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Chapter 1

Introduction

Don’t you watch television?
I thought all children despise effort and en-
joy cartoons.

(BtVS, Episode 05.17 )

1.1 Simulation-based product design

In the last two decades advances in the field of computer technology have had a tremen-

dous impact on the design processes engineers face every day. The use of sophisticated

computer programs to aid engineers in the design of technical devices, such as television

sets and cellular phones, is common practice nowadays. These computer programs are

able to provide much more (detailed) information about the devices than the engineers

had before. On the downside, however, this stream of new-found knowledge has led to

an increasingly more complex decision process.

When designing a new device, engineers try to find a product design that fulfills their

requirements. These requirements are stated in terms of (quantifiable) criteria that the

final product should meet. The expected lifetime of a product is an example of such a

criterion. Unfortunately, it is very hard to determine whether all criteria are met before

a product is actually manufactured. Therefore, engineers resort to prototyping, i.e. they

test different prototypes of the product, during various stages of the design process, in

order to find one that meets all design criteria.

In the early days physical prototyping was used most often, which meant that several

different product designs, or scaled versions of it, were manufactured and then tested on

how they performed on the design criteria, i.e. these prototypes acted as test-scenarios

for the product. Physical prototyping, however, takes a lot of time and large costs are

incurred at the production of the prototypes. Furthermore, the increased complexity

1



2 Chapter 1. Introduction

of many technical devices, as well as the increased pressure on the time-to-market, has

made this type of prototyping more and more obsolete. Therefore, physical prototyping

is nowadays often replaced by virtual prototyping . Instead of actually manufacturing

the prototypes they are now represented by computer simulation models (cf. Oden et al.

(2006)). Such models can be constructed using Computer Aided Engineering tools, such

as Finite Element Analysis and Computational Fluid Dynamics. These are special com-

puter packages that are able to simulate the behavior of a product. Hence, the engi-

neers can monitor directly how different prototypes will perform without the need to go

through the timely and costly process of manufacturing, which is especially helpful when

implementing new product designs. Furthermore, this premature testing minimizes the

possibility of flaws in the final product.

There are many other fields, besides engineering, in which the decision process is

facilitated by simulation tools. Examples of such fields are: logistics, military, social

science, and finance; see e.g. Law and Kelton (2000). In this thesis, however, we mainly

consider the problems that arise when designing a product or a process in engineering.

Note that each time the term product is utilized in the text, the term process could be

read instead.

Due to the complexity of the mathematical systems underlying the computer sim-

ulation tools there are, unfortunately, often no (simple) explicit input-output formulas

known; such tools are therefore referred to as black boxes . It is then up to the engi-

neer to set the design (or input) parameters in such a way that the observed response

(or output) parameters meet all requirements of the final product; see Figure 1.1. Al-

though computer power has significantly increased during the last years, the evaluation

of a particular setting of the design parameters (also called a scenario) may still be very

time-consuming. It is not unusual for one evaluation to take several minutes, or even up

to several hours, of computation time. To gain more insight into a computer simulation

tool the unknown black-box function is often replaced by an approximation model, based

on a set of evaluations of the black-box function. Since computation time, and, hence,

the number of evaluated scenarios, is limited in practice, the question as to which set of

scenarios to evaluate becomes one of vital importance. Answering this question is the

main focus of this thesis.

Black box
design

parameters
response

parameters

Figure 1.1: A black-box function.
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The change from physical prototyping to virtual prototyping clearly has had influence on

the way experiments are dealt with these days. On the side of setting up experiments,

i.e. determining which product scenarios to evaluate, things have changed significantly.

As a result, the traditional statistical design of experiments , such as full and fractional

factorial designs, is no longer able to correctly deal with deterministic computer exper-

iments. Some reasons that underlie this inability are the following; see Stehouwer and

Den Hertog (1999):

• Due to the presence of noise in traditional physical experiments, replicating the eval-

uation of a particular design point will result in different response values. These

replicates are used to form confidence intervals for the expected main and interac-

tion effects of design parameters on response values (cf. Law and Kelton (2000)).

With deterministic computer simulations, however, lack of noise will yield exactly

the same outcome when a design point is evaluated twice.

• Another effect of noise in physical experiments is that design points in traditional

design of experiments will often be located on or near the border of the design space

(or the feasible region). With computer experiments, however, the absence of noise

no longer restricts the design points to the borders of the feasible region. Since the

behavior in the interior of the design space is equally important as the behavior on

the border of this region, a design for computer experiments should have its design

points spread out over the entire feasible region.

• Most traditional designs for experiments are applicable only to problems with con-

straints on parameter ranges, i.e. rectangular design spaces. In the practice of

expensive computer simulations, however, there is sometimes a need for designs on

arbitrarily shaped feasible regions. Stinstra, Den Hertog, Stehouwer, and Vestjens

(2003) propose a method to obtain designs on different shaped regions, such as a

strip and a quarter of a disk.

For above reasons a design of computer experiments should be used instead of a tradi-

tional design of experiments when dealing with deterministic computer simulations. The

main part of this thesis focuses on the construction of so-called maximin Latin hypercube

designs. Such designs for computer experiments have been shown to lead to good ap-

proximation models, see e.g. Simpson et al. (2001), Santner et al. (2003), and Bursztyn

and Steinberg (2006).

1.2 Metamodel approach

It has been proposed to replace black boxes by global approximation models, also called

metamodels; see e.g. Kleijnen (1987), Barton (1998), Jones et al. (1998), and Booker
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et al. (1999). Equivalent terms that appear in the literature are: compact models,

surrogate models, and response surface models. With such metamodels product designs

can be evaluated relatively fast. Hence, these models can be used to gain insight into the

product over the whole design space. Furthermore, the explicit approximating functions

enable the search for optimal and robust product designs within an admissible time.

Alternatively, several sequential optimization methods have been introduced in the

literature to deal with design optimization involving expensive (or time-consuming) sim-

ulations, see Driessen (2006) for a comprehensive overview of such methods. These

sequential methods try to find an optimal product design by means of derivative-free

optimization and search methods; see e.g. Toropov et al. (1993), Glover et al. (1996),

Conn et al. (1997), Powell (2000), and Brekelmans et al. (2005).

Note that these sequential techniques do not lead to a global approximation model,

and, hence, less information about the behavior of the product is obtained. Further-

more, optimal product designs found by optimizing a global approximation model re-

main feasible under slight changes in the optimization problem, whereas with sequential

optimization methods new evaluations would be needed. The advantage of sequential

optimization, however, is that the number of required evaluations is in general lower.

This stresses the importance of determining a good set of evaluation points when using

a global approximation model, i.e. a set that is expected to yield as much information as

possible concerning the underlying black-box function.

In this thesis we consider the Metamodel approach; see Den Hertog and Stehouwer

(2002). This approach replaces the (unknown) black-box function by a global approxi-

mation model, based on evaluations of some scenarios. The design process can be divided

into four basic steps: problem specification, design of computer experiments, metamod-

eling, and design analysis and optimization. Next, the four steps in the Metamodel

approach are summarized, as well as the problems that are encountered when applying

this procedure to product design problems. For a detailed discussion of these steps the

reader is referred to Stinstra (2006).

Step 1: Problem specification

In the first step of the Metamodel approach the product design problem is formulated.

This includes the identification and definition of both the design and response parameters.

The expected number of simulations needed, as well as the corresponding simulation

times, are also determined. The latter times are of particular importance for cases where

there is a budgetary maximum on the time spent on simulation. To explore the design

space, restrictions on design parameter settings, such as lower and upper bounds, have

to be investigated. Furthermore, physical limitations may apply. For example, it may

be known beforehand that particular settings of the design parameters do not lead to
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good designs or are even infeasible, and, hence, restrictions on combinations of designs

parameters should be considered. The collection of parameter settings that satisfy all

restrictions then constitutes the design space (or feasible region). There may also be

restrictions imposed on some of the response parameters. Since response values will be

known only after the scenarios have been evaluated, feasibility of the observed responses

has to be checked afterwards. In order to use the fitted metamodels (see Step 3) to find

a good product design (see Step 4) the requirements that the final product has to meet

also have to be defined in the first step.

Step 2: Design of computer experiments

With the design space determined the question arises as to which scenarios (or design

points) to evaluate. Such a set of evaluation points is called a design. Note that the term

design has two different meanings in this thesis; depending on the context, it either refers

to the design of (computer) experiments or to the design of a product. When no details on

the functional behavior of the response parameters are available, it is important to obtain

information from the entire design space. One way to accomplish this is to construct a

space-filling design, i.e. to have the design points “evenly spread” over the entire feasible

region. In Chapter 2 several different criteria that will lead to a proper distribution of

the design points over the design space are discussed. Furthermore, the main subject of

most subsequent chapters of this thesis is the construction of good designs for computer

experiments.

Step 3: Metamodeling

After the design points have been evaluated the observed response values are used to

fit metamodels to the black box. Polynomials, neural networks, radial basis functions,

and Kriging models, are popular choices for these approximation models. To validate

the obtained models, techniques such as cross-validation could be used; see e.g. Kleijnen

and Sargent (2000). Should a metamodel appear to be invalid, then either a different

metamodel should be fitted to the data or an additional set of evaluations has to be

carried out to improve the current model. Chapters 7 and 8 introduce a way to choose

such extra scenarios.

Step 4: Design analysis and optimization

Once valid metamodels have been found, these models, in combination with optimization

techniques, will help to gain insight into the product and to find a good product design,

within the design space, that satisfies all response criteria set by the engineers. Due

to the fact that metamodels are explicit functions, function evaluations are relatively

fast, and, hence, mathematical programming approaches (cf. Birge and Murty (1994))
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could be applied. Since the resulting best-found product design is an approximation of

the real (unknown) optimum, it is wise to simulate the corresponding design parameter

settings once more. When the observed response values do not deviate too much from

the response values estimated by the metamodels, the product design is very likely a

good one. Note, however, that during the manufacture of the product some of the design

parameters may be subject to noise, e.g. due to small errors in their actual settings. To

deal with this problem robustness should be taken into account; see Stinstra and Den

Hertog (2005) for a more detailed discussion on how to obtain a robust product design.

1.3 Contribution

The contribution of this thesis is twofold. On the one hand, many new (approximate)

maximin designs are obtained for the class of Latin hypercube designs. On the other hand,

coordination methods and nested maximin designs are introduced as means to deal with

interdependencies among black-box functions and/or among function evaluations of a

single black box.

Part I considers the use of maximin Latin hypercube designs in the design of com-

puter experiments for box-constrained design spaces. These maximin Latin hypercube

designs are extremely useful in the approximation and optimization of black-box func-

tions. In this thesis general formulas are derived for two-dimensional maximin Latin

hypercube designs of n points, when the distance measure is the maximum norm or the

rectangular distance. For the Euclidean distance measure, maximin Latin hypercube

designs are obtained for n ≤ 70 and approximate maximin Latin hypercube designs are

obtained for n ≤ 1000. Furthermore, we investigate the trade-off between the space-

fillingness and the non-collapsingness of designs for computer experiments and show that

highly non-collapsing designs can be constructed without reducing the space-fillingness

too much. Moreover, for two-dimensional maximin designs we show that the reduction

in the maximin distance caused by imposing the Latin hypercube structure is in general

small. This justifies the use of maximin Latin hypercube designs instead of the tradi-

tional unrestricted designs. Moreover, for up to ten dimensions approximate maximin

Latin hypercube designs are constructed for n ≤ 100. These designs present a significant

extension of the previously known results.

Part II presents a collaborative extension of the Metamodel approach (cf. Den Her-

tog and Stehouwer (2002)). In this Collaborative Metamodel approach, which acts as a

framework for dealing with multi-component product design problems, coordination of

the interrelated black-box functions plays a crucial role. Such interrelations occur, for

example, in the design of high-tech products, such as automobiles and aircrafts, where

the products often consist of many interrelated components, each of them represented
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by their own black-box functions. To deal with black-box functions that depend on

each other by some output-input relations the concept of coordination methods is intro-

duced. Several aspects of such coordination methods are discussed and compared. For

the throughput time, i.e. the total time needed for all simulations, general formulas are

derived. Another important step in the Collaborative Metamodel approach is the con-

struction of nested designs. Such designs are useful when dealing with black-box functions

that have some design parameters in common. In this thesis general formulas are derived

for one-dimensional nested maximin designs, when nesting two designs, and approximate

maximin designs are obtained when nesting three or four designs. Furthermore, it is

shown that the loss in space-fillingness, with respect to traditional maximin designs, is

relatively small. Moreover, in two dimensions, non-collapsing nested maximin designs

are obtained for n ≤ 15 (and some larger values), when nesting two designs, for different

types of grids. Although the concept of sequential evaluations, i.e. first evaluating an

initial set of design points and then, if needed, evaluating an additional set of points, is

not new, the usage of nested designs leads to new ways to facilitate this process. In the

same light, the obtained nested maximin designs could also be used as training and test

sets for fitting and validating metamodels, respectively.

Note that all maximin Latin hypercube designs and nested maximin designs that are

obtained in this thesis can be downloaded from the website

http://www.spacefillingdesigns.nl.

1.4 Outline

This thesis consists of two parts. The main focus of both parts is on designs for computer

experiments. The current section provides a short description of the contents of all the

following chapters.

Part I considers the construction of (box-constrained) maximin designs, and maximin

Latin hypercube designs in particular, for a single black-box function. Chapter 2 first

gives an overview of the literature in the field of design of computer experiments. Chap-

ter 3 derives construction methods for two-dimensional maximin Latin hypercube de-

signs for the maximum norm and the rectangular distance measure. Furthermore, for the

Euclidean distance measure a heuristic construction method to obtain two-dimensional

approximate maximin Latin hypercube designs is proposed. Chapter 4 extends this

heuristic to higher dimensions and uses this extension, in combination with a simulated

annealing algorithm, to obtain approximate maximin Latin hypercube designs for up to

ten dimensions. Finally, Chapter 5 illustrates the trade-off between the space-fillingness

and non-collapsingness of two-dimensional maximin designs.
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Part II considers, among others, the problem of dealing with multi-component prod-

uct design problems. Chapter 6 introduces the Collaborative Metamodel approach as a

framework to deal with such design problems. Furthermore, it proposes to use coordina-

tion methods in order to efficiently deal with the relationships present among the various

components. The next two chapters consider the construction of nested maximin de-

signs. Chapter 7 provides explicit and heuristic construction methods for one-dimensional

nested maximin designs. The construction of two-dimensional nested maximin designs

for different types of grids is considered in Chapter 8. Finally, Chapter 9 presents the

main conclusions and gives some directions for further research.

This thesis is based on the following research papers:

Chapters 3 & 5 Dam, E.R. van, B.G.M. Husslage, D. den Hertog, and J.B.M. Melis-
sen (2006). Maximin Latin hypercube designs in two dimensions,
Operations Research. To appear.

Chapter 4 Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog
(2006). Space-filling Latin hypercube designs for computer exper-
iments, CentER Discussion Paper 2006-18, Tilburg University.

Chapter 6 Husslage, B.G.M., E.R. van Dam, D. den Hertog, H.P. Stehouwer,
and E.D. Stinstra (2003). Collaborative metamodeling: Coordi-
nating simulation-based product design, Concurrent Engineering:
Research and Applications, 11(4), 267–278.

Chapter 7 Dam, E.R. van, B.G.M. Husslage, and D. den Hertog (2004). One-
dimensional nested maximin designs, CentER Discussion Paper
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Maximin designs





Chapter 2

Design of computer experiments

History is rarely made by reasonable men.

(Terry Goodkind, Blood of the Fold)

2.1 Introduction

The second step of the Metamodel approach encompasses the construction of a design

of computer experiments (see Section 1.2). Such a design is a collection of points at

which the underlying black-box function will be evaluated. Response values obtained at

these evaluations are used to quantify the effect that the design parameters have on the

characteristics of the product. Furthermore, based on the observed data, metamodels can

be built to approximate the unknown black-box function. Not only does this lead to a

better understanding of the final product, it also opens the way to the use of optimization

techniques to find a good product design.

The prediction accuracy of a metamodel is not only affected by the type of model

used, e.g. a polynomial, it also heavily depends on the data onto which the model is fitted,

i.e. on the design points that are evaluated. Hence, well-chosen design points increase the

accuracy of the constructed metamodels, which, in turn, improves the approximation of

the true behavior of the unknown black-box function. Therefore, it is vitally important

to use a proper design of computer experiments. This chapter discusses several classes

of designs and different measures that are used, both in literature and in practice, to

obtain good designs for computer experiments. As is recognized by several authors, a

design of computer experiments should at least incorporate the following two features.

First of all, the design should be space-filling in some sense. Secondly, the design should

be non-collapsing. These two features are discussed in Sections 2.2 and 2.3, respectively.

We assume that all parameters are equally important in the construction of the design

of computer experiments. Therefore, box constraints, i.e. lower and upper bounds, on

11
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the design parameters can (and must) be scaled to equally sized intervals, e.g. [0, 1] or

[0, n− 1], for every parameter. Note that in this thesis we will sometimes choose to scale

designs to the [0, 1]k-box and at other times choose to use the [0, n − 1]k-box. In the

current chapter all distance computations are based on the [0, 1]k-box.

2.2 Design criteria

It has been stressed before that it is important to have a good design, i.e. a collection

of evaluation points, for computer experiments. The problem is to define what makes a

design “good”. We need some kind of criterion that tells us when one particular design

is preferred over another one in order to find a good (and possibly the best) design. In

this section several criteria for good designs that are often used in the literature and in

practice are considered.

2.2.1 Geometrical criteria

As noted in Section 1.2, it is important to obtain information from the entire feasible

region when there are no details available on the functional behavior of the response

parameters. Therefore, design points should be “evenly spaced” over the entire region.

A design that fills the whole design space is called space-filling.

Maximin design

Intuitively it appeals to spread design points over the design space in such a way that the

separation distance (i.e. the minimal distance between pairs of points) is maximized. Let

xi ∈ Rk, i = 1, . . . , n, represent the n design points of a k-dimensional design X within

the feasible region Ω and let d(·, ·) be a certain distance measure. A maximin design X

then has a distance

d = max
X⊂Ω
|X|=n

min
xi,xj∈X
i6=j

d(xi, xj). (2.1)

Figure 2.1 gives an example of a maximin design of 7 points in the unit square, with

respect to the Euclidean (or `2) distance measure, i.e.

d(xi, xj) =

√√√√
k∑

l=1

(xil − xjl)2. (2.2)

The optimal design in this figure has the separation distance d = 4− 2
√

3 ≈ 0.5359; see

e.g. Melissen (1997). Note that the design point located in the upper-right of the square

is a so-called rattler , i.e. a point that can be moved somewhat without affecting the

separation distance. The region within which this point can be moved freely is depicted

by the gray-colored area.
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Minimax design

Another intuitively appealing criterion is to require every point in the region to have a

design point close by, or, put differently, to minimize the maximal distance from any

point to the design. Let y ∈ Rk represent an arbitrary point in the feasible region, X a

design of n points, and ρ(y,X) the distance between y and its closest design point, i.e.

ρ(y,X) = min
xi∈X

d(y, xi). (2.3)

A minimax design X of n points then has a distance

ρ = min
X⊂Ω
|X|=n

max
y∈Ω

ρ(y,X). (2.4)

The distance ρ is referred to as the minimal covering radius of the design. For example,

in case of 7 congruent `2-circles the minimal radius needed to cover the unit square is

ρ ≈ 0.2743; see Figure 2.2 (from Johnson et al. (1990)). In this figure the diamonds (�)
depict remote sites , i.e. points in the square that are at distance ρ from the design.

Figure 2.1: Two-dimensional `2-
maximin design of 7 points; d ≈ 0.5359.

�
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Figure 2.2: Two-dimensional `2-
minimax design of 7 points; ρ ≈ 0.2743.

Uniform design

As a third criterion, consider the problem of finding a design that is as uniformly dis-

tributed as possible. Fang et al. (2000) use the Lp-discrepancy to measure the uniformity

of a design. The lower this discrepancy, the more uniform the design points are scattered
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over the feasible region Ω. More formally, the minimal Lp-discrepancy is given by

min
X⊂Ω
|X|=n

(∫

Ω

|Fn(y,X)− F (y)|p
)1/p

, (2.5)

with Fn(y,X) the empirical distribution function of design X (of n points) and F (y) the

uniform distribution function on Ω. Popular choices for the parameter p are 2 and ∞.

The so-called U-type design is the most widely used uniform design. Since this particular

type of design is non-collapsing, an example of such a uniform design is postponed until

Section 2.3.

Audze-Eglais design

Another criterion that leads to a space-filling distribution of the design points has been

proposed by Audze and Eglais (1977). The authors consider the physical analogy of

a system of points with potential energy U . This energy is caused by repulsive forces

between the points, and, naturally, the system will move to a state with minimal potential

energy. Bates et al. (2004) apply this idea to construct non-collapsing, space-filling

designs. Under the assumption that the repulsive forces are inversely proportional to the

squared distances between the points, an Audze-Eglais design is obtained:

U = min
xi,xj∈X

n−1∑
i=1

n∑
j=i+1

1

d2(xi, xj)
. (2.6)

Here, X is a non-collapsing design of n points; see Section 2.3.

2.2.2 Statistical criteria

Instead of using a criterion that optimizes the distribution of the design points over the

feasible region in some sense, i.e. a geometrical criterion, it may be interesting to use a

criterion based on some statistical arguments. For example, when it is expected that the

(unknown) black-box function can be approximated by a second-order polynomial it may

be wiser to choose the design points in such a way that the expected error of fitting the

polynomial to the observed data will be minimal.

Integrated mean squared error design

Let R(y) represent the response function, which depends on the design points y. Assume

that R has the form

R(y) =
t∑

j=1

βjfj(y) + Z(y). (2.7)
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Here, each fj(y) is a known polynomial and each βj is the corresponding unknown coeffi-

cient. Furthermore, Z(y) is some stochastic process that represents the deviation of the

(unknown) black-box function from the assumed linear model; see Sacks et al. (1989).

For a given design X of n points, let the best linear predictor of R(y) be defined by

R̂(y,X). The mean squared error (MSE) of this predictor is then given by

MSE
(
R̂(y,X)

)
= E

{(
R̂(y,X)−R(y)

)2
}
. (2.8)

To obtain a design that works well for the entire design space, the integrated mean squared

error (IMSE) is often considered. This criterion averages the mean squared error over

the region of interest, i.e. the feasible region Ω, possibly using some weight function. For

the normalized IMSE criterion the best design is found by solving the following problem

(with σ2
Z the variance of process Z):

min
X⊂Ω
|X|=n

1

σ2
Z

∫

Ω

MSE
(
R̂(y,X)

)
dy. (2.9)

Note that the above expression depends on the correlation structure of Z, and, hence,

it is important to choose a proper setting of the correlation parameters, which may be

hard. Another disadvantage is that even when dealing with multiple responses for each

response the same correlation structure Z has to be used. Figure 2.3 gives an example

of a two-dimensional integrated mean squared error design for a quadratic model, where

Z is assumed to be a Gaussian process (from Sacks et al. (1989)).

Crary et al. (2000) have developed I-OPTTM, to generate designs with minimal

integrated mean squared error. They find that IMSE-optimal designs may have proximate

design points, which they call “twin points”; see Crary (2002).

Maximum entropy design

Entropy was introduced by Shannon (1948) to measure the amount of available infor-

mation (about some process). In the field of design of experiments Lindley (1956) used

this notion to determine the information provided by the experiments. The lower the

entropy, the better the understanding of the underlying process. Let π represent the prior

distribution (i.e. before the experiments) and πX the posterior distribution (i.e. after the

experiments). The prior and posterior information on the process are then defined as

I =

∫

Ω

π(y) log
(
π(y)

)
dy = Eπ

{
log π

}
, and (2.10)

IX =

∫

Ω

πX(y) log
(
πX(y)

)
dy = EπX

{
log πX

}
, (2.11)
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respectively. The change in information, and thus the value of the experiments, is equal

to IX − I. Farhangmehr (2003) shows that this difference can be rewritten as H −HX ,

where H and HX are Shannon’s prior and posterior entropy:

H = −Eπ
{
I
}

(2.10)
= −Eπ

{
Eπ{log π}

}
, and (2.12)

HX = −EπX
{
IX

}
(2.11)
= −EπX

{
EπX{log πX}

}
, (2.13)

respectively. Hence, a design is of maximum entropy if it minimizes the posterior entropy

HX . This corresponds to selecting those design points about which the least is known.

Note that under the Gaussian assumption a maximum entropy design maximizes the

determinant of the prior covariance matrix; see Koehler and Owen (1996). An example of

a two-dimensional maximum entropy design is depicted in Figure 2.4 (from Farhangmehr

(2003)).

Figure 2.3: Two-dimensional IMSE de-
sign of 9 points for a quadratic model.

Figure 2.4: Two-dimensional maximum
entropy design of 13 points.

2.2.3 Other criteria and related problems

The above list of criteria is by no means meant to be exhaustive. For a more thorough

discussion of these, and other, criteria the reader is referred to Koehler and Owen (1996)

and Santner et al. (2003). In the rest of this thesis we will consider the maximin distance

criterion. The resulting maximin (Latin hypercube) designs generally speaking yield the

best approximations, see e.g. Simpson et al. (2001), Santner et al. (2003), and Bursztyn

and Steinberg (2006).



2.3. Non-collapsing designs 17

The two-dimensional maximin design problem has been studied in location theory. In

this field of research, the problem is usually referred to as the continuous multiple facility

location problem or the max-min facility dispersion problem, see e.g. Erkut (1990) and

Dimnaku et al. (2005). Facilities, such as power plants, are placed in the plane such that

the minimal distance to any other facility is maximal. In the case of power plants, such a

placement minimizes the probability that a failure of one of the power plants will affect

the other plants.

There is also much literature on packing and covering with circles. The problem of

finding the maximal common radius of n circles that can be packed into a square (or,

in higher dimensions, the packing of n congruent spheres into a k-dimensional cube) is

equivalent to the maximin design problem. The problem of finding the minimal com-

mon radius of n circles that cover a square is equivalent to the minimax design problem.

Melissen (1997) gives a comprehensive overview of the historical developments and state-

of-the-art research in these fields. For the `2-distance measure optimal two-dimensional

maximin solutions are known for n ≤ 30 and n = 36, see e.g. Kirchner and Wengerodt

(1987), Peikert et al. (1991), Nurmela and Österg̊ard (1999), and Markót and Csendes

(2005). Furthermore, many good approximating solutions have been found for larger

values of n; see the Packomania website of Specht (2005). Baer (1992) solved the max-

imum `∞-circle packing problem in a k-dimensional unit cube. The maximum `1-circle

packing problem in a square has been solved for many values of n; see Fejes Tóth (1971)

and Florian (1989). Chapters 3 to 5 discuss maximin designs in more detail, and (their

relation with) non-collapsing maximin designs in particular.

2.3 Non-collapsing designs

Designs for computer experiments are mostly used to gain insight into, and optimize,

black-box functions. Since there is often no information available about the black-box

behavior, design points should be chosen in such a way that the expected amount of

information obtained is maximized. Section 2.2 discusses several criteria that can be

used to address this problem.

Unfortunately, designs that are optimized for the space-fillingness criterion (or one of

the statistical criteria) often turn out to be highly collapsing . When one of the design

parameters has (almost) no influence on the black-box function value, two design points

that differ only in this parameter will “collapse”, i.e. they can be considered as the same

point that is evaluated twice. For deterministic black-box functions this is not a desirable

situation. For example, should one of the two design parameters in Figure 2.4 have no

significant influence, then the 13 evaluated design points would collapse onto only 5 dif-

ferent points, thereby losing 8 time-consuming evaluations. Therefore, two design points
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should not share any coordinate values when it is not known a priori which dimensions

are important. Of course, the screening of design parameters, i.e. to determine which

parameters are important based on experience with or knowledge about the underlying

process, before an experiment is set up may provide useful information about which de-

sign parameters appear to have a significant influence on the responses. However, the

true effect of a design parameter on the black-box function value will still be known only

after the computer experiments have taken place. Hence, the non-collapsingness of a

design remains an important issue to consider.

2.3.1 Latin hypercube designs

To guarantee non-collapsingness, when searching for a good design, the search space is

often restricted to some class of designs. One of such classes that is widely used in both

theory and practice is the class of Latin hypercube designs (LHDs). In our definition

a Latin hypercube design is an n × k matrix, where each column yj, j = 1, . . . , k, is a

permutation of the set {0, 1, . . . , n− 1}. The rows xi = (xi1, xi2, . . . , xik), i = 1, . . . , n, of

this matrix define the design points. Note that the design points lie on the [0, n−1]k-grid,

and, since every column is a permutation, no coordinate values are shared by any pair of

design points. As an example, consider the following two-dimensional Latin hypercube

design of n = 12 points:

XT =

(
0 1 2 3 4 5 6 7 8 9 10 11
0 9 5 8 6 10 2 4 1 11 3 7

)
. (2.14)

The design corresponding to matrix X is depicted in Figure 2.5.

McKay et al. (1979) were the first to use Latin hypercube designs in computer ex-

periments by introducing a technique called Latin hypercube sampling . The idea is to

divide the design space into nk equally sized cells and to randomly select n cells, under

the restriction that the projections of the selected cells onto any axis do not overlap. A

design point is chosen randomly within each of the n selected cells. See Figure 2.6 for

an example of a two-dimensional Latin hypercube sample of n = 12 points. The use of

this sampling method reduces the variance of the expected response values (asymptoti-

cally), when compared to independent and identically distributed (iid) sampling; see e.g.

