
Artificial Intelligence 175 (2011) 1555–1569

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Hybrid tractability of valued constraint problems ✩

Martin C. Cooper a, Stanislav Živný b,c,∗
a IRIT, University of Toulouse III, 31062 Toulouse, France
b University College, University of Oxford, Oxford OX1 4BH, UK
c Computing Laboratory, University of Oxford, Oxford OX1 3QD, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2010
Received in revised form 6 December 2010
Accepted 19 February 2011
Available online 24 February 2011

Keywords:
Constraint optimisation
Computational complexity
Tractability
Soft constraints
Valued constraint satisfaction problems
Graphical models
Forbidden substructures

The constraint satisfaction problem (CSP) is a central generic problem in computer science
and artificial intelligence: it provides a common framework for many theoretical problems
as well as for many real-life applications. Valued constraint problems are a generalisation of
the CSP which allow the user to model optimisation problems. Considerable effort has been
made in identifying properties which ensure tractability in such problems. In this work, we
initiate the study of hybrid tractability of valued constraint problems; that is, properties
which guarantee tractability of the given valued constraint problem, but which do not
depend only on the underlying structure of the instance (such as being tree-structured) or
only on the types of valued constraints in the instance (such as submodularity). We present
several novel hybrid classes of valued constraint problems in which all unary constraints
are allowed, which include a machine scheduling problem, constraint problems of arbitrary
arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary
valued constraints. An important tool in our investigation will be the notion of forbidden
substructures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An instance of the constraint satisfaction problem (CSP) consists of a collection of variables which must be assigned
values subject to specified constraints. Each CSP instance has an underlying hypergraph, known as its constraint hypergraph,
whose vertices are the variables of the instance and whose hyperedges are the scopes of the constraints. Such a hypergraph
is also known as the structure of the instance.

An important line of research on the CSP is to identify all tractable cases which are recognisable in polynomial time.
Most of this work has been focused on one of the two general approaches: either identifying forms of constraint which are
sufficiently restrictive to ensure tractability no matter how they are combined [1,2], or else identifying structural properties
of constraint networks which ensure tractability no matter what forms of constraint are imposed [3].

The first approach has led to identifying certain algebraic properties known as polymorphisms [4] which are necessary
for a set of constraint types to ensure tractability. A set of constraint types which ensures tractability is called a tractable
constraint language. The second approach has been used to characterise all tractable cases of bounded-arity CSPs (such as
binary CSPs): the only class of structures which ensures tractability (subject to certain complexity theory assumptions) are
essentially structures of bounded tree-width [5,6].

✩ A preliminary version of part of this work appeared in Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming
(CP), LNCS, vol. 6308, 2010, pp. 152–166. This work was supported by EPSRC grant EP/F01161X/1. Stanislav Živný was supported by Junior Research
Fellowship at University College, Oxford.

* Corresponding author at: Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK. Tel: +44 (0)1865 273884.
E-mail addresses: cooper@irit.fr (M.C. Cooper), standa.zivny@comlab.ox.ac.uk (S. Živný).
0004-3702/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2011.02.003

https://core.ac.uk/display/82171914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.artint.2011.02.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:cooper@irit.fr
mailto:standa.zivny@comlab.ox.ac.uk
http://dx.doi.org/10.1016/j.artint.2011.02.003

1556 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
In practice, constraint satisfaction problems usually do not possess a sufficiently restricted structure or use a sufficiently
restricted constraint language to fall into any of these tractable classes. Nevertheless, they may still have properties which
ensure they can be solved efficiently, but these properties concern both the structure and the form of the constraints. Such
properties have sometimes been called hybrid reasons for tractability [7–11].

Since in practice many constraint satisfaction problems are over-constrained, and hence have no solution, or are under-
constrained, and hence have many solutions, soft constraint satisfaction problems have been studied [7]. Several very general
soft CSP frameworks have been proposed in the literature [12,13]. In this paper we focus on one of the very general
frameworks, the valued constraint satisfaction problem (VCSP) [12]. In an instance of the valued CSP, every constraint is
associated with a cost function (rather than a relation as in the CSP) which allows the user to express preferences among
different partial assignments, and the goal is to find an optimal assignment (i.e. an assignment of smallest total cost).

Similarly to the CSP, an important line of research on the VCSP is to identify tractable cases which are recognisable in
polynomial time. It is well known that structural reasons for tractability generalise to the VCSP [7]. In the case of language
restrictions, only a few conditions are known to guarantee tractability of a given set of valued constraints [14–16,22].

Up until now there have been very few results on hybrid tractability for the VCSP, that is, tractability of subproblems of
the VCSP defined by properties which are not exclusively language-based or structure-based. For instance, Kumar defines an
interesting framework for hybrid tractability for the Boolean weighted CSP [10]. However, to the best of our knowledge, this
framework has so far not provided any new hybrid classes. In fact, all tractable classes presented in [10] are not hybrid and
are already known.
Contributions. The main contribution of the paper is the study of hybrid tractability of VCSPs and the introduction of novel
hybrid tractable classes of VCSPs. As a first step, we start with binary VCSPs.

We introduce the class defined by the joint-winner property (JWP). This class generalises the SoftAllDiff constraint with
arbitrary unary valued constraints. Moreover, we generalise this class to a larger class of non-binary VCSPs including CSP
and MAX-CSP instances with no overlapping nogoods.

The rest of the paper is organised as follows. In Section 2, we define binary constraint satisfaction problems (CSPs),
valued constraint satisfaction problems (VCSPs) and other necessary definitions needed throughout the paper. In Section 3,
we study binary VCSPs whose only soft constraints are unary. A connection between these VCSPs and the maximum weight
independent set problem in certain graph classes leads in a straightforward manner to corresponding hybrid tractable classes
of VCSPs. In Section 4, we define the joint-winner property and give several examples of studied problems that satisfy the
joint-winner property. In Section 5, we study important properties of VCSP instances satisfying the joint-winner property,
which allow us, in Section 6, to present a polynomial-time algorithm for solving binary VCSPs satisfying the joint-winner
property. In Section 7, we prove that this new tractable class is maximal. In Section 8, we extend the class of tractable VCSPs
defined by the joint-winner property. Finally, in Section 9, we summarise our work and finish with some open problems.

We remark that even though our results are formulated as valued constraint satisfaction problems, it is clear that these
results apply to various other optimisation frameworks that are equivalent to valued constraint problems such as Gibbs
energy minimisation, Markov Random Fields and other graphical models [17,18].

2. Preliminaries

In this paper we firstly focus on binary valued constraint satisfaction problems before generalising to problems with cost
functions of arbitrary arity. We denote by Q+ the set of all non-negative rational numbers. We denote Q+ = Q+ ∪{∞} with
the standard addition operation extended so that for all a ∈ Q+ , a + ∞ = ∞. Members of Q+ are called costs.

A unary cost function over domain Di is a mapping ci : Di → Q+ . A binary cost function over domains Di and D j is a
mapping ci j : Di × D j → Q+ . If the range of ci (ci j respectively) lies entirely within Q+ , then ci (ci j respectively) is called a
finite-valued cost function.

If the range of ci (ci j respectively) is {α,∞}, for some α ∈ Q+ , then ci (ci j respectively) is called a crisp cost function.
Note that crisp cost functions are just relations; that is, subsets of Di (in the unary case) or Di × D j (in the binary case)
corresponding to the set of finite-cost tuples. If ci (ci j respectively) is not a crisp cost function, it is called soft.

A binary VCSP instance [12] consists of a set of variables (denoted as vi , where i ∈ {1, . . . ,n}); for each variable vi a
domain Di containing possible values for variable vi ; and a set of valued constraints. Each valued constraint is either of the
form 〈vi, ci〉, where vi is a variable and ci is a unary cost function (constraints of this form are called unary constraints),
or of the form 〈〈vi, v j〉, ci j〉, where vi and v j are variables with i < j, the pair 〈vi, v j〉 is called the scope of the constraint,
and ci j is a binary cost function (constraints of this form are called binary constraints). A constraint is called crisp if its
associated cost function is crisp, and similarly a constraint is called soft if its associated cost function is soft. For notational
convenience, throughout this paper we assume that there is a unique valued constraint on any given scope. In particular, in
the absence of an explicit constraint between two variables vi, v j (i < j), we assume that the corresponding cost function
is the constant function ci j = 0.

A solution to a VCSP instance is an assignment of values from the domains to the variables with the minimum total cost
given by

n∑
ci(vi) +

∑
ci j(vi, v j).
i=1 1�i< j�n

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1557
A VCSP instance with only crisp constraints is called a CSP instance. In the CSP, the task of finding an optimal assignment
amounts to deciding whether there is a consistent assignment (in which all constraints are satisfied), i.e. an assignment with
finite cost. Hence, each CSP instance is equivalent to a normalised version in which all finite costs are replaced by 0.

The micro-structure of a binary CSP instance P is a graph where the set of vertices corresponds to the set of possible
assignments of values to variables: a vertex 〈vi,a〉 represents the assignment of value a to variable vi [19]. The edges of the
micro-structure connect all pairs of variable-value assignments {〈vi,a〉, 〈v j,b〉} such that i < j and ci j(a,b) < ∞. The micro-
structure of a binary VCSP instance is defined similarly. In the weighted micro-structure of a binary VCSP instance, edges
and vertices are assigned the corresponding binary and unary costs. For CSPs (and VCSPs), the micro-structure complement
is the complement of the micro-structure: its edges represent pairs of variable-value assignments that are incompatible
according to the constraints. The micro-structure complement thus contains all edges {〈vi,a〉, 〈v j,b〉} such that i < j and
ci j(a,b) = ∞, but also, for every variable vi , all edges of the form {〈vi,a〉, 〈vi,b〉} for a 	= b ∈ Di as every variable can be
assigned only one value.

