

Tilburg University

Nested maximin Latin hypercube designs

Rennen, G.; Husslage, B.G.M.; van Dam, E.R.; den Hertog, D.

Published in:
Structural and Multidisciplinary Optimization

Publication date:
2010

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Rennen, G., Husslage, B. G. M., van Dam, E. R., & den Hertog, D. (2010). Nested maximin Latin hypercube
designs. Structural and Multidisciplinary Optimization, 41, 371-395.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420805504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/7f0703e8-06bc-45b4-886c-359aa115101c

Struct Multidisc Optim (2010) 41:371–395
DOI 10.1007/s00158-009-0432-y

RESEARCH PAPER

Nested maximin Latin hypercube designs

Gijs Rennen · Bart Husslage · Edwin R. Van Dam ·
Dick Den Hertog

Received: 16 January 2009 / Revised: 19 August 2009 / Accepted: 22 August 2009 / Published online: 6 October 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In the field of design of computer experi-
ments (DoCE), Latin hypercube designs are frequently
used for the approximation and optimization of black-
boxes. In certain situations, we need a special type of
designs consisting of two separate designs, one being a
subset of the other. These nested designs can be used
to deal with training and test sets, models with different
levels of accuracy, linking parameters, and sequential
evaluations. In this paper, we construct nested maximin
Latin hypercube designs for up to ten dimensions. We
show that different types of grids should be considered
when constructing nested designs and discuss how to
determine which grid to use for a specific application.
To determine nested maximin designs for dimensions
higher than two, four variants of the ESE algorithm of
Jin et al. (J Stat Plan Inference 134(1):268–287, 2005)

The research of B.G.M. Husslage has been financially
supported by the SamenwerkingsOrgaan Brabantse
Universiteiten (SOBU).

The research of E.R. Van Dam has been made possible
by a fellowship of the Royal Netherlands Academy of Arts
and Sciences.

G. Rennen · B. Husslage · E. R. Van Dam (B) ·
D. Den Hertog
Department of Econometrics and Operations Research,
CentER, Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands
e-mail: Edwin.vanDam@uvt.nl

G. Rennen
e-mail: G.Rennen@uvt.nl

B. Husslage
e-mail: Husslage@casema.nl

D. Den Hertog
e-mail: D.denHertog@uvt.nl

are introduced and compared. Our main focus is on
GROUPRAND, the most successful of these four vari-
ants. In the numerical comparison, we consider the cal-
culation times, space-fillingness of the obtained designs
and the performance of different grids. Maximin dis-
tances for different numbers of points are provided; the
corresponding nested maximin designs can be found on
the website http://www.spacefillingdesigns.nl.

Keywords Design of computer experiments ·
Latin hypercube design · Linking parameter ·
Multi-fidelity modeling · Nested designs ·
Sequential simulation · Space-filling ·
Training and test set · Validation

1 Introduction

Latin hypercube designs are very useful in the approxi-
mation of black-box functions. By definition, black-box
functions have no explicit description, but can be eval-
uated to obtain output values for specific input values.
As evaluations of a black-box function often involve
time-consuming computer simulations, we would like
to construct an approximating model (or metamodel)
based on evaluations in a (small) number of points. See,
e.g., Montgomery (1984), Sacks et al. (1989a, b), Myers
(1999), Jones (2001), Booker et al. (1999), Den
Hertog and Stehouwer (2002), Santner et al. (2003),
Queipo et al. (2005), Wang and Shan (2007), and
Kleijnen (2008). A review of metamodeling appli-
cations in structural optimization can be found in
Barthelemy and Haftka (1993), and in multidisciplinary
design optimization in Sobieszczanski-Sobieski and
Haftka (1997) and Simpson et al. (2008).

http://www.spacefillingdesigns.nl

372 G. Rennen et al.

We will use the term design to denote the set of eval-
uation points. As observed by many researchers, there
is an important distinction between designs for com-
puter experiments and designs of experiments for the
more traditional response surface methods. Physical
experiments exhibit random errors whereas computer
experiments are often deterministic (see e.g. Simpson
et al. 2004; Forrester et al. 2006, 2008). Therefore,
designs for experiments often evaluate certain points
multiple times. For designs for computer experiments,
replication is redundant because the same input will
always result in the same output. This distinction is
crucial, so one of the main aims in the field of design
of computer experiments (DoCE) is therefore to obtain
efficient designs for computer experiments.

As is recognized by several authors, a design for
computer experiments should at least satisfy the follow-
ing two criteria (see Johnson et al. 1990 and Morris and
Mitchell 1995). First of all, the design should be space-
filling in some sense. When no details on the functional
behavior of the response parameters are available, it is
important to be able to obtain information from the
entire design space. Therefore, design points should
be “evenly spread” over the entire region. Secondly,
the design should be non-collapsing. When one of the
design parameters has (almost) no influence on the
black-box function value, two design points that differ
only in this parameter will “collapse”, i.e., they can be
considered as the same point that is evaluated twice.
As evaluation of the deterministic black-box function
is often time-consuming, this is not a desirable situa-
tion. Therefore, two design points should not share any
coordinate values when it is not known a priori which
parameters are important. Moreover, we would like the
projections of the points onto the axes to be separated
as much as possible. When we consider a black-box
function on a box-constrained domain, this can be ac-
complished by using Latin hypercube designs. A Latin
hypercube design (LHD) of n points in m dimensions
can be defined as an n × m matrix, were each column is
a permutation of the set {0, 1

n−1 , 2
n−1 , . . . , 1}. The rows

xi = (xi1, xi2, . . . , xim), i = 1, . . . , n, then define the n
design points. Because the columns are permutations
of the above set, for all of the m coordinates it holds
that no two design points have the same value.

To obtain space-filling designs, the evaluation points
are chosen in such a way that the separation distance
(i.e., the minimal distance among any pair of points) is
maximized, leading to so-called maximin designs. Other
space-filling designs, like minimax, integrated mean
squared error (IMSE), Audze-Eglais, discrepancy and
maximum entropy designs, are also used in the litera-
ture. For a good survey of these designs see the book

of Santner et al. (2003). Goel et al. (2008) argue that it
would be better to use several criteria when selecting a
design. However, Santner et al. (2003) show that that
maximin Latin hypercube designs generally speaking
yield good approximations.

Maximin Latin hypercube designs were first con-
structed by Morris and Mitchell (1995) using simu-
lated annealing. Ye et al. (2000) consider only the
class of symmetric approximate maximin LHDs to re-
duce the computing effort. Jin et al. (2005) introduce
the enhanced stochastic evolutionary (ESE) algorithm
for finding various space-filling designs, including ap-
proximate maximin LHDs. Husslage et al. (2008) use
the ESE algorithm to construct approximate maximin
LHDs for up to 10 dimensions and up to 300 design
points. Furthermore, they also construct approximate
maximin LHDs by optimizing the maximin criterion
over all LHDs having a certain periodic structure. This
approach is an extension of the method used in Van
Dam et al. (2007) to obtain two-dimensional approxi-
mate maximin LHDs. In that paper, two-dimensional
maximin LHDs are also found using a branch-and-
bound algorithm. Finally, Grosso et al. (2009) use Iter-
ated Local Search heuristics to find good approximate
maximin LHDs for up to 10 dimensions. The best
designs found in these papers are published on-line
at http://www.spacefillingdesigns.nl. This website also
contains the upper bounds on the separation distance
for certain classes of maximin LHDs found by Van
Dam et al. (2009b). These upper bounds can be used
to asses the quality of approximate maximin LHDs.

In real-life, there are situations where we need a
special type of designs called nested designs. This type
of design consists of two separate designs, with the
requirement that one design is a subset of the other
design. Van Dam et al. (2009a) show how to construct
one-dimensional nested maximin designs; the current
paper focuses on two and higher dimensional designs.1

Four main reasons for nesting maximin designs are:
validation, models with different levels of accuracy, link-
ing parameters, and sequential evaluations.

To start with the first reason, consider the problem
of fitting and validating a particular metamodel. In
practice, the following approach is often used. First,
a metamodel is fitted to the responses obtained when
evaluating the design points in the training set. Then,
a new set of design points, i.e., the test set, is eval-
uated and the obtained responses are compared to
the response values predicted by the metamodel. If
the differences between the predicted and the actual

1This paper is a revision and extension of Husslage et al. (2005).

http://www.spacefillingdesigns.nl

Nested maximin Latin hypercube designs 373

response values are small, the metamodel is considered
to be valid. See also Cherkassky and Mulier (1998)
for a more detailed description of the use of training
and test sets. Because a metamodel should be a global
approximation model, i.e., it should be valid for the
entire feasible region, both the training set and the
test set should cover the entire region. Moreover, the
design points in the test set should not lie too close
to the design points in the training set, i.e., the total
set of design points should be space-filling. This can
be accomplished by nesting two designs, which are
optimized with respect to, for example, the maximin
criterion. The design points that are in both designs
then form the training set and the points that are only
in the large design make up the test set.

The second motivation comes from the situation
where an output variable of a process, product, or
system is modeled by two black-box functions with
different levels of accuracy. These black-box functions
could, for instance, be simulation models with different
levels of detail. As a more accurate model is in gen-
eral also more time-consuming, we can perform fewer
evaluations of the high accuracy model than of the low
accuracy model in the same amount of time. Instead of
choosing to use either the high or low accuracy model,
we can also choose to use both. We can evaluate the
high accuracy model at all points in the small design
and the low accuracy model at all points in the large
design. By using a nested design, high and low accuracy
evaluations are thus performed at all points in the
small design. Multi-fidelity methods can combine the
results from both models to obtain a metamodel that
is better than a metamodel obtained by using only one
of the two models and the same amount of time. More
information on multi-fidelity methods can be found in
Cressie (1993), Kennedy and O’Hagan (2000), Qian
et al. (2006), and Forrester et al. (2007).

Another reason for using nested designs is caused by
linking parameters. Consider a product that consists of
two components, each of them represented by a sep-
arate black-box function. To obtain an approximating
model describing the behavior of the complete product,
function evaluations of each black-box function are
needed. When one black-box function is more time-
consuming to evaluate than the other, it could be better
to perform different numbers of function evaluations
of each black-box function. Moreover, in practice it
may occur that these functions have input parameters
in common; such parameters are called linking parame-
ters, see Husslage et al. (2003). Evaluating the linking
parameters at the same setting in both functions (i.e.,
component-wise) leads to an evaluation of the product.
Not only do product evaluations provide a better un-

derstanding of the product, they are also very useful
in the product optimization process. Another reason
for using the same settings for (linking) parameters is
due to physical restrictions on the black-box functions.
Setting the parameters for computer experiments can
be a time-consuming job in practice, because character-
istics, like shape and structure, have to be redefined for
every new experiment. Therefore, it is preferable to use
the same settings as much as possible. By constructing
nested designs we can determine the settings for linking
parameters.

Nested designs are also useful when dealing with
sequential evaluations. In practice it is common that
after evaluating an initial set of points, extra evalua-
tions are needed. As an example, suppose we construct
an approximating model for some black-box function
based on n1 function evaluations. However, after val-
idating the obtained model it turns out that an extra
set of function evaluations is needed to build a proper
model. We then face the problem of constructing a
design on a total of, say, n2 points, given the initial
design on n1 points. To anticipate the possibility of
extra evaluations, one can construct the two designs
(on n1 and n2 points) at once, hence, by constructing
a nested design. An alternative method to deal with
this situation would be sequential sampling. As this is
beyond the scope of this paper, we refer to Jones (2001)
and Jin et al. (2002) for more information on sequential
sampling.

We have just described why both Latin hypercube
designs and nested designs are important. In this paper
we construct nested maximin Latin hypercube designs
in m dimensions with m ≥ 2. Section 2 gives a more
detailed formulation of this problem. When nesting two
designs, it is not always possible to satisfy the LHD-
structure for both designs. Therefore, we introduce in
Section 3 three different grid-structures which approx-
imate the LHD-structure as good as possible. Further-
more, we discuss how to select a suitable grid-structure
for a particular application. In Section 4, a branch-
and-bound method for determining two-dimensional
nested maximin designs is presented and Pareto op-
timal nested designs in two dimensions are discussed.
For higher dimensions, determining nested maximin
designs, i.e. nested designs which maximize the scaled
separation distance d, becomes too time consuming.
Therefore in Section 5, we introduce a heuristic which
also aims to maximize d but does not guarantee to
find the optimal d. We refer to the resulting designs
as nested approximate maximin designs. In Section 6,
numerical results obtained with this heuristic and
the branch-and-bound method are presented and dis-
cussed. Finally, Section 7 contains concluding remarks.

374 G. Rennen et al.

2 Problem formulation

In this paper, we focus on the problem of nesting
two designs, X1 and X2, with X1 ⊂ X2, X j = {xi =
(xi1, xi2, . . . , xim) | i ∈ I j}, and |I j| = n j, j = 1, 2. Thus,
the index set I1 ⊂ I2 = {1, 2, . . . , n2} defines which de-
sign points xi are part of both designs. The nested
design is defined by the combination of X1 and X2. All
design parameters are scaled such that they take values
in the interval [0, 1].

The first condition which we impose on the nested
designs is that X1 and X2 must both be non-collapsing.
This can be accomplished by using the LHD-structure.
The main property of a regular LHD is that all points,
when projected onto one of the axes, are equidistantly
distributed. To form an LHD, the points in X1 must
thus be projected onto the set {0, 1

n1−1 , 2
n1−1 , . . . , 1} and

the points in X2 onto {0, 1
n2−1 , 2

n2−1 , . . . , 1}. In order for
X1 and X2 to both form a Latin hypercube design, the
first set must be a subset of the second. However, this
only holds when n2 − 1 is a multiple of n1 − 1 or, stated
differently, when

c2 := n2 − 1

n1 − 1

is integer. In all other cases, we have to compromise on
the LHD-structure of one or both designs. As there are
different ways of doing this, we propose three differ-
ent grid-structures, nested n1-grids, nested n2-grids and
grids with nested maximin axes, in Section 3. All of these
grid-structures are constructed to compromise as little
as possible on the LHD-structure. When c2 is integer,
the different grid-structures coincide and are such that
both X1 and X2 are LHDs.

Secondly, we aim to determine the design points xi

and the set I1 such that both designs are as much as
possible space-filling given the chosen grid-structure.
To optimize the space-fillingness, we choose to use the
maximin distance criterion. As the distances between
the points in X1 will naturally be greater than the
distances between the points in X2, scaling of these
distances is necessary to enable a fair comparison with
the maximin distance criterion. Therefore, we define
scaled separation distance d j as the minimal scaled
distance between all points in the design X j:

d j := min
k,l∈I j

k�=l

d(xk, xl)

s j
, j = 1, 2, (1)

where d(·, ·) is the Euclidean distance measure and s1

and s2 are scaling factors for the Euclidean distances
in X1 and X2, respectively. Because one-dimensional
designs of n points have distance 1/(n − 1) and the

minimum distance of n points in an m-dimensional
hypercube is at most of the order 1/

m
√

n − 1, it seems
natural to use scaling factors

s j := 1/ m
√

n j − 1, j = 1, 2,

in (1) for m-dimensional designs. As we use the max-
imin distance criterion, we have to maximize the min-
imal scaled distance between any pair of points in X1

and X2. Therefore, what remains is to maximize the
minimal separation distance

d = min{d1, d2}
over all I1 ⊂ I2, with |I1| = n1, and xi ∈ [0, 1]m.

We are aware that the above formulation is just one
way of combining the two scaled separation distances
into one objective and that other scaling factors or
formulations are also possible. Using different scaling
factors is no problem as all methods discussed in this
paper can also be used for other values of s1 and s2.
In Section 7, we will discuss some other alternative
objectives. Dealing with maximizing d1 and d2 as a bi-
objective optimization problem is another possibility.
For two-dimensional nested designs with small n1 and
n2, we use this approach in Section 4.2. However, to
limit the scope of this paper, our main focus will be on
the above maximin objective.

By limiting the choice of design points to certain
grids to obtain non-collapsingness, we generally obtain
less space-filling designs. However, as a comparison of
two-dimensional non-nested designs in Van Dam et al.
(2007) shows, the loss in space-fillingness by imposing
the LHD-structure is quite small. Furthermore, the
non-collapsingness achieved by the LHD-structure is
important when dealing with deterministic computer
experiments. Especially when black-box function eval-
uations are expensive, using, for instance, a separate
screening design to determine the significant design
parameters is often not an option. Consequently, we
reckon that the benefit of non-collapsingness justifies a
limited loss in space-fillingness. By determining space-
filling nested LHDs, we aim to limit this loss as much as
possible.

3 Grid-structures for nested Latin hypercube designs

As mentioned in the previous section, X1 and X2 can
only both form a Latin hypercube design if c2 := n2−1

n1−1
is integer. When n1 and n2 do not satisfy this condition,
we have to use a different structure which compromises
on the LHD-structure of one or both designs. In this
section, we introduce three different grid-structures

Nested maximin Latin hypercube designs 375

Fig. 1 A maximin Latin hypercube design of 6 points; d1 =
1.0000

which represent different compromises. Furthermore,
we discuss how to decide which grid-structure is most
suitable for a particular situation.

To illustrate the different structures, examples are
provided for the two-dimensional case of n1 = 6 and
n2 = 13 points. In Figs. 1 and 2 also the individual
maximin Latin hypercube designs of n1 = 6 and n2 = 13
points are depicted to enable comparison with the non-
nested case. To compare the design in Fig. 1 with X1

designs and the design in Fig. 2 with X2 designs, we
calculated the values of d1 and d2 for these non-nested
designs. The circles illustrate the unscaled separation
distance because when we draw circles with the design
points as their centers, the separation distance is equal
to the largest diameter such that the circles are non-
overlapping. Moreover, it shows where the separation
distance is attained.

3.1 Nested n2-grid

Before we explain the nested n2-grid, let us first in-
troduce the term X j-coordinates. With X j-coordinates,
we denote the levels obtained when projecting the
design points of design X j onto one of the axes (or
dimensions), for j = 1, 2. For X j to be an LHD, the
X j-coordinates must thus be equidistantly distributed
for every dimension.

