38 research outputs found

    Artificial immune systems

    Get PDF
    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate

    An investigation to cybersecurity countermeasures for global internet infrastructure.

    Get PDF
    The Internet is comprised of entities. These entities are called Autonomous Systems (ASes). Each one of these ASes is managed by an Internet Service Provider (ISP). In return each group of ISPs are managed by Regional Internet Registry (RIR). Finally, all RIRs are managed by Internet Assigned Number Authority (IANA). The different ASes are globally connected via the inter-domain protocol that is Border Gateway Protocol (BGP). BGP was designed to be scalable to handle the massive Internet traffic; however, it has been studied for improvements for its lack of security. Furthermore, it relies on Transmission Control Protocol (TCP) which, in return, makes BGP vulnerable to whatever attacks TCP is vulnerable to. Thus, many researchers have worked on developing proposals for improving BGP security, due to the fact that it is the only external protocol connecting the ASes around the globe. In this thesis, different security proposals are reviewed and discussed for their merits and drawbacks. With the aid of Artificial Immune Systems (AIS), the research reported in this thesis addresses Man-In-The-Middle (MITM) and message replay attacks. Other attacks are discussed regarding the benefits of using AIS to support BGP; however, the focus is on MITM and message replay attacks. This thesis reports on the evaluation of a novel Hybrid AIS model compared with existing methods of securing BGP such as S-BGP and BGPsec as well as the traditional Negative Selection AIS algorithm. The results demonstrate improved precision of detecting attacks for the Hybrid AIS model compared with the Negative Selection AIS. Higher precision was achieved with S-BGP and BGPsec, however, at the cost of higher end-to-end delays. The high precision shown in the collected results for S-BGP and BGPsec is largely due to S-BGP encrypting the data by using public key infrastructure, while BGPsec utilises IPsec security suit to encapsulate the exchanged BGP packets. Therefore, neither of the two methods (S-BGP and BGPsec) are considered as Intrusion Detection Systems (IDS). Furthermore, S-BGP and BGPsec lack in the decision making and require administrative attention to mitigate an intrusion or cyberattack. While on the other hand, the suggested Hybrid AIS can remap the network topology depending on the need and optimise the path to the destination

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems

    Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions

    Get PDF
    Given the increasingly prominent cyber-based threat, there are substantial research and development efforts underway in network and host-based intrusion detection using single-packet traffic analysis. However, there is a noticeable lack of research and development in the intrusion detection realm with regard to attacks that span multiple packets. This leaves a conspicuous gap in intrusion detection capability because not all attacks can be found by examining single packets alone. Some attacks may only be detected by examining multiple network packets collectively, considering how they relate to the big picture, not how they are represented as individual packets. This research demonstrates a multiple-packet relational sensor in the context of a Computer Immune System (CIS) model to search for attacks that might otherwise go unnoticed via single-packet detection methods. Using relational schemata, multiple-packet CIS sensors define self based on equal, less than, and greater than relationships between fields of routine network packet headers. Attacks are then detected by examining how the relationships among attack packets may lay outside of the previously defined self

    A SOM+ Diagnostic System for Network Intrusion Detection

    Get PDF
    This research created a new theoretical Soft Computing (SC) hybridized network intrusion detection diagnostic system including complex hybridization of a 3D full color Self-Organizing Map (SOM), Artificial Immune System Danger Theory (AISDT), and a Fuzzy Inference System (FIS). This SOM+ diagnostic archetype includes newly defined intrusion types to facilitate diagnostic analysis, a descriptive computational model, and an Invisible Mobile Network Bridge (IMNB) to collect data, while maintaining compatibility with traditional packet analysis. This system is modular, multitaskable, scalable, intuitive, adaptable to quickly changing scenarios, and uses relatively few resources
    corecore