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The problem of finding a maximin Latin hypercube design in two dimensions can be described as positioning n nonattacking
rooks on an n×n chessboard such that the minimal distance between pairs of rooks is maximized. Maximin Latin hypercube
designs are important for the approximation and optimization of black-box functions. In this paper, general formulas
are derived for maximin Latin hypercube designs for general n, when the distance measure is l� or l1. Furthermore,
for the distance measure l2, we obtain maximin Latin hypercube designs for n � 70 and approximate maximin Latin
hypercube designs for other values of n. All these maximin Latin hypercube designs can be downloaded from the website
http://www.spacefillingdesigns.nl. We show that the reduction in the maximin distance caused by imposing the Latin
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1. Introduction
The problem of finding a maximin Latin hypercube design
(LHD) in two dimensions can be most easily described as
a rook problem. This problem aims to position n rooks on
an n × n chessboard, such that they do not attack each
other, and such that the separation distance (the minimal
distance between pairs of rooks) is maximized. More for-
mally, a maximin LHD can be defined as a set of points
�xi� yi� ∈ 	0� 
 
 
 � n−1�2, i= 0� 
 
 
 � n−1, such that xi �= xj
and yi �= yj , i �= j , and such that the separation distance
mini �=j d��xi� yi�� �xj� yj�� is maximal, where d is a cer-
tain distance measure. In this paper, we derive explicit
descriptions of maximin LHDs and general formulas for
the maximin LHD distance when the distance measure
is l� or l1. Furthermore, for the l2-distance measure, we
obtain maximin LHDs for n� 70 by using a branch-and-
bound method, and approximate maximin LHDs for higher
values of n.

Our main motivation for investigating this subject is
the fact that maximin LHDs are extremely useful in the
field of black-box optimization. Suppose that our aim is
to approximate and minimize a black-box function on a
box-constrained domain. By nature, a black-box function
is not given explicitly; however, we may perform function
evaluations. As evaluations of the black-box function often

involve time-consuming computer simulations, the func-
tion is sometimes replaced by an approximating model,
based on evaluations in some points. See, e.g., Montgomery
(1984), Sacks et al. (1989a, b), Myers (1999), Jones et al.
(1998), Booker et al. (1999), and den Hertog and Ste-
houwer (2002). We call such a set of evaluation points a
design. As is recognized by several authors, such a design
for computer experiments should satisfy at least the follow-
ing two criteria (see Johnson et al. 1990 and Morris and
Mitchell 1995). First, the design should be space filling in
some sense. When no details on the functional behavior
of the response parameters are available, it is important to
be able to obtain information from the entire design space.
Therefore, design points should be “evenly spread” over
the entire region. Second, the design should be noncol-
lapsing. When one of the design parameters has (almost)
no influence on the black-box function value, two design
points that differ only in this parameter will “collapse,” i.e.,
they can be considered as the same point that is evaluated
twice. For deterministic black-box functions, this is not a
desirable situation. Therefore, two design points should not
share any coordinate values when it is not known a priori
which dimensions are important.

There is also a connection between maximin designs and
location theory and circle packing. The maximin design

158



van Dam, Husslage, den Hertog, and Melissen: Maximin Latin Hypercube Designs in Two Dimensions
Operations Research 55(1), pp. 158–169, © 2007 INFORMS 159

problem has already been defined and studied in location
theory. In this area of research, the problem is usually
referred to as the continuous multiple-facility location prob-
lem or p-dispersion problem (see Dimnaku et al. 2005).
Facilities are placed in the plane such that the minimal
distance to any other facility is maximal. The resulting
solution is certainly space filling, but not necessarily non-
collapsing. We do not see how to adapt these techniques
such that the solution fulfills the noncollapsingness cri-
terion as well. There is also much literature on pack-
ing and covering with circles. The problem of finding the
maximal common radius of n circles that can be packed
into a square is equivalent to the maximin design prob-
lem. Melissen (1997) gives a comprehensive overview of
the historical developments and state-of-the-art research
in this field. For the l2-distance measure, optimal solu-
tions are known for n � 30 and n = 36; see, e.g., Peikert
et al. (1991), Nurmela and Östergård (1999), Markót and
Csendes (2005), and Kirchner and Wengerodt (1987). Fur-
thermore, many good approximating solutions have been
found for n � 31; see the Packomania website of Specht
(2005). Baer (1992) solved the maximum l�-circle packing
problem in a d-dimensional unit cube. The l1-circle pack-
ing problem in a square has been solved for many values
of n; see Fejes Tóth (1971) and Florian (1989).

Other space-filling designs, like minimax, IMSE, and
maximum entropy designs, are also used. For a good survey
of these designs, see the book by Santner et al. (2003). In
this book, it is also shown that maximin LHDs, generally
speaking, yield the best approximations. Only a few papers
consider maximin designs, e.g., Trosset (1999), Dimnaku
et al. (2005), Locatelli and Raber (2002), and Stinstra et al.
(2003). These papers describe heuristics to find approxi-
mate maximin designs. Morris and Mitchell (1995) is one
of the few that considers maximin LHDs. Maximin LHDs
are frequently used in practical applications; see, e.g., the
examples given in Alam et al. (2004), Driessen et al.
(2002), den Hertog and Stehouwer (2002), and Rikards and
Auzins (2004).

