
Theoretical Computer Science 388 (2007) 83–108
www.elsevier.com/locate/tcs

Modular construction of complete coalgebraic logics

Corina Cı̂rsteaa,∗, Dirk Pattinsonb

a School of Electronics and Computer Science, University of Southampton, UK
b Department of Computing, Imperial College London, UK

Received 18 November 2005; received in revised form 29 September 2006; accepted 11 June 2007

Communicated by B.P.F. Jacobs

Abstract

We present a modular approach to defining logics for a wide variety of state-based systems. The systems are modelled as
coalgebras, and we use modal logics to specify their observable properties. We show that the syntax, semantics and proof systems
associated with such logics can all be derived in a modular fashion. Moreover, we show that the logics thus obtained inherit
soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound,
complete and expressive logics for a wide variety of probabilistic systems, for which no complete axiomatisation has been obtained
so far.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Coalgebra; Modal logic; Completeness; Probabilistic systems

1. Introduction

Modularity has been a key concern in software engineering since the conception of the discipline [22]. This
paper investigates modularity not in the context of building software systems, but in connection with specifying and
reasoning about systems. Our work focuses on reactive systems, which are modelled as coalgebras over the category
of sets and functions. The coalgebraic approach provides a uniform framework for modelling state-based and reactive
systems [28]. In particular, coalgebras provide models for a large class of probabilistic systems, as shown by the recent
survey [3], which discusses the coalgebraic modelling of eight different types of probabilistic systems.

In the coalgebraic approach, a system consists of a state space C and a function γ : C → T C , which maps every
state c ∈ C to the observations γ (c) that can be made of c after one transition step. Different types of systems can
then be represented by varying the type T of observations. A closer look at the coalgebraic modelling of state-based
and reactive systems reveals that, in nearly all cases of interest, the type T of observations arises as the composite of
a small number of basic constructs.

The main goal of this paper is to lift this compositionality which exists at the level of observations to the level of
specification logics and proof systems. That is, we associate a specification logic and a proof system to every basic

∗ Corresponding author. Tel.: +44 2380593625.
E-mail addresses: cc2@ecs.soton.ac.uk (C. Cı̂rstea), dirk@doc.ic.ac.uk (D. Pattinson).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.06.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82370263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:cc2@ecs.soton.ac.uk
mailto:dirk@doc.ic.ac.uk
http://dx.doi.org/10.1016/j.tcs.2007.06.002

84 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

type construct, and show how to obtain specification logics and proof systems for a combination of constructs, in
terms of the ingredients of the construction. Our main technical contribution is the study of the properties which are
preserved by a combination of logics and proof systems. On the side of logics, we isolate a property which ensures that
combined logics have the Hennessy–Milner property w.r.t. behavioural equivalence, that is, the logical equivalence
of states coincides with behavioural equivalence. Since this property is present in all of the basic constructs and is
preserved by each combination of constructs, we automatically obtain expressive specification logics for a large class
of systems. Concerning proof systems, our main interests are the soundness and completeness of the combined logical
systems. In order to guarantee both, we investigate conditions which ensure that soundness and completeness of a
combination of logics are inherited from the corresponding properties of the ingredients of the construction. Again,
we demonstrate that this property is present in all basic building blocks.

As an immediate application of our compositional approach, we obtain sound, complete and expressive
specification logics for a large class of probabilistic system types. While the Hennessy–Milner property has already
been established for a number of such logics [19,13,9], sound and complete axiomatisations for these logics have
only been studied for a simple type of probabilistic systems, namely unlabelled probabilistic transition systems [10].
The modular approach presented in this paper allows us to also derive a completeness result for the probabilistic
modal logic of [13] (interpreted over Segala’s simple probabilistic automata [29]), as well as a logic with a sound and
complete axiomatisation for Segala’s general probabilistic automata [29].

Our main technical tool to establish the above results is the systematic exploitation of the fact that coalgebras model
the one-step behaviour of systems, i.e. one application of the coalgebra map allows us to extract information about
one transition step of the system being modelled. This one-step behaviour of systems is parallelled both on the level
of specification logics and on the level of proof systems. Regarding specification logics, we introduce the notion of
syntax constructor, which specifies a set of syntactic features allowing the formulation of assertions about the next
transition step of a system. The notion of one-step semantics then specifies how to interpret these syntactic features
over the next transition step. Finally, a proof system constructor specifies how one can infer judgements about the next
transition step.

