
HAL Id: hal-00832612
https://hal.archives-ouvertes.fr/hal-00832612

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Model driven Architecture to B Method
Ammar Aljer, Philippe Devienne

To cite this version:
Ammar Aljer, Philippe Devienne. Extended Model driven Architecture to B Method. Ubiquitous
Computing and Communication Journal , Ubicc Journal, 2011, Special Issue on ICIT 2011. �hal-
00832612�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49780516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00832612
https://hal.archives-ouvertes.fr

EXTENDED MODEL DRIVEN ARCHITECTURE TO B METHOD

Ammar Aljer

Faculty of Electrical and Electronic Engineering, University of Aleppo, Aleppo, Syria

ammar.aljer@lifl.fr

Philippe Devienne

Lille’s Computer Science Laboratory, University of Lille, Lille, France

philippe.devienne@lifl.fr

ABSTRACT

Model Driven Architecture (MDA) design approach proposes to separate design

into two stages: implementation independent stage then an implementation-

dependent one. This improves the reusability, the reliability, the standability, the

maintainability, etc.

Here we show how MDA can be augmented using a formal refinement approach:

B method. Doing so enables to gradually refine the development from the abstract

specification to the executing implementation through many controled steps. Each

refinement step is mathematicaly represented and is proven to be correct, by

conceconce then the implementention is proven to satisfy the specification;

furthermore this approach permits to prove the coherence between components in

low levels even if they are branched in different technologies during the

development.

Keywords: MDA, B method, Co-design Refinement, Embedded System, VHDL

1 INTRODUCTION

 As computer performance improves and human-

built systems augment, there are continuous efforts

to employ suitable Computer Aided Design tools that

are able to develop such complex systems. A

common attitude between designers in different

technologies is to use more abstract design levels

that enable designer to concentrate, at first, on the

most important requirements of the system.

In hardware domain, many tools are produced to

develop higher levels than printed circuits or RTL

(Register Transfer Level). VHDL (IEEE 1076) is

emerged on 1987. It permits to represent a complete

hardware system. It became the dominant in

Hardware modelling. VerilogSystem is standardised

in 2005 to manage abstract level of hardware system.

In software area, number of OOP languages has

emerged. They give more facilities to treat complex

system than procedural languages. An

implementation-independent tool, UML (unified

modelling language), use graphical diagrams to

gather common aspects of OOP Languages using.

An object oriented system is made up of interaction

components. Each component (object) has its own

local state and provides operations on that state. In

Object oriented design process, Designer

concentrates more on precising classes (abstraction

of real objects) and the relationships between these

classes. MDA (model driven architecture) was

launched by the OMG (Object Management Group)

in 2001. It proposes to separate the design into two

stages: implementation-independent stage then an

implementation-dependent one. “The transition

between these stages of development should, ideally,

be seamless, with compatible notation used at each

stage. Moving to the next stage involves refining the

previous stage by adding details to exiting object

classes and devising new classes to provide

additional functionality. As information is concealed

within objects, detailed design decision about the

representation of data can be delayed until the

system is implemented.”[8].

Another important aspect of nowadays systems is

the interference between different technologies. Most

systems consist of different cooperating sub-systems

where some functionality may migrate from one

technology to another in further versions of the

system.

In our project, which is illustrated in Fig. 1, we

improved MDA approach in three main aspects:

1. Smoothing transfer from the abstract

specification of the system into the

implementation with a proven refinement

from each level to the next and the more

deterministic one.

2. Formal notation of the complete system in

the abstract levels

3. Formal projection of components that are

implemented in hardware technology.

Our approach (that joints the advantages of MDA

and B method) permits to obtain many advantages:

1. The possibility to obtain a correct-by-design

system

2. Increase the reusability: when a

modification is necessary, we preserve all

design levels that are more abstract than the

level where modification is occurred.

3. The possibility of migration between

technologies in low levels without

reproving the complete system if the

immigration preserves the logical behaviour

captured in the formal projection.

