

Tilburg University

Nested Maximin Latin Hypercube Designs

Rennen, G.; Husslage, B.G.M.; van Dam, E.R.; den Hertog, D.

Publication date:
2009

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Rennen, G., Husslage, B. G. M., van Dam, E. R., & den Hertog, D. (2009). Nested Maximin Latin Hypercube
Designs. (CentER Discussion Paper; Vol. 2009-06). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/1c504ec0-f357-42d2-9c92-946d78d618ad

No. 2009–06

NESTED MAXIMIN LATIN HYPERCUBE DESIGNS

By Gijs Rennen, Bart Husslage, Edwin R. van Dam,
Dick den Hertog

January 2009

ISSN 0924-7815

Nested maximin Latin hypercube designs

Gijs Rennen • Bart Husslage∗ • Edwin R. van Dam† • Dick den Hertog

Department of Econometrics and Operations Research, Tilburg University,

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

G.Rennen@uvt.nl • Husslage@casema.nl • Edwin.vanDam@uvt.nl • D.denHertog@uvt.nl

Abstract

In the field of design of computer experiments (DoCE), Latin hypercube designs are frequently used
for the approximation and optimization of black-boxes. In certain situations, we need a special type
of designs consisting of two separate designs, one being a subset of the other. These nested designs
can be used to deal with training and test sets, models with different levels of accuracy, linking pa-
rameters, and sequential evaluations. In this paper, we construct nested maximin Latin hypercube
designs for up to ten dimensions. We show that different types of grids should be considered when
constructing nested designs and discuss how to determine which grid to use for a specific application.
To determine nested maximin designs for dimensions higher than two, four different variants of the
ESE-algorithm of Jin et al. (2005) are introduced and compared. In the appendix, maximin distances
for different numbers of points are provided; the corresponding nested maximin designs can be found
on the website http://www.spacefillingdesigns.nl.

Keywords: Design of computer experiments, Latin hypercube design, linking parameter, nested
designs, sequential simulation, space-filling, training and test set.
JEL Classification: C90.

1 Introduction

Latin hypercube designs are extremely useful in the approximation of black-box functions. By definition,
black-box functions have no explicit description, but can be evaluated to obtain output values for specific
input values. As evaluations of a black-box function often involve time-consuming computer simulations,
we would like to construct an approximating model (or metamodel) based on evaluations in a (small)
number of points. See, e.g., Montgomery (1984), Sacks et al. (1989), (1989), Myers (1999), Jones et al.
(1998), Booker et al. (1999), Den Hertog and Stehouwer (2002), Santner et al. (2003), and Kleijnen
(2008). A review of meta-modeling applications in structural optimization can be found in Barthelemy
and Haftka (1993), and in multidisciplinary design optimization in Sobieszczanski-Sobieski and Haftka
(1997).

We will use the term design to denote the set of evaluation points. As observed by many researchers,
there is an important distinction between designs for computer experiments and designs for the more
traditional response surface methods. Physical experiments exhibit random errors whereas computer
experiments are often deterministic (cf. Simpson et al. (2004)). This distinction is crucial and one of the
main aims in the field of design of computer experiments (DoCE) is therefore to obtaining efficient designs
for computer experiments.

As is recognized by several authors, a design for computer experiments should at least satisfy the
following two criteria (see Johnson et al. (1990) and Morris and Mitchell (1995)). First of all, the de-
sign should be space-filling in some sense. When no details on the functional behavior of the response
parameters are available, it is important to be able to obtain information from the entire design space.
Therefore, design points should be “evenly spread” over the entire region. Secondly, the design should be

∗The research of B.G.M. Husslage has been financially supported by the SamenwerkingsOrgaan Brabantse Universiteiten
(SOBU).

†The research of E.R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy of Arts and
Sciences.

1

non-collapsing. When one of the design parameters has (almost) no influence on the black-box function
value, two design points that differ only in this parameter will “collapse”, i.e., they can be considered
as the same point that is evaluated twice. As evaluation of the deterministic black-box function is often
time-consuming, this is not a desirable situation. Therefore, two design points should not share any coor-
dinate values when it is not known a priori which parameters are important. Moreover, we would like the
projections of the points onto the axes to be separated as much as possible. When we consider a black-box
function on a box-constrained domain, this can be accomplished by using Latin hypercube designs. A
Latin hypercube design (LHD) of n points in m dimensions can be defined as an n×m matrix, were each
column is a permutation of the set {0, 1

n−1 , 2
n−1 , . . . , 1}. The rows xi = (xi1, xi2, . . . , xim), i = 1, . . . , n,

then define the n design points. Because the columns are permutations of the above set, for all of the m
coordinates it holds that no two design points have the same value.

To obtain space-filling designs, the evaluation points are chosen in such a way that the separation distance
(i.e., the minimal distance among any pair of points) is maximized, leading to so-called maximin designs.
Other space-filling designs, like minimax, integrated mean squared error (IMSE), and maximum entropy
designs, are also used in the literature. For a good survey of these designs see the book of Santner et al.
(2003). In this book it is also shown that maximin Latin hypercube designs generally speaking yield good
approximations.

Maximin Latin hypercube designs where first constructed by Morris and Mitchell (1995) using sim-
ulated annealing. Ye et al. (2000) only considered the class of symmetric approximate maximin LHDs
to reduce the computing effort. Jin et al. (2005) introduce the enhanced stochastic evolutionary (ESE)
algorithm for finding various space-filling designs, among which approximate maximin LHDs. In Huss-
lage et al. (2008), the ESE-algorithm is also used to construct approximate maximin LHDs for up to 10
dimensions and up to 300 design points. Furthermore, they also construct approximate maximin LHDs
by optimizing the maximin criterion over all LHDs having a certain periodic structure. This approach
is an extension of the method used in Van Dam et al. (2007) to obtain two-dimensional approximate
maximin LHDs. In that paper, two-dimensional maximin LHDs are also found using a branch-and-bound
algorithm. Finally, Grosso et al. (2008) use Iterated Local Search heuristics to find good approximate
maximin LHDs for up to 10 dimensions. The best designs found in these papers are published on-line at
http://www.spacefillingdesigns.nl where they can be downloaded for free. This website also contains
the upper bounds on the separation distance for certain classes of maximin LHDs found by Van Dam et al.
(2009). These upper bounds can be used to asses the quality of approximate maximin LHDs.

In real-life, there are situations where we need a special type of designs called nested designs. This
type of design consists of two separate designs, with the requirement that one design is a subset of the
other design. Van Dam et al. (2004) show how to construct one-dimensional nested maximin designs;
the current paper focuses on two and higher dimensional designs∗. Four main reasons for nesting max-
imin designs are: training and test sets, models with different levels of accuracy, linking parameters, and
sequential evaluations.

To start with the first, consider the problem of fitting and validating a particular metamodel. In
practice, the following approach is often used. First, a metamodel is fitted to the obtained training data,
i.e., the responses obtained when evaluating the design points in the training set. Then, a new set of
design points, i.e., the test set, is evaluated and the obtained responses are compared to the response
values predicted by the metamodel. If the differences between the predicted and the actual response
values are small the metamodel is considered to be valid. See also Cherkassky and Mulier (1998) for a
more detailed description of the use of training and test sets. Because a metamodel should be a global
approximation model, i.e., it should be valid for the entire feasible region, the evaluation points, in both
the training set and the test set, should cover the entire region. Moreover, the evaluation points in the
test set should not lie too close to the evaluation points in the training set, i.e., the total set of evaluation
points should be space-filling. This can be accomplished by nesting two designs, which are optimized with
respect to, for example, the maximin criterion. The evaluation points that are part of both designs form
the training set, the remaining points make up the test set.

The second motivation comes from the situation where an output variable of a process, product, or
system is modeled by two black-box functions with different levels of accuracy. These black-box functions
could, for instance, be simulation models with different levels of detail. As a more accurate model is in

∗This paper is a revision and extension of Husslage et al. (2005).

2

general also more time-consuming, we can perform fewer evaluations of the high accuracy model than of
the low accuracy model in the same amount of time. Instead of choosing to use either the high or low
accuracy model, we can also choose to use both. In Qian et al. (2006), a method is introduced which
combines the results from the high and low accuracy models. This way, they try to obtain a model which
is as accurate as possible, given the resources available. The high accuracy model is evaluated at all points
in the small design and the low accuracy model at all points in the large design. By using a nested design,
high and low accuracy evaluations are performed at all points in the small design. In Qian et al. (2006),
the differences in these points are used to adjust and improve the metamodel fitted to the low accuracy
evaluations.

Another reason for using nested designs is caused by linking parameters. Consider a product that
consists of two components, each of them represented by a separate black-box function. To obtain an
approximating model describing the behavior of the complete product, function evaluations of each black-
box function are needed. When one black-box function is more time-consuming to evaluate than the
other, it could be better to perform different numbers of function evaluations of each black-box function.
Moreover, in practice it may occur that these functions have input parameters in common; such parameters
are called linking parameters, see Husslage et al. (2003). Evaluating the linking parameters at the
same setting in both functions (i.e., component-wise) leads to an evaluation of the product. Not only
do product evaluations provide a better understanding of the product, they are also very useful in the
product optimization process. Another reason for using the same settings for (linking) parameters is due
to physical restrictions on the black-box functions. Setting the parameters for computer experiments can
be a time-consuming job in practice, because characteristics, like shape and structure, have to be redefined
for every new experiment. Therefore, it is preferable to use the same settings as much as possible. By
constructing nested designs we can determine the settings for linking parameters.

As an example of a real-life problem in which linking parameters play a role, we consider a collabora-
tive optimization approach to optimize the design of a color picture tube, see Stinstra et al. (2003). Such
a tube consists of the main components screen, electron gun, and shadow mask. Stinstra et al. (2003)
consider the collaborative design of several aspects of the shadow mask and the screen. Two of these
aspects are the black-box functions describing Landing and Microphony. The Landing function measures
the quality of the image, whereas the Microphony function measures how vulnerable the shadow mask
is to external vibrations. Because the response parameters of both Landing and Microphony depend on
the settings of the design parameters of the shadow mask, linking parameters play an important role,
see Figure 1. As is argued by Husslage et al. (2003), the same settings should be used for these linking
parameters as much as possible, giving rise to the need for nested designs.

Shadow
mask

Microphony

Landing

mask geometry

parameters

Figure 1: Linking parameters in tube design optimization.

Nested designs are also useful when dealing with sequential evaluations. In practice it is common that
after evaluating an initial set of points, extra evaluations are needed. As an example, suppose we construct
an approximating model for some black-box function based on n1 function evaluations. However, after
validating the obtained model it turns out that an extra set of function evaluations is needed to build a
proper model. We then face the problem of constructing a design on a total of, say, n2 points, given the
initial design on n1 points. To anticipate the possibility of extra evaluations, one can construct the two
designs (on n1 and n2 points) at once, hence, by constructing a nested design.