These notions are used to make assertions about the global system behaviour, by viewing this behaviour as the
stratification of the observations which can be made after a (finite) number of transition steps. This is again parallelled
both on the level of logics and on the level of proof systems. Completeness, for example, can be established by isolating
the corresponding one-step notion, which we call one-step completeness, and proving by induction on the number of
transition steps that one-step completeness entails completeness in the ordinary sense. Expressiveness and soundness
are treated similarly by considering the associated notions of one-step expressiveness and one-step soundness. When
combining the logics, we combine the syntax constructors, the associated one-step semantics and the proof system
constructors, and show that such combinations preserve one-step soundness, completeness and expressiveness.

Our approach generalises previous work on coalgebraic modal logic, including the abstract coalgebraic logic of
Moss [21], and the concrete logics for coalgebras proposed in [17,27,11]. In particular, our approach provides logics
with sound and complete axiomatisations for probabilistic models. Moreover, thanks to the modular treatment of
languages and their associated semantics, our logics are easily extensible to accommodate more features of state-
based systems. A consequence of this wider generality is that our logics fail to be strongly complete, and accordingly
our treatment is focused on weak completeness instead.

Regarding further work, we plan to extend our approach to more expressive logics, in particular to coalgebraic
versions of CTL [7] and of the modal µ-calculus [16]. Also, it remains to be explored in what way our setup induces
logics for programming languages with coalgebraically defined semantics [30,14,2].

2. Preliminaries and notation

We denote the category of sets and functions by Set, and pick a final object 1 = {∗}. Binary products (coproducts)
in Set are written X1 × X2 (X1 + X2), with canonical projections πi : X1 × X2 → X i (canonical injections
ιi : X i → X1 + X2) for i = 1, 2. If R ⊆ X1 × X2 is a relation and T : Set → Set is an endofunctor, we
write T R ⊆ T X1 × T X2 for the relation defined by t1 (T R) t2 if there exists w ∈ T R such that Tπ1(w) = t1 and
Tπ2(w) = t2. Finally, the set of functions from Y to X is denoted by XY .

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 85

We write M : Set → Set for the (inclusion-preserving) functor taking a set A (of atoms) to the set of propositional
formulas built from atoms in A together with the propositional constant false (ff), by closing under implication (→).
The remaining propositional connectives can be defined on M A in terms of ff and → in the usual way.

We use endofunctors T : Set → Set, subsequently referred to as signature functors, to specify particular system
types. A signature functor T specifies the structure of the information which can be observed of the system states in
one step. Systems themselves are modelled as T -coalgebras.

Definition 1 (Coalgebras, Morphisms). A T -coalgebra is a pair (C, γ) with C a set (the carrier or state space of
the coalgebra) and γ : C → T C a function (the coalgebra map, or transition structure). A T -coalgebra morphism
f : (C, γ) → (D, δ) is a function f : C → D such that T f ◦ γ = δ ◦ f . The category of T -coalgebras and
T -coalgebra morphisms is denoted by CoAlg(T).

For (C, γ) ∈ CoAlg(T), the transition structure γ determines the observations γ (c) ∈ T C which can be made
from a state c ∈ C in one transition step. Morphisms between coalgebras preserve this one-step behaviour. The next
example shows that coalgebras can be used to model a wide variety of state-based systems, including non-deterministic
and probabilistic ones:

Example 2. We write P : Set → Set for the (covariant) powerset functor, Pω : Set → Set for the finite powerset
functor (i.e. Pω(X) = {Y ⊆ X | Y finite}), and D : Set → Set for the finite probability distribution functor, defined
by

DX =

{
µ : X → [0, 1] | µ(x) 6= 0 for finitely many x ∈ X and

∑
x∈X

µ(x) = 1

}
.

(1) For T X = (PX)A, T -coalgebras γ : C → (PC)A are in one-to-one correspondence with A-labelled transition
systems (C, R), where R ⊆ C × A × C is defined by (c, a, c′) ∈ R iff c′

∈ γ (c)(a). Similarly, coalgebras for
T X = (PωX)A are precisely the image-finite transition systems.

(2) For T X = PX × PD, T -coalgebras γ : C → PC × PD are in one-to-one correspondence with Kripke models
(C, R, V) over the set D of propositional atoms, with the accessibility relation R being given by (c, c′) ∈ R
iff c′

∈ π1(γ (c)), and with the valuation V : C → PD being given by π2 ◦ γ . Similarly, every P-coalgebra
determines a Kripke frame and vice-versa.