Figure 1: Refined MDA

The dashed line in Fig. 1 shows the temporal axe

of project development. The top of the left part of

Fig. 1 shows that the first step is to formally specify

the requirements. This stage may be achieved during

an iterative process where new requirements do not

contradict with the previous ones. The Formal

requirements specification is followed by another

stage to design the main components of the wanted

system independently of the implementation

technology. Also this stage is, in most cases,

achieved iterative process during many steps of

refinement. In real applications the previous two

stages (formal requirements and the implementation

independent design) are not completely separated.

Using the formal refinement of B, components in

each step is proven to be coherent and refine the

previous step. Right part of Fig. 1 shows how

designers in each community may their own

development tools and techniques to partially

implement the system. A formal representation of the

implementation of the different technologies is traced

to prove:

1. the correctness of each component

regarding to its specification,

2. the coherence between components in

low levels either if they are implemented

in one technology or different

technologies.

3. the satisfaction of the Implantation-

Independent Architecture declared in the

previous stage.

4. and the coexisting, if necessary, with

mathematical representation of parts of

the real environments such as physical

laws, external systems, etc.

2 MODEL DRIVEN ARCHITECTURE

Since the invention of Newmann, the general

attitude of software tools developer is to abstract

Newmann computer architecture.

FORTRAN may be considered as the first high

level language. From the outside, it uses formal

mathematical-like expressions but actually these

expressions and instructions are chosen to abstract

the executive machine code. A compiler is written to

convert each FORTRAN program code into machine

code. Programs were used to partially help client

with automatically and rapidly executing an

algorithm. Most of later software developments

(such as structural programming then OOP)

concentrated on the abstraction of the executive

machine code. With OOP, programmer concentrate

more and more on the Classes that are abstractions of

real word. Nowadays writing the implementation is

partially automated and designer may give more

attention on system structure. Actually with CASE

(Computer Aided Software Engineering) tools,

programmer can graphically specify the components

of his/her design, precise the operation of each

component and defines the relations between

components then executive code is automatically

generated. Nowadays computer is used not only to

execute a program but to represent a complete

system and furthermore to simulate a complex of

interacting systems. With MDA (Model Driven

Architecture) design is completely separated between

implementation-independent stage and an

implementation-dependent one. With this attitude to

Implementation

Interface

Implementation-

Independent

Design

Hardware

Implementation

Specification

Hardware

Software

Mathematical

representation

of the real word

Logical projection of different

technology design

Common Formal System

!

!

Formal

Requirements

!

Formal Refinement (B method)

represent as system rather than a program,

verification becomes more and more difficult

because its cost increases exponentially with

complexity. With such approach, Reusing is

augmented.. In OOP, programmer reuses ancient

classes or libraries (written by him or by others) in

new projects. With COSTS (Commercial, off-the-

shelf), programmer reuses a complete software

system or sub-system. He ought to adapt them to the

novel environment.

Since 1950s, huge efforts are made to cover

microinstructions with many abstraction layers:

Assembly, High Level Languages, Structural

Programming, OOP, UML (Unified Modeling

language) and MDA. But only few efforts are made

to formulate the other side of the programming task;

that is client requirements. With the increasing

machine power and augmenting complexity of

computer based systems, Software engineering

developed many principles and techniques to

formulate client requirements. Comparing to the

development of programming language, theses

efforts rest primitive and a formal gap between what

a program do and what a client wants is always

exists.

SDLC (System Development Life Cycle) in

Software engineering usually begins with

requirement specification [10] and many UML

diagrams partially describe requirements such as Use

Case Diagrams, Activity Diagrams .etc. These

representations of requirements are still superficial,

non formal (or semi formal) and no formal linkage is

defined to link these requirements with the

corresponding implementation code.

3 HDL, HARDWARE DESCRIPTION

LANGUAGES:

Due to the difference between hardware product

and software product, Production of hardware or

software component passes through tow different

sequences. Software engineers concentrate on

requirement collection, development, verification,

deployment .etc. Hardware engineers emphasis on

functional level, logic gate level, RTL (Register

Transfer Level) and printed circuit level. The

increasing system complexity obligates both

communities to develop their tools towards abstract

system level.