A clique in a graph is a set of vertices which are pairwise adjacent. An independent set in a graph is a set of vertices
which are pairwise non-adjacent. It is well known that solving an n-variable CSP instance P is equivalent to finding a
clique of size n in the micro-structure of P , and to finding an independent set of size n in the micro-structure complement
of P [19]. Therefore, tractability results on the maximum independent set problem for various classes of graphs can be
straightforwardly used to obtain tractable CSP classes [8,20].

Given a graph G , we denote by V (G) the set of vertices of G and by E(G) the set of edges of G . A coloured graph G =
〈G, cG〉 is a graph G and a colouring cG : V (G) → {1, . . . ,n} of the vertices of G . The coloured micro-structure (complement)
of an n-variable binary CSP or VCSP instance P is G = 〈G, cG 〉 where G is the micro-structure (complement) of P and cG is
a colouring cG : V (G) → {1, . . . ,n} of the vertices of G , such that the colour of vertex 〈vi,a〉 is i. Unlike the micro-structure,
the coloured micro-structure contains all the information necessary to reconstruct a CSP instance P . Similarly, the weighted
version of the coloured micro-structure of a VCSP instance, in which edges and vertices are assigned costs, contains enough
information to reconstruct a VCSP instance.

A graph H is an induced subgraph of G if there is an injective mapping f : V (H) → V (G) such that {u, v} ∈ E(H) if, and
only if, { f (u), f (v)} ∈ E(G). We now extend the notion of induced subgraphs to that of induced and forbidden substructures
of the coloured micro-structure and coloured micro-structure complement. Let G = 〈G, cG 〉 be the coloured micro-structure
or coloured micro-structure complement of a CSP instance P . Now let H = 〈H, cH 〉 be a coloured graph. We say that H
is an induced substructure of G if H is an induced subgraph of G and vertices of the same colour are mapped to vertices
of the same colour; that is, if there is an injective mapping f : V (H) → V (G) such that (1) {u, v} ∈ E(H) if, and only if,
{ f (u), f (v)} ∈ E(G); and (2) cH (u) = cH (v) if, and only if, cG(f (u)) = cG(f (v)). In this paper we will present classes of
VCSPs that will be defined by forbidding a certain substructure (called a pattern) in the coloured micro-structure or the
coloured micro-structure complement of the VCSP instance. In figures, we will often draw ovals around vertices that are
assigned the same colour (corresponding to the assignments to the same variable).

3. Conservative VCSPs with crisp binary constraints

In this section we restrict our attention to binary VCSP instances with crisp binary constraints. There are no restrictions
on unary constraints; hence both crisp and soft unary constraints are allowed.

Definition 1. A class of VCSP instances is conservative if it is closed under the addition of arbitrary unary valued constraints.

It follows from a result of Takhanov [21] that there is a P/NP-hard dichotomy for conservative binary VCSPs in which all
binary constraints are crisp and belong to a particular language. Furthermore, it follows from a recent result of Kolmogorov
and Živný [22] that there is a P/NP-hard dichotomy for all conservative binary VCSPs in which all binary (not necessarily
crisp) constraints belong to a particular language.1 It is an open question whether a similar dichotomy exists for hybrid
classes.

3.1. Maximum weight independent set

We show how tractability results on the maximum weight independent set in perfect, fork-free and apple-free graphs
can be used to obtain hybrid tractable classes of conservative VCSPs.

Let G be a graph G = 〈V , E〉 with weights w : V → Q+ on the vertices of G . The weight of an independent set S in G ,
denoted w(S), is the sum of weights of the vertices in S: w(S) = ∑

v∈S w(v). It is easy to show that given a binary VCSP
instance P where only unary constraints can be soft, P can be solved by finding a maximum weight independent set in
the micro-structure complement of P with weights given by w(〈vi,a〉) = Mn − ci(a), where M is strictly greater than the
maximum finite unary cost ci(a). Indeed, independent sets of weight strictly greater than Mn(n − 1) are in one-to-one
correspondence with consistent assignments to n variables in P (since ∀i,∀a,0 � ci(a) < M implies that the weight of an

1 We remark that both dichotomy results [21,22] hold for non-binary VCSPs, and thus are not restricted to only binary VCSPs.

1558 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
Fig. 1. Forbidden pattern defining the broken-triangle property.

independent set of size n is strictly greater than n(Mn − M) = Mn(n − 1) and the weight of an independent set of size n − 1
is at most Mn(n − 1)).

Several well-studied classes of graphs admit a polynomial-time algorithm for the maximum weight independent set
problem (MWIS). For example, it is known that MWIS in perfect graphs is solvable in polynomial time [23]. Moreover,
perfect graphs can be recognised in polynomial time [24]. Similar results hold for fork-free [25] and apple-free graphs [26].
The combination of these results gives:

Theorem 2. The class of VCSP instances with crisp binary and arbitrary unary constraints whose micro-structure complement is either
perfect, fork-free or apple-free is tractable.

The tractability of VCSPs with perfect micro-structure and soft unary constraints was also independently pointed out by
Takhanov [21] and Jebara [27].

It is not possible to express all properties of VCSP or CSP instances uniquely in terms of properties of the micro-structure,
since the micro-structure is a graph which does not contain the important information telling us which of its vertices
correspond to assignments to the same variables. This information is, however, contained in the coloured micro-structure.
This is why in the rest of the paper we consider properties of the (weighted) coloured micro-structure in order to define
novel tractable hybrid classes.

3.2. Broken-triangle property

We have seen that forbidding certain patterns in the micro-structure guarantees the tractability of certain classes of
VCSPs. The recently discovered broken-triangle property (BTP) [11], which is equivalent to forbidding a pattern in the
coloured micro-structure of a CSP, guarantees that a feasible solution can be found in polynomial time. In this section,
we show that the hybrid tractable class of CSPs defined by the broken-triangle property is not extendible to VCSPs with
arbitrary soft unary constraints. A binary CSP instance P satisfies the broken-triangle property with respect to the vari-
able ordering < if, and only if, for all triples of variables vi, v j, vk such that i < j < k, if ci j(u, v) < ∞, cik(u,a) < ∞ and
c jk(v,b) < ∞, then either cik(u,b) < ∞ or c jk(v,a) < ∞. (In other words, every “broken” triangle a – u – v – b can be
closed.) This is equivalent to forbidding the pattern from Fig. 1 as an induced substructure in the coloured micro-structure
of P .

Theorem 3. Assuming P 	= N P , there is no tractable conservative class of VCSP instances which includes all CSP instances satisfying
the broken-triangle property.

Proof. Let 〈G,k〉 be an instance of the decision version of the maximum independent set problem which consists in deciding
whether there is an independent set of size at least k in graph G . This problem is known to be NP-complete [28]. We now
transform this instance into a binary VCSP instance with soft unary constraints that satisfies the broken-triangle property.

Every vertex of G is represented by a Boolean variable vi where Di = {0,1}. We impose the constraint 〈〈vi, v j〉, {〈0,0〉,
〈0,1〉, 〈1,0〉}〉 if the vertices corresponding to vi and v j are adjacent in G . Now the assignments satisfying all constraints are
in one-to-one correspondence with independent sets I in G , where vertex i ∈ I if, and only if, vi = 1. We also impose the
soft unary constraints 〈vi, ci〉, where ci(x) = 1 − x for x ∈ {0,1}. The unary constraints ensure that the goal is to minimise
the number of variables assigned value 0, which is the same as maximising the number of variables assigned value 1.
Therefore, the constructed VCSP instance is equivalent to the given maximum independent set problem. It remains to show
that the resulting VCSP instance satisfies the broken-triangle property with respect to some ordering. In fact, we show that
it is satisfied with respect to any ordering. Take any three variables vi, v j, vk such that i < j < k. If either of the pairs of
variables 〈vi, vk〉, 〈v j, vk〉 are not constrained, then the broken-triangle property is trivially satisfied. Assume therefore that
these two constraints are present. The situation is illustrated in Fig. 2. It can be easily checked that the broken-triangle
property is indeed satisfied whether the constraint on 〈vi, v j〉 is {〈0,0〉, 〈0,1〉, 〈1,0〉} (as shown in Fig. 2) or the complete
constraint. �

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1559
Fig. 2. VCSP encoding maximum independent set.

Fig. 3. The joint-winner property: ci j(a,b) � min(cik(a, c), c jk(b, c)).

Fig. 4. The crisp variant of the joint-winner property from Example 5.

4. Joint-winner property

In this section we define the joint-winner property (see Fig. 3), which is the key concept in this paper. We present
several examples of known tractable problems that are generalised by the joint-winner property. In Section 5 we study
basic properties of VCSPs satisfying the joint-winner property as these will be important in designing a polynomial-time
algorithm in Section 6.

Recall that we assume that in a binary VCSP there is a unique cost function on all unordered pairs of distinct variables
{vi, v j}. For simplicity of presentation, we can therefore write ci j(a,b), even if the order of i and j is unknown, to represent
the unique binary cost of assigning (a,b) to (vi, v j).

Definition 4 (Joint-winner property). A triple of variables 〈vi, v j, vk〉 satisfies the joint-winner property (JWP) if ci j(a,b) �
min(cik(a, c), c jk(b, c)) for all domain values a ∈ Di,b ∈ D j, c ∈ Dk .

A binary VCSP instance satisfies the joint-winner property if every triple of distinct variables of the instance satisfies the
joint-winner property.

Note that the joint-winner property places no restrictions on the unary constraints ci and is hence conservative.