To construct a nested design where X2 is an LHD,
we have to choose all design points on the n2-grid,
with grid points {0, 1

n2−1 , 2
n2−1 , . . . , 1}m. Remember that

Fig. 2 A maximin Latin hypercube design of 13 points; d2 =
1.0408

we selected the LHD-structure because of the non-
collapsingness with respect to the projections of the
design points onto the axes. For the design X2, the
non-collapsingness is guaranteed by the equidistant
distribution of the X2-coordinates. To obtain a non-
collapsing design X1, we also want to select the X1-
coordinates equidistantly distributed. If this is not
possible, we try to obtain a space-filling distribution
of the X1-coordinates. Hence, what remains is to add
restrictions that lead to the desired distribution of the
X1-coordinates.

To start, consider the case where c2 = n2−1
n1−1 ∈ N.

In this case, a non-collapsing design X1 is obtained
by limiting the choice of design points (of X1) to
the set of equidistantly distributed X1-coordinates
{0, 1

n1−1 , 2
n1−1 , . . . , 1}m. See, for example, the two-

dimensional nested maximin Latin hypercube design of
n1 = 16 and n2 = 31 points (with c2 = 2) depicted in
Fig. 3. As all grid-structures coincide when c2 is integer,
this design is also a nested maximin design for the other
two grid-structures. Therefore, we refer to it as a nested
maximin LHD instead of a nested maximin n2-LHD.

For the case c2 �∈ N, the situation is more compli-
cated. Because we are bound to the n2-grid, and n1 − 1
is no longer a divisor of n2 − 1, it is no longer possible
to have the X1-coordinates equidistantly distributed.
From the one-dimensional case, however, we know that
for equidistantly distributed X2-coordinates (as is the
case with the n2-grid) it is optimal to have either �c2� −
1 or 	c2
 − 1 X2-coordinates between succeeding

376 G. Rennen et al.

Fig. 3 A nested maximin Latin hypercube design of n1 = 16 and
n2 = 31 points; d = d1 = d2 = 0.9309

X1-coordinates; see Van Dam et al. (2009a) (where
�·� and 	·
 represent the floor and ceiling function, re-
spectively). Therefore, the X1-coordinates are required
to be separated by either �c2� 1

n2−1 or 	c2
 1
n2−1 . Hence,

should the design then collapse (onto one of the axes),
then it collapses onto an optimal one-dimensional
nested maximin design.

Note that this restriction still leaves multiple grids
possible for design X1 when c2 �∈ N. An example of
a nested maximin design on a nested n2-grid of n1 =
6 and n2 = 13 points, with d = d2 = 0.9129 and d1 =
1.0035, is depicted in Fig. 4. In this and following figures,
the design points of X1 are represented by solid dots,
the open dots represent the extra design points needed
to complete design X2, hence, the solid and open dots
together form the design points of X2. The diameters
of the dotted and solid circles are equal to the unscaled
distance d1 ∗ s1 and d2 ∗ s2, respectively. They thus illus-
trate the separation distances of the designs X1 and X2.

For the nested n2-grid, a suitable method to deter-
mine nested LHDs would seem to take an existing
LHD of n2-points for X2 and select a subset of n1

points for X1. Forrester et al. (2007), for instance, use
an exchange algorithm to implement this approach for
multi-fidelity modeling. Although this method is quite
attractive because of its simplicity, it does not gener-
ally yield a nested LHD satisfying all the restrictions
of the nested n2-grid. We will illustrate this with the
example in Fig. 5. The figure shows a maximin Latin
hypercube design for n = 15 obtained in Van Dam

Fig. 4 A nested maximin n2-Latin hypercube design of n1 = 6
and n2 = 13 points; d = d2 = 0.9129 and d1 = 1.0035

et al. (2007). Assume we want to construct a nested
LHD with n1 = 8 and n2 = 15. Because in this case
c2 = 2, the nested n2-grid is unique and both the X1-
and X2-coordinates must be equidistantly distributed
for both dimensions. The solid dots represent X1 when
we satisfy this latter restriction for the dimension on the
horizontal axis. We can easily see that the distribution

Fig. 5 Example of the problem occurring when taking X1 equal
to a subset of an existing LHD

Nested maximin Latin hypercube designs 377

of the X1-coordinates on the other axis is certainly not
equidistant or space-filling. This problem also occurs
for many other Latin hypercube designs and is even
more likely to occur when the number of dimensions
increases. Therefore, we will not use this method to
construct nested LHDs, but use the methods described
in Sections 4.1 and 5.1.

3.2 Nested n1-grid

When we want X1 to be an LHD instead of X2, we
can use the nested n1-grid. The design X1 is then ob-
tained by choosing n1 design points on the n1-grid, with
grid points {0, 1

n1−1 , 2
n1−1 , . . . , 1}m. The additional X2-

coordinates are placed equidistantly between the X1-
coordinates. Similar to the nested n2-grid, the (interiors
of the) intervals formed by consecutive X1-coordinates
are again required to contain either �c2� − 1 or 	c2
 − 1
X2-coordinates. Hence, consecutive X2-coordinates
will be separated by either 1

�c2�
1

n1−1 or 1
	c2

1
n1−1 . Again,

this leaves multiple grids possible when c2 �∈ N. See
Fig. 6 for an example of a nested maximin design on
a nested n1-grid of n1 = 6 and n2 = 13 points, with
d = d2 = 0.9522 and d1 = 1.0000.

3.3 Grid with nested maximin axes

The use of the Latin hypercube structure in the con-
struction of a nested maximin design implies a prefer-

Fig. 6 A nested maximin n1-Latin hypercube design of n1 = 6
and n2 = 13 points; d = d2 = 0.9522 and d1 = 1.0000

ence of one design over the other. Design X1 is assumed
to be more important than design X2 when a nested n1-
grid is used; design X2 is preferred over design X1 in
case of a nested n2-grid. If both sets are assumed to
be of equal importance, we would like to treat them
equally. To deal with this problem, the X1- and X2-
coordinates could be restricted to take only values at
the levels of a (known) one-dimensional nested max-
imin design of n1 and n2 points; see Van Dam et al.
(2009a). The design points of X1 and X2 could then be
chosen from the grid points obtained in this way. Note
that in this case the projections of the design points onto
the axes are always optimally space-filling with respect
to the maximin distance criterion. Furthermore, note
that a one-dimensional maximin design, with c2 �∈ N, is
(again) not unique, so there are multiple grids possible.
Figure 7 depicts an example of a nested maximin design
of n1 = 6 and n2 = 13 points on a grid with nested
maximin axes, with d = d1 = 0.9589 and d2 = 0.9805.

3.4 Choice of grid-structure

When deciding which grid-structure to use, there are
a number of factors which can influence this decision.
Firstly, when the space-fillingness of the nested design
is very important, we can base our choice on which grid-
structure results in the nested design with the highest
d. Secondly, when it is not known a priori which de-
sign parameters are significant, the non-collapsingness

Fig. 7 A nested maximin design of n1 = 6 and n2 = 13 points on a
grid with nested maximin axes; d = d1 = 0.9589 and d2 = 0.9805

378 G. Rennen et al.

criterion should be considered. The projections of the
design point onto the axes should preferably be space-
filling, which is accomplished by choosing a grid with
nested maximin axes.

Furthermore, the reason why a nested design is used
may also affect the choice for a particular grid. For
example, a nested n1-grid or a grid with the highest d1

could be preferable for sequential evaluations, because
it is known with certainty that the first set of design
points is evaluated, whereas the evaluation of an extra
set of design points may depend on the previously
evaluated set. However in the same setting, a nested
n2-grid is preferable when the final set of design points
(i.e., X2) is required to be a Latin hypercube design, as
is often the case in practice. When dealing with linking
design parameters, the choice for a specific grid mostly
depends on the question which of the two designs, i.e.,
X1 or X2, is considered to be the most important one
and should, thus, have an LHD-structure or have the
largest separation distance. A grid with nested maximin
axes should be used when there is no explicit preference
for either one of the designs. When constructing a
training set and a test set, design X1, which forms the
training set, is in general the most important of the two
designs. This is because the prediction accuracy of a
metamodel is, among others, affected by the choice of
the evaluation points in the training set. A space-filling
distribution of these points over the feasible region
is desirable and, hence, the grid for which the design
points of X1 have the largest separation distance may
be preferred. When combining high and low accuracy
models, it is hard to say which of the two designs is
more important. The X2 design is important because it
is used to fit the initial model, but the X1 design is also
important as it is used to evaluate the accurate model
whose results must improve the initial model.

From this discussion it follows that the notion of the
“best” grid-structure depends on the application under
consideration and the user’s preferences. Fortunately,
when c2 ∈ N, the comparison of the various nested grid-
designs is superfluous. In this case, we do not have to
differentiate between different grid-structures, because
they will all yield the same nested maximin design (and
maximin distance).

4 Two-dimensional nested designs

4.1 Branch-and-bound algorithm

To obtain two-dimensional nested maximin LHDs, we
use an extension of the branch-and-bound algorithm
of Van Dam et al. (2007). This extended branch-and-

bound algorithm works as follows. Given n1, n2 and
the grid-structure, we first determine all possible nested
grids and calculate the possible distances that can occur
for X1 and X2. These distances form a discrete set that
can be efficiently searched and optimized. To deter-
mine whether a nested LHD exists with X1 and X2

having scaled separation distances at least d1 and d2,
respectively, a branch-and-bound search is performed
for each possible nested grid. This branch-and-bound
method is similar to the one used for usual LHDs
as described in Van Dam et al. (2007), however in
general the nested grid-structures do not allow for the
refinements given there. In the search tree, a node at
level t corresponds to a partial nested design consisting
of t design points (x1, . . . , xt), where the first n1 points
are in X1 and the points are, furthermore, ordered by
increasing first coordinate. Nodes in the tree are pruned
when they correspond to partial nested designs that
are collapsing or that have scaled separation distances
smaller than d1 or d2.

Using the extended branch-and-bound algorithm, we
obtained results for n2 up to 15 for all three grid-
structures. For the cases where c2 ∈ N, the algorithm
is refined so that nested maximin LHDs could be ob-
tained for n2 up 32. The maximin distances of these
designs can be found in Tables 9 and 10 in Appendix B.
The corresponding designs can be found on the web-
site http://www.spacefillingdesigns.nl. In Section 6, the
results are compared and discussed.

4.2 Pareto nested designs

Besides nested designs that maximize the objective
function d = min{d1, d2}, there are also some other
interesting nested designs to consider: Pareto nested
designs. We will call a combination of distances (d1, d2)

Pareto optimal (or Pareto) if it is not possible to im-
prove one of the distances, without deteriorating the
other distance. A Pareto nested design is a nested
design of which the distances (d1, d2) form a Pareto
combination. For c2 ∈ N and n2 ≤ 32, we have found
all the Pareto combinations using a slightly adjusted
version of the branch-and-bound algorithm. Further-
more, the original branch-and-bound algorithm already
ensures that the distances (d1, d2) of all nested maximin
designs provided in Table 9 (see Appendix B) are
Pareto optimal.

Table 1 provides all Pareto combinations (d1, d2)

corresponding to the pairs (n1, n2), with c2 ∈ N and
n2 ≤ 32, for which there exist more than one such
combination. In this table, the first entry corresponds
to the optimal maximin combination (d1, d2), followed
by the other Pareto combination(s). Note that in case

http://www.spacefillingdesigns.nl

Nested maximin Latin hypercube designs 379

Table 1 All two-dimensional pairs (n1, n2) with more than one
Pareto combination; c2 ∈ N, n2 ≤ 32

n1 n2 Pareto combinations (d1, d2)

4 10 (0.8165, 0.9428), (1.2910, 0.7454)
4 16 (1.2910, 0.9309), (0.8165, 1.0646)
6 16 (1.0000, 0.7303), (0.6325, 1.0646)
9 17 (1.1180, 0.7906), (0.7906, 1.0607)
4 19 (1.2910, 0.9718), (0.8165, 1.0000)
7 19 (1.1547, 0.9718), (0.5774, 1.0000)
10 19 (1.0541, 0.7454), (0.7454, 1.0000)
11 21 (1.0000, 0.7071), (0.7071, 1.0000)
8 22 (1.0690, 0.8997), (0.5345, 0.9258)
12 23 (0.8528, 1.0871), (0.9535, 0.6742)
4 25 (1.2910, 1.0206), (0.8165, 1.0408)
5 25 (1.1180, 0.9129), (0.7071, 1.0408)
7 25 (1.1547, 0.8660), (0.5774, 1.0408)
9 25 (1.0000, 1.0408), (1.1180, 0.9129)
14 27 (1.0000, 1.0000), (1.1435, 0.8321)
4 28 (1.2910, 0.9623), (0.8165, 0.9813)
10 28 (0.9428, 0.9813), (1.0541, 0.8607)
5 29 (1.1180, 0.9636), (0.7071, 1.0177)
8 29 (1.0690, 0.9449), (0.8452, 0.9636)
15 29 (0.9636, 0.9636), (1.1019, 0.8018)
7 31 (1.1547, 0.9129), (0.5774, 0.9309)
16 31 (0.9309, 0.9309), (1.0646, 0.7746),

(0.7303, 1.0328)

of n1 = 11 and n2 = 21 points there exist two different
Pareto combinations, both with a maximin distance
equal to d = 0.7071. For the (n1, n2) pairs (9, 17) and
(10, 19), the objective values of the Pareto nested de-
signs are also equal (0.7906 and 0.7454, respectively);
however, the individual maximal distances of the sec-
ond Pareto combination are smaller than the maximal
distances of the (optimal) first combination (1.0607 <

1.1180 and 1.0000 < 1.0541, respectively). The Pareto
nested designs can also be found on the website
http://www.spacefillingdesigns.nl.

5 Higher dimensional nested designs

5.1 Enhanced stochastic evolutionary algorithm

For dimensions higher than two and for larger values
of n1 and n2, the above branch-and-bound algorithm
to find nested LHDs which maximize d becomes too
time-consuming. In these cases, we can use heuristics
to find nested approximate maximin LHDs, where “ap-
proximate” indicates that optimality is not guaranteed.
One possible heuristic is the ESE algorithm of Jin et al.
(2005). In Husslage et al. (2008), this algorithm obtains
good results for approximate maximin LHDs. Further-
more, the algorithm is used in Viana et al. (2007) to gen-
erate space-filling LHDs. Although this algorithm was

originally designed for non-nested designs, with some
changes it is also applicable to nested designs. Before
we look at these changes, we first give a short descrip-
tion of the original ESE algorithm. This description is
based on the description given in Husslage et al. (2008).

The algorithm starts with an initial design and tries to
find better designs by iteratively changing the current
design. To determine if a new design is accepted, a
threshold-based acceptance criterion is used. This cri-
terion is controlled in the outer loop of the algorithm.
In the inner loop of the algorithm new designs are
explored.

The inner loop explores the design space as follows.
At each iteration, first a dimension k is selected. The
algorithm then creates a fixed number of new designs
by exchanging the kth coordinate value of two randomly
chosen points of the current design. The new design
with the largest separation distance is then compared
to the current design using a threshold criterion. The
criterion ensures that better designs are always ac-
cepted and that worse designs can be accepted with a
certain probability depending on the threshold value.
If the new design is accepted, it replaces the current
design. This process is repeated until a certain stopping
criterion is met.

The outer loop controls the threshold value. After
the inner loop is completed, the outer loop determines
how much improvement is made in the inner loop. If
the amount of improvement is above a certain level,
the algorithm starts an improving process in which
it tries to rapidly find a local optimum. It does this
by lowering the threshold value and thus accepting
fewer deteriorations in the inner loop. If too little
improvement is made, an exploration process is started
which is intended to escape from a local optimum. The
threshold value is first rapidly increased to move away
from a local optimum and later slowly decreased to
find better designs after moving away. The final design
of the algorithm is the best design found during all
iterations of the inner loop.

To use the ESE algorithm for nested designs, the
step which needs to be changed most is the generation
of new designs. When one point is selected from X1 and
the other from X2\X1, exchanging the kth coordinate
value can distort the nested grid-structure.

Figures 8 and 9 give an example where this distor-
tion indeed occurs. The design in Fig. 9 is obtained
by exchanging one coordinate value of two points in
the lower left part of Fig. 8. As we require in each
dimension that the first and last point should be in X1,
the new design is not a valid nested design. We could
try to repair this by changing the assignment of the
points to the sets X1 and X2. However, there exists no

http://www.spacefillingdesigns.nl

380 G. Rennen et al.

Fig. 8 A nested Latin hypercube design of n1 = 6 and n2 = 10
points; d = d1 = 0.3086 and d2 = 0.5556

assignment such that the invalid nested design in Fig. 9
becomes a valid nested LHD on a nested n2-grid.

5.2 Generating new designs

The main problem which needs to be addressed by a
new method for generating designs is the distortion
of the chosen grid-structure. Fortunately, we can quite
easily avoid this problem in the following way. Instead
of randomly choosing two points from the complete
set of points, we randomly choose two points from
either X1 or X2\X1. By exchanging coordinate values
between two points within the same set, the chosen
grid-structure is always maintained.

We also want to take into account that the grids
are not unique when c2 is non-integer. For instance,
when n1 = 6 and n2 = 13, it can be verified that there
are 21 different two-dimensional nested n2-grids, after
accounting for reflection and rotational symmetry. In
cases like these, the choice of a specific grid can affect
the maximal attainable value of d. Therefore, we run
the ESE algorithm for different initial grids and de-
signs. Furthermore, besides the exchange of coordinate
values, we also consider other transformations which
are able to change a grid without distorting it.

Based on the above observations, we developed four
different methods for generating new designs. We de-
scribe the most successful method in this section. A de-
scription of the other three methods and a comparison
of all four methods can be found in Appendix A.

Fig. 9 A nested design obtained by exchanging one coordinate
value between a point in X1 and one point in X2\X1

The most successful method method, called
GROUPRAND, can change both the grid and
the selected points of a design. Remember that for all
types of grids, there must be either �c2� − 1 or 	c2
 − 1
X2-coordinates between every pair of consecutive X1-
coordinates. By deciding between which pairs �c2� − 1
points are placed and between which pairs 	c2
 − 1
points are placed, we fix a grid. To change a grid
without it becoming invalid, we thus have to change
the assignment of �c2� − 1 and 	c2
 − 1 X2-points to
the pairs of consecutive X1-coordinates. This principle
leads to the following definition of the GROUPRAND
method.

