

Edinburgh Research Explorer

The tractability of CSP classes defined by forbidden patterns

Citation for published version:
Cohen, DA, Cooper, MC, Creed, P & Salamon, AZ 2012, 'The tractability of CSP classes defined by
forbidden patterns' Journal of Artificial Intelligence Research, vol. 45.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Artificial Intelligence Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/the-tractability-of-csp-classes-defined-by-forbidden-patterns(fdc98455-e6e5-40d6-87e0-3d00b19688a3).html

ar
X

iv
:1

10
3.

15
42

v2
 [

cs
.A

I]
 8

 J
ul

 2
01

4

The tractability of CSP classes defined by forbidden

patterns

David A. Cohen
Royal Holloway, University of London,

dave@cs.rhul.ac.uk

Martin C. Cooper
IRIT, University of Toulouse III,

cooper@irit.fr

Páid́ı Creed
Royal Holloway, University of London,

paidi@cs.rhul.ac.uk

András Z. Salamon
University of Edinburgh,

asalamon@inf.ed.ac.uk

July 9, 2014

Abstract

The constraint satisfaction problem (CSP) is a general problem central to com-
puter science and artificial intelligence. Although the CSP is NP-hard in general,
considerable effort has been spent on identifying tractable subclasses. The main
two approaches consider structural properties (restrictions on the hypergraph of con-
straint scopes) and relational properties (restrictions on the language of constraint
relations). Recently, some authors have considered hybrid properties that restrict the
constraint hypergraph and the relations simultaneously.

Our key contribution is the novel concept of a CSP pattern and classes of prob-
lems defined by forbidden patterns (which can be viewed as forbidding generic sub-
problems). We describe the theoretical framework which can be used to reason about
classes of problems defined by forbidden patterns. We show that this framework gen-
eralises relational properties and allows us to capture known hybrid tractable classes.

Although we are not close to obtaining a dichotomy concerning the tractability
of general forbidden patterns, we are able to make some progress in a special case:
classes of problems that arise when we can only forbid binary negative patterns
(generic sub-problems in which only inconsistent tuples are specified). In this case
we are able to characterise very large classes of tractable and NP-hard forbidden
patterns. This leaves the complexity of just one case unresolved and we conjecture
that this last case is tractable.

Keywords: Constraint satisfaction problem, tractability, forbidden substructures.

1

http://arxiv.org/abs/1103.1542v2

1 Introduction

In the constraint satisfaction paradigm we consider computational problems in which we
have to assign values (from a domain) to variables, under some constraints. Each constraint
limits the (simultaneous) values that a list of variables (its scope) can be assigned. In a
typical situation some pair of variables might represent the starting times of two jobs in a
machine shop scheduling problem. A reasonable constraint would require a minimum time
gap between the values assigned to these two variables.

Constraint satisfaction has proved to be a useful modelling tool in a variety of contexts,
such as scheduling, timetabling, planning, bio-informatics and computer vision. This has
led to the development of a number of successful constraint solvers. Unfortunately, solving
general constraint satisfaction problem (CSP) instances is NP-hard and so there has been
significant research effort into finding tractable fragments of the CSP.

In principle we can stratify the CSP in two quite distinct and natural ways. The
structure of the constraint scopes of an instance of the CSP can be thought of as a hyper-
graph where the variables are the vertices, or more generally as a relational structure. We
can find tractable classes by restricting this relational structure, while allowing arbitrary
constraints on the resulting scopes [10]. Sub-problems of the general constraint problem
obtained by such restrictions are called structural. Alternatively, the set of allowed assign-
ments to the variables in the scope can be seen as a relation. We can choose to allow only
specified kinds of constraint relations, but allow these to interact in an arbitrary structure
[20]. Such restrictions are called relational or language-based.

Structural subclasses are defined by specifying a set of hypergraphs (or relational struc-
tures) which are the allowed structures for CSP instances. It has been shown that tractable
structural classes are characterised by limiting appropriate (structural) width measures
[11, 13, 19, 15, 23]. For example, a tractable structural class of binary CSPs is obtained
whenever we restrict the constraint structure (which is a graph in this case) to have bounded
tree width [11, 13]. In fact, it has been shown that, subject to certain complexity-theoretic
assumptions, the only structures which give rise to tractable CSPs are those with bounded
(hyper-)tree width [9, 17, 18, 23].

Relational subclasses are defined by specifying a set of constraint relations. It has been
shown that the complexity of the subclass arising from any such restriction is precisely
determined by the so called polymorphisms of the set of relations [1, 4]. The polymorphisms
specify that, whenever some set of tuples is in a constraint relation, then it cannot be
the case that a particular tuple (the result of applying the polymorphism) is not in the
constraint relation. It is thus the relationship between allowed tuples and disallowed tuples
inside the constraint relations that is of key importance to the relational tractability of
any given class of instances. Whilst a general dichotomy has not yet been proven for the
relational case, many dichotomies on sub-problems have been obtained, e.g. [2, 1, 3].

Unfortunately, by allowing only structural or relational restrictions we limit the possible
subclasses that we can define. By considering restrictions on both the structure of the
constraint graph and the relations, we are able to identify new tractable classes. We call
these restrictions hybrid reasons for tractability.

2

Several hybrid results have been published for binary CSPs [22, 5, 28, 6, 7]. Instead of
looking at the constraint graph or the constraint language, these works captured tractabil-
ity based upon the properties of the (coloured) microstructure of CSP instances. The
microstructure of a binary CSP instance is the graph 〈V,E〉 where V is the set of pos-
sible assignments of values to variables and E is the set of pairs of mutually consistent
variable-value assignments [22]. In the coloured microstructure, the vertices representing
an assignment to variable vi are labelled by a colour representing variable vi, thus main-
taining the distinction between assignments to different variables.

The coloured microstructure of a CSP instance captures both the structure and the
relations of a CSP instance and so it is a natural place to look for tractable classes which
are neither purely structural nor purely relational.

Of the results on (coloured) microstructure properties, two are of particular note. First
it was observed that the class of instances with a perfect microstructure is tractable [28].
This is a proper generalisation of the well known hybrid tractable CSP class whose instances
allow arbitrary unary constraints and in which every pair of variables is constrained to be
not equal [24, 29], and of the hybrid class whose microstructure is triangulated [22, 5].
The perfect microstructure property excludes an infinite set of induced subgraphs from
the microstructure. In this paper, we provide a different hybrid class that also strictly
generalises the class of CSP instances with an inequality constraint between every pair
of variables and an arbitrary set of unary constraints, but does so by forbidding a single
pattern.

Secondly, the so called broken-triangle property properly extends the structural notion
of acyclicity to a more interesting hybrid class [6]. The broken triangle property is spec-
ified by excluding a particular pattern (a subgraph) in the coloured microstructure. It is
this property that we generalise in this paper. We do this by working directly with the
CSP instance (or equivalently its coloured microstructure) rather than its microstructure
abstraction which is a simple graph. This allows us to introduce a language for expressing
hybrid classes in terms of forbidden patterns, so obtaining novel hybrid tractable classes.
In the case of binary negative patterns we are able to characterise very large classes of
tractable and NP-hard forbidden patterns. This leaves the complexity of just one case
unresolved and we conjecture that this last case is tractable, which would give us a new
CSP dichotomy for hybrid classes of binary CSPs defined by negative patterns.

Contributions

In this paper we generalise the definition of a CSP instance to that of a CSP pattern
which has two types of tuple in its constraint relations, tuples which are explicitly al-
lowed/disallowed and tuples which are labelled as unknown1. By defining a natural notion
of containment of patterns in a CSP, we are able to describe problems defined by for-
bidden patterns: a CSP instance P forbids a particular pattern if this pattern cannot be
contained in P . By defining problems in this way, we can capture both allowed and disal-

1This can be viewed as the natural generalisation of the CSP to a three-valued logic.

3

lowed constraint tuples as well as structural properties. We use this framework to capture
tractability by identifying local patterns of allowed and disallowed tuples (within small
groups of connected constraints) whose absence is enough to guarantee tractability.

By extending the notion of the CSP instance to that of a pattern we are able to unify
the following properties:

• having a particular polymorphism;

• having a hereditary (coloured) microstructure property, such as broken triangle [6];
and

• having a tree structure (tree width 1).

Using the concept of forbidden patterns, we lay foundations for a theory that can be
used to reason about classes of CSPs defined by hybrid properties. Since this is the first
work of this kind, we primarily focus on the simplest case: binary patterns in which tuples
are either disallowed or unknown (called negative patterns). We give a large class of binary
negative patterns which give rise to intractable classes of problems and, using this, show
that any negative pattern that defines a tractable class of problems must have a certain
structure. We are able to prove that this structure is nearly enough to guarantee tractability
and conjecture that there is a precise condition providing dichotomy for tractability defined
by forbidding binary negative patterns. Importantly, our intractability results also allow
us to give a necessary condition on the form of general tractable patterns.