Example 5. The joint-winner property in a normalised binary CSP instance amounts to forbidding the multiset of binary
costs {0,∞,∞} in any triangle formed by three assignments to distinct variables. Recall that a normalised CSP is a VCSP
with only zero or infinite costs. Equivalently (given that the cost 0 corresponds to compatible assignments and thus non-
edges in the micro-structure complement), a CSP instance P satisfies the joint-winner property if, and only if, the coloured
micro-structure complement of P forbids the structure in Fig. 4 as an induced substructure. Since this combination can
never occur on triples of variables 〈vi, v j, vk〉 constrained by the three binary constraints vi 	= v j 	= vk 	= vi , the class of
CSPs satisfying the joint-winner property generalises the AllDifferent constraint with arbitrary unary valued constraints.
This generalisation is equivalent to allowing at most one assignment from each of a set of disjoint sets of (variable,value)
assignments.

1560 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
Example 6. Consider the (unweighted) MAX-2SAT problem with no repeated clauses, which is a well-known NP-complete
problem [28,29]. An instance φ of MAX-2SAT, where φ is a 2-CNF formula, can be seen as a Boolean binary {0,1}-valued
VCSP instance. The joint-winner property is equivalent to the following condition on φ: if (l ∨ l1) ∈ φ and (l ∨ l2) ∈ φ, then
(l1 ∨ l2) ∈ φ, where l, l1, l2 are three literals of distinct variables.

It is well known that the set of VCSP instances comprising a single SoftAllDiff constraint and arbitrary unary valued
constraints is tractable. Furthermore, this class of instances is hybrid in that tractability does not follow uniquely from the
language of cost functions nor uniquely from the structure of the instance. As the next example shows, this class satisfies the
JWP, thus showing that the JWP defines a hybrid tractable class (the tractability of the JWP being shown later in Section 6).

Example 7. One of the most commonly used global constraints is the AllDifferent constraint [30]. Petit et al. introduced a
soft version of the AllDifferent constraint, SoftAllDiff [31]. They proposed two types of costs to be minimised: graph- and
variable-based costs. The former counts the number of equalities, whilst the latter counts the minimum number of variables
that need to change value in order to satisfy the AllDifferent constraint. The algorithms for filtering these constraints,
introduced in the same paper, were then improved by van Hoeve et al. [32].

It is easy to check that the graph-based variant of the SoftAllDiff constraint satisfies the joint-winner property. In this
case for every i and j, the cost function ci j is defined as ci j(a,b) = 1 if a = b, and ci j(a,b) = 0 otherwise. Take any three
variables vi, v j, vk and a ∈ Di , b ∈ D j , c ∈ Dk . If ci j(a,b) = c jk(b, c) = cik(a, c) (which means that the domain values a,b, c
are all equal or all different), then the joint-winner property is satisfied trivially. If only one of the costs is 1, then the
joint-winner property is satisfied as well. Observe that due to the transitivity of equality it cannot happen that only one of
the costs is 0.

In order to code the variable-based SoftAllDiff constraint as a binary VCSP P , we can create n variables v ′
i with domains

Di × {1,2}. The assignment v ′
i = (a,1) means that vi is the first variable of the original VCSP to be assigned the value a,

whereas v ′
i = (a,2) means that vi is assigned a but it is not the first such variable. In P there is a crisp constraint which

disallows v ′
i = v ′

j = (a,1) (for any value a ∈ Di ∩ D j) for each pair of variables i < j together with a soft unary constraint
ci(a,k) = k − 1 (for k = 1,2) for each i ∈ {1, . . . ,n}. Hence at most one variable can be the first to be assigned a, and each
assignment of the value a to a variable (apart from the first) incurs a cost of 1. Again due to the transitivity of equality, it
cannot happen that only one of the binary costs shown in the triangle of Fig. 3 is zero, from which it follows immediately
that the joint-winner property is satisfied in P .

We remark that the class defined by the JWP is strictly bigger than SoftAllDiff, and hence our generic algorithm is not
as efficient as tailor-made algorithms for SoftAllDiff [32,33]. Several generalisations of the AllDifferent constraints have
been studied [34,35], but these do not satisfy the JWP property.

Example 8. Suppose that n jobs must be assigned to d machines. Let li(m) be the length of time required for machine m to
complete job i. If machine m cannot perform job i, then li(m) = ∞. We use variable vi to represent the machine to which
job i is assigned. The set of jobs (which we denote by Sm) assigned to the same machine m are performed in series in
increasing order of their length li(m). The aim is to minimise T the sum, over all jobs, of their time until completion. If
jobs i and j are assigned to the same machine, and li(m) < l j(m), then job j will have to wait during the execution of job i,
contributing a time of li(m) to the sum T . This means that

T =
d∑

m=1

(∑
i∈Sm

li(m) +
∑

i, j∈Sm
i< j

min
(
li(m), l j(m)

))
.

In other words, optimal assignments of jobs to machines are given by solutions to the binary VCSP with unary constraints
ci(m) = li(m) (representing the execution times of jobs) and binary constraints

ci j
(
m,m′) =

{
min(li(m), l j(m)) if m = m′,
0 otherwise

(representing the waiting times of jobs).
The joint-winner property ci j(a,b) � min(cik(a, c), c jk(b, c)) is trivially satisfied in this VCSP instance if a,b, c are not all

equal, since in this case one of cik(a, c), c jk(b, c) is zero. It is also satisfied when a = b = c = m since min(li(m), l j(m)) �
min(min(li(m), lk(m)),min(l j(m), lk(m))).

This problem has been shown solvable in polynomial time in [36,37].

5. Structure of problems satisfying the JWP

The next lemma explains the reason for the name of the joint-winner property: in every triangle there is no unique
smallest cost.

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1561
Lemma 9. A binary VCSP instance satisfies the joint-winner property if, and only if, for all triples of distinct variables 〈vi, v j, vk〉 and
for all a ∈ Di , b ∈ D j , c ∈ Dk, two of the costs ci j(a,b), cik(a, c), c jk(b, c) are equal and less than or equal to the third.

Proof. Assume that the joint-winner property is satisfied on the triples of variables 〈vi, v j, vk〉, 〈v j, vk, vi〉 and 〈vk, vi, v j〉,
and write α = ci j(a,b), β = cik(a, c) and γ = c jk(b, c). Without loss of generality, let α = min(α,β,γ). From α � min(β,γ),
we can deduce that α = min(β,γ) and hence that two of α,β,γ are equal and less than or equal to the third.

On the other hand, if two of α,β,γ are equal and less than or equal to the third, then min(β,γ) = min(α,β,γ) � α
and the JWP is satisfied. �

We say that the binary constraint on variables vi, v j has a Z-configuration on sub-domains {a,b} ⊆ Di , {c,d} ⊆ D j

if min(ci j(a, c), ci j(b, c), ci j(b,d)) > ci j(a,d). Since the JWP imposes a condition on exactly three variables, it imposes no
condition on individual binary constraints. In particular, Z-configurations may occur. However, we will show that all Z-
configurations can be eliminated by a simple pre-processing step. This will greatly simplify the structure of the instance
allowing us to apply a min-cost max-flow algorithm to solve JWP instances.

We say that the pair of sub-domains (Si, S j) (where Si ⊆ Di , S j ⊆ D j) is independent of the other variables if ∀a,b ∈ Si ,
∀c,d ∈ S j , ∀k /∈ {i, j}, ∀e ∈ Dk , cik(a, e) = cik(b, e) = c jk(c, e) = c jk(d, e).

Lemma 10. If a binary VCSP instance satisfying the JWP has a Z-configuration on sub-domains {a,b} ⊆ Di , {c,d} ⊆ D j , then
({a,b}, {c,d}) is independent of the other variables.

Proof. Without loss of generality, the presence of a Z-configuration means that min(ci j(a, c), ci j(b, c), ci j(b,d)) > β where
ci j(a,d) = β . Consider some k /∈ {i, j} and some e ∈ Dk . By the JWP on the triple of assignments {〈vi,a〉, 〈v j,d〉, 〈vk, e〉},
we have either (1) cik(a, e) � β or (2) c jk(d, e) � β . In case (1), by repeated application of the JWP on the triples of assign-
ments {〈vi,a〉, 〈v j, c〉, 〈vk, e〉}, {〈vi,b〉, 〈v j, c〉, 〈vk, e〉}, and {〈vi,b〉, 〈v j,d〉, 〈vk, e〉}, we can deduce that cik(a, e) = c jk(c, e) =
cik(b, e) = c j,k(d, e). In case (2), applying the JWP on the same triples, but in the reverse order, again allows us to deduce
that cik(a, e) = c jk(c, e) = cik(b, e) = c jk(d, e). �
Lemma 11. In a binary VCSP instance satisfying the JWP, if (Si, S j) (where Si ⊆ Di , S j ⊆ D j) is independent of the other variables,
and f ∈ Di − Si is such that ∃c,d ∈ S j such that ci j(f , c) 	= ci j(f ,d), then (Si ∪ { f }, S j) is independent of the other variables.

Proof. Consider any variable k /∈ {i, j} and any e ∈ Dk . Since (Si, S j) is independent of the other variables, c jk(c, e) =
c jk(d, e). By applying the JWP on the two triples of assignments {〈vi, f 〉, 〈v j, c〉, 〈vk, e〉} and {〈vi, f 〉, 〈v j,d〉, 〈vk, e〉}, we
can deduce that either cik(f , e) is equal to c jk(c, e) = c jk(d, e) or cik(f , e) is equal to both of ci j(f , c) and ci j(f ,d) (which
is impossible since ci j(f , c) 	= ci j(f ,d)). This shows that (Si ∪ { f }, S j) is independent of the other variables. �

We say that (Si, S j) is independent of other domain-values if ∀c,d ∈ S j , ∀ f ∈ Di − Si , ci j(f , c) = ci j(f ,d) and ∀a,b ∈ Si ,
∀g ∈ D j − S j , ci j(a, g) = ci j(b, g).