The method GROUPRAND starts with randomly
selecting a first point from X2. If a point in X1 is
selected, we simply exchange two points in X1. Oth-
erwise, we select with equal probability to either ex-
change the selected point with another point in X2\X1

or to perform a group-exchange. A group-exchange is
performed by first selecting two pairs of consecutive
X1-points, i.e. X1-points which have consecutive X1-
coordinates in the kth dimension. All X2 points between
a pair of consecutive X1-points are now referred to
as a group. Note that when �c2� = 1, a group can be
empty. To generate a new design, we now switch the
two groups. As both groups contain �c2� − 1 or 	c2
 − 1
points, this will result in a valid nested design. When the
number of points in the groups differ, the exchange of
the groups also changes the grid. Depending on the type
of grid, the group exchange not only affects the position

Nested maximin Latin hypercube designs 381

Fig. 10 A nested Latin hypercube design of n1 = 6 and n2 = 10
points; d = d2 = 0.7454 and d1 = 0.8958

of the points in the group but possibly also other points.
Which and how other points are affected differs per
type of grid, but is fairly straightforward to determine.

To illustrate the GROUPRAND method, we will
use the design in Fig. 10 and take k equal to 2, i.e.
the dimension on the vertical axis. The two differently
shaded areas in Fig. 10 now form two possible groups.
Notice that the top group is empty as there are no
X2-points between the X1-points. In Fig. 11, we see
the result of exchanging the two groups. Because the
groups are of different size, the grid has now changed.
Comparing the values of d shows that the design has
improved and, in this case, is even optimal.

6 Numerical results

In the numerical comparison in this section, we con-
sider nested designs of dimensions two up to ten. The
two-dimensional nested maximin designs are obtained
with the branch-and-bound algorithm described in
Section 4.1. The three- and four-dimensional nested ap-
proximate maximin designs are obtained by performed
ten runs of each variant of the ESE algorithm described
in Section 5.2 and Appendix A. For dimensions five
up to ten, we only used ten runs of the GROUP-
RAND algorithm. In this comparison, we consider the
best obtained designs and all ten designs obtained
with GROUPRAND. For each dimension and grid-
structure, we ran the ESE algorithm for 65 differ-

Fig. 11 A nested maximin Latin hypercube design of n1 = 6 and
n2 = 10 points; d = d1 = 0.8958 and d2 = 0.9428

ent pairs (n1, n2) with n1 = 5, 10, . . . , 50 and n2 = n1 +
5, . . . , 55, 60. The computations have been performed
on PCs with a 2.8-GHz Pentium D processor and
the variants were implemented in Matlab 7.4 R2007a.
More details on the computations can be found in
Appendices A and C.

To get an impression of the calculation times, we
determined the mean and average of the calculation
times over all ten runs of the GROUPRAND algorithm
(for each pair (n1, n2) and dimension m). Table 2 con-
tains the results for the nested n1-grid and Table 13 in
Appendix C contains the results for all three grids.
When evaluating these results, we note that the cal-
culation times are mainly influenced by two factors.
Firstly, generating a new design and calculating d be-
comes more time-consuming when n2 or the dimension
m increases. Especially, updating the distance matrix
containing the distances between all design points
requires more time. Secondly, the total number of it-
erations of the outer loop can vary over different runs
of the ESE algorithm. This is caused by our stopping
criterion, which terminates the algorithm when no im-
provement has been found in the last 100 iterations of
the outer loop.

The effect of n2 is most apparent when we compare
the calculation times for a fixed n1. For some cases,
especially with n1 = 5, the calculation times are quite
large. Note however, that once we have generated a
good design for a certain pair (n1, n2) in a certain
dimension, we can use this design many times without

382 G. Rennen et al.

Table 2 Mean and standard deviation of calculation times in
minutes of GROUPRAND for the nested n1-grid

n1 n2 Calculation time

Mean Std

4d 6d 8d 10d 4d 6d 8d 10d

5 10 0.1 0.3 0.4 0.3 0.0 0.1 0.1 0.1
5 20 1.6 4.3 4.9 3.6 1.2 1.8 1.7 1.4
5 30 8.0 22.6 21.4 15.0 5.0 6.9 5.0 5.1
5 40 19.2 40.6 51.5 23.7 14.8 5.7 9.6 3.4
5 50 27.0 90.0 118.2 66.0 15.2 19.4 17.9 11.5
5 60 26.4 176.8 216.5 118.5 5.4 47.7 30.7 16.3
10 15 0.1 0.6 0.8 0.7 0.0 0.2 0.2 0.3
10 20 0.3 1.5 2.6 2.1 0.1 0.5 1.1 0.8
10 30 1.5 8.3 10.4 5.3 0.4 2.6 4.8 1.5
10 40 4.4 13.3 18.2 7.4 1.4 4.9 7.7 1.2
10 50 5.6 23.1 24.8 14.4 1.9 12.0 7.4 4.8
10 60 7.0 31.2 37.8 23.1 4.2 7.4 10.3 4.9
15 20 0.3 1.6 2.2 1.3 0.1 0.4 0.6 0.4
15 30 1.2 6.6 5.9 4.5 0.4 2.3 1.6 1.5
15 40 2.0 8.1 8.9 6.2 0.8 2.9 3.2 2.9
15 50 3.4 13.2 15.8 8.6 1.5 4.8 7.4 2.5
15 60 4.7 23.5 25.0 15.7 2.4 13.6 7.3 4.8
20 25 0.6 3.1 3.1 3.4 0.2 1.6 1.1 1.6
20 30 1.2 6.2 7.2 3.8 0.4 2.3 2.8 1.3
20 40 2.1 7.9 8.8 4.4 0.5 2.3 3.1 1.3
20 50 3.2 12.8 16.5 8.9 1.5 5.9 8.6 2.8
20 60 3.0 20.3 17.9 11.7 1.2 7.9 6.8 2.8
25 30 1.2 5.7 6.9 4.4 0.3 1.0 2.7 1.0
25 40 2.4 9.2 10.3 8.2 0.6 2.7 3.0 3.5
25 50 2.8 13.7 17.7 8.4 0.7 6.3 7.7 3.7
25 60 5.4 19.3 25.6 22.0 2.7 9.1 9.3 6.4
30 35 2.0 8.4 9.6 6.6 0.9 2.5 1.7 2.7
30 40 2.6 10.4 13.4 10.6 0.7 3.1 5.3 3.0
30 50 3.3 16.1 19.4 15.1 0.3 4.8 4.1 4.5
30 60 5.8 21.3 27.8 18.3 1.8 6.5 11.4 8.7
35 40 2.8 9.4 12.9 9.9 0.9 2.4 3.6 3.0
35 50 4.3 18.9 24.6 20.2 0.7 6.1 5.7 6.9
35 60 5.6 26.5 32.6 29.2 1.7 13.0 9.4 11.1
40 45 6.1 16.0 16.2 13.9 2.8 6.6 7.3 3.8
40 50 9.9 28.4 29.0 18.7 4.6 11.8 9.1 3.9
40 60 6.0 30.5 42.5 33.2 2.9 7.7 10.4 10.0
45 50 5.3 19.3 22.8 20.9 1.6 6.9 4.2 6.6
45 60 9.0 40.6 52.8 35.8 3.0 10.4 17.4 15.5
50 55 10.4 29.6 33.9 35.8 4.0 10.7 6.6 8.1
50 60 13.0 40.4 48.4 30.9 6.9 10.3 17.8 12.5

incurring these calculation times again. When we com-
pare the times for different dimensions m, we see that
the times generally do increase, but not as much as
one might expect. For many pairs the times for 10
dimensions are even lower than for 8 dimensions. This
result is probably caused by the second factor, i.e., the
variance in number of iterations caused by the stopping
criterion. When we consider a certain pair (n1, n2) and
dimension m, this factor is also the main cause for the
variance of the calculation times.

Besides the calculation times, we are also interested
in the performance of GROUPRAND in terms of the
space-fillingness of the obtained nested designs. As
there are no other results in literature for (approxi-
matie) maximin nested designs, we cannot compare our
results. Therefore, we decided to perform Monte Carlo
simulations to get an impression of how the obtained
designs are positioned in the objective function space.
We performed these Monte Carlo simulations by ran-
domly generating 10,000 nested designs for each grid-
structure, pair (n1, n2) and dimension m. We denote
the mean, standard deviation and maximum of the
d-values of these 10,000 designs by meanmc, stdmc and
maxmc, respectively. In Table 3, we compare these
values to dbest, i.e., the d value of the best obtained
nested (approximate) maximin design. The first figure
shows how many times dbest is larger than meanmc.
The second figures also shows the difference between
dbest and meanmc, but now in terms of the number of
standard deviations stdmc. The last figure compares dbest

to maxmc, i.e., the d-value of the best design found by
the Monte Carlo simulation. All three figures show that
dbest is considerably larger than meanmc and maxmc. The
GROUPRAND algorithm is thus able to significantly
improve the space-fillingness of the nested designs.

However, compared to non-nested designs of sizes
n1 and n2, we expect a lower space-fillingness because
of the additional condition that X1 and X2 should
be nested. Therefore, we also evaluate the loss of
space-fillingness by using nested instead of non-nested
designs. To determine this, we compare the d1- and
d2-values of the nested (approximate) maximin de-
signs to the scaled separation distances of the (ap-
proximate) maximin LHDs of the same size. For a
pair (n1, n2), we denote the first distances by d1(n1, n2)

and d2(n1, n2) and the latter distances by d(n1) and
d(n2). For d(n1) and d(n2), we use the best known
(approximate) maximin LHDs available on http://www.
spacefillingdesigns.nl (December 2008). We now define
the percentage loss in scaled separation distance as:

l j(n1, n2) := (
d j(n1, n2) − d

(
n j

))
/d

(
n j

)
, j = 1, 2.

Table 4 represents the averages and the ranges of
the percentage losses for the best nested (approxi-
mate) maximin designs. The average and range are
both taken over all evaluated (n1, n2)-pairs. Note that
for two dimensions, we evaluated different pairs than
for the other dimensions. When we consider the two-
dimensional results, we see that the n2-grid on aver-
age gives the best space-fillingness for both designs
X1 and X2. For the higher dimensions, the averages
and ranges are more similar, but the nested n1-grid

http://www.spacefillingdesigns.nl
http://www.spacefillingdesigns.nl

Nested maximin Latin hypercube designs 383

Table 3 Comparison of dbest
to the d values of the Monte
Carlo simulation

Average over all (n1, n2)-pairs

3d 4d 5d 6d 7d 8d 9d 10d

Nested n1-grid
dbest/meanmc 4.0 4.5 4.9 5.3 5.6 5.9 6.2 6.4
(dbest − meanmc)/stdmc 10.2 11.9 13.4 14.6 15.7 16.7 17.6 18.4
(dbest − maxmc)/stdmc 6.4 8.2 9.6 10.9 12.0 13.0 13.9 14.7

Nested n2-grid
dbest/meanmc 3.9 4.3 4.7 5.1 5.4 5.7 5.9 6.1
(dbest − meanmc)/stdmc 10.2 11.8 13.2 14.4 15.5 16.5 17.3 18.2
(dbest − maxmc)/stdmc 6.4 8.0 9.4 10.6 11.7 12.7 13.5 14.4

Nested maximin axes
dbest/meanmc 3.9 4.4 4.8 5.1 5.4 5.7 6.0 6.2
(dbest − meanmc)/stdmc 10.2 11.8 13.2 14.4 15.5 16.5 17.4 18.2
(dbest − maxmc)/stdmc 6.4 8.0 9.4 10.6 11.7 12.7 13.6 14.4

performs slightly better on both d1 and d2. These results
are a bit surprising as we expected the nested n2-grid
to perform better on d2 and the nested n1-grid to per-
form better on d1. Another observation which might be
surprising at first sight is that some ranges also contain
negative values. This means that for some (n1, n2)-pairs,
the d1- or d2-distance is better than the distance of the
corresponding (approximate) maximin LHD. The main
explanation for this is that the designs X1 or X2 do
not always have to satisfy the LHD-structure. In some
cases, this enables X1 or X2 to attain a larger separation
distance than the (approximate) maximin LHD.

The percentage losses in Table 4 are only of the best
nested (approximate) maximin designs. To determine
how the percentage losses vary over different runs of
the ESE algorithm, we also report the mean and stan-
dard deviation over all 10 runs of the GROUPRAND
algorithm. Table 5 contains the loss l1(n1, n2) for the
nested n1-grid and Tables 14 and 15 in Appendix C
contain l1(n1, n2) and l2(n1, n2) for all three grids. To
limit the size of the tables, we only report the results
for a subset of the evaluated (n1, n2)-pairs. We can see
in these tables that the standard deviation is fairly low
for all cases with n1 ≥ 10. For these cases, one run or a

small number of runs of the GROUPRAND algorithm
is sufficient to determine a good nested approximate
maximin design. The relatively high standard deviation
for cases with n1 = 5 indicates that for these cases it is
beneficial to perform more runs of the GROUPRAND
algorithm. When we compare the results for different
dimensions, there is no real pattern in the standard
deviations.

Besides the performance of GROUPRAND, we are
also interested in the performance of the different grid-
structures. As can already be seen from the results in
Tables 10, 11, and 12, which grid gives the best sepa-
ration distances depends on the particular pair (n1, n2)

and dimension. To get an idea of which grid-structures
perform well in general, we present the percentages
of pairs (n1, n2), with c2 /∈ N, for which a grid type
performs best on a particular distance in Table 6. We
do not consider the pairs with c2 ∈ N because for these
pairs all grids are equal.

Not surprisingly, the grids with the lowest average
loss in Table 4 also have the highest percentage of pairs
for which they perform best. However, there is still a
considerable percentage of pairs where one of the other
two grids perform better. It thus strongly depends on

Table 4 Average and range
of percentage loss l j(n1, n2)

for the best nested
(approximate) maximin
designs over all evaluated
(n1, n2)-pairs

l1(n1, n2) l2(n1, n2)

Average Range Average Range

Two-dimensional
Nested n1-grid 4.13 [0.00 , 36.75] 11.12 [−5.41 , 52.56]
Nested n2-grid 3.10 [−33.33 , 36.75] 8.92 [0.00 , 36.75]
Grid with nested maximin axes 3.83 [−14.29 , 36.75] 10.08 [−11.61 , 45.79]

Three-dimensional
Nested n1-grid 11.00 [0.00 , 17.60] 7.23 [−1.07 , 15.81]
Nested n2-grid 10.95 [1.14 , 19.60] 7.90 [3.03 , 12.92]
Grid with nested maximin axes 11.38 [0.19 , 17.63] 8.02 [2.88 , 13.69]

Four-dimensional
Nested n1-grid 8.90 [0.00 , 17.54] 4.01 [−2.82 , 10.78]
Nested n2-grid 9.56 [−7.04 , 16.82] 5.63 [2.11 , 11.21]
Grid with nested maximin axes 10.10 [−1.37 , 17.22] 5.82 [2.53 , 11.93]

384 G. Rennen et al.

Table 5 Mean and standard deviation of percentage loss
l1(n1, n2) of GROUPRAND for the nested n1-grid

n1 n2 l1(n1, n2)

Mean Std

4d 6d 8d 10d 4d 6d 8d 10d

5 10 6.06 10.21 10.85 11.49 6.80 3.71 1.85 2.65
5 20 9.64 12.70 15.97 12.59 6.23 3.03 3.89 4.74
5 30 9.19 13.17 18.20 12.78 4.64 4.30 3.02 3.64
5 40 10.61 15.57 15.52 15.31 3.12 4.66 3.89 5.58
5 50 10.42 15.57 14.33 12.98 6.82 4.66 3.41 5.52
5 60 9.36 16.09 13.93 11.09 7.57 6.10 4.29 3.96
10 15 11.92 6.97 5.09 3.90 1.48 0.95 0.59 0.70
10 20 16.24 13.31 10.24 9.39 2.13 1.11 1.68 1.46
10 30 17.69 14.43 12.09 12.05 2.33 1.00 1.22 0.88
10 40 17.93 15.39 13.38 13.33 2.30 1.56 1.08 0.56
10 50 18.77 16.86 14.60 13.97 1.54 1.50 0.69 1.03
10 60 20.91 17.44 15.10 14.54 2.20 1.38 1.47 0.80
15 20 8.64 4.06 5.65 3.43 1.01 0.91 1.36 1.17
15 30 15.01 9.42 10.90 7.69 0.99 0.72 1.04 0.74
15 40 15.74 11.25 11.16 8.60 0.87 1.78 0.64 0.69
15 50 16.42 12.60 13.26 10.82 1.65 1.04 1.37 0.49
15 60 17.43 13.25 14.38 11.74 1.54 0.71 0.87 0.77
20 25 8.67 4.44 2.56 6.42 1.38 1.09 0.68 1.06
20 30 9.91 4.95 3.12 7.61 0.95 0.83 0.90 0.73
20 40 14.31 10.68 7.67 11.41 0.64 1.04 0.69 0.43
20 50 14.65 10.37 6.36 10.06 0.77 1.48 1.06 0.54
20 60 17.58 12.41 10.23 13.37 1.58 0.94 0.67 0.49
25 30 4.88 3.29 2.30 2.37 1.39 0.48 0.51 0.37
25 40 8.91 5.53 3.44 2.96 0.89 0.51 0.48 0.51
25 50 13.07 10.28 7.14 7.11 0.60 1.14 0.80 0.79
25 60 12.73 9.61 5.73 4.57 1.46 1.49 0.97 0.50
30 35 3.99 2.68 3.44 2.35 1.00 0.72 0.48 0.45
30 40 5.74 3.66 3.77 2.53 0.53 0.57 0.56 0.50
30 50 9.80 5.93 4.83 3.06 0.32 0.50 0.43 0.28
30 60 11.72 9.51 8.64 6.58 0.85 0.51 0.93 0.52
35 40 3.42 3.06 2.69 2.21 1.00 0.89 0.44 0.40
35 50 6.20 3.99 3.00 2.51 0.67 1.01 0.43 0.35
35 60 9.35 6.46 4.63 3.40 0.94 0.59 0.58 0.48
40 45 2.31 3.66 2.86 3.99 0.89 0.64 0.57 0.33
40 50 3.01 4.07 3.44 4.45 0.96 0.90 1.47 0.20
40 60 6.01 5.34 3.95 4.56 0.75 0.67 1.23 0.31
45 50 2.43 3.59 1.98 1.61 0.71 0.60 0.43 0.30
45 60 4.30 4.41 2.24 2.13 0.36 0.45 0.60 0.39
50 55 2.48 1.41 1.56 1.71 0.91 0.59 0.32 0.32
50 60 3.17 1.72 2.02 2.49 0.62 0.62 0.62 0.55

the particular pair (n1, n2) which grid to choose based
on the separation distances.