We have just described why both Latin hypercube designs and nested designs are important. In this paper
we construct nested maximin Latin hypercube designs in m dimensions with m ≥ 2. Moreover, we focus
on the problem of nesting two designs, X1 and X2, with X1 ⊂ X2, Xj = {xi = (xi1, xi2, . . . , xim) | i ∈ Ij},
and |Ij | = nj , j = 1, 2. Thus, the index set I1 ⊂ I2 = {1, 2, . . . , n2} defines which design points xi are

3

part of both designs. The nested design is defined by the combination of X1 and X2.
All design parameters are scaled such that they take values in the interval [0, 1], and the class of nested

designs is optimized with respect to the maximin distance criterion. Furthermore, scaling factors s1 and
s2 are introduced to enable a fair comparison of the distances between the points in the designs X1 and
the distances between the points in X2, respectively. We aim to determine the design points xi and the
set I1 such that both designs are as much as possible space-filling with respect to the maximin criterion.
To this end, define dj as the minimal scaled distance between all points in the design Xj :

dj = min
k,l∈Ij

k 6=l

d(xk, xl)
sj

, j = 1, 2. (1)

In this paper, we consider the Euclidean distance measure for d(·, ·). Because one-dimensional designs of
n points have distance 1/(n − 1) and the minimum distance of n points in an m-dimensional hypercube
is at most of the order 1/ m

√
n− 1, it seems natural to use scaling factors sj = 1/ m

√
nj − 1, j = 1, 2, in (1)

for m-dimensional designs. As we use the maximin distance criterion, we have to maximize the minimal
scaled distance between any pair of points in X1 and X2. Therefore, what remains is to maximize the
minimal distance d = min{d1, d2} over all I1 ⊂ I2, with |I1| = n1, and xi ∈ [0, 1]2.

We are aware that the above formulation is just one way of combining the two separation distances
into one objective and that also other scaling factors or formulations are possible. Using different scaling
factors is no problem as all methods discussed in this paper can also be used for other values of s1 and
s2. In Section 6, we will discuss some other alternative objectives. Dealing with maximizing d1 and d2 as
a bi-objective optimization problem is one of the possibilities. For two-dimensional nested designs with
small n1 and n2, we use this approach in Section 3.2. However, to limit the scope of this paper, our main
focus will be on the above maximin objective.

Combining the objective function and the conditions for a nested design, we can formulate the following
optimization problem to obtain a nested maximin design:

max d

s.t. I1 ⊂ I2

|Ij | = nj , j = 1, 2
0 ≤ xij ≤ 1, i ∈ I2, j = 1, 2.

(2)

Note that these conditions do not enforce non-collapsingness, which is essential for the LHD structure.
As mentioned before, the non-collapsingness is important when dealing with deterministic computer ex-
periments. We can obtain a non-collapsing nested maximin design by adding to Problem (2) constraints
that enforce the xi-coordinates (in each dimension) to be separated (see also Van Dam et al. (2007)).
These constraint can, for instance, impose that the design points xi must be positioned on a grid with a
certain structure. Three possible grid structures, nested n1-grids, nested n2-grids and grids with nested
maximin axes, are proposed in Section 2. In Section 3, a branch-and-bound method for determining two
dimensional nested maximin designs is presented and Pareto optimal nested designs in two dimensions
are discussed. For higher dimensions, determining the nested LHD which maximizes d becomes too time
consuming. Therefore, we introduce in Section 4 a heuristic which also aims to maximize d but does not
guarantee to find the optimal d. In Section 5, numerical results obtained with different variants of this
heuristic are presented and compared. Furthermore, we discuss how to select a grid-structure and design
based on the obtained results. Finally, Section 6 contains concluding remarks.

2 Grid structures for nested Latin hypercube designs

One of the properties of a regular LHD is that all points, when projected onto one of the axes, are
equidistantly distributed. To form an LHD, the points in X1 must thus be projected onto the set
{0, 1

n1−1 , 2
n1−1 , . . . , 1} and the points in X2 onto {0, 1

n2−1 , 2
n2−1 , . . . , 1}. In order for X1 and X2 to both

form a Latin hypercube design, the first set must be a subset of the second. However, this only holds
when n2 − 1 is a multiple of n1 − 1 or, stated differently, when c2 := n2−1

n1−1 is integer. In all other cases,
we have to compromise on the LHD structure of one or both designs. As there are different ways of doing
this, we introduce three different grid structures. Note, however that all three grids coincide when c2 is
integer.

4

To illustrate these structures, examples are provided for the two-dimensional case of n1 = 6 and
n2 = 13 points. In Figures 2 and 3 also the individual maximin Latin hypercube designs of n1 = 6 and
n2 = 13 points are depicted to enable comparison with the non-nested case.

0
1

5

2

5

3

5

4

5
1

0

1

5

2

5

3

5

4

5

1

Figure 2: A maximin Latin hypercube design of
6 points; d1 = 1.0000.

0
1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12
1

0

1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12

1

Figure 3: A maximin Latin hypercube design of
13 points; d2 = 1.0408.

2.1 Nested n2-grid

Before we explain the nested n2-grid, let us first introduce the term Xj-coordinates. With Xj-coordinates,
we denote the levels obtained when projecting the design points of design Xj onto one of the axes (or
dimensions), for j = 1, 2. For Xj to be an LHD, the Xj-coordinates must thus be equidistantly distributed
for every dimension.

To construct a nested design where X2 is an LHD, we have to choose all design points on the n2-grid,
with grid points {0, 1

n2−1 , 2
n2−1 , . . . , 1}m. Remember that we selected the LHD structure because of the

non-collapsingness with respect to the projections of the design points onto the axes. For the design X2,
the non-collapsingness is guaranteed by the equidistant distribution of the X2-coordinates. To obtain a
non-collapsing design X1, we also want to select the X1-coordinates equidistantly distributed. If this is
not possible, we try to obtain a space-filling distribution of the X1-coordinates. Hence, what remains is
to add restrictions that lead to the desired distribution of the X1-coordinates.

To start, consider the case where c2 = n2−1
n1−1 ∈ N. In this case, a non-collapsing design X1 is obtained

by limiting the choice of design points (of X1) to the set of equidistantly distributed X1-coordinates
{0, 1

n1−1 , 2
n1−1 , . . . , 1}m. See, for example, the two-dimensional nested maximin Latin hypercube design

of n1 = 16 and n2 = 31 points (with c2 = 2) depicted in Figure 4.
For the case c2 6∈ N, the situation is more complicated. Because we are bound to the n2-grid, and n1−1

is no longer a divisor of n2−1, it is no longer possible to have the X1-coordinates equidistantly distributed.
From the one-dimensional case, however, we know that for equidistantly distributed X2-coordinates (as
is the case with the n2-grid) it is optimal to have either bc2c − 1 or dc2e − 1 X2-coordinates between
succeeding X1-coordinates; see Van Dam et al. (2004). Therefore, the X1-coordinates are required to be
separated by either bc2c 1

n2−1 or dc2e 1
n2−1 . Hence, should the design then collapse (onto one of the axes),

then it collapses onto an optimal one-dimensional nested maximin design.
Note that this restriction still leaves multiple grids possible for design X1 when c2 6∈ N. An example

of a nested maximin design on a nested n2-grid of n1 = 6 and n2 = 13 points, with d = d2 = 0.9129 and
d1 = 1.0035, is depicted in Figure 5. In this figure, the design points of X1 are represented by solid dots,
the open dots represent the extra design points needed to complete design X2, hence, the solid and open
dots together form the design points of X2.

For the nested n2-grid, a very simple method to determine nested LHDs would seem to take an existing
LHD of n2-points for X2 and select a subset of n1 points for X1. Although this method is quite attractive

5

0
1

5

2

5

3

5

4

5
1

0

1

5

2

5

3

5

4

5

1

Figure 4: A nested maximin Latin hypercube
design of n1 = 16 and n2 = 31 points; d = d1 =
d2 = 0.9309.

0
1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12
1

0

1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12

1

Figure 5: A nested maximin n2-Latin hyper-
cube design of n1 = 6 and n2 = 13 points;
d = d2 = 0.9129 and d1 = 1.0035.

because of its simplicity, it does not generally yield a nested LHD satisfying all the restrictions of the
nested n2-grid. We will illustrate this with the example in Figure 6. The figure shows a maximin Latin
hypercube design for n = 15 obtained in Van Dam et al. (2007). Assume we want to construct a nested
LHD with n1 = 8 and n2 = 15. Because in this case c2 = 2, the nested n2-grid is unique and both the
X1- and X2-coordinates must be equidistantly distributed for both dimensions. The solid dots represent
X1 when we satisfy this latter restriction for the dimension on the horizontal axis. We can easily see
that the distribution of the X1-coordinates on the other axis is certainly not equidistantly. This probleem
also occurs for many other Latin hypercube designs and is even more likely to occur when the number
of dimensions increases. Therefore, we will not use this method to construct nested LHDs, but use the
methods described in Sections 3.1 and 4.1.

0
1
14

2
14

3
14

4
14

5
14

6
14

7
14

8
14

9
14

10
14

11
14

12
14

13
14 1

0

1
14

2
14

3
14

4
14

5
14

6
14

7
14

8
14

9
14

10
14

11
14

12
14

13
14

1

Figure 6: Example of the problem occurring when taking X1 equal to a subset of an existing LHD.

2.2 Nested n1-grid

When we want X1 to be an LHD instead of X2, we can use the nested n1-grid. The design X1 is then
obtained by choosing n1 design points on the n1-grid, with grid points {0, 1

n1−1 , 2
n1−1 , . . . , 1}m. The

6

additional X2-coordinates are placed equidistantly between the X1-coordinates. Similar to the nested n2-
grid, the (interiors of the) intervals formed by consecutive X1-coordinates are again required to contain
either bc2c − 1 or dc2e − 1 X2-coordinates. Hence, consecutive X2-coordinates will be separated by either

1
bc2c

1
n1−1 or 1

dc2e
1

n1−1 . Again, this leaves multiple grids possible when c2 6∈ N. See Figure 7 for an example
of a nested maximin design on a nested n1-grid of n1 = 6 and n2 = 13 points, with d = d2 = 0.9522 and
d1 = 1.0000.

2.3 Grid with nested maximin axes

The use of the Latin hypercube structure in the construction of a nested maximin design implies a
preference of one design over the other. Design X1 is assumed to be more important than design X2 when
a nested n1-grid is used; design X2 is preferred over design X1 in case of a nested n2-grid. If both sets are
assumed to be of equal importance we would like to treat them equally. To deal with this problem, the
X1- and X2-coordinates could be restricted to take only values at the levels of a (known) one-dimensional
nested maximin design of n1 and n2 points; see Van Dam et al. (2004). The design points of X1 and X2

could then be chosen from the grid points obtained in this way. Note that in this case the projections of
the design points onto the axes are always optimally space-filling with respect to the maximin distance
criterion. Furthermore, note that a one-dimensional maximin design, with c2 6∈ N, is (again) not unique,
so there are multiple grids possible. Figure 8 depicts an example of a nested maximin design of n1 = 6
and n2 = 13 points on a grid with nested maximin axes, with d = d1 = 0.9589 and d2 = 0.9805.