The remainder of the paper is structured as follows. In Section 2 we define constraint
satisfaction problems, and give other definitions which will be used in the paper. Then, in
Section 3, we define the notion of a CSP pattern and describe classes of problems defined
by forbidden patterns. In Section 4 we show that one must take the size of patterns into
account to have a notion of maximal classes defined by forbidding patterns. In Section 5 we
give some examples of tractable classes defined by forbidden patterns on three variables.
In general, we are not yet able to make any conjecture concerning a dichotomy for hybrid
tractability defined by general forbidden patterns. However, in Section 6 we are able to give
a necessary condition for such a class to be tractable. Finally, in Section 7 we summarise
the results of this work and discuss directions for future research.

2 Preliminaries

Definition 2.1. A CSP instance is a triple 〈V, C,D〉 where

• V is a finite set of variables (with n = |V |).

• D is a finite set called the domain (with d = |D|).

• C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where

– σ is a list of variables called the scope of c.

4

– ρ is a relation over D of arity |σ| called the relation of c. It is the set of tuples
allowed by c.

A solution to the CSP instance P = 〈V,D,C〉 is a mapping s : V 7→ D where, for each
〈σ, ρ〉 ∈ C we have s(σ) ∈ ρ (where s(σ) represents the tuple resulting from the application
of s component-wise to the list of variables σ).

The arity of a CSP is the largest arity of any of its constraint scopes. Our long-term
aim is to identify all tractable subclasses of the CSP problem which can be detected in
polynomial time. In this paper we describe a general theory of forbidden patterns for
arbitrary arity but only consider the implications of the new theory for tractable classes
of arity two (binary) problems specified by finite sets of forbidden patterns. In such cases
we are certain that class membership can be decided in polynomial time.

The CSP decision problem, which asks whether a particular CSP instance has a solution,
is already NP-complete for binary CSPs. For example, there is a straightforward reduction
from graph colouring to this problem in which vertices i of the graph map to CSP variables
vi and edges {i, j} map to disequality constraints vi 6= vj.

It will sometimes be convenient in this paper to use an equivalent functional formulation
of a constraint. In this alternative formulation the scope σ of the constraint 〈σ, ρ〉 is
abstracted to a set of variables and each possible assignment is seen as a function f : σ 7→ D.
The constraint relation in this alternative view is then a function from the set of possible
assignments, Dσ, into the set {T, F} where, by convention, the tuples which occur in the
constraint relation are those which map to T . It follows that any assignment to the set of
all variables is allowed by 〈σ, ρ〉 when its restriction to σ is mapped to T by ρ.

Definition 2.2. For any function f : X 7→ Y and S ⊂ X, the notation f |S means the
function with domain S satisfying f |S(x) = f(x) for all x ∈ S.

Given a set V of variables and a domain D, a constraint in functional representation
is a pair 〈σ, ρ〉 where σ ⊆ V and ρ : Dσ 7→ {T, F}. A CSP instance in functional repre-
sentation is a triple 〈V,D,C〉 where C is a set of constraints in functional representation.

A solution (to a CSP instance 〈V,D,C〉 in functional representation) is a mapping
s : V 7→ D where, for each 〈σ, ρ〉 ∈ C we have ρ(s|σ) = T .

The functional formulation is clearly equivalent to the relational formulation and we
will use whichever seems more appropriate throughout the paper. The choice will always
be clear from the context.

Relational tractability of binary CSP

We will refer to a set of relations Γ on some finite set D as a constraint language.

Definition 2.3. Let D be a finite set and let Γ be a set of relations on D. We define
CSP(Γ) to be the set of problems for which every constraint 〈σ, ρ〉 satisfies ρ ∈ Γ.

5

A constraint language Γ is said to be tractable if CSP(Γ′) is a tractable class of problems
for each finite Γ′ ⊆ Γ. It is well-known that the tractability of Γ can be determined by
studying the polymorphisms of Γ [4].

Definition 2.4. Let D be a finite set and let ρ be a binary relation on D. A k-ary
polymorphism of ρ is a function f : Dk 7→ D satisfying

∀x1, . . . , xk ∈ ρ, 〈f(x1[1], . . . , xk[1]), f(x1[2], . . . , xk[2])〉 ∈ ρ .

It is known that the existence of a non-trivial polymorphism is a necessary condition
for a set of relations to give rise to a tractable constraint language [20, 4, 1]. Using this
characterisation, almost all tractable classes of the CSP defined by sets of relations have
been determined, though establishing the full dichotomy still remains an open problem.

Structural tractability of binary CSP

Structural tractability considers the classes of problems defined by placing restrictions on
the set of constraint scopes, but which allow arbitrary constraint relations. For simplicity,
and as this is the focus of this paper, we restrict our attention to binary CSPs. In this case,
the set of constraint scopes defines the constraint graph whose vertices are the variables
and whose edges are the set of scopes of constraints whose relation is not complete (i.e. the
Cartesian product D2). All definitions and concepts extend naturally to non-binary CSPs.
The key property here is the tree width of the constraint graph.

Definition 2.5. Let G be a graph. A tree decomposition of G is a pair (T,X), where T is
a tree and X is a mapping that associates with every node t ∈ V (T) a set Xt ⊂ V (G) such
that for every v ∈ V (G) the set {t ∈ V (T) | v ∈ Xt} is connected, and for every e ∈ E(G)
there is a t ∈ V (T) such that e ⊂ Xt.

The width of a tree decomposition (T,X) is max{|Xt| − 1 | t ∈ V (T)}. The tree width
of a graph G, denoted tw(G), is the minimum of the widths of all tree decompositions of
G.

The following theorem is classical [11, 13].

Theorem 2.6. Let P be a CSP. If the constraint graph of P , GP , has tw(GP) ≤ k, then
we can solve P in time O(ndk+1).

What is more, under reasonable technical assumptions, there is no property ofGP which
gives rise to a larger tractable class of CSPs. This establishes a dichotomy for structural
tractability of binary CSPs. A similar result has been obtained for CSPs of higher arity.
See [9, 17, 18, 23] for more details.

6

3 Forbidden patterns in CSP

In this paper we explain how we can define classes of CSP instances by forbidding the
occurrence of certain patterns. A CSP pattern is a generalisation of a CSP instance. In a
CSP pattern we define the relations relative to a three-valued logic on {T, F, U}, meaning
that the pattern is simply the set of CSP instances in which each undefined value U is
replaced by either T or F . Forbidding a CSP pattern is equivalent to simultaneously
forbidding all these instances as sub-problems.

Definition 3.1. We define a three-valued logic on {T, F, U}, where U stands for unknown
or undefined. The set {T, F, U} is partially ordered so that U < T and U < F but T and
F are incomparable.

Let D be a finite set. A k-ary three-valued relation on D is a function ρ : Dk 7→
{T, F, U}. Given a pair of k-ary three-valued relations ρ and ρ′, we say ρ realises ρ′ if

∀x ∈ Dk, ρ(x) ≥ ρ′ .

Definition 3.2. A CSP pattern is a triple χ = 〈V,D,C〉 where:

• V is the set of variables.

• D is the domain.

• C is a set of constraint patterns. Each constraint pattern c ∈ P is a pair c = 〈σ, ρ〉,
where σ ⊆ V , the scope σ of c, is a set of variables and ρ : Dσ 7→ {T, F, U} is the
three-valued relation (in functional representation) of c.

The arity of a CSP pattern χ is the maximum arity of any constraint pattern 〈σ, ρ〉 of χ.

We will sometimes define ρ as a partial function from Dσ to {T, F}; the values for
which ρ is undefined are those which are mapped to U . For simplicity of presentation, we
assume throughout this paper that no two constraint patterns in C have the same scope
(and that, in the case of CSP instances, that no two constraints have the same scope). We
will represent binary CSP patterns by simple diagrams. Each oval represents the domain
of a variable, each dot a domain value. The tuples in constraint patterns with value F are
shown by dashed lines, those with value T by solid lines and those with value U are not
depicted at all.

Contexts

By further adding simple structure to the domains and variable sets of patterns, we are
able to make the notion of patterns more specific, and so we can capture larger, and
more interesting, tractable classes. Contexts such as these have been used in the past to
capture tractable classes. For example, when the domain is totally ordered we can define
the tractable max-closed class [21], and when we have an independent total order for the
domain of each variable we can capture the renamable Horn class [16].