(3) Coalgebras for T X = (1 + DX)A are the A-labelled probabilistic transition systems of [19] (see [8] for details).
These have also been called reactive probabilistic systems in [31], and are different from the probabilistic transition
systems considered in [13], which are treated next.

(4) The simple and general probabilistic automata of [29] can be modelled as coalgebras for T X = (PDX)A and
T X = P(D(A × X)), respectively. Replacing the unbounded powerset functor by the finite powerset functor in
these definitions yields image-finite variants of these two types of systems. The image-finite simple probabilistic
automata are called probabilistic transition systems in [13].

Note that all the endofunctors in the previous example arise as combinations of a small number of simple functors
(constant, identity, powerset and probability distribution functor) using products, coproducts, exponentiation with
constant sets and composition. A recent survey of existing probabilistic models of systems [3] identified no less than
eight probabilistic system types of interest, all of which can be written as such combinations. This paper derives logics
and proof systems for these probabilistic system types, using similar combinations on the logical level.

Apart from making this kind of compositionality explicit, the coalgebraic approach also allows a uniform definition
of behavioural equivalence, which specialises to standard notions of equivalence in many important examples.

Definition 3 (Behavioural Equivalence). Given two T -coalgebras (C, γ) and (D, δ), two states c ∈ C and d ∈ D
are called behaviourally equivalent (written c ' d) if there exist T -coalgebra morphisms f : (C, γ) → (E, ε) and
g : (D, δ) → (E, ε) such that f (c) = g(d).

Any T -coalgebra (C, γ) induces an ω-indexed sequence of maps γn : C → T n1, where T n denotes the n-fold
application of the signature functor T . The maps γn are defined by induction on n: γ0 : C → 1 is the unique such map,
and γn+1 = T γn ◦ γ for n ∈ ω. Intuitively, T n1 contains all possible T -behaviours observable through n unfoldings

86 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

of the coalgebra structure, while γn maps states of the coalgebra to their n-step observable behaviour. A notion of
observational equivalence which only takes finitely observable behaviour into account can now be defined as follows:

Definition 4 (ω-Behavioural Equivalence). Given T -coalgebras (C, γ) and (D, δ), two states c ∈ C and d ∈ D are
called ω-behaviourally equivalent (written c 'ω d) if γn(c) = δn(d) for all n ∈ ω.

Remark 5. The notion of ω-behavioural equivalence is strictly weaker than behavioural equivalence. However, for
endofunctors whose final sequence stabilises in at most ω+ω steps, the two notions coincide (see [32,25]). The class
of endofunctors with this property includes the ω-accessible ones, and is closed under arbitrary coproducts of functors,
as well as under I-indexed limits of functors, with I a small category [32].

As a result, ω-behavioural equivalence coincides with behavioural equivalence both in the case of image-finite
transition systems, and in the case of probabilistic transition systems (with each of the functors Pω A and (1 + D)A

being obtained as a limit of ω-accessible functors). It is often possible to define finitary logics for which logical
equivalence coincides with ω-behavioural equivalence. On the other hand, we cannot in general hope to characterise
behavioural equivalence by a logic with finitary syntax.

It can also be shown that, for weak pullback preserving endofunctors, the notion of behavioural equivalence
coincides with the span-based notion of coalgebraic bisimilarity, as defined by Aczel and Mendler [1] and studied
by Rutten [28]. All functors considered in the following are weak pullback preserving.

Definition 6 (Bisimulation, Bisimilarity). A T -bisimulation between two T -coalgebras (C, γ) and (D, δ) is given
by a relation R ⊆ C × D that can be equipped with a T -coalgebra structure (R, ρ) which makes the projections
π R

1 : R → C and π R
2 : R → D T -coalgebra morphisms. The largest T -bisimulation between (C, γ) and (D, δ) is

called T -bisimilarity.

Coalgebraic bisimulation (bisimilarity) instantiates to known notions of bisimulation (bisimilarity) in concrete
cases.

Example 7. We consider the system types introduced in Example 2.

(1) For A-labelled transition systems, i.e. coalgebras for T X = (PX)A, T -bisimulation coincides with Park–Milner
bisimulation [23,20].

(2) For Kripke models over the set D of propositional atoms, i.e. coalgebras for T X = PX × PD, T -bisimulation
coincides with the standard notion of bisimulation, as defined e.g. in [4].