0
6

30

12

30

18

30

24

30
1

3

30

9

30

15

30

20

30

22

30

26

30

28

30

0

6

30

12

30

18

30

24

30

1

3

30

9

30

15

30

20

30

22

30

26

30

28

30

Figure 7: A nested maximin n1-Latin hyper-
cube design of n1 = 6 and n2 = 13 points;
d = d2 = 0.9522 and d1 = 1.0000.

0
6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66
1

0

6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66

1

Figure 8: A nested maximin design of n1 = 6
and n2 = 13 points on a grid with nested max-
imin axes; d = d1 = 0.9589 and d2 = 0.9805.

3 Two-dimensional nested designs

3.1 Branch-and-bound

To obtain two-dimensional nested maximin LHDs, we use an extension of the branch-and-bound algorithm
of Van Dam et al. (2007). This extended branch-and-bound algorithm works as follows. Given n1, n2

and the grid structure, first all possible nested grids are determined and the possible distances that can
occur for X1 and X2 are calculated. These distances form a discrete set that can be efficiently searched
and optimized. To determine whether a nested LHD exists with X1 and X2 having separation distances
at least d1 and d2, respectively, a branch-and-bound search is performed for each possible nested grid.
This branch-and-bound method is similar to the one used for usual LHDs as described in Van Dam et al.
(2007), however in general the nested grid structures do not allow for the refinements given there. In
the search tree, a node at level t corresponds to a partial nested design consisting of t design points

7

(x1, . . . , xt), where the first n1 points are in X1 and the points are, furthermore, ordered by increasing
first coordinate. Nodes in the tree are pruned when they correspond to partial nested designs that are
collapsing or that have separation distances smaller than d1 or d2.

Using the extended branch-and-bound algorithm, we obtained results for n2 up to 15 for all three grid
structures. For the cases where c2 ∈ N, the algorithm is refined so that nested maximin LHDs could be
obtained up to n2 = 32. The maximin distances of these designs can be found in Tables 6 and 7 in the
appendix. In Section 5, the results are compared and discussed.

3.2 Pareto nested designs

Besides nested designs that maximize the objective function d = min{d1, d2}, there are also some other
interesting nested designs to consider: Pareto nested designs. We will call a combination of distances
(d1, d2) Pareto optimal (or Pareto) if it is not possible to improve one of the distances, without deteriorating
the other distance. A Pareto nested design is a nested design of which the distances (d1, d2) form a
Pareto combination. For c2 ∈ N and n2 ≤ 32, we have found all the Pareto combinations using a
slightly adjusted version of the branch-and-bound algorithm. Furthermore, the original branch-and-bound
algorithm already made sure that the distances (d1, d2) of all nested maximin designs provided in Table 6
(see the appendix) are Pareto optimal. Table 1 provides all Pareto combinations (d1, d2) corresponding
to the pairs (n1, n2), with c2 ∈ N and n2 ≤ 32, for which there exist more than one such combination.

n1 n2 Pareto combinations (d1, d2)
4 10 (0.8165, 0.9428), (1.2910, 0.7454)
4 16 (1.2910, 0.9309), (0.8165, 1.0646)
6 16 (1.0000, 0.7303), (0.6325, 1.0646)
9 17 (1.1180, 0.7906), (0.7906, 1.0607)
4 19 (1.2910, 0.9718), (0.8165, 1.0000)
7 19 (1.1547, 0.9718), (0.5774, 1.0000)

10 19 (1.0541, 0.7454), (0.7454, 1.0000)
11 21 (1.0000, 0.7071), (0.7071, 1.0000)
8 22 (1.0690, 0.8997), (0.5345, 0.9258)

12 23 (0.8528, 1.0871), (0.9535, 0.6742)
4 25 (1.2910, 1.0206), (0.8165, 1.0408)
5 25 (1.1180, 0.9129), (0.7071, 1.0408)
7 25 (1.1547, 0.8660), (0.5774, 1.0408)
9 25 (1.0000, 1.0408), (1.1180, 0.9129)

14 27 (1.0000, 1.0000), (1.1435, 0.8321)
4 28 (1.2910, 0.9623), (0.8165, 0.9813)

10 28 (0.9428, 0.9813), (1.0541, 0.8607)
5 29 (1.1180, 0.9636), (0.7071, 1.0177)
8 29 (1.0690, 0.9449), (0.8452, 0.9636)

15 29 (0.9636, 0.9636), (1.1019, 0.8018)
7 31 (1.1547, 0.9129), (0.5774, 0.9309)

16 31 (0.9309, 0.9309), (1.0646, 0.7746),
(0.7303, 1.0328)

Table 1: All pairs (n1, n2) with more than one Pareto combination; c2 ∈ N, n2 ≤ 32.

In this table, the first entry corresponds to the optimal maximin combination (d1, d2), followed by the
other Pareto combination(s). Note that in case of n1 = 11 and n2 = 21 points there exist two different
Pareto combinations, both with a maximin distance equal to d = 0.7071. For the (n1, n2) pairs (9, 17) and
(10, 19), the objective values of the Pareto nested designs are also equal (0.7906 and 0.7454, respectively);
however, the individual maximal distances of the second Pareto combination are smaller than the maximal
distances of the (optimal) first combination (1.0607 < 1.1180 and 1.0000 < 1.0541, respectively).

4 Higher dimensional nested designs

4.1 Enhanced stochastic evolutionary algorithm

For dimensions higher than two and for larger values of n1 and n2, using the above branch-and-bound
algorithm to find nested LHDs which maximize d becomes too time-consuming. In these cases, we can
use heuristics to find nested approximate maximin LHDs, where approximate indicates that optimality
is not guaranteed. One possible heuristic is the ESE-algorithm of Jin et al. (2005). In Husslage et al.
(2008), this algorithm obtains good results for approximate maximin LHDs. Although this algorithm

8

was originally designed for non-nested designs, with some changes it is also applicable to nested designs.
Before we look at these changes, we first give a short description of the original ESE-algorithm. This
description is based on the description given in Husslage et al. (2008).

The algorithm starts with an initial design and tries to find better designs by iteratively changing the
current design. To determine if a new design is accepted, a threshold-based acceptance criterion is used.
This criterion is controlled in the outer loop of the algorithm. In the inner loop of the algorithm new
designs are explored.

The inner loop explores the design space as follows. At each iteration, first a dimension k is selected.
The algorithm then creates a fixed number of new designs by exchanging the kth coordinate value of two
randomly chosen points of the current design. The new design with the largest separation distance is then
compared to the current design with a threshold criterion. The criterion is such that it ensures that better
designs are always accepted and that worse designs can also be accepted with a certain probability. If the
new design is accepted, it replaces the current design. This proces is repeated until a certain stopping
criterion is met.

The outer loop controls the threshold value. After the inner loop is completed, the outer loop de-
termines how much improvement is made in the inner loop. If the amount of improvement is above a
certain level, the algorithm starts an improving process in which it tries to rapidly find a local optimum.
It does this by lowering the threshold value and thus accepting less deteriorations in the inner loop. If
too little improvement is made, an exploration process is started which is intended to escape from a local
optimum. The threshold value is first rapidly increased to move away from a local optimum and later
slowly decreased to find better designs after moving away. The final design of the algorithm is the best
design found during all iterations of the inner loop.

To use the ESE-algorithm for nested designs, the step which needs to be changed most is the genera-
tion of new designs. When one point is selected from X1 and the other from X2\X1, exchanging the kth

coordinate value can distort the nested grid structure.

0
1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

Figure 9: A nested Latin hypercube design of
n1 = 6 and n2 = 10 points; d = d1 = 0.3086
and d2 = 0.5556.

0
1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

Figure 10: A nested design obtained by ex-
changing one coordinate value between a point
in X1 and one point in X2\X1.

Figures 9 and 10 give an example where this indeed occurs. The design in Figure 10 is obtained by
exchanging one coordinate value of two points in the lower left part of Figure 9. As we require in each
dimension that the first and last point should be in X1, the new design is not a valid nested design. We
could try to repair this by changing the assignment of the points to the sets X1 and X2. However, there
exists no assignment such that the invalid nested design in Figure 10 becomes a valid nested LHD on a
nested n2-grid.

Besides solving the above problem, a new method for generating designs can also take into account the
different objective function. As we consider the minimum of d1 and d2, we can, for instance, use different

9

methods depending on which of the two values is smallest. In the next section, we discuss some different
methods of generating new designs which take the above two aspects into account.

4.2 Generating new designs

The main problem which needs to be addressed by the new methods for generating new designs is the
distortion of the chosen grid structure. Fortunately, we can quite easily avoid this problem in the following
way. Instead of randomly choosing two points from the complete set of points, we choose two points from
either X1 or X2\X1. By exchanging coordinate values between two points within the same set, the chosen
grid structure is always maintained. Using this method, we do need to decide how to choose one of the
two sets. Random selection is one option, but as we aim to maximize min{d1, d2}, we could also base our
choice on whether d1 or d2 is smallest. When d1 is smallest, selecting two points from X2\X1 will not be
very useful as their positions do not directly influence the value of d1. The value of d2, on the other hand,
does depend on the positions of all points and therefore both sets are relevant when d2 is smallest.

We can also take into account that the grids are not unique when c2 is non-integer. For instance, when
n1 = 6 and n2 = 13, it can be verified that there are 21 different two-dimensional nested n2-grids after
accounting for reflection and rotational symmetry. In cases like these, the choice of a specific grid can
affect the maximal attainable value of d. Therefore, we consider different methods of selecting the grid
of the initial design. Furthermore, we also look at methods which can change a grid without it becoming
distorted.

Based on the above observations, we developed the following four methods for generating new designs.
The first method, which we call POINTRAND, starts with randomly selecting a point from X2. Depending
on whether this point is in X1 or not, we select a second point from X1 or X2\X1, respectively. This
simple method is probably closest to the method of the original ESE-algorithm. However, it does not take
into account the values of d1 and d2 and is not able to change the grid. To determine the effect of the first
aspect, we developed the second method to which we will refer as POINTDMIN. When d2 is smallest, the
method works in the same way as POINTRAND. However when d1 is smallest, only points from X1 can
be chosen as they are the only ones affecting d1.

