
Dataflow/Actor-Oriented language for the design of
complex signal processing systems

Christophe Lucarz∗, Marco Mattavelli∗,
Matthieu Wipliez†, Ghislain Roquier†, Mickaël Raulet†,
Jörn W. Janneck‡, Ian D. Miller‡ and David B. Parlour‡
∗Ecole Polytechnique Fédérale de Lausanne (Switzerland)
†IETR Laboratory - UMR CNRS 6164 - Rennes (France)

‡Xilinx Inc. - San Jose (U.S.A)

Abstract— Signal processing algorithms become more and
more complex and the algorithm architecture adaptation and
design processes cannot any longer rely only on the intuition
of the designers to build efficient systems. Specific tools and
methods are needed to cope with the increasing complexity
of both algorithms and platforms. This paper presents a new
framework which allows the specification, design, simulation
and implementation of a system operating at a higher level of
abstraction compared to current approaches. The framework is
base on the usage of a new actor/dataflow oriented language
called CAL. Such language has been specifically designed for
modelling complex signal processing systems. CAL data flow
models expose the intrinsic concurrency of the algorithms by
employing the notions of actor programming and dataflow. Con-
currency and parallelism are very important aspects of embedded
system design as we enter in the multicore era. The design
framework is composed by a simulation platform and by Cal2C
and CAL2HDL code generators. This paper described in details
the principles on which such code generators are based and shows
how efficient software (C) and hardware (VHDL and Verilog)
code can be generated by appropriate CAL models. Results on
a real design case, a MPEG-4 Simple Profile decoder, show that
systems obtained with the hardware code generator outperform
the hand written VHDL version both in terms of performance
and resource usage. Concerning the C code generator results,
the results show that the synthesized C-software mapped on a
SystemC scheduler platform, is much faster than the simulated
CAL dataflow program and approaches handwritten C versions.

I. INTRODUCTION

With the unbounded increase of signal processing systems
complexity made possible by both the advances in algorithm
theory and by new generations of silicon technology, digital
systems designers need new tools for the design of efficient
systems employing ”reasonable” design resources. Increas-
ing the level of abstraction has always been a solution to
appropriately handle the increasing complexity of systems
design. Transistors, gates, VHDL and Intellectual Property (IP)
blocks are example of different abstractions layers which have
been successfully introduced in the past with the attempt of
easing the design of more and more complex systems. In the
authors opinion the current new challenge is not only to add
a new abstraction layer, but also to close the gap between
the specification and the implementation layers. Such gap, in
the recent years, has been tried to be filled by using C/C++
reference implementations of the specifications. However, the

path from such specifications expressed as generic C/C++
reference SW to gate design has shown to be harder to be
efficiently accomplished. One of the main reasons of such
difficulty is the fact that C/C++ do not provide the operators
that enable to naturally express parallelism, data flows and
other fundamental architectural features without adding a huge
amount of low level programming details. In other words the
operators are defined at a level that is by, far too, low compared
to the one at which a designer would like to express his
architectural ideas. Also other approaches and methods aiming
at closing the gap from specification to synthesis have yet to
deliver on their promise. Several methodologies based on using
UML, different variants of C/C++ (i.e streamC [1]) combined
with SystemC/TLM library at different levels of the design
flow are used. Some of them make use of exploration tools,
simulators and code generators which can output hardware and
software code specific to FPGA or other processor platforms,
mainly using VHDL and C. Section II briefly reviews these
different approaches and methods for building digital systems.

This paper presents a new design framework, currently
in its early phase of development, based on CAL language,
an actor and dataflow oriented language designed for the
specification of complex signal processing systems. The new
framework includes: a simulator of the system specified by
CAL, a hardware generator for the direct synthesis of HDL
and a software generator for the synthesis of C from CAL.
The paper explains why and how this framework is a very
promising approach for the design and development complex
heterogeneous processing systems.

Section 1 introduces the CAL language, a dataflow and
actor-based language that constitutes a very interesting can-
didate to support a design flow for designing complex signal
processing systems. The major features of the new approach
are simplicity, conciseness and expressiveness. Modelling sys-
tems in a concise and simple way is a good starting point, but
at the same time enabling the automatic generation of efficient
code is an extremely challenging step. Sections IV and V show
how efficient hardware and software code can be generated
directly from CAL language system descriptions.

Section VI discusses the reasons for which CAL language
and the associated framework are a good approach to support
a design flow for building complex heterogeneous systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section VII concludes the paper.

II. RELATED WORK

This section provides a brief overview of the current design
flows based on UML, SystemC, and C/C++. A comprehensive
overview of the state of the art of system level modeling can
be found in [2].