Stein (1987). A slightly adapted version of Latin hypercube sampling lets the centers of

the selected cells represent the design points, instead of choosing them randomly. Note

that these latter designs (after scaling) correspond to our definition of a Latin hypercube

design.
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Figure 2.5: Two-dimensional Latin hy-
percube design of 12 points.

Figure 2.6: Two-dimensional Latin hy-
percube sample of 12 points.

2.3.2 Orthogonal arrays

Several researchers have considered Latin hypercube designs that exhibit some special

structure. For example, both Owen (1992) and Tang (1993), independently and contem-

poraneously, have used orthogonal arrays to construct designs for computer experiments.

An n×k matrix OA, with its elements taken from the set {1, 2, . . . , s}, is called an orthog-

onal array of strength t if in any n×t submatrix of OA each of the st possible rows occurs

with the same frequency λ; clearly, n = λst. Furthermore, note that a Latin hypercube

design is an orthogonal array of strength 1, i.e. s = n and λ = t = 1. The advantage of

orthogonal arrays is their uniformity in each t-variate margin, i.e. when projected onto

t (or fewer) dimensions the points in the array form a regular grid. Latin hypercube

designs exhibit this property only in one dimension. A major disadvantage, however,

is that orthogonal arrays exist only for certain values of k and when n = λst. Tang

(1993) proposes a method to construct Latin hypercube designs by extending orthogo-

nal arrays, thereby (partly) preserving some of the features of the latter. Owen (1992)

uses randomization to derive Latin hypercube designs from the columns of orthogonal

arrays. An example of such a randomized orthogonal array is depicted in Figure 2.7.

In fact, the figure shows one of the two-dimensional projections of an orthogonal array

with (n, k, s, λ, t) = (16, 5, 4, 1, 2) (see the StatLib website of Meyer and Vlachos (1993))

and with the design points randomly centered (otherwise, the projection would yield a

4×4 regular grid). Note that each of the 16 subsquares contains exactly one design point.

To extend the class of designs with orthogonal properties Ye et al. (2000) consider
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Figure 2.7: Two-dimensional projection of a five-dimensional, randomly centered, ran-
domized orthogonal array of 16 points.

symmetric Latin hypercube designs . A Latin hypercube design is called symmetric when

for every point xi in the design there exists another point xj in the design that is the

reflection of xi through the center. These symmetric LHDs can be viewed as generaliza-

tions of orthogonal-array based LHDs that still retain some of the orthogonality of the

latter. Morris and Mitchell (1995) are the first to mention symmetric properties of some

Latin hypercube designs. They observe symmetry in maximin designs for which n = 2k

and refer to them as foldover designs.

Finally, Steinberg and Lin (2006) present a construction method for orthogonal Latin

hypercube designs, for the special case where n = 2k and k = 2m, which is based on

rotating the design points in a two-level factorial design.

2.3.3 Space-filling Latin hypercube designs

Section 2.2 discusses several criteria that can be used to obtain a space-filling distribution

of the design points over some specified feasible region. Moreover, for the class of Latin

hypercube designs one of these criteria could be applied to obtain a space-filling design

of computer experiments.

Figure 2.8 shows an optimal Latin hypercube design of 12 points on the unit square

for the `2-maximin distance criterion, with d =
√

13
11
≈ 0.3278. Maximin Latin hypercube

designs are discussed extensively in Chapters 3 and 4. Van Dam (2005) considers two-

dimensional Latin hypercube designs that are optimized for the minimax criterion. The

case of 12 design points on the unit square is depicted in Figure 2.9. The minimal radius

needed to cover the square is equal to ρ = 5
22
≈ 0.2273. Again, the diamonds (�) rep-
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resent remote sites. Furthermore, note that the Latin hypercube designs in Figures 2.8

and 2.9 are both symmetric (see Section 2.3.2).

Figure 2.8: Two-dimensional `2-
maximin Latin hypercube design of 12
points; d ≈ 0.3278.

�

�

�

�

Figure 2.9: Two-dimensional `2-
minimax Latin hypercube design of 12
points; ρ ≈ 0.2273.

As mentioned in Section 2.2.1, the U-type design is the most widely used uniform design.

Since each column of this type of design is a permutation of {0, 1, . . . , n−1} the resulting

design points form a Latin hypercube design. Figure 2.10 (from the Uniform Design

website of Fang et al. (1999)) gives an example of a two-dimensional U-type uniform

design of 12 points on the unit square that minimizes the centered L2-discrepancy mea-

sure: CL2 ≈ 0.0456. Note that this centered measure does not only take into account

the uniformity of the design points, but also the uniformity of all the projections of these

points, see Fang et al. (2002).

An Audze-Eglais Latin hypercube design of 10 points, with minimal potential energy

U ≈ 2.0662 (with respect to the squared Euclidean distance measure), is depicted in

Figure 2.11 (from Bates et al. (2003)).

Several other criteria are used to optimize over the class of Latin hypercube designs.

Morris and Mitchell (1995), for example, introduce a scalar-valued design criterion that

is used to break ties between multiple designs that are maximin (and of minimum index),

thereby extending the definition used in Johnson et al. (1990). A simulated anneal-

ing method is used to explore the set of possible Latin hypercube designs. Jin et al.

(2005) propose a stochastic evolutionary algorithm to search this set. To achieve space-

fillingness the authors optimize the criterion of Morris and Mitchell, as well as maximum

entropy. Park (1994), finally, uses an exchange algorithm to find designs that minimize
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Figure 2.10: Two-dimensional centered
L2-discrepancy U-type uniform design
of 12 points; CL2 ≈ 0.0456.

Figure 2.11: Two-dimensional Audze-
Eglais Latin hypercube design of 10
points; U ≈ 2.0662.

the integrated mean squared error or that maximize entropy.

In location theory there exists a discrete version of the continuous multiple facility

location problem. In this case the facilities are chosen from a fixed set of candidate (grid)

points in such a way that, for example, the sum of the separation distances between pairs

of facilities is maximal (cf. Daskin (1995)). Note, however, that the obtained solution

may still be a collapsing design, and, hence, extra restrictions have to be added to the

discrete location problem to enforce the Latin hypercube structure.

All aforementioned authors deal with box-constrained design spaces. Stehouwer and

Den Hertog (1999) are among the few that consider space-filling Latin hypercube designs

on a non-box feasible region. To have the design points fall into the interior of the

constrained design space the authors use a refined grid. The density of this grid depends

on the content of the non-box region, relative to the content of its enveloping box. In

this thesis, however, we only consider box-constrained design spaces. Furthermore, to

distinguish between designs with some specific structure, e.g. Latin hypercube designs

and orthogonal arrays, and designs without an implied structure, the latter are referred

to as unrestricted designs in this thesis.

2.4 Sequential and nested designs

Since computer simulations are time-consuming there is often a (budgetary) maximum on

the allowed number of evaluations. Therefore, one could choose to first evaluate a small
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number of design points to get a better understanding of the design space. After all the

computer simulations have been performed the response values obtained at the evaluation

points could be used to fit a metamodel. This approximation model may, or may not,

turn out to be valid (see Section 1.2). In case of an invalid model, either a different model

should be fitted, or more data are needed to find a proper approximation of the (unknown)

black-box function. In the latter case, the remaining (allowed) simulations could be

used to extend the current design of computer experiments with extra evaluation points,

resulting in a so-called sequential design. Jin et al. (2002) apply both the maximum

entropy and the integrated mean squared error criterion to the problem of finding such

an augmenting set. These two statistical criteria are able to adapt the placement of

additional points to the existing metamodel, i.e. to let the choice of new evaluation

points depend, among others, on the correlation parameters of the current metamodel.

A major drawback, however, is that this adaptation is limited to Kriging models. To

deal with other types of approximation models a geometrical criterion, such as maximin,

could be used. Since such a criterion lacks adaptation to the fitted metamodel Jin

et al. (2002) propose to use a maximin scaled-distance or a cross-validation approach

to (partly) deal with this problem. In the maximin scaled-distance approach weights

are introduced to reflect the importance of each design parameter (as identified by the

fitted metamodel). In the cross-validation approach the point with the largest estimated

prediction error is added to the current set of design points. Similarly, Van Beers and

Kleijnen (2005) consider several candidate design points and add the point for which the

estimated variance of the predicted response value is maximal, using both cross-validation

and jackknifing.

In principle, sequential optimization methods (see Section 1.2) also use sequential de-

signs. For these methods, however, the determination of new evaluation points depends

on the (local) value of the objective function to optimize, instead of the validity of the

global approximation model. Furthermore, methods that, after evaluating an initial de-

sign, explore interesting areas of the design space by running extra computer simulations

in these areas can, within this framework, also be viewed as sequential design methods.

In Part II of this thesis we introduce nested designs . We call a design nested when

it consists of m separate designs, say, X1, X2, . . . , Xm, one being a subset of the other,

i.e. X1 ⊆ X2 ⊆ . . . ⊆ Xm. Note that in this case the placement of additional points de-

pends only on the current set of design points and not on the fitted metamodel. Clearly,

nested designs can be considered as a type of sequential designs. For example, when

m = 2, X1 can be considered as the initial design, which is augmented by the design

points in X2 \X1, leading to the new (extended) design X2.

More importantly, in the particular case where m = 2 the set X1 could be used as
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a training set for fitting a metamodel; set X2 \ X1 could then be the test set used for

validating the obtained metamodel.

Besides acting like sequential designs or training and test sets for single black-box

functions, nested designs can also be used as designs for multiple black-box functions

that share some design parameters. This latter feature is very useful when dealing with

collaborative optimization problems; see Part II of this thesis.
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Two-dimensional Latin hypercube
designs

You’re here again?
Kids really dig the library, don’t cha?
– We’re literary!
– To read makes our speaking English good.

(BtVS, Episode 01.08 )

3.1 Introduction

In Chapter 2 we argue that a design of computer experiments should cover the entire

feasible region and should not replicate any of the design parameter coordinates, i.e. the

design should be space-filling and non-collapsing. To obtain good designs for computer

experiments several papers combine space-filling criteria with the (non-collapsing) Latin

hypercube structure, see e.g. Bates et al. (2004), Van Dam (2005), and Jin et al. (2005).

Although it is impossible to define which type of design is the “best”, the overall con-

clusion in literature tends to be that maximum entropy and distance-based criteria often

lead to better designs for computer experiments than other measures, see e.g. Simpson

et al. (2001), Santner et al. (2003), and Bursztyn and Steinberg (2006). Furthermore,

maximin Latin hypercube designs (LHDs) are frequently used in real-life applications,

see e.g. the examples given in Driessen et al. (2002), Den Hertog and Stehouwer (2002),

Alam et al. (2004), and Rikards and Auzins (2004). This validates our choice to consider

maximin Latin hypercube designs when constructing a design of computer experiments.

In the current chapter we consider two-dimensional maximin Latin hypercube designs.

We derive explicit descriptions of maximin Latin hypercube designs and general formu-

las for the maximin distance when the distance measure is `∞ or `1. Furthermore, for

25
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the distance measure `2 we obtain maximin Latin hypercube designs for n ≤ 70 by us-

ing a branch-and-bound algorithm, and approximate maximin Latin hypercube designs

for larger values of n. All these (approximate) maximin Latin hypercube designs can

be downloaded from the website http://www.spacefillingdesigns.nl. As far as we

know, this is the first catalogue of maximin Latin hypercube designs, although there are

several catalogues for classical design of experiments, see e.g. the WebDOETM website of

Crary (2001). In higher dimensions we have not been able to derive explicit constructions.

Nonetheless, by extending some of the ideas in the current chapter, we have obtained

approximate maximin Latin hypercube designs. The construction of such designs is the

subject of Chapter 4.

The problem of finding a maximin Latin hypercube design in two dimensions can easiest

be described as a rook problem. This problem aims to position n rooks on an n × n

chessboard, such that the rooks do not attack each other, and such that the separation

distance (i.e. the minimal distance between pairs of rooks) is maximized. More formally,

a two-dimensional maximin Latin hypercube design can be defined as a set of points

xi = (xi1, xi2) ∈ {0, 1, . . . , n− 1}2, i = 1, . . . , n, such that xi1 6= xj1 and xi2 6= xj2, i 6= j,

and such that the separation distance d = min
i 6=j

d(xi, xj) is maximal, where d(·, ·) is a

certain distance measure. Note that in this, and the next, chapter the [0, n− 1]k-grid is

considered, which will cause all (squared) separation distances to be integer-valued.

3.2 Maximum norm

The problem of arranging n points in the box [0, n − 1]k to maximize the minimal `∞-

distance between all pairs of points has been completely solved by Baer (1992). In two

dimensions, i.e. k = 2, the corresponding maximin distance equals d = n−1
b√n−1c and is

attained, for example, by choosing n points from the set {id | i = 0, . . . , b√n− 1c}2.

This unrestricted design is of course highly collapsing (see Section 2.3), and, although

there is in general some freedom to change the design to decrease the “collapsingness”

(without decreasing the distance), only in the cases where n− 1 is a square is it possible

to obtain a maximin Latin hypercube design. This latter observation follows implicitly

from the following construction, which attains the maximin distance, i.e. b√nc, among

the set of Latin hypercube designs.

Construction 3.1 Let n and d be positive integers such that n ≥ d2. Let the sequence

(t0, t1, . . . , td) be defined by t0 = 0 and tj+1 = tj +
⌊
n+j
d

⌋
, j = 0, . . . , d− 1. Then

X =
{

(id− j − 1, tj + i− 1) | j = 0, . . . , d− 1; i = 1, . . . , tj+1 − tj
}

(3.1)

is a Latin hypercube design of n points with separation `∞-distance d.
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Proof. First note that X indeed consists of td =
∑d−1

j=0bn+j
d
c = n points. Since all first

coordinates of the points in X are distinct elements of {0, 1, . . . , n− 1}, as are all second

coordinates, it follows that X is a Latin hypercube design. From facts such as tj+1−tj ≥ d

we find that the separation distance is d. 2

0 d − 1 2d − 1 3d − 1 4d − 1 5d − 1 6d − 1

t0 = 0

t1 = 6

t2 = 12

t3 = 19

t4 = 26

Figure 3.1: Two-dimensional `∞-maximin Latin hypercube design of 33 points; d = 5.

This construction (see Figure 3.1 for an example) shows that Latin hypercube designs of

n points with separation distance b√nc exist. The following proposition shows that this

distance is optimal.

Proposition 3.1 Let n ≥ 2. An `∞-maximin Latin hypercube design of n points in two

dimensions has a separation distance of b√nc.

Proof. Consider a Latin hypercube design of n points in two dimensions, as a subset

of {0, 1, . . . , n − 1}2, with separation distance d. Consider the point (d − 1, xd−1,2) of

the design. Without loss of generality we may assume that xd−1,2 ≤ n−1
2

. First, note

that xd−1,2 + d − 1 ≤ n − 1 because of this assumption and the easily proven fact that

d−1 ≤ n−1
2

. Now, the d points with second coordinates xd−1,2, xd−1,2 +1, . . . , xd−1,2 +d−1

must all have first coordinates in {d− 1, d, . . . , n− 1} and these coordinates must all be

at least d apart. This shows that n − d ≥ (d − 1)d, and, hence, d ≤ b√nc. This bound

and Construction 3.1 show that a maximin Latin hypercube design of n points has a

separation distance of d = b√nc. 2
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It is easy to see that the difference between the maximin distance for unrestricted de-

signs and the maximin distance for Latin hypercube designs is less than two; hence,

the relative difference tends to zero. For example, the reduction in the maximin dis-

tance due to the Latin hypercube constraints is less than 10% for n ≥ 324, and less

than 1% for n ≥ 39,204. See also Figure 3.2, where the two maximin distances are dis-

played as a function of the number of points. The trade-off between space-fillingness and

non-collapsingness for the maximum norm, as well as for the rectangular and Euclidean

distance measure, is illustrated in more detail in Chapter 5.
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Figure 3.2: Maximin `∞-distances for unrestricted designs and for Latin hypercube de-
signs.

3.3 Rectangular distance

For the `1-distance measure the situation is more complicated than for the `∞-distance

measure. Fejes Tóth (1971) shows that the maximin distance for unrestricted designs is

at most 1 +
√

2n− 1, with equality if and only if the number of points n is the sum of

two consecutive squares. The unique design giving equality for n = r2 + (r + 1)2, r ∈ N,

is the set
{
i(n− 1)

r
| i = 0, . . . , r

}2 ⋃ {
(2i+ 1)(n− 1)

2r
| i = 0, . . . , r − 1

}2

, (3.2)

which is highly collapsing. Also for some other values of n the maximin distance has

been determined, see Florian (1989). Typically, the corresponding optimal designs are

highly collapsing too; only the cases n = 2, 4, and 7, seem to be exceptions. For these

latter cases there is an optimal design which is a Latin hypercube design. For most
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(approximately “3 out of 4”) values of n, however, the maximin distance for unrestricted

designs has not been determined yet. Next, we derive the maximin distance explicitly

for the class of Latin hypercube designs, for all n: it equals b√2n+ 2c. This bound is,

for example, attained by the designs in the following constructions, which distinguish

between even d and odd d.

Construction 3.2 Let n and d be positive integers, d even, such that n ≥ 1
2
d2 − 1. Let

the sequence (t0, t1, . . . , td−1) be defined by t0 = 0 and tj+1 = tj +
⌊
n+ j

2
+ 1

2
(1−(−1)j)( 1

2
d− 1

2
)

d−1

⌋
,

j = 0, . . . , d− 2. Then

X =

{(
i(d− 1)− j

2
− 1

2
(1− (−1)j)(

1

2
d− 1

2
)− 1, tj + i− 1

)
|

j = 0, . . . , d− 2; i = 1, . . . , tj+1 − tj
}

(3.3)

is a Latin hypercube design of n points with separation `1-distance d.

Proof. Also here X indeed consists of td−1 = n points (although it is more tedious to

check). Checking that X is a Latin hypercube design with separation distance d is te-

dious, but routine. Important here are the facts that tj+1 − tj ≥ 1
2
d for even j, and

tj+1 − tj ≥ 1
2
d+ 1 for odd j. 2

Construction 3.3 Let n and d be positive integers, d odd, such that n ≥ 1
2
d2 − 1

2
. Let

the sequence (s0, s1, . . . , sd) be defined by s0 = 0 and sj+1 = sj +
⌊
n+ j

2
+ 1

2
(1−(−1)j)( 1

2
d)

d

⌋
,

j = 0, . . . , d− 1. Then

X =

{(
id− j

2
− 1

2
(1− (−1)j)(

1

2
d)− 1, sj + i− 1

)
|

j = 0, . . . , d− 1; i = 1, . . . , sj+1 − sj
}

(3.4)

is a Latin hypercube design of n points with separation `1-distance d.

Proof. The proof is similar as before. One can check that X has sd = n points and sepa-

ration distance d by using that sj+1 − sj ≥ 1
2
(d− 1) for even j, and sj+1 − sj ≥ 1

2
(d+ 1)

for odd j. 2

Particular examples of Constructions 3.2 and 3.3 are depicted in Figure 3.3 (d even)

and Figure 3.4 (d odd), respectively. As before, these constructions can be used to

construct optimal designs.

Proposition 3.2 Let n ≥ 2. An `1-maximin Latin hypercube design of n points in two

dimensions has a separation distance of b√2n+ 2c.
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0 d − 2 2d − 3 3d − 4 4d − 5

t0 = 0

t1 = 4

t2 = 9

t3 = 13

t4 = 18

t5 = 23

t6 = 28

Figure 3.3: Two-dimensional `1-maximin Latin hypercube design of 33 points; d = 8.

0 d − 1 2d − 1 3d − 1

s0 = 0

s1 = 3

s2 = 7

s3 = 10

s4 = 14

s5 = 18

s6 = 22

Figure 3.4: Two-dimensional `1-maximin Latin hypercube design of 26 points; d = 7.

Proof. We shall prove that n ≥ 1
2
d2 − 1 for any Latin hypercube design of n points with

a separation distance of d. For d ≤ 3 this is obvious, so we may assume that d ≥ 4.

Consider the Latin hypercube design as a subset of {0, 1, . . . , n−1}2 embedded in R2,

together with the `1-circles (diamonds) with radius 1
2
d centered at the n design points;

let us call these design circles. As the interiors of these design circles are disjoint, they

cover a total area of n · 1
2
d2. We shall next find a bound on this total area that implies
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the bound for n in terms of d.

First, let d be even and fixed. The total covered area below the (horizontal) line h = 1
2
d−2

is equal to
1

4
d3 − 3

4
d2 + 1. (3.5)

This can be seen by observing that the area below the line h = 1
2
d− 2 that is covered by

the two design circles centered at the design points with second coordinates i and d−4−i
equals 1

2
d2, for i = 0, . . . , 1

2
d−3. What remains is to account for the areas covered by the

design circles that are centered at the design points with second coordinates 1
2
d− 2 and

d− 3, which are 1
4
d2 and 1, respectively. The sum of these areas gives the expression in

(3.5). It thus follows that the total covered area outside the square [1
2
d− 2, n− 1

2
d+ 1]2

is at most d3 − 3d2 + 4, and we therefore find that

n · 1

2
d2 ≤ d3 − 3d2 + 4 + (n− d+ 3)2. (3.6)

This equation implies that n2 − n(2d− 6 + 1
2
d2) + d3 − 2d2 − 6d+ 13 ≥ 0, so

n ≥ d− 3 +
1

4
d2 +

1

4

√
d4 − 8d3 + 24d2 − 64

> d− 3 +
1

4
d2 +

1

4

√
d4 − 8d3 + 24d2 − 32d+ 16 =

1

2
d2 − 2, (3.7)

which proves that n ≥ 1
2
d2−1. Note that we used that d ≥ 4 to obtain the last inequality,

and that the case where n ≤ d − 3 + 1
4
d2 − 1

4

√
d4 − 8d3 + 24d2 − 64 < 2d − 4 is easily

excluded.

Next, let d be odd and fixed. As above, we first find that the total covered area be-

low the line h = 1
2
(d− 5) equals

1

4
d3 − d2 +

5

2
. (3.8)

As before, this can be seen by observing that the area below the line h = 1
2
(d− 5) that is

covered by the two design circles centered at the design points with second coordinates i

and d− 5− i is equal to 1
2
d2, for i = 0, . . . , 1

2
(d− 5)− 1. The areas covered by the design

circles that are centered at the design points with second coordinates 1
2
(d−5), d−4, and

d− 3, are 1
4
d2, 9

4
, and 1

4
, respectively. The sum of these areas results in the expression in

(3.8). It follows that the total covered area outside the square [1
2
(d− 5), n− 1

2
d + 3

2
]2 is

at most d3 − 4d2 + 10.

In order to derive a useful inequality we have to look more carefully at the covered

area inside the above-mentioned square. We claim that each design point xi = (xi1, xi2)

has the property that the interior of at least one of the two `1-circles with radius 1
2
,

centered at (xi1 − 1
2
, xi2 + 1

2
d) and (xi1 + 1

2
, xi2 + 1

2
d), is not covered, and we call such
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an uncovered circle a hole (such holes can clearly be identified in Figure 3.4). Indeed, a

design circle that covers any of these two mentioned smaller circles also covers the circle

with radius 1
2

around (xi1, xi2 + 1
2
(d + 1)). Since the two small circles clearly cannot be

covered by the same design circle, this proves the claim. We note now that the interiors

of all holes are disjoint, and, moreover, all holes lie above the line h = 1
2
(d − 5). Since

there are d − 2 design points with holes above the line h = n − 1
2
d + 3

2
, there are at

least n − d + 3 − (d − 2) = n − 2d + 5 holes (among those coming from design points

with first coordinates 1
2
(d − 5) + 1, . . . , n − 1

2
d + 1

2
) that lie entirely inside the square

[1
2
(d− 5), n− 1

2
d+ 3

2
]2. We thus obtain that

n · 1

2
d2 ≤ d3 − 4d2 + 10 + (n− d+ 4)2 − 1

2
(n− 2d+ 5), (3.9)

which implies that n2 − n(2d− 15
2

+ 1
2
d2) + d3 − 3d2 − 7d+ 47

2
≥ 0. Therefore,

n ≥ d− 15

4
+

1

4
d2 +

1

4

√
d4 − 8d3 + 34d2 − 8d− 151

> d− 15

4
+

1

4
d2 +

1

4

√
d4 − 8d3 + 34d2 − 72d+ 81 =

1

2
d2 − 3

2
, (3.10)

and, hence, n ≥ 1
2
d2 − 1.

To obtain the inequality in (3.10) we used that d ≥ 4; the case n ≤ d − 15
4

+ 1
4
d2 −

1
4

√
d4 − 8d3 + 34d2 − 8d− 151 < 2d − 6 is easily excluded. We have thus proven the

inequality n ≥ 1
2
d2 − 1 for all d, and, hence, that d ≤ b√2n+ 2c. Constructions 3.2

and 3.3 show that equality can be attained. 2

The difference between the maximin distance for unrestricted designs and the maximin

distance for Latin hypercube designs is again less than two. The reduction in the max-

imin distance due to the Latin hypercube constraints is less than 10% for n ≥ 144,

and less than 1% for n ≥ 19,404. See also Figure 3.5, where the maximin distance for

Latin hypercube designs and the upper bound/exact value for the maximin distance for

unrestricted designs are displayed as a function of the number of points.

3.4 Euclidean distance

Sections 3.2 and 3.3 consider maximin designs for the `∞- and `1-distance measures, re-

spectively. For many real-world applications, however, the `2-distance measure is often

the first choice. Unfortunately, for this Euclidean distance measure the situation is much

more complicated than for the other two measures. There is no known infinite class of op-

timal designs in the unrestricted situation, as is the case, for instance, for the `1-measure,

let alone a complete solution like for the `∞-measure. Optimal designs are known only for

up to 30 points and the single case of 36 points. Melissen (1997) summarizes the optimal
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Figure 3.5: General upper bound for maximin `1-distance and maximin `1-distances for
unrestricted designs and Latin hypercube designs.

arrangements of n ≤ 20 points and Kirchner and Wengerodt (1987) provide the proof for

the case of n = 36. Many of the designs require dedicated optimality proofs and some

of the larger cases have even been proven by computer-assisted proof techniques, see e.g.

Peikert et al. (1991) (n = 11–13, 15, 17–20), Nurmela and Österg̊ard (1999) (n = 21–27),

and Markót and Csendes (2005) (n = 28–30). The optimal designs may be devoid of any

symmetry or nice structure (for instance, for 10 or 13 points), and there can be multiple

optimal solutions (e.g. for 17 points). Moreover, like in the case of the `∞- and `1-distance

measures, there are even optimal designs that have points that are not fixed, but that

can move around a little (for instance, for 7, 11, and 13 points). These so-called rattlers

have already been identified in Section 2.2.1; see e.g. Figure 2.1.

As there are no general results for maximin designs in the `2-measure, this is still a

field of research where world records can be broken, see e.g. Casado et al. (2001). A list

of the best-known circle packings in a square (and also in a circle and in a rectangle) is

on the Packomania website, maintained by Specht (2005). So far, the list contains many

very good (and probably close to optimal) designs for up to 300 points, and a few larger

numbers. This supports the belief that a complete solution for all points is not likely

to be ever found. To a lesser extent, the same seems to be the case for the problem of

finding `2-maximin Latin hypercube designs.
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3.4.1 Branch-and-bound

To find maximin Latin hypercube designs for the `2-distance measure (for small n), we

designed a branch-and-bound algorithm. This algorithm searches for Latin hypercube

designs of n points with a separation distance of at least d, for given n and d, by examining

all designs {(i, zi) | i = 0, . . . , n − 1}, represented by the sequence (z0, z1, . . . , zn−1) ∈
{0, 1, . . . , n− 1}n, while checking whether they are non-collapsing and have a separation

distance of at least d. Note that this formulation implies that the coordinates of the first

dimension are, without loss of generality, fixed to the sequence (0, 1, . . . , n− 1).

As a first approach, one could use the search tree where the root has n branches,

giving the value of z0, and each corresponding node further branches into n parts, giving

the value of z1, et cetera, until the end nodes are reached, giving the value of zn−1.

One can cut branches from the node corresponding to the partial design (z0, z1, . . . , zt) if

points are already collapsing or are separated by a distance less than d. In this way, we

obtained maximin Latin hypercube designs for n up to 40.

A disadvantage of the above approach is that it does not use the fact that useless

partial designs occur as part of other partial designs (for example, (0, 3, 4) is part of

(9, 12, 15, 0, 3, 4)) in different parts of the tree, and, hence, are not cut off by just one cut.

Note also, in this respect, that it is beneficial to cut the tree at small depth. To (partly)

solve this disadvantage, a different tree is used. For this, the value of zi is first fixed to

zi = z 6= n−1
2

, where the index i will be determined later, and will depend on the particular

end node in the tree. Because of symmetry, i is assumed to be at most f = bn
2
c−1. This

zi will be the root of the tree, and it branches into n parts, giving the value of zi+1. The

corresponding nodes further branch into n parts, giving the value of zi+2, et cetera, up to

the nodes giving the value of zi+n−1 (and at these end nodes we take i = 0). Moreover,

for t = 0, . . . , f−1, the nodes corresponding to the value of zi+n−1−f+t (roughly speaking:

when over “half” of the points in the design are chosen) have n additional branches giving

the value of zi−1 (we now start extending the partial design on the other side of i), and

these branch further corresponding to the values of zi−2, et cetera, up to the values of

zi−f+t. Taking i = f− t at these end nodes yields the design coordinates (z0, z1, . . . , zn−1)

for the second dimension. With the branch-and-bound algorithm based on this tree we

managed to find optimal designs, or prove optimality of some designs found by hand, for

n ≤ 70 by taking z = b√d2 − 2c (but this value does not seem to be crucial). For the

instance (n, d) = (69,
√

80) we took z = n−1
2

. This has the advantage that, because of

symmetry, only the cases zi+1 < z (i.e. only half the tree) have to be searched; however,

the disadvantage is that also the value i = n−1
2

must be considered (this is implemented

by letting f = n−1
2

). In this particular case there was no disadvantage since all cutting

turned out to be performed far before half of the points in the design were chosen.