3.1 VHDL

VHDL that is the dominant language in hardware

design was the first to take system level in account.

Even if VHDL [2] was designed for electronic

design automation to describe VLSI circuits, it

argues that it can be used as a general-purpose

language and even can handle parallelism. From

hardware community point of view, VHDL may be

used to describe the structure of the system since any

circuit may be defined as a black box (ENTITY)

where all the inputs and outputs are defined then by a

white box (ARCHITECTURE) where all the

components and connections between these

components are declared. Components in the

architecture are functionally defined and they could

be mapped later to the real word components by an

additional level (CONFIGURATION). So it is

supported with libraries that contain all

specifications of electronic units known in the world.

These layers permit to simulate the real circuit in

order to verify the design. ARCHITECTURE layer

in VHDL may define the behaviour of the circuit

instead of its structure. Beside VHDL most

important HDLs , such as SystemVerilog and

SystemC respect the distinction between abstract and

implemented levels.

3.2 HDL and Co-Design Verification

Simulation is the principle verification tool in

HDL. Furthermore, most Co-design verification

methods depend on Co-simulation of two or more

types of components that are designed by different

technologies. Each research community tries to

extend design stages to include more abstract levels.

Fortunately, we can observe many common

properties in the research result of these different

communities. It is quite interesting to compare them

and to show that they could be prefigured and

structured within a model driven architecture. In this

paper, we focus on development with B approach

and show how it may be applied on HDL.

4 B METHOD, MOCHA, EVENT B:

B method [1] is known in software engineering as a

formal method to specify and to develop finely the

specification towards an executable program basing

on set theory and first order logic notation. B draws

together advances in formal methods that span the

last forty years (pre and post notations, guarded

commands, stepwise refinement, and the refinement

of both calculus and data). During the software

development in B method, many versions of the

same component may be found. The first and the

most abstract one is the Abstract Machine where

client needs are declared. Then the following

versions should be more concrete and precise more

and more how we obtain the needed specifications.

These versions are called Refinements except the last

one where there is no more possible refinement. This

deterministic version is called Implementation. B

generates the necessary proof obligations to verify

the coherence of each component and correctness of

the development. Furthermore, B tools help to

execute these proofs.

Like B, Mocha [9] is an interactive verification

environment for the modular and hierarchical

verification of heterogeneous systems. Mocha

supports the heterogeneous modeling framework of

reactive components and based on Alternating

Temporal Logic (ATL), for specifying collaborations

and interactions between the components of a system.

Event B is an evolution of B Method. Key features of

B Event are the extensions to events for modeling

concurrency. The primary concept in doing formal

developments in Event-B is that of a model. A model

contains the complete mathematical development of

a Discrete Transition System. It is made of several

components of two kinds: machines and contexts.

Machines contain the variables, invariants, theorems,

and events of a model, whereas contexts contain

carrier sets, constants, axioms, and theorems of a

mode. The Rodin platform is an open source Eclipse-

based IDE for Event B is further extendable with

plugins.

5 BHDL: B ! VHDL

The principle of BHDL is to make use of the

common properties between B, ADL and HDL in

order to use a common formal iterance language.

This will facilitate the verification of design

correctness since the early steps of co-design.

Fortunately, B method has its own mathematical

notation that can be used during all development

steps. The correctness of a system described by B

language may be “proven” by many tools as AtelierB,

BToolkit , B-For-Free and RODIN [3].

Declaration of ADL main components of system

is graphically built, Then, two different notations are

generated: VHDL and B.

Figure 2: Common Aspects between ADL, HDL and

B method.

The produced B code contains the main features

of VHDL one. After that, design may be separated in

relation to the technologic choices.

Figure 3: Principle of BHDL.

Each Architecture in VHDL is attached to one

Entity and it may contain recursively one or more

Entitys. This structure looks similar to extern-view

and intern-view in ADL, procedure call and

procedure implementation in imperative

language .etc. Also in B method two basic

components excite: the Abstract machine and the

Refinement. The first one is usually used to precise

the specifications of the component; the interface

variables, the internal variables, the invariant relation

between them and the pre and post conditions of the

necessary operations. The second component may

refine an abstract machine; that means it precise

partly how the operations may be implemented. The

Refinement component may be, in his turn, refined

recursively by more deterministic Refinements. The

last refinement step, when the behaviour becomes

completely deterministic, is called the

implementation. B tools may prove the consistency

of each component and the refinement relation.