Although UML was originally conceived for modelling
large software systems, Kukkala et al. [3] developed a design
flow for multiprocessors Systems on Chip (SoC) by using
UML 2.0 models as the starting point of the design flow.
UML models (i.e. application, platform and mapping models)
are written according to the experience of the designers.
However, there is limited support for the elaboration of
UML specifications. When building a system from monolithic
C/C++ specifications (such as one of the the MPEG reference
softwares for instance) UML models must be completely
written by hand. This task is very time-consuming and error
prone. Furthermore, according to [4], “UML 2.0 lacks both a
reference implementation and a human-readable semantic”.

Modelling HW using a high level description languages
such as SystemC can be a solution for representing func-
tionality, concurrency, communication, software and hardware
components at different (system) levels of abstraction. A
language modelling complex systems should also provide a
support for analysis and synthesis. SystemC is mainly used
for simulation because it is not synthesisable in its whole
generality. In practice, it can be reduced for ensuring the use
of a synthesizable subset. The problem is that this subset of
the language is placed at a quite low level of abstraction.
Simulation capabilities at a high level of abstraction are an
interesting feature of SystemC, but during the implementation
step, the designer is forced to re-write the code using only
the synthesisable subset. Such operation is a time consuming
and error-prone task. In a nutshell, it is hard to use SystemC
as a high level design language because in general it is not
possible to implement directly systems just developing at high
level the system specification.

Several tools propose a direct conversion of C code into
VHDL. C-based methodologies for modelling systems lack
concurrency and a concept of time. Hardware is inherently
parallel and time is essential to represent its behaviour accu-
rately, especially for real-time embedded systems. The main
problems of using C as a Hardware Description Language
are discussed in detail in [5] and [6]. In conclusion, the lack
of intrinsic concurrency and the concept of time as well as
the way communication mechanisms are written in imperative
languages are the main limitations and drawbacks of C or
similar languages for hardware representation.

III. CAL A LANGUAGE FOR ALGORITHM AND
ARCHITECTURE SPECIFICATION

The more important features that system designers would
like to find in a design language would be the capability of
representing both algorithm and architecture at a single level of
abstraction. Unfortunately, it is difficult to specify an algorithm

at a high level of abstraction and at the same time being
able to deduce from such description an efficient low level
representation. How can high level and low level constructs
be combined into a single language? Furthermore, such lan-
guage should support full simulation of the system behaviour.
Thus, designers have been forced to use several languages to
represent complex algorithms at different levels of abstraction
during the entire design flow. Generic C, architectural C,
SystemC, synthesizable SystemC is a possible first stage of
a design methodology. The main drawback of such multistage
approaches is how to implement the conversions between all
these languages avoiding resource consuming hand re-writing
[4]. Compilers often support only a subset of the languages,
making the different conversions between the languages a
headache! Thus, the reduction of the number of languages and
abstraction levels composing a design flow is a fundamental
issue. Ideally, the unique language transformation should be
a direct translation from the high level language down to an
implementation language such as C, VHDL or Verilog.

Abstract languages do not often support simulation capa-
bilities and architectural representations are available at too
low levels of abstraction. Standard imperative languages do
not express easily parallelism. These facts reduce considerably
the set of possible candidates. The new actor/dataflow oriented
language called CAL has been specifically developed so as to
support the features discussed above.

A. CAL language

CAL is a dataflow and actor oriented language that has
been recently specified and developed by one of the authors
of this paper as a subproject of the Ptolemy project at the
University of California at Berkeley. The final CAL language
specification has been released in December 2003 [7]. CAL
describes algorithms by using a set of encapsulated dataflow
components called actors communicating with each others.
An actor is a modular component that encapsulates its own
state. The state of any actor is not shareable with other
actors. Thus, an actor cannot modify the state of another actor.
The only interaction an actor has with another actor is only
thought inputs and outputs ports. The behaviour of an actor
is defined in terms of a set of actions. The operations an
action can perform are to consume (read) input tokens, to
modify internal state, to produce output tokens. The topology
of the connections between actors input and output ports
constitute what is called a network of actors. It is expressed
by using an XML dialect known as network language (NL)
that also includes the possibility to includes attributes (i.e.
parameters) that may be different for the instantiation of the
same (parametric) actor in a network of actors. Each action of
an actor defines the kind of transitions that internal states can
undergo and actions can be fired under specific conditions: (1)
the availability of input tokens, (2) the value of input tokens,
(3) the state of the actor or (4) the priority of that action. In an
actor, the operations are executed sequentially. The execution
of actions follows the following cycle:

1) Determine, for each action, whether it is enabled, by

testing all the conditions specified in that action. It
depends on the availability of token(s) at the requisite
input(s), the value of input tokens, the state of the actor
and the priority of each action.