(3) For coalgebras for T X = (1+DX)A, that is, A-labelled probabilistic transition systems, T -bisimulation coincides
with the notion of probabilistic bisimulation considered in [19]. (This is proved in [8].)

(4) For coalgebras for T X = (PDX)A, that is, simple probabilistic automata, T -bisimulation coincides with the
stronger notion of bisimulation defined in [13]. (This is called simply bisimulation in [13], in order to distinguish
it from a weaker notion of equivalence referred to as probabilistic bisimulation.)

A more detailed analysis of probabilistic systems from a coalgebraic point of view can be found in [3].

3. Modular construction of modal languages

In this section we introduce syntax constructors and the modal languages they define. If we consider a modal
language L as an extension of the basic propositional language, the idea of a syntax constructor is that it describes
what needs to be added to the propositional language in order to obtainL. The important feature of syntax constructors
is that they can be combined in the same way as the signature functors which define the particular shape of the systems
under consideration.

After introducing the abstract concept, we give examples of some basic syntax constructors, and show how they
can be combined in order to obtain more complex syntax constructors, and hence more structured modal languages.

Definition 8 (Syntax Constructor, Induced Language). A syntax constructor is an ω-accessible endofunctor S :

Set → Set which preserves inclusions, i.e. SX ⊆ SY whenever X ⊆ Y . The language L(S) associated with a
syntax constructor S is the least set F (of formulas) such that

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 87

• ff ∈ F ,
• ϕ → ψ ∈ F whenever ϕ,ψ ∈ F ,
• SF ⊆ F .

In the above definition we silently assume that, for any set X , the elements of SX are sufficiently fresh, in the sense
that ff /∈ SX and ϕ → ψ /∈ SX whenever ϕ,ψ ∈ X .

The assumptions in Definition 8 ensure that the language associated with a syntax constructor S carries the structure
of an initial L-algebra, where L X = 1 + (X × X) + SX . Of course, one could have taken L(S) as (the carrier of)
the initial L-algebra directly, but the present treatment avoids abstract syntax and allows us to construct languages as
least fixpoints for monotone operators on sets in the usual way.

Recall that the image SX of a set X under an inclusion-preserving and ω-accessible endofunctor S can always be
reconstructed from the sets SY for finite subsets Y ⊆ X . More formally, if X is a set and x ∈ SX , we can always
find a finite subset Y ⊆ X such that x ∈ SY . The requirement that SF ⊆ F in Definition 8 is therefore equivalent
to SΦ ⊆ F whenever Φ is a finite subset of F . Thus, the ω-accessibility of S ensures that the construction of L(S)
terminates after ω steps, that is, we are dealing with finitary languages. Technically, we often use induction on the rank
(nesting depth of modal operators) of a formula as a proof principle, and ω-accessibility guarantees that the induction
terminates at ω.

Example 9. (1) If D is a set (of atomic propositions), then the constant functor SD L = D is a syntax constructor.
The associated language L(SD) is the set of propositional formulas over the set D of atoms.

(2) If Id : Set → Set is the identity functor, then the functor SId : Set → Set which maps a set L to the set
SId L = {◦ϕ | ϕ ∈ L } is a syntax constructor. The associated language is similar to the standard modal language
over the empty set of atomic propositions. However, this language will be interpreted over Id-coalgebras, which
provide a trivial model of deterministic systems.

(3) If M is a (possibly infinite) set of modal operators with associated finite arities, then SM is a syntax constructor,
where SM maps a set L (of formulas) to the set SM(L) of formal expressions, given by

SM(L) = {m(ϕ1, . . . , ϕn) | m ∈ M is n-ary and ϕ1, . . . , ϕn ∈ L}.

Viewing M as an algebraic signature, SM(L) is the set of terms with exactly one function symbol applied to
variables in L . In the literature on modal logic, M is called a modal similarity type [4]. The language associated
with SM is the set of modal formulas with modalities in M over the empty set of propositional variables. When
writing such formulas, we shall assume that the modal operators bind more tightly than any of the boolean
operators. For later reference, we let SP = SPω = S{�} where � has arity one, and SD = SM where
M = {L p | p ∈ Q ∩ [0, 1]}, Q denotes the set of rational numbers, and each L p has arity one. The language
associated with SP is the standard modal language over the empty set of atomic propositions. The language
associated with SD has a countable number of unary modalities, and has been used to describe properties of
probabilistic transition systems [19,13,10]. The intended reading of a formula L pϕ is “the probability of ϕ holding
in the next state is at least p”.