Using these branch-and-bound techniques we were able to obtain maximin Latin hy-
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percube designs for up to 70 points. These maximin Latin hypercube designs, which were

also found by our periodic construction method (see Section 3.4.2), can be derived from

Table 3.1 displayed below. Unlike the situation without Latin hypercube constraints,

many of the optimal designs exhibit some nice regularity, i.e. the designs turn out to be

either periodic arrangements or slightly adapted periodic arrangements. For example,

see the `2-maximin Latin hypercube designs depicted in Figures 3.6 and 3.7.

Remark: we have learned that similar reduction techniques, as the ones described above,

have been used for the (unrestricted) packing problem, see Markót and Csendes (2005).

Figure 3.6: Two-dimensional `2-
maximin Latin hypercube design of 17
points; d2 = 18.

Figure 3.7: Two-dimensional `2-
maximin Latin hypercube design of 50
points; d2 = 52.

3.4.2 Heuristics

Due to increasing computational effort as n increases, the applicability of the presented

branch-and-bound algorithm is restricted to smaller designs. To extend the range of

designs several heuristics have been tried.

One option, for instance, is to consider the `∞- and `1-maximin Latin hypercube

designs. When picking the best of the two, with respect to the `2-measure, some good

designs are obtained. We have tried simulated annealing to improve these designs. In

our algorithm a neighborhood-solution is obtained by randomly selecting two points,

one of them being a point at separation distance to another point, and then switch

one of the coordinate values. The performance of the neighborhood-solution is defined

by the minimal distance of these two new points to all other points. Unfortunately,
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when starting from the initial `∞- and `1-designs the algorithm could not produce better

ones. When starting from a random design the algorithm consumed excessive amounts

of computation time without turning up solutions that were at least as good as the `∞-

or `1-designs. In higher dimensions, however, our algorithm did result in good Latin

hypercube designs. This algorithm, and the reason why it works in higher dimensions, is

discussed in Chapter 4.

Another approach uses the nice, periodic structure of many of the maximin Latin

hypercube designs that have been found by the branch-and-bound algorithm, and looks

for periodic designs. Following the definition in Section 2.3.1, a two-dimensional Latin

hypercube design of n points can be represented as an n×2 matrix, where the columns y1

and y2 are permutations of the set {0, 1, . . . , n−1}. Without loss of generality, y1 is fixed

to the sequence (0, 1, . . . , n − 1). What remains is to decide on a permutation y2 such

that the separation distance of the corresponding Latin hypercube design is maximal.

The use of a periodic sequence for y2 turned out to be very successful.

For given n, start with choosing a period p such that gcd(n+ 1, p) = 1 and construct

a Latin hypercube design with points (y1i, y2i), where y1i = i and

y2i = (i+ 1)p mod (n+ 1)− 1, for i = 0, . . . , n− 1. (3.11)

This heuristic often resulted in maximin Latin hypercube designs and, in other instances,

good designs.

Note that the periodic designs obtained in this way resemble lattices ; see e.g. Bates

et al. (1996). The design points in Figure 3.6, for example, are a subset of the lattice

points generated by the primitive vectors (1, 5) and (4, 2). The main difference is that

lattices are infinite sets of points, which may collapse, and, hence, to construct a (finite)

Latin hypercube design a proper subset of non-collapsing lattice points should be chosen.

For given n, the structure of the lattice, however, will not always lead to a Latin hypercube

design with a sufficient number of points. This in contrast to periodic designs, for which

the modulo-operator insures that for every period p, with gcd(n + 1, p) = 1, a feasible

Latin hypercube design exists.

To improve the results obtained with the sequence in (3.11), consider the more general

sequence wi = (s+ ip) mod n (note that the modulus has been changed), for all periods

p = 1, . . . , bn
2
c, and different starting points s = 0, . . . , bn

2
c. Note, however, that the

resulting sequence w may no longer be one-to-one, i.e. some values may occur more than

once, and, hence, the resulting design {(i, wi) | i = 0, . . . , n − 1} may not be a Latin

hypercube design. Now, let r > 0 be the smallest value for which wr = w0; it then

follows that r = n
gcd(n,p)

. When r < n a way to construct a one-to-one sequence of length

n, and, hence, a Latin hypercube design, is by shifting parts of the sequence by, say, q,

and repeating this when necessary. The adapted periodic sequence y2 is then given by
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the updated sequence w, for which it holds that

wi = (s+ip+jq) mod n, for i = jr, . . . , (j+1)r−1, and j = 0, . . . , gcd(n, p)−1. (3.12)

For n up to 200 points all “shifts” q, with q such that gcd(q, gcd(n, p)) = 1, in the range

[1−p, p−1] and all starting points s = 0, . . . , bn
2
c were tested. It turned out that taking q

equal to either 1−p or −1, and s equal to p−1, yielded the best designs. Additional tests

indicated that the value q = 1 should also be considered. Therefore, the final heuristic

considered only q ∈ {1− p,−1, 1} and s = p− 1.

Combining both periodic construction methods we found results for n up to 1000;

the obtained Latin hypercube designs for n ≤ 70 are optimal. The designs, with their

corresponding maximin distances, are provided in Table 3.1. In this table the tuple

(p, q,m) defines the permutation y2 of the Latin hypercube design (y1, y2). If m = n+ 1

then y2 is given by (3.11), whereas it is equal to the sequence defined in (3.12) when

m = n.

18
19

20

Figure 3.8: Latin hypercube design constructions for 18, 19, and 20 points, based on an
`2-maximin Latin hypercube design of 17 points; d2 = 18.

Table 3.1 provides only designs for which n is a break point , i.e. the values of n for which

d2
n > d2

i , for all i < n. Periodic designs for intermediate values of n may have a minimal

distance that is smaller than the minimal distance of their preceding break point. For

these n, however, better designs can easily be derived. Every two-dimensional (adapted)

periodic Latin hypercube design of n points, with n a break point, is defined by its periodic

sequence of y2-values, which can be split up into several increasing subsequences. For

example, the `2-maximin Latin hypercube design of 17 points in Figure 3.6 consists of
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n d2 p q m

2 2 1 − 3
4 5 2 − 5
7 8 3 − 8
9 10 3 − 10

12 13 5 − 13
14 17 4 − 15
17 18 5 − 18
21 20 5 − 22
22 25 5 − 23
23 26 5 − 24
28 29 12 − 29
31 32 7 − 32
33 34 13 − 34
34 37 6 − 35
38 41 7 − 39
44 50 19 − 45
50 52 14 −13 50
52 58 8 − 53
58 61 9 − 59
60 65 8 − 61
65 68 25 − 66
67 74 9 − 68
75 80 9 − 76
76 85 34 − 77
83 90 25 − 84
86 97 10 −9 86
90 98 27 − 91
93 100 11 − 94
95 101 10 −1 95

100 109 30 − 101
102 113 28 −27 102
104 117 11 − 105
111 128 41 − 112
121 130 51 − 122
126 145 12 − 127
136 149 13 − 137
146 157 56 −55 146
148 160 34 −1 148
149 170 13 − 150
156 178 36 − 157
162 180 14 −13 162
166 181 36 − 167
170 185 52 −51 170
171 194 37 − 172
176 197 14 −13 176
180 202 39 − 181
184 205 66 −65 184
187 208 15 − 188
194 212 52 −51 194
200 218 16 − 201

n d2 p q m

202 226 15 − 203
208 241 56 − 209
216 245 16 − 217
225 250 99 − 226
232 257 16 − 233
240 269 71 − 241
246 277 17 − 247
253 290 45 − 254
260 292 46 −45 260
267 296 79 − 268
268 305 63 − 269
279 306 18 −1 279
280 320 18 −17 280
291 328 81 − 292
298 338 116 − 299
306 346 113 − 307
313 356 19 − 314
324 360 51 −1 324
326 365 120 −119 326
330 370 20 − 331
335 386 71 − 336
350 401 20 − 351
358 409 54 − 359
367 410 21 − 368
374 425 118 − 375
388 442 21 − 389
395 450 139 − 396
408 461 22 −21 408
415 466 79 − 416
422 481 96 −95 422
429 482 22 −1 429
430 485 22 −21 430
433 490 59 − 434
448 509 61 − 449
462 530 141 − 463
470 533 193 − 471
474 545 62 −61 474
488 549 64 − 489
492 565 86 − 493
509 578 89 − 510
520 586 136 1 520
534 593 64 − 535
537 610 25 − 538
550 613 154 − 551
552 629 199 − 553
559 640 67 − 560
575 650 155 − 576
582 661 93 − 583
586 673 26 −25 586
600 674 168 − 601

n d2 p q m

607 680 27 − 608
613 692 71 − 614
626 722 265 − 627
634 725 27 − 635
641 738 119 − 642
658 745 28 − 659
666 746 119 − 667
672 761 100 − 673
678 765 130 −129 678
679 778 101 − 680
686 785 28 − 687
694 793 124 − 695
706 808 288 −287 706
710 809 76 − 711
717 818 249 − 718
730 820 78 −77 730
732 829 76 − 733
738 850 192 − 739
756 853 209 − 757
758 865 340 −339 758
761 866 79 − 762
766 872 30 −29 766
776 882 295 − 777
777 884 107 − 778
783 898 183 − 784
795 901 30 −1 795
800 909 187 − 801
808 914 287 − 809
814 925 169 − 815
821 932 31 − 822
828 949 266 − 829
840 954 298 −297 840
843 962 175 − 844
850 977 205 − 851
866 981 196 − 867
875 986 137 − 876
880 1009 32 − 881
888 1013 115 − 889
896 1025 116 − 897
914 1037 194 − 915
919 1042 119 − 920
922 1060 268 −267 922
940 1073 33 − 941
957 1076 145 − 958
962 1090 204 −1 962
970 1105 147 − 971
985 1124 277 − 986
998 1129 258 −257 998

Table 3.1: Two-dimensional (adapted) periodic (approximate) `2-maximin Latin hyper-
cube designs on break points.

the sequences (4, 9, 14), (1, 6, 11, 16), (3, 8, 13), (0, 5, 10, 15), and (2, 7, 12). Each of these

sequences can be augmented by extra points, starting with the sequence with the smallest

end value (i.e. 12 in the example above), while retaining the minimal distance. Hence, a

given periodic Latin hypercube design of n points can be extended to an LHD of n̂ > n

points with the same minimal distance. Figure 3.8 shows how to extend an `2-maximin

Latin hypercube design of 17 points, with d2 = 18, to `2-maximin LHDs of 18, 19, and

20 points, all with d2 equal to 18. The Latin hypercube design of 17 points could also be
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extended further to LHDs of n̂ ≥ 21 points with d2 = 18; however, Table 3.1 shows that

this is no longer optimal.

Figure 3.9 displays the best found `2-distances d for unrestricted designs and Latin

hypercube designs for up to 300 points. The upper bound depicted in this figure can

easily be derived when applying Oler’s theorem (cf. Oler (1961)) to the square [0, n−1]2,

resulting in:

d ≤ 1 +

√
1 + (n− 1)

2√
3
. (3.13)

Like in the case of the `∞- and the `1-distance measure, the reduction in the maximin

distance caused by imposing the Latin hypercube structure is small, see also Chapter 5.

This justifies the use of maximin Latin hypercube designs instead of unrestricted designs.
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Figure 3.9: General upper bound for maximin `2-distance d and approximate maximin
`2-distances for unrestricted designs and Latin hypercube designs.





Chapter 4

High-dimensional Latin hypercube
designs

To be absolutely certain about something,
one must know everything, or nothing,
about it.

(Olin Miller)

4.1 Introduction

Chapters 1 and 2 discuss the practical importance of a proper design of computer exper-

iments. It has been argued that such a design should be space-filling and non-collapsing.

To obtain non-collapsing designs the Latin hypercube structure is often enforced. Within

this class of Latin hypercube designs (LHDs), the use of maximum entropy or distance-

based criteria will result in good space-filling designs for computer experiments. Chapter 3

introduces ways to construct two-dimensional maximin Latin hypercube designs for the

maximum norm, the rectangular distance, and the Euclidean distance measure. Since

the latter distance measure is most often the first choice in practice, the current chapter

focuses on constructing approximate `2-maximin Latin hypercube designs.

Following the definition in Section 2.3.1, a k-dimensional Latin hypercube design of n

points is a set of n design points xi = (xi1, xi2, . . . , xik) ∈ {0, 1, . . . , n− 1}k, i = 1, . . . , n,

such that for each dimension j all xij are distinct, j = 1, . . . , k. Or, put differently, a

k-dimensional Latin hypercube design of n points can be represented by a matrix that

consists of k columns yj, j = 1, . . . , k, where each column yj is a permutation of the

set {0, 1, . . . , n − 1}. A Latin hypercube design is called maximin when the separation

distance min
i6=j

d(xi, xj) is maximal among all Latin hypercube designs of given size n,

41
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where d(·, ·) is a certain distance measure. In this chapter the squared Euclidean distance

measure is considered, i.e.

d2(xi, xj) =
k∑

l=1

(xil − xjl)2. (4.1)

Furthermore, the idea of (adapted) periodic designs, as introduced in Chapter 3, is ex-

tended to more than two dimensions, and a simulated annealing algorithm, with a special

neighborhood structure, is proposed, to obtain approximate maximin Latin hypercube

designs for up to ten dimensions and for up to 100 design points.

4.2 Periodic designs

Chapter 3 shows that two-dimensional maximin Latin hypercube designs often exhibit

a nice, periodic structure. By constructing (adapted) periodic designs, many maximin

Latin hypercube designs, and, otherwise, good LHDs, have been found for up to 1000

points. Therefore, extending this idea to higher dimensions seems natural.

Consider the sequences y1, y2, . . . , yk, with every yj a permutation of the set

{0, 1, . . . , n− 1}, that define a k-dimensional Latin hypercube design of n points. As in

the two-dimensional case, a design is constructed by fixing the first dimension, without

loss of generality, to the sequence y1 = (0, 1, . . . , n− 1) and assigning (adapted) periodic

sequences to all other dimensions. Two types of periodic sequences are considered. The

first one is the sequence (v0, v1, . . . , vn−1), where

vi = (i+ 1)p mod (n+ 1)− 1, for i = 0, . . . , n− 1. (4.2)

Here, p is the period of the sequence, which is chosen such that gcd(n+1, p) = 1, resulting

in a permutation of the set {0, 1, . . . , n − 1}. The periodic designs obtained in this way

resemble k-dimensional lattices; see Section 3.4.2.

The second type of sequence that is considered is the more general sequence

(w0, w1, . . . , wn−1), where wi = (s+ ip) mod n (note that the modulus has been changed),

for i = 0, . . . , n − 1. In this case, all starting points s = 0, . . . , p and all periods

p = 1, . . . , bn
2
c are considered. As is the case in two dimensions, the resulting sequence

w may no longer be one-to-one, resulting in a non-LHD. To deal with this problem, we

consider the following updated unique sequence w (see Section 3.4.2):

wi = (s+ ip+ jq) mod n, for i = jr, . . . , (j+ 1)r−1, and j = 0, . . . , gcd(n, p)−1. (4.3)

Let m represent the modulus, and, hence, the type of sequence used, i.e. m = n + 1

corresponds to the first type and m = n to the second type. For given n, the parameters

(p, q, s,m) have to be set for every sequence y2, y3, . . . , yk. To find the best settings

for these parameters, it would be best to test all possible values. However, when the
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dimension and the number of points increase, the number of possible values increases

rapidly. Hence, computing all possibilities gets very time-consuming, or even impossible.

Therefore, three classes of parameter settings (named A, B, and C) are distinguished

and used throughout the whole process. The largest one, class A, consists of checking

the following parameter values: p = 1, . . . , bn
2
c, q = 1 − p, . . . , p − 1, s = 0, . . . , p,

and m ∈ {n, n + 1}. Testing in three and four dimensions indicated that almost all

adapted periodic designs are based on a shift of 1− p, −1, or 1 (as was the case for two

dimensions; see Section 3.4.2). Furthermore, most Latin hypercube designs are found to

have a starting point equal to either p− 1 or p. Class B is therefore set up to be a subset

of class A with the aforementioned restrictions on the parameters q and s. Finally, for

the dimensions 5 to 7 the number of possibilities has to be reduced even further, leading

to parameter class C, which (based on some more test results) restricts class B to the

values q = 1 and s = p, leaving the other parameters unchanged. Table 4.1 shows the

different classes used in the computations for each dimension.

Dimension Class A Class B Class C

3
4
5
6
7

2 ≤ n ≤ 70
2 ≤ n ≤ 25
−
−
−

71 ≤ n ≤ 100
26 ≤ n ≤ 100
2 ≤ n ≤ 80
2 ≤ n ≤ 35
−

−
−

81 ≤ n ≤ 100
36 ≤ n ≤ 100
2 ≤ n ≤ 100

Table 4.1: Different classes of periodic sequences are considered for each dimension.

As an example, consider a three-dimensional adapted periodic Latin hypercube design of

22 points. A best parameter setting was found to be (p2, q2, s2,m2) = (8,−7, 7, 22) and

(p3, q3, s3,m3) = (3, 0, 2, 23), and, hence, the corresponding Latin hypercube design, with

(squared) separation distance 69, is defined by the sequences

y1 = ( 0, 1 , 2, 3 , 4 , 5 , 6 , 7 , 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21),
y2 = ( 7, 15, 1, 9 , 17, 3 , 11, 19, 5, 13, 21, 0 , 8 , 16, 2 , 10, 18, 4 , 12, 20, 6 , 14),
y3 = ( 2, 5 , 8, 11, 14, 17, 20, 0 , 3, 6 , 9 , 12, 15, 18, 21, 1 , 4 , 7 , 10, 13, 16, 19).

Thus, y3 is a periodic sequence, with m = n+ 1, and y2 is an adapted periodic sequence,

with m = n and q2 = −7. Note that to obtain a one-to-one sequence, the second part of

y2, i.e. (0, 8, . . . , 14), is formed by shifting the first part of y2, i.e. (7, 15, . . . , 21), by −7.

The periods and shift are clearly visible in the two-dimensional projection of the Latin

hypercube design in Figure 4.1. In this figure the y3-values are depicted at the design

points.

Like in the two-dimensional case, it may happen that for a given n the corresponding

Latin hypercube design has a separation distance that is smaller than the distance of an
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Figure 4.1: Two-dimensional projection of a three-dimensional Latin hypercube design
(y1, y2, y3) of 22 points; d2 = 69. The y3-values are depicted at the design points.

LHD of n− 1 points. For these n, however, better designs can be derived by adding an

extra point (usually a corner point) to the Latin hypercube design of n − 1 points. In

this way, a monotone non-decreasing sequence of separation distances has been obtained

for all dimensions; see Table 4.3.

4.3 Simulated annealing

Another heuristic method that can be used to approximate `2-maximin Latin hypercube

designs is simulated annealing; see Aarts and Lenstra (1997). The general simulated

annealing algorithm that we have implemented is described in Algorithm 4.1. In this

algorithm, the acceptance probability function, the annealing schedule, the terminating

condition, and the neighborhood, still need to be specified. These parameters influence

the performance of the algorithm, and, hence, should be carefully set. In our implemen-

tation, we focus on the choice of the neighborhood and the terminating condition.

For the acceptance probability function the commonly used classic formula of Kirk-

patrick et al. (1983) is taken:

P (Ecurrent, Eneighbor, T ) = exp

(
Ecurrent − Eneighbor

T

)
, (4.4)

where Ecurrent and Eneighbor are the separation distances of the current Latin hypercube
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Algorithm 4.1 General simulated annealing algorithm for approximating `2-maximin
Latin hypercube designs (LHDs).

Randomly select an initial LHD and calculate its separation distance;

best LHD = initial LHD;

REPEAT

Create a neighbor LHD of the current LHD;

Calculate separation distance of the neighbor LHD;

IF (separation distance of the neighbor LHD ≥ separation distance of

the current LHD) THEN

current LHD = neighbor LHD;

IF (separation distance of the current LHD ≥ separation distance of

the best LHD) THEN

best LHD = current LHD;

END

ELSE (with probability depending on the annealing temperature and the

difference in separation distance)

current LHD = neighbor LHD;

END

Update the annealing temperature;

UNTIL (terminating condition is met).

design and the neighbor LHD, respectively, and T is the annealing temperature.

The implemented annealing schedule starts with an initial temperature of 5. After

each iteration the annealing temperature is decreased by 0.1 percent, as long as the

temperature is at least 0.5 (otherwise, it remains 0.5). Furthermore, every 1,000 iterations

the algorithm checks the number of improvements on the best solution found so far. If

there are no improvements during the last 1,000 iterations, the temperature is reset by

multiplying it by 2.7, which is approximately 0.999−1,000, i.e. the inverse of 1,000 times a

0.1% decrease.

Four different terminating conditions have been tested. The first two conditions ter-

minate the algorithm after a fixed number of 25,000 and 50,000 iterations, respectively.

The third and fourth condition let the number of iterations depend on the results ob-

tained by the algorithm in the following way. Every 1,000 iterations it is checked whether

the best design has improved. If during five subsequent checks (i.e. during the last 5,000

iterations) no improvement has occurred, the algorithm terminates. To avoid excessive

running times, the total number of iterations is limited to 125,000 and 250,000 in the

third and fourth condition, respectively.

For the definition of a neighborhood four different choices have been considered. In

all four neighborhoods the main idea is to change two design points of the current Latin
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hypercube design by exchanging one or more of their coordinate values. In three of the

four neighborhoods one point is required to be a critical point. A critical point is a point

which is at separation distance to at least one of the other points.

In the first neighborhood, one design point xi is randomly selected from all critical

points and the other design point xj randomly from all remaining points. This implies

that the second design point will either be a critical or a non-critical point. Once the

design points have been selected, the number of coordinates to be changed is randomly

determined. Due to symmetry, at most bk
2
c coordinates are changed. Subsequently, the

coordinates to be changed are randomly selected. The values of the two design points

at these coordinates are then exchanged, which results in a new Latin hypercube design,

i.e. a neighbor LHD.

As an example, consider the four-dimensional Latin hypercube design of 10 points

defined by the sequences

y1 = (5, 6, 9, 3, 1, 4, 2, 8, 0, 7),
y2 = (4, 5, 8, 6, 0, 2, 9, 7, 3, 1),
y3 = (0, 4, 6, 1, 9, 7, 3, 5, 2, 8),
y4 = (2, 3, 6, 5, 4, 9, 0, 7, 8, 1).

The critical points of this design are the design points x3 and x8, i.e. (9, 8, 6, 6) and

(8, 7, 5, 7). If the critical point x8, the random point x4, and the coordinates 2 and 3, are

selected, the following neighbor is obtained:

y1 = (5, 6, 9, 3, 1, 4, 2, 8, 0, 7),
y2 = (4, 5, 8, 7 , 0, 2, 9, 6 , 3, 1),
y3 = (0, 4, 6, 5 , 9, 7, 3, 1 , 2, 8),
y4 = (2, 3, 6, 5, 4, 9, 0, 7, 8, 1).

The second neighborhood is very similar to the first. The only difference is that only one

coordinate is exchanged, instead of a random number of coordinates. Note that for k = 3

both neighborhoods are the same.

In the third neighborhood also one coordinate is exchanged. However, this time the

coordinate is not randomly selected. Instead, all coordinate changes are tried and the

one that results in the neighbor with the largest separation distance is executed. If there

are more coordinate changes that result in the same (largest) separation distance, the

coordinate with the lowest index is selected.

The fourth neighborhood is again very similar to the second neighborhood. The

difference is that the first point is randomly chosen from all design points, instead of

only the critical points.

Although the described approach appears to be quite similar to simulated anneal-

ing algorithms for finding good Latin hypercube designs used by other authors, it is
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different in the following ways. First, our approach does not impose a certain additional

structure on the Latin hypercube design, such as, for instance, symmetry; see e.g. Ye

et al. (2000). Secondly, the maximin distance criterion is used as the objective function.

This in contrast to the approach of, for example, Morris and Mitchell (1995), who

minimize a surrogate measure. Their reason for using a surrogate measure is to minimize

the number of critical points. The main disadvantage of this measure, however, is that

it contains an extra parameter, which needs to be set for every value of k and n. An

inaccurate setting of this parameter could lead to the situation where designs with a

larger maximin distance have, incorrectly, a larger value for the surrogate measure. On

the other hand, a disadvantage of using the maximin distance criterion is that several

designs may result in the same objective value. We, however, have reduced this problem

by implementing neighborhoods that use critical points and by accepting equally good

designs. By using critical points, we also implicitly reduce the number of critical points,

without the need to introduce a surrogate measure.

4.4 Computational results

Periodic and adapted periodic Latin hypercube designs have been constructed for up to

seven dimensions and for up to 100 design points, using the different classes provided

in Table 4.1. Using simulated annealing, approximate maximin Latin hypercube designs

have also been obtained for dimensions 8 to 10. All computations have been performed

on PCs with an 800-MHz Pentium III processor. Table 4.2 shows the total CPU-times

needed to construct approximate maximin Latin hypercube designs, for up to 100 points,

for each dimension.

Dimension 3 4 5 6 7 8 9 10

CPU-time (hrs) PD 145 61 267 108 232 − − −
CPU-time (hrs) SA 500 181 152 520 246 460 470 470

Table 4.2: Total CPU-times needed to construct approximate maximin Latin hypercube
designs, up to 100 points, using periodic designs (PD) and simulated annealing (SA).

Although our heuristics consider only a subset of all possible Latin hypercube designs, it

can be seen from the table that still a considerable amount of time is needed to find good

Latin hypercube designs in higher dimensions and for a large number of points. Fortu-

nately, these computation times are a one-time cost, i.e. once a good Latin hypercube

design has been found, and its coordinates saved, the design can be used over and over

again in various applications, without incurring the computational costs again.