Given a Z-configuration on {a,b} ⊆ Di , {c,d} ⊆ D j , under the JWP assumption we can use a simple algorithm to build
a maximal pair of sub-domains (Si, S j) which is independent of the other variables (and such that {a,b} ⊆ Si , {c,d} ⊆ S j).
From Lemma 10, we can initialise (Si, S j) to ({a,b}, {c,d}). Then, by Lemma 11 we can simply keep adding f ∈ Di − Si

to Si if ∃c′,d′ ∈ S j such that ci j(f , c′) 	= ci j(f ,d′), and, by symmetry, we can keep adding g ∈ D j − S j to S j if ∃a′,b′ ∈ S j
such that ci j(a′, g) 	= ci j(b′, g). When this process converges, (Si, S j) is not only independent of the other variables but also
independent of other domain-values.

Now let p0 ∈ Si minimise ci(a), where a ∈ Si . Similarly, let q0 ∈ S j minimise c j(a), where a ∈ S j . Furthermore, let p1 ∈ Si
and q1 ∈ S j be the pair that minimises ci(a)+c j(b)+ci j(a,b) for a ∈ Si and b ∈ S j . We replace the sub-domains Si, S j by the
single domain values p,q where ci(p) = ci(p0), c j(q) = c j(q0), and ci j(p,q) = ci j(p1,q1)+(ci(p1)−ci(p0))+(c j(q1)−c j(q0))

so that ci(p) + ci j(p,q) + c j(q) = ci j(p1,q1) + ci(p1) + c j(q1). For all f ∈ Di − Si , we set ci j(f ,q) = ci j(f ,q0) and for
all g ∈ D j − S j , we set ci j(p, g) = ci j(p0, g). Also ∀k /∈ {i, j}, ∀u ∈ Dk , cik(p, u) = cik(p0, u) = cik(p1, u) and c jk(q, u) =
c jk(q0, u) = c jk(q1, u). The pair of domain values p,q simulate either p0 or q0 if only one of the values p,q is used but
simulates p1,q1 if both values are used. We observe that this substitution preserves the JWP property. This is trivially
true in all triangles involving only one of the assignments p,q, since the binary costs are identical to those for p0,q0.
Since (Si, S j) is independent of the other variables, any triangle of costs involving both assignments p1,q1 is isosceles.
In particular, for any u ∈ Dk , where k 	= i and k 	= j, cik(p1, u) = c jk(q1, u) = α and ci j(p1,q1) � α (by the JWP). Since
cik(p, u) = cik(p1, u) = c jk(q1, u) = c jk(q, u) and ci j(p,q) � ci j(p1,q1), the JWP property is preserved.

This substitution operation is guaranteed to preserve at least one optimal solution. This is because, by our choice of
p0,q0, p1,q1, (1) in any assignment x (to all n variables) in which xi ∈ Si , x j /∈ S j , replacing xi by p0 (or by p which is
equivalent) cannot increase its cost, (2) in any assignment x in which xi /∈ Si , x j ∈ S j , replacing x j by q0 (or by q) cannot
increase its cost, and (3) in any assignment x in which xi ∈ Si , x j ∈ S j , simultaneously replacing xi by p1 and x j by q1 (or
replacing xi by p and x j by q) cannot increase its cost.

1562 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
We say that a VCSP instance satisfying the JWP is Z-free it contains no Z-configurations. We know that a VCSP satisfying
the JWP can be made Z-free by applying the above pre-processing step to eliminate all Z-configurations. This pre-processing
takes polynomial time. A naive algorithm requires O (n2d4) time to detect all Z-configurations. For a given pair (Si, S j), when
a new domain value g is added to S j we have to test for all f ∈ Di − Si whether ∃c ∈ S j such that ci j(f , c) 	= ci j(f , g). This
is an O (d2) operation. By a simple counting argument, we can see that the total number of times some domain value is
added to some set Si is less than the total number of (variable,value) assignments which are eliminated by the substitution
operation described above, which, in turn, is bounded above by nd. Thus the total complexity of the pre-processing operation
is O (n2d4 + nd3) and hence O (n2d4).

The assignment graph of a binary VCSP instance P is the graph 〈V P , E P 〉 with vertices V P = {〈vi,a〉: 1 � i � n, a ∈ Di}
and edges E P = {{〈vi,a〉, 〈v j,b〉}: i 	= j}. The complete assignment graph is simply the complete graph with vertices V P .

Definition 12. Let P be a binary VCSP instance. A subgraph C = 〈V C , EC 〉 of the assignment graph of P is an assignment-
clique if C forms a clique in the complete assignment graph of P when all edges between assignments to the same variable
are added to EC , i.e. 〈V C , EC ∪ SC 〉 is a clique, where SC = {{〈vi,a〉, 〈vi,b〉}: 〈vi,a〉, 〈vi,b〉 ∈ V C and a 	= b}.

Lemma 13. Let P be a Z-free binary VCSP instance satisfying the JWP. Then, for a fixed α, the edges of the assignment graph of P
corresponding to binary costs of at least α, together with the corresponding vertices, form non-intersecting assignment-cliques.

Proof. We first show that if P is Z-free then within a single binary valued constraint any connected set E of edges of
the assignment graph of P corresponding to binary costs of at least α form an assignment-clique. This follows from a
simple inductive argument on the number mi of assignments to vi , where vi, v j are the two variables in the scope of the
constraint. It is trivially true for mi = 1. Let A j denote the assignments to variable v j covered by E . Consider what happens
when a new edge is added to E , corresponding to a new assignment to vi , to produce a new connected set of edges E ′
covering mi + 1 � 2 assignments to vi . Since E ′ is connected, the new assignment 〈vi,a〉 is connected by an edge in E ′ to
some assignment 〈v j, c〉 ∈ A j . By the inductive hypothesis, all assignments 〈v j,d〉 ∈ A j (including 〈v j, c〉) are connected by
edges in E ⊆ E ′ to all other assignments 〈vi,b〉 (b 	= a). Since P is Z-free, this implies that 〈vi,a〉 is also connected in E ′ to
all assignments 〈v j,d〉 	= 〈v j, c〉 ∈ A j .

For a contradiction let us assume that the edges of the assignment graph of P corresponding to binary costs of at least
α do not form non-intersecting assignment-cliques. Hence there are three vertices 〈vi,a〉, 〈v j,b〉, 〈vk, c〉 (where i, j,k are
distinct) of the assignment graph such that ci j(a,b) � α, cik(a, c) � α, and c jk(b, c) < α. But this is in contradiction with
Lemma 9. �

In the rest of the paper, when we refer to an assignment-clique Cα in the assignment graph corresponding to binary
costs of at least α, we implicitly assume that Cα is maximal. Since an assignment-clique Cα is uniquely defined by its set
of vertices, we can identify Cα with its set of vertices.

Lemma 14. Let P be a Z-free binary VCSP instance satisfying the JWP. Let Cα be an assignment-clique in the assignment graph of P
corresponding to binary costs of at least α, and Cβ an assignment-clique in the assignment graph of P corresponding to binary costs
of at least β . If Cα intersects Cβ and α � β , then Cα ⊇ Cβ .

Proof. Suppose that Cα and Cβ intersect and α � β . If α = β , the claim is satisfied trivially by Lemma 13, so we can
suppose that α < β . For a contradiction, assume that Cα � Cβ . By our assumptions, ∃〈vi,a〉 ∈ Cα ∩ Cβ and ∃〈v j,b〉 ∈ Cβ \ Cα .
Since Cβ is an assignment-clique, we must have ci j(a,b) � β > α. Thus, by Lemma 13, the edge {〈v j,b〉, 〈vi,a〉} is part of
an assignment-clique C ′

α of edges of cost at least α (but not Cα since 〈v j,b〉 /∈ Cα). But then Cα and C ′
α intersect at 〈vi,a〉

which contradicts Lemma 13. �
6. Algorithm for JWP

In this section we present a polynomial-time algorithm for solving Z-free binary VCSPs satisfying the joint-winner prop-
erty. The algorithm is an extension of a reduction to the standard max-flow/min-cut problem that has been used for
flow-based soft global constraints [38,32,39].

First we review some basics on flows in graphs. We refer the reader to the standard textbook [40] for more details. Here
we present only the notions and results needed for our purposes. In particular, we deal with only integral flows. We denote
by N the set of positive integers with zero. Let G = (V , A) be a directed graph with vertex set V and arc set A. To each arc
a ∈ A we assign a demand/capacity function [d(a), c(a)] and a weight function w(a), where d(a), c(a) ∈ N and w(a) ∈ Q+ .
Let s, t ∈ V . A function f : A → N is called an s − t flow (or just a flow) if for all v ∈ V \ {s, t},

∑
f (a) =

∑
f (a) (flow conservation).
a=(u,v)∈A a=(v,u)∈A

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1563
Fig. 5. Micro-structure of P described in Example 15. (For interpretation of the references to colour in this figure, the reader is referred to the web version
of this article.)

We say that a flow is feasible if d(a) � f (a) � c(a) for each a ∈ A. We define the value of flow f as val(f) = ∑
a=(s,v)∈A f (a)−∑

a=(v,s)∈A f (a). We define the cost of flow f as
∑

a∈A w(a) f (a). A minimum-cost flow is a feasible flow with minimum cost.
Algorithms for finding the minimum-cost flow of a given value are well known [41,40]. Given a network G with integer

demand and capacity functions, the successive shortest path algorithm [41] can be used to find a feasible s − t flow with value
α ∈ N (if such a flow exists) and minimum cost in time O (α · SP(n,m)), where SP(n,m) is the time to compute a shortest
directed path in G with n vertices and m edges. If there is no feasible flow with value α, then the successive shortest path
algorithm outputs “no flow” in time O (α · SP(n,m)).