(4) If T is an inclusion-preserving, ω-accessible endofunctor, then S = T qualifies as a syntax constructor, and the
associated language L(S) is a variant of Moss’s coalgebraic logic for the functor T . In the original treatment
[21], the language is infinitary and only has modal operators (obtained using functor application) and infinitary
conjunctions. In contrast, the language L(S) is finitary and comes with all standard propositional connectives.

We are now ready for the first modularity issue of the present paper: the combination of syntax constructors to
build more powerful languages from simple ingredients.

Definition 10 (Combinations of Syntax Constructors). Consider the following operations on sets L1, L2 (of
formulas):

L1 ⊗ L2 = {[πi]ϕ | ϕ ∈ L i , i = 1, 2}

L1 ⊕ L2 = {〈κi 〉ϕ | ϕ ∈ L i , i = 1, 2}

L1 � E = {[e]ϕ | ϕ ∈ L1, e ∈ E}

where E is an arbitrary set. For syntax constructors S1,S2 we let

88 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

(S1 ⊗ S2)L = MS1L ⊗ MS2L (S1 ⊕ S2)L = MS1L ⊕ MS2L

(S1 � E)L = MS1L � E (S1 � S2)L = S1 MS2L .

Recall that M takes a set to the set of propositional formulas over that set. Note that the above operations are of a
purely syntactical nature. The addition of the symbols [πi], 〈κi 〉 and [e] will later ensure that the languages associated
with S1 ⊗ S2, S1 ⊕ S2 and S1 � E can be given a well-defined semantics.

When combining syntax constructors, we add another layer of modal operators to the syntax already defined.
Closure under propositional connectives (through the application of M) is needed to express propositional judgements
also at the level on which the construction operates, e.g. to have formulas of the form 〈κi 〉(¬�ϕ∧�ψ) inL(SP⊕SP).

The above definition is modelled after the definition of signature functors. Languages of the form L(S1 ⊗ S2) and
L(S1 ⊕ S2) will be used to formalise properties of systems whose signature functors are of the form T1 × T2 and
T1 + T2, respectively, while the language L(S1 � E) provides a means to reason about systems with signature functor
T1

E . The clause dealing with the composition of syntax constructors gives rise to S1-modal operators which are
indexed by S2-formulas. Alternatively, the composition of two syntax constructors can be thought of as introducing
an additional sort for formulas, as illustrated in the next example.

Example 11. Suppose Si L = {�iϕ | ϕ ∈ L} for i = 1, 2. Then the language L = L(S1 � S2) can be described by
the following grammar:

L 3 ϕ,ψ ::= ff | ϕ → ψ | �1ρ (ρ ∈ L′)

L′
3 ρ, σ ::= ff | ρ → σ | �2ϕ (ϕ ∈ L).

Languages of this kind have a two-layer structure, corresponding to systems that exhibit two different types of
behaviour (modelled by �1 and �2, respectively) in an alternating fashion. They are used to specify properties of
systems whose signature functor T is the composition of two functors: T = T1 ◦ T2. In order to capture all possible
behaviours described by T , we first have to describe the T2-behaviours, and then use these descriptions to specify
the observations which can be made according to T1. Since propositional connectives will in general be necessary
to capture all possible T2-behaviours, the definition of the syntax constructor S1 � S2 involves the closure under
propositional connectives before applying S1. Thus, the introduction of new sorts in the approach of [27,11] can be
explained as the construction of logics for the composition of two signature functors.

The next proposition shows that the constructions in Definition 10 indeed give rise to syntax constructors:

Proposition 12. S1 ⊗ S2, S1 ⊕ S2, S1 � E and S1 � S2 are syntax constructors.

Proof. It is clear that all four constructions are inclusion-preserving and functorial. The fact that they are ω-accessible
is immediate from the fact that accessibility is preserved under arbitrary coproducts and functor composition in Set,
and from the accessibility of M . �

In ordinary modal logic, the modal language L = L(S{�}) can be viewed as the stratification L =
⋃

n∈ω Ln ,
where Ln contains all modal formulas of rank ≤ n. A similar characterisation holds for the language associated with
an arbitrary syntax constructor. This, in particular, will allow us to use induction on the rank of formulas as a proof
principle.