2) If one or more actions are enabled, pick one of them to
be fired next;

3) Fire that action.
4) Go to (1).
The transitions of an actor are purely sequential: actions

are fired one after another. At the network level, the actors are
completely independent and can work concurrently, each one
executing their own sequential operations. Figure 1 illustrates
a CAL model in general and the reader can find examples of
CAL actors in figures 4 and 5(a).

Fig. 1. Illustration of a CAL model

The selection order and the firing conditions for actions
form the core of the design of an actor. CAL provides a
number of constructs for describing action selection, which
include guards (conditions on the values of input tokens
and/or the values of actor state variables), a Finite State
Machine and priorities (actions may be related to each other
by a partial priority order). The order of execution of the
actors is in general not known a priori. CAL provides a
great flexibility to schedule action execution according to the
particular requirements and constraints of the targeted device
chosen for the final implementation.

CAL language very naturally allows also hierarchical sys-
tem design. Each actor can be specified as a network of
actors. This approach facilitates modularity, where the internal
specification of any actor can be modified without impacting
other actors.

B. Goals and features of CAL language
Ease of use CAL is a true programming language and not

an intermediate format to automatically generate code. The
notation is convenient to write, with consistent syntax rules,
keywords, and structures.

Minimal semantic core CAL language is built on a very
small set of semantic concepts. It simplifies compiler con-
struction when transforming any program into an equivalent
program in the core language. Thus for the compilation to any
given platform, a code generator is needed for the specific
implementation language.

Implementation independence and retargetability The
first target for CAL actors was the Ptolemy II platform [8].
A complete framework (Open DataFlow) is currently being
developed for simulating CAL networks and for generating
hardware and software code [9]. OpenDF is built under the
Eclipse environment. It makes these tools available for a large
set of operating systems. CAL models are technology and
architecture agnostic. Thus, it makes possible to design and
simulate models very quickly using [9]. Designers do not need
special hardware or libraries to design their own system in
CAL. The implementation of CAL models is done by means of
appropriate hardware and software code generators described
in more details in the following sections..

C. Framework infrastructure

Figure 2 presents the general framework infrastructure.
Once the CAL model is defined, the user can simulate it using
the OpenDF simulator [9]. The user can generate software
code and hardware code from the CAL model. These code
generators are detailed in section IV and V respectively.

IV. SOFTWARE SYNTHESIS

A. Semantics of CAL dataflow

The system behavior of a dataflow program is determined by
the interactions between actors (i.e. exchange of data tokens).
Such interactions are governed by a Model of Computation
(MoC) that defines which scheduling policies can be used
to fire actors. The CAL language is not related to any
particular dataflow MoCs. Indeed, several forms of dataflow
exist to interpret the network from the general dataflow process
network (PN) [10] model with multiple firing rules to the more
restrictive synchronous dataflow (SDF) one [11], [12]. CAL
extends the model in [10] by :

1) state within actors,
2) multiple overlapping (non-joinable in the parlance of

[10]) firing rules, and
3) priorities among firing rules.

CAL actors often contain multiple actions and priorities, FSM
or guards that lead to state-dependent or conditional execution.
Therefore most of the CAL actors in the library are closer to
the PN model which is then chosen (as a first milestone) for
developing the tool described in this paper.

CAL PARSER

H
CPP

CCODE
GENERATION

TRANSFOR-
MATIONS

NL HELABORATION CODE
GENERATIONPARSER

CIL

NL
AST

CAL
AST

NL
AST

PARAMETERS

Fig. 3. Cal2C compilation process

When the PN model is chosen to interpret CAL net-
works, any environment which supports multithreading may
be chosen for implementation. For instance, it can be done

Fig. 2. The framework infrastructure

using POSIX threads by translating CAL actors into threads
and by replacing connections with FIFOs. However, it is
necessary to develop a scheduler and low-level considerations
such as communication or actual scheduler implementation,
make this solution time-consuming and error prone. Another
approach for PN implementation is provided by the Sys-
temC1 standard whose simulation environment permits high-
level programming, well-adapted to functional verifications.
A PN-oriented SystemC model is expressed as a network of
modules communicating with each other via blocking FIFOs
(with an additional way to support token availability). Note
that Cal2C does not intend to use SystemC as an hardware
description language, but only as a convenient PN modeling
and simulation environment. Moreover, this work is a first step
to an efficient ”pure C” code generation (closer to an SDF
model than a PN one). In short, the software synthesis from a
network of CAL actors produces several files as illustrated
in Figure 3. Each NL network is translated into a header
file where FIFOs, modules and sub-networks are instantiated
and connected. CAL actor translation is done in 2 different
parts: the actor code (actions, functions, procedures) to express
the functionality and the action scheduler (priorities, FSMs,
guards) to control the execution. Finally an additional file is
created to instantiate the top network and to launch SystemC
simulation.