7

The weakest such context that we will consider only allows us to say when two variables
are distinct. A pattern with such a context will be called flat. We give a general definition
of context, but in this paper the only contexts we require are total orders on the variable
set or the domain.

Definition 3.3. A CSP context is a set of relational structures Ω on the product of the
variable set and domain2.

A CSP pattern 〈V,D,C〉 is considered in context Ω by associating it with a structure
ω ∈ Ω for appropriately-sized variable set and domain.

Let 〈V,D〉 and 〈V ′, D′〉 be in context Ω, with ω and ω′ the elements of Ω giving structure
to the sets V × D and V ′ × D′, respectively. A contextual homomorphism is an Ω-
structure preserving function F : V × D 7→ V ′ × D′, i.e. for each (u, a), (v, b) ∈ V × D,
〈(u, a), (v, b)〉 ∈ ω implies 〈F (u, a), F (v, b)〉 ∈ ω′.

Definition 3.4. Two CSP patterns are compatible if they are considered in the same
context.

Thus, for example, two CSP patterns with totally-ordered domains are compatible even
if the domain sizes are different. In this case, a contextual homomorphism between the
two patterns must preserve the domain ordering.

Patterns, CSPs and occurrence

A CSP instance is just a CSP pattern in which the three-valued relations of the constraint
patterns never take the value U . That is, we decide for each possible tuple whether it is in
the relation or not. Furthermore, in a CSP instance, for each pair of variables we assume
that a constraint exists with this scope; if no explicit constraint is given on this scope, then
we assume that the relation is complete, i.e. it contains all tuples. This can be contrasted
with CSP patterns for which the absence of an explicit constraint on a pair of variables
implies that the truth value of each tuple is undefined.

In order to define classes of CSP instances by forbidding patterns, we require a formal
definition of an occurrence (containment) of a pattern within an instance. We define the
more general notion of containment of one CSP pattern within another pattern. Informally,
the names of the variables and domain elements of a CSP pattern are inconsequential and
a containment allows a renaming of the variables and the domain values of each variable.
Thus, in order to define the containment of patterns, we firstly require a formal definition of
a renaming. In an arbitrary renaming two distinct variables may map to the same variable
and two distinct domain values may map to the same domain value. However, we do not
allow distinct variables v1, v2 to map to the same variable if v1, v2 belong to the scope of
any binary constraint (otherwise this binary constraint could not be correctly represented
on a scope consisting of a single variable).

2We tacitly assume that a context contains at least one structure for every combination of sizes of
variable set and domain.

8

A domain labelling of a set of variables is just an assignment of domain values to those
variables. Variable and domain renaming induces a mapping on the domain labellings
of scopes of constraints: we simply assign the renamed domain values to the renamed
variables. There is a natural way to extend this mapping of domain labellings to a mapping
of a constraint pattern: the truth-value of each mapped domain labelling is the same as
the truth-value of the original domain labelling. However, it may occur that two domain
labellings of some scope map to the same domain labelling, so instead the resulting value
is taken to be the greatest of the original truth-values. (In order for this process to be well-
defined, if two domain labellings of a constraint are mapped to the same domain labelling,
then their original truth-values must be comparable.) This leads to the following formal
definition of a renaming which is the first step towards the definition of containment.

Definition 3.5. Let χ = 〈V,D,C〉 and χ′ = 〈V ′, D′, C ′〉 be compatible CSP patterns.
We say that χ′ is a renaming of χ if there exist a variable renaming function s : V 7→

V ′ and a domain renaming function t : V ×D 7→ D′ that satisfy:

• If s(v1) = s(v2) for distinct variables v1, v2, then there is no constraint pattern 〈σ, ρ〉 ∈
C with v1, v2 ∈ σ and ρ a non-trivial relation (a function which is not identically equal
to U).

• F : V ×D 7→ V ′ ×D′ defined by F (〈v, a〉) = 〈s(v), t(v, a)〉 is a contextual homomor-
phism.

• For each constraint pattern 〈σ, ρ〉 ∈ C, for any two domain labellings ℓ, ℓ′ ∈ Dσ for
which F (ℓ) = F (ℓ′), we have that ρ(ℓ) and ρ(ℓ′) are comparable.

• C ′ = {〈s(σ), ρ′〉 | 〈σ, ρ〉 ∈ C}, where ρ′(f) = max {ρ(ℓ) | F (ℓ) = f}, for each f :
s(σ) 7→ D.

We will use patterns to define sets of CSP instances by forbidding the occurrence (con-
tainment) of the patterns in the CSP instances. In this way we will be able to characterise
tractable subclasses of the CSP. Informally, a pattern χ is said to occur in a CSP instance
P if we can find variables in P corresponding to the variables of χ, such that there is a
constraint in P that realises each constraint pattern in χ. We will now formally define
what we mean by a pattern occurring in another pattern (and by extension, in a CSP
instance).

Definition 3.6. We say that a CSP pattern χ occurs in a CSP pattern P = 〈V,D,C〉 (or
that P contains χ), denoted χ→P , if there is a renaming 〈V,D,C ′〉 of χ where, for every
constraint pattern 〈σ, ρ′〉 ∈ C ′ there is a constraint pattern 〈σ, ρ〉 ∈ C and, furthermore, ρ
realises ρ′.

Example 3.7. This example describes three simple containments. Consider the three
constraint patterns, Pattern 1(i)-(iii). These constraint patterns occur in, or are contained

9

Pattern 1

a

b

c

d

x y

a

b

d

c

d′

x y

b

z

a

x

c

d

y

(i) (ii) (iii)

Pattern 2

a

b

c

d

x y

in, Pattern 2 by the contextual homomorphisms F1, F2, and F3, respectively, which we will
now describe.

F1 is simply a bijection. Although the patterns are different, this is a valid containment
of Pattern 1(i) into Pattern 2 because the three-valued relation of Pattern 2 is a realisation
of the three-valued relation in Pattern 1(i): we are replacing (b, d) → U by (b, d) → F .

F2 maps (x, a), (x, b), and (y, c) to themselves, and maps both (y, d) and (y, d′) to (y, d).
This merging of domain elements is possible because the three-valued constraint relation of
Pattern 1(ii) agrees on tuples involving the assignments (y, d) and (y, d′) and, furthermore,
the restriction of the three-valued relation of Pattern 1(ii) to either of these two assignments
is equivalent to the three-valued constraint relation of Pattern 2: (b, d) → F and (a, d) → T .

Finally, F3 maps (y, c) and (y, d) to themselves, and maps (x, a) and (z, b) in Pat-
tern 1(iii) to (x, a) and (x, b), respectively, in Pattern 2. As before, this merging of variables
is possible because the three-valued relations agree. �

Before continuing we need to define what we mean when we say that a class of CSP
instances is definable by forbidden patterns.

Definition 3.8. Let C be any class of CSP instances. We say that C is definable by

forbidden patterns if there is some context Ω and some set of patterns X for which the
set of CSP instances in which none of the patterns in X occur are precisely the instances
in C.

10

Notation: Let X be a set of CSP patterns with maximum arity k. We will use CSP(X)
to denote the set of CSP instances with arity at most k (compatible with X) in which
no element χ ∈ X occurs. When X is a singleton {χ} we will allow CSP(χ) to mean
CSP({χ}).

Tractable Patterns

In this paper we will define, by forbidding certain patterns, tractable subclasses of the
CSP. Furthermore, we will give examples of truly hybrid classes (i.e. not definable by
purely relational or purely structural properties).

Definition 3.9. A set of patterns X is intractable if CSP(X) is NP-hard. It is tractable
if there is a polynomial-time algorithm to solve CSP(X). A single pattern χ is tractable
(intractable) if {χ} is tractable (intractable).

It is worth observing that classes of CSP instances defined by forbidding patterns do
not have a fixed domain. Recall, however, that CSP instances have finite domains.

We will need the following simple lemma for our proofs of intractability results in later
sections of this paper.

Lemma 3.10. Let X and T be sets of compatible CSP patterns and suppose that for every
pattern τ ∈ T , there is some pattern χ ∈ X for which χ→ τ . Then CSP(X) ⊆ CSP(T).

Proof. Let P ∈ CSP(X), so χ 6→P for each χ ∈ X . Then we cannot have τ →P for any
τ ∈ T , since this would imply that there exists some χ ∈ X such that χ→ τ →P and
hence that χ→P . Hence, P ∈ CSP(T).

Corollary 3.11. Let X and T be sets of compatible CSP patterns and suppose that for
every pattern τ ∈ T , there is some pattern χ ∈ X for which χ→ τ .

We then have that CSP(T) is intractable if CSP(X) is intractable and conversely, that
CSP(X) is tractable whenever CSP(T) is tractable.