The third and fourth method, GROUPRAND and GROUPDMIN, are able to change the grid. Re-
member that for all types of grids, there must be either bc2c − 1 or dc2e − 1 X2-coordinates between
every pair of consecutive X1-coordinates. By deciding between which pairs bc2c − 1 points are placed
and between which pairs dc2e − 1 points are placed, we fix a grid. To change a grid without it becoming
invalid, we thus have to change the assignment of bc2c − 1 and dc2e − 1 X2-points to the pairs of con-
secutive X1-coordinates. This principle leads to the following definitions of the two GROUP-methods.
The methods GROUPRAND and GROUPDMIN start with selecting a first point in the same way as
in POINTRAND and POINTDMIN, respectively. After this first step, both methods continue in the
same way. If a point in X1 is selected, we simply exchange two points in X1. Otherwise, we select with
equal probability to either exchange the selected point with another point in X2\X1 or to perform a
group-exchange. A group-exchange is performed by first selecting two pairs of consecutive X1-points, i.e.
X1-points which have consecutive X1-coordinates in the kth dimension. All X2 points between a pair of
consecutive X1-points are now referred to as a group. Note that when bc2c = 1, a group can be empty. To
generate a new design, we now switch the two groups. As both groups contain bc2c− 1 or dc2e− 1 points,
this will result in a valid nested design. When the number of points in the groups differ, the exchange
of the groups also changes the grid. Depending on the type of grid, the group exchange not only affects
the position of the points in the group but possibly also other points. Which and how other points are
affected differs per type of grid, but is fairly straightforward to determine.

To illustrate the different methods, we will again use the design in Figure 9. To simplify notation, we
will use the terms DMIN-, RAND-, POINT- or GROUP-method to refer to any of the two methods whose
name contain these words, e.g. POINTDMIN and GROUPDMIN are both DMIN-methods. As d1 < d2,
a DMIN-method would exchange a coordinate value of two points in X1. In the ESE-algorithm, a fixed
number of designs is generated and the best is selected for comparison against the current design. We
could for instance obtain the design in Figure 11. This design is obtained by exchanging one coordinate
value between the points with coordinates (0, 6

9) and (1, 4
9) in the current design of Figure 9. Looking at

the d-values, we see that this design is an improvement and will thus be selected by the ESE-algorithm
to become the new current design. Let us next consider a GROUP-method and take k equal to 2, i.e.
the dimension on the vertical axis. The two differently shaded areas in Figure 11 now form two possible
groups. Notice that the top group is empty as there are no X2-points between the X1-points. In Figure

10

0
1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

Figure 11: A nested Latin hypercube design of
n1 = 6 and n2 = 10 points; d = d2 = 0.5556
and d1 = 0.8025.

0
1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

Figure 12: A nested maximin Latin hypercube
design of n1 = 6 and n2 = 10 points; d = d1 =
0.8025 and d1 = 0.8889.

12, we see the result of exchanging the two groups. Because the groups are of different size, the grid has
now changed. Again the design has improved and in this case the design is even optimal.

5 Numerical results

To compare the four different variants of the ESE-algorithm, we generated three- and four-dimensional
nested designs with n1 = 5, 10, . . . , 50 and n2 = n1 + 5, . . . , 55, 60 for each of the three grid structures.
We thus consider 65 different pairs (n1, n2) for each dimension and grid structure. As the grid is not
unique when c2 /∈ N, which grid we select might affect the space-fillingness of the final design. For each
combination of n1, n2, dimension, and grid structure, we therefore ran the ESE-algorithm ten times with a
different grid and initial design. These computations have been performed on PCs with a 2.8-GHz Pentium
D processor and the variants were implemented in Matlab R2007a. Per variant, grid and dimension, it
took between 2 and 4 days to perform the ten runs of the ESE-algorithm for all 65 pairs.

For these ten runs, we tried two types of initial grids and designs: random and diagonal. For the first
type, we randomly select a grid and design satisfying the restrictions of the chosen grid structure. The
second type starts with a diagonal design, where each design point has the same value for all coordinates.
However, the results did not indicate a significant effect of the chosen type on the space-fillingness of the
final design. Therefore, we do not make a distinction between the results of the two types in the rest of
this paper.

Using the best results of the ten runs of the ESE-algorithm, we determine for each (n1, n2)-pair which
method(s) obtained a best design. In Tables 8 and 9 of the appendix, the separation distances of the best
generated designs are given for each of the three grid-structures. The percentage of the 65 (n1, n2)-pairs
for which a certain method performs best are presented in Table 2. Note that the sum of the percentages
per row is larger than 100%, because for some cases, a best design is found by multiple variants of the
ESE-algorithm. Due to the same reason, we can not take the sum of two columns to determine the
combined performance of two methods. When we study the results, we see that the two RAND-methods
find the best design for most cases. One reason for the relative poor performance of the DMIN-methods
could be that the number of neighbor designs is smaller. With neighbor designs, we mean all designs which
can be obtained by making one possible change to the current design. When d1 < d2, a DMIN-method
produces less neighbor designs than a RAND-method, because the DMIN-methods allow fewer possible
changes. This can make it more difficult for a DMIN-method to escape from a local minimum, which
could result in a worse performance. Of the two RAND-methods, GROUPRAND performs the best for
most cases. This indicates that the possibility to change the grid indeed improves the performance of
the ESE-algorithm. Based on these results, we decided to use both RAND-methods to obtain nested

11

RAND DMIN
Three-dimensional GROUP POINT GROUP POINT
Nested n1-grid 60 37 12 17
Nested n2-grid 63 34 17 17
Grid with nested
maximin axes

55 23 6 17

Four-dimensional
Nested n1-grid 66 26 2 11
Nested n2-grid 57 29 6 15
Grid with nested
maximin axes

52 23 9 15

Table 2: Percentage of the (n1, n2)-pairs for which a certain variant of the ESE-algorithm finds a best
design.

approximate maximin designs for dimensions five up to ten. For dimension ten, calculating all 65 pairs
took approximately 8 days per grid and variant. All generated nested designs can be found on the website
http://www.spacefillingdesigns.nl.

l1(n1,n2) l2(n1,n2)
Two-dimensional Average Range Average Range
Nested n1-grid 4.13 [0.00,36.75] 11.12 [-5.41,52.56]
Nested n2-grid 3.10 [-33.33,36.75] 8.92 [0.00,36.75]
Grid with nested
maximin axes

3.83 [-14.29,36.75] 10.08 [-11.61,45.79]

Three-dimensional
Nested n1-grid 11.00 [0.00,17.60] 7.23 [-1.07,15.81]
Nested n2-grid 11.14 [3.45,19.60] 7.90 [3.03,12.92]
Grid with nested
maximin axes

11.38 [0.19,17.63] 8.02 [2.88,13.69]

Four-dimensional
Nested n1-grid 8.90 [0.00,17.54] 4.01 [-2.82,10.78]
Nested n2-grid 9.89 [-0.16,16.82] 5.63 [2.11,11.21]
Grid with nested
maximin axes

9.95 [-1.37,17.03] 5.87 [2.22,11.63]

Table 3: Average and range of percentage loss lj(n1, n2) caused by using nested (approximate) maximin
designs instead of (approximate) maximin LHDs.

Furthermore, we are interested to see how much we lose in terms of space-fillingness by using nested
instead of non-nested designs. To determine this, we compare the d1- and d2-values of the best nested
design to the scaled separation distances of the (approximate) maximin LHDs of the same size. For
a pair (n1, n2), we denote the first distances by d1(n1, n2) and d2(n1, n2) and the latter distances by
d(n1) and d(n2). For d(n1) and d(n2), we use the best known (approximate) maximin LHDs available on
http://www.spacefillingdesigns.nl (December 2008). We now define the percentage loss in separation
distance as lj(n1, n2) := (dj(n1, n2)− d(nj)) /d(nj) for j = 1, 2. Table 3 represents the averages and the
ranges of these percentage losses over all evaluated (n1, n2)-pairs. Note that for two dimensions, we
evaluated different pairs than for the other dimensions. When we consider the two-dimensional results, we
see that the n2-grid on average gives the best space-fillingness for both designs X1 and X2. For the higher
dimensions, the averages and ranges are more similar, but the nested n1-grid performs slightly better on
both d1 and d2. These results are a bit surprising as we expected the nested n2-grid to perform better on
d2 and the nested n1-grid to perform better on d1. Another observation which might be surprising at first
sight is that some ranges also contain negative values. This means that for some (n1, n2)-pairs, the d1-
or d2-distance is better than the distance of the corresponding (approximate) maximin LHD. The main

12

explanation for this is that the designs X1 or X2 do not always have to satisfy the LHD structure. In
some cases, this enables X1 or X2 to attain a larger separation distance than the (approximate) maximin
LHD.

Although the above results give us some indication on which grids perform well in general, the results
do not tell us for a specific pair (n1, n2) which grid gives the highest d, d1 and d2 values. In Table 4, we
present the percentages of pairs (n1, n2), with c2 /∈ N, for which a grid type performs best on a particular
distance. We do not consider the pairs with c2 ∈ N because for these pairs all grids are equal.

Percentage best designs
Two-dimensional d d1 d2

Nested n1-grid 17 36 16
Nested n2-grid 67 56 72
Grid with nested maximin axes 16 11 13

Three-dimensional
Nested n1-grid 52 45 53
Nested n2-grid 19 37 21
Grid with nested maximin axes 29 18 26

Four-dimensional
Nested n1-grid 69 73 66
Nested n2-grid 26 19 27
Grid with nested maximin axes 6 8 8

Table 4: Percentage of the (n1, n2)-pairs, with c2 /∈ N, for which a particular grid type performs best on
d, d1, or d2.

Not surprisingly, the grids with the lowest average loss in Table 3 also have the highest percentage of
pairs for which they perform best. However, there is still a considerable percentage of pairs where one of
the other two grids perform better. It thus depends on the particular pair (n1, n2) which grid to choose
based on the separation distances. Furthermore in many situations in practice, the values of n1 and n2

are not fixed which leaves some freedom to change these values. In those situations, we can thus also
consider nested designs where n1 and n2 are slightly lower or higher. Let us, for example, consider the
two-dimensional designs with n1 = 5 and n2 = 10. In Table 5, we compare the losses of these designs to
the losses of the designs with n1 = 6 and n2 = 10. The comparison shows that all losses either reduce
or stay the same. Choosing n1 equal to 6 instead of 5 thus seems to be a better choice in terms of
space-fillingness.

Two-dimensional l1(5,10) l2(5,10) l1(6,10) l2(6,10)
Nested n1-grid 36.75 16.15 0.00 10.00
Nested n2-grid 28.34 10.56 10.42 10.56
Grid with nested maximin axes 31.20 12.28 2.02 8.17

Table 5: Example of reduction in percentage loss lj(n1, n2) by choosing different value for n1.

The choice for a specific grid or (n1, n2)-pair does not only depend on the space-fillingness. When it
is not known a priori which design parameters are significant, the non-collapsingness criterion should also
be considered. If the design collapses then the one-dimensional design should preferably be space-filling,
which is accomplished by choosing a grid with nested maximin axes.