Furthermore, in many practical situations, the values
of n1 and n2 are not fixed which leaves some freedom
to change these values. In those situations, we can
thus also consider nested designs where n1 and n2 are
slightly lower or higher. Let us, for example, consider
the two-dimensional designs with n1 = 5 and n2 = 10.
In Table 7, we compare the losses of these designs to
the losses of the designs with n1 = 6 and n2 = 10. The
comparison shows that all losses either reduce or stay

Table 6 Percentage of the (n1, n2)-pairs, with c2 /∈ N, for which a
particular grid type performs best on d, d1, or d2

Percentage best designs

d d1 d2

Two-dimensional
Nested n1-grid 17 36 16
Nested n2-grid 67 56 72
Grid with nested maximin axes 16 11 13

Three-dimensional
Nested n1-grid 52 45 53
Nested n2-grid 19 37 21
Grid with nested maximin axes 29 18 26

Four-dimensional
Nested n1-grid 69 71 66
Nested n2-grid 24 18 26
Grid with nested maximin axes 8 11 10

the same. Choosing n1 equal to 6 instead of 5 thus seems
to be a better choice in terms of space-fillingness.

As mentioned in Section 3.4, the choice for a specific
grid or (n1, n2)-pair does not only depend on the space-
fillingness. The users preferences and the reason why
a nested design is used also affect the choice for a
particular grid-structure.

7 Concluding remarks

A nested design consists of two separate designs, one
being a subset of the other. Using these nested de-
signs, instead of traditional designs of computer exper-
iments, is useful when dealing with training and test
sets, models with different levels of accuracy, linking
parameters, or sequential evaluations, because nested
designs are able to capture the dependencies between
the two black-box functions or evaluation stages (with
respect to the design parameters). This paper focuses
on constructing nested (approximate) maximin Latin
hypercube designs in two and higher dimensions. The
maximin criterion is used to find space-filling nested
designs, i.e., designs with the design points spread over
the entire design space. By choosing the design points
on a grid, we ensure non-collapsingness, i.e., no two
design points will have the same coordinate values. We
distinguish between three types of grids: a nested n1-
grid, a nested n2-grid, and a grid with nested maximin

Table 7 Example of reduction in percentage loss l j(n1, n2) by
choosing different value for n1

Two-dimensional l1(5, 10) l2(5, 10) l1(6, 10) l2(6, 10)

Nested n1-grid 36.75 16.15 0.00 10.00
Nested n2-grid 28.34 10.56 10.42 10.56
Grid with nested 31.20 12.28 2.02 8.17

maximin axes

Nested maximin Latin hypercube designs 385

axes. Which grid to use is mainly depends on the appli-
cation under consideration and the user’s preferences.
For two-dimensional designs, a branch-and-bound al-
gorithm is used to obtain nested maximin designs for all
grids and for values of n2 up to 15. In the special case
where n1 − 1 is a divisor of n2 − 1, maximin distances
up to n2 = 32 are provided.

For dimensions higher than two, determining nested
LHDs which maximize d becomes too time-consuming.
Instead, we determine nested approximate maximin
LHDs which do not guarantee optimality of d. To
determine these designs, we considered four variants of
the ESE algorithm. We mainly focused our attention on
the GROUPRAND method as this method performed
best in a comparison of three- and four-dimensional
designs. Using this method, designs for dimensions five
up to ten and for up to 100 design points were obtained.
Note that all variants of the ESE algorithms can also
be used for higher dimensions and larger numbers of
points. When the number of points or dimensions in-
creases, changing the design and calculating the new
value for d will become more time-consuming. Com-
paring the calculation times over different dimensions
shows that the times indeed do increase, but not as much
as one might expect. A method to compensate the in-
crease in calculation time could be to perform fewer it-
erations of the inner loop of the ESE algorithm, although
this might reduce the quality of the final nested design.

Besides comparing the different variants, we also
studied the performance using Monte Carlo simula-
tion. The results of this simulation show that the ESE
algorithm is able to significantly improve the space-
fillingness of the nested designs. Furthermore, we con-
sidered the percentage loss in space-fillingness by using
nested designs instead of non-nested designs. The re-
sults show that the nested n2-grid in general gives the
smallest losses in two dimensions and the nested n1-grid
in higher dimensions. We also noted that we can reduce
the amount of loss by choosing slightly different values
for n1 and n2.

We remark that the objective d = min{d1, d2} used in
this paper is only one way of combining the separation
distances of X1 and X2. As mentioned in the introduc-
tion, alternative scaling factors and formulations are
possible. Taking the weighted sum of both objectives
instead of the minimum would be a possible alternative
objective. When using this objective, the branch-and-
bound and ESE algorithms can still be used with little
or no adjustments. Dealing with maximizing d1 and
d2 as a bi-objective optimization problem is another
possibility. In that case, different Pareto optimal nested
designs could be found by using the weighted sum
objective with various scaling factors.

Furthermore, we could also change the number of
designs we want to nest. For instance in multi-fidelity
modeling, we could come across models with more
than two levels of accuracy. In these situations, we
can use a nested design consisting of more than two
designs. Note that for one-dimensional designs, Van
Dam et al. (2009a) already consider optimizing the
maximin criterion for these nested designs. To obtain
results for higher dimensions, we could try to extend the
branch-and-bound and ESE methods. The three main
challenges would then be the following. Firstly, we have
to find suitable grid-structures such that each design
satisfies the LHD-structure as much as possible. This
will become more difficult when we want to nest more
designs. To avoid this problem, we could initially only
consider nested designs for which all designs can satisfy
the LHD-structure. When nesting three designs X1 ⊂
X2 ⊂ X3 with n1, n2 and n3 design points, this would be
possible if both n2−1

n1−1 and n3−1
n2−1 are integer. Secondly, we

should decide on a criterion or method to achieve good
space-fillingness for all the designs. Although we also
need to make this decision for two sets, this decision
will become more difficult when more sets have to be
nested. Thirdly, when using the ESE algorithm, the
methods for generating new designs should not distort
the grid-structure. Depending on the grid-structure, we
should determine whether the methods presented in
this paper are still applicable or if they should be ad-
justed. When a suitable grid and method is determined
and a single objective is used for space-fillingness, the
ESE method in this paper can be used to generate
nested designs with more than two designs.

Acknowledgement The authors would like to thank the
referees for their valuable comments.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix A: Variants of ESE algorithm

Besides the GROUPRAND method, we developed
and tested three other methods which differ in two as-
pects. Firstly, they differ in the method used to choose
between X1 and X2\X1. In GROUPRAND random
selection is used, but as we aim to maximize min{d1, d2},
we could also base our choice on whether d1 or d2 is
smallest. When d1 is smallest, selecting two points from
X2\X1 might not be very useful as their positions do
not directly influence the value of d1. The value of d2,

386 G. Rennen et al.

on the other hand, does depend on the positions of all
points and therefore both sets are relevant when d2 is
smallest.

Secondly, the methods differ in the possible ex-
changes. To test the effect of exchanging groups, we
also tested methods which only allow the exchange
of points. These methods might be faster as a group
exchange is more difficult than a exchange of points.
However, a drawback of not using group exchanges is
that the initial grid cannot change.

As we have two options for each of the above as-
pects, we developed the following four methods for
generating new designs. The method POINTRAND
starts with randomly selecting a point from X2. De-
pending on whether this point is in X1 or not, we select
a second point from X1 or X2\X1, respectively. This
simple method is probably closest to the method of the
original ESE algorithm. However, it does not take into
account the values of d1 and d2 and is not able to change
the grid.

The method POINTDMIN is similar to POINT-
RAND but does take the values of d1 and d2 into
account. When d2 is smallest, the method works in
exactly the same way as POINTRAND. However when
d1 is smallest, only points from X1 can be chosen as they
are the only ones affecting d1.

The third and fourth method, GROUPRAND and
GROUPDMIN, are similar to POINTRAND and
GROUPRAND, respectively. The only difference is
that these two methods also allow group exchanges as
described in Section 5.2.

To compare the four different variants of the ESE
algorithm, we generated three- and four-dimensional
nested designs with n1 = 5, 10, . . . , 50 and n2 = n1 +
5, . . . , 55, 60 for each of the three grid-structures. We
thus consider 65 different pairs (n1, n2) for each dimen-
sion and grid-structure.

As the grid is not unique when c2 /∈ N, which grid
we select might affect the space-fillingness of the final
design. For each combination of n1, n2, dimension, and
grid-structure, we therefore ran the ESE algorithm ten
times with a different grid and initial design. For these
ten runs, we tried two types of initial grids and designs:
random and diagonal. For the first type, we randomly
select a grid and design satisfying the restrictions of
the chosen grid-structure. The second type starts with a
diagonal design, where each design point has the same
value for all coordinates. However, the results did not
indicate a significant effect of the chosen type on the
space-fillingness of the final design. Also the calculation

times of the ESE algorithm did not significantly differ.
Therefore, we do not make a distinction between these
two types in the rest of this paper.

Using the best results of the ten runs of the ESE
algorithm, we determine for each (n1, n2)-pair which
method(s) obtained a best design. In Tables 11 and
12 of Appendix B, the separation distances of the best
generated designs are given for each of the three grid-
structures. The percentage of the 65 (n1, n2)-pairs for
which a certain method performs best are presented in
Table 8. Note that the sum of the percentages per row is
larger than 100%, because for some cases, a best design
is found by multiple variants of the ESE algorithm.
Due to the same reason, we cannot take the sum of
two columns to determine the combined performance
of two methods. When we study the results, we see that
the two RAND methods find the best design for most
cases. One reason for the relative poor performance
of the DMIN methods could be that the number of
neighbor designs is smaller. With neighbor designs, we
mean all designs which can be obtained by making one
possible change to the current design. When d1 < d2,
a DMIN method produces less neighbor designs than
a RAND method, because the DMIN methods allow
fewer possible changes. This can make it more difficult
for a DMIN method to escape from a local minimum,
which could result in a worse performance. Of the two
RAND methods, GROUPRAND performs the best
for most cases. This indicates that the possibility to
change the grid indeed improves the performance of
the ESE algorithm. Based on these results, we decided
to use both RAND methods to obtain nested approx-
imate maximin designs for dimensions five up to ten.
However, in this paper we will only discuss the results
of GROUPRAND.

Table 8 Percentage of the (n1, n2)-pairs for which a certain
variant of the ESE algorithm finds a best design

RAND DMIN

GROUP POINT GROUP POINT

Three-dimensional
Nested n1-grid 60 37 12 17
Nested n2-grid 63 34 17 17
Grid with nested 55 23 6 17

maximin axes
Four-dimensional

Nested n1-grid 66 26 2 11
Nested n2-grid 57 29 6 15
Grid with nested 49 31 9 11

maximin axes

Nested maximin Latin hypercube designs 387

Appendix B: Values of d for best nested
(approximate) maximin designs

Table 9 provides the maximin distances for nested
maximin Latin hypercube designs in two dimen-
sions when n1 − 1 is a divisor of n2 − 1, i.e., c2 ∈
N, and for n2 ≤ 32. For n2 up to 15, and c2 �∈ N,
Table 10 provides the maximin distances for the
two-dimensional nested maximin designs for all three
grid-structures. Tables 11 and 12 provide the separa-
tion distances of three- and four-dimensional nested
approximate maximin designs with n1 = 5, 10, . . . , 50
and n2 = n1 + 5, . . . , 55, 60 for all three grid-structures.
Besides these distances, all tables also contain the
scaled separation distances d(n1) and d(n2) of the ap-
proximate maximin LHDs available on http://www.
spacefillingdesigns.nl (December 2008). The nested ap-
proximate maximin designs for dimensions five up to
ten can also be found on this website.

Table 9 Maximin distances for two-dimensional nested maximin
Latin hypercube designs; c2 ∈ N

n1 n2 d(n1) d(n2) d d1 d2

2 3 1.4142 1.0000 1.0000 1.4142 1.0000
2 4 1.4142 1.2910 0.8165 1.4142 0.8165
2 5 1.4142 1.1180 0.7071 1.4142 0.7071
3 5 1.0000 1.1180 0.7071 1.0000 0.7071
2 6 1.4142 1.0000 1.0000 1.4142 1.0000
2 7 1.4142 1.1547 0.9129 1.4142 0.9129
3 7 1.0000 1.1547 0.9129 1.0000 0.9129
4 7 1.2910 1.1547 0.8165 0.8165 1.1547
2 8 1.4142 1.0690 0.8452 1.4142 0.8452
2 9 1.4142 1.1180 1.0000 1.4142 1.0000
3 9 1.0000 1.1180 1.0000 1.0000 1.0000
5 9 1.1180 1.1180 1.1180 1.1180 1.1180
2 10 1.4142 1.0541 0.9428 1.4142 0.9428
4 10 1.2910 1.0541 0.8165 0.8165 0.9428
2 11 1.4142 1.0000 1.0000 1.4142 1.0000
3 11 1.0000 1.0000 1.0000 1.0000 1.0000
6 11 1.0000 1.0000 1.0000 1.0000 1.0000
2 12 1.4142 1.0871 0.9535 1.4142 0.9535
2 13 1.4142 1.0408 0.9129 1.4142 0.9129
3 13 1.0000 1.0408 0.9129 1.0000 0.9129
4 13 1.2910 1.0408 0.9129 1.2910 0.9129
5 13 1.1180 1.0408 0.8165 1.1180 0.8165
7 13 1.1547 1.0408 0.9129 1.1547 0.9129
2 14 1.4142 1.1435 1.0000 1.4142 1.0000
2 15 1.4142 1.1019 0.9636 1.4142 0.9636
3 15 1.0000 1.1019 0.8452 1.0000 0.8452
8 15 1.0690 1.1019 0.8452 1.0690 0.8452

Table 9 (continued)

n1 n2 d(n1) d(n2) d d1 d2

2 16 1.4142 1.0646 1.0646 1.4142 1.0646
4 16 1.2910 1.0646 0.9309 1.2910 0.9309
6 16 1.0000 1.0646 0.7303 1.0000 0.7303
2 17 1.4142 1.0607 1.0308 1.4142 1.0308
3 17 1.0000 1.0607 1.0000 1.0000 1.0308
5 17 1.1180 1.0607 0.9014 1.1180 0.9014
9 17 1.1180 1.0607 0.7906 1.1180 0.7906
2 18 1.4142 1.0290 1.0000 1.4142 1.0000
2 19 1.4142 1.0000 1.0000 1.4142 1.0000
3 19 1.0000 1.0000 1.0000 1.0000 1.0000
4 19 1.2910 1.0000 0.9718 1.2910 0.9718
7 19 1.1547 1.0000 0.9718 1.1547 0.9718
10 19 1.0541 1.0000 0.7454 1.0541 0.7454
2 20 1.4142 0.9733 0.9733 1.4142 0.9733
2 21 1.4142 1.0000 0.9487 1.4142 0.9487
3 21 1.0000 1.0000 0.9487 1.0000 0.9487
5 21 1.1180 1.0000 0.9487 1.1180 0.9487
6 21 1.0000 1.0000 0.9220 1.0000 0.9220
11 21 1.0000 1.0000 0.7071 1.0000 0.7071
2 22 1.4142 1.0911 0.9258 1.4142 0.9258
4 22 1.2910 1.0911 0.9258 1.2910 0.9258
8 22 1.0690 1.0911 0.8997 1.0690 0.8997
2 23 1.4142 1.0871 0.9535 1.4142 0.9535
3 23 1.0000 1.0871 0.9535 1.0000 0.9535
12 23 1.0871 1.0871 0.8528 0.8528 1.0871
2 24 1.4142 1.0632 1.0426 1.4142 1.0426
2 25 1.4142 1.0408 1.0408 1.4142 1.0408
3 25 1.0000 1.0408 1.0000 1.0000 1.0408
4 25 1.2910 1.0408 1.0206 1.2910 1.0206
5 25 1.1180 1.0408 0.9129 1.1180 0.9129
7 25 1.1547 1.0408 0.8660 1.1547 0.8660
9 25 1.1180 1.0408 1.0000 1.0000 1.0408
13 25 1.0408 1.0408 1.0408 1.0408 1.0408
2 26 1.4142 1.0198 1.0198 1.4142 1.0198
6 26 1.0000 1.0198 1.0000 1.0000 1.0000
2 27 1.4142 1.0000 1.0000 1.4142 1.0000
3 27 1.0000 1.0000 1.0000 1.0000 1.0000
14 27 1.1435 1.0000 1.0000 1.0000 1.0000
2 28 1.4142 1.0364 0.9813 1.4142 0.9813
4 28 1.2910 1.0364 0.9623 1.2910 0.9623
10 28 1.0541 1.0364 0.9428 0.9428 0.9813
2 29 1.4142 1.0177 0.9636 1.4142 0.9636
3 29 1.0000 1.0177 0.9636 1.0000 0.9636
5 29 1.1180 1.0177 0.9636 1.1180 0.9636
8 29 1.0690 1.0177 0.9449 1.0690 0.9449
15 29 1.1019 1.0177 0.9636 0.9636 0.9636
2 30 1.4142 1.0000 1.0000 1.4142 1.0000
2 31 1.4142 1.0328 0.9832 1.4142 0.9832
3 31 1.0000 1.0328 0.9832 1.0000 0.9832
4 31 1.2910 1.0328 0.9309 1.2910 0.9309
6 31 1.0000 1.0328 0.9309 1.0000 0.9309
7 31 1.1547 1.0328 0.9129 1.1547 0.9129
11 31 1.0000 1.0328 0.9309 1.0000 0.9309
16 31 1.0646 1.0328 0.9309 0.9309 0.9309
2 32 1.4142 1.0160 0.9672 1.4142 0.9672