 In our project each Entity is translated by an

Abstract machine and each Architecture by a

refinement. The ports are declared as Variables and

the port typing as Invariant. Furthermore we

enhanced the VHDL notation with logical properties.

These properties are injected in B Invariant. The

connection between subcomponents of the

"

2

"

1

"

n

"

"1 # "2 # "n # links $ "

Implementation

Interface

Figure 4: Structural refinement and proof

obligation

VHDL

+INVARIANT
B

Designer

Abstract machine (!)

(high level)

Refinement

Consists of

Refinement

External View

(ADL)

ENTITY

(VHDL)

Internal View

(ADL)

ARCHITECTURE

(VHDL)

Abstract machine

(!1)

(high level)

External View

of a

sub-component

VGUI

Refinement should guarantee the Invariant specified

in the abstract machine (see Fig. 4).

5.1 Hierarchy

In VHDL, the transition from an Entity into a

corresponding Architecture is usually performed in

one step. In BHDL, this may be finely performed by

many steps or levels. We may consider the

refinement of a component in BHDL as a

replacement by other components. Also we may

refine a component by another one which has the

same structure and links but with more strict logic

property. In all cases the refinement is performed

towards lower levels where the behaviour of the

system becomes more deterministic.

The principal relation between the interface

(external view) and its refinement (or between two

levels of refinement) is:

Connection("1, "2,, …"n) $ "

which means that the logical connection between the

properties of the sub-components should satisfied the

properties indicated in the abstract machine that

represents the Entity.

5.2 Compositionality and Invariant

Let us consider the following simple example for

illustrating captures of multiple mathematical views

and reliability.

Figure 5: Structure of Comp1 component.

Fig. 5 shows a system that contains two Nand

components. The modified version of VGUI allow to

draw a similar connected boxes and to precise the

logic properties and the internal structure of each box.

Then VHDL+ and B code is generated.

VGUI generated the following VHDL+ code for

this example:

STRUCTURE comp1 OF comp

SIGNAL s

BEGIN

 gate1 : nand PORT MAP (i1,s,o)

 gate2 : nand PORT MAP (i2,i3,s)

END

ENTITY nand

 PORT x, y : IN std_logic

 z : OUT std_logic

 -- z = nand (x,y) B specification

 END

5.3 Specification Languages

As B is used in this example as formal

specification language, PSL is an "add-on" language

for Hardware description languages that has recently

been standardized by the IEEE in 2005. PSL

standard is based upon IBM's "Sugar" language,

which was developed and validated at IBM Labs for

many years before IBM donated the language to

Accellera for standardization. PSL works alongside a

design written in VHDL, Verilog or SystemVerilog.

But in future it may be extended to work with other

languages. Properties written in PSL may be

embedded within the HDL code as comments or may

be placed in a separated file alongside the HDL code.

PSL includes multiple abstraction layers for assertion

types ranging from low-level Boolean and Temporal

to higher-level Modeling and Verification. Formally,

PSL is structured into four layers: the Boolean,

Temporal, Verification and Modeling layers. At its

lowest-level, PSL uses references to signals,

variables and values that exist in the design's

conventional HDL description. Sugar used CTL

(Computation Tree Logic) formalism to express

properties for model checking. But the finally the

underling semantic foundation was migrated from

CTL to LTL (Linear-Time Temporal Logic) because

the latter is considered more accessible to a wider

audience and it is more suitable for simulation. The

temporal operators of the foundation language

provide syntactic sugaring on the top of LTL

operators. These temporal operators include:

Always: it holds if its operator holds in every

signal cycle.

Never: it holds if its operand fails to hold in every

signal cycle.

Next: it holds if its operand holds in the cycle that

in the immediately follows.

Until: it holds if the property at its left-hand holds

in every cycle from the current cycle up until the

next cycle in which the property at its right-hand

holds.

