249 research outputs found

    Modular Construction of Complete Coalgebraic Logics

    Get PDF
    We present a modular approach to defining logics for a wide variety of state-based systems. The systems are modelled by coalgebras, and we use modal logics to specify their observable properties. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular fashion. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems, for which no complete axiomatisation has been obtained so far

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Expressive Logics for Coinductive Predicates

    Get PDF
    The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum

    Get PDF
    State-based models of concurrent systems are traditionally considered under a variety of notions of process equivalence. In the case of labelled transition systems, these equivalences range from trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time - branching time spectrum. A combination of universal coalgebra and graded monads provides a generic framework in which the semantics of concurrency can be parametrized both over the branching type of the underlying transition systems and over the granularity of process equivalence. We show in the present paper that this framework of graded semantics does subsume the most important equivalences from the linear time - branching time spectrum. An important feature of graded semantics is that it allows for the principled extraction of characteristic modal logics. We have established invariance of these graded logics under the given graded semantics in earlier work; in the present paper, we extend the logical framework with an explicit propositional layer and provide a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser notions of process equivalence. We extract graded logics for a range of graded semantics on labelled transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based on our generic criterion

    Generic Trace Logics

    Get PDF
    We combine previous work on coalgebraic logic with the coalgebraic traces semantics of Hasuo, Jacobs, and Sokolova

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53
    • …
    corecore