http://www.spacefillingdesigns.nl
http://www.spacefillingdesigns.nl

388 G. Rennen et al.

Table 10 Maximin distances for two-dimensional nested designs; c2 �∈ N

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

3 4 1.0000 1.2910 0.6124 1.0000 0.6124 0.8165 1.3333 0.8165 0.6999 1.1429 0.6999
4 5 1.2910 1.1180 1.0541 1.2910 1.0541 1.1180 1.3693 1.1180 1.0880 1.3325 1.0880
3 6 1.0000 1.0000 0.9317 1.0000 0.9317 1.0000 1.2000 1.0000 0.9091 1.0909 0.9091
4 6 1.2910 1.0000 0.8165 0.8165 1.0541 0.9798 0.9798 1.0000 0.8645 0.8645 1.1161
5 6 1.1180 1.0000 0.8839 1.1180 0.8839 0.8944 0.8944 1.0000 0.9575 0.9722 0.9575
5 7 1.1180 1.1547 0.9682 1.1180 0.9682 0.9428 0.9428 1.1547 0.9897 1.0302 0.9897
6 7 1.0000 1.1547 1.0000 1.0000 1.0392 1.0541 1.0541 1.1547 1.1161 1.1161 1.1207
3 8 1.0000 1.0690 0.9354 1.0000 0.9354 1.0690 1.1429 1.0690 0.9978 1.0667 0.9978
4 8 1.2910 1.0690 0.7916 0.8165 0.7916 0.8452 1.3325 0.8452 0.7990 1.3152 0.7990
5 8 1.1180 1.0690 1.0458 1.1180 1.0458 0.8452 1.0302 0.8452 0.9990 1.0968 0.9990
6 8 1.0000 1.0690 0.8367 1.0000 0.8367 0.9035 0.9035 1.0690 0.9126 0.9383 0.9126
7 8 1.1547 1.0690 0.9129 0.9129 0.9860 0.9897 0.9897 1.0690 1.0319 1.0319 1.0349
4 9 1.2910 1.1180 0.8889 1.2910 0.8889 1.0000 1.2624 1.0000 0.9231 1.2814 0.9231
6 9 1.0000 1.1180 0.8944 1.0000 0.8944 1.0000 1.0078 1.0000 0.9575 0.9575 0.9722
7 9 1.1547 1.1180 0.9129 0.9129 1.0000 0.9682 0.9682 1.1180 0.9422 0.9422 1.0000
8 9 1.0690 1.1180 0.8571 1.0690 0.8571 1.0458 1.0458 1.1180 0.9990 0.9990 1.0679
3 10 1.0000 1.0541 0.8485 1.0000 0.8485 0.9428 1.1111 0.9428 0.8932 1.0526 0.8932
5 10 1.1180 1.0541 0.7071 0.7071 0.8839 0.8012 0.8012 0.9428 0.7692 0.7692 0.9247
6 10 1.0000 1.0541 0.9487 1.0000 0.9487 0.8958 0.8958 0.9428 0.9680 0.9798 0.9680
7 10 1.1547 1.0541 0.7906 1.1547 0.7906 0.9428 0.9813 0.9428 0.8883 0.8883 0.9035
8 10 1.0690 1.0541 0.8452 0.8452 0.9583 0.9296 0.9296 1.0541 0.9097 0.9226 0.9097
9 10 1.1180 1.0541 0.9561 1.0000 0.9561 0.9938 0.9938 1.0541 0.9513 0.9513 1.0090
4 11 1.2910 1.0000 0.8784 1.2910 0.8784 0.8944 1.1619 0.8944 0.8863 1.2103 0.8863
5 11 1.1180 1.0000 0.7454 1.1180 0.7454 0.8944 1.0770 0.8944 0.8131 1.0985 0.8131
7 11 1.1547 1.0000 0.8333 1.1547 0.8333 0.8944 1.0392 0.8944 0.8824 0.9666 0.8824
8 11 1.0690 1.0000 0.8452 0.8452 1.0102 0.9539 0.9539 1.0000 0.8965 0.8965 1.0715
9 11 1.1180 1.0000 1.0000 1.0000 1.0078 0.8944 1.0198 0.8944 0.9722 0.9722 1.0009
10 11 1.0541 1.0000 0.9428 0.9428 0.9938 0.9487 0.9487 1.0000 0.9680 0.9680 0.9798
3 12 1.0000 1.0871 0.8740 1.0000 0.8740 0.9535 1.0041 0.9535 0.9120 1.0009 0.9120
4 12 1.2910 1.0871 0.9965 1.2910 0.9965 1.0871 1.2695 1.0871 1.0250 1.2838 1.0250
5 12 1.1180 1.0871 0.7817 1.1180 0.7817 0.8528 1.0602 0.8528 0.7984 1.1039 0.7984
6 12 1.0000 1.0871 0.9446 1.0000 0.9446 0.9535 1.0947 0.9535 0.9511 1.0699 0.9511
7 12 1.1547 1.0871 0.8740 1.1547 0.8740 0.9535 0.9959 0.9535 0.8863 1.1222 0.8863
8 12 1.0690 1.0871 0.8452 0.8452 1.0051 0.9535 1.0205 0.9535 0.8518 0.8518 1.0307
9 12 1.1180 1.0871 1.0000 1.0000 1.0570 0.9271 0.9271 1.0871 0.9552 0.9552 0.9998
10 12 1.0541 1.0871 0.9428 0.9428 1.0423 0.9833 0.9833 1.0871 0.9664 0.9664 0.9862
11 12 1.0000 1.0871 1.0000 1.0000 1.0488 1.0365 1.0365 1.0871 1.0102 1.0102 1.0595
6 13 1.0000 1.0408 0.9522 1.0000 0.9522 0.9129 1.0035 0.9129 0.9589 0.9589 0.9805
8 13 1.0690 1.0408 0.8452 0.8452 1.0498 0.9129 0.9860 0.9129 0.8158 1.0380 0.8158
9 13 1.1180 1.0408 0.9186 1.0000 0.9186 0.9129 1.0000 0.9129 0.8748 1.0000 0.8748
10 13 1.0541 1.0408 0.9428 0.9428 0.9813 0.9129 1.0607 0.9129 0.9404 0.9583 0.9404
11 13 1.0000 1.0408 0.8944 0.8944 0.9798 0.9501 0.9501 1.0408 0.9301 0.9301 0.9476
12 13 1.0871 1.0408 0.9535 0.9535 0.9959 0.9965 0.9965 1.0408 0.9720 0.9720 1.0153
3 14 1.0000 1.1435 0.9286 1.0000 0.9286 0.8771 1.0769 0.8771 0.9082 0.9630 0.9082
4 14 1.2910 1.1435 0.9329 1.2910 0.9329 0.8771 1.3122 0.8771 0.8971 1.2280 0.8971
5 14 1.1180 1.1435 0.8498 1.1180 0.8498 0.7845 1.1717 0.7845 0.8035 1.1557 0.8035
6 14 1.0000 1.1435 0.8750 1.0000 0.8750 0.8771 1.0879 0.8771 0.8755 0.9722 0.8755
7 14 1.1547 1.1435 0.9234 1.1547 0.9234 0.8771 1.0659 0.8771 0.8863 1.0851 0.8863
8 14 1.0690 1.1435 0.8144 1.0690 0.8144 0.8771 1.0377 0.8771 0.8228 1.0801 0.8228
9 14 1.1180 1.1435 0.7906 0.7906 1.0078 0.8971 0.8971 1.1435 0.8210 0.8210 1.0284
10 14 1.0541 1.1435 0.9428 0.9428 1.0214 0.9515 0.9515 1.1435 0.9600 0.9600 1.0790
11 14 1.0000 1.1435 0.9192 1.0000 0.9192 1.0030 1.0030 1.1435 0.9774 0.9774 1.1144
12 14 1.0871 1.1435 0.9535 0.9535 1.0365 1.0519 1.0519 1.1435 1.0244 1.0244 1.0592
13 14 1.0408 1.1435 1.0408 1.0408 1.0623 1.0987 1.0987 1.1435 1.0716 1.0716 1.1154
4 15 1.2910 1.1019 0.8994 1.2910 0.8994 0.8748 0.8748 1.1019 0.9010 1.2852 0.9010
5 15 1.1180 1.1019 0.8432 1.1180 0.8432 0.9636 1.1518 0.9636 0.8994 1.1333 0.8994

Nested maximin Latin hypercube designs 389

Table 10 (continued)

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

6 15 1.0000 1.1019 0.9080 1.0000 0.9080 0.8452 0.9313 0.8452 0.8960 0.9731 0.8960
7 15 1.1547 1.1019 0.9582 1.1547 0.9582 1.1019 1.2372 1.1019 1.0456 1.2049 1.0456
9 15 1.1180 1.1019 0.7906 0.7906 0.9922 0.8452 1.0880 0.8452 0.7967 0.7967 1.0242
10 15 1.0541 1.1019 0.9428 0.9428 1.0599 0.9091 0.9091 0.9636 0.9299 0.9299 1.0758
11 15 1.0000 1.1019 0.9539 1.0000 0.9539 0.9583 0.9583 0.9636 0.9272 0.9272 1.0295
12 15 1.0871 1.1019 0.8672 1.0871 0.8672 0.9768 0.9768 1.1019 0.9675 0.9675 1.0147
13 15 1.0408 1.1019 0.9129 0.9129 0.9860 1.0202 1.0202 1.1019 0.9923 0.9923 1.0718
14 15 1.1435 1.1019 1.0000 1.0000 1.0176 1.0619 1.0619 1.1019 1.0368 1.0368 1.0759

Table 11 Scaled separation distances for three-dimensional nested approximate maximin designs

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

5 10 1.3162 1.2009 1.1400 1.1906 1.1400 1.0583 1.0583 1.0591 1.0990 1.0990 1.1664
5 15 1.3162 1.1927 1.0827 1.3162 1.0827 1.1023 1.2524 1.1023 1.0661 1.2929 1.0661
5 20 1.3162 1.1410 1.0506 1.1906 1.0506 1.0510 1.1991 1.0510 1.0888 1.3087 1.0888
5 25 1.3162 1.1465 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546
5 30 1.3162 1.1061 1.0582 1.1906 1.0582 1.0647 1.2708 1.0647 1.0672 1.1876 1.0672
5 35 1.3162 1.1030 1.0605 1.1906 1.0605 1.0695 1.2148 1.0695 1.0530 1.1868 1.0530
5 40 1.3162 1.1033 1.0623 1.1906 1.0623 1.0507 1.1811 1.0507 1.0587 1.1847 1.0587
5 45 1.3162 1.0943 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553
5 50 1.3162 1.0899 1.0517 1.1906 1.0517 1.0508 1.2095 1.0508 1.0537 1.1726 1.0537
5 55 1.3162 1.0911 1.0510 1.1906 1.0510 1.0476 1.1857 1.0476 1.0471 1.1930 1.0471
5 60 1.3162 1.0902 1.0431 1.1906 1.0431 1.0454 1.2020 1.0454 1.0492 1.3137 1.0492
10 15 1.2009 1.1927 1.0285 1.0841 1.0285 1.0612 1.1119 1.0612 1.0396 1.0396 1.0559
10 20 1.2009 1.1410 0.9895 1.0074 0.9895 1.0030 1.0034 1.0030 1.0114 1.0118 1.0114
10 25 1.2009 1.1465 1.0036 1.0074 1.0036 1.0056 1.0218 1.0056 0.9895 0.9932 0.9895
10 30 1.2009 1.1061 1.0074 1.0074 1.0118 1.0051 1.0566 1.0051 1.0052 1.0052 1.0092
10 35 1.2009 1.1030 1.0221 1.0591 1.0221 1.0438 1.0684 1.0438 1.0182 1.0200 1.0182
10 40 1.2009 1.1033 1.0074 1.0074 1.0231 1.0289 1.0411 1.0289 1.0272 1.0531 1.0272
10 45 1.2009 1.0943 1.0108 1.0591 1.0108 1.0216 1.0216 1.0275 1.0224 1.0550 1.0224
10 50 1.2009 1.0899 1.0201 1.0591 1.0201 1.0402 1.0748 1.0402 1.0183 1.0183 1.0230
10 55 1.2009 1.0911 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119
10 60 1.2009 1.0902 1.0129 1.0591 1.0129 1.0265 1.0303 1.0265 1.0345 1.0512 1.0345
15 20 1.1927 1.1410 1.0612 1.0612 1.0908 1.0320 1.0383 1.0320 1.0431 1.0432 1.0431
15 25 1.1927 1.1465 0.9889 0.9889 1.0250 0.9984 1.0092 0.9984 1.0146 1.0146 1.0255
15 30 1.1927 1.1061 0.9889 0.9889 0.9996 0.9834 0.9834 0.9938 0.9824 0.9824 0.9994
15 35 1.1927 1.1030 0.9889 0.9889 0.9945 0.9975 0.9975 0.9993 0.9822 0.9843 0.9822
15 40 1.1927 1.1033 0.9889 0.9889 0.9889 0.9990 1.0117 0.9990 0.9942 0.9957 0.9942
15 45 1.1927 1.0943 0.9889 0.9889 0.9981 0.9957 1.0130 0.9957 0.9914 0.9914 0.9970
15 50 1.1927 1.0899 1.0038 1.0038 1.0041 0.9991 1.0140 0.9991 0.9990 1.0390 0.9990
15 55 1.1927 1.0911 1.0034 1.0038 1.0034 1.0046 1.0275 1.0046 1.0176 1.0185 1.0176
15 60 1.1927 1.0902 1.0283 1.0329 1.0283 1.0158 1.0221 1.0158 1.0111 1.0111 1.0128
20 25 1.1410 1.1465 1.0600 1.0603 1.0600 1.0311 1.0311 1.0409 1.0240 1.0240 1.0290
20 30 1.1410 1.1061 1.0224 1.0224 1.0322 1.0051 1.0080 1.0051 1.0097 1.0097 1.0135
20 35 1.1410 1.1030 0.9758 1.0030 0.9758 0.9856 1.0051 0.9856 0.9858 0.9858 0.9868
20 40 1.1410 1.1033 0.9570 0.9931 0.9570 0.9676 0.9676 0.9722 0.9711 0.9788 0.9711
20 45 1.1410 1.0943 0.9831 0.9831 0.9915 0.9854 0.9854 0.9892 0.9750 0.9750 0.9750
20 50 1.1410 1.0899 0.9909 0.9931 0.9909 0.9851 0.9938 0.9851 0.9854 0.9854 0.9872
20 55 1.1410 1.0911 0.9908 1.0030 0.9908 0.9849 0.9895 0.9849 0.9888 0.9888 0.9924
20 60 1.1410 1.0902 0.9831 0.9831 0.9897 0.9897 1.0011 0.9897 1.0013 1.0013 1.0117

390 G. Rennen et al.

Table 11 (continued)

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

25 30 1.1465 1.1061 1.0546 1.0546 1.1068 1.0289 1.0289 1.0647 1.0367 1.0396 1.0367
25 35 1.1465 1.1030 1.0339 1.0339 1.0521 1.0038 1.0038 1.0129 1.0081 1.0117 1.0081
25 40 1.1465 1.1033 0.9984 0.9984 1.0066 0.9952 1.0033 0.9952 0.9980 0.9994 0.9980
25 45 1.1465 1.0943 0.9618 0.9911 0.9618 0.9827 0.9834 0.9827 0.9877 0.9878 0.9877
25 50 1.1465 1.0899 0.9491 0.9764 0.9491 0.9737 0.9797 0.9737 0.9778 0.9792 0.9778
25 55 1.1465 1.0911 0.9744 0.9764 0.9744 0.9704 0.9704 0.9749 0.9725 0.9728 0.9725
25 60 1.1465 1.0902 0.9764 0.9764 0.9796 0.9720 0.9827 0.9720 0.9671 0.9698 0.9671
30 35 1.1061 1.1030 1.0647 1.0647 1.0759 1.0342 1.0342 1.0350 1.0267 1.0273 1.0267
30 40 1.1061 1.1033 1.0271 1.0271 1.0508 1.0119 1.0119 1.0252 1.0043 1.0043 1.0247
30 45 1.1061 1.0943 0.9995 0.9995 1.0094 0.9989 1.0022 0.9989 0.9897 0.9897 0.9930
30 50 1.1061 1.0899 0.9825 0.9825 0.9936 0.9823 0.9894 0.9823 0.9810 0.9839 0.9810
30 55 1.1061 1.0911 0.9357 0.9357 0.9466 0.9799 0.9805 0.9799 0.9823 0.9847 0.9823
30 60 1.1061 1.0902 0.9113 0.9113 0.9179 0.9658 0.9658 0.9720 0.9773 0.9834 0.9773
35 40 1.1030 1.1033 1.0653 1.0653 1.1151 1.0441 1.0441 1.0650 1.0322 1.0341 1.0322
35 45 1.1030 1.0943 1.0306 1.0306 1.0525 1.0122 1.0122 1.0212 1.0062 1.0062 1.0113
35 50 1.1030 1.0899 1.0129 1.0129 1.0139 1.0027 1.0027 1.0075 0.9980 0.9985 0.9980
35 55 1.1030 1.0911 0.9764 0.9764 0.9990 0.9840 0.9840 0.9849 0.9897 0.9897 0.9923
35 60 1.1030 1.0902 0.9764 0.9764 0.9766 0.9838 0.9838 0.9919 0.9833 0.9833 0.9841
40 45 1.1033 1.0943 1.0614 1.0614 1.1050 1.0483 1.0483 1.0553 1.0392 1.0392 1.0412
40 50 1.1033 1.0899 1.0362 1.0362 1.0647 1.0242 1.0242 1.0267 1.0073 1.0087 1.0073
40 55 1.1033 1.0911 1.0066 1.0066 1.0291 1.0046 1.0068 1.0046 0.9976 0.9976 1.0014
40 60 1.1033 1.0902 0.9761 0.9761 0.9919 0.9897 0.9956 0.9897 0.9899 0.9899 0.9907
45 50 1.0943 1.0899 1.0584 1.0584 1.0804 1.0416 1.0416 1.0508 1.0300 1.0300 1.0300
45 55 1.0943 1.0911 1.0492 1.0492 1.0686 1.0119 1.0170 1.0119 1.0116 1.0116 1.0164
45 60 1.0943 1.0902 1.0181 1.0181 1.0194 0.9977 0.9977 1.0007 0.9956 0.9983 0.9956
50 55 1.0899 1.0911 1.0402 1.0402 1.0744 1.0277 1.0277 1.0499 1.0321 1.0330 1.0321
50 60 1.0899 1.0902 1.0267 1.0267 1.0563 1.0172 1.0172 1.0265 1.0061 1.0068 1.0061