B. C code generation: Actors

Actor code translation: Translating the CAL actor code
produces a single C file wherein functions, procedures and
actions are translated. however, C language and compilers
impose limitations on the translated code. For example, (1)
distinct functions should have different names to avoid linking
problems, even if they are originally placed in different ac-
tors. Another challenge is (2) the difference of programming
paradigm between the source and the target language: CAL
allows functional constructs that have no direct equivalent
in C. The action translation process starts with an Abstract
Syntax Tree (AST) issued from the CAL source code, and
modifies it as needed to satisfy the previous requirements.
Function names are prefixed with the actor name to prevent
any potential name clashes; actor parameters are replaced by
their values (when constant) or transformed to local variables
otherwise; actions are converted to functions where input and

1http://www.systemc.org

ac: action AC:[i]⇒ OUT:[saturate(o)]
var

int(size=SAMPLE_SZ) v =
(quant * (lshift(abs(i), 1) + 1)) - round,

int(size=SAMPLE_SZ) o =
if i = 0 then 0 else if i < 0 then -v else v end end

do
count := count + 1;

end

(a) CAL “ac” action in the “Inversequant” actor

void Inversequant_ac(
struct Inversequant_variables *_actor_variables ,
int i , int *out)

{ int v, o ;
int _call_6, _call_9;
int _if_7, _if_8 ;
_call_6 = Inversequant_fun_abs(_actor_variables, i);
v = _actor_variables->quant * ((_call_6 << 1) + 1)

- _actor_variables->round;
if (i == 0) {
_if_8 = 0;

} else {
if (i < 0) {
_if_7 = - v;

} else {
_if_7 = v;

}
_if_8 = _if_7;

}
o = _if_8;
(_actor_variables->count) ++;
_call_9 = Inversequant_fun_saturate(_actor_variables, o);

*out = _call_9;
}

(b) C translation of the “ac” action in the “Inversequant” actor

Fig. 4. C translation of a CAL action

output patterns become parameters. Finally, actor declarations
are ordered by dependencies between locals, so that a variable
or a function is defined before being used. At this point,
the Cal2C generator converts the AST to λ-calculus, applies
Damas-Milner W-algorithm [13] to it, and augments the AST
with the type information returned. Types are necessary for
correct C code generation, and type-dependent transforma-
tions. Functions that return lists are ”in-lined”, and list sizes
are computed. The transformed CAL AST is expressed in the
C Intermediate Language (CIL) [14], where CAL functional
constructs are replaced by imperative ones. C code is generated
by calling the pretty-printer module included in the framework.

An example of the CAL actor code translation process
is illustrated on figure 4. Figure 4(a) reports an ”action”

extracted from the Inversequant actor of the RVC reference
MPEG4-SP decoder, and figure 4(b) reports the corresponding
generated C code. The resulting code presents a function
whose name is composed of the actor name and the action
name (requirement (1)). Its parameters are the same of the
action’s, with an additional pointer to a structure containing
the actor variables. The if expression has been transformed to
assignments of temporary variables (if 7, if 8) (requirement
(2)). As a matter of fact, function calls have also become
assignments of temporary variables (call 6, call 9) because
CIL semantics requires it. The action output expression is
translated as a pointer parameter whose value is written at
the end of the C function. The synthesized C code shown in
figure 4(b) is quite close to the original CAL code and results
also reasonably readable by ”humans”.

Action scheduling: An action scheduler is created to con-
trol the action selection during execution. Priorities, guards,
token consumption rates and FSM have to be translated to
this end. Determining the overall order of action execution is
required to have a consistent evaluation of actions that can be
fired. Priorities are resolved by sorting actions in a total order
and by adding a if-then-else statement around actions wherein
the condition is given by the availability of input tokens and
the guards conditions. FSMs are resolved using switch-case
statement. Finally, the generated file consists of a thread with
an infinite loop wherein its body consists of the result of the
previous transformations and actions are replaced with their
corresponding C functions.

For instance, a downsampler by N is illustrated figure 5(a).
It could be written in different and also simpler forms, but
in this form the actor enables to highlight key features of the
action scheduling translation. The synthesized C++ code is
illustrated in figure 5(b).

C. SystemC code generation: Networks

Expressing a network of actors specified by NL in SystemC
is relatively straightforward: actor or network instantiations
are transformed into module instantiations. There are two
semantic differences however: FIFO channels, while implicit
in NL, must be explicitly created in SystemC. Broadcast of
data from a source to several sinks is transparent in NL,
but requires additional logic in SystemC, namely a generic
broadcast module.