Finally, we give a very simple example of a tractable pattern. This is an example of a
negative pattern since the only truth-values in the relations are F and U . We will use the
notation NEQ(v1, . . . , vr) to denote the fact that the variables v1, . . . , vr are all distinct.

Example 3.12. Consider the pattern given as Pattern 3. This defines a class of CSPs which
is trivially tractable. We can apply a pre-processing step consisting of first establishing
arc consistency, and then assigning value c to variable x (and eliminating the variable x) if
this assignment is consistent with all remaining assignments to other variables. Forbidding
Pattern 3 ensures that after this pre-processing step there are no paths of length greater
than 2 in the constraint graph. Thus, any problem forbidding Pattern 3 can be decomposed
into a set of independent sub-problems, each of maximum size 2. �

11

Pattern 3 A very simple negative pattern.

v

a

w

b

x

c

c′

NEQ(v, w, x), c 6= c′

Relational and structural tractability as forbidden patterns

The following examples show certain strengths of this notion for defining tractable classes.
First, in Example 3.13, we show that forbidden patterns properly generalise polymor-
phisms. Then, in Example 3.14, we show that we can define the class of tree-structured
CSPs by a single forbidden pattern.

Example 3.13. Let 〈D,<〉 be any totally ordered domain. A binary relation ρ over D is
said to bemax-closed if, for any tuples 〈a, b〉 , 〈a′, b′〉 ∈ ρ we have that 〈max(a, a′),max(b, b′)〉 ∈
ρ. It is well known that the class of CSP instances whose relations are binary max-closed is
tractable [21]. We can define the class of max-closed CSPs as those forbidding the following
pattern (Pattern 4):

• CSP context: the variable set is unstructured and the domain is totally ordered.

• Variables: {x, y}, where x 6= y.

• Domain: The ordered set {0, 1} with 0 < 1.

• A single constraint pattern with scope {x, y} and three-valued relation:

{x 7→ 0, y 7→ 0} 7→ U

{x 7→ 0, y 7→ 1} 7→ T

{x 7→ 1, y 7→ 0} 7→ T

{x 7→ 1, y 7→ 1} 7→ F

In this pattern, the context specifies that x 6= y and 0 < 1, so we have limited the contextual
homomorphisms to those that map x and y to distinct variables and 0 and 1 to ordered
domain values. Thus, saying that a pattern max2 is forbidden in a CSP instance P is
equivalent to saying there is no constraint allowing a pair of tuples (a, b) and (a′, b′), where

12

a < a′ and b′ < b, such that (a′, b) is disallowed; this is equivalent to saying that every
constraint must be max-closed. �

Pattern 4 The max2 pattern.

x y

0

1

0

1

Context: x 6= y, 0 < 1

The set of max-closed relations are also known as the relations which are closed under
the polymorphism max(x, y).

Recall from Definition 2.4 that, given a finite set D and a binary relation ρ on D, a
k-ary polymorphism of ρ is a function f : Dk 7→ D satisfying

∀x1, . . . , xk ∈ ρ, f(x1, . . . , xk) ∈ ρ ,

where f(x1, . . . , xk) = 〈f(x1[1], . . . , xk[1]), f(x1[2], . . . , xk[2])〉. Clearly, we can define the
set of relations which have a particular k-ary polymorphism f as the set of relations forbid-
ding a particular set of patterns, namely those which allow k tuples x1, . . . , xk but which
disallow f(x1, . . . , xk). Thus, every class of binary CSPs defined by having a particular
polymorphism can be defined using forbidden patterns.

We now turn our attention to structural tractability. In Example 3.14 below we show
that a forbidden pattern can capture the class of CSPs with tree width 1.

Pattern 5 Tree structure pattern (Tree)

v1

v2

v3

v1 < v2 < v3

Example 3.14. Consider the pattern Tree, given as Pattern 5. We will show that the
class CSP(Tree) is exactly the set of CSPs whose constraint graph is a forest (i.e. has

13

tree width 1). First, suppose P ∈ CSP(Tree). Then, there exists some ordering π =
(v1, . . . , vn) such that each variable shares a constraint with at most one variable preceding
it in the ordering. On the other hand, suppose P is a CSP whose constraint graph is a
tree. By ordering the vertices according to a pre-order traversal, we obtain an ordering
in which each variable shares a constraint with at most one variable preceding it in the
ordering (its parent); thus, P ∈ CSP(Tree).

�

4 On characterising tractable forbidden patterns

In relational tractability we can define a maximal tractable sub-problem of the CSP prob-
lem. Such a class of relations is maximal in the sense that it is not possible to add even
one more relation to the set without sacrificing tractability.

In the case of structural tractability the picture is less clear, since here we measure
the complexity of an infinite set of hypergraphs (or, more generally, relational structures).
We obtain tractability if we have a bound on some width measure of these structures.
Whatever width measure is chosen we have a containment of the class with width bounded
by k inside that of the class of width bounded by k+1 and so no maximal class is possible.
Nevertheless, for each k there is a unique maximal class of structurally tractable instances.

In this section, we show that in the case of forbidden patterns the situation is similar.

Definition 4.1. Let χ = 〈V,D,C〉 and τ = 〈V ′, D′, C ′〉 be any two flat CSP patterns. We
can form the disjoint unions V ·∪V ′ and D ·∪D′. Now, extend each constraint pattern in C

to be over the domain D ·∪D′ by setting the value of any tuple including elements of D′ to
be U , and extend similarly the constraint patterns in C ′. In this way we can define C ·∪C ′

and then we set the disjoint union of χ and τ to be χ ·∪τ = 〈V ·∪V ′, D ·∪D′, C ·∪C ′〉.

Lemma 4.2. Let χ and τ be flat binary CSP patterns. Then

CSP(χ) ∪ CSP(τ) (CSP(χ ·∪τ) .

Moreover, we have that CSP(χ ·∪τ) is tractable whenever CSP(χ) and CSP(τ) are tractable.

Proof. We begin by showing the strict inclusion

CSP(χ) ∪ CSP(τ) (CSP(χ ·∪τ) .

That the inclusion holds follows directly from Lemma 3.10. To see that the inclusion is
strict, observe that χ and τ occur in a CSP pattern whose domain is the disjoint union of
those for χ and τ but whose variable set has size equal to the larger of the two original
variable sets. Any CSP instance containing this pattern is neither in CSP(χ) nor in CSP(τ).
However, we can construct a CSP instance containing this pattern which is contained
in CSP(χ ·∪τ), as the assumption that all variables are distinct means that χ ·∪τ is not
contained in this pattern.

14

Suppose P ∈ CSP(χ ·∪τ). If P ∈ CSP(χ)∪CSP(τ) then P can be solved in polynomial
time, by the tractability of CSP(χ) and CSP(τ).

So we may suppose that χ→P . Choose a particular occurrence of χ in P and let σ

denote the set of variables used in the containment. Consider any assignment t : σ 7→
D. Let Pt denote the problem obtained by making this assignment and then enforcing
arc-consistency on the resulting problem. This corresponds to adding some new unary
constraints to P .

We will show that if τ occurs in Pt then χ ·∪τ must occur in P . To see this, observe that
any containment of τ in Pm naturally induces a containment of τ in P that extends to a
containment of χ ·∪τ in P , by considering the occurrence of χ in σ. Thus, we can conclude
that Pt ∈ CSP(τ), and so can be solved in polynomial time.

By construction, any solution to Pt extends to a solution to P by adding the assignment
t to the variables σ. Moreover, every solution to P corresponds to a solution to Pt for some
t : σ 7→ D. Since the size of χ is fixed, we can iterate over the solutions to χ in polynomial
time. If P has a solution, then we will find it as the solution to some Pt. If we find that
no Pt has a solution, then we known P does not have a solution. Thus, since we can solve
each Pt in polynomial time, we can also solve P in polynomial time.

Corollary 4.3. No tractable class defined by forbidding a flat pattern is maximal.

Proof. Let χ be any tractable flat pattern. Consider the pattern defined by the disjoint
union of two copies of χ, which we denote χ(2). By Lemma 4.2 we have that CSP(χ(2)) is
tractable but also that

CSP(χ) (CSP(χ(2)) ,

and hence CSP(χ) is not a maximal tractable class.

It follows that we cannot characterise tractable forbidden patterns by exhibiting all
maximal classes defined by tractable forbidden patterns. Indeed, a consequence of Lemma 4.2
is that we can construct an infinite chain of patterns, such that forbidding each one gives
rise to a slightly larger tractable class. Naturally, if we place an upper bound on the size of
the patterns then there are only finitely many patterns that we can consider, so maximal
tractable classes defined by forbidden patterns of bounded size necessarily exist.