Definition 13. Suppose S is a syntax constructor. Let L0(S) = M∅, and Ln+1(S) = (M ◦ S)(Ln(S)) for n ∈ ω. If
ϕ ∈ Ln(S), we say that ϕ has rank at most n.

If S = SM for a set M of modal operators, then Ln(S) contains all modal formulas with modal operators in M
whose nesting depth of modal operators is at most n.

The fact that Ln(S) for n ∈ ω constitutes a stratification of L(S) is the content of the next result.

Proposition 14. The following hold:

(1) Ln(S) ⊆ Ln+1(S) for all n ∈ ω;

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 89

(2) L(S) =
⋃

n∈ω Ln(S).

Proof. While the inclusion in the first of the above statements might initially appear slightly surprising, it should be
noted that the application of M introduces the constant truth values ff and tt (as ff → ff), and as a result, Ln(S) also
contains formulas of rank strictly smaller than n.

Induction on n and the preservation of inclusions by S and M are used to prove both the first statement and
the inclusion

⋃
n∈ω Ln(S) ⊆ L(S). The inclusion L(S) ⊆

⋃
n∈ω Ln(S) follows by induction on the structure of

formulas: First, ff ∈ L0(S) ⊆
⋃

n∈ω Ln(S). Second, if ϕ,ψ ∈
⋃

n∈ω Ln(S), and hence ϕ,ψ ∈ Ln(S) for some
n ∈ ω, then closure of Ln(S) under boolean connectives gives ϕ → ψ ∈ Ln(S) ⊆

⋃
n∈ω Ln(S). Finally, if

ϕ ∈ S(
⋃

n∈ω Ln(S)), then by ω-accessibility of S, ϕ ∈ S(Φ) for some finite set Φ ⊆
⋃

n∈ω Ln(S). Now Φ
finite together with Ln(S) ⊆ Ln+1(S) give Φ ⊆ Ln(S) for some n ∈ ω. Then, ϕ ∈ SΦ implies ϕ ∈ SLn(S)
(as S preserves inclusions), and therefore ϕ ∈ MSLn(S) = Ln+1(S) ⊆

⋃
n∈ω Ln(S). This concludes the proof of

L(S) ⊆
⋃

n∈ω Ln(S). �

Corollary 15. (M ◦ S)(L(S)) = L(S).

Proof. The definition of L(S) gives (M ◦ S)(L(S)) ⊆ L(S), while the second statement of Proposition 14 combined
with induction on n prove the reverse inclusion. �

For the subsequent development, it will be useful to regard the languages Ln(S) as closures under boolean
connectives of certain sets (of atoms).

Definition 16. The sets An(S) of atoms of rank n, with n ∈ ω, are defined by:

• A0(S) = ∅;
• An+1(S) = (S ◦ M)(An(S)) for n ∈ ω.

Some of the properties of the sets An(S) are given next.

Proposition 17. The following hold:

(1) MAn(S) = Ln(S) for all n ∈ ω;
(2) An(S) ⊆ An+1(S) for all n ∈ ω;
(3) Let A(S) =

⋃
n∈ωAn(S). Then S(L(S)) = A(S) and L(S) = M(A(S)).

Proof. The first two statements follow by induction on n. For the third statement, theω-accessibility of S together with
Proposition 14 and the definition of A(S) are used to prove S(L(S)) ⊆ A(S), while induction on n, the preservation
of inclusions by S and M , and Corollary 15 prove the reverse inclusion. A subsequent application of M and use of
Corollary 15 yields L(S) = M(A(S)). �

4. Modular construction of coalgebraic semantics

In the previous section, we have argued that a syntax constructor with associated languageL specifies those features
which have to be added to the propositional language in order to obtain L. In standard modal logic, this boils down
to adding the modal operator �, which can be used to describe the observable behaviour after one transition step.
Abstracting from this example, we now introduce the one-step semantics for a syntax constructor, which relates the
additional modal structure (specified by a syntax constructor) to the observations (specified by a signature functor)
which can be made of a system in one transition step. Throughout this section, S denotes a syntax constructor and T
is an endofunctor. Also, we write P̂ : Setop

→ Set for the contravariant powerset functor. To simplify the notation,
we make no distinction between (elements of) the set P̂X and (elements of) the set PX .