Table 4.3 provides the squared `2-maximin distances that were obtained by applying

both heuristics. From this table it can be seen that (adapted) periodic designs work
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k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n PD SA PD SA PD SA PD SA PD SA SA SA SA

2 3 3 4 4 5 5 6 6 7 7 8 9 10
3 3 6 4 7 5 8 6 12 7 13 14 18 19
4 6 6 12 12 11 14 15 20 16 21 26 28 33
5 6 11 12 15 11 24 15 27 16 32 40 43 50
6 14 14 16 22 23 32 28 40 29 47 54 61 68
7 14 17 16 28 23 40 28 52 31 61 70 80 89
8 21 21 25 42 32 50 42 66 46 79 91 101 114
9 21 22 25 42 39 61 45 76 47 93 112 126 141

10 21 27 36 50 55 82 62 91 68 110 130 154 172
11 24 30 39 55 55 80 62 108 69 128 152 178 206
12 30 36 46 63 62 91 91 136 95 150 176 204 235
13 35 41 51 68 64 101 91 136 95 174 202 232 267
14 35 42 70 75 86 112 104 152 119 204 228 265 298
15 42 48 71 83 88 124 111 167 129 211 257 296 337
16 42 50 85 90 101 136 130 186 155 238 286 330 378
17 42 53 85 97 113 150 131 203 161 256 312 367 415
18 50 56 94 103 123 162 155 223 186 281 344 398 458
19 57 59 94 113 136 174 169 241 195 305 370 438 498
20 57 62 106 123 139 184 210 260 226 332 403 472 542
21 65 66 116 127 165 201 210 283 236 361 438 517 592
22 69 69 117 137 174 215 223 304 270 384 467 555 643
23 72 74 130 146 178 224 236 324 273 410 501 596 685
24 76 78 138 154 201 242 258 343 308 444 538 639 739
25 91 81 156 162 205 255 286 368 350 467 583 688 792
26 91 86 156 171 226 269 296 387 365 499 612 726 854
27 91 90 157 178 238 287 310 410 382 526 648 780 896
28 94 94 174 188 258 302 339 427 406 561 693 826 953
29 94 98 174 196 269 322 346 452 417 593 733 876 1015
30 105 102 194 209 310 335 390 473 458 620 787 925 1086
31 107 106 212 215 310 347 390 504 482 657 812 976 1138
32 114 110 212 228 341 371 419 529 518 695 866 1026 1194
33 114 113 215 234 341 379 430 548 537 723 900 1084 1253
34 133 117 230 244 358 403 470 586 561 751 945 1135 1329
35 133 122 234 255 366 418 495 601 586 811 1002 1190 1398
36 133 129 250 261 400 427 518 631 636 831 1042 1257 1459
37 152 131 266 275 408 454 528 648 668 863 1079 1300 1516
38 152 134 283 279 415 464 561 681 709 923 1127 1367 1597
39 152 139 283 290 439 486 561 706 726 938 1192 1434 1665
40 155 146 291 301 492 505 632 739 786 970 1224 1489 1742
41 162 147 293 309 492 525 632 776 802 1016 1271 1562 1820
42 168 152 319 325 496 543 670 791 903 1064 1333 1639 1920
43 168 157 323 329 520 558 670 830 903 1112 1377 1683 1973
44 186 161 331 349 548 582 696 862 903 1140 1463 1752 2072
45 186 166 347 362 565 615 737 891 926 1192 1480 1820 2130
46 189 169 366 370 592 615 797 918 985 1243 1548 1906 2208
47 189 173 378 378 611 634 797 940 985 1268 1616 1958 2331
48 189 178 413 385 632 673 857 976 1054 1325 1658 2017 2387
49 196 180 415 399 634 680 893 1015 1074 1356 1729 2103 2470
50 213 185 415 414 663 699 893 1042 1113 1397 1772 2179 2556
51 213 189 421 426 692 727 917 1067 1161 1450 1855 2243 2639
52 213 198 455 429 709 742 1003 1100 1231 1486 1888 2325 2745
53 216 200 455 447 716 765 1003 1136 1241 1537 1949 2429 2825
54 233 213 477 454 760 783 1019 1171 1288 1577 2006 2473 2892
55 243 214 483 477 760 805 1082 1198 1325 1639 2084 2570 3054
56 243 216 515 479 784 830 1104 1236 1358 1701 2162 2623 3100
57 261 221 515 490 846 854 1136 1265 1479 1721 2194 2704 3215
58 261 227 539 500 846 878 1166 1303 1479 1795 2258 2796 3305
59 266 229 544 519 849 905 1223 1328 1509 1821 2356 2881 3399
60 273 237 568 530 904 928 1242 1381 1577 1899 2393 2939 3500
61 274 244 620 538 904 939 1258 1413 1615 1928 2488 3021 3588
62 283 245 620 554 934 991 1306 1450 1680 2023 2541 3132 3700

Table 4.3: (Maximin) squared `2-distance found using periodic designs (PD) and simu-
lated annealing (SA) (table continues on next page).
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k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n PD SA PD SA PD SA PD SA PD SA SA SA SA

63 297 249 620 575 967 989 1380 1497 1680 2035 2607 3215 3767
64 297 258 625 579 985 1009 1430 1526 1769 2093 2734 3292 3955
65 314 260 630 582 997 1035 1430 1565 1786 2132 2723 3357 4034
66 314 269 666 602 1050 1051 1476 1590 1857 2180 2841 3474 4143
67 314 270 666 614 1072 1085 1482 1646 1868 2238 2868 3543 4224
68 314 278 685 623 1087 1119 1538 1664 1940 2295 2956 3647 4360
69 324 280 698 650 1112 1114 1588 1704 1965 2351 3075 3716 4455
70 325 285 716 658 1150 1135 1633 1759 2130 2417 3130 3841 4539
71 325 289 716 665 1150 1187 1644 1783 2130 2451 3161 3936 4689
72 341 296 750 678 1203 1197 1768 1862 2177 2503 3220 4027 4812
73 350 299 759 688 1229 1242 1768 1872 2206 2598 3305 4134 4873
74 350 306 767 703 1229 1269 1774 1910 2244 2614 3432 4224 5038
75 350 310 771 714 1274 1282 1862 1963 2295 2703 3513 4298 5171
76 363 324 813 750 1300 1318 1935 2024 2375 2756 3559 4395 5254
77 363 325 823 762 1308 1331 1947 2051 2403 2819 3617 4492 5399
78 387 337 844 761 1382 1360 2014 2079 2505 2870 3684 4577 5489
79 387 333 848 788 1382 1399 2037 2120 2525 2950 3775 4705 5633
80 403 344 873 786 1395 1430 2037 2152 2590 2979 3877 4807 5773
81 406 338 916 782 1406 1431 2064 2217 2642 3086 4001 4888 5901
82 406 353 938 825 1475 1482 2141 2239 2753 3118 3998 5030 6013
83 417 369 940 829 1501 1509 2141 2290 2767 3195 4076 5102 6097
84 426 363 967 838 1534 1510 2229 2325 2838 3227 4183 5222 6273
85 426 369 967 877 1552 1566 2232 2399 2874 3299 4324 5340 6397
86 428 376 967 867 1573 1578 2375 2437 3103 3335 4397 5423 6491
87 428 374 976 877 1598 1589 2375 2476 3103 3450 4474 5538 6622
88 437 374 1050 890 1685 1629 2398 2513 3183 3500 4524 5667 6803
89 443 378 1050 907 1690 1654 2400 2562 3183 3541 4578 5774 6872
90 481 384 1060 940 1710 1696 2516 2633 3190 3661 4699 5832 7040
91 481 393 1089 951 1748 1724 2516 2674 3234 3677 4850 5969 7163
92 481 394 1089 966 1805 1750 2599 2729 3277 3760 4873 6081 7286
93 481 402 1098 962 1813 1795 2604 2726 3361 3811 4984 6231 7488
94 481 405 1124 986 1881 1811 2747 2788 3474 3888 5067 6329 7536
95 481 413 1135 1010 1901 1846 2747 2817 3531 3940 5154 6396 7741
96 509 414 1261 1023 1965 1863 2769 2911 3639 4070 5220 6516 7777
97 515 419 1261 1027 1965 1899 2817 2960 3639 4069 5316 6649 8038
98 531 429 1261 1055 1965 1929 2850 3001 3690 4147 5445 6776 8242
99 531 449 1261 1040 2009 1950 2878 3043 3731 4214 5477 6912 8344

100 554 451 1261 1074 2053 1975 3000 3117 3903 4335 5597 6983 8450

Table 4.3: (Maximin) squared `2-distance found using periodic designs (PD) and simu-
lated annealing (SA) (continued).

particularly well for larger values of n. For dimensions 3 to 5 a break-even point , i.e.

a point (or, better, an interval) where the preference shifts from the Latin hypercube

designs found by simulated annealing to (adapted) periodic designs, is clearly visible in

the table. Furthermore, these break-even points seem to increase with the dimension

of the design and it is to be expected that break-even points for k-dimensional Latin

hypercube designs, with k ≥ 6, will occur for larger values of n, i.e. n > 100. This

behavior could be explained by the border effect , i.e. the irregularity of Latin hypercube

designs that is caused by the borders of the design space. Clearly, the number of “borders”

of a k-dimensional box region increases exponentially, with respect to k. However, due

to the Latin hypercube structure the number of design points that are located on or near

these borders is limited. This, in turn, leads to very irregular optimal Latin hypercube

designs when the number of design points is small with respect to the number of borders

(which again depends on k). Hence, the nice, periodic structure that is sought for by
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our periodic construction method works well only when the number of design points is

relatively large, when compared to the dimension. Section 3.4 already shows the presence

of this particular behavior in two-dimensional maximin Latin hypercube designs, i.e. the

optimal designs found can all be represented by periodic designs. The results in Table 4.3

suggest that this behavior also occurs in higher dimensions.

Simulated annealing, however, does not depend on an underlying structure of the

design and can therefore often find better Latin hypercube designs, especially for smaller

values of n. Since all six- and seven-dimensional (adapted) periodic designs, of 3 to 100

points, are dominated by the designs found by simulated annealing, maximin distances

of the former are computed only for up to seven dimensions. Concerning the different

neighborhoods for the simulated annealing algorithm (see Section 4.3), it turned out

that the second neighborhood yields, in general, the best results. For the terminating

conditions, the first two conditions, generally speaking, result in the best Latin hypercube

designs for n ≤ 50, whereas the third and fourth condition are better for larger values of n.

Our heuristics are able to generate all best-known maximin Latin hypercube de-

signs (see Morris and Mitchell (1995)), except for the cases k = 6, n = 12 and

k = 7, n = 14, for which slightly worse designs are obtained. For the case k = 3, n = 11,

however, we obtained an improved (and optimal) maximin Latin hypercube design.

Furthermore, using a branch-and-bound algorithm, the three-dimensional designs of up

to 13 points have been verified to be optimal.



Chapter 5

Quasi non-collapsing designs

I knew it! I knew it!
Well, not “knew it” in the sense of hav-
ing the slightest idea, but I knew there was
something I didn’t know.

(BtVS, Episode 02.14 )

5.1 Introduction

The problem of finding a two-dimensional unrestricted `2-maximin design (in a box-

constrained domain) is equivalent to the problem of finding a packing of n circles with

maximal common radius in a square; see Section 2.2.3. The Packomania website of

Specht (2005) contains many good approximating solutions to this latter circle packing

problem for up to 300 circles. Figure 3.9 depicts the best known maximal distances for

the unrestricted case, i.e. the circle packing problem, as well as the case where the Latin

hypercube structure is enforced. That figure shows that the loss incurred by adding

the latter restriction is relatively small. The same seems to hold for three-dimensional

maximin designs. The website of Pfoertner (2005) contains, among others, the best

known packings of n congruent spheres into a cube for up to 72 spheres. Figure 5.1

depicts the corresponding best known maximal distances, as well as the best known

maximal distances in case the Latin hypercube structure is enforced; see Table 4.3 (take

the square roots of the distances provided in this table). Although the loss in space-

fillingness is larger than in the two-dimensional case, the relative difference still decreases.

Furthermore, as the border effect, caused by imposing the Latin hypercube structure, is

less pronounced when n increases, it is to be expected that the relative difference tends

to zero for larger values of n.

Remember that a Latin hypercube design of n points is obtained by requiring all the

coordinates of the set of design points to be equidistantly distributed over the interval

51
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Figure 5.1: (Maximin) `2-distances d for three-dimensional unrestricted designs and Latin
hypercube designs.

[0, n− 1]. Now, instead, let the coordinates be required to be separated by at least some

distance α ∈ [0, 1]. Note that α = 0 results in an unrestricted (possibly collapsing)

design, whereas α = 1 yields a (non-collapsing) Latin hypercube design. We will call

designs that depend on such a given α ∈ [0, 1] quasi non-collapsing . It is interesting

to investigate how the maximin distance is affected by the choice of α. In the rest of

this chapter we consider two-dimensional, quasi non-collapsing, maximin designs. In this

case, for a given value of α ∈ [0, 1], the corresponding maximin distance is obtained by

solving the following optimization problem:

max min
i 6=j

d(xi, xj)

s.t. α ≤ |xi1 − xj1| i, j = 0, . . . , n− 1; i 6= j
α ≤ |xi2 − xj2| i, j = 0, . . . , n− 1; i 6= j
0 ≤ xi1 ≤ n− 1 i = 0, . . . , n− 1
0 ≤ xi2 ≤ n− 1 i = 0, . . . , n− 1.

(5.1)

Here, d(·, ·) is a certain distance measure. In Sections 5.2 to 5.4 the computation of

the maximin distances (and the corresponding designs) is illustrated for the rectangu-

lar distance, the maximum norm, and the Euclidean distance measure, respectively, for

several values of α ∈ [0, 1]. Although results are obtained only for small values of n, it

is interesting to see the, often non-trivial, trade-off between space-fillingness and non-

collapsingness.
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5.2 Rectangular distance

For the rectangular distance measure `1 the objective function in (5.1) reduces to

|xi1 − xj1|+ |xi2 − xj2|, which results in a non-convex, non-linear program. Furthermore,

(5.1) can be rewritten as the following mixed integer linear program:

max d
s.t. d ≤ xj1 − xi1 + zij i, j = 0, . . . , n− 1; i < j

α ≤ xi+1,1 − xi1 i = 0, . . . , n− 2
α ≤ zij i, j = 0, . . . , n− 1; i < j
zij ≤ xi2 − xj2 + 2(n− 1)(1− hij) i, j = 0, . . . , n− 1; i < j
zij ≤ xj2 − xi2 + 2(n− 1)hij i, j = 0, . . . , n− 1; i < j
0 ≤ xi1 ≤ n− 1 i = 0, . . . , n− 1
0 ≤ xi2 ≤ n− 1 i = 0, . . . , n− 1
0 ≤ zij ≤ n− 1 i, j = 0, . . . , n− 1; i < j
hij ∈ {0, 1} i, j = 0, . . . , n− 1; i < j.

(5.2)

Here, hij = 1 if xi2 ≥ xj2, and hij = 0 otherwise, resulting in zij ≤ |xi2 − xj2|. Since

d is maximized, this yields zij = |xi2 − xj2| in the optimal solution. Solving (5.2) for

several given values of α results in the maximin distance d as a function of the quasi

non-collapsingness parameter α ∈ [0, 1]. Figure 5.2 shows two examples of such a func-

tion for maximin designs of 10 and 11 points, respectively. The graphs are a result of

solving (5.2), using the XA Binary and Mixed Integer Solver of Sunset Software Technol-

ogy (2003), for 200 equidistantly distributed values of α ∈ [0, 1]. Unfortunately, solving

the mixed integer linear program for a given α may take a lot of computation time, e.g.

solving (5.2) for n = 11 takes (on average) 20 minutes. Therefore, (5.2) has been solved

for small values of n only.
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Figure 5.2: Maximin `1-distance as function of the quasi non-collapsingness parameter
α ∈ [0, 1], for 10 and 11 design points.
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Both graphs in Figure 5.2 indicate non-concave, non-increasing, piecewise-linear func-

tions. This behavior can be explained as follows. Fixing all hij in (5.2) results in a linear

program with continuous variables only, and α in the right-hand side of the constraints.

From the sensitivity analysis of a linear program it is known that the optimal value as

a function of α is a non-increasing, concave, piecewise-linear function, see Roos et al.

(1997). For every realization of the binary variables such a function is obtained. The

maximal d is found by taking the maximum over all these functions, resulting in a non-

increasing, piecewise-linear function that is not necessarily concave.

α = 0.41, d = 5.00 α = 0.57, d = 4.86

α = 0.91, d = 4.77 α = 1.00, d = 4.00

Figure 5.3: Quasi non-collapsing maximin `1-distance designs of 11 points for α = 0.41,
α = 0.57, α = 0.91, and α = 1.00.

An interesting observation can be made from the plotted function for 11 design points.

It is seen that α can be increased to a value of 0.41 without affecting the unrestricted

maximin distance. Furthermore, for α between 0.41 and 0.91 the maximin distance stays

within 5% of its unrestricted value; dropping sharply only for values larger than 0.91.



5.3. Maximum norm 55

Apparently, it is possible to construct a highly non-collapsing design of 11 points, with-

out decreasing the unrestricted maximin distance much. For example, Figure 5.3 depicts

four quasi non-collapsing maximin designs, corresponding to the points of inflection in

Figure 5.2: α = 0.41, α = 0.57, α = 0.91, and α = 1.00.

5.3 Maximum norm

When considering the maximum norm `∞ the objective function in (5.1) reduces to

max
{|xi1−xj1|, |xi2−xj2|

}
. Following the same kind of reasoning as with the `1-distance

measure, the optimization problem can be rewritten as a mixed integer linear program.

Unfortunately, extra binary variables have to be included to deal with the maximum-

operator in the objective function, which may increase the computation time:

max d
s.t. d ≤ xj1 − xi1 + (n− 1)(1− kij) i, j = 0, . . . , n− 1; i < j

d ≤ zij + (n− 1)kij i, j = 0, . . . , n− 1; i < j
α ≤ xi+1,1 − xi1 i = 0, . . . , n− 2
α ≤ zij i, j = 0, . . . , n− 1; i < j
zij ≤ xi2 − xj2 + 2(n− 1)(1− hij) i, j = 0, . . . , n− 1; i < j
zij ≤ xj2 − xi2 + 2(n− 1)hij i, j = 0, . . . , n− 1; i < j
0 ≤ xi1 ≤ n− 1 i = 0, . . . , n− 1
0 ≤ xi2 ≤ n− 1 i = 0, . . . , n− 1
0 ≤ zij ≤ n− 1 i, j = 0, . . . , n− 1; i < j
hij ∈ {0, 1} i, j = 0, . . . , n− 1; i < j
kij ∈ {0, 1} i, j = 0, . . . , n− 1; i < j.

(5.3)

The binary variables hij serve the same purpose as in (5.2); for the extra binary variables

kij it holds that kij = 1 if |xi1 − xj1| ≥ |xi2 − xj2|, and kij = 0 otherwise, resulting

in d ≤ max
{|xi1 − xj1|, |xi2 − xj2|

}
. Like in the case of the `1-distance measure, this

mixed integer linear program can be used to compute the maximin distance d for several

values of α ∈ [0, 1]. Figure 5.4 depicts two examples, for maximin designs of 6 and 7

points, respectively. The graphs are a result of solving (5.3) for 200 uniformly spaced

values of α ∈ [0, 1]. Again, solving the mixed integer linear program is computationally

demanding, and, hence, only small values of n have been considered. Furthermore, it can

be argued that the maximin distance is a non-increasing, piecewise-linear function of α.

Note that this function appears to be linear in the case of 6 design points. For 7 design

points, highly non-collapsing maximin designs can be constructed without decreasing the

maximin distance more than 15%, by taking α ≤ 0.85.
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Figure 5.4: Maximin `∞-distance as function of the quasi non-collapsingness parameter
α ∈ [0, 1], for 6 and 7 design points.

5.4 Euclidean distance

For the Euclidean distance measure `2 the situation is even more complicated than for

the previously considered `1- and `∞-distance measures. In this case, the objective func-

tion in (5.1) reduces to the quadratic function (xi1 − xj1)2 + (xi2 − xj2)2 (for the sake of

convenience, we consider the squared Euclidean distance). The resulting non-linear pro-

gram is in fact a multi-extremal optimization problem, which calls for a global optimizer.

We have used the Lipschitz Global Optimizer (LGO) (see Pintér (1995)) to compute

the maximin distance as a function of the quasi non-collapsingness parameter α ∈ [0, 1].

Within LGO the multi-start global search option has been applied, followed by a local

search phase, to increase the probability of obtaining a good solution.

Although the obtained distances yield only lower bounds for the (unknown) global

maximin distances, some information about the behavior of the maximin distances can

still be extracted. For example, Figure 5.5 depicts the maximal distances corresponding

to (approximate) maximin designs of 5 and 6 points for several values of α ∈ [0, 1]. To

obtain this figure, (5.1), with objective function (xi1−xj1)2 +(xi2−xj2)2, has been solved

for 50 equidistantly distributed values of α ∈ [0, 1]. Both plotted functions in Figure 5.5

indicate a non-trivial behavior. For 5 design points a small change in α heavily affects the

maximal distance for values of α less than 0.53 and larger than 0.86, whereas this effect is

less pronounced when α lies between 0.53 and 0.86. For (approximate) maximin designs

of 6 points the maximal distance is heavily affected only by large values of α, i.e. α > 0.80.

This facilitates the construction of highly non-collapsing (approximate) maximin designs

with a maximal distance that does not deviate too much from the unrestricted maximin

distance.
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Figure 5.5: (Maximin) squared `2-distance as function of the quasi non-collapsingness
parameter α ∈ [0, 1], for 5 and 6 design points.
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Nested maximin designs





Chapter 6

Collaborative Metamodeling

Your theory is crazy, but it’s not crazy
enough to be true.

(Niels Bohr, to a young physicist)

6.1 Introduction

High-tech products, such as automobiles and aircrafts, consist of many components.

Since these components are often complex, their design processes are distributed among

specialized design teams of engineers. Each of those teams use their own simulation tools

to evaluate the individual component designs.

For example, in multidisciplinary industries, such as aeronautics and astronautics,

engineers have to deal with many disciplines in their design of the final product. Exam-

ples of disciplines in the aeronautic industry are aerodynamics, (wing) structures, and

mission performance. Unfortunately, there are often several conflicting aspects among

the disciplines. As an example, consider the design of an aircraft wing in aeronautics.

The main aspects of a wing are its shape and its weight. Obviously, a heavier wing can

cope with a higher pressure on the surface of the wing. However, the power needed to

lift the wing at take-off increases with the weight. Hence, there is a trade-off between

the strength of the wing and the power needed to lift the plane from the ground. Note,

however, that this trade-off is limited to just one discipline, i.e. the structural (wing)

optimization. A trade-off between two disciplines occurs when determining the shape of

the wing. An aerodynamically shaped wing may reduce the amount of kerosine needed

at take-off and during the flight; however, the fabrication of such a wing may require

the use of special materials, thereby increasing the production costs. In this case, the

trade-off is between the disciplines of aerodynamics and structures. Due to this latter

type of conflicting aspects, engineers like to speak of multidisciplinary problems.
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Similarly, in the case of multi-component products, relations among components cor-

relate the design problems that the engineers face and create interdependencies among

the different black-box functions. Designing the final product is therefore a very hard task

that can be accomplished only by a proper coordination of all the individual component

design processes. Up to now, mainly sequential optimization methods have been pro-

posed in the literature to deal with this kind of problems. Such sequential techniques are

based on optimization procedures that iteratively solve several small optimization prob-

lems in order to gradually converge to the optimal solution. Several of these methods are

discussed in Section 6.2.

In practice, however, engineers are not just interested in the optimal solution, but they

also like to gain insight into the behavior of the product, in order to design a reliable

product. This may be accomplished by an efficient construction of a global approximation

model for the product as a whole. Unfortunately, because of the large number of design (or

input) and response (or output) parameters of the product, it is impossible to do this all-

at-once, e.g. using the Metamodel approach; see Section 1.2. In this chapter we propose a

collaborative extension to the former approach, which we call the Collaborative Metamodel

approach, or simply Collaborative Metamodeling . This approach exploits the architecture

of the product by first constructing metamodels for all black boxes individually and then

combining these models into a metamodel for the product. To account for the relations

among the black-box functions, coordination methods are introduced. Such coordination

methods control the order of the evaluations and the construction of metamodels during

the whole modeling process. The set of resulting approximation models then implicitly

forms the required metamodel for the product.

6.2 Collaborative approaches

Due to the increased complexity of products and organizational structures, engineers

have spent much time on developing new techniques that can help them with the design

process. This section gives a short overview of some techniques that are found in literature

and in practice.

6.2.1 Multidisciplinary Design Optimization

Multidisciplinary Design Optimization is a collective term for several solution techniques

that are able to deal with multidisciplinary design problems. The basic idea of these

solution techniques is to integrate different (coupled) design problems, i.e. the subprob-

lems at the various disciplines, into one large design problem. This large problem is then

solved iteratively until the solution has converged.
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Solution techniques that are often applied to large-scale design problems are the All-

at-once, Individual Discipline Feasible, and Multidisciplinary Feasible method. The main

difference between these methods is the requirement, or the lack of it, to have a feasible

design at each iteration. For the All-at-once method only the final design has to be

feasible, whereas the Individual Discipline Feasible method requires every discipline to

yield (locally) feasible designs at each iteration. Hence, an intermediate design for a

particular discipline is still allowed to be incompatible with other disciplines. For the

Multidisciplinary Feasible method, however, incompatibility is not allowed at any step,

i.e. the product design must be feasible at each iteration.

Cramer et al. (1994) and Kodiyalam and Sobieszczanski-Sobieski (2001) discuss these,

and other, methods in more detail, and Hulme (2000) uses some real-life test cases to de-

termine how each of these methods perform. Sobieszczanski-Sobieski and Haftka (1997)

give a comprehensive survey concerning the most recent developments in Multidisci-

plinary Design Optimization in aeronautics.

6.2.2 Collaborative Optimization

The Multidisciplinary Design Optimization techniques discussed above do not always

suffice to solve coupled design problems, especially not when the number of disciplines is

large. For cases where the design problem involves a large number of disciplines with many

local design parameters, i.e. parameters that affect only a certain discipline, engineers

have developed a technique called Collaborative Optimization; see Braun and Kroo (1995).

The idea of this technique is not to integrate all subproblems into one large problem, but

rather to coordinate these problems. To achieve this, a bi-level optimization architecture

is used in which a coordination level controls the subproblems at a lower level.

Instead of satisfying all restrictions at once, the coordination level imposes local re-

strictions and targets on the various subproblems at the lower level. Each subproblem

searches for the best solution that satisfies these requirements (as closely as possible),

and the result is returned to the coordination level. At this latter level the results of the

different subproblems are compared with the imposed targets. Any adjustments needed

on the local restrictions and targets are processed and then again sent back to the sub-

problem level. After several of these level-switching iterations have been executed, an

optimal solution is obtained – if one exists.

From this description it follows that several optimizers may be used at different places

in the optimization process. In order to obtain an optimal feasible solution to the (large)

design problem, these optimizers have to collaborate. Just as with Multidisciplinary

Design Optimization, Collaborative Optimization is a collective term for several related

solution techniques. A mathematical discussion of some of these techniques is provided by

Alexandrov and Lewis (2000) and DeMiguel and Murray (2000). Several applications of
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Collaborative Optimization are discussed by Kroo and Manning (2000). Finally, Alexan-

drov and Lewis (1999) compare Collaborative Optimization with other Multidisciplinary

Design Optimization methods.

6.2.3 Analytical Target Cascading

Since evaluations of scenarios in multidisciplinary problems are often very time-

consuming, the time the solution process takes may easily grow out of bounds. Pa-

palambros (2000) proposes to use mathematical functions that locally approximate the

behavior of the more complex models and processes to reduce the order of complexity.

Furthermore, Papalambros (2001) introduces Analytical Target Cascading as an approach

to find an optimal product design in case there are dependencies among these local ap-

proximations.

Analytical Target Cascading is based on the assumption that the engineers, or some

coordinator of the optimization process, set targets for the characteristics of the final

product. Like Collaborative Optimization, this is done at a coordination level. The total

problem is hierarchically decomposed into sublevels, subsublevels, et cetera. Among the

subproblems at a certain level only weak dependencies, i.e. a small number of common

design parameters, are allowed.

After initial targets have been set at the coordination level, these targets are sent

down to the underlying sublevels. At each of these sublevels an optimization problem is

solved, resulting in new targets, which are in turn sent down to their underlying sublevels,

i.e. the subsublevels. At each subsequent level the targets are adjusted, until the lowest

level has been reached. At this point, the direction of the information flow reverses and

the targets are sent back up through the levels, all the way up to the coordination level.

This procedure is repeated until all targets have converged.

6.3 Collaborative Metamodel approach

Section 1.2 discusses the Metamodel approach for black-box optimization problems. In

this case, the unknown black-box function is replaced by approximation models, based on

evaluations of some scenarios. These metamodels can then be used to gain insight into, or

optimize over, the product design space. For the Metamodel approach the design process

is divided into four basic steps: problem specification, design of computer experiments,

metamodeling, and design analysis and optimization.

This section introduces Collaborative Metamodeling to deal with optimization prob-

lems when there are several interdependent black boxes to consider. The steps to be

taken are the same as in the Metamodel approach, be it that some extra work has to be

performed at each step, in order to deal with the relations among the black boxes. Next,
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the four steps in the collaborative variant are discussed, as well as the problems that are

encountered when applying this procedure to multi-component product design problems.

6.3.1 Step 1: Problem specification

In the first step the architecture of the product is investigated and all components (or

black boxes), and the relationships among them, are identified. Furthermore, for each

black box its design and response parameters are defined, as well as the expected simula-

tion time per evaluated scenario and the expected number of evaluations needed. Design

parameters can be divided into local design parameters and linking design parameters. Lo-

cal design parameters are input to a single black box, whereas linking design parameters

are input to multiple black boxes. Note that restrictions on (combinations of) linking

design parameters increase the complexity of the product design problem since these

restrictions cause dependencies among the different components. Moreover, such depen-

dencies may also be caused by response input parameters , which are black-box response

parameters that are input to other black boxes. An example of the interdependence of

design and response parameters for two coupled black boxes is depicted in Figure 6.1.

Black box 1
local design
parameters response

parameters

Black box 2local design
parameters

response
parameters

response input
parameters

linking design
parameters

Figure 6.1: Design and response parameters for two coupled black boxes.

From Figure 6.1 it can be seen that the coupling of black boxes is caused by linking

design parameters and response input parameters. For linking design parameters the

same settings should be chosen as much as possible, when constructing designs for com-

puter experiments for the different black boxes. The reasons behind this restriction are

discussed in Section 6.4.1; Chapters 7 and 8 introduce methods to construct such designs.

The presence of response input parameters gives rise to the need for a coordination

method. This latter type of coupling can be represented by a directed graph in which

the nodes represent the black boxes and the arcs represent the links between the black

boxes. We assume that there exist no cycles in the directed graph, which is a common

assumption in the literature, see e.g. Assine et al. (1999) and Tang et al. (2000).
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Moreover, this assumption is substantiated by design problems found in practice. The

absence of cycles results in a directed graph with a forward structure, i.e. there exists

an explicit precedence ordering of the nodes, and, thus, the black boxes. Therefore, we

refer to such a directed graph as a black-box chain. See Figure 6.2 for an example of

such a chain.

Black box 1

Black box 2

Black box 3

Black box 4

Black box 5

Black box 6

Figure 6.2: A black-box chain.

In Figure 6.2 an arc represents one or more response input parameters. Note that there

may be multiple independent black-box chains within the product design problem. All

these chains can be dealt with concurrently in the way described in the current chapter.

To reduce the total simulation time needed, several black boxes may be clustered.

Such a cluster of black boxes can then be considered as one (big) black box, thereby

decreasing the number of design parameters. Since the expected number of evaluations

needed often depends on the number of design parameters, clustering will lead to a

reduction of the number of evaluations, and, hence, the total simulation time. Kusiak

and Park (1990) discuss a methodology for clustering, based on the grouping and de-

composition of design activities, in order to reduce the design project make-span. Note,

however, that clustering may have unwanted effects on the construction of metamodels,

such as less accuracy, which may not weigh up against the reduction in simulation time.

The coordination methods that are introduced in Section 6.4, however, do reduce the

total time needed for simulation, while retaining the structure of the black-box chain.

6.3.2 Step 2: Design of computer experiments

With the design spaces for each component determined, or estimated, each design team

has to construct a design of computer experiments. Depending on the applied coordi-

nation method these designs can either be constructed individually, or have to take into
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account previously obtained evaluations of the own black-box function or from other black

boxes. This latter dependency is caused by response input parameters. Again, the de-

signs should be space-filling and non-collapsing to insure that good global approximation

models are obtained for all black-box functions.