For the moment, we are not able to make a conjecture as to the structure of a dichotomy
for general forbidden patterns. Nonetheless, in Section 6, by restricting our attention to a
special case, forbidden negative patterns, we are able to obtain interesting general results.

5 Tractable forbidden patterns on three variables

In the previous section, we showed that we need to place restrictions on the size of the
forbidden patterns if we want to establish any sort of dichotomy. Since forbidden patterns
on two variables only place restrictions on the set of constraint relations that can occur in
an instance, the first interesting hybrid classes occur when we consider three variables. In

15

Pattern 6 Broken triangle pattern (btp)

v1

v2

v3

a

b

v1 < v2 < v3

this section we present two hybrid tractable classes of binary CSP instances characterised
by forbidden patterns on three variables.

The first example, already introduced in [6], is known as the broken-triangle prop-

erty (btp). In order to capture this class by a forbidden pattern we have to work in
a context where the set of variables is totally ordered. In this case pattern containment
must preserve the total order. We can define the broken-triangle property by the forbidden
pattern btp, shown in Pattern 6. The following result was proved in [6].

Theorem 5.1. Let btp be the pattern in Pattern 6. The class of CSP instances CSP(btp)
can be solved in polynomial time.

It is easy to see that Tree (shown in Pattern 5) occurs in btp (with some truth-values
U being changed to T). It follows from Lemma 3.10 that CSP(Tree) ⊆ CSP(btp). Hence
the class CSP(btp) includes all CSP instances whose constraint graph is a tree. However,
CSP(btp) also includes CSP instances whose constraint graph has tree width r for any
value of r: consider, for example, a CSP instance with r + 1 variables and an identical
constraint between every pair of variables which simply disallows the single tuple 〈0, 0〉.

For any tractable forbidden pattern relative to a context with an order on the variables,
we can obtain another tractable class by considering problems forbidding the pattern in
a flat context. The class obtained is (possibly) smaller because it is easier to establish
containment of the flat pattern. In the particular case of the broken-triangle property, we
obtain a strictly smaller tractable class by forbidding Pattern 6 for all triples of variables
v1, v2, v3 irrespective of their order. We can easily exhibit a CSP instance that shows this
inclusion to be strict: for example, the 3-variable CSP instance over Boolean domains
consisting of the two constraints v1 = v2, v1 = v3 with the variable ordering v1 < v2 < v3.

Our second example is a generalisation of the well-known tractable class of problems,
AllDifferent+unary [24, 29]: an instance of this class consists of a set of variables V ,
a set of arbitrary unary constraints on V , and the constraint v 6= w defined on each pair of
distinct variables v, w ∈ V . We define a more general class containing every such instance
using the forbidden pattern shown in Pattern 7, which we call Negtrans. Forbidding
this pattern insists that disallowing tuples is a transitive relation, i.e. if (〈v, a〉 , 〈x, b〉)

16

and (〈x, b〉 , 〈w, c〉) are disallowed then (〈v, a〉 , 〈w, c〉) must also be disallowed. By the
transitivity of equality, Pattern 7 does not occur in any binary CSP instance in the class
AllDifferent+unary.

Pattern 7 Negative transitive pattern (Negtrans)

v

w

x

NEQ(v, w, x)

Theorem 5.2. Let Negtrans denote Pattern 7. The class of CSP instances forbidding
Negtrans can be solved in polynomial time.

Proof. We prove this by a straightforward reduction to the well-known tractable problem
AllDifferent+unary [8, 24].

Let P = 〈V,D,C〉 be a binary CSP in which Negtrans does not occur, and let n = |V |
and d = |D|. We define the graph GP which we call the inconsistency graph of P. The
vertices of GP are the pairs 〈v, c〉 where v is a variable in P and c ∈ D is allowed by the
unary constraint on v. The edges of GP are the pairs of vertices {〈v, a〉 , 〈w, b〉} of GP

for which there exists a constraint 〈〈v, w〉 , ρ〉 with scope 〈v, w〉 such that 〈a, b〉 6∈ ρ. (The
inconsistency graph is the microstructure complement [22] without edges between pairs of
assignments to the same variable.)

We first prove that, for any connected component H of GP , either

• The subgraph of GP induced by H is a complete multipartite graph with edges
{〈v, a〉 , 〈w, b〉} for each 〈v, a〉 , 〈w, b〉 ∈ H satisfying v 6= w (in this case, we call H an
inconsistency clique), or

• H meets exactly two variables of P : |{v | 〈v, a〉 ∈ H}| = 2.

Any connected component H that meets only one variable is a trivial inconsistency
clique. Consider a component H that meets at least three distinct variables. To show that
H is an inconsistency clique we have only to show that the two end-points of every path of
length three meeting three variables and of every path of length four meeting two variables
are connected. (The length of a path is the number of vertices on the path).

Let 〈v, a〉 , 〈x, c〉 , 〈w, b〉, be a path of length three in H , where v, x, w are distinct vari-
ables. Since Negtrans does not occur in P , we must have a constraint 〈〈v, w〉 , ρ〉 with
〈a, b〉 6∈ ρ.

17

Let 〈v, a〉 , 〈w, a′〉 , 〈v, b′〉 , 〈w, b〉 be a path of length four in H . Since H is connected and
comprises at least three variables, there is some other vertex 〈x, c〉 with x 6∈ {v, w} which
is connected to this path. Since this creates paths of length three through three variables
we can repeatedly use the argument given above to show that 〈x, c〉 is adjacent to each of
the four vertices on the path. Finally, since it is adjacent to both 〈v, a〉 and 〈w, b〉 we use
the argument one last time to show that these two vertices are adjacent.

We can now demonstrate the reduction to AllDifferent+unary. First we can
identify all connected components of GP in polynomial time. For each component H that
is not an inconsistency clique, H meets exactly two variables v, w and there is some pair of
vertices 〈v, a〉 and 〈w, b〉 which are not adjacent and which are adjacent to no vertex 〈x, c〉
for any other variable x. We can therefore make the assignments v = a, w = b and remove
from GP all vertices corresponding to assignments to these variables. We denote by V ′ the
remaining set of variables after removing each such pair of variables from P . Note that we
have an assignment to every variable not in V ′ that is consistent with any assignment to
the variables of V ′.

Let PV ′ denote the resulting CSP instance on variables V ′ and GP
V ′

the corresponding
inconsistency graph. The components H1, . . . , Hm of GP

V ′
are all inconsistency cliques.

For each component Hi and each variable v we define Hi(v) = {〈w, c〉 ∈ Hi | w = v}.
Consider a CSP P ′ with variables V ′ and domain {1, . . . , m}. Apply the unary con-

straint on each variable v of P ′ given by the unary relation {〈i〉 | Hi(v) 6= ∅}. Finally apply
the AllDifferent constraint over all variables of P ′.

No solution to PV ′ can contain two assignments from the same component of GP
V ′
.

Therefore, to every solution s to PV ′ there is a corresponding solution s′ to P ′: choose
s′(v) = i where 〈v, s(v)〉 ∈ Hi.

Conversely, any solution s′ to P ′ corresponds to a solution s to PV by choosing s(v) to
be any value in Hs′(v)(v), for each v ∈ V .

The time taken to obtain GP
V ′

from P is proportional to the total number of disallowed
tuples in P ; hence, the time taken is O(|C|d2). Solving P ′ is equivalent to finding a perfect
matching in a bipartite graph with |V ′| + m vertices and up to |V ′|m edges. Using the
Fibonacci heap data structure, we can find a perfect matching in a bipartite graph with N

vertices and M edges in time O(N2 log(N) + NM) [12]. Thus, we can find a solution to
P ′ in time O((n+m)2 log(n+m) + (n+m)nm) . The maximum value of m occurs when
each component of GP contains exactly three assignments, so we will always have m ≤ nd

3
.

Thus, under the reasonable assumption that d ≤ n, we can solve P ′ in time O(n3d2). Since
|C| is O(n2), it follows that P can be solved in time O(n3d2).

It has recently been shown [7] that the tractable class defined by forbidding Pattern 7
(Negtrans) can be extended to soft constraint problems but that this is not the case for
the class of problems obtained by forbidding Pattern 6 (btp) (in the sense that the class
becomes NP-hard if all unary soft constraints are also allowed).

Having demonstrated through the btp and Negtrans patterns that forbidding pat-
terns provides a language which is rich enough to define interesting hybrid tractable classes,

18

we concentrate in the rest of the paper on progress towards characterising tractable for-
bidden patterns.