D. Generation of C code from a CAL description: IDCT and
MPEG-4 Simple Profile decoder

So as to validate the correctness of the Cal2C code genera-
tion, the first case study is a two-dimensional inverse DCT. The
IDCT is a component of all MPEG standard video decoders
and is fully specified by the new Finite Precision IDCT
Specification [15] based on [16]. The algorithm consists of
applying one-dimensional IDCT along the row and column
axis of an 8×8 pixel block. The network is composed of 2
input ports, 1 output port and 5 different actors; one actor can
be instantiated several times in NL. Incoming tokens from
IN port are inverse-quantized coefficint and a token from

actor downsampler (N) In⇒ Out :
count := 1;
pass: action In: [x]⇒ Out: [x] end
done: action⇒ guard count = N do count := 1; end
skip: action In: [x]⇒ do count := count + 1; end

schedule fsm pass:
copy (pass) --> discard;
discard (done) --> copy;
discard (skip) --> discard;

end
priority
done > skip;

end
end

(a) CAL downsampler

struct downsampler_vars {
int count;
int N;

};
void downsampler::process() {

int fsm_state, _call_6, _call_7,_out_1;
struct downsamplerN_vars _actor_vars;
_actor_variables.count = 1;
fsm_state = 1;
while (1) {
switch (fsm_state) {
case 1:
_call_6 = In->get();
downsampler_pass(&_actor_vars, _call_6, &_out_1);
Out->put(_out_1);
fsm_state = 2;
break;

case 2:
if (_actor_vars.count == _actor_vars.N) {
downsampler_done(&_actor_vars);
fsm_state = 1;

} else {
_call_7 = In->get();
downsampler_skip(&_actor_vars, _call_7);
fsm_state = 2;

}
break;

}
}

}

(b) Synthesized action scheduler

Fig. 5. Action scheduling (FSM) of CAL actor

SIGNED enables to specify to the “clip” actor if incoming
coefficient are signed or not. The first row of Table I shows
the number of files of the respective programs. In the code
generation process, an actor first is converted into a C file,
then into a C++ and finally into a header file. A network
of actors simply is translated into a header file while the
corresponding C++ file becomes the ”main” file. The second
row exhibits the corresponding source lines of code (SLOC).
The testbed consists of applying a stimulus (streamed by a
C-code reference software of MPEG-4 SP decoder) to the top
network and verifying the response against an expected result
(from the CAL description simulated compared to a “golden
reference” streamed by the C-code reference software).

Another synthesized model of a more complex CAL
dataflow network simulated with the Open Dataflow envi-
ronment has also been used to validate the Cal2C tool. The
compilation process has been successfully applied to the full
MPEG-4 Simple Profile dataflow model written by the MPEG

IDCT CAL NL C C++ H
Number of files 5 1 5 6 6

Code Size (SLOC) 131 25 324 386 107

TABLE I
CODE SIZE AND NUMBER OF FILES AUTOMATICALLY GENERATED FOR

THE IDCT

RVC working group. Table II shows that the synthesized C-
software is faster than the simulated CAL dataflow program
(20 frames/s instead of 0.15 frames/s), and close to real-time
for a QCIF format (25 frames/s) on a standard PC platform.
It is interesting to note that the model is scalable: the number
of macro-blocks decoded per second remains constant when
dealing with larger image sizes.

MPEG4 SP Speed Code size
decoder kMB/S kSLOC

CAL simulator 0.015 3.4
Cal2C 2 10.4

TABLE II
MPEG4SP DECODER SPEED AND SLOC

The MPEG4 SP dataflow program is composed of 27 actors.
An actor composing a network of actors can be instantiated
several times. For instance there are 42 actor instantiations
in the MPEG-4 SP dataflow model. The number of SLOC
generated is shown in Table III. All of the generated files
are successfully compiled by gcc. For instance, the “Parser-
Header” actor inside the “Parser” network is the most complex
actor with multiple actions. The translated C-file (with actions
and state variables) includes 1043 SLOC for actions and 1895
for action scheduling. The original CAL file contains only 962
lines of code as a comparison.

MPEG4 SP decoder CAL NL C C++ H
Number of files 27 9 27 28 36

Code Size (kSLOC) 2.9 0.5 5.8 3,7 0.9

TABLE III
CODE SIZE AND NUMBER OF FILES AUTOMATICALLY GENERATED FOR

MPEG4 SP DECODER

V. HARDWARE SYNTHESIS FROM CAL DATAFLOW
MODELS

In the current version of the HDL generator, each actor is
translated separately into HDL and is connected with FIFO
buffers in the resulting RTL descriptions. Consequently, no
cross-actor optimizations are employed at the current level of
development of the tool.