Depending on the coordination method, it may be possible to carry out system-level

simulations , i.e. the evaluation of particular product designs (instead of just component

designs). Note, however, that this is possible only when the same settings are chosen

for all linking design parameters and the observed response input parameter values are

used as input to succeeding black-box functions. Section 6.4.1 explains how system-level

simulations can help in the design process of the product. Furthermore, Chapters 7 and 8

introduce methods to construct designs for computer experiments that can be used to

obtain system-level simulations. Such designs are referred to as nested designs.

6.3.3 Step 3: Metamodeling

After all scenarios at the individual black boxes have been evaluated, metamodels can be

fitted to the obtained data. The relations among the individual components can then be

used to combine these models into metamodels for the product as a whole. Combining

these approximation models, however, may lead to serious error propagation, which may

result in poor metamodels for the product. Therefore, the metamodels of the product

should be validated, e.g. using cross-validation; see Stehouwer and Den Hertog (1999).

Should the system-level metamodels appear to be invalid, then either different models

should be fitted or an additional set of scenarios has to be evaluated to improve the

current models. The problem to determine which components to grant extra evaluations,

and which design points to evaluate in this case, is very complex and further research is

therefore needed in this area. One option may be the use of nested designs, see Chapters 7

and 8.

6.3.4 Step 4: Design analysis and optimization

The obtained metamodels of the product give a lot of information about the behavior of

the product. Since the approximation models are explicit functions, function evaluations

are relatively fast, and, hence, optimization techniques can be applied to find a good

product design. Furthermore, the metamodels for the components of the product are also

an interesting source of information. From these approximation models the significance

of each black box, and all its design parameters, with respect to the characteristics of

the final product, becomes more transparent. Hence, changes on the component level

that will result in changes on the system level can be detected (and tested) more easily.

Furthermore, with a multi-component product, and all corresponding interrelations on
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the component level, robustness of the final product design becomes an important, and,

unfortunately, very difficult aspect to consider.

6.3.5 Comparison with other approaches

Multidisciplinary Design Optimization, Collaborative Optimization, and Analytical Tar-

get Cascading, can all be considered as sequential optimization methods since they aim

to establish a convergence of the (intermediate) designs, or targets, to some optimum.

Collaborative Metamodeling, however, aims at constructing global metamodels for the

underlying product, in order to not only find a good product design, but also to gain

more insight into the behavior of the product as a whole.

Collaborative Optimization uses the same bi-level structure as Collaborative Meta-

modeling, i.e. a coordination (or system) level and a component level. The coordination

process in Collaborative Optimization, however, aims at achieving the targets set at the

system level, whereas in Collaborative Metamodeling the coordination process intends

to obtain metamodels for all components that properly reflect the dependencies that are

present.

Like Analytical Target Cascading, Collaborative Metamodeling exploits the architec-

ture of the product by considering a decomposition of the product into its components

and disciplines. Both approaches use approximation models to reduce model complexity,

albeit that Analytical Target Cascading considers local approximations, whereas Col-

laborative Metamodeling uses global approximation models. Furthermore, Analytical

Target Cascading takes the decomposition one step further by considering, besides the

system and component level, also the part and process levels underlying the components.

The rest of this chapter focuses on the first step of Collaborative Metamodeling,

i.e. the problem specification, and on coordination methods in particular.

6.4 Coordination methods

The coupling of black boxes has a direct effect on the design of computer experiments.

Due to the presence of response input parameters, the constructions of designs for com-

puter experiments for different black-box functions are interrelated. To steer the simula-

tion process in the right direction, coordination methods are introduced in this section.

We define a coordination method to be a rule that determines the order in which simula-

tions are carried out and metamodels are constructed by the different component design

teams. Next, we introduce and analyze the following three coordination methods.
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Parallel Simulation

The first method does not take into account the interdependencies among the black

boxes. Every black box is dealt with separately, i.e. independent of all others. Linking

and response input parameters are considered as local design parameters and a design of

computer experiments is based on local parameter restrictions only. Every design team

carries out their simulations concurrently.

Sequential Simulation

The second method uses the response values obtained at black boxes preceding the one

in question. That is, once a component design has been evaluated the obtained responses

are transferred to all its successors (if any). When a particular black box has received

the evaluation results for a specific scenario from all its predecessors, a simulation run is

carried out, i.e. one scenario is evaluated. This procedure is repeated until the number of

required evaluations has been reached. It is important to note that the simulation runs

at every design team are carried out one-by-one, following the precedence ordering in the

black-box chain and using the responses observed at predecessors.

Sequential Modeling

The third method closely resembles Sequential Simulation. The main difference is that

the simulation runs for a particular black box are carried out all-at-once and that the

observed response values, along with the constructed metamodels, are transferred to all

its successors. Again, the precedence ordering in the black-box chain is followed, but

now the design teams have to wait until their predecessors have completely finished their

simulation and metamodeling processes. Note, however, that this procedure provides the

engineers with maximal information about their predecessors.

6.4.1 Aspects of coordination methods

Once a design of computer experiments has been evaluated for a particular black box,

metamodels can be constructed based on the observed responses. The metamodels for all

black-box functions together are then used in the product design optimization process.

The validity of these metamodels, however, depends heavily on the availability of proper

data. This, in turn, depends on the way the evaluations have been carried out, and, even

more important, it depends on which scenarios have been evaluated. Since coordination

methods play a role in this process, the current section discusses and compares the three

coordination methods in more detail. As a measure for comparison, the following five

aspects are considered:

• Use of precedent information;
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• Coordination complexity;

• System-level simulations;

• Flexibility;

• Throughput time.

Next, all these five aspects are defined. Furthermore, the different effects that the three

coordination methods have on each aspect are discussed and compared. In Section 6.4.2

the results found are summarized and recommendations on the choice of a coordination

method are provided.

Use of precedent information

This aspect refers to the use of evaluation and modeling results from preceding black

boxes. Such results are helpful in the determination of design parameter settings that

are expected to yield the most valuable information about the components. Note that in

case of response input parameters the use of precedent information is a necessity to obtain

system-level simulations. Clearly, both sequential coordination methods use precedent

information by means of response input parameter values. In Parallel Simulation no

precedent information is used since all design parameters are considered as local design

parameters.

Coordination complexity

Coordination complexity refers to the amount of communication and time that is needed

to implement a certain coordination method. It also includes extra costs that are in-

curred by, for example, the need for an automated communication system. In Parallel

Simulation every design team operates independently and there is no need for a complex

organizational structure; see e.g. Krishnan (1996), where managing the simultaneous ex-

ecution of two coupled development phases plays a central role. In Sequential Simulation,

communication is needed after each global design simulation (see Section 6.5.2) at every

black box. Therefore, this coordination method results in a complex coordination process

that needs sophisticated communication methods, which have to be supported by the de-

sign tools. Communication between design teams is also required in Sequential Modeling,

be it only after a complete design of computer experiments has been evaluated. Hence,

the coordination process is relatively simple.

System-level simulations

A product design is a particular setting of all the design parameters in the product

specification. Evaluating such a setting yields a system-level simulation. Obtaining
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system-level simulations may require some effort, but it is a great help in the product

design process. These simulations provide information about the characteristics of feasible

product designs, which lead to more insight into the product, and may even yield an

improved product design. Furthermore, system-level simulations increase the credibility

of the applied optimization and robust design approaches, and can be used to validate

the obtained metamodels of the product.

Since simulations are carried out by evaluating black-box functions at the component

level, all these functions will have only a subset of the total set of the design parameters

of the product as their input. Furthermore, the presence of linking design parameters and

response input parameters creates overlap in these sets of design parameters and leads

to coupled black-box functions. Hence, the same settings should be used for the linking

design parameters at every black box, and observed response input parameter values

should be used as input parameter settings in succeeding simulation tools, in order to

obtain a consistent system-level simulation.

Nested designs can be used to deal with the linking design parameter settings (see

Chapters 7 and 8); what remains is to account for the response input parameters. Clearly,

it is not possible to obtain system-level simulations in Parallel Simulation, since all re-

sponse input parameters are considered to act as local design parameters. The sequential

coordination methods take responses from preceding black boxes as inputs, and, hence,

may yield system-level simulations.

Flexibility

A coordination method is called flexible when it does not take a lot of effort to validate

or adjust the constructed metamodels, in case of small changes to one or more black-

box functions. In Parallel Simulation the metamodels for the various black boxes are

constructed independently, so changes in a particular component do not directly affect

other metamodels and can be offset by evaluating an additional set of design points for the

corresponding black box. When applying a sequential coordination method one must be

more careful, since coupling among black-box functions is preserved in the construction

of metamodels. Therefore, invalidity of one metamodel may affect the validity of the

metamodels for succeeding black-box functions. Since small changes can require much

effort in the validation and, possibly, adjustment of many metamodels, the sequential

coordination methods are not flexible with respect to changes in the black boxes, whereas

Parallel Simulation is flexible.

Throughput time

The throughput time of a coordination method is defined as the total time it takes to

carry out all evaluations needed to construct proper metamodels for every black box
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in the chain. From a time-to-market perspective it is desirable to have short product

development times, so the throughput time should preferably be small. We assume that

construction times of metamodels are negligible, relative to the time-consuming computer

simulations, and, hence, they are ignored in our analysis. Derivations of formulas for

the throughput times for all three coordination methods are provided in Section 6.5.

Furthermore, it is proven that Parallel Simulation always leads to the shortest throughput

time, Sequential Simulation takes a longer time, and Sequential Modeling the longest.

Using the throughput-time formulas it is easy to compute the exact throughput time

for each coordination method for a particular problem instance. This information, along

with the four other aspects above, can be used to decide on the coordination method to

be used.

6.4.2 Comparison of coordination methods

To compare the three coordination methods, Table 6.1 assigns a performance score for

each of the five aspects to each method. Two pluses (++) indicate that the coordination

method has a very positive effect on a particular aspect; one plus (+) indicates a mod-

erately positive effect. With one minus (−) the effect of the coordination method on a

particular aspect is slightly negative; with two minuses (−−) this effect is very negative.

Note that in Table 6.1 a positive effect, i.e. + or ++, on the coordination complexity

implies that the coordination process is not complex.

Parallel Sequential Sequential
Aspect Simulation Simulation Modeling

Use of precedent information −− + ++
Coordination complexity ++ −− +
System-level simulations − ++ ++
Flexibility ++ −− −−
Throughput time ++ + −−

Table 6.1: Comparison of the three coordination methods.

The main advantages of Parallel Simulation are a small throughput time, much flex-

ibility, and a less complex coordination process. The obtained metamodels, however,

may not approximate the characteristics of the product accurately enough since relations

among components are not considered. Hence, an additional set of evaluations, besides

the scenarios already evaluated, may be needed to include the coupling among black

boxes properly in the metamodels. Furthermore, Section 6.4.1 illustrates the importance

of system-level simulations, which Parallel Simulation unfortunately lacks. These draw-

backs make a sequential coordination method more suitable than the parallel coordination
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method, particularly in cases with response input parameters.

Choosing between the two sequential coordination methods mainly depends on the

throughput time and the availability of good means of communication among the design

teams. Sequential Simulation results in a more complex coordination process, whereas

Sequential Modeling generates a longer throughput time. Therefore, when dealing with

time-consuming simulations and an automated communication system, Sequential Sim-

ulation is preferable. Sequential Modeling is a good choice when communication among

design teams is hard and the simulation times are not too lengthy.

Of course, the determination of the best coordination method is not so strict, and it

depends on the kind of product design problem that is dealt with. This is why a careful

study of all aspects for each of the three coordination methods is extremely important.

In this respect, the discussions in Section 6.4.1, Table 6.1, and the formulas derived in

Section 6.5, may be of help in the decision process.

Section 6.3.3 mentions the problem of constructing proper metamodels. Since the

initial sets of evaluated scenarios may not suffice to construct proper metamodels for

each black box, a two-stage simulation procedure is often applied. For the first stage we

advise to use Parallel Simulation and to evaluate all designs concurrently. This gives a

good idea about the general black-box behavior and the most important parts of the

component and product design spaces. Furthermore, the small number of evaluations

may turn out to be sufficient for constructing valid metamodels for (some of) the

black-box functions. In this latter case, additional (time-consuming) evaluations are not

needed. Otherwise, we advise that in the second stage the previous evaluation results

are combined with a sequential coordination method, and that extra sets of component

designs are simulated, which may lead to more accurate metamodels.

6.5 Computation of the throughput time

This section derives mathematical formulas for the throughput time, which has been

introduced in Section 6.4.1. The following notation is used:

B: set of black boxes, B = {1, 2, . . .};
Pb: set of black boxes that directly precede black box b ∈ B;

Bend: set of black boxes with no successors, i.e. Bend = {b | b ∈ B; b 6∈ Pb′ , ∀ b′ ∈ B};
nb: number of required simulations at black box b ∈ B;

sb: time per simulation run at black box b ∈ B.

Using this notation, the black boxes can always be numbered in such a way that their

numbering reflects the precedence ordering in the chain, i.e. b 6∈ Pb̃, b̃ = 1, . . . , b′, if b ≥ b′.
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Note that Pb = ∅ if black box b ∈ B is at the beginning of the chain, and that b ∈ Bend

if b is at the end of the chain.

Figure 6.3 provides a numerical example, which will be used to clarify the throughput-

time computation for each coordination method in the rest of the text. This figure shows

eleven black boxes (BB1 up to BB11) that are coupled by response input parameters.

The actual time-unit of the simulation times is irrelevant for our discussion; we let it be

minutes.

BB1

25

(40)
BB2

20

(50)

BB3

15

(60)

BB4

15

(20)

BB5

20

(40)

BB6

10

(100)

BB7

15

(70)

BB8

10

(90)

BB9

45

(10)

BB10

10

(60)
BB11

15

(60)

Legend: BBb

nb

(sb)

Figure 6.3: Example of eleven coupled black boxes.

6.5.1 Parallel Simulation

In Parallel Simulation all design teams carry out their evaluations concurrently. Hence,

the corresponding throughput time, denoted by TTparallel, is equal to the maximum of

the total simulation times at every black box:

TTparallel = max
b∈B

nbsb. (6.1)

We call a black box a bottleneck when a (small) increase of its simulation time sb results

in an increase of the throughput time. The bottlenecks in Parallel Simulation are all

black boxes b̂ ∈ B that satisfy the equation

b̂ = arg max
b∈B

nbsb. (6.2)

For the black-box chain in Figure 6.3 it can readily be computed that black box 7 (BB7)

forms the bottleneck and that TTparallel is equal to 1050 minutes.
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6.5.2 Sequential Simulation

In Sequential Simulation observed response values at a particular black box are passed

on to its successors. This process can be viewed as a flow of information objects through

the black-box chain, where each information object contains a scenario evaluated at a

preceding black box. We refer to these objects as global (component) design evaluations.

The maximum number of this type of evaluations, say, n̂, is restricted by the minimum

number of required evaluations per black box, i.e. n̂ = min
b∈B

nb. Since n̂ is a minimum,

there may be several black boxes that require more evaluations. The observed responses

of the latter are used only locally, i.e. at a certain black box, and are therefore referred to

as local design evaluations. Clearly, every black box b ∈ B invokes n̂ global and nb−n̂ local

design evaluations. A global design evaluation can be started only when all preceding

black boxes have finished (at least) one such evaluation. Now, let the throughput-time

function fb(n) represent the minimal time it takes for n global design evaluations to be

finished at black box b ∈ B, then:

fb(n) = max

{
sb + max

b̃∈Pb
fb̃(n), sb + fb(n− 1)

}
, n ≥ 1. (6.3)

The interpretation of this formula is that black box b can only start its n-th evaluation

when all its predecessors have finished n global design evaluations and it has evaluated

n− 1 of such evaluations itself. Note that fb(0) = 0 implies that

fb(1) = sb + max
b̃∈Pb

fb̃(1). (6.4)

This equation basically computes the longest path up to black box b, see e.g. Bazaara

et al. (1990), starting from a black box at the beginning of the chain. Since (6.3) is

dynamic in the variables b and n, it can be rewritten as

fb(n) = max

{
sb + max

b̃∈Pb
fb̃(n), sb + max

{
sb + max

b̃∈Pb
fb̃(n− 1), sb + fb(n− 2)

}}

= max

{
sb + max

b̃∈Pb
fb̃(n), 2sb + max

b̃∈Pb
fb̃(n− 1), 2sb + fb(n− 2)

}

= max

{
sb + max

b̃∈Pb
fb̃(n), 2sb + max

b̃∈Pb
fb̃(n− 1), 3sb + max

b̃∈Pb
fb̃(n− 2),

. . . , (n− 1)sb + max
b̃∈Pb

fb̃(2), nsb + max
b̃∈Pb

fb̃(1)

}

= max
r=1,...,n

{
rsb + max

b̃∈Pb
fb̃(n+ 1− r)

}
, n ≥ 1. (6.5)
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It can be proven that fb(n) is convex in n. Therefore, (6.5) can be simplified to the

following maximum function, which is dynamic in the variable b only.

fb(n) = max
r∈{1,n}

{
rsb + max

b̃∈Pb
fb̃(n+ 1− r)

}

= max

{
sb + max

b̃∈Pb
fb̃(n), nsb + max

b̃∈Pb
fb̃(1)

}

(6.4)
= max

{
sb + max

b̃∈Pb
fb̃(n), (n− 1)sb + fb(1)

}
, n ≥ 2. (6.6)

Next, consider the following two sets:

Cb,n: set of possible bottlenecks up to black box b ∈ B for n global design evaluations;

Cn: set of bottlenecks of the whole black-box chain for n global design evaluations.

Note that the black-box chain structure can cause both sets Cb,n and Cn to differ signif-

icantly for distinct values of n. For n = 1, fb(1) follows from (6.4), and

Cb,1 = {b} ∪
⋃

b̃∈I
Cb̃,1, with I =

{
b̃ | b̃ ∈ Pb; fb̃(1) = fb(1)− sb

}
, (6.7)

yields the corresponding bottlenecks for all black boxes b ∈ B. Combining this infor-

mation with (6.6) enables the computation of the throughput time f(n) and the corre-

sponding sets Cb,n and Cn for every arbitrary integer n ≥ 2, see Algorithm 6.2.

Algorithm 6.2 Throughput-time algorithm.

FOR b = 1, 2, . . . , |B| DO

fb(n) = max

{
sb + max

b̃∈Pb
fb̃(n), (n− 1)sb + fb(1)

}
; (6.8)

Cb,n =





Cb,1 ∪
⋃
b̃∈I

Cb̃,n if fb(n) = (n− 1)sb + fb(1),

{b} ∪ ⋃
b̃∈I

Cb̃,n otherwise,
(6.9)

where I =
{
b̃ | b̃ ∈ Pb; fb̃(n) = fb(n)− sb

}
;

END

f(n) = max
b∈Bend

fb(n); (6.10)

Cn =
⋃

b∈J
Cb,n, where J = {b | b ∈ Bend; fb(n) = f(n)} . (6.11)
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The determination of the minimal time needed to evaluate all n̂ global designs, i.e.

f(n̂), directly follows from Algorithm 6.2. To compute the throughput time, the time

needed to evaluate the local designs at every black box must be included as well. In

this respect, note that a black box may be idle for several periods of time during the

whole simulation process of global designs. When it is possible to stop a simulation run

at some point in time and later on proceed from that point on, we call the simulation

runs preemptive. In this case, local designs can be evaluated within the idle periods. The

throughput time of the Sequential Simulation method, denoted by TT pre
seqsim, is then given

by

TT pre
seqsim = max

{
max
b∈B

nbsb, f(n̂)
}

(6.1)
= max

{
TTparallel, f(n̂)

}
. (6.12)

In case TT pre
seqsim = TTparallel, the black boxes b̂ ∈ B that satisfy (6.2) form the bottlenecks.

If TT pre
seqsim = f(n̂), the black boxes b ∈ Cn̂ are bottlenecks. Note that in the latter case

not all bottlenecks may have the same impact on the throughput time, since the impact

depends on the placement of the bottleneck within the black-box chain. The exact impact

of each bottleneck, however, can easily be computed from Algorithm 6.2.

Unfortunately, simulation runs are often non-preemptive. Furthermore, since set-up

times of computer experiments are generally not negligible, switching between different

component designs within the simulation process may not be very practical. Finally,

waiting until all global designs have been evaluated results in much more information

for the design teams, which can be used to determine which local designs to evaluate

best. For these reasons we suggest to use non-preemptive simulation runs and suggest to

evaluate all local designs after the global designs have been evaluated. The throughput

time, denoted by TTseqsim, then becomes

TTseqsim = max
b∈B
{fb(n̂) + (nb − n̂)sb} . (6.13)

In this case, the bottlenecks are given by the set

C∗n̂ =
⋃

b∈I
Cb,n̂, with I = {b | b ∈ B; fb(n̂) + (nb − n̂)sb = TTseqsim} . (6.14)

As above, the impact of these bottlenecks may vary.

For the numerical example in Figure 6.3 it follows from (6.8) and (6.10) that

f(n) =

{
250 + 90n if n ≤ 11,
140 + 100n if n ≥ 11.

(6.15)

This equation and the fact that n̂ = 10 yield f(n̂) = 1150. Recall that TTparallel = 1050

minutes, and, hence, (6.12) results in TT pre
seqsim = 1150 minutes. Furthermore, since

f11(n̂) = f(n̂) it follows from (6.9) and (6.11) that the bottlenecks are given by the set
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Cn̂ = C11,n̂ = {1, 2, 5, 8, 10, 11}. Using (6.13), the throughput time TTseqsim is found to

be equal to 1490 minutes. Since f9(n̂) + (n9 − n̂)s9 = TTseqsim, all black boxes in the set

C∗n̂ = C9,n̂ = {1, 2, 5, 6, 9} are bottlenecks.

6.5.3 Sequential Modeling

In Sequential Modeling all required simulation runs at a particular black box are carried

out before any result is passed on to succeeding black boxes. Therefore, the throughput

time, denoted by TTseqmod, is equal to the longest path in the black-box chain, when the

total simulation time per black box (nbsb) is taken on the nodes of the directed graph:

TTseqmod = max
B̂⊂B

∑

b∈B̂
nbsb, where B̂ is a path in the chain. (6.16)

In (6.16) a path is defined as a sequence of black boxes starting at a beginning of the

chain, i.e. at a black box b for which Pb = ∅, and ending at an end of the chain, i.e. at

a black box b ∈ Bend. All black boxes on a longest, or critical, path form bottlenecks.

In Figure 6.3, with nbsb on the nodes, the black boxes 1, 2, 5, 7, 10, and 11, form the

(unique) longest path, and, therefore, the bottlenecks. The corresponding throughput

time is equal to TTseqmod = 5350 minutes.

6.5.4 Throughput-time relations

From the preceding observations some general relations between the throughput times of

the different coordination methods can be derived:

TTparallel

(6.12)

≤ TT pre
seqsim

(6.13)

≤ TTseqsim ≤ TTseqmod. (6.17)

The first two inequalities readily follow from (6.12) and (6.13). It can easily be proven

that the last inequality also holds.

6.6 Case study: Color picture tube design

This section summarizes the results obtained in an application of Collaborative Metamod-

eling to the design process of a color picture tube at LG.Philips Displays in Eindhoven.

For a detailed discussion of this application the reader is referred to Stinstra, Stehouwer,

and Van der Heijden (2003). The topic of this study is the collaborative design of several

aspects of the shadow mask and screen for a color picture tube. The problem specification

results in the problem structure that is depicted in Figure 6.4.

In this figure there are four black boxes, labelled Landing, MicMac center, MicMac

northeast, and Microphony. The numbers in brackets denote the time needed per
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Figure 6.4: The problem structure.

evaluated scenario (in minutes) and the numbers above the black boxes show the number

of evaluations performed. Ellipses represent design and response parameters, with the

number of parameters in italics. The first columns of Table 6.2 summarize these black-

box characteristics. Note in Figure 6.4 that MicMac center and MicMac northeast have

only local design parameters as input, whereas Landing also has linking design parame-

ters. Microphony takes its input from both linking design and response input parameters.

In this case study, Parallel Simulation was chosen as the coordination method.

The main reason for this choice was that communication among the different depart-

ments was very hard. The design optimization tool COMPACT (see Stehouwer and Den

Hertog (1999)) was used to construct designs for computer experiments and to obtain

metamodels for all four black boxes. The quality of these metamodels, defined by the

cross-validation root mean squared error (CV-RMSE), can be found in the last column

of Table 6.2. COMPACT-CO, the collaborative version of COMPACT (cf. Stinstra,

Stehouwer, and Van der Heijden (2003)), was used to combine the individual metamodels

into a system-level metamodel. For the validation of this system-level metamodel a test

set, taken from the predicted feasible product design space, was simulated.

# Design # Response # Simulations Average relative
Black box parameters parameters performed CV-RMSE (%)

Landing 12 10 300 2.86
MicMac center 10 5 300 3.06
MicMac northeast 10 5 300 4.08
Microphony 28 720 350 8.60

Table 6.2: Black-box characteristics and metamodel validation results.
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All approximation models used were quadratic, which lead to a quadratic optimization

problem. CONOPT (cf. Drud (1994)) and a multi-start technique were used to find a

global optimum. The optimal Microphony design found turned out to be an improvement

of 50% with respect to the current design. In order to test the robustness of the design,

Monte-Carlo analysis was applied to the design. Since metamodels are explicit functions,

this type of analysis is very fast.

This case study showed that Collaborative Metamodeling improves the insight

into the product design problem. Furthermore, the constructed metamodels can be used

for Monte-Carlo analysis, to ensure that the product design remains valid under small

perturbations. In our particular problem instance, however, it is to be expected that the

quality of the metamodels for Microphony are improved when a sequential coordination

method is applied, since the latter black box takes response parameters coming from

other black boxes as input. Since Microphony directly affects the objective, applying a

sequential coordination method would probably lead to better system-level metamodels,

for the same number of evaluated scenarios. Unfortunately, using a sequential method

complicates the coordination process significantly; the question is whether these costs

outweigh the possibility of better metamodels.



Chapter 7

One-dimensional nested designs

Does it ever get easy?
– You mean life?
Yeah. Does it get easy?
– What do you want me to say?
Lie to me.
– Yes. It’s terribly simple. The good guys
are always stalwart and true, the bad guys
are easily distinguished by their pointy horns
or black hats, and, uh, we always defeat
them and save the day. No one ever dies,
and everybody lives happily ever after.
Liar.

(BtVS, Episode 02.07 )

7.1 Introduction

In Part I of this thesis maximin designs, and maximin Latin hypercube designs in partic-

ular, have been considered as designs for computer experiments. In many practical design

problems, however, there is often a need for nested designs . As defined in Section 2.4,

a design is called “nested” when it consists of m separate designs, say, X1, X2, . . . , Xm,

one being a subset of the other, i.e. X1 ⊆ X2 ⊆ . . . ⊆ Xm. There are three main reasons

for using nested designs: linking design parameters, sequential evaluations, and training

and test sets.

To start with the first, consider a product that consists of two components, each of

them represented by a black-box function. To obtain proper approximation models, a

different number of function evaluations may be required for each black-box function.

Moreover, in practice, it may occur that these two functions share one or more linking

design parameters; see Figure 6.1. The evaluation of linking design parameters at the

81
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same parameter settings in both functions (i.e. component-wise) leads to a system-level

simulation, i.e. an evaluation of the product. Not only do such product evaluations

provide a better understanding of the product, they are also very useful in the metamodel

validation and product optimization processes; see Section 6.4.1. Another reason for

using the same settings for (linking) design parameters is caused by physical restrictions

on the simulation tools. Setting the parameters for computer experiments can be a

time-consuming job in practice, since characteristics, such as shape and structure, have

to be redefined for every new experiment. Therefore, it is preferable to use the same

settings as much as possible. Nested designs enable these common settings for the design

parameters.

As an example of a real-life problem in which linking design parameters play a role,

consider the case-study in Section 6.6. In this case-study, Stinstra, Stehouwer, and

Van der Heijden (2003) apply Collaborative Metamodeling to optimize the design of

a color picture tube. Such a tube consists of the main components: screen, electron gun,

and shadow mask, and the relations among these components. Stinstra, Stehouwer, and

Van der Heijden (2003) consider the collaborative design of several aspects of the shadow

mask and the screen. Two of these aspects are the black-box functions describing Land-

ing and Microphony; see Figure 6.4. The Landing function measures the quality of the

image, whereas the Microphony function measures how vulnerable the shadow mask is

to external vibrations. Since the response parameters of both Landing and Microphony

depend on the settings of the design parameters of the shadow mask, linking design pa-

rameters play an important role; see Figure 7.1. As is argued in Section 6.4.1, the same

settings should be used for these linking design parameters as much as possible, which

gives rise to the need for a nested design.

Shadow
mask

Microphony

Landing

mask geometry

parameters

Figure 7.1: Linking design parameters in tube design optimization.

Sequential evaluations are a second reason for using nested designs. In practice, it may

happen that after evaluating an initial set of design points extra evaluations are needed.

For example, suppose that an approximation model is constructed for a particular black-

box function, based on n1 function evaluations. Should this model turn out to be invalid,
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then either a different model should be fitted or an extra set of function evaluations is

required to improve the current metamodel. In this latter case, the problem of construct-

ing a design on a total of, say, n2 points, given the initial design of n1 points, arises. To

anticipate the possibility of extra evaluations, one can construct the two designs (of n1

and n2 points) concurrently; hence, by constructing a nested design (or sequential design,

see Section 2.4). Note that in this case the placement of the additional n2 − n1 points

depends only on the current set of n1 design points, and not on the fitted metamodel.

A third reason for using nested designs originates from the field of training and

test sets. Consider the problem of fitting and validating a particular metamodel.