6 Binary flat negative patterns

In this section we define three particular patterns and one infinite class of patterns. We
then use these patterns to characterise a very large class of intractable patterns. We prove
that any finite set of patterns not in this class has a simple structure: one of the patterns
must contain one of a particular set of patterns, which we call pivots. This means that
any tractable finite set of patterns must include a pattern in which a pivot pattern occurs.
Furthermore, we exhibit a class of patterns which are contained in pivots and which we are
able to prove give rise to a tractable class. We conjecture that pivots are also tractable; if
this is the case then it implies a simple characterisation of the tractability of finite sets of
binary flat negative patterns.

Definition 6.1. A constraint pattern 〈σ, ρ〉 will be called negative if ρ never takes the
value T . A CSP pattern χ is negative if every constraint pattern in χ is negative.

Pattern 8 Cycle(6)

v1

c
c′

v2 v3

v6 v5 v4

Context: NEQ(v1, . . . , v6)

In Definition 6.2 below, we define the concept of a connected negative binary pattern.
These correspond to negative binary patterns χ such that every realisation of χ as a binary
CSP instance has a connected constraint graph. We first generalise the notion of constraint
graph to CSP patterns. We call the resulting graph the negative structure graph.

Definition 6.2. Let χ be any binary negative pattern. The vertices of the negative struc-

ture graph G are the variables of χ. A pair of vertices is connected in G if and only if
they form a scope in χ whose constraint pattern assigns at least one tuple the value F . We
say that χ is connected if its negative structure graph is connected.

For example, Pattern 9 (Valency), Pattern 10 (Path) and Pattern 11 (Valency+Path)
are not connected. Note that a pattern which is not connected may occur in a connected
pattern (and vice versa). Pattern 8 shows Cycle(6) which is connected. This is just one

19

Pattern 9 Valency

x3

x2

x1

x′

3

x′

2

x′

1

Context: NEQ(x1, x2, x3, x
′

1) ∧NEQ(x′

1, x
′

2, x
′

3)

Pattern 10 Path

v1 v2 v3 w1 w2 w3

NEQ(v1, v2, v3, w1) ∧NEQ(w1, w2, w3)

example of the generic pattern Cycle(k) where k ≥ 2. The only context for Cycle(k) is
that all variables are distinct, except for the special case k = 2 for which the context also
includes c 6= c′, meaning that Cycle(2) is composed of a single binary constraint pattern
containing two distinct inconsistent tuples. The following theorem uses these patterns to
show that most patterns are intractable.

Theorem 6.3. Let X be any finite set of connected negative binary patterns. If at least
one of Cycle(k) (for some k ≥ 2), Valency, Path, or Valency+Path occurs in each
χ ∈ X then CSP(X) is intractable.

Proof. Let X be a set of connected negative binary patterns and let ℓ be the number of
variables in the largest member of X .

Assuming at least one of the four patterns occurs in each χ ∈ X , we can construct a
class of CSPs in which no element of X occurs and to which we have a polynomial reduction
from the well-known NP-complete problem 3SAT [14].

The construction will involve three gadgets, examples of which are shown in Figure 1.
These gadgets each serve a particular purpose:

1. The cycle gadget, given in Figure 1(a) for the special case of 4 variables, enforces that
a cycle of Boolean variables (v1, v2, . . . , vr) all take the same value.

20

Pattern 11 Valency+Path

v3

v2

v1

x

w1 w2 w3

NEQ(v1, v2, v3), NEQ(w1, w2, w3), and x 6= w2

2. The clause gadget in Figure 1(b) is equivalent to the clause v1 ∨ v2 ∨ v3, since vC has
a value in its domain if and only if one of the three vi variables is set to true. We can
obtain all other 3-clauses on these three variables by inverting the domains of the vi
variables.

3. The line gadget in Figure 1(c), imposes the constraint v1 ⇒ v2. It can also be used
to impose the logically equivalent constraint ¬v2 ⇒ ¬v1.

Now, suppose that we have an instance of 3SAT with n propositional variablesX1, . . . , Xn

and m clauses C1, . . . , Cm.
We begin to build a CSP instance Ψ to solve this 3SAT instance by using n copies

of the cycle gadget (Figure 1(a)), each with m(ℓ + 1) variables. For i = 1, . . . , n, the

variables along the ith copy of this cycle are denoted by (v1i , v
2
i , . . . , v

m(ℓ+1)
i). In any solution

to a CSP instance PΨ with these and other constraints, we will have that the variables
v
j
i , j = 1, . . . , m(ℓ+1) must all have the same value, di. We can therefore consider each v

j
i

as a copy of Xi.
Consider the clause Cw. There are eight cases to consider but they are all very similar

so we will show the details for just one case. Suppose that Cw ≡ Xi ∨ Xj ∨ ¬Xk. We
build the clause gadget (Figure 1(b)) with the three Boolean variables being ciw, c

j
w and ckw

and invert the domain of ckw since it occurs negatively in Cw. Then any solution s to our
constructed CSP must satisfy s(ciw) ∨ s(cjw) ∨ ¬s(ckw) = T .

We complete the insertion of Cw into the CSP instance by adding some length ℓ + 1
line constructions (Figure 1(c)). We connect the cycle gadgets corresponding to Xi, Xj

and Xk to the clause gadget for clause Cw since Xi, Xj and Xk occur in Cw. We connect

v
w(ℓ+1)
i to ciw since Xi is positive in Cw, so s(ciw) = T is only possible when s(v

w(ℓ+1)
i) = T ,

for any solution s. Similarly, we connect v
w(ℓ+1)
j to cjw. Finally, since Xk occurs negatively

in Cw, we impose the line constraints in the other direction. This ensures that s(ckw) = F

is only possible when s(v
w(ℓ+1)
k) = F . Imposing these constraints ensures that a solution is

only possible when at least one of the cycles corresponding to variables Xi, Xj , and Xk is

21

v1

v2

v3

v4

v1

T

F

v2

T

F

v3

T

F

vC

(a) (b)

F

T

v1 v2

(c)

Figure 1: (a) Making copies of the same variable (v1 = v2 = v3 = v4). (b) Imposing the
ternary constraint vC = v1 ∨ v2 ∨ v3. (c) A line of constraints which imposes v1 ⇒ v2.

22

assigned a value that would make the corresponding literal in Cw true.
We continue this construction for each clause of the 3SAT instance. Since ℓ is a constant,

this is clearly a polynomial reduction from 3SAT.
We now show that any CSP instance PΨ constructed in the manner we have just de-

scribed cannot contain any pattern in X . We do this by showing that no pattern containing
Cycle(k) (for 2 ≤ k ≤ ℓ), Valency, Path, orValency+Path can occur in the instance.
This is sufficient to show that the CSP PΨ does not contain any of the patterns in X .

In the CSP PΨ no constraint contains more than one inconsistent tuple. Thus, any
χ ∈ X for which Cycle(2)→χ cannot occur in PΨ. Furthermore, PΨ is built from cycles
of length m(ℓ+1) and paths of length ℓ+1, and so cannot contain any cycles on less than
ℓ + 1 vertices. Thus, since ℓ is the maximum number of vertices in any component of X ,
it follows that no χ ∈ X for which Cycle(k)→χ, for any k ≥ 3, can occur in PΨ.

We define the valency of a variable x to be the number of distinct variables which share
a constraint with x. Suppose Valency →χ. For this to be possible we require that there
is a variable of valency four in χ, or a pair of variables of valency three connected by a path
of length at most ℓ. Certainly PΨ has no variables of valency four. Moreover, the fact that
PΨ was built using paths of length ℓ + 1 means that no two of its valency three variables
are joined by a path of length at most ℓ. Thus, any χ ∈ X for which Valency→χ does
not occur in PΨ.

Next, consider that case when Path→χ. Here χ must have two distinct (but possibly
overlapping) three-variable lines (with inconsistent tuples in these constraints that match
at domain values) separated by at most ℓ variables. The only place where inconsistent
tuples can meet in PΨ is when we connect the line gadget to the cycle gadget. These
connection sites are always at distance greater than ℓ, so we can conclude that χ 6→Pψ
whenever Path→χ.

Finally, consider the case where Valency+Path→χ. Here, χ must have one variable
of valency at least 3 and a path of constraints on three variables with intersecting negative
tuples, and these must be connected by a path of less than ℓ variables. As observed above,
the only places where we can have inconsistent tuples meeting is where the line gadget meets
the cycle gadget, and there is a path of at least ℓ variables between each one of these points
and every other variable of valency 3. Thus, χ 6→Pψ whenever Valency+Path→χ.

It remains to consider which sets of negative binary patterns could be tractable. For
this, we need to define the pivot patterns, Pivot(r), which contain every tractable pattern.