Designs that are optimized for the space-fillingness cri-
terion often turn out to be highly collapsing. We there-
fore concentrate on maximin LHDs. In this paper, we
derive maximin LHDs in two dimensions for the l� and
l1-distance measure, and we show that the maximal sep-
aration distances are �√n
 and �√2n+ 2
, respectively.
By comparing these results with the circle-packing results
mentioned above, we show that the noncollapsingness
restriction reduces the optimal value only slightly, and the
reduction converges to zero as n→�. For the l2-measure,
we were not able to derive such general results; however,
using a branch-and-bound technique we were able to find
maximin LHDs for n � 70. For n � 71, we find peri-
odic and adapted periodic LHDs as approximations for the
l2-maximin LHDs. We also analyze the trade-off between
the space-fillingness and the noncollapsingness criterion
by relaxing the LHD restriction to �xi − xj � � � and

�yi − yj �� �, i �= j , where 0 � �� 1. Note that �= 0 cor-
responds to an unrestricted maximin design, while � = 1
leads to a maximin LHD. We show how these maximin
quasi-LHDs can be formulated as mixed-integer program-
ming problems.

This paper is organized as follows. In §§2, 3, and 4,
we treat the l�, l1, and l2-cases, respectively. In §5, we
analyze the trade-off between the space-fillingness and the
noncollapsingness criterion. The paper ends with some con-
clusions in §6.

2. l�-Maximin LHDs
The problem of arranging n points in the square �0� n−1�2

to maximize the minimal l�-distance among the pairs of
points has been completely solved by Baer (1992). The cor-
responding maximin distance equals d= �n−1�/�√n− 1

and is attained, for example, by choosing n points from the
set 	id � i = 0� 
 
 
 � �√n− 1
�2. This design is, of course,
highly collapsing, and although in general there is some
freedom to change the design to decrease the “collapsing-
ness” (without decreasing the distance), only in the cases
where n− 1 is a square is it possible to obtain a maximin
LHD. This follows implicitly from the following, where the
maximin distance among the LHDs is obtained: It equals
�√n
. This maximin distance can be attained, for example,
by using the following construction.

Construction 1. Let n and d be positive integers such
that n� d2. Let the sequence �tj� be defined by t0 = 0 and
tj+1 = tj +��n+ j�/d
, j = 0� 
 
 
 � d−1. Then, D= 	�id−
j − 1� tj + i− 1� � j = 0� 
 
 
 � d− 1; i = 1� 
 
 
 � tj+1 − tj� is
an LHD of n points with separation l�-distance d.

Proof. First note that D indeed consists of

td =
d−1∑
j=0

��n+ j�/d
 = n

points. Because all first coordinates of the points in D are
distinct elements of 	0� 
 
 
 � n− 1�, as are all second coor-
dinates, it follows that D is an LHD. From facts such as
tj+1 − tj � d, we find that the separation distance is d. �

This construction (see Figure 1 for an example) shows
that LHDs of n points with separation distance �√n
 exist.
The following proposition shows that this is optimal.

Proposition 1. Let n� 2. An l�-maximin LHD of n points
in two dimensions has separation distance �√n
.
Proof. Consider an LHD of n points in two dimensions
as a subset of 	0� 
 
 
 � n− 1�2, with separation distance d.
Consider the point �d−1� yd−1� of the design. Without loss
of generality, we may assume that yd−1 � �n− 1�/2. First
note that yd−1 + d− 1 � n− 1 because of this assumption
and the easily proven fact that d − 1 � �n − 1�/2. Now,
the d points with second coordinates yd−1� 
 
 
 � yd−1+d−1
must all have first coordinates in 	d − 1� 
 
 
 � n− 1�, and
these coordinates must all be at least d apart. This shows
that n− d � �d − 1�d, and hence d � �√n
. This bound
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Figure 1. An l�-maximin LHD of 33 points; d= 5.
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t4 = 26

and the above construction show that a maximin LHD of
n points has separation distance d= �√n
. �

It is easy to see that the difference between the maximin
distance for unrestricted designs and the maximin distance
for LHDs is less than two; hence, the relative difference
tends to zero. For example, the reduction in the maximin
distance due to the Latin hypercube constraints is less than
10% for n� 324, and less than 1% for n� 39�204. See also
Figure 2, where the two maximin distances are displayed
as a function of the number of points.

3. l1-Maximin LHDs
For the l1-distance measure, the situation is more compli-
cated than for the l�-distance measure. Fejes Tóth (1971)
showed that the maximin distance for unrestricted designs
is at most 1 +√

2n− 1, with equality if and only if the

Figure 2. Maximin l�-distances for unrestricted
designs and for LHDs.
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number of points n is the sum of two consecutive squares.
The unique design giving equality for n= k2 + �k+ 1�2 is
the set 	i�n− 1�/k � i = 0� 
 
 
 � k�2 ∪ 	�2i+ 1��n− 1�/2k �
i = 0� 
 
 
 � k − 1�2, which is highly collapsing. Also, for
some other values of n, the maximin distance has been
determined; cf. Florian (1989). Typically, the corresponding
optimal designs are highly collapsing too; only the cases
n= 2, 4, and 7 seem to be exceptions: For these cases, there
is an optimal design that is an LHD. For most (approxi-
mately 3 out of 4) values of n, however, the maximin dis-
tance for unrestricted designs has not been determined yet.
For LHDs, we will now determine the maximin distance
explicitly for all n: It equals �√2n+ 2
. This bound is, for
example, attained by the design in the following construc-
tions, which distinguish between d even and d odd. Partic-
ular examples of these constructions are given in Figure 3
�d= 8� and Figure 4 �d= 7�.

