267 research outputs found

    Nested Maximin Latin Hypercube Designs

    Get PDF
    In the field of design of computer experiments (DoCE), Latin hypercube designs are frequently used for the approximation and optimization of black-boxes. In certain situations, we need a special type of designs consisting of two separate designs, one being a subset of the other. These nested designs can be used to deal with training and test sets, models with different levels of accuracy, linking parameters, and sequential evaluations. In this paper, we construct nested maximin Latin hypercube designs for up to ten dimensions. We show that different types of grids should be considered when constructing nested designs and discuss how to determine which grid to use for a specific application. To determine nested maximin designs for dimensions higher than two, four different variants of the ESE-algorithm of Jin et al. (2005) are introduced and compared. In the appendix, maximin distances for different numbers of points are provided; the corresponding nested maximin designs can be found on the website http://www.spacefillingdesigns.nl.Design of computer experiments;Latin hypercube design;linking parameter;nested designs;sequential simulation;space-filling;training and test set

    Nested Maximin Latin Hypercube Designs

    Get PDF

    Nested Maximin Latin Hypercube Designs

    Get PDF
    In the field of design of computer experiments (DoCE), Latin hypercube designs are frequently used for the approximation and optimization of black-boxes. In certain situations, we need a special type of designs consisting of two separate designs, one being a subset of the other. These nested designs can be used to deal with training and test sets, models with different levels of accuracy, linking parameters, and sequential evaluations. In this paper, we construct nested maximin Latin hypercube designs for up to ten dimensions. We show that different types of grids should be considered when constructing nested designs and discuss how to determine which grid to use for a specific application. To determine nested maximin designs for dimensions higher than two, four different variants of the ESE-algorithm of Jin et al. (2005) are introduced and compared. In the appendix, maximin distances for different numbers of points are provided; the corresponding nested maximin designs can be found on the website http://www.spacefillingdesigns.nl.

    Maximin Designs for Computer Experiments.

    Get PDF
    Decision processes are nowadays often facilitated by simulation tools. In the field of engineering, for example, such tools are used to simulate the behavior of products and processes. Simulation runs, however, are often very time-consuming, and, hence, the number of simulation runs allowed is limited in practice. The problem then is to determine which simulation runs to perform such that the maximal amount of information about the product or process is obtained. This problem is addressed in the first part of the thesis. It is proposed to use so-called maximin Latin hypercube designs and many new results for this class of designs are obtained. In the second part, the case of multiple interrelated simulation tools is considered and a framework to deal with such tools is introduced. Important steps in this framework are the construction and the use of coordination methods and of nested designs in order to control the dependencies present between the various simulation tools
    corecore