Definition 6.4. Let V = {p}∪{v1, . . . , vr}∪{w1, . . . , wr}∪{x1, . . . , xr} and let D = {a, b}.
We define the pattern Pivot(r) = (V,D,Cp ∪ Cv ∪ Cw ∪ Cx), where

Cp = {{(〈p, a〉 , 〈v1, b〉)} 7→ F, {(〈p, a〉 , 〈w1, b〉)} 7→ F, {(〈p, b〉 , 〈x1, b〉)} 7→ F}

Cv = {{(〈vi, a〉 , 〈vi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

Cw = {{(〈wi, a〉 , 〈wi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

Cx = {{(〈xi, a〉 , 〈xi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

See Pattern 12 for an example, Pivot(3).

23

Pattern 12 Pivot(3)

v3 v2 v1

x3 x2 x1

p

a

b

w1 w2 w1

NEQ(p, v1, v2, v3, w1, w2, w3, x1, x2, x3)

The following proposition characterises those sets of binary flat negative patterns which
Theorem 6.3 does not prove intractable.

Proposition 6.5. Any connected binary flat negative pattern χ either contains Cycle(k)
(for some k ≥ 2), Valency, Path, or Valency+Path, or it itself occurs in Pivot(r)
for some integer r ≤ |χ|.

Proof. Suppose χ does not contain any of the patterns Valency, Cycle(k) (for any
k ≥ 2), Path, or Valency+Path. Since Cycle(2) 6→χ, each constraint pattern in χ

contains at most one inconsistent tuple. Recall that the valency of a variable x is the
number of distinct variables which share a constraint with x. Since χ does not contain
Valency it can only contain one variable of valency three and all other variables must
have valency at most two. Moreover, since Cycle(k) 6→χ for k ≥ 3, the negative structure
graph of χ does not contain any cycles. Then, since χ is connected, the negative structure
graph of χ consists of up to three disjoint paths joined at a single vertex. The fact that
χ does not contain Path means there can be at most one pair of intersecting inconsistent
tuples in χ and, moreover, the fact that χ does not contain Valency+Path means that
this intersection must occur on the variable with valency 3, if it exists. It then follows that
χ must occur in Pivot(r), for some r ≤ |χ|.

Corollary 6.6. Let X be a set of connected binary flat negative patterns. Then CSP(X)
is tractable only if there is some χ ∈ X that occurs in Pivot(r), for some integer r ≤ |χ|.

For an arbitrary (not necessarily flat or negative) binary CSP pattern χ, we denote by
neg(χ) the flat negative pattern obtained from χ by replacing all truth-values T by U in
all constraint patterns in χ and ignoring the context. For a set of patterns X , neg(X)

24

is naturally defined as the set neg(X) = {neg(χ) : χ ∈ X}. Clearly CSP(neg(X)) ⊆
CSP(X). The following result follows immediately from Corollary 6.6.

Corollary 6.7. Let X be a set of binary patterns such that for each χ ∈ X , neg(χ) is
connected. Then CSP(X) is tractable only if there is some χ ∈ X such that neg(χ) occurs
in Pivot(r), for some integer r ≤ |χ|.

Pattern 13 SepPivot(3)

v3 v2 v1

x3 x2 x1

p

a

b

c

w1 w2 w1

NEQ(p, v1, v2, v3, w1, w2, w3, x1, x2, x3)

We now define a pattern we call a separable pivot; forbidding this pattern defines a
subclass of CSP(Pivot(r)).

Definition 6.8. Let V = {p} ∪ {v1, . . . , vr} ∪ {w1, . . . , wr} ∪ {x1, . . . , xr} and let D =
{a, b, c}. We define the pattern SepPivot(r) = (V,D,Cp ∪ Cv ∪ Cw ∪ Cx), where

Cp = {{(〈p, a〉 , 〈v1, b〉)} 7→ F, {(〈p, b〉 , 〈w1, b〉)} 7→ F, {(〈p, c〉 , 〈x1, b〉)} 7→ F}

Cv = {{(〈vi, a〉 , 〈vi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

Cw = {{(〈wi, a〉 , 〈wi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

Cx = {{(〈xi, a〉 , 〈xi+1, b〉)} 7→ F | i = 1, . . . , r − 1}

See Pattern 13 for an example, SepPivot(3).

Clearly, SepPivot(r) occurs in Pivot(r): we take a bijection between corresponding
variable-value pairs for the vi, wi and xi variables, map both 〈p, a〉 and 〈p, b〉 in Sep-

Pivot(r) to 〈p, a〉 in Pivot(r), and map 〈p, c〉 in SepPivot(r) to 〈p, b〉 in Pivot(r). We
will now show that CSP(SepPivot(r)) is tractable for any fixed r.

Theorem 6.9. Let r be a fixed integer. CSP(SepPivot(r)) can be solved in polynomial
time.

25

Proof. By the grid minor theorem of Robertson and Seymour [26], there exists a function
f : N → N such that any graph G with tree width tw(G) ≥ f(r) must contain an r × r

grid as a minor.
Now SepPivot(r) occurs in any CSP instance whose constraint graph contains a vertex

that starts three disjoint paths. Certainly, any CSP instance P whose constraint graph
contains an r×r grid as a minor will satisfy this condition. Hence, P ∈ CSP(SepPivot(r))
is only possible when tw(P) < f(r). Since the class of CSP instances with tree width
bounded above by f(r) is tractable, it follows that CSP(SepPivot(r)) is tractable.3.

The following corollary is a direct consequence of Lemma 4.2.

Corollary 6.10. Any disjoint union of SepPivot(r) patterns is a tractable pattern.

Next, we show that forbidding Pivot(1) gives rise to a tractable class of CSPs.

Proposition 6.11. CSP(Pivot(1)) can be solved in polynomial time.

Proof. We will show that every P ∈ CSP(Pivot(1)) can be reduced in polynomial time to
P ′ ∈ CSP(Negtrans) such that P has a solution if and only if P ′ has a solution. Without
loss of generality, we assume that P is arc-consistent since eliminating domain values (by
arc consistency) cannot destroy the fact that P is Pivot(1)-free.

Suppose Negtrans occurs in P at {u, p, v}:

u

p

v

Since P does not contain Pivot(1), it follows that p cannot be connected to any variables
other than u, v in the constraint graph of P . Thus, we can obtain an equivalent CSP P1 by
eliminating p and tightening the constraint on {u, v} by disallowing any assignment which
does not extend to an assignment of p. This new CSP is still Pivot(1)-free but has had the
occurrence of Negtrans on {u, p, v} eliminated. To see that P1 is Pivot(1)-free, suppose
that the pair of assignments (〈u, a〉 , 〈v, b〉) becomes incompatible in P1 after elimination
of variable p from P . By arc consistency of P , there are values c, d such that the pairs
(〈u, a〉 , 〈p, c〉), (〈v, b〉 , 〈p, d〉) are consistent in P . But, since (〈u, a〉 , 〈v, b〉) cannot be ex-
tended to an assignment of p in P , this implies that the pairs (〈u, a〉 , 〈p, d〉), (〈v, b〉 , 〈p, c〉)
are necessarily inconsistent in P . Now, if the inconsistent pair (〈u, a〉 , 〈v, b〉) were part of
an occurrence of Pivot(1) in P1, then we could easily obtain an occurrence of Pivot(1)

3The best upper bound on the function f(r) is superexponential: 202r
5

[25]. Thus, Theorem 6.9 does
not actually provide a practical algorithm for solving problems in CSP(SepPivot(r)).

26

in P by replacing (〈u, a〉 , 〈v, b〉) by either (〈u, a〉 , 〈p, d〉) or (〈v, b〉 , 〈p, c〉) (depending on
whether it is variable u or v which is at the centre of the pivot).

Thus, by repeatedly identifying and eliminating occurrences of Negtrans, we will
eventually (after the elimination of at most n−2 variables) obtain a CSP P ′ ∈ CSP(Negtrans).
By the way we have constructed P ′, we know that any solution to P ′ can be extended to
an assignment on the removed variables. Thus, since we can solve any instance P ′ ∈
CSP(Negtrans) in polynomial time (Theorem 5.2), we can solve any instance P from
CSP(Pivot(1)) in polynomial time.

Proposition 6.11 is important as it gives us a tractable class of CSPs defined by forbid-
ding a negative pattern which, unlike CSP(SepPivot(r)), contains problems of unbounded
tree width, and so cannot be captured by structural tractability. As an example of a class
of CSP instances in CSP(Pivot(1)) with unbounded tree width, consider the n-variable
CSP instance Pn with domain {1, . . . , n} whose constraint graph is the complete graph and,
for each pair of distinct values i, j ∈ {1, . . . , n}, the constraint on variables vi, vj disallows
a single pair of assignments (〈vi, j〉 , 〈vj, i〉). Since each assignment 〈vi, j〉 occurs in a single

inconsistent tuple, Pivot(1) does not occur in Pn, and hence Pn ∈ CSP(Pivot(1)).
We conjecture that there exists a larger class of tractable problems defined by forbidding

negative patterns.