Construction 2. Let n and d be positive integers, d even,
such that n� d2/2−1. Let the sequence �tj� be defined by

t0 = 0 and tj+1 = tj +
⌊
n+ j

2 + 1
2 �1− �−1�j�

(
1
2d− 1

2

)
d− 1

⌋
�

j = 0� 
 
 
 � d− 2. Then,

D=
{(

i�d− 1�− j

2
− 1

2
�1− �−1�j�

(
1
2d− 1

2

)− 1�

tj + i− 1
) ∣∣∣∣ j = 0� 
 
 
 � d− 2� i= 1� 
 
 
 � tj+1 − tj

}

is an LHD of n points with separation l1-distance d.

Proof. Also, here D indeed consists of td−1 = n points
(although it is more tedious to check here). Checking that
D is an LHD with separation distance d is tedious, but
routine. Important here are the facts that tj+1− tj � d/2 for
even j , and tj+1 − tj � d/2+ 1 for odd j . �

Figure 3. An l1-maximin LHD of 33 points; d= 8.

0 d–2 2d–3 3d–4 4d–5
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Figure 4. An l1-maximin LHD of 26 points; d= 7.
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Construction 3. Let n and d be positive integers, d odd,
such that n� d2/2− 1/2. Let the sequence �sj� be defined by

s0 = 0 and sj+1 = sj +
⌊
n+ j

2 + 1
2 �1− �−1�j�

(
1
2d

)
d

⌋
�

j = 0� 
 
 
 � d− 1. Then,

D=
{(

id− j

2
− 1

2
�1− �−1�j�

(
1
2
d

)
− 1�

sj + i− 1
)∣∣∣∣ j = 0� 
 
 
 � d− 1� i= 1� 
 
 
 � sj+1 − sj

}

is an LHD of n points with separation l1-distance d.

Proof. The proof is as before. One can check that D has
sd = n points and separation distance d by using sj+1−sj �
�1/2��d− 1� for even j , and sj+1 − sj � �1/2��d+ 1� for
odd j . �

As before, the above constructions can be used to con-
struct optimal designs:

Proposition 2. Let n� 2. An l1-maximin LHD of n points
in two dimensions has separation distance �√2n+ 2
.
Proof. We shall prove that n � d2/2 − 1 for any LHD
of n points with separation distance d. For d � 3, this is
obvious, so we may assume that d� 4.

Consider the LHD as a subset of 	0� 
 
 
 � n−1�2 embed-
ded in �2, together with the l1-circles (diamonds) with
radius d/2 centered at the n design points; let us call these
design circles. As the interiors of these design circles are
disjoint, they cover a total area of n · d2/2. We next shall
find a bound on this total area that implies the bound for n
in terms of d.

First, let d be even and fixed. The total covered area
below the (horizontal) line y = d/2− 2 is equal to

1
4d

3 − 3
4d

2 + 1


This can be seen by observing that the area below the line
y = d/2− 2 that is covered by the two design circles cen-
tered at the design points with second coordinates i and
d−4− i equals d2/2 for i= 0� 
 
 
 � d/2−3. What remains
is to account for the areas covered by the design circles
that are centered at the design points with second coordi-
nates d/2 − 2 and d − 3, which are d2/4 and 1, respec-
tively. The sum of these areas gives the expression above.
It thus follows that the total covered area outside the square
�d/2− 2� n−d/2+ 1�2 is at most d3 − 3d2 + 4, and there-
fore we find that

n · 1
2d

2
� d3 − 3d2 + 4+ �n−d+ 3�2


This implies that n2 −n�2d− 6+d2/2�+d3 − 2d2 −6d+
13� 0, so

n� d− 3+ 1
4d

2 + 1
4

√
d4 − 8d3 + 24d2 − 64

>d− 3+ 1
4d

2 + 1
4

√
d4 − 8d3 + 24d2 − 32d+ 16

= 1
2d

2 − 2�

which proves that n � d2/2 − 1. Note that we used that
d� 4, and that the case where

n� d− 3+ 1
4d

2 − 1
4

√
d4 − 8d3 + 24d2 − 64< 2d− 4

is easily excluded.
Next, let d be odd and fixed. Similar to the above case,

we first find that the total covered area below the line y =
�1/2��d− 5� equals

1
4d

3 −d2 + 5
2 


As before, this can be seen by observing that the area
below the line y = �1/2��d − 5� that is covered by the
two design circles centered at the design points with sec-
ond coordinates i and d − 5 − i is equal to d2/2 for i =
0� 
 
 
 � �1/2��d − 5�− 1. The areas covered by the design
circles that are centered at the design points with second
coordinates �1/2��d− 5�, d− 4, and d− 3, are d2/4, 9/4,
and 1/4, respectively. The sum of these areas gives the
expression above. It follows that the total covered area out-
side the square ��1/2��d − 5�� n− d/2 + 3/2�2 is at most
d3 − 4d2 + 10.