Table 12 Scaled separation distances for four-dimensional nested approximate maximin designs

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

5 10 1.3693 1.3608 1.2141 1.2748 1.2141 1.2472 1.3240 1.2472 1.2201 1.3279 1.2201
5 15 1.3693 1.3035 1.2069 1.2247 1.2069 1.2203 1.3325 1.2203 1.2001 1.3880 1.2001
5 20 1.3693 1.2862 1.1683 1.2247 1.1683 1.1784 1.1839 1.1784 1.1888 1.2094 1.1888
5 25 1.3693 1.2407 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738
5 30 1.3693 1.2241 1.1689 1.3693 1.1689 1.1706 1.2250 1.1706 1.1612 1.2926 1.1612
5 35 1.3693 1.2074 1.1735 1.2247 1.1735 1.1735 1.3323 1.1735 1.1588 1.2132 1.1588
5 40 1.3693 1.1902 1.1558 1.2247 1.1558 1.1640 1.2146 1.1640 1.1577 1.2222 1.1577
5 45 1.3693 1.1881 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560
5 50 1.3693 1.1830 1.1459 1.2247 1.1459 1.1492 1.3715 1.1492 1.1428 1.3652 1.1428
5 55 1.3693 1.1773 1.1490 1.2247 1.1490 1.1502 1.2642 1.1502 1.1475 1.2695 1.1475
5 60 1.3693 1.1734 1.1463 1.3693 1.1463 1.1487 1.2699 1.1487 1.1378 1.2282 1.1378
10 15 1.3608 1.3035 1.2347 1.2472 1.2347 1.1966 1.1995 1.1966 1.1871 1.1878 1.1871
10 20 1.3608 1.2862 1.1599 1.1706 1.1599 1.1419 1.1710 1.1419 1.1265 1.1265 1.1327
10 25 1.3608 1.2407 1.1564 1.1706 1.1564 1.1319 1.1319 1.1333 1.1365 1.1511 1.1365
10 30 1.3608 1.2241 1.1410 1.1706 1.1410 1.1373 1.1473 1.1373 1.1362 1.1564 1.1362
10 35 1.3608 1.2074 1.1482 1.1706 1.1482 1.1496 1.1672 1.1496 1.1362 1.1362 1.1374
10 40 1.3608 1.1902 1.1359 1.1386 1.1359 1.1427 1.1700 1.1427 1.1389 1.1462 1.1389
10 45 1.3608 1.1881 1.1364 1.1547 1.1364 1.1410 1.1497 1.1410 1.1371 1.1392 1.1371

Nested maximin Latin hypercube designs 391

Table 12 (continued)

n1 n2 d(n1) d(n2) Nested n1-grid Nested n2-grid Grid with nested axes

d d1 d2 d d1 d2 d d1 d2

10 50 1.3608 1.1830 1.1547 1.1547 1.1599 1.1454 1.1606 1.1454 1.1382 1.1425 1.1382
10 55 1.3608 1.1773 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425
10 60 1.3608 1.1734 1.1222 1.1222 1.1268 1.1391 1.1647 1.1391 1.1298 1.2066 1.1298
15 20 1.3035 1.2862 1.2124 1.2124 1.2207 1.1741 1.1741 1.1886 1.1751 1.1751 1.1852
15 25 1.3035 1.2407 1.1510 1.1560 1.1510 1.1341 1.1341 1.1407 1.1451 1.1456 1.1451
15 30 1.3035 1.2241 1.1126 1.1139 1.1126 1.1059 1.1101 1.1059 1.1020 1.1150 1.1020
15 35 1.3035 1.2074 1.1394 1.1394 1.1535 1.1139 1.1163 1.1139 1.1178 1.1178 1.1197
15 40 1.3035 1.1902 1.1135 1.1225 1.1135 1.1117 1.1267 1.1117 1.1128 1.1128 1.1225
15 45 1.3035 1.1881 1.1207 1.1225 1.1207 1.1060 1.1303 1.1060 1.1074 1.1074 1.1105
15 50 1.3035 1.1830 1.1239 1.1309 1.1239 1.1184 1.1221 1.1184 1.1103 1.1157 1.1103
15 55 1.3035 1.1773 1.1218 1.1309 1.1218 1.1112 1.1219 1.1112 1.1223 1.1234 1.1223
15 60 1.3035 1.1734 1.1139 1.1139 1.1155 1.1156 1.1166 1.1156 1.1036 1.1036 1.1091
20 25 1.2862 1.2407 1.1987 1.1987 1.2162 1.1671 1.1671 1.1702 1.1747 1.1747 1.1765
20 30 1.2862 1.2241 1.1732 1.1732 1.1904 1.1401 1.1429 1.1401 1.1386 1.1386 1.1418
20 35 1.2862 1.2074 1.1152 1.1313 1.1152 1.1155 1.1155 1.1162 1.1336 1.1336 1.1368
20 40 1.2862 1.1902 1.0988 1.0988 1.1083 1.0912 1.0945 1.0912 1.0970 1.1097 1.0970
20 45 1.2862 1.1881 1.1249 1.1260 1.1249 1.1013 1.1108 1.1013 1.0952 1.0952 1.1015
20 50 1.2862 1.1830 1.1098 1.1098 1.1145 1.0971 1.0971 1.1000 1.0917 1.0917 1.0945
20 55 1.2862 1.1773 1.1062 1.1098 1.1062 1.1010 1.1010 1.1078 1.0931 1.0931 1.0963
20 60 1.2862 1.1734 1.0988 1.0988 1.1024 1.1123 1.1123 1.1156 1.0933 1.0933 1.0947
25 30 1.2407 1.2241 1.2024 1.2024 1.2192 1.1600 1.1600 1.1651 1.1670 1.1670 1.1685
25 35 1.2407 1.2074 1.1629 1.1629 1.1690 1.1297 1.1313 1.1297 1.1431 1.1431 1.1474
25 40 1.2407 1.1902 1.1407 1.1407 1.1548 1.1227 1.1251 1.1227 1.1193 1.1193 1.1204
25 45 1.2407 1.1881 1.0996 1.1143 1.0996 1.0951 1.0975 1.0951 1.1057 1.1057 1.1108
25 50 1.2407 1.1830 1.0969 1.0990 1.0969 1.0946 1.0963 1.0946 1.0817 1.0817 1.0827
25 55 1.2407 1.1773 1.1182 1.1182 1.1204 1.1021 1.1127 1.1021 1.0875 1.0898 1.0875
25 60 1.2407 1.1734 1.1182 1.1182 1.1193 1.0916 1.0957 1.0916 1.0869 1.0869 1.0895
30 35 1.2241 1.2074 1.1950 1.1950 1.1980 1.1522 1.1522 1.1605 1.1509 1.1513 1.1509
30 40 1.2241 1.1902 1.1596 1.1596 1.1784 1.1258 1.1258 1.1264 1.1255 1.1266 1.1255
30 45 1.2241 1.1881 1.1401 1.1401 1.1477 1.1076 1.1076 1.1091 1.1198 1.1198 1.1204
30 50 1.2241 1.1830 1.1061 1.1146 1.1061 1.1105 1.1147 1.1105 1.1123 1.1123 1.1130
30 55 1.2241 1.1773 1.0861 1.0972 1.0861 1.0987 1.0998 1.0987 1.0935 1.0956 1.0935
30 60 1.2241 1.1734 1.0943 1.0943 1.1022 1.0822 1.0822 1.0835 1.0824 1.0824 1.0831
35 40 1.2074 1.1902 1.1799 1.1799 1.2144 1.1567 1.1567 1.1622 1.1488 1.1493 1.1488
35 45 1.2074 1.1881 1.1670 1.1670 1.1905 1.1365 1.1367 1.1365 1.1266 1.1266 1.1340
35 50 1.2074 1.1830 1.1496 1.1496 1.1568 1.1184 1.1259 1.1184 1.1078 1.1078 1.1123
35 55 1.2074 1.1773 1.1341 1.1341 1.1360 1.1062 1.1062 1.1067 1.1097 1.1097 1.1100
35 60 1.2074 1.1734 1.1071 1.1071 1.1147 1.0952 1.0952 1.0976 1.0892 1.0892 1.0939
40 45 1.1902 1.1881 1.1780 1.1780 1.2141 1.1556 1.1556 1.1574 1.1450 1.1457 1.1450
40 50 1.1902 1.1830 1.1728 1.1728 1.1848 1.1243 1.1243 1.1262 1.1319 1.1329 1.1319
40 55 1.1902 1.1773 1.1485 1.1498 1.1485 1.1146 1.1174 1.1146 1.1146 1.1146 1.1166
40 60 1.1902 1.1734 1.1354 1.1354 1.1437 1.0986 1.0988 1.0986 1.1064 1.1064 1.1075
45 50 1.1881 1.1830 1.1736 1.1736 1.2056 1.1407 1.1407 1.1454 1.1454 1.1454 1.1471
45 55 1.1881 1.1773 1.1780 1.1780 1.2026 1.1225 1.1236 1.1225 1.1225 1.1225 1.1244
45 60 1.1881 1.1734 1.1455 1.1455 1.1494 1.1121 1.1121 1.1126 1.1112 1.1112 1.1152
50 55 1.1830 1.1773 1.1718 1.1718 1.1981 1.1449 1.1449 1.1480 1.1443 1.1443 1.1445
50 60 1.1830 1.1734 1.1606 1.1606 1.2065 1.1254 1.1256 1.1254 1.1152 1.1152 1.1163

392 G. Rennen et al.

A
pp

en
di

x
C

:C
al

cu
la

ti
on

ti
m

es
an

d
pe

rc
en

ta
ge

lo
ss

es
fo

r
G

R
O

U
P

R
A

N
D

T
ab

le
13

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
ca

lc
ul

at
io

n
ti

m
es

of
G

R
O

U
P

R
A

N
D

in
m

in
ut

es

n 1
n 2

N
es

te
d

n 1
-g

ri
d

N
es

te
d

n 2
-g

ri
d

G
ri

d
w

it
h

ne
st

ed
ax

es
M

ea
n

St
d

M
ea

n
St

d
M

ea
n

St
d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

5
10

0.
1

0.
3

0.
4

0.
3

0.
0

0.
1

0.
1

0.
1

0.
1

0.
2

0.
2

0.
2

0.
0

0.
1

0.
1

0.
1

0.
1

0.
3

0.
4

0.
3

0.
1

0.
1

0.
1

0.
1

5
20

1.
6

4.
3

4.
9

3.
6

1.
2

1.
8

1.
7

1.
4

0.
8

1.
7

1.
8

2.
4

0.
4

0.
5

0.
4

0.
7

1.
4

2.
1

2.
9

3.
7

0.
8

0.
7

0.
6

2.
4

5
30

8.
0

22
.6

21
.4

15
.0

5.
0

6.
9

5.
0

5.
1

2.
9

6.
1

7.
0

7.
1

1.
2

2.
4

2.
0

2.
0

5.
9

9.
3

9.
2

7.
6

1.
8

3.
3

2.
4

3.
4

5
40

19
.2

40
.6

51
.5

23
.7

14
.8

5.
7

9.
6

3.
4

5.
6

8.
8

9.
6

12
.3

1.
6

2.
6

1.
5

2.
8

13
.3

13
.1

14
.9

13
.7

5.
1

2.
0

2.
6

4.
8

5
50

27
.0

90
.0

11
8.

2
66

.0
15

.2
19

.4
17

.9
11

.5
9.

1
16

.3
17

.0
18

.0
3.

4
5.

0
4.

6
3.

3
16

.9
21

.1
27

.6
26

.5
4.

6
3.

8
3.

9
9.

4
5

60
26

.4
17

6.
8

21
6.