Before: it holds if the left-hand operand holds at

least once between the current cycle and the next

time the right-hand operand holds.

5.4 Fault Tolerance in BHDL

 The usual development in B method goes from

the abstract requirement to the concrete execution.

During the development, the behaviour becomes

more and more deterministic. In spite of that, BHDL

can takes in account the possibility to describe a fault

scenario. Here we describe the ideal system with the

behaviour of the ideal variables in the abstract

machine, then, by Refinement, we inject the possible

fault. This fault is declared using false variables.

Then, we propose the correction step for the false

variables. At the end, we prove that the corrected

i2 s

N

a

n

i1

 i3

o

values of the false variables respect the

INVARIANT of the initial ones. The additional

variables and the correction operations are the cost of

trust behavior of the system.

5.5 Dependency Relation

BHDL project can make use of B tools to verify

the dependence between an output and an input. In

Refinement components, each connection produces

an independency relation between two variables.

Two types of connections may be noticed; the

connection between the sub-components and the

intern wires and the connection between sub-

components and outer ports.

The direction of the dependency is related to the

signal direction. As we see, this relation recursively

depends on the lower levels. As Refinement

(architecture) can see only the abstract machines

(ENTITYs) of its sub-components. So that, as the

Refinement can not see the Refinements of its own

sub-components, it cannot see their dependency

relation (see Fig. 6). One solution is to modify the

Invariant of each Abstract machine where

dependency relation is declared. To facilitate the

modification we write a part the invariant of the

abstract machine in an independent file that may be

easily modified by the refinement.

We defined a transitive relation “Depend” on the

ensemble PORTS with one direction. This relation

should be defined on variables attached to the

instances of the interne components not to the

generic form of them so we add new variables for

each instance to define the dependency relation. For

example, we shall write the dependency relation for

the following component.

Figure 6: Dependency Relation.

All these modification of the INVARIANT are

applied at refinement level where we can see the

subcomponents. But we need this information at the

abstract machine level because we need to know the

dependency relation in a higher level where this

component (or abstract machine) is included, in its

turn, as subcomponent. The abstract machine of the

right part of Fig. 7 is used as a sub-component in the

refinement of the left part.

This dependency relation has been use to check

fan-out property. In digital circuits, fan-out defines

the maximum number of digital inputs that the

output of a single logic gate can feed. The value of

the fan-out is a big impact on test and debugging.

Figure 7: Dependency Information Transfer.

6 REALISATION OF BHDL PROJECT:

The project is totally implemented by three distinct

components of BHDL:

6.1 A Graphical Interface for System Entry

(VGUI)

As we mentioned above, we make use of VGUI

(VHDL Graphical User Interface) to built the system

entry of Hardware Diagrams. It is an open source

tool that may be considered as a simple component

description tool. VGUI may be used to create generic

interconnected boxes. Each box may be decomposed

hierarchically into sub-boxes and so on. The boxes

and the connections of VGUI are typed. In

cooperation with VGUI developer, we added the

possibility to attach logic property to each box and

hide data. Eventually, VGUI generates VHDL code

annotated with B expressions. This step is optional;

designer may use a textual editor to directly write the

annotated code to be analyzed by the following step.

6.2 B Model Generator

Here a B model that corresponds to the annotated

VHDL model is crated. The A complier is built to

generate B code. From the external view of VHDL

or from an entity in VHDL model, it generates the

suitable B Abstract Machine that contains the

necessary properties of the Entity and traces the

structure of VHDL model.

In a similar way, the internal view in VGUI is

translated into Architecture in VHDL then into a

refinement in B. Because that design in VHDL

Consists of

Refinement

Abstract

machine(!1)

Refinement

Gate2

Gate1

i1

l4
i3

o1 i2

Abstract machine (!)

(high level)

Refinement

(high level)

Consists of

Dependency

Information

Dependency

Information

usually depends of some predefined standard

libraries, we created some B components that

correspond to some VHDL libraries (such as the

Standard logic 1164).