To derive a useful inequality, we have to look more care-
fully at the covered area inside the abovementioned square.
We claim that each design point �x� y� has the property
that the interior of at least one of the two l1-circles with
radius 1/2 centered at �x−1/2� y+d/2� and �x+1/2� y+
d/2� is not covered, and we call such an uncovered circle
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a hole (such holes can clearly be identified in Figure 4).
Indeed, a design circle that covers any of these two men-
tioned small circles also covers the circle with radius 1/2
around �x� y + �1/2��d + 1��. Because the two small cir-
cles clearly cannot be covered by the same design circle,
this proves the claim. We note now that the interiors of all
holes are disjoint and, moreover, all holes lie above the line
y = �1/2��d − 5�. Because there are d − 2 design points
with holes above the line y = n − d/2 + 3/2, there are
at least n−d+3−�d−2�= n−2d+5 holes (among those
coming from design points with first coordinates �1/2��d−
5�+1� 
 
 
 � n−d/2+1/2) that lie entirely inside the square
��1/2��d− 5�� n−d/2+ 3/2�2. We thus obtain that

n · 1
2d

2
� d3 − 4d2 + 10+ �n−d+ 4�2 − 1

2 �n− 2d+ 5��

which implies that

n2 − n
(
2d− 15

2 + 1
2d

2
)+d3 − 3d2 − 7d+ 47

2 � 0


Therefore,

n� d− 15
4 + 1

4d
2 + 1

4

√
d4 − 8d3 + 34d2 − 8d− 151

>d− 15
4 + 1

4d
2 + 1

4

√
d4 − 8d3 + 34d2 − 72d+ 81

= 1
2d

2 − 3
2 �

which implies that n� d2/2− 1.
Here we used that d� 4; the case

n� d− 15
4 + 1

4d
2 − 1

4

√
d4 − 8d3 + 34d2 − 8d− 151

< 2d− 6

is easily excluded. We have thus proved the inequality n�
d2/2 − 1 for all d, and hence that d � �√2n+ 2
. The
above constructions show that equality can be attained. �

The difference between the maximin distance for unre-
stricted designs and the maximin distance for LHDs is
again less than two. The reduction in the maximin distance
due to the Latin hypercube constraints is less than 10%
for n � 144, and less than 1% for n � 19�404. See also
Figure 5, where the maximin distance for Latin hypercube
designs and the upper bound/exact value for the maximin
distance for unrestricted designs are displayed as a function
of the number of points.

4. l2-Maximin LHDs
So far, we have considered maximin designs for the l� and
l1-distance measures. For many real-world applications,
however, the l2-distance measure remains the first choice;
see the examples given in Alam et al. (2004), Driessen et al.
(2002), den Hertog and Stehouwer (2002), and Rikards and
Auzins (2004).

Unfortunately, for the Euclidean measure, the situation
is much more complicated than for the other two mea-
sures. There is no known infinite class of optimal designs

Figure 5. Maximin l1-distances for unrestricted
designs, LHDs, and general upper bound.
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in the unrestricted situation, as was the case, for instance,
for the l1-measure, let alone a complete solution like for
the l�-measure. Optimal designs are only known for up to
30 points and the single case of 36 points (cf. Kirchner and
Wengerodt 1987). Many of the designs require dedicated
optimality proofs, and some of the larger cases were even
proven by computer-assisted proof techniques; see, e.g.,
Peikert et al. (1991) �n= 11–13�15�17–20�, Nurmela and
Östergård (1999) �n = 21–27�, and Markót and Csendes
(2005) �n = 28–30�. As there are no general results for
maximin designs in the l2-measure, this is still a field of
research where world records can be broken, see, e.g.,
Casado et al. (2001). A list of the best-known circle pack-
ings in a square (and also in a circle and in a rectangle) is
on a website maintained by Specht (2005). So far, the list
contains many very good (and probably close to optimal)
designs for up to 300 points, and a few larger numbers. The
optimal designs may be devoid of any symmetry or nice
structure (for instance, for 10 or 13 points), there can be
multiple optimal solutions (e.g., for 17 points), and there
are even optimal designs that have points that are not fixed,
but that can move around a little (for instance, for 7, 11,
and 13 points). This supports the belief that a complete
solution for all points is not likely to ever be found. To a
lesser extent, the same seems to be the case for the prob-
lem of finding l2-maximin LHDs, although the (adapted)
periodic solutions we found may turn out to be optimal.

4.1. Branch-and-Bound

To find maximin LHDs for the l2-distance measure (for
small n), we designed a branch-and-bound algorithm. This
algorithm searches for LHDs of n points with separa-
tion distance at least d, for given n and d, by examin-
ing all designs 	�x� yx� � x = 0� 
 
 
 � n− 1�, represented by
the sequence �y0� y1� 
 
 
 � yn−1� ∈ 	0�1� 
 
 
 � n − 1�n, while
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checking whether they are noncollapsing and have separa-
tion distance at least d.

As a first approach, one could use the search tree where
the root has n branches giving the value of y0, and each
corresponding node further branches into n parts giving
the value of y1, etc., until we are at the end nodes giv-
ing the value of yn−1. One can cut branches from the
node corresponding to the partial design �y0� y1� 
 
 
 � yt� if
points are already collapsing or are separated by a distance
less than d. In this way, we found maximin LHDs for n
up to 40.