5
11

8.
5

5.
4

47
.7

30
.7

16
.3

16
.0

25
.7

32
.8

47
.4

8.
9

13
.9

12
.5

12
.0

28
.4

37
.2

50
.7

46
.5

8.
8

9.
1

8.
8

14
.3

10
15

0.
1

0.
6

0.
8

0.
7

0.
0

0.
2

0.
2

0.
3

0.
2

0.
4

0.
6

0.
8

0.
1

0.
1

0.
1

0.
3

0.
4

0.
8

1.
2

1.
0

0.
2

0.
4

0.
5

0.
4

10
20

0.
3

1.
5

2.
6

2.
1

0.
1

0.
5

1.
1

0.
8

0.
5

0.
8

1.
2

1.
7

0.
3

0.
2

0.
4

0.
6

0.
8

1.
4

2.
0

1.
9

0.
3

0.
5

0.
7

0.
8

10
30

1.
5

8.
3

10
.4

5.
3

0.
4

2.
6

4.
8

1.
5

1.
6

3.
4

3.
7

3.
6

0.
5

1.
3

1.
1

1.
1

3.
9

6.
2

6.
9

4.
6

1.
2

1.
8

2.
2

2.
1

10
40

4.
4

13
.3

18
.2

7.
4

1.
4

4.
9

7.
7

1.
2

6.
1

5.
2

6.
4

6.
8

3.
1

1.
2

1.
8

1.
3

8.
9

12
.4

13
.3

8.
2

4.
4

6.
9

5.
4

3.
8

10
50

5.
6

23
.1

24
.8

14
.4

1.
9

12
.0

7.
4

4.
8

5.
9

10
.6

11
.2

13
.3

2.
5

3.
2

3.
6

3.
1

10
.5

15
.1

13
.9

15
.3

3.
0

5.
9

3.
5

5.
6

10
60

7.
0

31
.2

37
.8

23
.1

4.
2

7.
4

10
.3

4.
9

8.
0

14
.5

24
.8

27
.9

3.
5

2.
1

9.
2

6.
3

19
.2

17
.3

25
.9

30
.3

9.
6

4.
8

7.
7

11
.3

15
20

0.
3

1.
6

2.
2

1.
3

0.
1

0.
4

0.
6

0.
4

0.
4

1.
2

1.
5

2.
2

0.
1

0.
5

0.
4

0.
4

1.
1

1.
9

2.
3

3.
0

0.
3

0.
6

0.
5

0.
8

15
30

1.
2

6.
6

5.
9

4.
5

0.
4

2.
3

1.
6

1.
5

0.
9

3.
1

3.
1

3.
2

0.
2

1.
0

1.
0

0.
8

2.
3

3.
6

4.
4

3.
6

0.
9

1.
1

1.
1

1.
1

15
40

2.
0

8.
1

8.
9

6.
2

0.
8

2.
9

3.
2

2.
9

2.
4

6.
9

5.
9

5.
3

1.
3

2.
7

1.
3

1.
1

7.
9

10
.1

9.
6

8.
7

3.
6

4.
0

4.
3

3.
6

15
50

3.
4

13
.2

15
.8

8.
6

1.
5

4.
8

7.
4

2.
5

4.
5

9.
4

12
.3

10
.1

2.
3

4.
1

5.
2

2.
5

14
.0

14
.6

14
.1

13
.8

6.
3

7.
1

6.
1

4.
6

15
60

4.
7

23
.5

25
.0

15
.7

2.
4

13
.6

7.
3

4.
8

6.
5

13
.5

13
.4

18
.4

2.
8

9.
3

2.
6

3.
2

12
.4

20
.0

20
.8

20
.5

5.
1

9.
1

5.
6

6.
2

20
25

0.
6

3.
1

3.
1

3.
4

0.
2

1.
6

1.
1

1.
6

0.
8

2.
4

3.
4

4.
0

0.
2

0.
4

0.
9

1.
0

2.
2

3.
5

5.
3

5.
2

0.
7

0.
8

1.
1

3.
2

20
30

1.
2

6.
2

7.
2

3.
8

0.
4

2.
3

2.
8

1.
3

1.
3

4.
9

4.
6

4.
2

0.
6

1.
4

1.
6

1.
4

3.
4

8.
5

8.
0

7.
1

1.
2

3.
1

2.
8

3.
4

20
40

2.
1

7.
9

8.
8

4.
4

0.
5

2.
3

3.
1

1.
3

1.
8

5.
3

5.
3

4.
4

0.
6

2.
3

2.
6

1.
5

4.
5

5.
5

5.
4

5.
5

1.
4

1.
7

1.
0

2.
1

20
50

3.
2

12
.8

16
.5

8.
9

1.
5

5.
9

8.
6

2.
8

4.
3

9.
1

9.
6

10
.6

2.
0

3.
8

2.
4

1.
9

7.
4

20
.9

18
.8

15
.0

1.
4

10
.4

7.
2

4.
1

20
60

3.
0

20
.3

17
.9

11
.7

1.
2

7.
9

6.
8

2.
8

5.
3

11
.4

13
.0

15
.6

2.
6

4.
8

4.
4

3.
4

10
.8

14
.5

17
.4

16
.4

5.
6

3.
2

4.
1

4.
2

25
30

1.
2

5.
7

6.
9

4.
4

0.
3

1.
0

2.
7

1.
0

1.
3

5.
2

5.
0

3.
9

0.
2

2.
6

1.
2

0.
9

4.
0

7.
0

6.
8

5.
6

1.
4

2.
1

1.
8

2.
3

25
40

2.
4

9.
2

10
.3

8.
2

0.
6

2.
7

3.
0

3.
5

3.
1

6.
6

6.
8

6.
2

1.
0

3.
6

2.
2

1.
3

8.
1

10
.7

17
.2

12
.2

2.
7

6.
4

6.
2

4.
9

25
50

2.
8

13
.7

17
.7

8.
4

0.
7

6.
3

7.
7

3.
7

3.
9

6.
0

6.
8

7.
6

0.
9

1.
8

1.
6

2.
5

8.
7

7.
9

8.
7

8.
8

3.
6

2.
4

1.
7

2.
1

25
60

5.
4

19
.3

25
.6

22
.0

2.
7

9.
1

9.
3

6.
4

5.
0

15
.5

14
.2

20
.4

2.
5

10
.2

4.
7

5.
5

18
.3

16
.3

23
.4

25
.9

10
.1

2.
7

8.
4

7.
0

30
35

2.
0

8.
4

9.
6

6.
6

0.
9

2.
5

1.
7

2.
7

2.
4

5.
3

4.
8

5.
7

0.
7

1.
9

1.
0

1.
7

6.
6

7.
9

7.
6

7.
4

3.
1

2.
7

1.
9

2.
6

30
40

2.
6

10
.4

13
.4

10
.6

0.
7

3.
1

5.
3

3.
0

3.
0

5.
9

7.
0

6.
4

1.
3

1.
4

2.
3

1.
1

7.
2

9.
8

10
.7

10
.3

2.
2

2.
7

3.
2

4.
2

30
50

3.
3

16
.1

19
.4

15
.1

0.
3

4.
8

4.
1

4.
5

5.
2

9.
7

10
.9

10
.3

3.
1

3.
5

2.
9

2.
9

12
.3

14
.5

22
.3

19
.7

5.
6

5.
3

5.
8

8.
9

30
60

5.
8

21
.3

27
.8

18
.3

1.
8

6.
5

11
.4

8.
7

7.
3

12
.9

13
.0

15
.3

2.
5

7.
5

3.
6

3.
8

12
.2

11
.6

18
.1

16
.7

4.
8

2.
6

1.
9

4.
7

35
40

2.
8

9.
4

12
.9

9.
9

0.
9

2.
4

3.
6

3.
0

3.
2

6.
6

6.
7

5.
9

0.
7

1.
7

1.
7

1.
7

9.
2

8.
5

10
.2

8.
4

3.
2

2.
7

3.
2

2.
7

35
50

4.
3

18
.9

24
.6

20
.2

0.
7

6.
1

5.
7

6.
9

4.
3

10
.5

13
.2

11
.9

2.
0

3.
6

5.
4

1.
9

9.
4

13
.1

17
.5

16
.4

3.
3

2.
4

2.
9

5.
1

35
60

5.
6

26
.5

32
.6

29
.2

1.
7

13
.0

9.
4

11
.1

7.
6

14
.8

14
.5

20
.1

3.
1

8.
2

3.
8

3.
2

10
.6

27
.1

27
.3

30
.2

1.
8

10
.5

9.
6

7.
4

40
45

6.
1

16
.0

16
.2

13
.9

2.
8

6.
6

7.
3

3.
8

3.
6

8.
1

8.
7

8.
1

2.
1

2.
3

2.
6

1.
4

8.
2

9.
1

11
.4

12
.0

2.
7

2.
4

1.
7

2.
7

40
50

9.
9

28
.4

29
.0

18
.7

4.
6

11
.8

9.
1

3.
9

4.
4

11
.4

10
.2

10
.6

2.
3

4.
6

1.
6

1.
9

10
.8

15
.0

15
.3

13
.5

3.
5

3.
5

2.
8

3.
9

40
60

6.
0

30
.5

42
.5

33
.2

2.
9

7.
7

10
.4

10
.0

7.
6

16
.2

24
.2

23
.2

2.
7

5.
8

6.
1

3.
9

16
.9

23
.5

31
.8

29
.7

8.
6

4.
7

5.
6

5.
0

45
50

5.
3

19
.3

22
.8

20
.9

1.
6

6.
9

4.
2

6.
6

5.
1

10
.8

9.
4

10
.6

1.
9

3.
7

3.
6

1.
9

8.
8

13
.8

16
.6

13
.5

1.
2

5.
8

3.
3

4.
2

45
60

9.
0

40
.6

52
.8

35
.8

3.
0

10
.4

17
.4

15
.5

7.
9

16
.5

19
.2

24
.1

3.
9

6.
5

6.
0

4.
0

14
.6

24
.1

29
.9

29
.2

5.
3

3.
7

1.
3

7.
3

50
55

10
.4

29
.6

33
.9

35
.8

4.
0

10
.7

6.
6

8.
1

7.
9

16
.8

12
.3

15
.1

3.
3

5.
5

2.
2

3.
3

13
.6

17
.1

22
.6

20
.4

5.
8

3.
5

4.
3

6.
7

50
60

13
.0

40
.4

48
.4

30
.9

6.
9

10
.3

17
.8

12
.5

10
.1

17
.3

20
.7

23
.3

5.
2

6.
0

4.
7

3.
7

14
.9

22
.3

30
.4

27
.2

5.
6

6.
0

2.
8

6.
0

Nested maximin Latin hypercube designs 393

T
ab

le
14

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
pe

rc
en

ta
ge

lo
ss

l 1
(n

1
,
n 2

)
of

G
R

O
U

P
R

A
N

D

n 1
n 2

N
es

te
d

n 1
-g

ri
d

N
es

te
d

n 2
-g

ri
d

G
ri

d
w

it
h

ne
st

ed
ax

es

M
ea

n
St

d
M

ea
n

St
d

M
ea

n
St

d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

5
10

6.
06

10
.2

1
10

.8
5

11
.4

9
6.

80
3.

71
1.

85
2.

65
−0

.7
7

12
.7

1
11

.5
5

10
.9

3
6.

52
1.

93
3.

13
4.

20
8.

21
13

.6
5

13
.5

9
11

.4
5

3.
76

2.
45

2.
87

3.
49

5
20

9.
64

12
.7

0
15

.9
7

12
.5

9
6.

23
3.

03
3.

89
4.

74
7.

64
12

.3
9

14
.4

4
12

.4
9

5.
48

2.
97

3.
96

4.
94

10
.2

3
12

.1
1

14
.0

8
13

.9
7

6.
52

5.
03

4.
18

3.
68

5
30

9.
19

13
.1

7
18

.2
0

12
.7

8
4.

64
4.

30
3.

02
3.

64
13

.0
4

8.
65

16
.2

8
17

.0
8

3.
39

3.
56

4.
52

4.
34

9.
15

11
.7

8
14

.3
1

12
.6

2
4.

55
3.

45
5.

49
4.

22
5

40
10

.6
1

15
.5

7
15

.5
2

15
.3

1
3.

12
4.

66
3.

89
5.

58
11

.8
3

10
.4

2
16

.9
5

12
.9

4
6.

24
3.

45
3.

67
5.

78
9.

43
12

.1
0

16
.6

5
16

.1
2

6.
12

5.
05

2.
45

4.
79

5
50

10
.4

2
15

.5
7

14
.3

3
12

.9
8

6.
82

4.
66

3.
41

5.
52

15
.2

3
10

.9
9

12
.0

2
12

.7
8

5.
64

6.
06

3.
30

3.
16

10
.6

7
13

.5
5

16
.4

7
11

.8
8

7.
20

5.
81

4.
86

4.
08

5
60

9.
36

16
.0

9
13

.9
3

11
.0

9
7.

57
6.

10
4.

29
3.

96
11

.1
0

15
.3

9
14

.5
2

12
.7

3
6.

64
3.

09
6.

05
3.

46
13

.7
7

9.
29

14
.7

8
16

.0
2

6.
52

5.
03

3.
27

6.
01

10
15

11
.9

2
6.

97
5.

09
3.

90
1.

48
0.

95
0.

59
0.

70
12

.9
0

10
.8

2
8.

04
8.

29
1.

20
0.

80
0.

66
0.

51
13

.2
9

9.
32

6.
82

6.
48

0.
96

0.
74

0.
28

0.
56

10
20

16
.2

4
13

.3
1

10
.2

4
9.

39
2.

13
1.

11
1.

68
1.

46
16

.8
9

13
.6

9
11

.4
3

10
.4

4
1.

93
0.

83
0.

75
0.

72
17

.9
4

14
.6

2
11

.5
7

11
.0

9
1.

57
0.

94
0.

35
0.

94
10

30
17

.6
9

14
.4

3
12

.0
9

12
.0

5
2.

33
1.

00
1.

22
0.

88
17

.0
7

14
.7

9
12

.6
8

12
.0

8
1.

70
0.

58
0.

71
0.

81
17

.5
9

14
.8

9
13

.0
6

12
.5

8
1.

42
0.

84
0.

68
0.

36
10

40
17

.9
3

15
.3

9
13

.3
8

13
.3

3
2.

30
1.

56
1.

08
0.

56
17

.3
5

16
.2

9
14

.2
0

13
.6

9
1.

46
0.

92
0.

87
0.

39
18

.0
7

15
.3

0
13

.6
2

13
.4

9
1.

58
1.

53
0.

93
0.

76
10

50
18

.7
7

16
.8

6
14

.6
0

13
.9

7
1.

54
1.

50
0.

69
1.

03
18

.1
9

16
.6

1
14

.9
9

13
.9

6
1.

97
0.

78
1.

32
0.

75
17

.7
2

16
.8

0
15

.0
2

13
.9

7
1.

99
1.

60
0.

92
1.

09
10

60
20

.9
1

17
.4

4
15

.1
0

14
.5

4
2.

20
1.

38
1.

47
0.

80
18

.6
5

17
.1

3
14

.8
3

13
.7

6
1.

48
0.

78
0.

47
1.

47
19

.6
0

18
.3

3
14

.9
1

14
.6

4
1.

67
0.

99
1.

42
0.

55
15

20
8.

64
4.

06
5.

65
3.

43
1.

01
0.

91
1.

36
1.

17
11

.6
7

6.
73

8.
93

5.
39

0.
94

1.
06

0.
38

0.
72

11
.0

4
6.

36
8.

17
4.

76
0.

52
0.

70
0.

53
0.

43
15

30
15

.0
1

9.
42

10
.9

0
7.

69
0.

99
0.

72
1.

04
0.

74
15

.6
9

11
.3

1
12

.0
7

9.
53

0.
83

0.
64

0.
48

0.
37

16
.5

5
11

.3
0

12
.2

6
9.

80
1.

19
0.

80
0.

41
0.

47
15

40
15

.7
4

11
.2

5
11

.1
6

8.
60

0.
87

1.
78

0.
64

0.
69

16
.1

5
11

.7
1

13
.1

2
10

.8
5

1.
21

0.
39

0.
48

0.
40

16
.0

4
11

.0
7

12
.2

0
9.

56
0.

89
0.

69
0.

50
0.

65
15

50
16

.4
2

12
.6

0
13

.2
6

10
.8

2
1.

65
1.

04
1.

37
0.

49
16

.8
2

12
.9

8
13

.8
9

11
.2

6
1.

08
0.

94
0.

64
0.

57
16

.7
8

13
.1

2
13

.9
6

11
.6

0
1.

20
0.

91
0.

87
0.

76
15

60
17

.4
3

13
.2

5
14

.3
8

11
.7

4
1.

54
0.

71
0.

87
0.

77
16

.9
7

13
.4

3
14

.5
7

11
.8

0
1.

70
0.

97
0.

40
0.

51
16

.6
3

13
.7

0
14

.6
6

12
.0

8
1.

09
0.

77
0.

49
0.

54
20

25
8.

67
4.

44
2.

56
6.

42
1.

38
1.

09
0.

68
1.

06
10

.9
1

6.
34

4.
93

8.
76

0.
98

0.
52

0.
64

0.
18

9.
96

6.
49

4.
42

8.
43

0.
81

0.
58

0.
50

0.
55

20
30

9.
91

4.
95

3.
12

7.
61

0.
95

0.
83

0.
90

0.
73

12
.8

6
8.

15
6.

52
10

.4
4

1.
42

0.
57

0.
71

0.
49

12
.8

0
7.

21
5.

43
9.

26
0.

94
0.

77
0.

69
0.

51
20

40
14

.3
1

10
.6

8
7.

67
11

.4
1

0.
64

1.
04

0.
69

0.
43

15
.4

2
11

.6
2

8.
85

12
.1

7
0.

62
0.

47
0.

31
0.

38
16

.2
0

11
.3

6
9.

15
12

.4
4

0.
73

0.
34

0.
33

0.
16

20
50

14
.6

5
10

.3
7

6.
36

10
.0

6
0.

77
1.

48
1.

06
0.

54
15

.4
6

12
.2

3
9.

91
13

.0
0

0.
75

0.
72

0.
51

0.
20

16
.3

5
10

.9
2

8.
65

12
.1

5
0.

76
0.

77
0.

63
0.

59
20

60
17

.5
8

12
.4

1
10

.2
3

13
.3

7
1.

58
0.

94
0.

67
0.

49
16

.3
0

13
.0

2
10

.3
4

13
.7

8
1.

94
0.

78
0.

63
0.

41
17

.0
9

12
.9

3
10

.3
1

13
.7

2
0.

85
0.

62
0.

57
0.

46
25

30
4.

88
3.

29
2.

30
2.

37
1.

39
0.

48
0.

51
0.

37
7.

57
5.

57
3.

95
4.

49
1.

15
0.

73
0.

27
0.

23
7.

40
5.

95
4.

82
4.

10
1.

08
0.

39
2.

99
0.

49
25

40
8.

91
5.

53
3.

44
2.

96
0.

89
0.

51
0.

48
0.

51
10

.6
1

9.
33

7.
15

6.
47

0.
63

0.
53

0.
55

0.
39

10
.4

9
8.

09
5.

44
5.

98
0.

41
1.

17
0.

67
2.

14
25

50
13

.0
7

10
.2

8
7.

14
7.

11
0.

60
1.

14
0.

80
0.

79
12

.8
2

11
.2

5
8.

62
7.

82
0.

66
0.

45
0.

59
0.

46
13

.7
5

11
.5

2
8.

59
7.

94
0.

54
0.

82
0.

39
0.

35
25

60
12

.7
3

9.
61

5.
73

4.
57

1.
46

1.
49

0.
97

0.
50

13
.9

3
11

.3
2

9.
28

8.
67

0.
96

0.
62

0.
63

0.
76

13
.3

6
11

.8
5

9.
39

7.
89

0.
70

0.
74

0.
88

0.
37

30
35

3.
99

2.
68

3.
44

2.
35

1.
00

0.
72

0.
48

0.
45

6.
50

5.
03

5.
87

4.
01

0.
59

0.
69

1.
01

0.
39

6.
65

5.
50

5.
66

3.
93

0.
42

0.
78

0.
31

0.
46

30
40

5.
74

3.
66

3.
77

2.
53

0.
53

0.
57

0.
56

0.
50

8.
71

7.
57

7.
07

5.
46

0.
68

0.
61

0.
33

0.
30

8.
80

6.
54

6.
61

4.
82

0.
64

0.
31

0.
60

0.
41

30
50

9.
80

5.
93

4.
83

3.
06

0.
32

0.
50

0.
43

0.
28

10
.8

5
9.

22
8.

38
6.

68
1.

12
0.

43
0.

34
0.

48
10

.3
3

8.
08

7.
36

5.
64

0.
78

0.
71

0.
87

0.
38

30
60

11
.7

2
9.

51
8.

64
6.

58
0.

85
0.

51
0.

93
0.

52
12

.3
0

10
.3

8
9.

67
7.

71
0.

69
0.

88
0.

35
0.

21
12

.7
9

11
.1

2
9.

61
7.

54
0.

84
0.

50
0.

15
0.

36
35

40
3.

42
3.

06
2.

69
2.

21
1.

00
0.

89
0.

44
0.

40
5.

19
4.

80
4.

71
4.

27
0.

67
0.

68
0.

32
0.

26
5.

76
5.

51
4.

69
3.

85
0.

48
0.

81
0.

60
0.

41
35

50
6.

20
3.

99
3.

00
2.

51
0.

67
1.

01
0.

43
0.

35
9.

13
7.

87
6.

97
5.

77
1.

24
0.

68
0.

68
0.

22
8.

90
7.

59
6.

33
5.

34
0.

55
0.

69
0.

34
0.

33
35

60
9.

35
6.

46
4.

63
3.

40
0.

94
0.

59
0.

58
0.

48
10

.0
2

9.
08

8.
22

6.
77

0.
64

0.
79

0.
59

0.
24

10
.4

5
7.

69
7.

31
6.

00
0.

39
0.

83
1.

03
0.

29
40

45
2.

31
3.

66
2.

86
3.

99
0.

89
0.

64
0.

57
0.

33
4.

57
6.

09
5.

15
6.

03
1.

07
0.

59
1.

20
1.

45
4.

78
6.

77
4.

93
5.

68
0.

64
0.

55
0.

30
0.

30
40

50
3.

01
4.

07
3.

44
4.

45
0.

96
0.

90
1.

47
0.

20
6.

78
7.

77
6.

28
6.

89
0.

87
0.

55
0.

34
0.

41
6.

46
7.

34
5.

79
6.

86
0.

89
0.

78
0.

36
0.

37
40

60
6.

01
5.

34
3.

95
4.

56
0.

75
0.

67
1.

23
0.

31
8.

30
9.

11
7.

21
7.

89
0.

70
0.

59
0.

43
0.

27
8.

42
8.

63
6.

86
7.

37
0.

85
0.

67
0.

42
0.

40
45

50
2.

43
3.

59
1.

98
1.

61
0.

71
0.

60
0.

43
0.

30
4.

62
5.

67
4.

07
3.

55
0.

85
0.

42
0.

65
0.

18
5.

02
5.

99
4.

14
3.

70
0.

50
0.

55
0.

24
1.

26
45

60
4.

30
4.

41
2.

24
2.

13
0.

36
0.

45
0.

60
0.

39
7.

64
8.

23
5.

77
4.

93
0.

62
0.

52
0.

52
0.

37
7.

82
7.

60
5.

62
4.

58
0.

54
0.

37
0.

27
0.

27
50

55
2.

48
1.

41
1.

56
1.

71
0.

91
0.

59
0.

32
0.

32
4.

49
3.

66
3.

59
3.

69
1.

05
0.

62
0.

48
0.

40
4.

60
3.

91
3.

44
3.

44
0.

54
0.

52
0.

33
0.

42
50

60
3.

17
1.

72
2.

02
2.

49
0.

62
0.

62
0.

62
0.

55
5.

90
5.

03
4.

50
4.

36
0.

92
0.

61
0.

43
0.

19
6.

29
5.

38
4.

50
4.

36
0.

50
0.

51
0.

35
0.

38

394 G. Rennen et al.

T
ab

le
15

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
pe

rc
en

ta
ge

lo
ss

l 2
(n

1
,
n 2

)
of

G
R

O
U

P
R

A
N

D

n 1
n 2

N
es

te
d

n 1
-g

ri
d

N
es

te
d

n 2
-g

ri
d

G
ri

d
w

it
h

ne
st

ed
ax

es

M
ea

n
St

d
M

ea
n

St
d

M
ea

n
St

d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

4d
6d

8d
10

d
4d

6d
8d

10
d

5
10

13
.4

6
8.

35
4.

99
5.

54
6.

80
3.