If two actors connected in this manner are specified to
belong to different clock domains, an asynchronous FIFO
implementation is selected, otherwise a synchronous FIFO is
used for compactness of the implementation. Actors interact
with FIFOs using a handshake protocol, which allows them to
detect when a data token is available or when a FIFO is full.

The translation of each CAL actor into a hardware de-
scription follows a three-step process: (a) Instantiation, (b)
Precompilation and (c) RTL code generation.

A. Instantiation

The elaboration of the network structure yields a number of
actor instances, which are references to CAL actor descriptions
along with actual values for its formal parameters. From this,
instantiation computes a closed actor description, i.e. one
without parameters, by moving the parameters along with the
corresponding actual values into the actor as local (constant)
declarations. It then performs constant propagation on the
result.

B. Precompilation

After some simple actor canonicalization, in which several
features of the language are translated into simpler forms, pre-
compilation performs some basic source code transformations
to make the actor more amenable to hardware implementation,
such as e.g. inlining procedures and function calls. Then the
canonical, closed actors are translated into a collection of
communicating threads.

In the current implementation, an actor with N actions
is translated into N + 1 threads, one for each action and
another one for the action scheduler. The action scheduler
is the mechanism that determines which action to fire next,
based on the availability of tokens, the guard expression of
each action (if present), the finite state machine schedule, and
action priorities.

To facilitate backend processing, for both hardware and
software code generation, the threads are represented in static
single-assignment (SSA) form. They interact with the en-
vironment of the actor through asynchronous token-based
FIFO channels. Their internal communication happens through
synchronous unbuffered signals (this is, for instance, how
the scheduler triggers actions to fire, and how actions report
completion), and they also have shared access to the state
variables of the actor.

C. RTL code generation

The final phase of the translation process generates an RTL
implementation (in Verilog) from a set of threads in SSA form.
The first step simply substitutes operators in expressions for
hardware operators, creates the hardware structures required to
implement the control flow elements (loops, if-then-else state-
ments), and also generates the appropriate muxing/demuxing
logic for variable accesses, including the Φ elements in the
SSA form.

The resulting basic circuit is then optimized in a sequence
of steps.

(a) Bit-accurate constant propagation. This step elim-
inates constant or redundant bits throughout the circuit,
along with all wires transmitting them. Any part of the
circuit that does not contribute to the result will also
be removed, which roughly corresponds to dead code
elimination in traditional software compilation.

(b) Static scheduling of operators. By default, operators
and control elements interact using a protocol of explicit
activation—e.g., a multiplier will get triggered by explicit
signals signifying that both its operands are available, and
will in turn emit such a signal to downstream operators
once it has completed multiplication. In many cases,
operators with known execution times can be scheduled
statically, thus removing the need for explicit activation
and the associated control logic. In case operands arrive
with constant time difference, a fixed small number of
registers can be inserted into the path of the operand that
arrives earlier.

(c) Memory access optimizations. Arrays are mapped
to Block RAMs (BRAM) for FPGA implementation.
These usually small RAM blocks (typically 18 kBits)
are distributed across the FPGA, and can be ganged up
to form larger memories, or a number of small arrays
may be placed into one BRAM. Furthermore, BRAMs
usually provide two or more ports, which allows for
concurrent accesses to the same memory region. Based on
an analysis of the sizes of arrays and the access patterns,
the backend maps array variables to Block RAMs, and
accesses to specific ports.

(d) Pipelining, retiming. In order to achieve a desired
clock rate, it may be necessary to add registers to the
generated circuit in order to break combinatorial paths,
and to give synthesis backends more opportunity for
retiming.

Size Speed Code size Dev. time
slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

Fig. 6. Hardware synthesis results for an MPEG-4 Simple Profile decoder.
The numbers are compared with a reference hand written design in VHDL.

Figure 6 shows the quality of result produced by the RTL
synthesis engine for a real-world application, in this case an
MPEG-4 Simple Profile video decoder. Note that the code
generated from the high-level dataflow description actually
outperforms the VHDL design in terms of both throughput
and silicon area for a FPGA implementation.

VI. DISCUSSION

In this paper it has been shown that CAL, at the same
abstraction level, can yield system specifications for direct SW
and HW generation. This is made possible by several inter-
esting properties which not only provide appropriate answers
at the problem of finding a language that specify systems at
high level, but that can also be extremely useful for facing the
challenges of next generation digital systems.