The compiler is the most important practical part of

BHDL project. It is built on ANTLR compiler

generator. ANTLR (Another Tool for Language

Recognition) is a powerful tool that accepts

grammatical language descriptions and generates

programs (compliers or translators) that can

recognize texts in the described languages, analyzes

these texts, constructs trees corresponding to their

structure and generates events related to the syntax.

These events, written in C++ or in Java, may be used

to translate the text into other languages. It can

generate AST (Abstract Syntactic Trees) which can

stock a lot of information about the analyzed text,

provides tree rewriting rules for easily translating

these ASTs. The correction of such a translator

depends only on the correction of every elementary

rewriting rule (declarative semantics). As VGUI,

ANTLR is open source software written in Java. The

translation from VHDL+ to B in is performed over

many steps:

• BHDL Lexer/Parser : which analyses the input

VHDL+, verifies the syntax and the semantic of

VHDL code, then it generates a pure VHDL tree

(AST) with independent branches that contain

the B annotations

• TreeWalker: this tree parser parses the previous

AST in order to capture the necessary

information to construct a new AST that

corresponds to B model.

• B-Generator: It traverses the AST produced by

the TreeWalker in order to generate B code.

Even if a corresponding B model is automatically

created, the design correctness is not automatically

proven. The generated B code should be proven to be

correct. B tools (AtelierB, B4Free, B-Toolkit) render

the task easy. It generates the necessary prove

obligations (POs), automatically produces an

important quantity of the proofs, cooperates with the

programmer to prove the rest of the POs. Here, if the

model is not completely proven, some defects may

be detected and the original VHDL design should be

modified.

7 AFCIM AND PCSI PROJECTS

 BHDL project is developed in the LIFL (Lille’s

Computer Science Laboratory). This research first

conducted into the AFCIM project (LIFL, INRETS,

HEUDIASYC Lab).

The French project AFCIM (Formal Architectures

for Conception and Maintenance of Embedded

Systems) coordinated by Philippe Devienne (LIFL)

is a collaborative research between four French

universities and institutes (LIFC, LIFL, Heudiasyc,

INRETS).

The global architecture of the AFCIM project is

shown in Fig. 9:

Figure 9: AFCIM Project

From a general Model Driven Architecture (i.e the

common part of specific description languages like

ADL, HDL...), we add formal annotations and

specifications according to the requirements or the

fault scenarios that we want to handle. All the tools

used in our platform are freely used and distributed

(Rodin, Eclipse, Antlr, …).

Eventually the main concepts of BHDL and

AFCIM is being augmented and implemented with

support of PCSI project (Zero Defect Systems)

between Lille University, Aleppo University and

MODELS

BHD

L

Critical

Systems CONCEPTION

Component -

Hierarchy

HDLs/ ADLs

Redundancy,

Trace

Fault Tolerance,

Introspection

Abstract Machine

Refinement

Entity

Architecture

External

View

Internal

View

VGUI VHDL B Method

Libraries Libraries

Figure 8: main transformations of BHDL.

Annaba University. The main new features of the

project are the following Fig.10:

7.1 Including PSL

Instead of special comments used in the first version

of BHDL to represent the logical behavior of VHDL

components, we use here a formal language, PSL,

that is standardized in 2005. PSL (Property

Specification Language) [12] is a language for the

formal specification of hardware. It is used to

describe properties that are required to hold in the

design under verification. It contains Boolean,

Temporal, Verification and modelling layers. The

flavour of PSL could be added to many HDL

(Hardware Description Language) such as VHDL,

Verilog, SyetemVerilog. This enlarges the usability

of our tool since PSL is expressive and standard.

7.2 Extending Scope of VHDL Treated in

BHDL

 While the first version of BHDL mainly manipulates

the design structure decorated with logical properties,

here we enlarge the model to accept important

concepts of VHDL such as signals where the concept

of Time appears.

Beside ENTITY and ARCHITECTURE VHDL

contains other design units such as

CONFIGURATION. These units could be taken in

the future.