First, the approximation model is fitted to the obtained data, i.e. the response values

obtained when evaluating the design points in the training set. Then, a new set of

design points, i.e. the test set, is evaluated and the obtained responses are compared

with the response values predicted by the metamodel. If the differences between the

predicted and the actual response values are small, the metamodel is said to be valid.

Since the metamodel should be a global approximation model, i.e. it should be valid

for the entire feasible region, the evaluation points, in both the training set and the

test set, should cover the entire region. Moreover, the evaluation points in the test set

should not lie too close to the evaluation points in the training set, i.e. the total set of

evaluation points should be space-filling. Note that this is accomplished by nesting two

designs, say, X1 and X2, with respect to, for example, the maximin criterion. The result-

ing sets X1 and X2\X1 can then be used as the training set and the test set, respectively.

More formally, a nested design consists ofm ∈ N separate k-dimensional designs (or sets of

design points) X1 ⊆ X2 ⊆ . . . ⊆ Xm and index sets I1 ⊆ I2 ⊆ · · · ⊆ Im = {1, 2, . . . , nm},
with Xj = {xi = (xi1, xi2, . . . , xik) | i ∈ Ij} and |Ij| = nj, j = 1, . . . ,m. Thus, the index

set Ij defines which design points xi are part of design Xj, j = 1, . . . ,m; the nested

design is defined by the collection of individual designs Xj.

To obtain space-filling nested designs, the class of nested designs is optimized with re-

spect to the maximin distance criterion. The current chapter deals with one-dimensional

nested maximin designs, i.e. k = 1; the two-dimensional case is considered in Chapter 8.

Without loss of generality, the lower and upper bounds on the design parameters are

scaled such that all parameters take values in the interval [0, 1]. Note that when consid-

ering a particular design Xj independently, a space-filling distribution of the design points

xi (with i ∈ Ij) over the interval [0, 1] is obtained by spreading the points equidistantly

over the interval, resulting in a minimal distance of 1
nj−1

between the points. We aim

to determine the design points xi and the index sets Ij such that every design Xj is as

much space-filling as possible, with respect to the maximin criterion, under the “nesting”

restriction. To this end, define dj as the minimal scaled distance between all points in
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the design Xj:

dj = min
k,l∈Ij
k 6=l

(nj − 1)|xk − xl|, for all j. (7.1)

Maximizing the minimal distance d = min
j
dj over all index sets I1 ⊆ I2 ⊆ · · · ⊆ Im, with

|Ij| = nj, and design points xi ∈ [0, 1], yields a nested maximin design.

7.2 Nesting two designs

Let us first consider the case of nesting two designs, i.e. m = 2. Note that this case is of

particular interest when using the sets X1 and X2 \X1 as a training set and a test set,

respectively.

7.2.1 Maximin distance

The general problem of nesting two designs can be formalized as the following mathe-

matical program:
max min

k,l∈Ij
j=1,2; k 6=l

(nj − 1) |xk − xl|

s.t. I1 ⊆ I2

|Ij| = nj, j = 1, 2
0 ≤ xi ≤ 1, i ∈ I2.

(7.2)

To obtain a feasible solution that maximizes the objective function in (7.2), we may

choose, without loss of generality, x1 = 0, xn2 = 1, xi < xi+1, 1 ∈ I1, and n2 ∈ I1. For a

given I1, containing the indices, say, 1 = a1 < a2 < · · · < an1 = n2, consider the sequence

v = (v1, v2, . . . , vn1−1) given by vi = ai+1 − ai, i = 1, . . . , n1 − 1. Thus, vi − 1 represents

the number of additional points of X2 between the i-th and (i + 1)-st point of X1. It

is clear that the set of possible I1 is in one-to-one correspondence to the set of positive

integer sequences v, summing up to n2 − 1. Now, the approach to solve (7.2) is to first

fix I1, and its corresponding a = (a1, a2, . . . , an1) and v, and to obtain an expression for

the maximal distance δv, subject to the remaining constraints, and then to maximize δv

over all v. It turns out that finding δv is quite simple.

Lemma 7.1 For fixed I1, and corresponding a and v, the optimal value δv equals

(
n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

})−1

. (7.3)

Proof. Fix a and v, and let δv be the corresponding maximal distance. Since xi+1− xi ≥
δv

n2−1
for all i, it follows that xai+1

− xai ≥ vi
δv

n2−1
. Furthermore, it also holds that
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xai+1
− xai ≥ δv

n1−1
, and, hence,

xai+1
− xai ≥ max

{
vi

δv
n2 − 1

,
δv

n1 − 1

}
. (7.4)

From (7.4) it can be derived that

1 = xan1
− xa1 ≥ δv

n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

}
, (7.5)

which shows that the stated expression for δv (i.e. (7.3)) is an upper bound. It is clear

from the above that, and how, this upper bound can be attained, which proves the

lemma. 2

What remains is to maximize δv over all appropriate sequences v. For ease of

notation, define c2 = n2−1
n1−1

.

Proposition 7.1 Let 2 ≤ n1 ≤ n2. The maximin distance in (7.2) is given by

d =
1

1 + bc2c+ dc2e − c2 − bc2c dc2e 1
c2

. (7.6)

Proof. As mentioned before, δv has to be maximized, which is equivalent to minimizing

n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

}
(7.7)

over all integer-valued sequences v, such that
n1−1∑
i=1

vi = n2 − 1.

We claim that it is optimal to let v take only the values bc2c and dc2e. This is clearly

true if n2 − 1 is a multiple of n1 − 1 (i.e. c2 ∈ N), since, in that case, picking a larger

value than c2 for any of the elements vi will increase the objective function. Therefore,

let n2− 1 not be a multiple of n1− 1. To prove our claim, first assume that vi ≤ bc2c− 1

for some i, and let j be such that vj ≥ dc2e (such a j exists). Then, by adding 1 to vi,

and subtracting 1 from vj, the sequence v′, for which the objective function is strictly

smaller than for v, is obtained. This follows from the inequality

max

{
vi

n2 − 1
,

1

n1 − 1

}
+ max

{
vj

n2 − 1
,

1

n1 − 1

}

> max

{
vi + 1

n2 − 1
,

1

n1 − 1

}
+ max

{
vj − 1

n2 − 1
,

1

n1 − 1

}
, (7.8)

which is easily checked to be true. Hence, the original v is not optimal. Similarly, the

case where vi ≥ dc2e+ 1 for some i is ruled out. Thus, it follows that the optimal v has
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vi = bc2c for p = (n1 − 1)(dc2e − c2) values of i, and vi = dc2e for the remaining i. The

value for d now easily follows from Lemma 7.1. 2

Figure 7.2 gives a graphical representation of the maximin distance as a function

of n1 and n2.
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n2
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x
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Figure 7.2: Maximin distance as a function of n1 and n2.

Using the preceding derivations, a nested maximin design can easily be constructed.

Construction 7.1 Let 2 ≤ n1 ≤ n2. A nested maximin design, with maximin distance

d as in Proposition 7.1, is given by

xi+1 =

{ d
n1−1

i
bc2c i = 0, . . . , p bc2c ;

d
n1−1

p+ d
n2−1

(i− p bc2c) i = p bc2c+ 1, . . . , n2 − 1;
(7.9)

I1 =
{

1 + j bc2c | j = 0, . . . , p
} ⋃

{
1 + p bc2c+ (j − p) dc2e | j = p+ 1, . . . , n1 − 1

}
. (7.10)

As an example, consider a nested maximin design of n1 = 4 and n2 = 8 points. From

Proposition 7.1 it follows that the maximin distance equals d = 21
23
≈ 0.9130. Substituting
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d and p = 2 in Construction 7.1 yields the points x1 = 0, x2 = 7
46

, x3 = 14
46

, x4 = 21
46

,

x5 = 28
46

, x6 = 34
46

, x7 = 40
46

, and x8 = 1, and the set I1 = {1, 3, 5, 8}, implying that

X1 = {x1, x3, x5, x8}. This nested maximin design is depicted in Figure 7.3.
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46
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46
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x8

X1

X2

Figure 7.3: A nested maximin design of n1 = 4 and n2 = 8 points; d = 21
23
≈ 0.9130.

Besides computing the maximin distance for given n1 and n2, Proposition 7.1 can also

be used to prove a general lower bound on the maximin distance.

Proposition 7.2 Let 2 ≤ n1 ≤ n2. Then 1 ≥ d >
(
4− 2

√
2
)−1 ≈ 0.853553.

Proof. Consider the function z : [1,∞)→ R, given by

z(c2) = 1 + bc2c+ dc2e − c2 − bc2cdc2e 1

c2

= 1 +
(c2 − bc2c)(dc2e − c2)

c2

≥ 1. (7.11)

If c2 ∈ N then z(c2) = 1, i.e. z is minimal, and, hence, d = z(c2)−1 ≤ 1. Else

z(c2 + 1) = 1 +
(c2 − bc2c)(dc2e − c2)

c2 + 1
< z(c2). (7.12)

Therefore, in this latter case z is maximal for some c2 ∈ (1, 2). Restricting z to (1, 2)

leads to:

z(c2) = 1 + 1 + 2− c2 − 2

c2

= 4− c2 − 2

c2

, (7.13)

which is maximal for c2 =
√

2. For c2 ∈ Q and c2 ≥ 1 it follows that

z(c2) < z(
√

2) = 4− 2
√

2, (7.14)

and then

d >
1

z(
√

2)
=

1

4− 2
√

2
=

1

2
+

1

4

√
2 ≈ 0.853553. (7.15)

2

Note that the obtained lower bound is tight since c2 can be taken arbitrarily close to
√

2.

The interpretation of this lower bound is that for all values of n1 and n2, when nesting

the designs X1 and X2, never more than 14.64% is lost, with respect to the “restriction

free” maximin distance. In practice this implies that a linking design parameter can be

included in the maximin designs, or that the designs can be used as training and test sets,

at a cost of using designs that are at most 14.64% worse with respect to space-fillingness.
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In case of sequential evaluations the interpretation is somewhat different. A standard

way to perform two-stage sequential evaluations is to first evaluate n1 design points,

equidistantly distributed over the interval [0, 1]. After the evaluations, n2 − n1 extra

design points are evaluated, resulting in an extended design of computer experiments

with a minimal distance of d′ = c2
dc2e between the design points; see Section 7.2.2. Clearly,

d ≥ d′ and d′ = c2
dc2e ≥ c2

c2+1
> 1

2
, for c2 > 1.

If one evaluation stage turns out to be sufficient, a nested maximin design is at most

14.64% less space-filling, with respect to the (standard) equidistant design (since we lose

1− d). However, if a second evaluation stage is needed, then a nested maximin design is

better space-filling than the extended equidistant design (since we gain d−d′). Figure 7.4

depicts the net gain of using a nested maximin design, i.e. (d−1)+(d−d′), as a function

of c2. For n2 ≤ 100 the net gain takes values in the interval [−0.07, 0.48].
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Figure 7.4: Net gain of using a nested maximin design, as a function of c2.

7.2.2 Dominance

So far, the designs X1 and X2 have been assumed to be equally important. However, what

if one design turns out to be more important than the other design? Or, put differently,

given a fixed value for d1, what is the corresponding maximal value of d2? To examine

this, we first introduce the notion of dominance. We call a combination (d1, d2) dominant

if it is not possible to improve one of the coordinates without deteriorating the other

coordinate. Knowledge of the dominant combinations is very useful in practice since it

enables the determination of the trade-off between d1 and d2. This helps in finding a
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combination that best satisfies a particular requirement, like, for example, “design X2 is

more important than design X1”. Note that the maximin combination (d, d), with d as in

Proposition 7.1, is dominant. The combinations (1, c2
dc2e) and ( bc2c

c2
, 1) are also dominant,

which can be argued as follows:

• Fixing d1 = 1, the design points of X1 must be equidistantly distributed, i.e. X1 ={
0, 1

n1−1
, 2
n1−1

, . . . , 1
}

. Due to the restriction I1 ⊆ I2, the n2 − n1 extra design

points in X2 need to be chosen such that d2 is maximal. This is accomplished by

choosing these extra points as equally as possible spread over the n1 − 1 intervals

formed by the points in X1, which corresponds to v taking only the values bc2c and

dc2e. Hence, after scaling, this results in a minimal distance of

d = d2 = (n2 − 1)

(
1

n1 − 1
· 1

dc2e
)

=
c2

dc2e . (7.16)

• Next, fixing d2 = 1, the design points of X2 must be equidistantly distributed, i.e.

X2 =
{

0, 1
n2−1

, 2
n2−1

, . . . , 1
}

. To maximize d1, the n2− 1 intervals should as equally

as possible be spread over the n1 − 1 intervals that are to be formed by the design

points in X1. Every interval of X1 then contains either bc2c or dc2e intervals of

length 1
n2−1

. Hence, the minimal distance, after scaling, is given by

d = d1 = (n1 − 1)

(
1

n2 − 1
bc2c

)
=
bc2c
c2

. (7.17)

Since
(
1, c2
dc2e
)

and
( bc2c
c2
, 1
)

bound the values of d1 and d2, they are referred to as

extreme dominant combinations . Moreover, note that these bounds imply that d ≥
max

{
c2
dc2e ,

bc2c
c2

}
. For given n1 and n2, all corresponding dominant combinations can be

characterized by a linear function.

Proposition 7.3 Let 2 ≤ n1 ≤ n2. All dominant combinations (d1, d2) are characterized

by the linear function f :
[
bc2c
c2
, 1
]
→
[
c2
dc2e , 1

]
, where

d2 = f(d1) =
(

(c2 − dc2e) d1 + 1
) c2

dc2e(c2 − bc2c) . (7.18)

Proof. Like in Lemma 7.1, for a given I1, and corresponding a and v, it holds that

1 ≥
n1−1∑
i=1

max

{
vi

n2 − 1
d2,

1

n1 − 1
d1

}
. (7.19)

Hence, for a given a, v, and d1 ≤ 1, it is optimal to choose d2 as large as possible, such

that equality is attained in (7.19).
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We claim that for any d1, with bc2c
c2
≤ d1 ≤ 1, a maximal d2 is obtained by letting v

take only the values bc2c and dc2e, just like in Proposition 7.1. Note that this needs no

further proof for d1 = bc2c
c2

and d1 = 1; therefore, we may assume that bc2c
c2

< d1 < 1, and,

hence, that c2 is not an integer.

To prove the claim, fix d1, and suppose that there is a v resulting in an optimal d2

with vi ≥ dc2e+ 1 for some i. Let j be such that vj ≤ bc2c (such a j exists). Since d2 is

optimal, we may assume that d2 ≥ c2
dc2e . Now, let v′ be obtained from v by subtracting 1

from vi, and adding 1 to vj. Since d2 is optimal, the d′2 corresponding to v′ is at most d2.

From the equalities in (7.19) for the pairs (v, d2) and (v′, d′2), and the inequality d′2 ≤ d2,

it follows that

max

{
vi

n2 − 1
d2,

1

n1 − 1
d1

}
+ max

{
vj

n2 − 1
d2,

1

n1 − 1
d1

}

≤ max

{
vi − 1

n2 − 1
d2,

1

n1 − 1
d1

}
+ max

{
vj + 1

n2 − 1
d2,

1

n1 − 1
d1

}
. (7.20)

Because of the inequalities vi ≥ dc2e+ 1, vj ≤ bc2c, 1 ≥ d2 ≥ c2
dc2e , and bc2c

c2
< d1 < 1, this

reduces to

vi
n2 − 1

d2 +
1

n1 − 1
d1 ≤ vi − 1

n2 − 1
d2 + max

{
vj + 1

n2 − 1
d2,

1

n1 − 1
d1

}
. (7.21)

This latter inequality implies that
vj+1

n2−1
d2 ≥ 1

n1−1
d1, and, hence, (7.21) further reduces to

1
n1−1

d1 ≤ vj
n2−1

d2. Using that bc2c
c2

< d1 and d2 ≤ 1, this implies that vj > bc2c, which is a

contradiction; hence, the considered v does not give an optimal d2. Similarly, it can be

shown that the case where vi < bc2c for some i is not optimal.

Thus, for any d1 it is optimal to take a such that vi = bc2c for p = (n1− 1)(dc2e− c2)

values of i, and vi = dc2e for the remaining i. The value for d2 as a function of d1 then

easily follows from equality in (7.19). 2

Note that for fixed a and v, the relation between d1 and d2 is a piecewise-linear

function. Furthermore, note that for c2 ∈ N the graph of this function results in

the single point (1, 1), and that setting d1 equal to d2 in (7.18) yields the maximin

distance d, with d as in Proposition 7.1. In Figure 7.5 a graphical example of the

linear function f is depicted. This figure shows the set of dominant combinations

for n1 = 4 and n2 = 8 points, including the two extreme dominant combinations

(1, c2
dc2e) ≈ (1, 0.7778) and ( bc2c

c2
, 1) ≈ (0.8571, 1) (depicted by the points on the bor-

der). Moreover, the line d1 = d2 intersects the dominant set exactly in the maximin

combination (d, d) = (21
23
, 21

23
) ≈ (0.9130, 0.9130) (depicted by the point in the middle).
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Figure 7.5: All dominant combinations (d1, d2) for n1 = 4 and n2 = 8 points, and the
line d1 = d2.

7.3 Nesting three designs

Next, consider the case of nesting three designs, i.e. m = 3.

7.3.1 Maximin distance

The general problem of nesting three designs can be formalized as the following mathe-

matical program:
max min

k,l∈Ij
j=1,2,3; k 6=l

(nj − 1) |xk − xl|

s.t. I1 ⊆ I2 ⊆ I3

|Ij| = nj, j = 1, 2, 3
0 ≤ xi ≤ 1, i ∈ I3.

(7.22)

As in Section 7.2.1, we may choose, without loss of generality, x1 = 0, xn3 = 1, xi < xi+1,

1 ∈ I1, n3 ∈ I1, 1 ∈ I2, and n3 ∈ I2. For a given I2, containing the indices, say,

1 = b1 < b2 < · · · < bn2 = n3, consider the sequence w = (w1, w2, . . . , wn2−1) given by

wj = bj+1 − bj, j = 1, . . . , n2 − 1. Given an I1 contained in this I2, let 1 = a1 < a2 <

· · · < an1 = n2 be such that bai ∈ I1 for i = 1, . . . , n1. Note that in this case the set

{ai | i = 1, . . . , n1} 6= I1. As before, let vi = ai+1 − ai. Thus, vi − 1 represents the

number of additional points of X2 between the i-th and (i + 1)-st point of X1, while

wj − 1 represents the number of additional points of X3 between the j-th and (j + 1)-st

point of X2. Now, the analogue of Lemma 7.1 is the following.
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Lemma 7.2 For fixed I1, I2, and corresponding a, b, v, and w, the optimal value δa,w

equals (
n1−1∑
i=1

max

{
ai+1−1∑
j=ai

max

{
wj

n3 − 1
,

1

n2 − 1

}
,

1

n1 − 1

})−1

. (7.23)

We would now have to maximize δa,w over all appropriate sequences a and w. Unfortu-

nately, we are not able to come up with an explicit formula for the maximin distance,

as we did for the case of nesting two designs; see Section 7.2.1. However, (7.22) can be

rewritten as a mixed integer linear program:

max d
s.t. d ≤ (n3 − 1)(xi+1 − xi), i ∈ I3 \ {n3}

d ≤ (nj − 1)(xl − xk) + 2− zjk − zjl, j = 1, 2; k, l ∈ I3; k < l
n3∑
k=1

zjk = nj, j = 1, 2

z1k ≤ z2k, k ∈ I3

0 ≤ xi ≤ 1, i ∈ I3

zjk ∈ {0, 1}, j = 1, 2; k ∈ I3.

(7.24)

Here, zjk = 1 if k ∈ Ij, and zjk = 0 otherwise. The constraints
n3∑
k=1

zjk = nj and z1k ≤ z2k

insure that |Ij| = nj and I1 ⊆ I2, respectively. Solving (7.24) with the XA Binary and

Mixed Integer Solver of Sunset Software Technology (2003), we obtained results up to

n3 = 25 points. Computation times varied from 1 second to almost 2.5 hours of CPU-time

for some instances, on a PC with an 800-MHz Pentium III processor.

As an example, consider a nested maximin design of n1 = 4, n2 = 8, and n3 =

18 points. Solving (7.24) for this instance yields the sets I1 = {1, 7, 12, 18} and I2 =

{1, 4, 7, 10, 12, 14, 16, 18}, which results in the designs X1 = {x1, x7, x12, x18} and X2 =

{x1, x4, x7, x10, x12, x14, x16, x18}, with maximin distance d = 357
398
≈ 0.8970. Figure 7.6

depicts a graphical representation of this nested maximin design.
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Figure 7.6: A nested maximin design of n1 = 4, n2 = 8, and n3 = 18 points; d = 357
398
≈

0.8970.

Although we do not have an explicit formula for the maximin distance, we can prove
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a general lower bound on this distance. To accomplish this, let d(n1, n2, n3) denote the

optimal value for d as function of (n1, n2, n3).

Lemma 7.3 Let 2 ≤ n1 ≤ n2 ≤ n3. Then

d(n1, n2, n3) ≤ d(n1, n2, n3 + n2 − 1). (7.25)

Proof. Consider any a and w for the problem of (n1, n2, n3). For the problem of

(n1, n2, n3 + n2 − 1), consider the same a, and w′, which is given by w′j = wj + 1 for

all j. Since

max

{
wj + 1

n3 + n2 − 1− 1
,

1

n2 − 1

}
≤ max

{
wj

n3 − 1
,

1

n2 − 1

}
, (7.26)

which is easy to show, this implies that δa,w′(n1, n2, n3 + n2 − 1) ≥ δa,w(n1, n2, n3), and

the result follows. 2

Proposition 7.4 Let 2 ≤ n1 ≤ n2 ≤ n3. Then 1 ≥ d(n1, n2, n3) >
(
6− 3 3

√
4
)−1 ≈

0.807887.

Proof. Let (again) c2 = n2−1
n1−1

and c3 = n3−1
n2−1

. First, note that d(n1, n2, n3) = 1 if and only

if c2, c3 ∈ N. Because of Lemma 7.3, we may assume, without loss of generality, that

c3 < 2. To prove the stated inequality, we shall give an a and w such that δa,w(n1, n2, n3) >

(6− 3 3
√

4)−1.

Let a be such that the corresponding v takes the value vi = bc2c for i = 1, . . . , p, with

p = (n1 − 1)(dc2e − c2), and vi = dc2e for the remaining i, i.e. it is the optimal a when

nesting two designs. Since c3 < 2, it is possible to take w such that each wj is equal to 1

or 2, and we shall do so. To further describe w, two cases are distinguished.

In the first case, n3 − n2 ≥ bc2c(n1 − 1)(dc2e − c2), and w is chosen such that wj = 2

for j = 1, . . . , n3 − n2, and wj = 1 for the remaining j. Since max
{

2
n3−1

, 1
n2−1

}
= 2

n3−1
,

it follows that

δ−1
a,w = (n1 − 1)(dc2e − c2) max

{
2bc2c
n3 − 1

,
1

n1 − 1

}
+

(n3 − n2 − bc2c(n1 − 1)(dc2e − c2))
2

n3 − 1
+ (n2 − 1− (n3 − n2))

1

n2 − 1

= (dc2e − c2) max

{
0, 1− 2bc2c

c2c3

}
+ 4− c3 − 2

c3

. (7.27)

Thus, if 2bc2c < c2c3, then δ−1
a,w = (dc2e− c2)(1− 2bc2c

c2c3
) + 4− c3− 2

c3
. Call this expression

f(c2), then it is easy to see that f(c2 + 1) < f(c2); hence, we may restrict our attention
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to the case where 1 < c2 < 2. From the above it is obtained that δ−1
a,w = 6− c2− c3− 4

c2c3
.

This expression is at most 6 − 3 3
√

4, a value that is attained only if c2 = c3 = 3
√

4.

The case 2bc2c ≥ c2c3 is straightforward (in this case δ−1
a,w ≤ 4 − 2

√
2), so for the case

n3 − n2 ≥ bc2c(n1 − 1)(dc2e − c2) the lower bound on d is proven.

In the second case, n3 − n2 < bc2c(n1 − 1)(dc2e − c2), and we may assume that c2 is

not an integer. Let (again) p = (n1 − 1)(dc2e − c2), and introduce t = n3−n2

p
= c2(c3−1)
dc2e−c2 ;

it follows that dte ≤ bc2c. Take w as follows: for m(t− btc) values of i = 1, . . . ,m there

are dte values of j, ai ≤ j < ai+1, for which wj = 2, and the remaining bc2c − dte of such

elements j have wj = 1; for the other values of i = 1, . . . ,m there are btc values of j,

ai ≤ j < ai+1, for which wj = 2, and the remaining bc2c − btc of such elements j have

wj = 1; and all j ≥ am+1 have wj = 1. From Lemma 7.2 it then follows that

δ−1
a,w = m(t− btc) max

{
dte 2

n3 − 1
+ (bc2c − dte) 1

n2 − 1
,

1

n1 − 1

}
+

m(1− t+ btc) max

{
btc 2

n3 − 1
+ (bc2c − btc) 1

n2 − 1
,

1

n1 − 1

}
+

(n1 − 1)(c2 − bc2c)dc2e 1

n2 − 1

=
dc2e − c2

c2

(t− btc) max

{
dte( 2

c3

− 1), c2 − bc2c
}

+

dc2e − c2

c2

(1− t+ btc) max

{
btc( 2

c3

− 1), c2 − bc2c
}

+ 1. (7.28)

Now, assume that

btc( 2

c3

− 1) < c2 − bc2c < dte( 2

c3

− 1), (7.29)

otherwise it is straightforward to show that δ−1
a,w ≤ 4− 2

√
2. Then

δ−1
a,w =

dc2e − c2

c2

(t− btc)dte( 2

c3

− 1) +
dc2e − c2

c2

(1− t+ btc)(c2 − bc2c) + 1. (7.30)

Using the left inequality in (7.29) leads to

δ−1
a,w <

dc2e − c2

c2

(t− btc)( 2

c3

− 1) +
dc2e − c2

c2

(c2 − bc2c) + 1

≤ (c3 − 1)(
2

c3

− 1) +
dc2e − c2

c2

(c2 − bc2c) + 1

≤ 4− 2
√

2 +
dc2e − c2

c2

(c2 − bc2c). (7.31)

If c2 > 4, then this upper bound suffices (its maximum is attained at c2 =
√

20), as one

can easily check. For c2 < 4, fix k = dte (≤ 3), and let c2 > k. Then (7.30) reduces to

δ−1
a,w = 1 + 3k − kc3 − 2k

c3

− (c3 − 1)(c2 − bc2c) +

k
dc2e − c2

c2

(
c2 − bc2c − (k − 1)(

2

c3

− 1)

)
, (7.32)
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the maximum of which is attained for some c2 between k and k + 1, i.e. bc2c is minimal.

For each k = 1, 2, 3 (separately) it is now possible to obtain an appropriate upper bound

on δ−1
a,w, under the assumptions that k ≤ c2 ≤ k + 1 and 1 ≤ c3 ≤ 2. For k = 1, this

upper bound is 6− 3 3
√

4, and it is attained when c2 = c3 = 3
√

2. 2

Note that the obtained lower bound is tight since c2 and c3 can be taken arbi-

trarily close to 3
√

2, and in these cases the given a and w are optimal; see Proposition 7.6.

The interpretation of this lower bound is that for all values of n1, n2, and n3, when

nesting the designs X1, X2, and X3, never more than 19.21% is lost, with respect to

the “restriction free” maximin distance. In practice this implies that a linking design

parameter can be included in the maximin designs, at a cost of using designs that are at

most 19.21% worse with respect to space-fillingness.

Using a nested maximin design in case of three-stage sequential evaluations incurs a

loss of 1 − d when one stage suffices. If two stages are sufficient, a net gain of d − d′ is

obtained, where d′ = c2
dc2e (see Section 7.2.1). Finally, when all three stages are needed

d− d′′ is gained, where d′′ ≤ d′ ≤ d and d′′ > 1
2

for c3 > 1. Thus, the net gain of using a

nested maximin design is equal to (d− 1) + (d− d′) + (d− d′′), which takes values in the

interval [−0.19, 0.84] for n3 ≤ 25.

7.3.2 Dominance

The notion of dominance is introduced in Section 7.2.2. Similar as before, a combina-

tion (d1, d2, d3) is called dominant if it is not possible to improve one of the coordinates

without deteriorating another coordinate. Unlike the case of nesting two designs, the

maximin combination (d, d, d) is not necessarily dominant. For example, for the combi-

nation (n1, n2, n3) = (4, 8, 17) the maximin distance equals d(4, 8, 17) = 0.9130; however,

(0.9130, 0.9130, 0.9275) is dominant. In Section 7.2.2 it is shown that (1, c2
dc2e) and ( bc2c

c2
, 1)

are extreme dominant combinations when nesting two designs. Extending this idea, i.e.

fixing dj = 1 and maximizing dk, k 6= j, leads to extreme dominant combinations for the

case of nesting three designs. Note that the extreme dominant combinations are again

lower bounds on the maximin distance d = d(n1, n2, n3). An upper bound on d is obtained

by the simple observation that d(n1, n2, n3) ≤ max {d(n1, n2), d(n1, n3), d(n2, n3)}. Fur-

thermore, it is easily shown that d(n1, n2, n3) = d(n2, n3), if and only if c2 ∈ N, and

d(n1, n2, n3) = d(n1, n2), if and only if c3 ∈ N.