Furthermore, the reason why a nested design is used may also affect the choice for a particular grid.
For example, a nested n1-grid or the grid with the highest d1 could be preferable for sequential evaluations,
because it is known for sure that the first set of design points is evaluated, whereas the evaluation of an
extra set of design points may depend on the previously evaluated set. However in the same setting, a
nested n2-grid is preferable when the final set of design points (i.e., X2) is required to be a Latin hypercube
design, as is often the case in practice. When dealing with linking design parameters, the choice for a
specific grid mostly depends on the question which of the two designs, i.e., X1 or X2, is considered to be
the most important one and should, thus, have an LHD structure or have the largest separation distance.

13

A grid with nested maximin axes should be used when there is no explicit preference for either one of the
designs. When constructing a training set and a test set, design X1, which forms the training set, is in
general the most important of the two designs. This is because the prediction accuracy of a metamodel is,
among others, affected by the choice of the evaluation points in the training set. A space-filling distribution
of these points over the feasible region is desirable and, hence, the grid for which the design points of X1

have the largest separation distance may be preferred. When combining high and low accuracy models, it
is hard to say which of the two designs is more important. The X2 design is important because it is used
to fit the initial model, but the X1 design is also important as it is used to evaluate the accurate model
whose results must improve the initial model.

From this discussion it follows that the notion of the “best” nested grid-design depends on the ap-
plication under consideration and the user’s preferences. Fortunately, there are some special cases that
make the comparison of the various nested grid-designs superfluous, i.e., when c2 ∈ N. In these cases, we
do not have to differentiate between different grid structures, because they will all yield the same nested
maximin design (and maximin distance).

6 Concluding remarks

A nested design consists of two separate designs, one being a subset of the other. Using these nested
designs, instead of traditional designs of computer experiments, is useful when dealing with training and
test sets, models with different levels of accuracy, linking parameters, or sequential evaluations, because
nested designs are able to capture the dependencies between the two black-box functions or evaluation
stages (with respect to the design parameters). This paper focuses on constructing nested (approximate)
maximin Latin hypercube designs in two and higher dimensions. The maximin criterion is used to find
space-filling nested designs, i.e., designs with the design points spread over the entire design space. By
choosing the design points on a grid, we ensure non-collapsingness, i.e., no two design points will have the
same coordinate values. We distinguish between three types of grids: a nested n1-grid, a nested n2-grid,
and a grid with nested maximin axes. Which grid to use is found to mainly depend on the application under
consideration and the user’s preferences. For two-dimensional designs, a branch-and-bound algorithm is
used to obtain nested maximin designs for all grids and for values of n2 up to 15. In the special case where
n1 − 1 is a divisor of n2 − 1, maximin distances up to n2 = 32 are provided.

For dimensions higher than two, we introduced four variants of the ESE-algorithm. Using a compari-
son of three- and four-dimensional designs, we determined that the POINTRAND- and GROUPRAND-
methods obtained the best results. Therefore, these methods are also used to obtain designs for dimensions
five up to ten. Furthermore, we studied the loss in space-fillingness by using nested designs instead of
non-nested designs. The results show that the nested n2-grid in general gives the smallest losses in two
dimensions and the nested n1-grid in higher dimensions. Furthermore, we noted that we can positively
influence the amount of loss by choosing slightly different values for n1 and n2.

We want to remark that the objective d = min{d1, d2} used in this paper is just one way of combining
the separation distances of X1 and X2. As mentioned in the introduction, alternative scalings factors and
formulations are possible. Taking the weighted sum of both objectives instead of the minimum would be a
possible alternative objective. When using this objective, the branch-and-bound and ESE-algorithms can
still be used with little or no adjustments. Note however, that the DMIN-methods are not a very logical
choice for this new objective as these methods explicitly consider the minimum of d1 and d2. Dealing with
maximizing d1 and d2 as a bi-objective optimization problem is another possibility. In that case, different
Pareto optimal nested designs could be found by using the weighted sum objective with various scaling
factors.

All nested (approximate) maximin designs generated for this paper can be found on the website
http://www.spacefillingdesigns.nl.

References

Barthelemy, J.F.M. and R.T. Haftka (1993). Approximation concepts for optimum structural design – A
review. Structural and Multidisciplinary Optimization, 5(3), 129–144.

Booker, A.J., J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset (1999). A rigor-
ous framework for optimization of expensive functions by surrogates. Structural and Multidisciplinary

14

Optimization, 17(1), 1–13.

Cherkassky, V. and F. Mulier (1998). Learning from data: Concepts, theory, and methods. Wiley-
Interscience Series on Adaptive and Learning Systems for Signal Processing, Communications, and
Control. Chichester: John Wiley & Sons.

Dam, E.R. van, B.G.M. Husslage, and D. den Hertog (2004). One-dimensional nested maximin designs.
CentER Discussion Paper 2004-66 . Tilburg University, Tilburg, The Netherlands.

Dam, E.R. van, B.G.M. Husslage, D. den Hertog, and J.B.M. Melissen (2007). Maximin Latin Hypercube
Designs in Two Dimensions. Operations Research 55(1), 158–169.

Dam, E.R. van, G. Rennen, and B.G.M. Husslage (2009). Bounds for Maximin Latin Hypercube Designs.
Operations Research. (to appear).

Grosso, A., A.R.M.J.U. Jamali, and M. Locatelli (2008). Finding maximin latin hypercube designs by
Iterated Local Search heuristics. European Journal of Operational Research, In Press, Corrected
Proof, –.

Hertog, D. den and H.P. Stehouwer (2002). Optimizing color picture tubes by high-cost nonlinear pro-
gramming. European Journal of Operational Research, 140(2), 197–211.

Husslage, B.G.M., E.R. van Dam, and D. den Hertog (2005). Nested maximin Latin hypercube designs in
two dimensions. CentER Discussion Paper 2005-79 . Tilburg University, Tilburg, The Netherlands.

Husslage, B.G.M., E.R. van Dam, D. den Hertog, H.P. Stehouwer, and E.D. Stinstra (2003). Collaborative
metamodeling: Coordinating simulation-based product design. Concurrent Engineering: Research and
Applications, 11(4), 267–278.

Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog (2008). Space-filling Latin hypercube
designs for computer experiments. CentER Discussion Paper 2008-104 . Tilburg University, Tilburg,
The Netherlands.

Jin, R., W. Chen, and A. Sudjianto (2005). An efficient algorithm for constructing optimal design of
computer experiments. Journal of Statistical Planning and Inference, 134(1), 268–287.

Johnson, M.E., L.M. Moore, and D. Ylvisaker (1990). Minimax and maximin distance designs. Journal of
Statistical Planning and Inference, 26, 131–148.

Jones, D., M. Schonlau, and W.J. Welch (1998). Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13, 455–492.

Kleijnen, Jack P.C. (2008). Design and Analysis of Simulation Experiments, Volume 111 of International
Series in Operations Research & Management Science. Springer.

Montgomery, D.C. (1984). Design and analysis of experiments (Second ed.). New York: John Wiley &
Sons.

Morris, M.D. and T.J. Mitchell (1995). Exploratory designs for computer experiments. Journal of Statis-
tical Planning and Inference, 43, 381–402.

Myers, R.H. (1999). Response surface methodology – Current status and future directions. Journal of
Quality Technology , 31, 30–74.

Qian, Z., C.C. Seepersad, V.R. Joseph, J.K. Allen, and C.F.J. Wu (2006). Building Surrogate Models
Based on Detailed and Approximate Simulations. Journal of Mechanical Design 128(4), 668–677.

Sacks, J., S.B. Schiller, and W.J. Welch (1989). Designs for computer experiments. Technometrics, 31,
41–47.

Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989). Design and analysis of computer experiments.
Statistical Science, 4, 409–435.

Santner, Th.J., B.J. Williams, and W.I. Notz (2003). The design and analysis of computer experiments.
Springer Series in Statistics. New York: Springer-Verlag.

Simpson, T.W., A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, and R.-J. Yang (2004). Approximation
methods in multidisciplinary analysis and optimization: A panel discussion. Structural and Multidis-
ciplinary Optimization, 27(5), 302–313.

Sobieszczanski-Sobieski, J. and R.T. Haftka (1997). Multidisciplinary aerospace design optimization: Sur-
vey of recent developments. Structural and Multidisciplinary Optimization, 14(1), 1–23.

15

Stinstra, E.D., H.P. Stehouwer, and J. van der Heijden (2003). Collaborative tube design optimization: An
integral meta-modeling approach. Proceedings of the Fifth ISSMO Conference on Engineering Design
Optimization. Como, Italy.

Ye, K.Q., W. Li, and A. Sudjianto (2000). Algorithmic construction of optimal symmetric Latin hypercube
designs. Journal of Statistical Planning and Inference, 90(1), 145–159.

16

Appendix

Table 6 provides the maximin distances for nested maximin Latin hypercube designs when n1 − 1 is a
divisor of n2− 1, i.e., c2 ∈ N, and for n2 ≤ 32. For n2 up to 15, and c2 6∈ N, Table 7 provides the maximin
distances for the two-dimensional nested maximin designs for all three grid structures. Tables 8 and 9
provide the separation distances of three- and four-dimensional nested approximate maximin designs with
n1 = 5, 10, . . . , 50 and n2 = n1 + 5, . . . , 55, 60 for all three grid structures. Besides these distances, all
tables also contain the scaled separation distances d(n1) and d(n2) of the approximate maximin LHDs
available on http://www.spacefillingdesigns.nl (December 2008). The nested approximate maximin
designs for dimensions five up to ten can also be found on this website.