Given a Z-free binary VCSP instance P satisfying the JWP, we construct a directed graph G P whose minimum-cost flows
of value n are in one-to-one correspondence with the solutions to P . Apart from the source node s, G P has three types of
node:

1. A variable node vi (i = 1, . . . ,n) for each variable of P ;
2. An assignment node 〈vi,a〉 (a ∈ Di , i = 1, . . . ,n) for each possible variable-value assignment in P ;
3. An assignment-clique node Cα for each maximal assignment-clique of edges in the assignment graph of P correspond-

ing to binary costs of at least α. (The subscript α is equal to the minimum cost of edges in the assignment-clique and,
where necessary, we use Cα , C ′

α, . . . to denote the distinct non-intersecting assignment-cliques corresponding to the
same value of α.)

In G P there is an arc (s, vi) for each variable vi of P . For all variables vi and for each a ∈ Di , there is an arc (vi, 〈vi,a〉) and
also an arc from 〈vi,a〉 to the assignment-clique Cα containing 〈vi,a〉 such that α is maximal (Cα is unique by Lemma 14).

We say that assignment-clique Cβ is the father of assignment-clique Cα if it is the minimal assignment-clique which
properly contains Cα , i.e. Cα ⊂ Cβ (and hence α > β) and �Cγ such that Cα ⊂ Cγ ⊂ Cβ (Cβ is unique by Lemma 14). In G P ,
for each assignment-clique Cα with father Cβ , there is a bundle of arcs from Cα to Cβ consisting of r arcs ei (i = 1, . . . , r),
where r is the number of vertices in the assignment-clique Cα . The weight of arc ei from Cα to Cβ is w(ei) = (i −1)(α −β).
(We use the convention 0∞ = 0, so that if α = ∞ then there is a single arc of weight 0; the arcs of weight ∞ can simply
be omitted.) We identify the sink node t with the assignment-clique C0 consisting of all edges in the assignment graph
(since all binary costs are at least 0).

Each arc has demand 0 and capacity 1 except for arcs (s, vi) which have both demand 1 and capacity 1 (this forces a
flow of exactly 1 through each variable node vi). Weights of all arcs are 0 except for arcs going from an assignment-clique
node to its father assignment-clique node, as described above, and arcs from a variable node vi to an assignment node
〈vi,a〉 which have a weight of ci(a).

We show below that flows in the constructed network are in one-to-one correspondence with assignments in P , but
first we give an example.

Example 15. We show the general construction on a simple example. Let P be a VCSP instance with variables v1, v2, v3
and D1 = D2 = {a,b}, D3 = {a}. The weighted coloured micro-structure of P is illustrated in Fig. 5. Missing edges have
cost 0. There are two assignment-cliques corresponding to cost at least 1: C1 = {〈v1,a〉, 〈v2,a〉, 〈v3,a〉} (in solid red in
Fig. 5) and C ′

1 = {〈v1,b〉, 〈v2,b〉} (in dotted blue in Fig. 5); and one assignment-clique corresponding to cost at least 2:
C2 = {〈v1,a〉, 〈v2,a〉} (in dashed green in Fig. 5). The network corresponding to instance P is shown in Fig. 6: demands
and capacities are in square brackets, and weights of arcs without numbers are 0. The bold red edges represent flow f
corresponding to the assignment v1 = v2 = v3 = a with total cost 4, which is the same as the cost of f .

We now prove that flows f in G P are in one-to-one correspondence with assignments in the VCSP P and, furthermore,
that the cost of f is equal to the cost in P of the corresponding assignment.

All feasible flows have value n since all n arcs (s, vi) leaving the source have both demand and capacity equal to 1.
Flows in G P necessarily correspond to the assignment of a unique value ai to each variable vi since the flow of 1 through
node vi must traverse a node 〈vi,ai〉 for some unique ai ∈ Di . It remains to show that for every assignment 〈a1, . . . ,an〉 to

1564 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
Fig. 6. Network G P corresponding to the VCSP P of Example 15. (For interpretation of the references to colour in this figure, the reader is referred to the
web version of this article.)

〈v1, . . . , vn〉 which is feasible (i.e. whose cost in P is finite), there is a corresponding minimum-cost feasible flow f in G P
of cost

∑
i ci(ai) + ∑

i< j ci j(ai,a j).
For each arc a which is incoming to or outgoing from 〈vi, u〉 in G P , let f (a) = 1 if u = ai and 0 otherwise. We denote

the number of assignments 〈vi,ai〉 in assignment-clique Cα by N(Cα) = |{〈vi,ai〉 ∈ Cα: 1 � i � n}|. By construction, each
assignment-clique node Cα in G P only has outgoing arcs to its father assignment-clique. For the outgoing arc a of weight i
from Cα to its father assignment-clique, let f (a) = 1 if N(Cα) > i and 0 otherwise. This simply means that the outgoing arcs
(each of capacity 1) from Cα are used in increasing order of their weight, one per assignment 〈vi,ai〉 ∈ Cα . This is clearly a
minimum-cost flow corresponding to the assignment 〈a1, . . . ,an〉.

Let cf (Cα) denote the cost β of the father assignment-clique Cβ of Cα . The cost of flow f is given by

n∑
i=1

ci(ai) +
∑
Cα

N(Cα)∑
i=1

(i − 1)
(
α − cf (Cα)

) =
n∑

i=1

ci(ai) +
∑
Cα

N(Cα)−1∑
i=1

i
(
α − cf (Cα)

)

=
n∑

i=1

ci(ai) +
∑
Cα

(N(Cα) − 1)N(Cα)

2

(
α − cf (Cα)

)
.

This corresponds precisely to the cost of the assignment 〈a1, . . . ,an〉 in P , since in an assignment-clique Cα with father
assignment-clique Cβ , each of the (N(Cα) − 1)N(Cα)/2 binary constraints contributes a cost of α − β over and above the
cost of β for each of the edges in Cβ .

For the rest of this section, let d = max1�i�n |Di | be the size of the largest domain. Given a VCSP instance satisfying the
joint-winner property, there are clearly at most |Di | × |D j | different costs in the cost function ci j . Hence in total there are
at most O (n2d2) different maximal assignment-cliques Cα . We now improve this upper bound to O (nd).

Lemma 16. A Z-free binary VCSP instance P satisfying the joint-winner property has at most 2nd − 1 different maximal assignment-
cliques Cα .

Proof. Consider Z-free binary VCSP instances P satisfying the joint-winner property and whose assignment graph has
N = nd vertices. Let AN be the maximum number of assignment-cliques Cα in such instances P . We prove by induction
that AN � 2N − 1. Clearly, A1 = 1. Consider an assignment graph of with N vertices. Consider any assignment-clique Cα

of P which does not include all (variable,value) assignments of P but which is maximal in the sense that there is no
other such assignment-clique Cβ ⊃ Cα . Let r = |Cα |. By Lemma 14 and by maximality of Cα , no other assignment-clique Cβ

can intersect both Cα and its complement except an assignment-clique containing all the vertices of the assignment graph
of P . Hence we can partition the set of variable-value assignments of P (creating two VCSP instances whose assignment
graphs have r and N − r vertices) and obtain the following recurrence: AN � 1 + Ar + AN−r . From the inductive hypothesis,
Ar � 2r − 1 and AN−r � 2(N − r) − 1. Since 1 + 2r − 1 + 2(N − r) − 1 = 2N − 1, it follows that AN � 2N − 1. �

We show that n-variable instances satisfying the joint-winner property can be recognised and solved in time which is
cubic in n.

Theorem 17. A binary VCSP satisfying the joint-winner property is solvable in O (n2d3(n + d)) time.

Proof. From Definition 4, recognition can be achieved in O (n3d3) time. We have seen that a VCSP satisfying the JWP can
be made Z-free in O (n2d4) time.

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1565
To solve a Z-free VCSP instance satisfying the JWP, we create a vertex for each of the assignment-cliques corresponding
to binary costs of at least α. By Lemma 16, there are at most O (nd) different assignment-cliques. So our network has
n′ = O (nd + nd + n + 2) = O (nd) vertices and m′ = O (n2d2) edges. The network can be built in O (n3d3) time by O (nd)-
times invoking depth-first search on the assignment graph of the instance, which is of size O (n2d2).

The successive shortest path algorithm can be used to find a feasible flow with value n and minimum cost in a network
with n′ vertices and m′ edges in time O (n ·SP(n′,m′)), where SP(n′,m′) is the time to compute a shortest directed path in the
network with n′ vertices and m′ edges [41,40]. Using Fibonacci heaps, this is O (n(m′ +n′ logn′)) = O (n(n2d2 +nd log(nd))) =
O (n3d2). Hence, the complexity to solve a Z-free JWP instance is O (n3d3). The total complexity, including pre-processing is
thus O (n2d3(n + d)). �
7. Maximality of JWP

Tractable classes defined by structural or language restrictions are often shown to be maximal. That is, any extension of
the class is NP-hard. We consider that a hybrid tractable class defined by a set S of possible combinations of k costs within
a subproblem is k-maximal if extending S to include any other single combination of costs renders the problem NP-hard.
In particular, a tractable class such as JWP, defined by a rule on the three costs in a 3-variable subproblem, is 3-maximal
if extending it to include any other single combination of costs on 3 variables renders the problem NP-hard. The main
result of this section is that the joint-winner property defines a 3-maximal tractable class when there is no bound on the
number of possible distinct cost values. This result holds for any domain size d � 2. But we also show that the JWP defines
a 3-maximal tractable class in almost all cases when we impose a bound of two on the number of possible distinct cost
values (which corresponds to interesting subproblems of the VCSP such as CSP or MAX-CSP).

We first consider the special case in which all costs belong to {α,β} (for some fixed distinct costs α < β). If β = ∞ this
corresponds to CSP, and if β < ∞ this corresponds to MAX-CSP. When all costs belong to {α,β}, the joint-winner property
defines a maximal tractable class, except for the case when the domain size is 2 and all costs belong to {α,∞}, where
α < ∞. This latter case is just the well-known tractable class of Boolean binary CSPs [42].