7.3 Creating the Target Model Using Event-B

Instead of Classical B

 The purpose of Event-B is to model full systems

(including hardware, software and environment of

operation). Classical B is not suitable to represent

temporal properties which are important in hardware

design. Furthermore, Event-B facilitates the

representation of many subsystems in a global one.

After the creation of an HDL model, it will be traced

in B. in order to facilitate the proof of the

consistency and the formal refinement of the model;

we integrated our work in Eclipse environment.

Eclipse is generic platform to develop multi-

language software comprising an integrated

development environment (IDE) and an extensible

plug-in system. The Rodin Platform is an Eclipse-

based IDE for Event-B that provides effective

support for refinement and mathematical proof. The

platform is open source, contributes to the Eclipse

framework and is further extendable with plugins.

Such integration renders the integration between

hardware community and software community easy

since they work on the same environment. All the

tools used in our platform are freely used and

distributed (Rodin, Eclipse, Antlr, …).

7.4 Automated Addition of Robustness

We focus on the problem in evolving a fault-

intolerant program to a fault-tolerant one. The

question is “Is It possible to add a default scenario to

an existing model or program and generate

automatically the tolerant model or program?” This

problem occurs during program evolution new

requirement (fault-tolerance property, timing

constraints, and safety property) change. We argue

here that refinement can handle this evolution. In

others words a fault-tolerant program is a refined

form of its intolerant one. We have shown how to

apply this formalism to characterize fault-tolerance

mechanisms and to then reason about logical and

mathematical properties. For instance, the hamming

code is a kind of data refinement. By adding data

redundancy (extra parity bits), error-detection and

even error-correction are possible. This can

generalize to handle Byzantine properties.

Fault tolerance is often based on replication and

redundancy. This is involved by the use of hybrid

systems with different sources of energy (electric,

mechanic). This duplication can be also seen as

component refinement or algorithmic refinement.

For instance, nowadays, because of the integration of

circuits, stuck-at–fault is a more and more frequent

fault model. According that the probability that a

circuit contains at least k stuck-a-fault is too high, we

can generate an equivalent circuit, except that it is k-

stuck-at-fault tolerant. This transformation can be

seen a refinement, that a logico-mathematical

completion w.r.t. a default model.

VHDL

PSL

Temporal Pr.

PSL

RODIN

Eclipse

 HDL

Software
Event B

Figure 10: basic augmentation in the PCSI project (Zero Defect Systems) vs BHDL.

ACKNOWLEDGEMENT

The CAD tool, VGUI, is adapted to or project in

cooperation with Mr. Carl Hein.
An ANTLR parser template to generate AST trees is

built in cooperation with Mr. J. L. Boolanger.

8 REFERENCES

[1] J.-R. Abrial, The B-Book: Assigning Programs

to Meanings, Cambridge University Press, UK,

1996.

[2] Y. Herve, VHDL-AMS – Applications et

enjeux industriels, Duand, France, 2002.

[3] The website of Event B and RODIN [Online].

Available http://www.event-b.org/platform.html

[4] Flaviu Cristian, Understanding Fault-Tolerant

Distributed Systems, ACM, February 1991,

34(2): 56-78

[5] Terence Parr, The definitive ANTLR Reference,

May, 2007

[6] Ammar Aljer, Co-design and refinement in B,

Ph.D. Thesis, Lille Computer Science

Laboratory, Lille, France, Dec. 2004.

[7] D. Garlan, Formal Modeling and Analysis of

Software Architecture: Components, Connectors

and Event, Springer-Verlag, Sep 2003.

[8] I. Sommerville, Software Engineering, Pearson,

2007

[9] Rajeev Alur, et al. Mocha: Modularity in model

checking. In Proceedings of the Tenth

International Conference on Computer-aided

Verification, Lecture Notes in Computer Science

1427, Springer-Verlag (1998).

[10] Kenneth E. Kendall et Julie E. Kendall,

Systems Analysis and Design, 8/E, Prentice Hall

(2010).

[11] Anish Orora, Gray-Box Component-Based

Fault-Tolerance, Logical Aspects of Fault

Tolerance (LAFT), a LICS 2009 Workshop.

[12] DOULOS, PSL Golden Reference guide, Book,

2005.

