1,847 research outputs found

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Advancing Operating Systems via Aspect-Oriented Programming

    Get PDF
    Operating system kernels are among the most complex pieces of software in existence to- day. Maintaining the kernel code and developing new functionality is increasingly compli- cated, since the amount of required features has risen significantly, leading to side ef fects that can be introduced inadvertedly by changing a piece of code that belongs to a completely dif ferent context. Software developers try to modularize their code base into separate functional units. Some of the functionality or “concerns” required in a kernel, however, does not fit into the given modularization structure; this code may then be spread over the code base and its implementation tangled with code implementing dif ferent concerns. These so-called “crosscutting concerns” are especially dif ficult to handle since a change in a crosscutting concern implies that all relevant locations spread throughout the code base have to be modified. Aspect-Oriented Software Development (AOSD) is an approach to handle crosscutting concerns by factoring them out into separate modules. The “advice” code contained in these modules is woven into the original code base according to a pointcut description, a set of interaction points (joinpoints) with the code base. To be used in operating systems, AOSD requires tool support for the prevalent procedu- ral programming style as well as support for weaving aspects. Many interactions in kernel code are dynamic, so in order to implement non-static behavior and improve performance, a dynamic weaver that deploys and undeploys aspects at system runtime is required. This thesis presents an extension of the “C” programming language to support AOSD. Based on this, two dynamic weaving toolkits – TOSKANA and TOSKANA-VM – are presented to permit dynamic aspect weaving in the monolithic NetBSD kernel as well as in a virtual- machine and microkernel-based Linux kernel running on top of L4. Based on TOSKANA, applications for this dynamic aspect technology are discussed and evaluated. The thesis closes with a view on an aspect-oriented kernel structure that maintains coherency and handles crosscutting concerns using dynamic aspects while enhancing de- velopment methods through the use of domain-specific programming languages

    Towards a Taxonomy of Aspect-Oriented Programming.

    Get PDF
    As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested

    Attribute based component design: Supporting model driven development in CbSE

    Get PDF
    In analysing the evolution of Software Engineering, the scale of the components has increased, the requirements for different domains become complex and a variety of different component frameworks and their associated models have emerged. Many modern component frameworks provide enterprise level facilities and services, such as instance management, and component container support, that allow developers to apply if needed to manage scale and complexity. Although the services provided by these frameworks are common, they have different models and implementation. Accordingly, the main problem is, when developing a component based application using a component framework, the design of the components becomes tightly integrated with the framework implementation and the framework model is embedded in the component functionality, and hence reduces reusability. Another problem arose is, the designers must have in-depth knowledge of the implementation of a component framework to be able to model, design and implement the components and take advantages of the services provided. To address these problems, this research proposes the Attribute based Component Design (AbCD) approach which allows developers to model software using logical and abstract components at the specification level. The components encapsulate the provided functionality, as well as the required services, runtime requirements and interaction models using a set of attributes. These attributes are systemically derived by grouping common features and services from light weight component frameworks and heavy weight component frameworks that are available in the literature. The AbCD approach consists of the AbCD Meta-model, which is an extension of the บML meta-model, and the Component Design Guidelines (CDG) that includes core Component based Software Engineering principles to assist the modelling process for designers. To support the AbCD approach, an implementation has been developed as a set of plug-ins, called the AbCD tool suite, for Eclipse IDE. An evaluation of the AbCD approach is conducted by using the tool suite with two case studies. The first case study focuses on abstraction achieved by the AbCD approach and the second focuses on reusability of the components. The evaluation shows that the artefacts produced using the approach provide an alternative architectural view to the design and help to re-factor the design based on aspects. At the same time the evaluation process identified possible improvements in the AbCD meta-model and the tool suite constructed. This research provides a non-invasive approach for designing component based software using model driven development

    Context-Based Synchronization of Concurrent Process Using Aspect-Oriented Programming

    Get PDF
    Resource access synchronization within concurrent processes or threads is implemented using various constructs such as semaphores, monitor locks, Mutex, etc. The algorithm supporting most of these structures works by keeping at bay all other concurrent processes or threads till the current process accessing the resource has successfully relinquished the resource. This works very well as race conditions are controlled and shared data state remains consistent. The problem with this approach is performance in terms of system response. When each thread has to wait for the other to finish accessing the resource before it can proceed, a long line waiting threads can easily build-up, which obviously translates to relatively slow system response. In this paper, we propose contextual synchronization model to avoid where applicable, the unnecessary build-up of threads waiting for access to the resource. This model describes different contexts within which a resource access can be executed. Each model is ascribed different priorities of which different policies were applied. The most important feature of this model is that the context representing plain resource access will not cause any race condition if all other threads are accessing from the same context. The result of our experiment shows that context-based synchronization performs better than Java given the same number of threads. Keywords: Aspect-oriented programming, synchronization, resource, and concurrent process

    Top-Down Composition of Software Architectures

    Get PDF
    This paper discusses an approach for top-down composition of software architectures. First, an architecture is derived that addresses functional requirements only. This architecture contains a number of variability points which are next filled in to address quality concerns. The quality requirements and associated architectural solution fragments are captured in a so-called Feature-Solution (FS) graph. The solution fragments captured in this graph are used to iteratively compose an architecture. Our versatile composition technique allows for pre- and post-refinements, and refinements that involve multiple variability points. In addition, the usage of the FS graph supports Aspect-Oriented Programming (AOP) at the architecture level

    Think: View-Based Support of Non-functional Properties in Embedded Systems

    Full text link
    • …
    corecore