Theorem 18. If all costs belong to {α,β} (for some fixed distinct costs α < β), then the joint-winner property defines a maximal
tractable class provided d > 2 or (d � 2) ∧ (β < ∞), where d is the maximum domain size.

Proof. To prove maximality we have to show the NP-hardness of the set of instances defined by the fact that in each
triangle the triple of costs either satisfies the joint-winner property or is just one other fixed combination. Since all costs
belong to {α,β} where α < β , from Definition 4, the only situation forbidden by the JWP is that there are 3 variables
vi, v j, vk and domain values a ∈ Di,b ∈ D j, c ∈ Dk such that ci j(a,b) = α and cik(a, c) = c jk(b, c) = β . Hence extending the
JWP means allowing all combinations of costs from {α,β} in all triangles.

If β = ∞, allowing all combinations of costs means that our instance allows all binary relations (corresponding to the
set of finite-cost tuples) and hence we can encode any binary CSP. This is NP-complete if d > 2 [29].

If β < ∞, allowing all combinations of costs in {α,β} is equivalent to the set of instances of binary MAX-CSP in which
no two constraints can have the same scope. The NP-hardness of this latter problem for d � 2 follows from the following
reduction from binary MAX-CSP, which is a well-known NP-complete problem [28,29]. A polynomial-time reduction of an
instance I of binary MAX-CSP into an equivalent instance I ′ in which no two constraints have the same scope can be
achieved by replacing each variable vi in I by M variables v j

i (j = 1, . . . , M) in I ′ constrained by a clique of equality
constraints, where M is greater than the total number of constraints in I . If the jth constraint in I has scope 〈vi, v j〉, then

it is replaced in I ′ by the same constraint on scope 〈v j
i , v j

j〉. In the optimal solution to I ′ , variables v j
i (j = 1, . . . , M) are

necessarily assigned the same value (otherwise a cost of at least M would be incurred). �
We now prove our main theorem concerning 3-maximality of the joint-winner property in the general case in which

costs are not restricted to just two values α,β . The essential differences compared to the proof of Theorem 18 are that (1)
we now also have to prove maximality relative to the addition of any combination of costs involving three distinct values
α,β,γ , and (2) even when |{α,β,γ }| = 2 the JWP allows triangles involving three distinct costs.

Theorem 19. The joint-winner property defines a 3-maximal tractable class for any domain size d � 2.

Proof. Let α < β � γ be any combination of costs which does not satisfy the JWP. To prove 3-maximality we have to show
the NP-hardness of the set of instances defined by the fact that in each triangle the triple of costs either satisfies the
joint-winner property or is {α,β,γ }. We firstly consider the case γ < ∞.

It is well known that MAX-CSP is NP-hard [29]. Firstly, we show that binary MAX-CSP (coded as a binary VCSP with
{0,1}-valued cost functions) is NP-hard even on bipartite graphs. This follows from the fact that we can easily convert any
instance of binary MAX-CSP into an instance of binary MAX-CSP on a bipartite graph, as follows. For each ci j(a,b) = 1,
introduce an extra Boolean variable wijab , and replace the cost of 1 for (a,b) in ci j by costs of 1 for (xi, wijab) = (a,0) and

1566 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
(wijab, x j) = (1,b) (all other costs being 0). In the resulting problem there is an obvious partition: (the original xi variables,
the new wijab variables).

Since 0 � α < β < ∞, any {0,1}-valued VCSP instance is equivalent to the {α,β}-valued instance obtained by applying
the following operation to all cost functions: multiply by β − α and add α. Now, given any instance of binary MAX-CSP on
a bipartite graph (in the form of a {α,β}-valued binary VCSP), we can add a constant cost function (ci j(x, y) = γ for all
x, y) between any pair of variables within the same part without changing the problem. This just adds a constant cost to all
solutions. In the resulting VCSP, all triangles of costs are {γ ,γ ,γ }, {α,α γ }, {β,β γ } or {α,β,γ }. Thus they either satisfy
the JWP or are {α,β,γ }. This polynomial reduction from binary MAX-CSP on bipartite graphs demonstrates NP-hardness in
the case α < β < ∞.

We now consider the case α < β < γ = ∞. We demonstrate the NP-hardness of the set of VCSP instances such that
in each triangle the triple of costs either satisfies the JWP or is {α,β,∞}. A VCSP remains invariant under addition of a
constant finite cost and under scaling by a non-zero finite constant factor. Thus, for α < β < ∞, a VCSP such that in each
triangle the triple of costs either satisfies the JWP or is {α,β,∞} is equivalent to a VCSP such that in each triangle the triple
of costs either satisfies the JWP or is {0,1,∞}. We demonstrate NP-hardness of such VCSPs by the following polynomial-
time reduction from MAX-2SAT. Let I be an instance of MAX-2SAT with variables vi (i = 1, . . . ,n) and let mi be the number
of clauses in which variable vi occurs. We construct a VCSP instance P containing mi copies v j

i (j = 0, . . . ,mi − 1) of each

variable vi . For each i = 1, . . . ,n, the mi variables v j
i (j = 0, . . . ,mi − 1) are joined together by a cycle of {0,∞}-valued

crisp constraints coding the inequalities v j
i � v j+1

i (where the addition in the superscript is modulo mi). Since these crisp

constraints form a cycle, they are equivalent to v0
i = · · · = vmi−1

i . It is easy to verify that this cycle of crisp constraints
satisfies the JWP since no triangle of binary costs contains two infinite costs.

The 2SAT clauses of I are replaced by corresponding {0,1}-valued constraints in P such that the jth occurrence of vi in I
is replaced by v j

i in P . By this construction, every triangle of variables in P involves at most one {0,1}-valued constraint
corresponding to a clause of I . It follows that the triple of costs {0,1,1} does not occur in any triangle in P . Since infinite
cost can only occur in the non-intersecting cycles of crisp constraints, the triples of costs {0,∞,∞} and {1,∞,∞} also do
not occur in any triangle in P . Thus, in each triangle in P the triple of costs either satisfies the JWP or is {0,1,∞}. Since P
is equivalent to I , and the reduction is clearly polynomial, this completes the proof of NP-hardness.

It remains to consider the case α < β = γ = ∞. Analogously to the case α < β < γ = ∞, it suffices to give a polynomial-
time reduction from MAX-2SAT to the set of VCSP instances such that the costs in each triangle either satisfy the JWP or
are {0,∞,∞}. Let I be an instance of MAX-2SAT. We now build a VCSP instance P from I by adding two new variables xij ,
yij for each clause l1 ∨ l2 of I (where l1, l2 are literals). The clause l1 ∨ l2 of I is replaced in P by a {0,1}-valued constraint
on variables xij, yij encoding the clause ¬xij ∨ ¬yij together with two crisp (i.e. {0,∞}-valued constraints) encoding the
clauses l1 ∨ xij and yij ∨ l2. It is easy to verify that P is equivalent to I and that the costs in each triangle in P either satisfy
the JWP or are {0,∞,∞}. This polynomial reduction from MAX-2SAT completes the proof of NP-hardness for the final case
α < β = γ = ∞. �
8. Non-overlapping convexity property

Having studied in detail the joint-winner property on triangles of binary costs, a natural question is whether it can be
generalised to more than three variables. By analysing our algorithm for Z-free binary VCSPs satisfying the joint-winner
property (Section 6), we can extend the class of problems solvable in polynomial time using the same approach. This
generalisation is no longer restricted to binary VCSPs. In a VCSP with constraints of arbitrary arity, the objective function
to be minimised is the sum of cost functions whose arguments are subsets of arbitrary size of the variables v1, . . . , vn . For
notational convenience, in this section we interpret a solution x (i.e. an assignment to the variables v1, . . . , vn) as the set of
(variable,value) assignments {(vi, xi): i = 1, . . . ,n}.

For the following definition, we require the notion of a non-decreasing derivative of a discrete function. The derivative
of the function f : {0, . . . , s} → Q+ is non-decreasing if f (m + 2) − f (m + 1) � f (m + 1) − f (m) for all m ∈ {0, . . . , s − 2}
(where subtraction is extended to Q+ by defining ∞ − α = ∞ for all α ∈ Q+). Two sets S, T are said to be non-overlapping
if they are either disjoint or one is a subset of the other (i.e. S ∩ T = ∅, S ⊆ T or T ⊆ S).

Definition 20. Let P be a VCSP instance. Let C1, . . . , Cr be sets of (variable,value) assignments of P such that for all i, j,
Ci and C j are non-overlapping. Instance P satisfies the non-overlapping convexity property if the objective function of P can
be written as f1(N(x, C1))+· · ·+ fr(N(x, Cr)) such that each f i : {0, . . . , si} → Q+ (i = 1, . . . , r) is a non-decreasing function
with non-decreasing derivative, where N(x, Ci) = |x ∩ Ci | is the number of (variable,value) assignments in the solution x
which lie in Ci and si is the number of distinct variables occurring in the set of (variable,value) assignments Ci .

Observe that this definition allows any unary valued constraints, since for each (variable,value) assignment (v j,a) we
can add the singleton Ci = {(v j,a)} which is necessarily either disjoint or a subset of any other set Ck (and furthermore the
corresponding function f i : {0,1} → Q+ is trivially non-decreasing with a non-decreasing derivative).

