89 research outputs found

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    A BTP-Based Family of Variable Elimination Rules for Binary CSPs

    Get PDF
    International audienceThe study of broken-triangles is becoming increasingly ambitious , by both solving constraint satisfaction problems (CSPs) in polynomial time and reducing search space size through value merging or variable elimination. Considerable progress has been made in extending this important concept, such as dual broken-triangle and weakly broken-triangle, in order to maximize the number of captured tractable CSP instances and/or the number of merged values. Specifically, m-wBTP allows to merge more values than BTP. k-BTP, WBTP and m-BTP permit to capture more tractable instances than BTP. Here, we introduce a new weaker form of BTP, which will be called m-fBTP for flexible broken-triangle property. m-fBTP allows on the one hand to eliminate more variables than BTP while preserving satisfiability and on the other to define new bigger tractable class for which arc consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than BTP but less than m-wBTP

    A Microstructure-based Family of Tractable Classes for CSPs

    Get PDF
    International audienceThe study of tractable classes is an important issue in Artificial Intelligence, especially in Constraint Satisfaction Problems. In this context, the Broken Triangle Property (BTP) is a state-of-the-art microstructure-based tractable class which generalizes well-known and previously-defined tractable classes, notably the set of instances whose constraint graph is a tree. In this paper, we propose to extend and to generalize this class using a more general approach based on a parameter k which is a given constant. To this end, we introduce the k-BTP property (and the class of instances satisfying this property) such that we have 2-BTP = BTP, and for k > 2, k-BTP is a relaxation of BTP in the sense that k-BTP is a subset of (k + 1)-BTP. Moreover, we show that if k-TW is the class of instances having tree-width bounded by a constant k, then k-TW is a subset of (k + 1)-BTP. Concerning tractability, we show that instances satisfying k-BTP and which are strong k-consistent are tractable, that is, can be recognized and solved in polynomial time. We also study the relationship between k-BTP and the approach of Naanaa who proposed a set-theoretical tool, known as the directional rank, to extend tractable classes in a parameterized way. Finally we propose an experimental study of 3-BTP which shows the practical interest of this class, particularly w.r.t. the practical solving of instances satisfying 3-BTP and for other instances, w.r.t. to backdoors based on this tractable class

    New schemes for simplifying binary constraint satisfaction problems

    Get PDF
    Finding a solution to a Constraint Satisfaction Problem (CSP) is known to be an NP-hard task. This has motivatedthe multitude of works that have been devoted to developing techniques that simplify CSP instances before or duringtheir resolution.The present work proposes rigidly enforced schemes for simplifying binary CSPs that allow the narrowing of valuedomains, either via value merging or via value suppression. The proposed schemes can be viewed as parametrizedgeneralizations of two widely studied CSP simplification techniques, namely, value merging and neighbourhoodsubstitutability. Besides, we show that both schemes may be strengthened in order to allow variable elimination,which may result in more significant simplifications. This work contributes also to the theory of tractable CSPs byidentifying a new tractable class of binary CSP

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    Broken triangles: From value merging to a tractable class of general-arity constraint satisfaction problems

    Get PDF
    International audienceA binary CSP instance satisfying the broken-triangle property (BTP) can be solved in polynomial time. Unfortunately, in practice, few instances satisfy the BTP. We show that a local version of the BTP allows the merging of domain values in arbitrary instances of binary CSP, thus providing a novel polynomial-time reduction operation. Extensive experimental trials on benchmark instances demonstrate a significant decrease in instance size for certain classes of problems. We show that BTP-merging can be generalised to instances with constraints of arbitrary arity and we investigate the theoretical relationship with resolution in SAT. A directional version of general-arity BTP-merging then allows us to extend the BTP tractable class previously defined only for binary CSP. We investigate the complexity of several related problems including the recognition problem for the general-arity BTP class when the variable order is unknown, finding an optimal order in which to apply BTP merges and detecting BTP-merges in the presence of global constraints such as AllDifferent
    • 

    corecore