71
1.

85
2.

65
11

.2
5

10
.2

0
7.

87
8.

21
6.

52
1.

93
3.

13
4.

20
12

.5
8

10
.8

4
6.

91
7.

75
3.

76
2.

45
2.

87
3.

49
5

20
11

.4
6

7.
70

6.
42

11
.0

4
6.

23
3.

03
3.

89
4.

74
11

.1
0

7.
66

6.
44

10
.2

5
5.

48
2.

97
3.

96
4.

94
11

.7
0

8.
28

6.
53

10
.4

6
6.

52
5.

03
4.

18
3.

68
5

30
7.

06
6.

16
6.

59
5.

33
4.

64
4.

30
3.

02
3.

64
7.

03
6.

49
6.

83
5.

56
3.

39
3.

56
4.

52
4.

34
7.

35
5.

82
6.

98
5.

52
4.

55
3.

45
5.

49
4.

22
5

40
5.

25
7.

34
6.

07
7.

46
3.

12
4.

66
3.

89
5.

58
5.

14
7.

46
6.

37
7.

22
6.

24
3.

45
3.

67
5.

78
4.

97
6.

95
6.

26
7.

00
6.

12
5.

05
2.

45
4.

79
5

50
6.

11
4.

91
4.

52
4.

53
6.

82
4.

66
3.

41
5.

52
5.

59
5.

18
5.

17
5.

29
5.

64
6.

06
3.

30
3.

16
5.

21
5.

03
4.

51
4.

64
7.

20
5.

81
4.

86
4.

08
5

60
5.

16
4.

49
4.

61
3.

94
7.

57
6.

10
4.

29
3.

96
4.

74
5.

53
5.

45
4.

50
6.

64
3.

09
6.

05
3.

46
4.

69
4.

68
4.

88
4.

44
6.

52
5.

03
3.

27
6.

01
10

15
7.

06
0.

68
1.

80
−0

.8
6

1.
48

0.
95

0.
59

0.
70

10
.2

6
6.

56
6.

92
4.

81
1.

20
0.

80
0.

66
0.

51
9.

54
4.

46
5.

15
2.

88
0.

96
0.

74
0.

28
0.

56
10

20
12

.3
0

7.
81

4.
59

7.
92

2.
13

1.
11

1.
68

1.
46

13
.6

3
8.

77
6.

48
9.

70
1.

93
0.

83
0.

75
0.

72
14

.0
0

9.
34

6.
18

9.
92

1.
57

0.
94

0.
35

0.
94

10
30

8.
89

6.
60

5.
94

4.
55

2.
33

1.
00

1.
22

0.
88

8.
93

7.
22

7.
07

5.
46

1.
70

0.
58

0.
71

0.
81

8.
82

7.
54

7.
97

5.
43

1.
42

0.
84

0.
68

0.
36

10
40

6.
47

7.
83

6.
15

7.
03

2.
30

1.
56

1.
08

0.
56

6.
57

8.
09

6.
82

7.
41

1.
46

0.
92

0.
87

0.
39

6.
85

7.
44

6.
18

7.
31

1.
58

1.
53

0.
93

0.
76

10
50

6.
61

6.
02

5.
15

4.
85

1.
54

1.
50

0.
69

1.
03

6.
54

5.
86

5.
71

4.
95

1.
97

0.
78

1.
32

0.
75

7.
32

6.
05

5.
54

5.
06

1.
99

1.
60

0.
92

1.
09

10
60

8.
25

6.
33

6.
00

4.
76

2.
20

1.
38

1.
47

0.
80

6.
31

6.
27

5.
45

4.
73

1.
48

0.
78

0.
47

1.
47

6.
83

7.
09

6.
09

4.
73

1.
67

0.
99

1.
42

0.
55

15
20

5.
54

−0
.7

7
−2

.4
4

2.
41

1.
01

0.
91

1.
36

1.
17

10
.5

6
5.

80
4.

29
7.

19
0.

94
1.

06
0.

38
0.

72
9.

92
5.

18
3.

57
6.

47
0.

52
0.

70
0.

53
0.

43
15

30
9.

78
6.

04
5.

79
3.

29
0.

99
0.

72
1.

04
0.

74
10

.6
6

7.
95

7.
35

5.
52

0.
83

0.
64

0.
48

0.
37

11
.2

7
7.

95
7.

53
5.

61
1.

19
0.

80
0.

41
0.

47
15

40
7.

82
7.

32
4.

56
5.

03
0.

87
1.

78
0.

64
0.

69
8.

24
8.

25
6.

83
7.

60
1.

21
0.

39
0.

48
0.

40
7.

82
7.

21
5.

68
6.

07
0.

89
0.

69
0.

50
0.

65
15

50
7.

69
5.

71
4.

84
4.

71
1.

65
1.

04
1.

37
0.

49
8.

23
6.

36
5.

79
5.

34
1.

08
0.

94
0.

64
0.

57
8.

07
6.

45
5.

75
6.

31
1.

20
0.

91
0.

87
0.

76
15

60
8.

10
6.

19
6.

11
4.

90
1.

54
0.

71
0.

87
0.

77
7.

70
6.

53
6.

34
5.

16
1.

70
0.

97
0.

40
0.

51
7.

76
6.

77
6.

40
5.

29
1.

09
0.

77
0.

49
0.

54
20

25
2.

08
−0

.6
5

−1
.6

0
−1

.4
9

1.
38

1.
09

0.
68

1.
06

7.
32

4.
76

3.
66

3.
34

0.
98

0.
52

0.
64

0.
18

6.
22

4.
86

3.
14

2.
93

0.
81

0.
58

0.
50

0.
55

20
30

4.
09

0.
91

0.
87

−0
.5

5
0.

95
0.

83
0.

90
0.

73
8.

86
5.

60
5.

90
4.

40
1.

42
0.

57
0.

71
0.

49
8.

10
4.

50
4.

69
2.

98
0.

94
0.

77
0.

69
0.

51
20

40
8.

21
7.

80
5.

48
6.

27
0.

64
1.

04
0.

69
0.

43
8.

87
9.

04
6.

76
7.

14
0.

62
0.

47
0.

31
0.

38
9.

49
8.

58
7.

04
7.

39
0.

73
0.

34
0.

33
0.

16
20

50
6.

97
4.

28
2.

02
1.

83
0.

77
1.

48
1.

06
0.

54
8.

55
6.

72
5.

99
5.

26
0.

75
0.

72
0.

51
0.

20
9.

01
4.

96
4.

53
4.

23
0.

76
0.

77
0.

63
0.

59
20

60
9.

48
6.

18
6.

20
4.

76
1.

58
0.

94
0.

67
0.

49
8.

36
6.

93
6.

37
5.

28
1.

94
0.

78
0.

63
0.

41
9.

02
6.

85
6.

26
5.

21
0.

85
0.

62
0.

57
0.

46
25

30
1.

31
−1

.0
6

0.
51

−0
.3

2
1.

39
0.

48
0.

51
0.

37
6.

14
4.

08
4.

28
3.

65
1.

15
0.

73
0.

27
0.

23
5.

88
4.

48
5.

16
3.

14
1.

08
0.

39
2.

99
0.

49
25

40
4.

41
3.

25
1.

75
2.

40
0.

89
0.

51
0.

48
0.

51
7.

05
7.

78
6.

21
6.

62
0.

63
0.

53
0.

55
0.

39
6.

53
6.

44
4.

39
6.

01
0.

41
1.

17
0.

67
2.

14
25

50
9.

74
5.

81
4.

24
4.

48
0.

60
1.

14
0.

80
0.

79
8.

81
6.

99
5.

85
5.

27
0.

66
0.

45
0.

59
0.

46
9.

52
7.

28
5.

77
5.

33
0.

54
0.

82
0.

39
0.

35
25

60
7.

28
4.

48
2.

49
0.

85
1.

46
1.

49
0.

97
0.

50
9.

30
6.

70
6.

48
5.

39
0.

96
0.

62
0.

63
0.

76
8.

49
7.

11
6.

50
4.

44
0.

70
0.

74
0.

88
0.

37
30

35
−0

.7
8

−0
.8

9
0.

06
0.

28
1.

00
0.

72
0.

48
0.

45
4.

75
4.

01
4.

43
3.

43
0.

59
0.

69
1.

01
0.

39
4.

88
4.

48
4.

22
3.

42
0.

42
0.

78
0.

31
0.

46
30

40
1.

63
1.

05
−0

.4
7

1.
05

0.
53

0.
57

0.
56

0.
50

6.
12

7.
25

5.
55

6.
40

0.
68

0.
61

0.
33

0.
30

6.
11

5.
99

5.
01

5.
66

0.
64

0.
31

0.
60

0.
41

30
50

6.
62

2.
07

0.
94

0.
78

0.
32

0.
50

0.
43

0.
28

7.
95

6.
14

5.
07

4.
89

1.
12

0.
43

0.
34

0.
48

7.
17

4.
72

3.
83

3.
70

0.
78

0.
71

0.
87

0.
38

30
60

8.
51

5.
99

5.
22

3.
95

0.
85

0.
51

0.
93

0.
52

8.
66

6.
83

6.
31

5.
11

0.
69

0.
88

0.
35

0.
21

9.
04

7.
54

6.
22

4.
95

0.
84

0.
50

0.
15

0.
36

35
40

−1
.2

0
1.

38
0.

86
2.

29
1.

00
0.

89
0.

44
0.

40
3.

33
5.

31
4.

48
5.

57
0.

67
0.

68
0.

32
0.

26
4.

28
5.

85
4.

44
5.

20
0.

48
0.

81
0.

60
0.

41
35

50
3.

01
0.

44
−0

.4
3

−0
.2

4
0.

67
1.

01
0.

43
0.

35
7.

55
5.

55
4.

96
4.

38
1.

24
0.

68
0.

68
0.

22
6.

83
5.

16
4.

24
3.

94
0.

55
0.

69
0.

34
0.

33
35

60
6.

75
3.

53
2.

21
0.

95
0.

94
0.

59
0.

58
0.

48
7.

60
6.

55
6.

23
4.

65
0.

64
0.

79
0.

59
0.

24
7.

77
4.

84
5.

15
3.

74
0.

39
0.

83
1.

03
0.

29
40

45
−0

.5
6

0.
87

0.
07

0.
00

0.
89

0.
64

0.
57

0.
33

4.
07

5.
13

3.
86

3.
22

1.
07

0.
59

1.
20

1.
45

4.
42

5.
81

3.
61

2.
90

0.
64

0.
55

0.
30

0.
30

40
50

0.
15

−1
.4

3
−0

.9
6

−0
.6

4
0.

96
0.

90
1.

47
0.

20
6.

12
4.

80
4.

35
4.

12
0.

87
0.

55
0.

34
0.

41
5.

77
4.

35
3.

80
4.

10
0.

89
0.

78
0.

36
0.

37
40

60
4.

04
1.

33
1.

32
0.

15
0.

75
0.

67
1.

23
0.

31
7.

11
5.

90
5.

28
4.

39
0.

70
0.

59
0.

43
0.

27
6.

99
5.

30
4.

84
3.

78
0.

85
0.

67
0.

42
0.

40
45

50
−0

.3
0

−0
.3

9
−0

.0
5

0.
51

0.
71

0.
60

0.
43

0.
30

3.
58

3.
47

3.
24

3.
47

0.
85

0.
42

0.
65

0.
18

4.
27

3.
75

3.
39

3.
57

0.
50

0.
55

0.
24

1.
26

45
60

1.
99

0.
11

0.
03

−0
.4

6
0.

36
0.

45
0.

60
0.

39
6.

52
5.

78
5.

04
4.

08
0.

62
0.

52
0.

52
0.

37
6.

57
5.

04
4.

84
3.

73
0.

54
0.

37
0.

27
0.

27
50

55
−0

.2
5

−0
.2

0
0.

07
0.

30
0.

91
0.

59
0.

32
0.

32
3.

62
3.

47
3.

23
3.

18
1.

05
0.

62
0.

48
0.

40
3.

80
3.

85
3.

09
2.

94
0.

54
0.

52
0.

33
0.

42
50

60
0.

01
−0

.9
3

−0
.2

7
−0

.1
8

0.
62

0.
62

0.
62

0.
55

4.
96

4.
59

4.
43

3.
55

0.
92

0.
61

0.
43

0.
19

5.
49

4.
96

4.
41

3.
52

0.
50

0.
51

0.
35

0.
38

Nested maximin Latin hypercube designs 395

References

Barthelemy JFM, Haftka RT (1993) Approximation concepts for
optimum structural design—a review. Struct Multidisc Op-
tim 5(3):129–144

Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V,
Trosset MW (1999) A rigorous framework for optimization
of expensive functions by surrogates. Struct Multidisc Optim
17(1):1–13

Cherkassky V, Mulier F (1998) Learning from data: concepts,
theory, and methods. Wiley, New York

Cressie NAC (1993) Statistics for spatial data (revised ed),
vol 605. Wiley, New York

Den Hertog D, Stehouwer HP (2002) Optimizing color picture
tubes by high-cost nonlinear programming. Eur J Oper Res
140(2):197–211

Forrester AIJ, Keane AJ, Bressloff NW (2006) Design and
analysis of “noisy” computer experiments. AIAA J 44(10):
2331–2339

Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity op-
timization via surrogate modelling. In: Proceedings of the
royal society a: mathematical, physical and engineering sci-
ences, vol 463. The Royal Society, London, pp 3251–3269

Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design
via surrogate modelling: a practical guide. Wiley, Chichester

Goel T, Haftka RT, Shyy W, Watson LT (2008) Pitfalls of using
a single criterion for selecting experimental designs. Int J
Numer Methods Eng 75(2):127–155

Grosso A, Jamali ARMJU, Locatelli M (2009) Finding maximin
Latin hypercube designs by iterated local search heuristics.
Eur J Oper Res 197(2):541–547

Husslage BGM, Van Dam ER, Den Hertog D, Stehouwer HP,
Stinstra ED (2003) Collaborative metamodeling: coordinat-
ing simulation-based product design. Concurr Eng Res Appl
11(4):267–278

Husslage BGM, Van Dam ER, Den Hertog D (2005) Nested
maximin Latin hypercube designs in two dimensions. Cen-
tER Discussion Paper 2005-79. Tilburg University, Tilburg,
pp 1–11

Husslage BGM, Rennen G, Van Dam ER, Den Hertog D
(2008) Space-filling Latin hypercube designs for computer
experiments. CentER Discussion Paper 2008-104. Tilburg
University, Tilburg, pp 1–14

Jin R, Chen W, Sudjianto A (2002) On sequential sampling for
global metamodeling in engineering design. In: Proceedings
of the ASME 2002 design engineering technical conferences
and computers and information in engineering conference.
Montreal, pp 1–10

Jin R, Chen W, Sudjianto A (2005) An efficient algorithm for
constructing optimal design of computer experiments. J Stat
Plan Inference 134(1):268–287

Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and max-
imin distance designs. J Stat Plan Inference 26:131–148

Jones DR (2001) A taxonomy of global optimization methods
based on response surfaces. J Glob Optim 21(4):345–383

Kennedy MC, O’Hagan A (2000) Predicting the output from a
complex computer code when fast approximations are avail-
able. Biometrika 87(1):1–13

Kleijnen JPC (2008) Design and analysis of simulation experi-
ments. In: International series in operations research & man-
agement science, vol 111. Springer, New York

Montgomery DC (1984) Design and analysis of experiments,
2nd ed. Wiley, New York

Morris MD, Mitchell TJ (1995) Exploratory designs for computer
experiments. J Stat Plan Inference 43:381–402

Myers RH (1999) Response surface methodology—current status
and future directions. J Qual Technol 31:30–74

Qian Z, Seepersad CC, Joseph VR, Allen JK, Wu CFJ (2006)
Building surrogate models based on detailed and approxi-
mate simulations. J Mech Des 128(4):668–677

Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R,
Tucker PK (2005) Surrogate-based analysis and optimiza-
tion. Prog Aerosp Sci 41(1):1–28

Sacks J, Schiller SB, Welch WJ (1989a) Designs for computer
experiments. Technometrics 31:41–47

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989b) Design and
analysis of computer experiments. Stat Sci 4:409–435

Santner ThJ, Williams BJ, Notz WI (2003) The design and analy-
sis of computer experiments. Springer Series in Statistics.
Springer, New York

Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN,
Yang R-J (2004) Approximation methods in multidiscipli-
nary analysis and optimization: a panel discussion. Struct
Multidisc Optim 27(5):302–313

Simpson TW, Toropov VV, Balabanov V, Viana FAC (2008)
Design and analysis of computer experiments in multidisci-
plinary design optimization: a review. In: Proceedings of the
12th AIAA/ISSMO multidisciplinary analysis and optimiza-
tion conference, pp 1–22

Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary
aerospace design optimization: survey of recent develop-
ments. Struct Multidisc Optim 14(1):1–23

Van Dam ER, Husslage BGM, Den Hertog D, Melissen JBM
(2007) Maximin Latin hypercube designs in two dimensions.
Oper Res 55(1):158–169

Van Dam ER, Husslage BGM, Den Hertog D (2009a) One-
dimensional nested maximin designs. J Glob Optim (in
press)

Van Dam ER, Rennen G, Husslage BGM (2009b) Bounds for
maximin Latin hypercube designs. Oper Res 57:595–608

Viana FAC, Balabanov V, Venter G, Garcelon J, Steffen V
(2007) Generating optimal Latin hypercube designs in real
time. In: 7th world congress on structural and multidiscipli-
nary optimization, pp 2310–2315

Wang GG, Shan S (2007) Review of metamodeling techniques
in support of engineering design optimization. J Mech Des
129(4):370–380

Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction
of optimal symmetric Latin hypercube designs. J Stat Plan
Inference 90(1):145–159

	Nested maximin Latin hypercube designs
	Abstract
	Introduction
	Problem formulation
	Grid-structures for nested Latin hypercube designs
	Nested n2-grid
	Nested n1-grid
	Grid with nested maximin axes
	Choice of grid-structure

	Two-dimensional nested designs
	Branch-and-bound algorithm
	Pareto nested designs

	Higher dimensional nested designs
	Enhanced stochastic evolutionary algorithm
	Generating new designs

	Numerical results
	Concluding remarks
	Variants of ESE algorithm
	Values of d for best nested (approximate) maximin designs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