All this may lead to the belief that the idea of finding the maximin distance by

means of extreme dominant combinations, as has been done for the case of nesting two

designs, can be extended to the case of nesting three designs. For example, in Fig-

ure 7.7 it can be seen that the dominant combinations for n1 = 4, n2 = 8, and n3 = 18

points fall in a plane through the extreme dominant combinations (1, 0.7778, 0.9444),
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(0.8571, 1, 0.8095), and (0.8824, 0.8235, 1). This plane intersects the line d3 = d2 = d1 ex-

actly in the maximin combination (0.8970, 0.8970, 0.8970), strengthening the belief that

this method also works for arbitrary values of (n1, n2, n3). Unfortunately, dominant com-

binations do not always fall in a plane through the extreme dominant points, see e.g.

Figure 7.8. Hence, such a plane can not always be used to find the maximin combina-

tion. As another example, consider the values n1 = 6, n2 = 8, and n3 = 12. In this case,

the plane through the extreme dominant combinations (1, 0.7, 0.7333), (0.7143, 1, 0.7857),

and (0.9091, 0.6364, 1), results in the unattainable combination (0.8324, 0.8324, 0.8324),

when intersected with the line d3 = d2 = d1, thereby “missing” the correct maximin

combination (0.8262, 0.8262, 0.8262).
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Figure 7.7: Dominant combinations for n1 = 4, n2 = 8, and n3 = 18 points.

7.3.3 Heuristic

The previous section shows that it is not always possible to obtain the maximin distance

by means of extreme dominant combinations. Note, however, that even if this method

would work, this would still not result in the construction of a nested maximin design.

Mixed integer linear programming could be used to find a nested design; unfortunately,

due to lengthy computation times, this latter method is applicable only to small values

of (n1, n2, n3). To deal with these problems, we have built a heuristic that is able to

find good nested designs, relatively fast. Furthermore, the obtained nested designs are

conjectured to be optimal.

Our heuristic is based on the observation that all nested maximin designs, which have

been found by solving (7.24), contain the optimal assignments of the corresponding cases

of nesting two designs, as provided in (7.10), as part of their solutions. Compare, for
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Figure 7.8: Dominant combinations for n1 = 4, n2 = 9, and n3 = 14 points.

example, the designs depicted in Figures 7.3 and 7.6. Therefore, for given (n1, n2, n3),

with c2, c3 6∈ N, start by constructing a nested maximin design of n1 and n2 points, using

Construction 7.1. Every interval [xl, xl+1], l ∈ I2 \{n2}, then has a width of at least d
n2−1

,

with d = d(n1, n2) as in (7.6). This implies that up to q points can be added to each

interval, without decreasing d, as long as q satisfies the inequality

d(q + 1)

n3 − 1
≤ d

n2 − 1
, (7.33)

or, equivalently, q + 1 ≤ c3, which results in at most q = bc3c − 1 additional points per

interval and (bc3c − 1)(n2− 1) points in total. Hence, if n3− n2 ≤ (bc3c − 1)(n2− 1), we

are finished, since spreading the n3−n2 points equally over the n2− 1 intervals will yield

a nested maximin design with distance d(n1, n2, n3) = d(n1, n2). Note that this will hold

only in case c3 ∈ N; however, we have chosen (n1, n2, n3) such that c2, c3 6∈ N.

In case n3−n2 > (bc3c−1)(n2−1), q = bc3c−1 points can be added to every interval

and r = (n3 − n2) − (bc3c − 1)(n2 − 1) < (n3 − n2) − (c3 − 2)(n2 − 1) = n2 − 1 points

remain to be added. These remaining r points are sequentially added to one of the n2−1

intervals as follows. Consider the case where s points, s ∈ {0, . . . , r − 1}, have already

been assigned and consider the index sets Is1 ⊆ Is2 ⊆ Is3 = {1, . . . , n′3}, which describe

the current nested design on (n1, n2, n
′
3), with n′3 = n2 + (bc3c − 1)(n2 − 1) + s. The

corresponding maximal distance can then readily be computed from Lemma 7.2. When

assigning the (s + 1)-st point, first compute (using Lemma 7.2) for each of the n2 − 1

intervals what the new maximal distance will be, should the point be assigned to that

particular interval. The interval for which this maximal distance is the largest is chosen,

and the corresponding sets Is+1
1 ⊆ Is+1

2 ⊆ Is+1
3 will describe the new nested design. In
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case of a tie, the interval j, j = 1, . . . , n2 − 1, for which

max

{
(Is+1

2 )j+1 − (Is+1
2 )j

n3 − 1
,

1

n2 − 1

}
−max

{
(Is2)j+1 − (Is2)j

n3 − 1
,

1

n2 − 1

}
(7.34)

is the smallest is chosen. Here, (Is2)j and (Is+1
2 )j are defined as the j-th smallest elements

of the sets Is2 and Is+1
2 , respectively. The value in (7.34) can be interpreted as the

relative cost of adding an extra design point to a particular interval. Leaving out this

second objective may result in bad nested designs.

For given index sets I1, I2, and I3, it takes O(n1n2) time to compute the maximal

distance, using Lemma 7.2. There are s ≤ r < n2 additional points to be added and for

each of these points n2 − 1 index sets have to be considered, hence, Lemma 7.2 has to

be applied O(n2
2) times. Therefore, a nested design for (n1, n2, n3) is found in O(n1n2

3)

time. Note that the complexity does not depend on n3. Moreover, it turns out that

the heuristic yields an optimal nested design for all values of (n1, n2, n3) that have been

considered so far, i.e. for n3 ≤ 25. This supports our conjecture that above heuristic will

find a nested maximin design for all values of (n1, n2, n3).

7.4 Nesting four or more designs

The general case of nestingm ≥ 4 designs can be formalized as the following mathematical

program:
max min

k,l∈Ij ; k 6=l
j=1,...,m

(nj − 1) |xk − xl|

s.t. I1 ⊆ I2 ⊆ · · · ⊆ Im
|Ij| = nj, j = 1, . . . ,m
0 ≤ xi ≤ 1, i ∈ Im.

(7.35)

Furthermore, Lemmas 7.2 and 7.3 can easily be generalized. In particular, the following

holds.

Lemma 7.4 Let 2 ≤ n1 ≤ · · · ≤ nm. Then

d(n1, n2, . . . , nm−1, nm) ≤ d(n1, n2, . . . , nm−1, nm + nm−1 − 1). (7.36)

Now, consider the case where nm < 2n1. Let cj =
nj−1

nj−1−1
, j = 2, . . . ,m, and d =

d(n1, n2, . . . , nm). For fixed I1, let it contain the indices 1 = a1 < a2 < · · · < an1 = nm.

Note that this a is somewhat different from a in the previous section, in the sense that

it now gives the relation between I1 and Im (and not between I1 and I2). As before, let

the sequence v = (v1, v2, . . . , vn1−1) be given by vi = ai+1 − ai. Thus, vi − 1 represents

the number of additional points of Xm between the i-th and (i+ 1)-st point of X1.
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Proposition 7.5 Let m ≥ 3 and 2 ≤ n1 ≤ · · · ≤ nm < 2n1. Then the maximal value for

d equals
1

2m− 2
c2
− · · · − 2

cm
− c2c3 · · · cm

. (7.37)

Proof. Consider an I1 such that the corresponding v takes only values 1 and 2, i.e.

between two neighboring points from X1 there is at most one point from Xm. Since

max
{

2
nj−1

, 1
n1−1

}
= 2

nj−1
, and since the number of i for which vi = 1 equals 2n1−nm−1,

it follows that

δv =

(
(2n1 − nm − 1)

1

n1 − 1
+

m∑
j=2

(nj − nj−1)
2

nj − 1

)−1

=
(
2m− 2c−1

2 − · · · − 2c−1
m − c2c3 · · · cm

)−1
. (7.38)

That this v indeed yields the optimal d can be shown by comparing δ−1
v′ , for a v′ with

v′i ≥ 3 for some i, to δ−1
v′′ , where v′′ is obtained from v′ by letting v′′i = v′i − 1, and taking

v′′j = 2 for a j with v′j = 1. Such a j exists because of the condition nm < 2n1. Further

technical details are omitted. 2

Using Proposition 7.5, it is easy to show that the following holds.

Proposition 7.6 Let m ≥ 2 and 2 ≤ n1 ≤ · · · ≤ nm < 2n1. Then 1 ≥ d >(
2m(1− m

√
1
2
)
)−1

.

The lower bound for d is attained when ci = m
√

2 for all i. We conjecture that this lower

bound for d holds in all cases. This conjecture is supported by the results for m = 2 and

m = 3, see Propositions 7.2 and 7.4, respectively. Furthermore, note that the sequence(
2m(1− m

√
1
2
)
)−1

is decreasing in m and converges to 1
2 log 2

≈ 0.721348. Hence, if our

conjecture is correct, never more than 27.87% is lost, with respect to the “restriction

free” maximin distance, when nesting the designs X1, X2, . . . , Xm.

The mixed integer linear program for the case of nesting three designs (see (7.24)) has

been extended to the case of nesting four designs, i.e. m = 4, and results have been

obtained for n4 up to 19. Unfortunately, as n4 gradually increases the computation

time rapidly grows, leading to some instances that take about 4 hours of CPU-time

(with the XA Binary and Mixed Integer Solver). Therefore, the heuristic described

in Section 7.3.3 has been extended to search for good nested designs, for given values

of (n1, n2, n3, n4). This extended heuristic first constructs a nested design for the

combination (n1, n2, n3), which is conjectured to be an optimal nested design. Then, the

n4 − n3 additional points are sequentially added, in the way described in Section 7.3.3.
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As can be observed from Figure 7.9, for n4 ≤ 19 the heuristic often finds the maximin

distance (and, hence, the corresponding nested maximin design), and it is not too far off

in most other cases. Unfortunately, there is an instance, i.e. (n1, n2, n3, n4) = (4, 6, 9, 14),

for which the distance found by the heuristic is smaller than the (conjectured) lower

bound in Proposition 7.6 (which is depicted by the dotted lines in Figure 7.9). For

this instance, the heuristic obtains a distance of 0.7796, which is smaller than both the

conjectured lower bound of 0.7857 and the maximin distance of d(4, 6, 9, 14) = 0.7923.

Note, however, that, although the heuristic does not yield a distance that is at least as

large as the conjectured lower bound, the conjecture may still be correct.
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Figure 7.9: Maximal distances found by the heuristic versus the maximin distances, for
all values of (n1, n2, n3, n4) with n4 ≤ 19.



Chapter 8

Two-dimensional nested designs

If the road is easy, you’re likely going the
wrong way.

(Terry Goodkind, Soul of the Fire)

8.1 Introduction

Chapter 7 introduces the concept of nested designs and shows how to construct

one-dimensional nested maximin designs. In the current chapter we construct two-

dimensional nested maximin designs. We focus on the problem of nesting two designs,

X1 and X2, with X1 ⊆ X2, Xj = {xi = (xi1, xi2) | i ∈ Ij}, and |Ij| = nj, j = 1, 2. Thus,

the index set I1 ⊆ I2 = {1, 2, . . . , n2} defines which design points xi are part of both

designs. The nested design is defined by the combination of X1 and X2.

As in Chapter 7, all design parameters are scaled such that they take values in the

interval [0, 1], and the class of nested designs is again optimized with respect to the

maximin distance criterion. Furthermore, scaling factors s1 and s2 are introduced to

enable a comparison of the minimal distances between the points in the designs X1 and

X2, respectively. We aim to determine the design points xi and the set I1 such that both

designs are as much as possible space-filling with respect to the maximin criterion. To

this end, define dj as the minimal scaled distance between all points in the design Xj:

dj = min
k,l∈Ij
k 6=l

d(xk, xl)

sj
, j = 1, 2. (8.1)

In this chapter, we consider the Euclidean distance measure (see (2.2)) for d(·, ·). Remem-

ber that the upper bound for the `2-maximin distance of two-dimensional unrestricted

designs (and, hence, also for Latin hypercube designs) in (3.13) is of the order 1√
n−1

101
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(when rescaled to the unit square). Furthermore, for the `2-distances of the obtained

two-dimensional (approximate) maximin Latin hypercube designs in Table 3.1 it often

holds that d is approximately equal to 1√
n−1

(again, when rescaled to the unit square).

For these reasons we use the scaling factors sj = 1√
nj−1

, j = 1, 2, in (8.1). What remains

is to maximize the minimal distance d = min{d1, d2} over all I1 ⊆ I2, with |I1| = n1,

and xi ∈ [0, 1]2, to obtain a nested maximin design in terms of the set I1 and the design

points xi.

Nested maximin design

UnrestrictedNon-collapsing

Latin hypercube design Grid with nested maximin axes

n1-grid n2-grid

Figure 8.1: Several types of nested maximin designs.

Note that several different types of nested maximin designs can be distinguished, see

Figure 8.1. A first division can be made by distinguishing between unrestricted (possibly

collapsing) and non-collapsing designs. When nesting two designs, an unrestricted nested

maximin design is obtained by solving the following optimization problem:

max min
k,l∈Ij

j=1,2; k 6=l

√
nj − 1

√
(xk1 − xl1)2 + (xk2 − xl2)2

s.t. I1 ⊆ I2

|Ij| = nj, j = 1, 2
0 ≤ xij ≤ 1, i ∈ I2, j = 1, 2.

(8.2)

An example of such an unrestricted nested maximin design, of n1 = 4 and n2 = 9 points,

is depicted in Figure 8.2. In this figure, the design points of X1 are represented by solid

dots, the open dots represent the extra design points needed to complete design X2,

hence, the solid and open dots together form the design points of X2. In this particular

example, the “nesting” restriction does not reduce the maximin distances of the indi-

vidual designs, i.e. they are both optimal (see Melissen (1997)), and, hence, the nested

design is easy to construct. For most combinations of n1 and n2, however, the “nesting”
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restriction does reduce the individual maximin distances, making it very hard to obtain

a nested design. No general methods for nesting unrestricted designs exist, as of yet.
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1
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1

Figure 8.2: An unrestricted nested maximin design of n1 = 4 and n2 = 9 points; d =
d2 = 1.4142 and d1 = 1.7321.

As has been argued in Chapter 2, it is important to use non-collapsing designs when deal-

ing with deterministic computer experiments. Therefore, we consider this type of designs

in the rest of the current chapter. Note that a non-collapsing nested maximin design is

obtained by adding constraints that enforce the xi-coordinates (in each dimension) to be

separated by at least some distance α ∈ (0, 1] (see Chapter 5) to (8.2). Several choices

for α are proposed in Sections 8.2 and 8.3. Section 8.2 considers the class of Latin hyper-

cube designs, and n1-grids and n2-grids in particular. In Section 8.3 the underlying grid

depends on the one-dimensional nested maximin designs obtained in Chapter 7. This

latter type of grid is therefore referred to as a grid with nested maximin axes.

8.2 Latin hypercube designs

When nesting two designs, there are two ways to apply the Latin hypercube structure.

The nested design will either be based on a Latin hypercube design of n1 points, i.e.

n1 design points are chosen on the n1-grid, with grid points
{

0, 1
n1−1

, 2
n1−1

, . . . , 1
}2

, and

n2 − n1 design points are added to this design, or it will be based on a Latin hypercube

design of n2 points, i.e. all design points are chosen on the n2-grid, with grid points{
0, 1

n2−1
, 2
n2−1

, . . . , 1
}2

. Next, both types of grids are discussed. Furthermore, examples

are provided for the case of n1 = 6 and n2 = 13 points. To enable comparison with the
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non-nested case, the individual maximin Latin hypercube designs of n1 = 6 and n2 = 13

points (see Section 3.4) are depicted in Figures 8.3 and 8.4, respectively.
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Figure 8.3: A maximin Latin hypercube
design of 6 points; d1 = 1.0000.
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Figure 8.4: A maximin Latin hypercube
design of 13 points; d2 = 1.0408.

The n2-grid

To construct a nested Latin hypercube design on an n2-grid, the n1 points that will form

the design X1 have to be chosen on the grid; the n2−n1 extra points that, together with

the design points of X1, will form the design X2 have to be added. Consider the following

two measures: the space-fillingness of each design, represented by the distances dj, and

the non-collapsingness of each design, with respect to the projections of the design points

onto the axes.

A space-filling nested design is obtained by selecting design points that maximize the

minimal scaled distances between these points in the two underlying designs X1 and X2.

Let the term Xj-coordinates denote the levels obtained when projecting the design

points of design Xj onto one of the axes (or dimensions), for j = 1, 2. Note that the

use of an n2-grid already yields a non-collapsing design X2 since the X2-coordinates

are equidistantly distributed. Hence, what remains is to add restrictions that lead to a

space-filling distribution of the X1-coordinates.

To start, consider the case where c2 = n2−1
n1−1

∈ N. In this case, a non-collapsing design

X1 is obtained by limiting the choice of design points (of X1) to the set of equidistantly

distributed X1-coordinates
{

0, 1
n1−1

, 2
n1−1

, . . . , 1
}2

. See, for example, the nested maximin

Latin hypercube design of n1 = 16 and n2 = 31 points (with c2 = 2) depicted in Fig-

ure 8.5. Using an extension of the branch-and-bound algorithm of Chapter 3, we have
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been able to obtain nested maximin Latin hypercube designs for n2 up to 32 points, in

case c2 ∈ N. Section 8.6 provides the corresponding maximin distances.

For the case c2 6∈ N the situation is more complicated. Since we are bound to the

n2-grid, and n1 − 1 is no longer a divisor of n2 − 1, it is no longer possible to have the

X1-coordinates equidistantly distributed. From the one-dimensional case, however, we

know that for equidistantly distributed X2-coordinates (as is the case with the n2-grid)

it is optimal to have either bc2c − 1 or dc2e − 1 X2-coordinates between succeeding X1-

coordinates; see the proof of Proposition 7.1. Hence, should the design collapse onto

one dimension, having chosen the design points of X1 such that its coordinates satisfy

the above restriction will result in an optimal one-dimensional nested maximin design.

Therefore, the X1-coordinates are required to be separated by either bc2c 1
n2−1

or dc2e 1
n2−1

.

Note that this restriction still leaves multiple grids possible for design X1. An example of a

nested maximin design on an n2-grid of n1 = 6 and n2 = 13 points, with d = d2 = 0.9129

and d1 = 1.0035, is depicted in Figure 8.6. The results obtained with the extended

branch-and-bound algorithm, for n2 ≤ 15, are provided in Section 8.6.
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Figure 8.5: An optimal nested maximin
Latin hypercube design of n1 = 16 and
n2 = 31 points; d = d1 = d2 = 0.9309.
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Figure 8.6: A nested maximin n2-Latin
hypercube design of n1 = 6 and n2 = 13
points; d = d2 = 0.9129 and d1 = 1.0035.

The n1-grid

The idea here is the same as with the n2-grid. The (interiors of the) intervals formed

by consecutive X1-coordinates are again required to contain either bc2c − 1 or dc2e − 1

X2-coordinates. Hence, consecutive X2-coordinates will be separated by either 1
bc2c

1
n1−1

or 1
dc2e

1
n1−1

. See Figure 8.7 for an example of a nested maximin design on an n1-grid of
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n1 = 6 and n2 = 13 points, with d = d2 = 0.9522 and d1 = 1.0000. More results, for n2

up to 15 points, can again be found in Section 8.6.

8.3 Grids with nested maximin axes

The use of the Latin hypercube structure in the construction of a nested maximin design

implies a preference of one design over the other. Design X1 is assumed to be more

important than design X2 when an n1-grid is used; design X2 is preferred over design

X1 in case of an n2-grid. If both sets are assumed to be of equal importance we would

like to treat them equally. To deal with this problem, the X1- and X2-coordinates could

be restricted to take only values at the levels of the (known) one-dimensional nested

maximin design of n1 and n2 points; see Section 7.2. The design points of X1 and X2

could then be chosen from the grid points obtained in this way. Note that in this case

the projections of the design points onto the axes are always space-filling with respect

to the maximin distance criterion. Furthermore, note that a one-dimensional maximin

design, with c2 6∈ N, is (again) not unique, so there are multiple grids possible. Figure 8.8

depicts an example of a nested maximin design of n1 = 6 and n2 = 13 points on a grid

with nested maximin axes, with d = d1 = 0.9589 and d2 = 0.9805. Section 8.6 provides

the maximin distances for values of n2 up to 15.
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Figure 8.7: A nested maximin n1-Latin
hypercube design of n1 = 6 and n2 =
13 points; d = d2 = 0.9522 and d1 =
1.0000.

0
6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66
1

0

6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66

1

Figure 8.8: A nested maximin design of
n1 = 6 and n2 = 13 points on a grid with
nested maximin axes; d = d1 = 0.9589
and d2 = 0.9805.
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8.4 Comparing the different types of grids

Sections 8.2 and 8.3 introduce three types of grids for constructing non-collapsing nested

maximin designs. The question that arises is when to use which type? As an example,

consider Table 8.1, which summarizes the results found for the case of n1 = 6 and n2 = 13

points.

Grid type d d1 d2 Figure

n2-grid 0.9129 1.0035 0.9129 8.6
n1-grid 0.9522 1.0000 0.9522 8.7
Grid with nested maximin axes 0.9589 0.9589 0.9805 8.8

Table 8.1: Maximin distances for different types of nested grid-designs of n1 = 6 and
n2 = 13 points.

When determining which type of grid to use, there are a few aspects to consider.

First, if we are interested in the space-fillingness of a design, then the grid that yields

the largest maximin distance should be chosen, i.e. the grid with nested maximin axes

in Table 8.1. Note, however, that the maximin distance does not depend only on the

grid used, but also on the values of n1 and n2. Therefore, it may be wise to compare

several different pairs (n1, n2) for each type of grid in order to find a satisfying nested

maximin design. When it is not known a priori which design parameters are significant,

the non-collapsingness criterion should also be considered. If the design collapses then

the one-dimensional design should preferably be space-filling, which is accomplished by

choosing a grid with nested maximin axes. Hence, in case of n1 = 6 and n2 = 13 points,

the nested maximin design depicted in Figure 8.8 is a good choice, with respect to both

space-fillingness and non-collapsingness.

Besides the space-fillingness and the non-collapsingness criteria, the reason why a

nested design is used may also affect the choice for a particular grid. For example,

an n1-grid is preferable for sequential evaluations, since it is known for sure that the

first set of design points is evaluated (moreover, these evaluation points should yield

information about the whole feasible region, and, hence, should be equally spread over

this region), whereas the evaluation of an extra set of design points may depend on the

previously evaluated set. In the same setting, an n2-grid is preferable when the final set

of design points (i.e. X2) is required to be a Latin hypercube design, as is often the case

in practice. When dealing with linking design parameters the choice for a specific grid

mostly depends on the question which of the two designs, i.e. X1 or X2, is considered

to be the most important one, and, thus, using an n1-grid or an n2-grid, respectively.

This latter question is of particular importance in cases where a training set and a test

set are used. Since the prediction accuracy of a metamodel is, among others, affected

by the choice of the evaluation points, a space-filling distribution of these points over
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the feasible region is desirable, and, hence, the grid for which the design points of X1

have the largest separation distance may be preferred. A grid with nested maximin axes

should be used when there is no explicit preference for either one of the designs.

From this discussion it follows that the notion of the “best” nested grid-design de-

pends on the application under consideration and the users’ preferences. Fortunately,

there are some special cases that make the comparison of the various nested grid-designs

superfluous, i.e. when c2 ∈ N. In these cases we do not have to differentiate between dif-

ferent grid types, since they will all yield the same nested maximin design (and maximin

distance).

8.5 Dominance

Section 7.2.2 introduces the notion of dominance. Dominant combinations can also be

identified for two-dimensional nested maximin Latin hypercube designs. For c2 ∈ N and

n ≤ 32 we have been able to compute all these dominant combinations. Furthermore,

all optimal (i.e. maximin) combinations that are provided in Table 8.3 turned out to

be dominant. Table 8.2 provides all dominant combinations (d1, d2) corresponding to

the pairs (n1, n2), with c2 ∈ N and n2 ≤ 32, for which there exist more than one such

combination.

n1 n2 Dominant combinations (d1, d2)

4 10 (0.8165, 0.9428), (1.2910, 0.7454)
4 16 (1.2910 ,0.9309), (0.8165, 1.0646)
6 16 (1.0000 ,0.7303), (0.6325, 1.0646)
9 17 (1.1180 ,0.7906), (0.7906, 1.0607)
4 19 (1.2910 ,0.9718), (0.8165, 1.0000)
7 19 (1.1547 ,0.9718), (0.5774, 1.0000)

10 19 (1.0541 ,0.7454), (0.7454, 1.0000)
11 21 (1.0000 ,0.7071), (0.7071, 1.0000)
8 22 (1.0690 ,0.8997), (0.5345, 0.9258)

12 23 (0.8528 ,1.0871), (0.9535, 0.6742)
4 25 (1.2910 ,1.0206), (0.8165, 1.0408)
5 25 (1.1180 ,0.9129), (0.7071, 1.0408)
7 25 (1.1547 ,0.8660), (0.5774, 1.0408)
9 25 (1.0000 ,1.0408), (1.1180, 0.9129)

14 27 (1.0000 ,1.0000), (1.1435, 0.8321)
4 28 (1.2910 ,0.9623), (0.8165, 0.9813)

10 28 (0.9428 ,0.9813), (1.0541, 0.8607)
5 29 (1.1180 ,0.9636), (0.7071, 1.0177)
8 29 (1.0690 ,0.9449), (0.8452, 0.9636)

15 29 (0.9636 ,0.9636), (1.1019, 0.8018)
7 31 (1.1547 ,0.9129), (0.5774, 0.9309)

16 31 (0.9309 ,0.9309), (1.0646, 0.7746),
(0.7303, 1.0328)

Table 8.2: All pairs (n1, n2) with more than one dominant combination; c2 ∈ N, n2 ≤ 32.

In this table the first entry corresponds to the optimal maximin combination (d1, d2),

followed by the other dominant combination(s). Note that in case of n1 = 11 and n2 = 21
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points there exist two different optimal designs, both with a maximin distance equal to

d = 0.7071. For the (n1, n2) pairs (9, 17) and (10, 19) the objective values of the dominant

designs are also equal (0.7906 and 0.7454, respectively); however, the individual maximal

distances of the second dominant combination are smaller than the maximal distances

of the (optimal) first combination (1.0607 < 1.1180 and 1.0000 < 1.0541, respectively).