A disadvantage of the above approach is that it does
not use the fact that useless partial designs occur as part
of other partial designs (for example, �0�3�4� is part of
�9�12�15�0�3�4�) in different parts of the tree, and hence
are not cut off by just one cut. Note also in this respect that
it is beneficial to cut the tree at small depth. To (partly)
solve this disadvantage, we use a different tree. For this,
we first fix the value yx = y �= �n−1�/2, where the index x
will be determined later, and will depend on the particular
end node in the tree. Because of symmetry, we will assume
that x is at most f = �n/2
−1. This will be the root of the
tree, and it branches into n parts, giving the value of yx+1.
The corresponding nodes further branch into n parts, giv-
ing the value of yx+2, etc., up to the nodes giving the value
of yx+n−1 (and at these end nodes we take x = 0). More-
over, for t = 0� 
 
 
 � f − 1, the nodes corresponding to the
value of yx+n−1−f+t (roughly speaking, when over “half”
of the points in the design are chosen) have n additional
branches giving the value of yx−1 (we now start extending
the partial design on the other side of x), and these branches
further corresponding to the values of yx−2, etc., up to the
values of yx−f+t . At these end nodes, we have a design
�y0� y1� 
 
 
 � yn−1� by taking x= f − t. With the branch-and-
bound algorithm based on this tree, we managed to find
optimal designs, or prove optimality of some designs found
by hand, for n� 70 by taking y = �√d2 − 2
 (but this value
does not seem to be crucial). For the instance �n�d� =
�69�

√
80�, we took y = �n− 1�/2. This has the advantage

that, because of symmetry, only the cases yx+1 < y (i.e.,
only half the tree) have to be searched; however, the dis-
advantage is that also the value x = �n − 1�/2 must be
considered (this is implemented by letting f = �n− 1�/2�.
In this particular case, this was no disadvantage because all
cutting turned out to be performed far before half of the
points in the design were chosen.

Using these branch-and-bound techniques, we were able
to find maximin LHDs for up to 70 points. These max-
imin LHDs, which were also found by our heuristic, can
be derived from Table 1. Unlike the situation without LHD
constraints, many of the optimal designs exhibit some nice
regularity in that the designs turn out to be either periodic
arrangements or slightly adapted periodic arrangements. As
an example, see the l2-maximin LHDs in Figures 6 and 7.

Remark. We learned that similar reduction techniques, as
the ones described above, were used for the (unrestricted)
packing problem; see Markót and Csendes (2005).

Figure 6. An l2-maximin LHD of 17 points; d2 = 18.

4.2. Heuristics

Due to increasing computational effort, the applicability
of the branch-and-bound algorithm that we presented is
restricted to the smaller designs that we have found. To
extend the range of designs, we have tried several heuristics
to find good designs.

One option, for instance, is to consider the l� and l1-
maximin LHDs. If we pick the better of the two, with respect
to the l2-measure, we end up with some good designs. We
have tried simulated annealing to improve these designs.
In our algorithm, a neighborhood solution is obtained by
randomly selecting two points, one of them being a point
at separation distance to another point, and switch one of
the coordinate values. The performance of the neighbor-
hood solution is defined by the minimal distance of these
two new points to all other points. However, when start-
ing with l� and l1-designs, the algorithm was not able to

Figure 7. An l2-maximin LHD of 50 points; d2 = 52.
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turn up better ones. When starting from a random design,
the algorithm consumed excessive amounts of computation
time without turning up solutions that were at least as good
as the l� or l1-designs.

Another approach uses the nice, periodic structure of
many of the maximin LHDs that were found by the branch-
and-bound algorithm, and looks for periodic designs. This
turned out to be very successful.

For given n, we started with choosing a period p such
that gcd�n+1� p�= 1 and constructed an LHD with points
�x� yx�, where yx = �x + 1�pmod�n + 1� − 1 for x =
0� 
 
 
 � n−1. This heuristic often resulted in maximin LHDs
and, otherwise, good designs.

To improve our results, we then considered the more
general sequence zx = �s+xp�modn (note that we changed
the modulus) for all periods p = 1� 
 
 
 � �n/2
, and differ-
ent starting points s = 0� 
 
 
 � �n/2
. Note, however, that
the resulting sequence z might no longer be one-to-one,
i.e., some values may occur more than once, and hence the
resulting design 	�x� zx� � x = 0� 
 
 
 � n− 1� might not be
an LHD. Now, let k > 0 be the smallest value for which
zk = z0; it then follows that k= n/gcd�n�p�. When k < n,
a way to construct a one-to-one sequence of length n, and
hence an LHD, is by shifting parts of the sequence by,
say, q, and repeating this when necessary. To formulate this
more explicitly, we obtain an LHD represented by yx =
�s+ xp+�q�modn for x= �k� 
 
 
 � ��+ 1�k− 1 and �=
0� 
 
 
 �gcd�n�p�−1. For n up to 200, we tested all “shifts”
q, with q such that gcd�q�gcd�n�p�� = 1, in the range
�1− p�p− 1� and all starting points s = 0� 
 
 
 � �n/2
; and
it turned out that taking q equal to either 1 − p or −1,
and s equal to p− 1, yielded the best designs. Additional
tests indicated that the value q = 1 should also be con-
sidered. Therefore, the final heuristic considered only q ∈
	1−p�−1�1� and s = p− 1.

Combining both periodic heuristics, we found results for
n up to 1,000; the obtained LHDs for n� 70 are optimal.
The LHDs, with their corresponding minimal distances, are
depicted in Table 1. In this table, the tuple �p� q�m� defines
an LHD as follows. If m= n+ 1, we get the design points
�x� yx�, where

yx = �x+ 1�pmod�n+ 1�− 1 for x= 0� 
 
 
 � n− 1�

whereas we have yx = ��x+ 1�p− 1+ �q�modn for x =
�k� 
 
 
 � ��+ 1�k− 1, and � = 0� 
 
 
 �gcd�n�p�− 1 when
m= n, where k= n/gcd�n�p�.

