143 research outputs found

    Extended Model driven Architecture to B Method

    Get PDF
    International audienceModel Driven Architecture (MDA) design approach proposes to separate design into two stages: implementation independent stage then an implementation-dependent one. This improves the reusability, the reusability, the standability, the maintainability, etc. Here we show how MDA can be augmented using a formal refinement approach: B method. Doing so enables to gradually refine the development from the abstract specification to the executing implementation; furthermore it permits to prove the coherence between components in low levels even if they are implemented in different technologies

    Reconfigurable Computing Systems for Robotics using a Component-Oriented Approach

    Get PDF
    Robotic platforms are becoming more complex due to the wide range of modern applications, including multiple heterogeneous sensors and actuators. In order to comply with real-time and power-consumption constraints, these systems need to process a large amount of heterogeneous data from multiple sensors and take action (via actuators), which represents a problem as the resources of these systems have limitations in memory storage, bandwidth, and computational power. Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that require real-time processing, high bandwidth, and low latency. One of the fundamental advantages of FPGAs is their flexibility in designing hardware tailored to specific needs, making them adaptable to a wide range of applications. They can be programmed to pre-process data close to sensors, which reduces the amount of data that needs to be transferred to other computing resources, improving overall system efficiency. Additionally, the reprogrammability of FPGAs enables them to be repurposed for different applications, providing a cost-effective solution that needs to adapt quickly to changing demands. FPGAs' performance per watt is close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of being reprogrammable. Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the robotics community has not fully included them so far as part of their systems for several reasons. First, designing FPGA-based solutions requires hardware knowledge and longer development times as their programmability is more challenging than Central Processing Units (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or parts of it) from software to an accelerator requires adequate interfaces between software and FPGAs. Third, the robotics workflow is already complex on its own, combining several fields such as mechanics, electronics, and software. There have been partial contributions in the state-of-the-art for FPGAs as part of robotics systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature, which is the primary goal of this dissertation. Three main objectives have been established to accomplish this. (1) Define all components required for an FPGAs-based system for robotics applications as a whole. (2) Establish how all the defined components are related. (3) With the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy them, and integrate them into existing solutions. The component-oriented approach proposed in this dissertation provides a proper solution for designing and implementing FPGA-based designs for robotics applications. The modular architecture, the tool 'FPGA Interfaces for Robotics Middlewares' (FIRM), and the toolchain 'FPGA Architectures for Robotics' (FAR) provide a set of tools and a comprehensive design process that enables the development of complex FPGA-based designs more straightforwardly and efficiently. The component-oriented approach contributed to the state-of-the-art in FPGA-based designs significantly for robotics applications and helps to promote their wider adoption and use by specialists with little FPGA knowledge

    Model Driven Engineering Benefits for High Level Synthesis

    Get PDF
    This report presents the benefits of using the Model Driven Engineering (MDE) methodology to solve major difficulties encountered by usual high level synthesis (HLS) flows. These advantages are highlighted in a design space exploration environment we propose. MDE is the skeleton of our HLS flow dedicated to intensive signal processing to demonstrate the expected benefits of these software technologies extended to hardware design. Both users and designers of the design flow benefit from the MDE methodology, participating to a concrete and effective advancement in the high level synthesis research domain. The flow is automatized from UML specifications to VHDL code generation and has been successfully evaluated for the conception of a video processing application

    Dataflow/Actor-Oriented language for the design of complex signal processing systems

    Get PDF
    International audienceSignal processing algorithms become more and more complex and the algorithm architecture adaptation and design processes cannot any longer rely only on the intuition of the designers to build efficient systems. Specific tools and methods are needed to cope with the increasing complexity of both algorithms and platforms. This paper presents a new framework which allows the specification, design, simulation and implementation of a system operating at a higher level of abstraction compared to current approaches. The framework is base on the usage of a new actor/dataflow oriented language called CAL. Such language has been specifically designed for modelling complex signal processing systems. CAL data flow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. Concurrency and parallelism are very important aspects of embedded system design as we enter in the multicore era. The design framework is composed by a simulation platform and by Cal2C and CAL2HDL code generators. This paper described in details the principles on which such code generators are based and shows how efficient software (C) and hardware (VHDL and Verilog) code can be generated by appropriate CAL models. Results on a real design case, a MPEG-4 Simple Profile decoder, show that systems obtained with the hardware code generator outperform the hand written VHDL version both in terms of performance and resource usage. Concerning the C code generator results, the results show that the synthesized C-software mapped on a SystemC scheduler platform, is much faster than the simulated CAL dataflow program and approaches handwritten C versions