n1 n2 d(n1) d(n2) d d1 d2
2 3 1.4142 1.0000 1.0000 1.4142 1.0000
2 4 1.4142 1.2910 0.8165 1.4142 0.8165
2 5 1.4142 1.1180 0.7071 1.4142 0.7071
3 5 1.0000 1.1180 0.7071 1.0000 0.7071
2 6 1.4142 1.0000 1.0000 1.4142 1.0000
2 7 1.4142 1.1547 0.9129 1.4142 0.9129
3 7 1.0000 1.1547 0.9129 1.0000 0.9129
4 7 1.2910 1.1547 0.8165 0.8165 1.1547
2 8 1.4142 1.0690 0.8452 1.4142 0.8452
2 9 1.4142 1.1180 1.0000 1.4142 1.0000
3 9 1.0000 1.1180 1.0000 1.0000 1.0000
5 9 1.1180 1.1180 1.1180 1.1180 1.1180
2 10 1.4142 1.0541 0.9428 1.4142 0.9428
4 10 1.2910 1.0541 0.8165 0.8165 0.9428
2 11 1.4142 1.0000 1.0000 1.4142 1.0000
3 11 1.0000 1.0000 1.0000 1.0000 1.0000
6 11 1.0000 1.0000 1.0000 1.0000 1.0000
2 12 1.4142 1.0871 0.9535 1.4142 0.9535
2 13 1.4142 1.0408 0.9129 1.4142 0.9129
3 13 1.0000 1.0408 0.9129 1.0000 0.9129
4 13 1.2910 1.0408 0.9129 1.2910 0.9129
5 13 1.1180 1.0408 0.8165 1.1180 0.8165
7 13 1.1547 1.0408 0.9129 1.1547 0.9129
2 14 1.4142 1.1435 1.0000 1.4142 1.0000
2 15 1.4142 1.1019 0.9636 1.4142 0.9636
3 15 1.0000 1.1019 0.8452 1.0000 0.8452
8 15 1.0690 1.1019 0.8452 1.0690 0.8452
2 16 1.4142 1.0646 1.0646 1.4142 1.0646
4 16 1.2910 1.0646 0.9309 1.2910 0.9309
6 16 1.0000 1.0646 0.7303 1.0000 0.7303
2 17 1.4142 1.0607 1.0308 1.4142 1.0308
3 17 1.0000 1.0607 1.0000 1.0000 1.0308
5 17 1.1180 1.0607 0.9014 1.1180 0.9014
9 17 1.1180 1.0607 0.7906 1.1180 0.7906
2 18 1.4142 1.0290 1.0000 1.4142 1.0000
2 19 1.4142 1.0000 1.0000 1.4142 1.0000
3 19 1.0000 1.0000 1.0000 1.0000 1.0000
4 19 1.2910 1.0000 0.9718 1.2910 0.9718
7 19 1.1547 1.0000 0.9718 1.1547 0.9718

10 19 1.0541 1.0000 0.7454 1.0541 0.7454
2 20 1.4142 0.9733 0.9733 1.4142 0.9733

n1 n2 d(n1) d(n2) d d1 d2
2 21 1.4142 1.0000 0.9487 1.4142 0.9487
3 21 1.0000 1.0000 0.9487 1.0000 0.9487
5 21 1.1180 1.0000 0.9487 1.1180 0.9487
6 21 1.0000 1.0000 0.9220 1.0000 0.9220

11 21 1.0000 1.0000 0.7071 1.0000 0.7071
2 22 1.4142 1.0911 0.9258 1.4142 0.9258
4 22 1.2910 1.0911 0.9258 1.2910 0.9258
8 22 1.0690 1.0911 0.8997 1.0690 0.8997
2 23 1.4142 1.0871 0.9535 1.4142 0.9535
3 23 1.0000 1.0871 0.9535 1.0000 0.9535

12 23 1.0871 1.0871 0.8528 0.8528 1.0871
2 24 1.4142 1.0632 1.0426 1.4142 1.0426
2 25 1.4142 1.0408 1.0408 1.4142 1.0408
3 25 1.0000 1.0408 1.0000 1.0000 1.0408
4 25 1.2910 1.0408 1.0206 1.2910 1.0206
5 25 1.1180 1.0408 0.9129 1.1180 0.9129
7 25 1.1547 1.0408 0.8660 1.1547 0.8660
9 25 1.1180 1.0408 1.0000 1.0000 1.0408

13 25 1.0408 1.0408 1.0408 1.0408 1.0408
2 26 1.4142 1.0198 1.0198 1.4142 1.0198
6 26 1.0000 1.0198 1.0000 1.0000 1.0000
2 27 1.4142 1.0000 1.0000 1.4142 1.0000
3 27 1.0000 1.0000 1.0000 1.0000 1.0000

14 27 1.1435 1.0000 1.0000 1.0000 1.0000
2 28 1.4142 1.0364 0.9813 1.4142 0.9813
4 28 1.2910 1.0364 0.9623 1.2910 0.9623

10 28 1.0541 1.0364 0.9428 0.9428 0.9813
2 29 1.4142 1.0177 0.9636 1.4142 0.9636
3 29 1.0000 1.0177 0.9636 1.0000 0.9636
5 29 1.1180 1.0177 0.9636 1.1180 0.9636
8 29 1.0690 1.0177 0.9449 1.0690 0.9449

15 29 1.1019 1.0177 0.9636 0.9636 0.9636
2 30 1.4142 1.0000 1.0000 1.4142 1.0000
2 31 1.4142 1.0328 0.9832 1.4142 0.9832
3 31 1.0000 1.0328 0.9832 1.0000 0.9832
4 31 1.2910 1.0328 0.9309 1.2910 0.9309
6 31 1.0000 1.0328 0.9309 1.0000 0.9309
7 31 1.1547 1.0328 0.9129 1.1547 0.9129

11 31 1.0000 1.0328 0.9309 1.0000 0.9309
16 31 1.0646 1.0328 0.9309 0.9309 0.9309
2 32 1.4142 1.0160 0.9672 1.4142 0.9672

Table 6: Maximin distances for two-dimensional nested maximin Latin hypercube designs; c2 ∈ N.

17

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2
3 4 1.0000 1.2910 0.6124 1.0000 0.6124 0.8165 1.3333 0.8165 0.6999 1.1429 0.6999
4 5 1.2910 1.1180 1.0541 1.2910 1.0541 1.1180 1.3693 1.1180 1.0880 1.3325 1.0880
3 6 1.0000 1.0000 0.9317 1.0000 0.9317 1.0000 1.2000 1.0000 0.9091 1.0909 0.9091
4 6 1.2910 1.0000 0.8165 0.8165 1.0541 0.9798 0.9798 1.0000 0.8645 0.8645 1.1161
5 6 1.1180 1.0000 0.8839 1.1180 0.8839 0.8944 0.8944 1.0000 0.9575 0.9722 0.9575
5 7 1.1180 1.1547 0.9682 1.1180 0.9682 0.9428 0.9428 1.1547 0.9897 1.0302 0.9897
6 7 1.0000 1.1547 1.0000 1.0000 1.0392 1.0541 1.0541 1.1547 1.1161 1.1161 1.1207
3 8 1.0000 1.0690 0.9354 1.0000 0.9354 1.0690 1.1429 1.0690 0.9978 1.0667 0.9978
4 8 1.2910 1.0690 0.7916 0.8165 0.7916 0.8452 1.3325 0.8452 0.7990 1.3152 0.7990
5 8 1.1180 1.0690 1.0458 1.1180 1.0458 0.8452 1.0302 0.8452 0.9990 1.0968 0.9990
6 8 1.0000 1.0690 0.8367 1.0000 0.8367 0.9035 0.9035 1.0690 0.9126 0.9383 0.9126
7 8 1.1547 1.0690 0.9129 0.9129 0.9860 0.9897 0.9897 1.0690 1.0319 1.0319 1.0349
4 9 1.2910 1.1180 0.8889 1.2910 0.8889 1.0000 1.2624 1.0000 0.9231 1.2814 0.9231
6 9 1.0000 1.1180 0.8944 1.0000 0.8944 1.0000 1.0078 1.0000 0.9575 0.9575 0.9722
7 9 1.1547 1.1180 0.9129 0.9129 1.0000 0.9682 0.9682 1.1180 0.9422 0.9422 1.0000
8 9 1.0690 1.1180 0.8571 1.0690 0.8571 1.0458 1.0458 1.1180 0.9990 0.9990 1.0679
3 10 1.0000 1.0541 0.8485 1.0000 0.8485 0.9428 1.1111 0.9428 0.8932 1.0526 0.8932
5 10 1.1180 1.0541 0.7071 0.7071 0.8839 0.8012 0.8012 0.9428 0.7692 0.7692 0.9247
6 10 1.0000 1.0541 0.9487 1.0000 0.9487 0.8958 0.8958 0.9428 0.9680 0.9798 0.9680
7 10 1.1547 1.0541 0.7906 1.1547 0.7906 0.9428 0.9813 0.9428 0.8883 0.8883 0.9035
8 10 1.0690 1.0541 0.8452 0.8452 0.9583 0.9296 0.9296 1.0541 0.9097 0.9226 0.9097
9 10 1.1180 1.0541 0.9561 1.0000 0.9561 0.9938 0.9938 1.0541 0.9513 0.9513 1.0090
4 11 1.2910 1.0000 0.8784 1.2910 0.8784 0.8944 1.1619 0.8944 0.8863 1.2103 0.8863
5 11 1.1180 1.0000 0.7454 1.1180 0.7454 0.8944 1.0770 0.8944 0.8131 1.0985 0.8131
7 11 1.1547 1.0000 0.8333 1.1547 0.8333 0.8944 1.0392 0.8944 0.8824 0.9666 0.8824
8 11 1.0690 1.0000 0.8452 0.8452 1.0102 0.9539 0.9539 1.0000 0.8965 0.8965 1.0715
9 11 1.1180 1.0000 1.0000 1.0000 1.0078 0.8944 1.0198 0.8944 0.9722 0.9722 1.0009

10 11 1.0541 1.0000 0.9428 0.9428 0.9938 0.9487 0.9487 1.0000 0.9680 0.9680 0.9798
3 12 1.0000 1.0871 0.8740 1.0000 0.8740 0.9535 1.0041 0.9535 0.9120 1.0009 0.9120
4 12 1.2910 1.0871 0.9965 1.2910 0.9965 1.0871 1.2695 1.0871 1.0250 1.2838 1.0250
5 12 1.1180 1.0871 0.7817 1.1180 0.7817 0.8528 1.0602 0.8528 0.7984 1.1039 0.7984
6 12 1.0000 1.0871 0.9446 1.0000 0.9446 0.9535 1.0947 0.9535 0.9511 1.0699 0.9511
7 12 1.1547 1.0871 0.8740 1.1547 0.8740 0.9535 0.9959 0.9535 0.8863 1.1222 0.8863
8 12 1.0690 1.0871 0.8452 0.8452 1.0051 0.9535 1.0205 0.9535 0.8518 0.8518 1.0307
9 12 1.1180 1.0871 1.0000 1.0000 1.0570 0.9271 0.9271 1.0871 0.9552 0.9552 0.9998

10 12 1.0541 1.0871 0.9428 0.9428 1.0423 0.9833 0.9833 1.0871 0.9664 0.9664 0.9862
11 12 1.0000 1.0871 1.0000 1.0000 1.0488 1.0365 1.0365 1.0871 1.0102 1.0102 1.0595
6 13 1.0000 1.0408 0.9522 1.0000 0.9522 0.9129 1.0035 0.9129 0.9589 0.9589 0.9805
8 13 1.0690 1.0408 0.8452 0.8452 1.0498 0.9129 0.9860 0.9129 0.8158 1.0380 0.8158
9 13 1.1180 1.0408 0.9186 1.0000 0.9186 0.9129 1.0000 0.9129 0.8748 1.0000 0.8748