Table 1 gives only designs for which n is a “breakpoint,”
i.e., the values of n for which dn > di for all i < n. Designs
for the intermediate values of n may have a minimal dis-
tance that is smaller than the minimal distance of their pre-
ceding breakpoint. For these n, however, better designs can
easily be derived. Every LHD is defined by its sequence
of yx-values, which can be split up into several increas-
ing subsequences. For example, the l2-maximin LHD of
17 points in Figure 6 consists of the sequences �4�9�14�,

Figure 8. LHD constructions for 18, 19, and 20 points,
based on an l2-maximin LHD of 17 points.

18
1920

�1�6�11�16�, �3�8�13�, �0�5�10�15�, and �2�7�12�. Each
of these sequences can be augmented by extra points, start-
ing with the sequence with the smallest end value (i.e.,
12 in above example), while retaining the minimal distance.
Hence, a given periodic LHD of n points can be extended
to an LHD of n′ > n points with the same minimal dis-
tance. Figure 8 shows how to extend an l2-maximin LHD
of 17 points, with d2 = 18, to l2-maximin LHDs of 18,
19, and 20 points, all with d2 equal to 18. The LHD of
17 points could also be extended further to LHDs of n′ � 21
points with d2 = 18; however, Table 1 shows that this is no
longer optimal.

Figure 9 displays the best found l2-distances d for unre-
stricted designs and LHDs for up to 300 points. The upper

Figure 9. (Maximin) l2-distances d for unrestricted
designs, LHDs, and general upper bound.
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Table 1. (Maximin) l2-distance LHDs on breakpoints.

n d2 p q m n d2 p q m

2 2 1 — 3 374 425 118 — 375
4 5 2 — 5 388 442 21 — 389
7 8 3 — 8 395 450 139 — 396
9 10 3 — 10 408 461 22 −21 408

12 13 5 — 13 415 466 79 — 416
14 17 4 — 15 422 481 96 −95 422
17 18 5 — 18 429 482 22 −1 429
21 20 5 — 22 430 485 22 −21 430
22 25 5 — 23 433 490 59 — 434
23 26 5 — 24 448 509 61 — 449
28 29 12 — 29 462 530 141 — 463
31 32 7 — 32 470 533 193 — 471
33 34 13 — 34 474 545 62 −61 474
34 37 6 — 35 488 549 64 — 489
38 41 7 — 39 492 565 86 — 493
44 50 19 — 45 509 578 89 — 510
50 52 14 −13 50 520 586 136 1 520
52 58 8 — 53 534 593 64 — 535
58 61 9 — 59 537 610 25 — 538
60 65 8 — 61 550 613 154 — 551
65 68 25 — 66 552 629 199 — 553
67 74 9 — 68 559 640 67 — 560
75 80 9 — 76 575 650 155 — 576
76 85 34 — 77 582 661 93 — 583
83 90 25 — 84 586 673 26 −25 586
86 97 10 −9 86 600 674 168 — 601
90 98 27 — 91 607 680 27 — 608
93 100 11 — 94 613 692 71 — 614
95 101 10 −1 95 626 722 265 — 627

100 109 30 — 101 634 725 27 — 635
102 113 28 −27 102 641 738 119 — 642
104 117 11 — 105 658 745 28 — 659
111 128 41 — 112 666 746 119 — 667
121 130 51 — 122 672 761 100 — 673
126 145 12 — 127 678 765 130 −129 678
136 149 13 — 137 679 778 101 — 680
146 157 56 −55 146 686 785 28 — 687
148 160 34 −1 148 694 793 124 — 695
149 170 13 — 150 706 808 288 −287 706
156 178 36 — 157 710 809 76 — 711
162 180 14 −13 162 717 818 249 — 718
166 181 36 — 167 730 820 78 −77 730
170 185 52 −51 170 732 829 76 — 733
171 194 37 — 172 738 850 192 — 739
176 197 14 −13 176 756 853 209 — 757
180 202 39 — 181 758 865 340 −339 758
184 205 66 −65 184 761 866 79 — 762
187 208 15 — 188 766 872 30 −29 766
194 212 52 −51 194 776 882 295 — 777
200 218 16 — 201 777 884 107 — 778
202 226 15 — 203 783 898 183 — 784
208 241 56 — 209 795 901 30 −1 795
216 245 16 — 217 800 909 187 — 801
225 250 99 — 226 808 914 287 — 809
232 257 16 — 233 814 925 169 — 815
240 269 71 — 241 821 932 31 — 822
246 277 17 — 247 828 949 266 — 829
253 290 45 — 254 840 954 298 −297 840
260 292 46 −45 260 843 962 175 — 844
267 296 79 — 268 850 977 205 — 851
268 305 63 — 269 866 981 196 — 867
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Table 1. Continued.