    System level modeling methodology of NoC design from UML-MARTE to VHDL

    Get PDF
    International audienceThe evolution of the semiconductor technology caters for the increase in the System-on-Chip (SoC) complexity. In particular, this complexity appears in the communication infrastructures like the Network-on-Chips (NoCs). However many complex SoCs are becoming increasingly hard to manage. In fact, the design space, which represents all the concepts that need to be explored during the SoC design, is becoming dramatically large and difficult to explore. In addition, the manipulation of SoCs at low levels, like the Register Transfer Level (RTL), is based on manual approaches. This has resulted in the increase of both time-to-market and the development costs. Thus, there is a need for developing some automated high level modeling environments for computer aided design in order to handle the design complexity and meet tight time-to-market requirements. The extension of the UML language called UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded systems) allows the modeling of repetitive structures such as the NoC topologies which are based on specific concepts. This paper presents a new methodology for modeling concepts of NoC-based architectures, especially the modeling of topology of the interconnections with the help of the repetitive structure modeling (RSM) package of MARTE profile. This work deals with the ways of improving the effectiveness of the MARTE standard by clarifying and extending some notations in order to model complex NoC topologies. Our contribution includes a description of how these concepts may be mapped into VHDL. The generated code has been successfully evaluated and validated for several NoC topologies

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    MARTE based design flow for Partially Reconfigurable Systems-on-Chips

    Get PDF
    International audienceSystems-on-Chip (SoCs) are considered an integral solution for designing embedded systems, for targeting complex intensive parallel computation applications. As advances in SoC technology permit integration of increasing number of hardware resources on a single chip, the targeted application domains such as software-defined radio are become increasingly sophisticated. The fallout of this complexity is that the system design, particularly software design, does not evolve at the same pace as that of hardware leading to a significant productivity gap. Adaptivity and reconfigurability are also critical issues for SoCs which must be able to cope with end user environment and requirements

    Dataflow/Actor-Oriented language for the design of complex signal processing systems

    Get PDF
    Signal processing algorithms become more and more complex and the algorithm architecture adaptation and design processes cannot any longer rely only on the intuition of the designers to build efficient systems. Specific tools and methods are needed to cope with the increasing complexity of both algorithms and platforms. This paper presents a new framework which allows the specification, design, simulation and implementation of a system operating at a higher level of abstraction compared to current approaches. The framework is base on the usage of a new actor/dataflow oriented language called CAL. Such language has been specifically designed for modelling complex signal processing systems. CAL data flow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. Concurrency and parallelism are very important aspects of embedded system design as we enter in the multicore era. The design framework is composed by a simulation platform and by Cal2C and CAL2HDL code generators. This paper described in details the principles on which such code generators are based and shows how efficient software (C) and hardware (VHDL and Verilog) code can be generated by appropriate CAL models. Results on a real design case, a MPEG-4 Simple Profile decoder, show that systems obtained with the hardware code generator outperform the hand written VHDL version both in terms of performance and resource usage. Concerning the C code generator results, the results show that the synthesized C-software mapped on a SystemC scheduler platform, is much faster than the simulated CAL dataflow program and approaches handwritten C versions

    SystemC Through the Looking Glass : Non-Intrusive Analysis of Electronic System Level Designs in SystemC

    Get PDF
    Due to the ever increasing complexity of hardware and hardware/software co-designs, developers strive for higher levels of abstractions in the early stages of the design flow. To address these demands, design at the Electronic System Level (ESL) has been introduced. SystemC currently is the de-facto standard for ESL design. The extraction of data from system designs written in SystemC is thereby crucial e.g. for the proper understanding of a given system. However, no satisfactory support of reflection/introspection of SystemC has been provided yet. Previously proposed methods for this purpose %introduced to achieve the goal nonetheless either focus on static aspects only, restrict the language means of SystemC, or rely on modifications of the compiler and/or parser. In this thesis, approaches that overcome these limitations are introduced, allowing the extraction of information from a given SystemC design without changing the SystemC library or the compiler. The proposed approaches retrieve both, static and dynamic (i.e. run-time) information

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis
    • …
    corecore