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1567
Remark 21. To express a binary Z-free VCSP satisfying the JWP in the more general form given in Definition 20, we add a
set of (variable,value) assignments Ci corresponding to each assignment-clique Cα in the assignment graph, with f i(m) =(m

2

)
(α − β) for m � 0, where Cβ is the father assignment-clique of Cα . It is easy to check that f i is non-decreasing and

has a non-decreasing derivative. To solve a VCSP instance satisfying the non-overlapping convexity property, we will build
a network (described, below, in the proof of Theorem 22) in which the weight of the mth arc leaving the Ci node is
f i(m)− f i(m − 1). Since

(m
2

)
(α −β)− (m−1

2

)
(α −β) = (m − 1)(α −β), this means that, in the case of a binary VCSP satisfying

the JWP, we will build the same network as described in Section 6.
Note that in this case, to avoid counting binary costs more than once, the functions f i are proportional to the marginal

costs α − β . When solving a VCSP instance satisfying the non-overlapping convexity property in which the functions f i are
given as input, no management of marginal costs is required.

Theorem 22. Any VCSP instance P satisfying the non-overlapping convexity property can be solved in polynomial time.

Proof. We can consider each set of (variable,value) assignments Ci as an assignment-clique: since Ci is a subset of the
vertices of the assignment graph of P , we just need to add all edges between those vertices 〈v j,a〉, 〈vk,b〉 of Ci representing
assignments to distinct variables (j 	= k).

We build the same network as described in Section 6, but have to adjust the weights on edges between the assignment-
cliques Ci . Recall that si represents the number of distinct variables in Ci . Without loss of generality, we can assume that
f i(0) = 0. (If this is not the case, we can replace f i by f ′

i where f ′
i (m) = f i(m) − f i(0) to produce an equivalent problem

with f ′
i (0) = 0 and in which f ′

i is non-decreasing and with a non-decreasing derivative.) Let �i(m) = f i(m) − f i(m − 1)

for m = 1, . . . , si . Since the f i (1 ≤ i ≤ r) are non-decreasing functions with a non-decreasing derivative, �i is non-negative
and non-decreasing. In the network, there are si arcs ek

i (k = 1, . . . , si) from Ci to its (unique) father assignment-clique. The
weight (cost) of arc ek

i is �i(k).
Similarly to the construction in Section 6, arcs of weight ∞ can be omitted. The same argument and calculation as in

Section 6 proves that the algorithm is correct. In particular, we need to show that given any feasible assignment x (that is, of
finite cost) to a VCSP instance P that satisfies the non-overlapping convexity property, there is a corresponding minimum-
cost feasible flow f in G P of cost f1(N(x, C1)) + · · · + fr(N(x, Cr)). The same construction of f as in Section 6 gives us a
flow f of the following cost:

∑
i

N(Ci)∑
m=1

�i(m) =
∑

i

[
f i(1) + (

f i(2) − f i(1)
) + · · · + (

f i
(
N(Ci) − 1

) − f i
(
N(Ci) − 2

))

+ (
f i
(
N(Ci)

) − f i
(
N(Ci) − 1

))]
=

∑
i

f i
(
N(Ci)

)
,

which corresponds precisely to the cost f1(N(x, C1)) + · · · + fr(N(x, Cr)) of the assignment x. To see that this flow is a of
minimum cost, among flows corresponding to the assignment x, observe that the only choices to be made concern the arcs
ek

i . Since the weights �i(k) of these arcs are non-decreasing, a flow of value v which takes the first v arcs ek
i (k = 1, . . . , v)

is necessarily of minimum cost. �
Example 23. An example of the non-overlapping convexity property is the set of non-binary (i.e. arbitrary but fixed maxi-
mum arity) MAX-CSP instances with no overlapping nogoods, which we will now describe. A CSP is traditionally defined by
a set of constraints each of which is given in the form of a scope and a relation containing the set of possible assignments
to the variables in the scope of the constraint. Another way of specifying a CSP instance is by listing its nogoods, where a
nogood is a set of (variable,value) assignments which cannot simultaneously be made. The nogoods are easily obtained from
the complement of each constraint relation. A MAX-CSP instance with no overlapping nogoods is such that for all nogoods
Ni , N j in the corresponding CSP instance, either Ni ∩ N j = ∅, Ni ⊂ N j or N j ⊂ Ni .

To see that any MAX-CSP instance I with non-overlapping nogoods N1, . . . , Nr satisfies the non-overlapping convexity
property, for i = 1, . . . , r, define f i by f i(|Ni |) = 1 and f i(m) = 0 for m < |Ni |. Clearly each f i is a non-decreasing function
with a non-decreasing derivative and the MAX-CSP instance I is equivalent to the VCSP instance with objective function
f1(|x ∩ N1|) + · · · + fr(|x ∩ Nr |).

Example 24. By an entirely similar argument, it follows that another example of the non-overlapping convexity property is
the set of non-binary CSP instances with non-overlapping nogoods N1, . . . , Nr . It suffices to define f i by f i(|Ni |) = ∞ and
f i(m) = 0 for m < |Ni| (for each i = 1, . . . , r).

This class can be extended to include all CSP instances with a set of nogoods Sk1 (N1) ∪ · · · ∪ Skr (Nr), with Ski (Ni)

the set of all cardinality-ki subsets of Ni , where the sets of (variable,value) assignments Ni (i = 1, . . . , r) are pairwise
non-overlapping. Each ki is any integer in {1, . . . , |Ni|}. To express such a CSP instance as a VCSP instance satisfying the
non-overlapping convexity property, it suffices to define f i by f i(m) = ∞ if m � ki and f i(m) = 0 for m < ki (i = 1, . . . , r).

1568 M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569
Clearly each f i is a non-decreasing function with a non-decreasing derivative and the CSP instance I is equivalent to the
VCSP instance with objective function f1(|x ∩ N1|) + · · · + fr(|x ∩ Nr |).

Example 25. An example of an optimisation problem satisfying the non-overlapping convexity property is the following
office assignment problem. Each of n staff members, represented by n variables, must be assigned an office. There are m
offices. At most u j people can be assigned office j. Unary cost functions can be used to express personal preferences of each
staff member for each office. There are also non-overlapping groups of people G1, . . . , G g who we would prefer to assign to
different offices (such as married couples, for example).

For each office there is a set of (variable,value) assignments C j consisting of all possible assignments of value j to
any variable. For each group Gi and for each office j, there is a set of assignments Cij ⊆ C j of members of this group to
office j. Clearly, the sets of assignments C j (j ∈ {1, . . . ,m}) and Cij (i ∈ {1, . . . , g}, j ∈ {1, . . . ,m}) are all non-overlapping.
The function f j which imposes the capacity constraint for office j, given by f j(k) = ∞ if k > u j (and f j(k) = 0 otherwise),
is non-decreasing and has a non-decreasing derivative. A cost function f i j such as f i j(t) = t − 1 (which is non-decreasing
and has a non-decreasing derivative) can be used to code the fact that we prefer that staff members from group Gi do not
share the same office.

Example 26. A commonly occurring problem in academia is the allocation of courses to teachers subject to timetabling
constraints and the personal preferences of the teachers along with a criterion to avoid allocating too many hours to any of
the teachers. In a simple version of this problem, the weekly timetable has been divided up into non-intersecting time-slots,
each course involves giving only one lecture a week and one-hour time-slots have already been allocated to each course.
The courses, numbered from 1 to n, correspond to the variables of the problem and must be assigned one of the m teachers.

For each teacher j ∈ {1, . . . ,m}, let C j represent all assignments of teacher j to any course. For each time-slot s ∈
{1, . . . , t} and each teacher j ∈ {1, . . . ,m}, let C js represent the set of assignments of teacher j to courses allocated the time-
slot s. Clearly, the sets of assignments C j (j ∈ {1, . . . ,m}) and C js (j ∈ {1, . . . ,m} and s ∈ {1, . . . , t}) are all non-overlapping.
For each teacher j, the function f j corresponding to the set of assignments C j and given by f j(k) = max(0, p j(k − u j))

(where u j is the maximum number of courses teacher j can give before they have to be paid overtime and p j is the
amount teacher j earns per hour of overtime) represents the total cost in overtime payments of teacher j. The function
f js , which codes the incompatibility of allocating teacher j to two different courses during the same time-slot s, is given
by f sj(0) = f sj(1) = 0 and f js(k) = ∞ if k > 1. The functions f j and f i j are non-decreasing and have a non-decreasing
derivative. Thus this simple course-allocation problem can be expressed as a VCSP with the non-overlapping convexity
property.

9. Conclusions

We have studied hybrid tractability of valued CSPs. In particular, we have studied the tractability of sets of instances
defined by properties of subproblems of size k. For k = 2, such properties can only define language classes. We have shown
in this paper that it is possible to define a non-trivial tractable hybrid class by a property on subproblems of size k = 3. We
have studied the tractable class of VCSPs defined by this property, known as the joint-winner property (JWP), as a necessary
first step towards a general theory of tractability of optimisation problems which will eventually cover structural, language
and hybrid reasons for tractability. Moreover, we have also presented other novel hybrid tractable classes of VCSPs.

The JWP is interesting in its own right since it is a proper extension to known tractable classes (such as VCSPs con-
sisting of arbitrary unary constraints and non-intersecting SoftAllDiff constraints of arbitrary arity, as well as a machine
scheduling problem).

We have demonstrated 3-maximality of the tractable class defined by the JWP. However, the existence of a larger
tractable class subsuming JWP and defined by a rule on k-variable subproblems (for k > 3) is an interesting open ques-
tion. Indeed, we have introduced a generalisation of the JWP which is solved by a similar algorithm but which allows soft
constraints of arbitrary arity.

The most interesting open question brought out by this work is whether other tractable hybrid classes can be defined
by properties of k-variable subproblems for k � 3.

References

[1] A. Bulatov, A. Krokhin, P. Jeavons, Classifying the complexity of constraints using finite algebras, SIAM Journal on Computing 34 (3) (2005) 720–742,
doi:10.1137/S0097539700376676.

[2] T. Feder, M. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory, SIAM
Journal on Computing 28 (1) (1998) 57–104, doi:10.1137/S0097539794266766.