n d2 p q m n d2 p q m

279 306 18 −1 279 875 986 137 — 876
280 320 18 −17 280 880 1�009 32 — 881
291 328 81 — 292 888 1�013 115 — 889
298 338 116 — 299 896 1�025 116 — 897
306 346 113 — 307 914 1�037 194 — 915
313 356 19 — 314 919 1�042 119 — 920
324 360 51 −1 324 922 1�060 268 −267 922
326 365 120 −119 326 940 1�073 33 — 941
330 370 20 — 331 957 1�076 145 — 958
335 386 71 — 336 962 1�090 204 −1 962
350 401 20 — 351 970 1�105 147 — 971
358 409 54 — 359 985 1�124 277 — 986
367 410 21 — 368 998 1�129 258 −257 998

bound depicted in this figure can easily be derived when
applying Oler’s theorem (cf. Oler 1961) to the square
�0� n− 1�2, resulting in

d� 1+
√

1+ �n− 1�
2√
3



5. Quasi Noncollapsing Designs
In previous sections, we have looked at the maximin dis-
tance of unrestricted designs and LHDs, with respect to the
l�, l1, and l2-distance measures. For unrestricted designs,
we were interested in finding design points in the square
�0� n − 1�2 with maximal separation distance. To obtain
LHDs, we also required that projections of the design
points along any of the coordinate axes result in a one-
dimensional equidistant design. This extra restriction dras-
tically reduced the number of possible designs; however,
it was shown that the effect on the maximin distance was
small.

Instead of requiring the coordinates of a design to be
equally distributed over the interval �0� n−1�, we will now
require the coordinates to be separated by at least some dis-
tance � ∈ �0�1�. Note that �= 0 results in an unrestricted
(possibly collapsing) design, whereas �= 1 yields a (non-
collapsing) LHD. Therefore, we will call a design with � ∈
�0�1� quasi-noncollapsing. It is interesting to investigate
how the maximin distance is affected by the choice of �.
For a given value of � ∈ �0�1�, we can find the correspond-
ing maximin distance by solving the following optimization
problem:

maxmin
i �=j

d��xi� yi�� �xj� yj��

s.t. �� �xi − xj �� i� j = 0� 
 
 
 � n− 1� i �= j�

�� �yi − yj �� i� j = 0� 
 
 
 � n− 1� i �= j�

0� xi � n− 1� i= 0� 
 
 
 � n− 1�

0� yi � n− 1� i= 0� 
 
 
 � n− 1
 (1)

Here, d��xi� yi�� �xj� yj�� denotes the distance between the
design points �xi� yi� and �xj� yj�. In the next sections, we

show how to compute the maximin distance (and the corre-
sponding design) with respect to the l�, l1, and l2-distance
measures for every value of � ∈ �0�1�.

5.1. The l1-Case

For the l1-distance measure, the objective function in (1)
reduces to �xi−xj �+�yi−yj �, which results in a nonconvex,
nonlinear program (NLP). We rewrite problem (1) as the
following mixed-integer program (MIP):

max d

s.t. d� xj − xi + zij � i� j = 0� 
 
 
 � n− 1� i < j�

�� xi+1 − xi� i= 0� 
 
 
 � n− 2�

�� zij � i� j = 0� 
 
 
 � n− 1� i < j�

zij � yi − yj + 2�n− 1��1−hij��

i� j = 0� 
 
 
 � n− 1� i < j�

zij�yj−yi+2�n−1�hij � i�j=0�


�n−1� i<j�

0� xi � n− 1� i= 0� 
 
 
 � n− 1�

0� yi � n− 1� i= 0� 
 
 
 � n− 1�

0� zij � n− 1� i� j = 0� 
 
 
 � n− 1� i < j�

hij ∈ 	0�1�� i� j = 0� 
 
 
 � n− 1� i < j
 (2)

Here, hij = 1 if yi � yj , and hij = 0 otherwise, resulting
in zij � �yi − yj �. Because d (and hence zij ) is maximized,
this yields zij = �yi − yj �. Solving (2) gives the maximin
distance d as a function of the quasi-noncollapsingness
parameter � ∈ �0�1�. Figure 10 gives two examples of such
a function for designs of 10 and 11 points, respectively.
The plots are a result of solving (2), using the XA Binary
and Mixed Integer Solver of Sunset Software Technology
(2003) for 200 equidistant values of � ∈ �0�1�.

Both of these plots indicate nonconcave, nonincreasing,
piecewise-linear functions. This behavior can be explained
as follows. Fixing all hij in (2) results in a linear program
(LP) with continuous variables only, and � in the right-
hand side of the constraints. From the sensitivity analysis



van Dam, Husslage, den Hertog, and Melissen: Maximin Latin Hypercube Designs in Two Dimensions
Operations Research 55(1), pp. 158–169, © 2007 INFORMS 167

Figure 10. Maximin l1-distance as function of the
quasi-noncollapsingness parameter � for 10
and 11 design points.
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of an LP, we know that the optimal value as a function
of � is a nonincreasing, concave, piecewise-linear function.
For every realization of the binary variables, we get such
a function. The maximal d is found by taking the maxi-
mum over all these functions, resulting in a nonincreasing,
piecewise-linear function that is not necessarily concave.

An interesting observation can be made from the designs
of 11 points. It is seen that � can be taken up to a value of
0.41 without affecting the unrestricted maximin distance.
Furthermore, for � between 0.41 and 0.91, the maximin
distance stays within 5% of its unrestricted value, drop-
ping sharply only for values larger than 0.91. Apparently,
it is possible to construct a highly noncollapsing design of
11 points without decreasing the unrestricted maximin dis-
tance much. As an example, see Figure 11, which shows
four maximin designs corresponding to the points of inflec-
tion �= 0
41, �= 0
57, �= 0
91, and �= 1
00.