Expressing concurrency The intrinsic cability of CAL
operators and construct to describe and easily fit concurrent
problems make CAL actor-modeling an excellent fit for system

design of parallel algorithms and streaming or data dominated
applications.

Compactness The MPEG-4 Simple Profile decoder has
been manually implemented in different languages such as
C/C++, VHDL and CAL. The full implementation is com-
posed of approximately 4000 lines for CAL, 15000 lines for
VHDL, 4100 for an optimized version in C/C++. It shows how
concise CAL is, but at the same time concurrency and data
dependencies are clearly exposed and by raising the level of
abstraction of constructs and operators, CAL needs less lines
of code to fully describe a given algorithm. Conversely CAL
is not overloaded with implementation details and such feature
is a clear advantage. CAL focuses only on the description of
the algorithm itself and how data is generated and consumed
by the different components. Implementation details such as
scheduling of the operations are let to code generators.

Analysis CAL language allows the analysis of an actor
and networks of actors. For the definition of the actors, CAL
provides statically analyzable information about their behavior,
such as the number of tokens it produces and consumes in
each firing, the necessary conditions for their firing, on what
depend those conditions. . . These information are very useful
for effectively schedule, compose, and implement those actors
in the final implementations.

Portability CAL specifies algorithms and defines their
associated data flow models in a concise and clear way. CAL
models are completely independent from final implementation.
Thanks to this independency, it eases the integration, exchange
and the development of actors. Different implementation for
several targets can be built easily from these models. The
encapsulation property of the actors is very convenient: global
variables do not exist, making the integration of external actors
(not written by the designer himself) in the design much easier.

Simplicity of actor design CAL offers a compact, clear
and precise semantics, which is tailored to the constraints of
actor design and thus facilitates readability and maintainability
of the actors. The ease of programming is also necessary to
make the language accepted in the scientific community.

Hardware and Software code generation The CAL lan-
guage is a good starting point for both hardware and software
code generation.

The results presented in this paper and in [17] show that
efficient hardware code can be generated directly from CAL
models. The results show the quality of results produced by
the RTL synthesis engine for a real-world application (MPEG-
4 Simple Profile video decoder). The code generated from
the high-level dataflow description actually outperforms the
VHDL design in terms of both throughput and silicon area.

C code can also be generated from CAL models. The
results presented in this paper and in [18] show significant
improvements compared to CAL dataflow simulation with
the Open Dataflow environment [9]. The compilation process
has been successfully applied to the same MPEG-4 Simple
Profile video decoder. The synthesized software (10600 lines
of code) is faster than the CAL dataflow simulated (about 20
frames/s instead of 0.15 frames/s), and close to real-time for

a QCIF format (25 frames/s) on a standard PC platform. It
is interesting to notice that the model is scalable: the number
of macro-blocks decoded per second remains constant when
dealing with larger image sizes.

CAL is particularly well suited for describing signal pro-
cessing systems which are intrinsically data-driven. It is not
by chance that CAL language has been chosen by the ISO/IEC
standardization organization in the new MPEG standard called
”Reconfigurable Video Coding (RVC)” (ISO/IEC 23001-4 and
23002-4). RVC is a framework allowing users to define a
multitude of different codecs, by combining together actors
(called coding tools in RVC) from the MPEG standard library
that contains video technology from all past standards (i.e.
MPEG-2, MPEG-4 etc, etc) . The reader can refer to [19]
for more information about RVC. CAL is used to provide the
reference software for all coding tools of the entire library.
The essential elements of the RVC framework, besides the
tool library, include a Decoder Description expressed in an
XML dialect which describes in the architecture of the decoder
by specifying the connections between the different actors,
a Bitstream Schema (BS) which describes the structure, the
organization of the data in the bitstream and implicitly defines
the parser needed for the specific decoder reconfiguration.

VII. CONCLUSION AND FUTURE WORK

This paper describes a framework based on CAL data
flow language that includes a simulator and SW and HW
code generators. CAL data flow models results particularly
efficient for specifying signal processing systems in a very
synthetic form compared to classical imperative languages.
Moreover CAL models can be developed to describe archi-
tectural features of the desired implementation, thus enabling
the designer to work for both algorithm and architecture
specification at the same level of abstraction. Hardware and
software code generators then provide the implementation of
the actors and associated network of actors on different targets
(processors or FPGA). CAL succeeds in unifying different
levels of abstraction in a single layer at which specification,
design space exploration and efficient implementation can be
developed. CAL is very expressive and concise. It exposes
clearly the intrinsic parallelism of the algorithm by means
of the notion of encapsulated actor processing and explicit
data dependencies in the actor network. The first promising
results obtained by this framework for modelling systems and
generating software/hardware implementations, and the recent
adoption by ISO/IEC MPEG of CAL as a the new specification
formalism for the library that covers in modular form all video
algorithms from the different MPEG video coding standards,
shows that CAL is an appropriate language for supporting de-
sign flows aiming at building complex heterogeneous systems
from high level system specifications. Concerning future works
and extension of the framework they include the evolution
of the software and hardware code generators in terms the
extension of the subset of CAL language supported by the two
code generators, the development of scheduling tools beyond

the SystemC scheduler for mapping on multicore platforms
and the evolution of the current Open DataFlow environment
with more accurate and extended profiling and debug tools.