[3] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelligence 34 (1) (1988) 1–38, doi:10.1016/0004-
3702(87)90002-6.

[4] P. Jeavons, On the algebraic structure of combinatorial problems, Theoretical Computer Science 200 (1–2) (1998) 185–204, doi:10.1016/S0304-
3975(97)00230-2.

[5] V. Dalmau, P.G. Kolaitis, M.Y. Vardi, Constraint satisfaction, bounded treewidth, and finite-variable logics, in: Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming (CP’02), in: Lecture Notes in Computer Science, vol. 2470, Springer, 2002, pp. 310–
326.

http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/S0304-3975(97)00230-2
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/S0304-3975(97)00230-2

M.C. Cooper, S. Živný / Artificial Intelligence 175 (2011) 1555–1569 1569
[6] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, Journal of the ACM 54 (1) (2007) 1–24,
doi:10.1145/1206035.1206036.

[7] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[8] D.A. Cohen, A new class of binary CSPs for which arc-constistency is a decision procedure, in: Proceedings of the 9th International Conference on

Principles and Practice of Constraint Programming (CP’03), in: Lecture Notes in Computer Science, vol. 2833, Springer, 2003, pp. 807–811.
[9] D. Cohen, P. Jeavons, The complexity of constraint languages, in: F. Rossi, P. van Beek, T. Walshi (Eds.), The Handbook of Constraint Programming,

Elsevier, 2006.
[10] T.K.S. Kumar, A framework for hybrid tractability results in boolean weighted constraint satisfaction problems, in: Proceedings of the 14th International

Conference on Principles and Practice of Constraint Programming (CP’08), in: Lecture Notes in Computer Science, vol. 5202, Springer, 2008, pp. 282–
297.

[11] M.C. Cooper, P.G. Jeavons, A.Z. Salamon, Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination, Artificial Intelli-
gence 174 (9–10) (2010) 570–584, doi:10.1016/j.artint.2010.03.002.

[12] T. Schiex, H. Fargier, G. Verfaillie, Valued constraint satisfaction problems: Hard and easy problems, in: Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), 1995. Available from: http://dli.iiit.ac.in/ijcai/IJCAI-95-VOL1/pdf/083.pdf.

[13] S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint satisfaction and optimisation, Journal of the ACM 44 (2) (1997) 201–236,
doi:10.1145/256303.256306.

[14] D.A. Cohen, M.C. Cooper, P.G. Jeavons, A.A. Krokhin, The complexity of soft constraint satisfaction, Artificial Intelligence 170 (11) (2006) 983–1016,
doi:10.1016/j.artint.2006.04.002.

[15] D.A. Cohen, M.C. Cooper, P.G. Jeavons, Generalising submodularity and Horn clauses: Tractable optimization problems defined by tournament pair
multimorphisms, Theoretical Computer Science 401 (1–3) (2008) 36–51, doi:10.1016/j.tcs.2008.03.015.

[16] V. Kolmogorov, S. Živný, Generalising tractable VCSPs defined by symmetric tournament pair multimorphisms, Tech. rep., arXiv:1008.3104, August
2010. Available from: http://arxiv.org/abs/1008.3104.

[17] S.L. Lauritzen, Graphical Models, Oxford University Press, 1996.
[18] M.J. Wainwright, M.I. Jordan, Graphical models, exponential families, and variational inference, Foundations and Trends in Machine Learning 1 (1–2)

(2008) 1–305, doi:10.1561/2200000001.
[19] P. Jégou, Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems, in: Proceedings of the 11th National

Conference on Artificial Intelligence (AAAI’93), 1993, pp. 731–736. Available from: http://www.aaai.org/Papers/AAAI/1993/AAAI93-109.pdf.
[20] A.Z. Salamon, P.G. Jeavons, Perfect constraints are tractable, in: Proceedings of the 14th International Conference on Principles and Practice of Constraint

Programming (CP’08), in: Lecture Notes in Computer Science, vol. 5202, Springer, 2008, pp. 524–528.
[21] R. Takhanov, A dichotomy theorem for the general minimum cost homomorphism problem, in: Proceedings of the 27th International Symposium on

Theoretical Aspects of Computer Science (STACS’10), 2010, pp. 657–668.
[22] V. Kolmogorov, S. Živný, The complexity of conservative valued CSPs, 2011, submitted for publication.
[23] M. Grötschel, L. Lovasz, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (2) (1981) 169–198,

doi:10.1007/BF02579273.
[24] M. Chudnovsky, G. Cornuéjols, X. Liu, P.D. Seymour, K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2) (2005) 143–186, doi:10.1007/s00493-

005-0012-8.
[25] V.V. Lozin, M. Milanič, A polynomial algorithm to find an independent set of maximum weight in a fork-free graph, Journal of Discrete Algorithms 6 (4)

(2008) 595–604, doi:10.1016/j.jda.2008.04.001.
[26] A. Brandstädt, V.V. Lozin, R. Mosca, Independent sets of maximum weight in apple-free graphs, SIAM Journal on Discrete Mathematics 24 (1) (2010)

239–254, doi:10.1137/090750822.
[27] T. Jebara, M.A.P. Estimation, Message passing, and perfect graphs, in: Proceedings of the Twenty-Fifth International Conference on Uncertainty in

Artificial Intelligence (UAI), 2009, pp. 258–267. Available from: http://www.cs.mcgill.ca/~uai2009/papers/UAI2009_0098_c9e0cfea5b7aad26ceef02e3cef
44909.pdf.

[28] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
[29] C. Papadimitriou, Computational Complexity, Addison–Wesley, 1994.
[30] J.-C. Régin, A filtering algorithm for constraints of difference in CSPs, in: Proceedings of the 12th National Conference on AI (AAAI’94), vol. 1, 1994,

pp. 362–367. Available from: http://www.aaai.org/Papers/AAAI/1994/AAAI94-055.pdf.
[31] T. Petit, J.-C. Régin, C. Bessière, Specific filtering algorithms for over-constrained problems, in: Principles and Practice of Constraint Programming

(CP’01), in: Lecture Notes in Computer Science, vol. 2239, Springer, 2001, pp. 451–463.
[32] W.J. van Hoeve, G. Pesant, L.-M. Rousseau, On global warming: Flow-based soft global constraints, Journal of Heuristics 12 (4–5) (2006) 347–373,

doi:10.1007/s10732-006-6550-4.
[33] J.-P. Métivier, P. Boizumault, S. Loudni, All different: Softening AllDifferent in weighted CSPs, in: Proceedings of the 19th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI’07), IEEE Computer Society, 2007, pp. 223–230.
[34] Y. Richter, A. Freund, Y. Naveh, Generalizing AllDifferent: The SomeDifferent constraint, in: Proceedings of the 12th International Conference on Princi-

ples and Practice of Constraint Programming (CP’06), 2006, pp. 468–483.
[35] C. Jefferson, S. Kadioglu, K.E. Petrie, M. Sellmann, S. Živný, Same-relation constraints, in: Proceedings of the 15th International Conference on Principles

and Practice of Constraint Programming (CP’09), in: Lecture Notes in Computer Science, vol. 5732, Springer, 2009, pp. 470–485.
[36] W. Horn, Minimizing average flow time with parallel machines, Operations Research 21 (3) (1973) 846–847. Available from: http://www.jstor.org/

stable/169392.
[37] J.L. Bruno, E.G. Coffman Jr., R. Sethi, Scheduling independent tasks to reduce mean finishing time, Communications of the ACM 17 (7) (1974) 382–387,

doi:10.1145/361011.361064.
[38] J.-C. Régin, Cost-based arc consistency for global cardinality constraints, Constraints 7 (3–4) (2002) 387–405, doi:10.1023/A:1020506526052.
[39] J.H.-M. Lee, K.L. Leung, Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction, in: Proceedings of the 21st

International Joint Conference on Artificial Intelligence (IJCAI’09), 2009, pp. 559–565. Available from: http://ijcai.org/papers09/Papers/IJCAI09-099.pdf.
[40] R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall/Pearson, 2005.
[41] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24, Springer, 2003.
[42] T. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78), 1978,

pp. 216–226.

http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dli.iiit.ac.in/ijcai/IJCAI-95-VOL1/pdf/083.pdf
http://dx.doi.org/10.1145/256303.256306
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://arxiv.org/abs/1008.3104
http://dx.doi.org/10.1561/2200000001
http://www.aaai.org/Papers/AAAI/1993/AAAI93-109.pdf
http://dx.doi.org/10.1007/BF02579273
http://dx.doi.org/10.1007/s00493-005-0012-8
http://dx.doi.org/10.1016/j.jda.2008.04.001
http://dx.doi.org/10.1137/090750822
http://www.cs.mcgill.ca/~uai2009/papers/UAI2009_0098_c9e0cfea5b7aad26ceef02e3cef44909.pdf
http://www.cs.mcgill.ca/~uai2009/papers/UAI2009_0098_c9e0cfea5b7aad26ceef02e3cef44909.pdf
http://www.aaai.org/Papers/AAAI/1994/AAAI94-055.pdf
http://dx.doi.org/10.1007/s10732-006-6550-4
http://www.jstor.org/stable/169392
http://www.jstor.org/stable/169392
http://dx.doi.org/10.1145/361011.361064
http://dx.doi.org/10.1023/A:1020506526052
http://ijcai.org/papers09/Papers/IJCAI09-099.pdf
http://dx.doi.org/10.1007/s00493-005-0012-8

	Hybrid tractability of valued constraint problems
	Introduction
	Preliminaries
	Conservative VCSPs with crisp binary constraints
	Maximum weight independent set
	Broken-triangle property

	Joint-winner property
	Structure of problems satisfying the JWP
	Algorithm for JWP
	Maximality of JWP
	Non-overlapping convexity property
	Conclusions
	References

