 2.3 up to

ω = 2.5) followed by small decrements (from ω = 2.5

down to ω = 2.3). The time simulation shows an abrupt and

hysteretic change in the solution type. This could be further

appreciated in Fig. 11d where we plot the time simulation

using the phase lag ϕ1 − ϕ2. The x2 is delayed with respect

to x1, with an initial phase lag ϕ1 −ϕ2 ≈ 90◦; when ω ≈ 2.4,

we observe a transition to an orbit with ϕ1 −ϕ2 ≈ 180◦ (anti-

phase solution).

2.2.4 Effect of heterogeneity in eigenfrequencies on the

coordination regimes

In the computations shown so far, the two oscillators possess

a common eigenfrequency ω. In order to study the effect of

heterogeneities on coordination, we introduce two parame-

ters ω1, ω2, then fix ω1 to the nominal value ω1 = 2 and

use the ratio ω1/ω2 as a continuation parameter. The differ-

ence in eigenfrequencies introduces a heterogeneity in the

system and has the potential to turn in-phase solutions into

phase-locked solutions and vice-versa. In order to illustrate

this idea, we performed bifurcation analysis in the parame-

ter ω1/ω2 investigating the in-phase solutions which exist for

parameter values within the range of those used in the original

HKB model [22], as well the stable phase-locked solutions
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Fig. 12 Phase difference

between periodic solutions x1(t)

and x2(t) as a function of the

ratio ω1/ω2. a A stable solution

on the in-phase branch in the

fourth quadrant of Fig. 4 is

continued in ω1/ω2. b The

continuation is repeated starting

from a solution on the

phase-locked branch in the

second quadrant of Fig. 4. In

both cases, heterogeneity in the

eigenfrequencies impacts the

phase lag of the solution. c

When the ratio ω1/ω2 is

modulated with a slowly varying

sinusoidal function, the actors

alternate in the leading position

with hysteretic cycles, which

follow the branches in the inset

of b and jump at the

corresponding saddle-node

bifurcations. d We perform an

experiment similar to the one in

Fig. 7; when the parameter

ω1/ω2 is drawn randomly near

the shaded area in b from a

uniform (blue) or a normal (red)

distribution, the resulting phase

lag distribution is bimodal, with

peaks at ±57.30◦, as predicted

by the bifurcation diagram in b

and by the parameter sweep in c

(colour figure online)
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which we reported above for a > 0 and b < 0 (see Fig. 4).

In Fig. 12, we initialise the continuation with an in-phase

and a phase-locked periodic solution. We plot the bifurca-

tion diagram in terms of the phase lag (measured in radians),

by computing the approximate phases times ϕi = ti/T , for

i = 1, 2, where ti is the time at which the orbit xi (t) attains its

maximum and T is the solution period. Fig. 12a depicts a sta-

ble, initially in-phase, solution at ω1/ω2 = 1 that turns into a

phase-locked solution as ω1/ω2 is increased/decreased, los-

ing stability at saddle-node bifurcation. In Fig. 12b, we show

how the phase lag is reduced when the frequency ratio is var-

ied and an in-phase (albeit unstable) solution is eventually

attained, before a new phase-locked solution arises.

The bifurcation structure in Fig. 12b implies that hystere-

sis between phase-locked solutions with opposite phase lags

(relative phases) is possible in the model. To illustrate this,

we perform time-stepping simulations in which the ratio is

varied quasi-statically as ω1(t) = ω2(t)[1+sin(0.005t)] and

plot the results in Fig. 12c. The two oscillators swap in the

leader and follower role, following the branches of Fig. 12b

and switching roles at the corresponding saddle-node bifur-

cations. This numerical experiment could be interpreted in

the light of the joint improvisation scenario in the “mir-

ror game”, a recently proposed paradigm for studying the

dynamics of two people improvising motion together [45].

In particular, as the participants are asked to imitate each

other and create synchronised and interesting motions, they

would be naturally trying to adjust their movement velocities

and thus eigenfrequencies to each other. This would lead to

variation in the ratio of their eigenfrequencies and, respec-

tively, exchange of leader and follower roles while playing

the game. Indeed, observations based on our data collected

in a “mirror game” setting [55] indicate that the distribu-

tion of relative phase during a typical joint improvisation

sessions are bimodal pointing to possible hysteretic dynam-

ics. As we see in Fig. 12d, the bimodal distribution emerges
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also in the case of randomly assigned frequency ratio ω1/ω2:

when the value of this parameter is drawn randomly (close

to the hysteretic region) from a uniform or a normal distri-

bution, the resulting phase lag distribution is bimodal, with

peaks at ±57.30◦, as predicted by the bifurcation diagram in

Fig. 12b and by the parameter sweep in Fig. 12c.

3 Discussion

In this paper, we have systematically investigated the dynam-

ics of the HKB model in the state space spanned by the

position and velocities of the coupled oscillators. Further-

more, we go beyond the weakly coupled regime and consider

the coupling strength parameters as generic. We show that

stable periodic solutions in the single HKB oscillator model

are born via a Hopf bifurcation as the damping parameter γ

becomes positive. Furthermore, we reveal that under certain

intrinsic oscillator properties the periodic solutions of the

single HKB model could disappear via a heteroclinic cycle,

associated with rapid increase in the magnitude of the state

variables. Although such behaviour cannot be observed in a

physical system, it can have significant consequences for the

design and development of the virtual players. Bifurcation

analysis of the full four-dimensional HKB model reveals a

variety of different coordination dynamics. Attractors at a

constant relative phase of 0◦ (in-phase) and/or 180◦ (anti-

phase) are born via Hopf bifurcations detected in the damping

parameter γ . We find symmetrical attractors of phase-locked

solutions at intermediate values of relative phase (between

0◦ and 180◦), which increase or decrease gradually as γ

is increased. We demonstrate that the phase-locked solu-

tions are born in a symmetry-breaking bifurcation of periodic

orbit in which the anti-phase periodic attractor loses sta-

bility as the damping parameter γ is varied. Changing the

sign of the coupling strengths has the effect of shifting the

attractors by 180◦, thus changing the phase that remains sta-

ble at high frequencies, from 0◦ to 180◦ or vice-versa. We

also show that change in the intrinsic oscillators’ properties

(i.e. varying the parameter α) can lead to complex dynam-

ics mediated via a period-doubling cascade. Furthermore,

different intrinsic dynamics can also bring about a variety

of bistability modes, which are different that the type of

bistability described in the original HKB model study [22].