10 13 1.0541 1.0408 0.9428 0.9428 0.9813 0.9129 1.0607 0.9129 0.9404 0.9583 0.9404
11 13 1.0000 1.0408 0.8944 0.8944 0.9798 0.9501 0.9501 1.0408 0.9301 0.9301 0.9476
12 13 1.0871 1.0408 0.9535 0.9535 0.9959 0.9965 0.9965 1.0408 0.9720 0.9720 1.0153
3 14 1.0000 1.1435 0.9286 1.0000 0.9286 0.8771 1.0769 0.8771 0.9082 0.9630 0.9082
4 14 1.2910 1.1435 0.9329 1.2910 0.9329 0.8771 1.3122 0.8771 0.8971 1.2280 0.8971
5 14 1.1180 1.1435 0.8498 1.1180 0.8498 0.7845 1.1717 0.7845 0.8035 1.1557 0.8035
6 14 1.0000 1.1435 0.8750 1.0000 0.8750 0.8771 1.0879 0.8771 0.8755 0.9722 0.8755
7 14 1.1547 1.1435 0.9234 1.1547 0.9234 0.8771 1.0659 0.8771 0.8863 1.0851 0.8863
8 14 1.0690 1.1435 0.8144 1.0690 0.8144 0.8771 1.0377 0.8771 0.8228 1.0801 0.8228
9 14 1.1180 1.1435 0.7906 0.7906 1.0078 0.8971 0.8971 1.1435 0.8210 0.8210 1.0284

10 14 1.0541 1.1435 0.9428 0.9428 1.0214 0.9515 0.9515 1.1435 0.9600 0.9600 1.0790
11 14 1.0000 1.1435 0.9192 1.0000 0.9192 1.0030 1.0030 1.1435 0.9774 0.9774 1.1144
12 14 1.0871 1.1435 0.9535 0.9535 1.0365 1.0519 1.0519 1.1435 1.0244 1.0244 1.0592
13 14 1.0408 1.1435 1.0408 1.0408 1.0623 1.0987 1.0987 1.1435 1.0716 1.0716 1.1154
4 15 1.2910 1.1019 0.8994 1.2910 0.8994 0.8748 0.8748 1.1019 0.9010 1.2852 0.9010
5 15 1.1180 1.1019 0.8432 1.1180 0.8432 0.9636 1.1518 0.9636 0.8994 1.1333 0.8994
6 15 1.0000 1.1019 0.9080 1.0000 0.9080 0.8452 0.9313 0.8452 0.8960 0.9731 0.8960
7 15 1.1547 1.1019 0.9582 1.1547 0.9582 1.1019 1.2372 1.1019 1.0456 1.2049 1.0456
9 15 1.1180 1.1019 0.7906 0.7906 0.9922 0.8452 1.0880 0.8452 0.7967 0.7967 1.0242

10 15 1.0541 1.1019 0.9428 0.9428 1.0599 0.9091 0.9091 0.9636 0.9299 0.9299 1.0758
11 15 1.0000 1.1019 0.9539 1.0000 0.9539 0.9583 0.9583 0.9636 0.9272 0.9272 1.0295
12 15 1.0871 1.1019 0.8672 1.0871 0.8672 0.9768 0.9768 1.1019 0.9675 0.9675 1.0147
13 15 1.0408 1.1019 0.9129 0.9129 0.9860 1.0202 1.0202 1.1019 0.9923 0.9923 1.0718
14 15 1.1435 1.1019 1.0000 1.0000 1.0176 1.0619 1.0619 1.1019 1.0368 1.0368 1.0759

Table 7: Maximin distances for two-dimensional nested designs; c2 6∈ N.

18

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2
5 10 1.3162 1.2009 1.1400 1.1906 1.1400 1.0583 1.0583 1.0591 1.0990 1.0990 1.1664
5 15 1.3162 1.1927 1.0827 1.3162 1.0827 1.1023 1.2524 1.1023 1.0661 1.2929 1.0661
5 20 1.3162 1.1410 1.0506 1.1906 1.0506 1.0510 1.1991 1.0510 1.0888 1.3087 1.0888
5 25 1.3162 1.1465 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546
5 30 1.3162 1.1061 1.0582 1.1906 1.0582 1.0647 1.2708 1.0647 1.0672 1.1876 1.0672
5 35 1.3162 1.1030 1.0605 1.1906 1.0605 1.0695 1.2148 1.0695 1.0530 1.1868 1.0530
5 40 1.3162 1.1033 1.0623 1.1906 1.0623 1.0507 1.1811 1.0507 1.0587 1.1847 1.0587
5 45 1.3162 1.0943 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553
5 50 1.3162 1.0899 1.0517 1.1906 1.0517 1.0508 1.2095 1.0508 1.0537 1.1726 1.0537
5 55 1.3162 1.0911 1.0510 1.1906 1.0510 1.0476 1.1857 1.0476 1.0471 1.1930 1.0471
5 60 1.3162 1.0902 1.0431 1.1906 1.0431 1.0454 1.2020 1.0454 1.0492 1.3137 1.0492

10 15 1.2009 1.1927 1.0285 1.0841 1.0285 1.0612 1.1119 1.0612 1.0396 1.0396 1.0559
10 20 1.2009 1.1410 0.9895 1.0074 0.9895 1.0030 1.0034 1.0030 1.0114 1.0118 1.0114
10 25 1.2009 1.1465 1.0036 1.0074 1.0036 1.0056 1.0218 1.0056 0.9895 0.9932 0.9895
10 30 1.2009 1.1061 1.0074 1.0074 1.0118 1.0051 1.0566 1.0051 1.0052 1.0052 1.0092
10 35 1.2009 1.1030 1.0221 1.0591 1.0221 1.0438 1.0684 1.0438 1.0182 1.0200 1.0182
10 40 1.2009 1.1033 1.0074 1.0074 1.0231 1.0289 1.0411 1.0289 1.0272 1.0531 1.0272
10 45 1.2009 1.0943 1.0108 1.0591 1.0108 1.0216 1.0216 1.0275 1.0224 1.0550 1.0224
10 50 1.2009 1.0899 1.0201 1.0591 1.0201 1.0402 1.0748 1.0402 1.0183 1.0183 1.0230
10 55 1.2009 1.0911 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119
10 60 1.2009 1.0902 1.0129 1.0591 1.0129 1.0265 1.0303 1.0265 1.0345 1.0512 1.0345
15 20 1.1927 1.1410 1.0612 1.0612 1.0908 1.0320 1.0383 1.0320 1.0431 1.0432 1.0431
15 25 1.1927 1.1465 0.9889 0.9889 1.0250 0.9984 1.0092 0.9984 1.0146 1.0146 1.0255
15 30 1.1927 1.1061 0.9889 0.9889 0.9996 0.9834 0.9834 0.9938 0.9824 0.9824 0.9994
15 35 1.1927 1.1030 0.9889 0.9889 0.9945 0.9975 0.9975 0.9993 0.9822 0.9843 0.9822
15 40 1.1927 1.1033 0.9889 0.9889 0.9889 0.9990 1.0117 0.9990 0.9942 0.9957 0.9942
15 45 1.1927 1.0943 0.9889 0.9889 0.9981 0.9957 1.0130 0.9957 0.9914 0.9914 0.9970
15 50 1.1927 1.0899 1.0038 1.0038 1.0041 0.9991 1.0140 0.9991 0.9990 1.0390 0.9990
15 55 1.1927 1.0911 1.0034 1.0038 1.0034 1.0046 1.0275 1.0046 1.0176 1.0185 1.0176
15 60 1.1927 1.0902 1.0283 1.0329 1.0283 1.0158 1.0221 1.0158 1.0111 1.0111 1.0128
20 25 1.1410 1.1465 1.0600 1.0603 1.0600 1.0311 1.0311 1.0409 1.0240 1.0240 1.0290
20 30 1.1410 1.1061 1.0224 1.0224 1.0322 1.0051 1.0080 1.0051 1.0097 1.0097 1.0135
20 35 1.1410 1.1030 0.9758 1.0030 0.9758 0.9856 1.0051 0.9856 0.9858 0.9858 0.9868
20 40 1.1410 1.1033 0.9570 0.9931 0.9570 0.9676 0.9676 0.9722 0.9711 0.9788 0.9711
20 45 1.1410 1.0943 0.9831 0.9831 0.9915 0.9854 0.9854 0.9892 0.9750 0.9750 0.9750
20 50 1.1410 1.0899 0.9909 0.9931 0.9909 0.9851 0.9938 0.9851 0.9854 0.9854 0.9872
20 55 1.1410 1.0911 0.9908 1.0030 0.9908 0.9849 0.9895 0.9849 0.9888 0.9888 0.9924
20 60 1.1410 1.0902 0.9831 0.9831 0.9897 0.9897 1.0011 0.9897 1.0013 1.0013 1.0117
25 30 1.1465 1.1061 1.0546 1.0546 1.1068 1.0289 1.0289 1.0647 1.0367 1.0396 1.0367
25 35 1.1465 1.1030 1.0339 1.0339 1.0521 1.0038 1.0038 1.0129 1.0081 1.0117 1.0081
25 40 1.1465 1.1033 0.9984 0.9984 1.0066 0.9952 1.0033 0.9952 0.9980 0.9994 0.9980
25 45 1.1465 1.0943 0.9618 0.9911 0.9618 0.9827 0.9834 0.9827 0.9877 0.9878 0.9877
25 50 1.1465 1.0899 0.9491 0.9764 0.9491 0.9737 0.9797 0.9737 0.9778 0.9792 0.9778
25 55 1.1465 1.0911 0.9744 0.9764 0.9744 0.9704 0.9704 0.9749 0.9725 0.9728 0.9725
25 60 1.1465 1.0902 0.9764 0.9764 0.9796 0.9720 0.9827 0.9720 0.9671 0.9698 0.9671
30 35 1.1061 1.1030 1.0647 1.0647 1.0759 1.0342 1.0342 1.0350 1.0267 1.0273 1.0267
30 40 1.1061 1.1033 1.0271 1.0271 1.0508 1.0119 1.0119 1.0252 1.0043 1.0043 1.0247
30 45 1.1061 1.0943 0.9995 0.9995 1.0094 0.9989 1.0022 0.9989 0.9897 0.9897 0.9930
30 50 1.1061 1.0899 0.9825 0.9825 0.9936 0.9823 0.9894 0.9823 0.9810 0.9839 0.9810
30 55 1.1061 1.0911 0.9357 0.9357 0.9466 0.9799 0.9805 0.9799 0.9823 0.9847 0.9823
30 60 1.1061 1.0902 0.9113 0.9113 0.9179 0.9658 0.9658 0.9720 0.9773 0.9834 0.9773
35 40 1.1030 1.1033 1.0653 1.0653 1.1151 1.0441 1.0441 1.0650 1.0322 1.0341 1.0322
35 45 1.1030 1.0943 1.0306 1.0306 1.0525 1.0122 1.0122 1.0212 1.0062 1.0062 1.0113
35 50 1.1030 1.0899 1.0129 1.0129 1.0139 1.0027 1.0027 1.0075 0.9980 0.9985 0.9980
35 55 1.1030 1.0911 0.9764 0.9764 0.9990 0.9840 0.9840 0.9849 0.9897 0.9897 0.9923
35 60 1.1030 1.0902 0.9764 0.9764 0.9766 0.9838 0.9838 0.9919 0.9833 0.9833 0.9841
40 45 1.1033 1.0943 1.0614 1.0614 1.1050 1.0483 1.0483 1.0553 1.0392 1.0392 1.0412
40 50 1.1033 1.0899 1.0362 1.0362 1.0647 1.0242 1.0242 1.0267 1.0073 1.0087 1.0073
40 55 1.1033 1.0911 1.0066 1.0066 1.0291 1.0046 1.0068 1.0046 0.9976 0.9976 1.0014
40 60 1.1033 1.0902 0.9761 0.9761 0.9919 0.9897 0.9956 0.9897 0.9899 0.9899 0.9907
45 50 1.0943 1.0899 1.0584 1.0584 1.0804 1.0416 1.0416 1.0508 1.0300 1.0300 1.0300
45 55 1.0943 1.0911 1.0492 1.0492 1.0686 1.0119 1.0170 1.0119 1.0116 1.0116 1.0164
45 60 1.0943 1.0902 1.0181 1.0181 1.0194 0.9977 0.9977 1.0007 0.9956 0.9983 0.9956
50 55 1.0899 1.0911 1.0402 1.0402 1.0744 1.0277 1.0277 1.0499 1.0321 1.0330 1.0321
50 60 1.0899 1.0902 1.0267 1.0267 1.0563 1.0172 1.0172 1.0265 1.0061 1.0068 1.0061

Table 8: Scaled separation distances for three-dimensional nested approximate maximin designs.