Conjecture 6.12. For a fixed integer r, CSP(Pivot(r)) can be solved in polynomial time.

A positive answer to Conjecture 6.12, taken in conjunction with Corollary 6.6, would
give a dichotomy result for CSPs defined by forbidding a finite set of binary flat negative
patterns, which we state in the form of a conjecture.

Conjecture 6.13. Let X be a finite set of connected binary flat negative patterns. Then
CSP(X) is tractable if and only if there is some χ ∈ X that is contained in Pivot(r), for
some integer r ≤ |χ|.

7 Conclusion

In this paper we described a framework for identifying classes of CSPs in terms of forbidden
patterns, to be used as a tool for identifying tractable classes of the CSP. We gave several
examples of small patterns that can be used to define tractable classes of CSPs.

In the search for a general result, we restricted ourselves to the special case of binary
flat negative patterns. In Theorem 6.3 we showed that CSP(X) is NP-hard if every pattern
in a set X contains at least one of four patterns (Patterns 8, 9, 10, and 11). Moreover, we
showed that any connected binary flat negative pattern that did not contain any of these
patterns must itself be contained within a special type of pattern called a pivot. Hence, the
presence of a pivot is a necessary condition for pattern χ to be tractable. We were able to
show that another pattern, which we call separable pivot, occurs in the pivot pattern and
defines a tractable class. Hence, separable pivots define a tractable subclass of the class

27

defined by pivots. We conjecture that tractability extends to the whole class of problems
defined by pivots. We proved tractability for pivots of size 1.

The main open problem is the resolution of the tractability of pivots of any fixed size
r. Beyond this, it will be interesting to see what new tractable classes can be defined
by more general binary patterns or by non-binary patterns. In particular, an important
area of future research is determining all maximal tractable classes of problems defined by
patterns of some fixed size (given by the number of variables or the number of variable-value
assignments).

References

[1] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

[2] Andrei A. Bulatov. Tractable conservative constraint satisfaction prob-
lems. In LICS 2003: Proceedings of 18th IEEE Symposium on Logic
in Computer Science, pages 321–330, 22–25 jun 2003. Available from:
http://csdl.computer.org/comp/proceedings/lics/2003/1884/00/18840321abs.htm,
doi:10.1109/LICS.2003.1210072.

[3] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction prob-
lems on a 3-element set. Journal of the ACM, 53(1):66–120, 2006.
doi:10.1145/1120582.1120584.

[4] David Cohen and Peter Jeavons. The complexity of constraint languages. In Rossi
et al. [27], chapter 8, pages 245–280.

[5] David A. Cohen. A new class of binary CSPs for which arc-consistency is
a decision procedure. In CP 2003: Proceedings of the 9th International Con-
ference on Principles and Practice of Constraint Programming, number 2833
in Lecture Notes in Computer Science, pages 807–811. Springer-Verlag, 2003.
doi:10.1007/978-3-540-45193-8_57.

[6] Martin C. Cooper, Peter G. Jeavons, and András Z. Salamon. Generalizing constraint
satisfaction on trees: Hybrid tractability and variable elimination. Artificial Intelli-
gence, 174(9–10):570–584, June 2010. doi:10.1016/j.artint.2010.03.002.

[7] Martin C. Cooper and Stanislav Živný. Hybrid tractability of soft constraint problems.
arXiv:1008.4071, aug 2010. Available from: http://arxiv.org/abs/1008.4071.

[8] Marie-Christine Costa. Persistency in maximum cardinality bipar-
tite matchings. Operations Research Letters, 15(3):143–149, 1994.
doi:10.1016/0167-6377(94)90049-3.

28

http://dx.doi.org/10.1137/S0097539700376676
http://csdl.computer.org/comp/proceedings/lics/2003/1884/00/18840321abs.htm
http://dx.doi.org/10.1109/LICS.2003.1210072
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1007/978-3-540-45193-8_57
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://arxiv.org/abs/1008.4071
http://dx.doi.org/10.1016/0167-6377(94)90049-3

[9] V́ıctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction,
bounded treewidth, and finite-variable logics. In CP 2002: Proceedings of the 8th In-
ternational Conference on Principles and Practice of Constraint Programming, num-
ber 2470 in Lecture Notes in Computer Science, pages 310–326. Springer-Verlag, 2002.
doi:10.1007/3-540-46135-3_21.

[10] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence, 34(1):1–38, 1987. doi:10.1016/0004-3702(87)90002-6.

[11] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38(3):353–366, 1989. doi:10.1016/0004-3702(89)90037-4.

[12] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM, 34:596–615, July
1987. doi:10.1145/28869.28874.

[13] Eugene C. Freuder. Complexity of K-Tree Structured Constraint Sat-
isfaction Problems. In AAAI ’90: Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 4–9, 1990. Available from:
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA., 1979.

[15] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.
doi:10.1006/jcss.2001.1809.

[16] Martin J. Green and David A. Cohen. Tractability by approximating constraint lan-
guages. In CP 2003: Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming, volume 2833 of Lecture Notes in Computer Sci-
ence, pages 392–406. Springer-Verlag, 2003. doi:10.1007/978-3-540-45193-8_27.

[17] Martin Grohe. The structure of tractable constraint satisfaction problems. In
MFCS ’06: Proceedings of the 31st Symposium on Mathematical Foundations of
Computer Science, volume 4162 of Lecture Notes in Computer Science, pages 58–72.
Springer-Verlag, 2006. doi:10.1007/11821069_5.

[18] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. Journal of the ACM, 54(1):1–24, 2007.
doi:10.1145/1206035.1206036.

[19] Marc Gyssens, Peter G. Jeavons, and David A. Cohen. Decomposing constraint satis-
faction problems using database techniques. Artificial Intelligence, 66(1):57–89, 1994.
doi:10.1016/0004-3702(94)90003-5.

29

http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/0004-3702(89)90037-4
http://dx.doi.org/10.1145/28869.28874
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://dx.doi.org/10.1006/jcss.2001.1809
http://dx.doi.org/10.1007/978-3-540-45193-8_27
http://dx.doi.org/10.1007/11821069_5
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1016/0004-3702(94)90003-5

[20] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997. doi:10.1145/263867.263489.

[21] Peter G. Jeavons and Martin C. Cooper. Tractable constraints on ordered domains.
Artificial Intelligence, 79(2):327–339, 1995. doi:10.1016/0004-3702(95)00107-7.

[22] P. Jégou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In AAAI ’93: Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence, pages 731–736, 1993. Available from:
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php.

[23] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In STOC ’10: Proceedings of the 42nd ACM symposium on Theory of
computing, pages 735–744. ACM, 2010. doi:10.1145/1806689.1806790.

[24] Jean-Charles Régin. A filtering algorithm for constraints of difference in
CSPs. In AAAI ’94: Proceedings of the Twelfth National Conference on
Artificial Intelligence, volume 1, pages 362–367, 1994. Available from:
http://www.aaai.org/Library/AAAI/1994/aaai94-055.php.

[25] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a pla-
nar graph. Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994.
doi:10.1006/jctb.1994.1073.

[26] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a pla-
nar graph. Journal of Combinatorial Theory, Series B, 41:92–114, 1986.
doi:10.1016/0095-8956(86)90030-4.

[27] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming. Foundations of Artificial Intelligence. Elsevier, 2006.

[28] András Z. Salamon and Peter G. Jeavons. Perfect constraints are tractable. In CP
2008, volume 5202 of Lecture Notes in Computer Science, pages 524–528. Springer-
Verlag, 2008. doi:10.1007/978-3-540-85958-1_35.

[29] W. J. van Hoeve. The alldifferent constraint: A survey. In Proceedings of the 6th
Annual Workshop of the ERCIM Working Group on Constraints, 2001. Available
from: http://arxiv.org/abs/cs/0105015v1.

30

http://dx.doi.org/10.1145/263867.263489
http://dx.doi.org/10.1016/0004-3702(95)00107-7
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1145/1806689.1806790
http://www.aaai.org/Library/AAAI/1994/aaai94-055.php
http://dx.doi.org/10.1006/jctb.1994.1073
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1007/978-3-540-85958-1_35
http://arxiv.org/abs/cs/0105015v1

	1 Introduction
	2 Preliminaries
	3 Forbidden patterns in CSP
	4 On characterising tractable forbidden patterns
	5 Tractable forbidden patterns on three variables
	6 Binary flat negative patterns
	7 Conclusion