Finally we consider a case of a heterogeneity in the system by

introducing difference in the eigenfrequency of the coupled

oscillators. We demonstrate how this results in bistability and

hysteresis. Our uncertainty quantification simulations pre-

sented in Fig. 12d confirm that in the case of heterogeneous

oscillators hysteresis loops and phase-locked coordination

modes should be expected in experiments, as suggested in

[2]. What is more, existence of such hysteresis loop pro-

vides an excellent opportunity for a quantitative experimental

validation of the HKB model using two heterogeneous cou-

pled oscillators, e.g. by putting weights on body parts as

suggested in [2] or by using heterogeneous pendula as in

[50].

In a large number of multi-stable examples observed

experimentally, the patterns of stability change under dif-

ferent conditions. Bimanual finger coordination is bistable at

low frequencies, but above a critical frequency the anti-phase

pattern is no longer sustainable [22]. Similarly postural sway

is bistable at low frequencies (20◦ and 180◦), but the phase-

locked (20◦) mode looses stability at high frequencies or

when other behaviours, such as reaching, are incorporated in

the task [2]. These transitions between stable states, and par-

ticularly the loss of stability of the anti-phase mode at high

frequencies, appear to be a fundamental feature of human

coordination [33]. The hypothesis that these real-world pat-

terns and transitions between them are emergent phenomena

due to a self-organised dynamical system are substantiated

by experimental results such as critical fluctuations, critical

slowing down and hysteresis between modes [2,18,51]. In

this paper, we make the first step towards identifying para-

meter regimes and dynamics that would allow to model a

variety of different experimental observations using the same

modelling framework.

Many recent experimental studies of human movement

coordination [5,12,10,15,24,57] have reported persistent

movement coordination dynamics other than the well-known

in-phase and anti-phase synchronisation behaviour that have

inspired the development of the HKB model [22]. Despite

the large number of behaviours whose dynamics are well

represented by the theoretically predicted in-phase and anti-

phase stability, there are several counter examples where

human body movements show evidence of stability at differ-

ent or additional intermediate phases. Examples of real-world

systems with stabilities at other relative phases include: the

human postural system (stability at 20◦) [2], amble to walk

gait in quadrupeds (stability at 90◦) [8], the bipedal skip-

ping gait [42], coordination tendencies of successful defences

(30◦) and unsuccessful defences (90◦) in soccer [12], squash

(135◦) [41] and butterfly stroke swimming (90◦) [14] as

well as variety of relative phase distributions in other team

sports [10]. There is evidence that other phases can be sta-

ble simultaneously with 0◦ and 180◦. These multi-stable

dynamics can exist naturally or be learnt [57]. Our results

about the existence of stable phase-locked periodic solu-

tions in the HKB model that span all possible relative phases

between 0◦ and 180◦ could be related to some of the above

mentioned experimental observations. In particular, analy-

sis of the data collected from interactions between player

dyads allowed for a description of the space-time dynam-

ics of basketball match play. In the longitudinal direction, a

strong attraction to in-phase was reported for all possible

dyads but not so for the lateral direction. Instead, attrac-
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tions to in-phase or anti-phase were observed among most

dyads with the player vs. player dyads tending on balance

to demonstrate less pronounced attractions or repulsions

to certain relative phases than the player–opponent dyads

[5,15]. Interpersonal coordination tendencies of 1-vs-1 sub-

phases were investigated in [12]. The experimental results

presented in Fig. 2 in [12] could be, for example, quali-

tatively accounted for by the type of coordination stability

dependence on the coupling parameter a found in the HKB

model. Specifically (see Fig. 6 for b = −0.5 and γ = 1,

ω = 2, α = β = 1), as the coupling strength between

the velocity components of the two oscillators increases,

the stable coordination regime exhibited by the HKB model

undergoes transitions from stable in-phase coordination for

a < 0 through stable phase-locked coordination spanning

all possible relative phases in (0◦, 180◦); as a increases, to a

stable anti-phase coordination regime with increasing ampli-

tudes.

Last but not least, very recent experiments involving

the use of virtual partner interaction [13,34,59–61] have

employed to various degree the HKB model in order to study

social interactions and interpersonal coordination. These

studies have used adaptation in the HKB parameter values in

their implementations. Knowledge about how the type and

stability of the possible HKB model solutions depend on

the model parameters could greatly facilitate the design and

ensure robustness of such hybrid systems where a human

interacts with a virtual partner whose movements are driven

by the HKB model. Furthermore, comparison of the theoreti-

cal predictions and dynamics observed in experiments with a

virtual partner could allow for quantitative, rather than qual-

itative, validation of different models of motor coordination.

Although deficits of the HKB model are well known, see,

for example, discussion in [3], our analysis demonstrates

that this model has much richer dynamics than previously

considered and showcases mathematical tools that could be

very useful in future studies of human movement coordina-

tion.
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