Figures 8.9 and 8.10 depict the other two dominant nested maximin Latin hypercube

designs of n1 = 16 and n2 = 31 points; the optimal nested maximin Latin hypercube

design for this case is depicted in Figure 8.5.
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Figure 8.9: A dominant nested maximin
Latin hypercube design of n1 = 16 and
n2 = 31 points; d = d2 = 0.7746 and
d1 = 1.0646.
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Figure 8.10: A dominant nested max-
imin Latin hypercube design of n1 = 16
and n2 = 31 points; d = d1 = 0.7303
and d2 = 1.0328.
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8.6 Computational results

Table 8.3 provides the maximin distances for nested maximin Latin hypercube designs

when n1 − 1 is a divisor of n2 − 1, i.e. c2 ∈ N, and for n2 ≤ 32. For n2 up to 15, and

c2 6∈ N, Table 8.4 provides the maximin distances for non-collapsing nested maximin

grid-designs in case of an n1-grid, an n2-grid, and a grid with nested maximin axes.

n1 n2 d d1 d2

2 3 1.0000 1.4142 1.0000
2 4 0.8165 1.4142 0.8165
2 5 0.7071 1.4142 0.7071
3 5 0.7071 1.0000 0.7071
2 6 1.0000 1.4142 1.0000
2 7 0.9129 1.4142 0.9129
3 7 0.9129 1.0000 0.9129
4 7 0.8165 0.8165 1.1547
2 8 0.8452 1.4142 0.8452
2 9 1.0000 1.4142 1.0000
3 9 1.0000 1.0000 1.0000
5 9 1.1180 1.1180 1.1180
2 10 0.9428 1.4142 0.9428
4 10 0.8165 0.8165 0.9428
2 11 1.0000 1.4142 1.0000
3 11 1.0000 1.0000 1.0000
6 11 1.0000 1.0000 1.0000
2 12 0.9535 1.4142 0.9535
2 13 0.9129 1.4142 0.9129
3 13 0.9129 1.0000 0.9129
4 13 0.9129 1.2910 0.9129
5 13 0.8165 1.1180 0.8165
7 13 0.9129 1.1547 0.9129
2 14 1.0000 1.4142 1.0000
2 15 0.9636 1.4142 0.9636
3 15 0.8452 1.0000 0.8452
8 15 0.8452 1.0690 0.8452
2 16 1.0646 1.4142 1.0646
4 16 0.9309 1.2910 0.9309
6 16 0.7303 1.0000 0.7303
2 17 1.0308 1.4142 1.0308
3 17 1.0000 1.0000 1.0308
5 17 0.9014 1.1180 0.9014
9 17 0.7906 1.1180 0.7906
2 18 1.0000 1.4142 1.0000
2 19 1.0000 1.4142 1.0000
3 19 1.0000 1.0000 1.0000
4 19 0.9718 1.2910 0.9718
7 19 0.9718 1.1547 0.9718

10 19 0.7454 1.0541 0.7454
2 20 0.9733 1.4142 0.9733

n1 n2 d d1 d2

2 21 0.9487 1.4142 0.9487
3 21 0.9487 1.0000 0.9487
5 21 0.9487 1.1180 0.9487
6 21 0.9220 1.0000 0.9220

11 21 0.7071 1.0000 0.7071
2 22 0.9258 1.4142 0.9258
4 22 0.9258 1.2910 0.9258
8 22 0.8997 1.0690 0.8997
2 23 0.9535 1.4142 0.9535
3 23 0.9535 1.0000 0.9535

12 23 0.8528 0.8528 1.0871
2 24 1.0426 1.4142 1.0426
2 25 1.0408 1.4142 1.0408
3 25 1.0000 1.0000 1.0408
4 25 1.0206 1.2910 1.0206
5 25 0.9129 1.1180 0.9129
7 25 0.8660 1.1547 0.8660
9 25 1.0000 1.0000 1.0408

13 25 1.0408 1.0408 1.0408
2 26 1.0198 1.4142 1.0198
6 26 1.0000 1.0000 1.0000
2 27 1.0000 1.4142 1.0000
3 27 1.0000 1.0000 1.0000

14 27 1.0000 1.0000 1.0000
2 28 0.9813 1.4142 0.9813
4 28 0.9623 1.2910 0.9623

10 28 0.9428 0.9428 0.9813
2 29 0.9636 1.4142 0.9636
3 29 0.9636 1.0000 0.9636
5 29 0.9636 1.1180 0.9636
8 29 0.9449 1.0690 0.9449

15 29 0.9636 0.9636 0.9636
2 30 1.0000 1.4142 1.0000
2 31 0.9832 1.4142 0.9832
3 31 0.9832 1.0000 0.9832
4 31 0.9309 1.2910 0.9309
6 31 0.9309 1.0000 0.9309
7 31 0.9129 1.1547 0.9129

11 31 0.9309 1.0000 0.9309
16 31 0.9309 0.9309 0.9309
2 32 0.9672 1.4142 0.9672

Table 8.3: Maximin distances for nested maximin Latin hypercube designs; c2 ∈ N.
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n1-grid n2-grid Grid with nested axes
n1 n2 d d1 d2 d d1 d2 d d1 d2

3 4 0.6124 1.0000 0.6124 0.8165 1.3333 0.8165 0.6999 1.1429 0.6999
4 5 1.0541 1.2910 1.0541 1.1180 1.3693 1.1180 1.0880 1.3325 1.0880
3 6 0.9317 1.0000 0.9317 1.0000 1.2000 1.0000 0.9091 1.0909 0.9091
4 6 0.8165 0.8165 1.0541 0.9798 0.9798 1.0000 0.8645 0.8645 1.1161
5 6 0.8839 1.1180 0.8839 0.8944 0.8944 1.0000 0.9575 0.9722 0.9575
5 7 0.9682 1.1180 0.9682 0.9428 0.9428 1.1547 0.9897 1.0302 0.9897
6 7 1.0000 1.0000 1.0392 1.0541 1.0541 1.1547 1.1161 1.1161 1.1207
3 8 0.9354 1.0000 0.9354 1.0690 1.1429 1.0690 0.9978 1.0667 0.9978
4 8 0.7916 0.8165 0.7916 0.8452 1.3325 0.8452 0.7990 1.3152 0.7990
5 8 1.0458 1.1180 1.0458 0.8452 1.0302 0.8452 0.9990 1.0968 0.9990
6 8 0.8367 1.0000 0.8367 0.9035 0.9035 1.0690 0.9126 0.9383 0.9126
7 8 0.9129 0.9129 0.9860 0.9897 0.9897 1.0690 1.0319 1.0319 1.0349
4 9 0.8889 1.2910 0.8889 1.0000 1.2624 1.0000 0.9231 1.2814 0.9231
6 9 0.8944 1.0000 0.8944 1.0000 1.0078 1.0000 0.9575 0.9575 0.9722
7 9 0.9129 0.9129 1.0000 0.9682 0.9682 1.1180 0.9422 0.9422 1.0000
8 9 0.8571 1.0690 0.8571 1.0458 1.0458 1.1180 0.9990 0.9990 1.0679
3 10 0.8485 1.0000 0.8485 0.9428 1.1111 0.9428 0.8932 1.0526 0.8932
5 10 0.7071 0.7071 0.8839 0.8012 0.8012 0.9428 0.7692 0.7692 0.9247
6 10 0.9487 1.0000 0.9487 0.8958 0.8958 0.9428 0.9680 0.9798 0.9680
7 10 0.7906 1.1547 0.7906 0.9428 0.9813 0.9428 0.8883 0.8883 0.9035
8 10 0.8452 0.8452 0.9583 0.9296 0.9296 1.0541 0.9097 0.9226 0.9097
9 10 0.9561 1.0000 0.9561 0.9938 0.9938 1.0541 0.9513 0.9513 1.0090
4 11 0.8784 1.2910 0.8784 0.8944 1.1619 0.8944 0.8863 1.2103 0.8863
5 11 0.7454 1.1180 0.7454 0.8944 1.0770 0.8944 0.8131 1.0985 0.8131
7 11 0.8333 1.1547 0.8333 0.8944 1.0392 0.8944 0.8824 0.9666 0.8824
8 11 0.8452 0.8452 1.0102 0.9539 0.9539 1.0000 0.8965 0.8965 1.0715
9 11 1.0000 1.0000 1.0078 0.8944 1.0198 0.8944 0.9722 0.9722 1.0009

10 11 0.9428 0.9428 0.9938 0.9487 0.9487 1.0000 0.9680 0.9680 0.9798
3 12 0.8740 1.0000 0.8740 0.9535 1.0041 0.9535 0.9120 1.0009 0.9120
4 12 0.9965 1.2910 0.9965 1.0871 1.2695 1.0871 1.0250 1.2838 1.0250
5 12 0.7817 1.1180 0.7817 0.8528 1.0602 0.8528 0.7984 1.1039 0.7984
6 12 0.9446 1.0000 0.9446 0.9535 1.0947 0.9535 0.9511 1.0699 0.9511
7 12 0.8740 1.1547 0.8740 0.9535 0.9959 0.9535 0.8863 1.1222 0.8863
8 12 0.8452 0.8452 1.0051 0.9535 1.0205 0.9535 0.8518 0.8518 1.0307
9 12 1.0000 1.0000 1.0570 0.9271 0.9271 1.0871 0.9552 0.9552 0.9998

10 12 0.9428 0.9428 1.0423 0.9833 0.9833 1.0871 0.9664 0.9664 0.9862
11 12 1.0000 1.0000 1.0488 1.0365 1.0365 1.0871 1.0102 1.0102 1.0595
6 13 0.9522 1.0000 0.9522 0.9129 1.0035 0.9129 0.9589 0.9589 0.9805
8 13 0.8452 0.8452 1.0498 0.9129 0.9860 0.9129 0.8158 1.0380 0.8158
9 13 0.9186 1.0000 0.9186 0.9129 1.0000 0.9129 0.8748 1.0000 0.8748

10 13 0.9428 0.9428 0.9813 0.9129 1.0607 0.9129 0.9404 0.9583 0.9404
11 13 0.8944 0.8944 0.9798 0.9501 0.9501 1.0408 0.9301 0.9301 0.9476
12 13 0.9535 0.9535 0.9959 0.9965 0.9965 1.0408 0.9720 0.9720 1.0153
3 14 0.9286 1.0000 0.9286 0.8771 1.0769 0.8771 0.9082 0.9630 0.9082
4 14 0.9329 1.2910 0.9329 0.8771 1.3122 0.8771 0.8971 1.2280 0.8971
5 14 0.8498 1.1180 0.8498 0.7845 1.1717 0.7845 0.8035 1.1557 0.8035
6 14 0.8750 1.0000 0.8750 0.8771 1.0879 0.8771 0.8755 0.9722 0.8755
7 14 0.9234 1.1547 0.9234 0.8771 1.0659 0.8771 0.8863 1.0851 0.8863
8 14 0.8144 1.0690 0.8144 0.8771 1.0377 0.8771 0.8228 1.0801 0.8228
9 14 0.7906 0.7906 1.0078 0.8971 0.8971 1.1435 0.8210 0.8210 1.0284

10 14 0.9428 0.9428 1.0214 0.9515 0.9515 1.1435 0.9600 0.9600 1.0790
11 14 0.9192 1.0000 0.9192 1.0030 1.0030 1.1435 0.9774 0.9774 1.1144
12 14 0.9535 0.9535 1.0365 1.0519 1.0519 1.1435 1.0244 1.0244 1.0592
13 14 1.0408 1.0408 1.0623 1.0987 1.0987 1.1435 1.0716 1.0716 1.1154
4 15 0.8994 1.2910 0.8994 0.8748 0.8748 1.1019 0.9010 1.2852 0.9010
5 15 0.8432 1.1180 0.8432 0.9636 1.1518 0.9636 0.8994 1.1333 0.8994
6 15 0.9080 1.0000 0.9080 0.8452 0.9313 0.8452 0.8960 0.9731 0.8960
7 15 0.9582 1.1547 0.9582 1.1019 1.2372 1.1019 1.0456 1.2049 1.0456
9 15 0.7906 0.7906 0.9922 0.8452 1.0880 0.8452 0.7967 0.7967 1.0242

10 15 0.9428 0.9428 1.0599 0.9091 0.9091 0.9636 0.9299 0.9299 1.0758
11 15 0.9539 1.0000 0.9539 0.9583 0.9583 0.9636 0.9272 0.9272 1.0295
12 15 0.8672 1.0871 0.8672 0.9768 0.9768 1.1019 0.9675 0.9675 1.0147
13 15 0.9129 0.9129 0.9860 1.0202 1.0202 1.1019 0.9923 0.9923 1.0718
14 15 1.0000 1.0000 1.0176 1.0619 1.0619 1.1019 1.0368 1.0368 1.0759

Table 8.4: Maximin distances for nested maximin grid-designs; c2 6∈ N.





Chapter 9

Conclusions and further research

If you realize you aren’t so wise today as
you thought you were yesterday, you’re
wiser today.

(Olin Miller)

9.1 Summary and conclusions

Decision processes are nowadays often facilitated by simulation tools. In the field of

engineering, for example, such tools are used to simulate the behavior of products (and

processes). Due to the nature of these simulation tools they are referred to as black-box

functions. Since the evaluation of a black-box function, i.e. the simulation of a particu-

lar product design, may take a lot of computation time, the unknown function is often

replaced by approximation models (or metamodels). These metamodels give a lot of

insight into the underlying (and unknown) black-box function. Furthermore, since meta-

models are explicit functions, function evaluations are relatively fast, so mathematical

programming techniques can be applied in the search for a good product design.

Chapter 1 discusses the Metamodel approach, as described by Den Hertog and Ste-

houwer (2002), which provides an efficient way to construct metamodels. An important

step in this approach is to set up a proper design of computer experiments, i.e. to de-

termine which scenarios are to be evaluated. Since metamodels are fitted on the data

obtained by evaluating these scenarios, the design of computer experiments has a direct

effect on the accuracy of the metamodels.

The rest of this thesis is divided into two parts. We start the first part by giving an

overview of the literature in the field of design of computer experiments in Chapter 2.

Several design criteria, such as maximin, minimax, uniformity, Audze-Eglais, integrated

mean squared error, and maximum entropy, are discussed in that chapter. Furthermore,
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several different types of designs are identified, such as non-collapsing designs, sequen-

tial designs, and nested designs. Since we focus on deterministic computer simulations, a

proper design of computer experiments should at least be space-filling and non-collapsing,

in some sense. The main focus in the first part of this thesis therefore lies on the con-

struction of non-collapsing maximin designs, and in particular maximin Latin hypercube

designs (LHDs). Furthermore, since we assume that all design parameters in a design

of computer experiments are equally important, all box constraints (i.e. lower and upper

bounds) on these design parameters can (and must) be scaled to equally sized intervals.

As a result, the (approximate) maximin Latin hypercube designs obtained in this thesis

are not bound to a particular problem instance, but can be used in various applications

(that is, after proper re-scaling). To facilitate the general use of these designs (and the

nested designs obtained in Part II) an online database of (nested) maximin designs is

maintained at the website http://www.spacefillingdesigns.nl.

Chapter 3 considers two-dimensional maximin Latin hypercube designs, which are

very useful in the approximation and optimization of black-box functions. In that chapter

we derive general formulas for the maximin distance and provide explicit construction

methods to obtain the corresponding maximin Latin hypercube designs for the maximum

norm and the rectangular distance measure. Baer (1992) and both Fejes Tóth (1971) and

Florian (1989) have already (partly) solved the two-dimensional unrestricted maximin

problem for these two distance measures, respectively. Comparing their results with the

maximin distances that we obtain, we see that the difference in the maximin distances

is less than two, and, hence, the relative difference tends to zero. For the Euclidean

distance measure we obtain maximin Latin hypercube designs for up to 70 points using

a branch-and-bound algorithm. Inspired by the periodicity present in many of these

optimal designs, we develop a periodic construction method and obtain approximate

maximin Latin hypercube designs for up to 1000 points. This heuristic method is able to

reproduce all the optimal distances found by the branch-and-bound algorithm. The best-

known maximin distances of the circle packing problem, i.e. the unrestricted equivalent to

our LHD-problem, are provided on the Packomania website of Specht (2005). Comparing

our obtained results with these best-known maximin distances, we see that the reduction

in the maximin distance caused by imposing the Latin hypercube structure is small.

Hence, for all three distance measures the use of Latin hypercube designs instead of

unrestricted designs is justified.

Chapter 4 considers the more general case of maximin Latin hypercube designs for

up to ten dimensions. In that chapter we extend the periodic construction method

of Chapter 3 and obtain approximate maximin Latin hypercube designs of up to 100

points. Furthermore, we also present a simulated annealing algorithm to construct high-

dimensional approximate maximin Latin hypercube designs. This latter algorithm works
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particularly well in case the number of design points is small, whereas the periodic con-

struction method performs better in case the number of design points is large. This

difference can be explained by the irregularity, i.e. the lack of a nice, periodic structure,

of Latin hypercube designs of a small number of points. Since (approximate) maximin

Latin hypercube designs have been known only for some small numbers of points (see

Morris and Mitchell (1995)) our designs present a significant extension of the previously

known results.

In Chapter 5 we investigate the trade-off between the space-fillingness and the non-

collapsingness of designs for computer experiments. Requiring the coordinates of the

design points to be separated by at least some distance α, we obtain quasi non-collapsing

designs. When varying the value of α, we find that sometimes highly non-collapsing

designs can be constructed without even reducing the space-fillingness (i.e. the maximin

distance). This behavior is illustrated by several examples for the maximum norm, the

rectangular distance, and the Euclidean distance measure.

In the second part of this thesis the focus lies on product design problems in which

multiple black-box functions play a role, and on non-collapsing nested designs.

Chapter 6 considers multi-component product design problems. Such problems oc-

cur, for example, in the automobile and aerospace industry, where products consist of

many components, each of them represented by their own black-box functions. Since

interdependencies often exist among the various components, a proper coordination of

the design process is vitally important. We propose a collaborative extension of the

Metamodel approach, called the Collaborative Metamodel approach, which acts as a

framework for dealing with the aforementioned type of design problems. Furthermore,

we introduce three different coordination methods to facilitate the control over the inter-

relations among the black-box functions. We distinguish between sequential coordination

methods, in which information obtained at a particular black-box function is passed on to

other functions, and parallel simulation, in which all black-box functions are considered

concurrently. Several aspects of these coordination methods are discussed and compared

in order to give recommendations on when to use which method. We show that the main

reason for using a sequential coordination method is the presence of strong relations

among the black-box functions, whereas a parallel simulation method is preferable when

these relations are less pronounced. For the corresponding throughput time, i.e. the total

time needed for all simulations, of each coordination method we derive general formulas.

We find that the throughput times of sequential coordination methods are always longer

than the time needed by a parallel simulation method. The differences in the throughput

times for a particular problem instance can be quantified using our formulas.

Another important step in the Collaborative Metamodel approach is the construction

of nested designs. In case of multiple black-box functions such designs are useful when the
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functions have one or more design parameters in common. In case of a single black-box

function, nested designs can either be considered as sequential designs or can be applied

as training and test sets in the process of fitting and validating metamodels.

In Chapter 7 we introduce one-dimensional nested maximin designs. In that chapter

we derive general formulas for the maximin distance and provide explicit construction

methods to obtain the corresponding nested maximin designs for the case of nesting two

designs. Furthermore, we obtain nested approximate maximin designs, for the case of

nesting three and four designs, by means of a heuristic construction method. We conjec-

ture that this heuristic is optimal when nesting three designs; this claim is supported by

the results obtained. Moreover, we show that the loss in space-fillingness, with respect to

traditional maximin designs, is relatively small. This justifies the use of nested maximin

designs instead of traditional maximin designs.

Chapter 8 considers the extension to two-dimensional non-collapsing nested maximin

designs. We obtain such nested designs for up to 15 points (and some larger values),

for the case of nesting two designs. Non-collapsingness is met by requiring the design

points to lie on a grid. We show that the choice for a particular grid depends on the

underlying design problem, and in particular on the question which of the two designs

(within the nested design) is considered to be more important. Furthermore, we give

some recommendations on when to choose which type of grid.

9.2 Directions for further research

This section proposes several topics for further research:

• Chapter 3 derives general construction methods for two-dimensional maximin Latin

hypercube designs for the maximum norm and for the rectangular distance mea-

sure. It would be very useful to also have such construction methods for general

k-dimensional Latin hypercube designs. Furthermore, lower and upper bounds

for the maximin distances of these designs would provide useful information on

the performance of the approximate maximin Latin hypercube designs obtained

in Chapter 4. In an initial study, Van Dam, Den Hertog, Husslage, and Rennen

(2006) provide a construction method to obtain maximin Latin hypercube designs

of n = mk points for the maximum norm. For other values of n and other dis-

tance measures, however, none of such explicit constructions exist yet. That study

also provides several upper bounds for three-dimensional maximin Latin hypercube

designs for different distance measures.

• Chapters 3 and 4 propose a periodic construction method to obtain (approximate)

maximin Latin hypercube designs. This method, however, is not limited to the
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maximin criterion and could be applied to construct other types of Latin hypercube

designs, such as minimax, uniform, Audze-Eglais, integrated mean squared error,

or maximum entropy. For example, initial tests on minimizing the potential energy

(see (2.6)) of (adapted) periodic Latin hypercube designs show promising results.

The Audze-Eglais Latin hypercube designs obtained in this way either exhibit a

lower potential energy than the (best-known) designs found by Bates et al. (2004),

or fewer iterations are needed to obtain designs with a potential energy that closely

approximates the best-known values.

• The first part of this thesis considers the construction of Latin hypercube designs

for box-constrained design spaces. In practice, however, the need for a design of

computer experiments on a non-box feasible region may arise. Stehouwer and Den

Hertog (1999), for example, introduce a refined-grid method, in combination with

a simulated annealing algorithm, to obtain non-collapsing designs on arbitrarily

shaped feasible regions. Using such a refined grid, it may be possible to generalize

the periodic construction method presented in Chapters 3 and 4 to the case of

non-box feasible regions.

• Chapter 5 considers quasi non-collapsing designs and the corresponding trade-off

between the space-fillingness and the non-collapsingness of a design. For a small

number of points, and for the rectangular distance, the maximum norm, and the

Euclidean distance measure, this trade-off is often non-trivial (as is illustrated by

Figures 5.2, 5.4, and 5.5, respectively). An interesting research topic is to determine

how the trade-off behaves for a larger number of points for these different distance

measures.

• Kusiak and Park (1990) discuss a methodology to reduce the product-design make-

span by decomposing and grouping design activities. For a multi-component prod-

uct the architecture of the product defines the decomposition of the product into

multiple black boxes and their relations, which results in the corresponding black-

box chain. An initial study by Rennen (2003) considers the clustering (or grouping)

of black boxes within this chain for Parallel Simulation and Sequential Modeling.

That study shows that the clustering of black boxes for these two coordination

methods results in a significant reduction of the throughput time. A disadvantage

of clustering, however, remains the amount of time involved to compute the optimal

clusters, and, hence, more research in this area is needed.

• As noted in Section 6.3.3, the invalidity of system-level metamodels leads to the

choice between fitting different (types of) models on the one hand, or evaluating

additional sets of scenarios on the other hand. In this latter case, nested designs
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can be used to determine which extra design points should be evaluated in order to

improve the accuracy of the system-level metamodels. What remains is to decide

which of the components to grant extra evaluations. This problem, however, is very

complex and further research is needed in this area.

• Chapter 8 constructs non-collapsing nested maximin designs in two dimensions,

using a branch-and-bound algorithm. In its search for the best nested design the

algorithm consumes a lot of CPU-time, in particular when the number of design

points is large. Furthermore, when extending the algorithm to three or more di-

mensions the search space (i.e. all possible combinations of design points) increases

exponentially with the dimension of the nested design. Since nested designs can be

used as training and test sets, they play an important role in the process of fitting

and validating metamodels. Hence, the development of a heuristic construction

method to obtain nested designs for a larger number of design points and in higher

dimensions would be very useful.
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Optimale schema’s voor
computerexperimenten

Samenvatting

Simulatieprogramma’s worden tegenwoordig veel gebruikt in beslissingsprocessen. In

het gebied van de engineering worden zulke programma’s bijvoorbeeld gebruikt om

het gedrag van producten en processen te simuleren. Dit simuleren kan erg tijdrovend

zijn, vandaar dat simulatiemodellen vaak vervangen worden door benaderende functies.

Deze functies geven veel inzicht in de onderliggende complexe modellen. Verder kunnen

evaluaties van deze expliciete functies snel uitgevoerd worden, waardoor het vinden van

een goed ontwerp, middels het gebruik van optimaliseringstechnieken, binnen handbereik

komt te liggen.

Hoofdstuk 1 van dit proefschrift bespreekt een algemeen raamwerk om benaderende

functies op te stellen voor complexe simulatiemodellen. Een belangrijke stap in dit

raamwerk is het opstellen van een schema voor de computerexperimenten. Zo’n schema

bepaalt welke scenario’s gesimuleerd zullen worden en heeft daardoor een direct effect

op de nauwkeurigheid van de benaderende functies.

De rest van dit proefschrift is opgesplitst in twee delen. We beginnen het eerste gedeelte

met een overzicht van de literatuur op het gebied van schema’s voor computerexperi-

menten in Hoofdstuk 2. Verschillende criteria om een goed schema op te stellen worden

in dat hoofdstuk besproken. Verder behandelen we verscheidene typen schema’s, zoals

sequentiële en gekoppelde schema’s. In de praktijk is gebleken dat, in het geval van

deterministische computersimulaties, een schema in ieder geval hoort te voldoen aan de

volgende twee eisen: het schema dient de gehele ontwerpruimte te overdekken en de gesi-

muleerde scenario’s mogen elkaar niet (geheel of gedeeltelijk) overlappen. De klasse van de

zogenaamde maximin Latin hypercube schema’s voldoet aan beide eisen en de constructie

van zulke schema’s vormt daarom dan ook het onderwerp van de eerste hoofdstukken.

In dit proefschrift beschouwen we alle ontwerpparameters in het ontwerpprobleem als

even belangrijk. Door de parameters te schalen maken we de geconstrueerde schema’s
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onafhankelijk van een bepaalde probleeminstantie, zodat deze schema’s (na herschaling)

gebruikt kunnen worden in verschillende applicaties. Om het algemeen gebruik van deze

optimale schema’s (en de gekoppelde schema’s verkregen in het tweede deel van dit proef-

schrift) te vergemakkelijken wordt er een online database van optimale schema’s bijge-

houden op de website http://www.spacefillingdesigns.nl.

Hoofdstuk 3 beschouwt tweedimensionale maximin Latin hypercube schema’s. In dat

hoofdstuk leiden we algemene formules af voor de maximin afstand en geven expliciete

constructiemethoden voor het opstellen van de bijbehorende maximin Latin hypercube

schema’s voor verschillende afstandsmaten. Voor de meest gebruikte afstandsmaat, de

Euclidische afstand, vinden we maximin Latin hypercube schema’s, bestaande uit maxi-

maal 70 scenario’s, door het gebruik van een branch-and-bound algoritme. Gëınspireerd

door de periodiciteit die voorkomt in veel van deze optimale schema’s ontwikkelen we

een periodieke constructiemethode die goede schema’s oplevert tot 1000 scenario’s. Deze

heuristiek vindt ook de optimale schema’s die gevonden worden door het branch-and-

bound algoritme. Verder laten we zien dat door het toevoegen van de Latin hypercube

structuur de maximin afstand niet teveel afneemt voor de verschillende afstandsmaten.

Deze observatie rechtvaardigt het gebruik van maximin Latin hypercube schema’s in

plaats van traditionele schema’s voor computerexperimenten.

Hoofdstuk 4 bespreekt het algemenere geval van meerdimensionale maximin Latin

hypercube schema’s. In dat hoofdstuk breiden we de periodieke constructiemethode van

Hoofdstuk 3 uit en verkrijgen op deze manier schema’s tot 100 scenarios. We presenteren

ook een simulated annealing algoritme om goede schema’s tot in tien dimensies op te

stellen. Dit laatste algoritme blijkt erg goed te werken wanneer het aantal scenario’s

relatief klein is, terwijl de periodieke constructiemethode goed werkt voor een groter

aantal scenario’s. Dit verschijnsel kan verklaard worden door de onregelmatigheid, dat is

het gebrek aan een mooie, periodieke structuur, van Latin hypercube schema’s bestaande

uit een klein aantal scenario’s. Aangezien maximin Latin hypercube schema’s eerder

alleen bekend waren voor een klein aantal scenario’s leveren onze gevonden schema’s een

significante uitbreiding op van de tot nu toe bekende resultaten.

In Hoofdstuk 5 onderzoeken we de wisselwerking tussen de eis dat een schema de

ontwerpruimte dient te overdekken en de eis dat de gesimuleerde scenario’s elkaar niet

mogen overlappen. We bekijken deze wisselwerking voor verschillende afstandsmaten

en we laten zien dat de relatie tussen de twee eisen interessant, niet-triviaal gedrag

kan vertonen. In sommige gevallen is het bijvoorbeeld mogelijk om niet-overlappende

scenario’s te kiezen, zonder dat dit effect heeft op de mate waarin het schema de

ontwerpruimte overdekt.

In het tweede gedeelte van dit proefschrift richten we ons op de problemen die optreden bij
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het ontwerp van multi-component producten. Zulke problemen komen bijvoorbeeld voor

in de auto- en de luchtvaartindustrie, waar producten uit veel verschillende componenten

bestaan. Tussen deze componenten is er vaak enige samenhang aanwezig, waardoor een

juiste coördinatie binnen het ontwerpproces onontbeerlijk wordt.

In Hoofdstuk 6 presenteren we een raamwerk om bovengenoemde ontwerpproblemen

efficiënt op te lossen. Belangrijke stappen in onze aanpak zijn de constructie en het

gebruik van coördinatiemethoden en van gekoppelde schema’s om de relaties tussen de

verschillende componenten onder controle te houden. We introduceren drie verschillende

coördinatiemethoden, die we onderscheiden in parallelle en sequentiële methoden. Bij dit

laatste type geven de ontwerpers van de verschillende componenten informatie door aan

elkaar, terwijl bij parallelle methoden alle componenten afzonderlijk beschouwd worden.

Verscheidene aspecten van de drie coördinatiemethoden worden besproken en met elkaar

vergeleken. Vanuit deze analyse geven we aanbevelingen betreffende de beste keus voor

één van de coördinatiemethoden voor bepaalde probleeminstanties. Zo zijn sequentiële

methoden bijvoorbeeld te prefereren wanneer er een sterke samenhang bestaat tussen de

componenten, terwijl een parallelle coördinatiemethode beter werkt wanneer deze samen-

hang minder duidelijk aanwezig is. Een belangrijk kwantitatief aspect is de doorlooptijd,

ofwel de totale tijd die nodig is voor alle simulaties. We leiden algemene formules af

voor deze doorlooptijd en laten zien dat sequentiële coördinatiemethoden een kortere

doorlooptijd opleveren dan een parallele methode.

De constructie van gekoppelde schema’s voor computerexperimenten vormt het onder-

werp van de volgende twee hoofdstukken. In het geval van multi-component producten

zijn zulke gekoppelde schema’s nuttig wanneer er componenten zijn die één of meerdere

ontwerpparameters gemeenschappelijk hebben. In het geval van een enkele component

kunnen gekoppelde schema’s gebruikt worden als sequentiële schema’s voor computerex-

perimenten of kunnen ze worden toegepast als training- en testschema’s bij het opstellen

van benaderende functies.

In Hoofdstuk 7 introduceren we eendimensionale gekoppelde maximin schema’s. In

dat hoofdstuk leiden we algemene formules af voor de maximin afstand en geven we

constructiemethoden voor de bijbehorende schema’s, in het geval dat er twee schema’s

gekoppeld worden. Voor de gevallen waarin we drie of vier schema’s koppelen presenteren

we een heuristische constructiemethode. We vermoeden dat deze heuristiek optimaal is

in het geval van drie gekoppelde schema’s; dit vermoeden wordt onderbouwd door de

gevonden resultaten. Verder laten we zien dat gekoppelde maximin schema’s nog steeds

goed de gehele ontwerpruimte overdekken. Deze observatie rechtvaardigt het gebruik van

gekoppelde maximin schema’s in plaats van traditionele schema’s voor computerexperi-

menten.

In Hoofdstuk 8 breiden we de ideeën van Hoofdstuk 7 uit en construeren we tweedi-
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mensionale gekoppelde maximin schema’s, in het geval dat er twee schema’s gekoppeld

worden. De restrictie dat de gesimuleerde scenario’s elkaar niet mogen overlappen wordt

opgevangen door de scenario’s op een rooster te kiezen. We laten zien dat de keuze voor

een bepaald type rooster voornamelijk afhangt van het antwoord op de vraag welke van

de twee gekoppelde schema’s het meest belangrijk wordt geacht. Uiteindelijk geven we

nog enkele aanbevelingen betreffende de beste keus voor een bepaald type rooster.

Hoofdstuk 9 beëindigt dit proefschrift met de belangrijkste conclusies en geeft enkele

aanbevelingen voor verder onderzoek.