REFERENCES

[1] “Streamc language specification,” http://graphics.stanford.edu
/streamlang/streamc-3-6-00.pdf.

[2] Alberto Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About
the Trends and Challenges of System Level Design,” Proceedings of the
IEEE, vol. 95, pp. 467–506, 2007.

[3] Petri Kukkala, Mikko Setala, Tero Arpinen, Erno Salminen, Marko
Hannikainen, and Timo D. Hamakainen, “Implementing a wlan video
terminal using uml and fully automated design flow,” EURASIP J.
Embedded Syst., vol. 2007, pp. 20–20, 2007.

[4] D. Thomas, “Mda: revenge of the modelers or uml utopia?,” Software,
IEEE, vol. 21, pp. 15–17, 2004.

[5] G. De Micheli, “Hardware synthesis from c/c++ models,” in Design,
Automation and Test in Europe Conference and Exhibition 1999. Pro-
ceedings, 1999, pp. 382–383.

[6] G. De Micheli, D. Ku, D. Ku, F. Mailhot, and T. Truong, “The olympus
synthesis system,” Design & Test of Computers, IEEE, vol. 7, pp. 37–53,
1990.

[7] Johan Eker and Jörn Janneck, “CAL Language Report,” 2003, ERL
Technical Memo UCB/ERL M03/48.

[8] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Yuhong Xiong, “Taming heterogeneity -
the ptolemy approach,” Proceedings of the IEEE, vol. 91, pp. 127–144,
2003.

[9] “Open dataflow sourceforge project,” http://opendf.sourceforge.net/.
[10] Edward A. Lee and Thomas M. Parks, “Dataflow Process Networks,”

Proceedings of the IEEE, vol. 83, no. 5, pp. 773–801, May 1995.
[11] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. 36, no. 1, pp. 24–35, 1987.

[12] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee, “Syn-
thesis of embedded software from synchronous dataflow specifications,”
J. VLSI Signal Processing Systems, vol. 21, no. 2, pp. 151–166, 1999.

[13] Luis Damas and Robin Milner, “Principal type-schemes for functional
programs,” in Proceedings of POPL ’82, 1982, pp. 207–212.

[14] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
An Infrastructure for C Program Analysis and Transformation,” in
Proceedings of CC 2002, Apr. 2002, pp. 213–228.

[15] ISO/IEC FDIS 23002-2:2007(E), “Information technology – MPEG
video technologies – Part 2: Fixed-point 8x8 inverse discrete cosine
transform and discrete cosine transform,” 2007.

[16] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical Fast 1-D DCT
Algorithms with 11 Multiplications,” in Proceedings of ICASSP’89, Feb.
1989.

[17] Jörn W. Janneck, Ian D. Miller, Dave B. Parlour, Marco Mattavelli,
Christophe Lucarz, Matthieu Wipliez, Mickal Raulet, and Ghislain
Roquier, “Translating dataflow programs to efficient hardware: an mpeg-
4 simple profile decoder case study,” in Design, Automation and Test
in Europe (DATE), Munich, Germany, 2008.

[18] Matthieu Wipliez, Ghislain Roquier, Mickael Raulet, Jean-Franois
Nezan, and Olivier Dforges, “Code generation for the MPEG recon-
figurable video coding framework: from CAL actions to C functions,”
in IEEE International Conference on Multimedia & Expo (ICME),
Hannover, Germany, 2008.

[19] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-Kerr, and Jörn
Janneck, “Reconfigurable media coding: A new specification model for
multimedia coders,” in IEEE Workshop on Signal Processing Systems,
2007, pp. 481–486.

	Introduction
	Related Work
	CAL a language for algorithm and architecture specification
	CAL language
	Goals and features of CAL language
	Framework infrastructure

	Software Synthesis
	Semantics of CAL dataflow
	C code generation: Actors
	SystemC code generation: Networks
	Generation of C code from a CAL description: IDCT and MPEG-4 Simple Profile decoder

	Hardware Synthesis from CAL dataflow models
	Instantiation
	Precompilation
	RTL code generation

	Discussion
	Conclusion and future work
	References