19

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2
5 10 1.3693 1.3608 1.2141 1.2748 1.2141 1.2472 1.3240 1.2472 1.2201 1.3279 1.2201
5 15 1.3693 1.3035 1.2069 1.2247 1.2069 1.2203 1.3325 1.2203 1.2001 1.3880 1.2001
5 20 1.3693 1.2862 1.1683 1.2247 1.1683 1.1784 1.1839 1.1784 1.1714 1.2810 1.1714
5 25 1.3693 1.2407 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738
5 30 1.3693 1.2241 1.1689 1.3693 1.1689 1.1706 1.2250 1.1706 1.1612 1.2926 1.1612
5 35 1.3693 1.2074 1.1735 1.2247 1.1735 1.1735 1.3323 1.1735 1.1621 1.2191 1.1621
5 40 1.3693 1.1902 1.1558 1.2247 1.1558 1.1640 1.2146 1.1640 1.1577 1.2222 1.1577
5 45 1.3693 1.1881 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560
5 50 1.3693 1.1830 1.1459 1.2247 1.1459 1.1492 1.3715 1.1492 1.1428 1.3652 1.1428
5 55 1.3693 1.1773 1.1490 1.2247 1.1490 1.1502 1.2642 1.1502 1.1389 1.2285 1.1389
5 60 1.3693 1.1734 1.1463 1.3693 1.1463 1.1487 1.2699 1.1487 1.1473 1.3674 1.1473

10 15 1.3608 1.3035 1.2347 1.2472 1.2347 1.1966 1.1995 1.1966 1.1871 1.1878 1.1871
10 20 1.3608 1.2862 1.1599 1.1706 1.1599 1.1419 1.1710 1.1419 1.1339 1.1339 1.1366
10 25 1.3608 1.2407 1.1564 1.1706 1.1564 1.1319 1.1319 1.1333 1.1365 1.1511 1.1365
10 30 1.3608 1.2241 1.1410 1.1706 1.1410 1.1373 1.1473 1.1373 1.1362 1.1564 1.1362
10 35 1.3608 1.2074 1.1482 1.1706 1.1482 1.1496 1.1672 1.1496 1.1291 1.1291 1.1306
10 40 1.3608 1.1902 1.1359 1.1386 1.1359 1.1427 1.1700 1.1427 1.1389 1.1462 1.1389
10 45 1.3608 1.1881 1.1364 1.1547 1.1364 1.1410 1.1497 1.1410 1.1331 1.1385 1.1331
10 50 1.3608 1.1830 1.1547 1.1547 1.1599 1.1454 1.1606 1.1454 1.1382 1.1425 1.1382
10 55 1.3608 1.1773 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425
10 60 1.3608 1.1734 1.1222 1.1222 1.1268 1.1391 1.1647 1.1391 1.1298 1.2066 1.1298
15 20 1.3035 1.2862 1.2124 1.2124 1.2207 1.1741 1.1741 1.1886 1.1751 1.1751 1.1852
15 25 1.3035 1.2407 1.1510 1.1560 1.1510 1.1341 1.1341 1.1407 1.1451 1.1456 1.1451
15 30 1.3035 1.2241 1.1126 1.1139 1.1126 1.1059 1.1101 1.1059 1.1011 1.1014 1.1011
15 35 1.3035 1.2074 1.1394 1.1394 1.1535 1.1139 1.1163 1.1139 1.1178 1.1178 1.1197
15 40 1.3035 1.1902 1.1135 1.1225 1.1135 1.1117 1.1267 1.1117 1.1128 1.1128 1.1225
15 45 1.3035 1.1881 1.1207 1.1225 1.1207 1.1060 1.1303 1.1060 1.1031 1.1031 1.1044
15 50 1.3035 1.1830 1.1239 1.1309 1.1239 1.1184 1.1221 1.1184 1.1103 1.1157 1.1103
15 55 1.3035 1.1773 1.1218 1.1309 1.1218 1.1112 1.1219 1.1112 1.1223 1.1234 1.1223
15 60 1.3035 1.1734 1.1139 1.1139 1.1155 1.1156 1.1166 1.1156 1.1036 1.1036 1.1091
20 25 1.2862 1.2407 1.1987 1.1987 1.2162 1.1671 1.1671 1.1702 1.1747 1.1747 1.1765
20 30 1.2862 1.2241 1.1732 1.1732 1.1904 1.1401 1.1429 1.1401 1.1386 1.1386 1.1418
20 35 1.2862 1.2074 1.1152 1.1313 1.1152 1.1155 1.1155 1.1162 1.1336 1.1336 1.1368
20 40 1.2862 1.1902 1.0988 1.0988 1.1083 1.0912 1.0945 1.0912 1.0878 1.0878 1.0929
20 45 1.2862 1.1881 1.1249 1.1260 1.1249 1.1013 1.1108 1.1013 1.0952 1.0952 1.1015
20 50 1.2862 1.1830 1.1098 1.1098 1.1145 1.0971 1.0971 1.1000 1.0917 1.0917 1.0945
20 55 1.2862 1.1773 1.1062 1.1098 1.1062 1.1010 1.1010 1.1078 1.0904 1.0904 1.0958
20 60 1.2862 1.1734 1.0988 1.0988 1.1024 1.1123 1.1123 1.1156 1.0885 1.0928 1.0885
25 30 1.2407 1.2241 1.2024 1.2024 1.2192 1.1600 1.1600 1.1651 1.1670 1.1670 1.1685
25 35 1.2407 1.2074 1.1629 1.1629 1.1690 1.1297 1.1313 1.1297 1.1431 1.1431 1.1474
25 40 1.2407 1.1902 1.1407 1.1407 1.1548 1.1227 1.1251 1.1227 1.1193 1.1193 1.1204
25 45 1.2407 1.1881 1.0996 1.1143 1.0996 1.0951 1.0975 1.0951 1.1057 1.1057 1.1108
25 50 1.2407 1.1830 1.0969 1.0990 1.0969 1.0946 1.0963 1.0946 1.0817 1.0817 1.0827
25 55 1.2407 1.1773 1.1182 1.1182 1.1204 1.1021 1.1127 1.1021 1.0875 1.0898 1.0875
25 60 1.2407 1.1734 1.1182 1.1182 1.1193 1.0916 1.0957 1.0916 1.0869 1.0869 1.0895
30 35 1.2241 1.2074 1.1950 1.1950 1.1980 1.1522 1.1522 1.1605 1.1509 1.1513 1.1509
30 40 1.2241 1.1902 1.1596 1.1596 1.1784 1.1258 1.1258 1.1264 1.1255 1.1266 1.1255
30 45 1.2241 1.1881 1.1401 1.1401 1.1477 1.1076 1.1076 1.1091 1.1198 1.1198 1.1204
30 50 1.2241 1.1830 1.1061 1.1146 1.1061 1.1105 1.1147 1.1105 1.1123 1.1123 1.1130
30 55 1.2241 1.1773 1.0861 1.0972 1.0861 1.0987 1.0998 1.0987 1.0935 1.0956 1.0935
30 60 1.2241 1.1734 1.0943 1.0943 1.1022 1.0822 1.0822 1.0835 1.0824 1.0824 1.0831
35 40 1.2074 1.1902 1.1799 1.1799 1.2144 1.1567 1.1567 1.1622 1.1488 1.1493 1.1488
35 45 1.2074 1.1881 1.1670 1.1670 1.1905 1.1365 1.1367 1.1365 1.1266 1.1266 1.1340
35 50 1.2074 1.1830 1.1496 1.1496 1.1568 1.1184 1.1259 1.1184 1.1078 1.1078 1.1123
35 55 1.2074 1.1773 1.1341 1.1341 1.1360 1.1062 1.1062 1.1067 1.1097 1.1097 1.1100
35 60 1.2074 1.1734 1.1071 1.1071 1.1147 1.0952 1.0952 1.0976 1.0892 1.0892 1.0939
40 45 1.1902 1.1881 1.1780 1.1780 1.2141 1.1556 1.1556 1.1574 1.1450 1.1457 1.1450
40 50 1.1902 1.1830 1.1728 1.1728 1.1848 1.1243 1.1243 1.1262 1.1319 1.1329 1.1319
40 55 1.1902 1.1773 1.1485 1.1498 1.1485 1.1146 1.1174 1.1146 1.1146 1.1146 1.1166
40 60 1.1902 1.1734 1.1354 1.1354 1.1437 1.0986 1.0988 1.0986 1.1064 1.1064 1.1075
45 50 1.1881 1.1830 1.1736 1.1736 1.2056 1.1407 1.1407 1.1454 1.1454 1.1454 1.1471
45 55 1.1881 1.1773 1.1780 1.1780 1.2026 1.1225 1.1236 1.1225 1.1225 1.1225 1.1244
45 60 1.1881 1.1734 1.1455 1.1455 1.1494 1.1121 1.1121 1.1126 1.1112 1.1112 1.1152
50 55 1.1830 1.1773 1.1718 1.1718 1.1981 1.1449 1.1449 1.1480 1.1443 1.1443 1.1445
50 60 1.1830 1.1734 1.1606 1.1606 1.2065 1.1254 1.1256 1.1254 1.1152 1.1152 1.1163

Table 9: Scaled separation distances for four-dimensional nested approximate maximin designs.

20