5.2. The l�-Case

For the l�-distance measure, the objective function in (1)
reduces to max	�xi−xj �� �yi−yj ��. We can follow the same
kind of reasoning as with the l1-measure and rewrite the
optimization problem as a MIP. Unfortunately, extra binary
variables have to be included to deal with the maximum

Figure 11. Maximin l1-distance designs of 11 points for �= 0
41, �= 0
57, �= 0
91, and �= 1
00.

α = 0.41, d = 5.00 α = 0.57, d = 4.86 α = 0.91, d = 4.77 α = 1.00, d = 4.00

operator in the objective function, which will increase the
computation time:

max d

s.t. d� xj − xi + �n− 1��1− kij��

i� j = 0� 
 
 
 � n− 1� i < j�

d� zij + �n− 1�kij � i� j = 0� 
 
 
 � n− 1� i < j�

�� xi+1 − xi� i= 0� 
 
 
 � n− 2�

�� zij � i� j = 0� 
 
 
 � n− 1� i < j�

zij � yi − yj + 2�n− 1��1−hij��

i� j = 0� 
 
 
 � n− 1� i < j�

zij�yj−yi+2�n−1�hij � i� j = 0� 
 
 
 � n− 1� i < j�

0� xi � n− 1� i= 0� 
 
 
 � n− 1�

0� yi � n− 1� i= 0� 
 
 
 � n− 1�

0� zij � n− 1� i� j = 0� 
 
 
 � n− 1� i < j�

hij ∈ 	0�1�� i� j = 0� 
 
 
 � n− 1� i < j�

kij ∈ 	0�1�� i� j = 0� 
 
 
 � n− 1� i < j
 (3)

The binary variables hij serve the same purpose as in (2);
for the extra binary variables kij , it holds that kij = 1 if
�xi − xj �� �yi − yj �, and kij = 0 otherwise, resulting in d�

max	�xi − xj �� �yi − yj ��. Like in the case of the l1-distance
measure, we can compute the maximin distance d for sev-
eral values of � ∈ �0�1�. Figure 12 gives two examples for
designs of six and seven points, respectively. The plots are
a result of solving (3) for 200 uniformly distributed val-
ues of � ∈ �0�1�. Again, it can be argued that the maximin
distance, as a function of �, is a nonincreasing, piecewise-
linear function. Note that this function appears to be linear
for designs of six points. For seven points, we can con-
struct highly noncollapsing designs without decreasing the
maximin distance more than 15% by taking �� 0
85.

5.3. The l2-Case

For the l2-distance measure, the situation is more compli-
cated than for the l� and l1-measures. The objective func-
tion in (1) reduces to the quadratic function �xi − xj�

2 +
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Figure 12. Maximin l�-distance as a function of the
quasi-noncollapsingness parameter � for six
and seven design points.
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�yi − yj�
2 (for the sake of convenience, we square the

l2-distance). The resulting NLP is in fact a multiextremal
optimization problem, which calls for a global optimizer.
We used the Lipschitz global optimizer (LGO) (cf. Pintér
1995) to compute the maximin distance as function of the
quasi-noncollapsingness parameter � ∈ �0�1�. Within LGO,
we applied the multistart global search option, followed by
a local search phase, to increase the probability of obtaining
a good solution.

Although the obtained distances only give us lower
bounds for the (unknown) global maximin distances, we
can still extract information about the behavior of the max-
imin distances from them. As an example, see Figure 13,
which shows results for designs of five and six points,
respectively. We solved NLP (1), with objective function
�xi − xj�

2 + �yi − yj�
2, for 50 evenly spread values of � ∈

�0�1� to obtain these results. Both plots indicate a nontrivial
behavior. For five design points, a small change in � heav-
ily affects the maximin distance for values of � less than
0.53 and larger than 0.86, whereas this effect is less pro-
nounced when � lies between 0.53 and 0.86. For designs
of six points, the maximin distance is only heavily affected

Figure 13. (Maximin) squared l2-distance as a function
of the quasi-noncollapsingness parameter �
for five and six design points.
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by large values of �, i.e., �> 0
80. This facilitates the con-
struction of highly noncollapsing designs with a maximin
distance that does not deviate too much from the unre-
stricted maximin distance.

6. Conclusions
For the l� and l1-distance measures, it is possible to explic-
itly describe maximin LHDs. For the l2-distance mea-
sure, we have obtained maximin LHDs up to n = 70.
Using (adapted) periodic LHDs, we have found LHDs that
are optimal for n � 70 and that approximate l2-maximin
LHDs for values of n up to 1,000. All of these maximin
LHDs can be downloaded from the website http://www.
spacefillingdesigns.nl. A comparison with unrestricted max-
imin designs shows that adding the noncollapsingness cri-
terion only slightly reduces the maximin distance. For
the l�-measure, the reduction in maximin distance due to
the LHD restriction is less than 10% for n� 324. For the
l1-measure, the reduction in the maximin distance due to
the LHD restriction is less than 10% for n � 144. This
justifies the use of maximin LHDs instead of unrestricted
maximin designs in practice.

The trade-off between the space-fillingness and the non-
collapsingness criterion can be made even more precise. To
this end, we have introduced maximin quasi-LHDs, which
can be obtained by mixed-integer programming and global
optimization methods. The resulting trade-off curve can be
used in practice to decide on the level of noncollapsing-
ness. Extending the results of this paper to maximin LHDs
in higher dimensions is a subject of further research.
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