Definition 18 (One-Step Semantics). If L is a set (of formulas) and X is a set (of points), then an interpretation of L
over X is a function d : L → PX . A morphism between interpretations d : L → PX and d ′

: L ′
→ PX ′ is a pair

(t, f) with t : L → L ′ and f : X ′
→ X , such that d ′

◦ t = P̂ f ◦ d:

L
t //

d
��

L ′

d ′

��

PX
P̂ f

// PX ′

90 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

A one-step semantics [[S]]
T for a syntax constructor S w.r.t. an endofunctor T maps interpretations of L over X to

interpretations of SL over T X , in such a way that whenever (t, f) : d → d ′ is a morphism of interpretations, so is
(St, T f) : [[S]]

T (d) → [[S]]
T (d ′). We omit the superscript on the one-step semantics if the endofunctor T is clear

from the context.

A one-step semantics provides the glue between a language constructor S and a signature functor T .
The requirement that [[S]]

T preserves morphisms of interpretations ensures that [[S]]
T is defined uniformly on

interpretations. This will subsequently guarantee that the coalgebraic semantics of the induced language L(S) is
adequate w.r.t. behavioural equivalence, i.e. behaviourally equivalent states of coalgebras cannot be distinguished
using formulas of the language.

Remark 19. Let Int be the category whose objects are interpretations and whose arrows are morphisms between
interpretations. (That is, Int is the comma category Id ↓ 2– .) Also, let V : Int → Set (W : Int → Setop)
take d : L → PX to L (respectively X), and (t, f) to t (respectively f). A one-step semantics for S w.r.t. T can
alternatively be defined as a functor [[S]]

T
: Int → Int such that V ◦ [[S]]

T
= S ◦ V and W ◦ [[S]]

T
= T op

◦ W :

Set
S // Set

Int
[[S]]

T
//

W
��

V

OO

Int

W
��

V

OO

Setop
T op

// Setop

Equivalently, if one regards the category Int as a fibred span [12, Section 9.1] over the categories Set and Set
op

, a
one-step semantics for S w.r.t. T can be defined as a lifting [[S]]

T of S × T
op

to such spans:

Int
[[S]]

T
//

〈V,W 〉

��

Int

〈V,W 〉

��

Set × Set
op

S×T
op

// Set × Set
op

Lemma 20. There is a one-to-one correspondence between one-step semantics [[S]]
T for S w.r.t. T and natural

transformations δ : SP̂ ⇒ P̂T .

Proof. Given a one-step semantics [[S]]
T for S w.r.t. T , one can define a natural transformation δ : SP̂ ⇒ P̂T by

letting δC = [[S]]
T (1PC) for each set C . The naturality of δ follows from the functoriality of [[S]]

T . Conversely, given
δ : SP̂ ⇒ P̂T , one can define [[S]]

T
: Int → Int by [[S]]

T (d) = δX ◦ Sd for d : L → PX . The functoriality of [[S]]
T

follows from the functoriality of S and the naturality of δ. Moreover, the two mappings defined above are inverse to
each other. �

The previous correspondence establishes a connection with the work on dualities between categories of algebras
and coalgebras, see e.g. [18], where natural transformations of the same kind are used to provide coalgebraic semantics
for modal languages.

Now recall that, for a set A, M A gives the closure of A under propositional connectives. Then, interpretations
d : A → PX extend naturally to interpretations d] : M A → PX (by mapping ff to ∅ and ϕ → ψ to
(X \ d](ϕ)) ∪ d](ψ)). Also, a one-step semantics [[S]]

T for S w.r.t. T extends to a one-step semantics [[S ◦ M]]
T for

S ◦ M w.r.t. T , which maps an interpretation d : A → PX to the interpretation [[S]]
T (d]) : SM A → PT X . This

corresponds to an extension of the natural transformation δ : SP̂ ⇒ P̂T from Lemma 20 to a natural transformation
δ] : SMP̂ ⇒ P̂T , with δ] being given by δ ◦ Sν; here, the natural transformation ν : MP̂ → P̂ encodes the standard
interpretation of boolean operators on subsets.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 91

A variant of the notion of one-step semantics was introduced in [5,6]. For languages with unary modalities, a one-
step semantics essentially corresponds to a choice of a predicate lifting for each modal operator; languages and proof
systems arising in this way were previously studied in [24,25].

The key feature of a one-step semantics for a syntax constructor is that it gives rise to a semantics of L(S) w.r.t. T -
coalgebras, that is, it induces a satisfaction relation between T -coalgebras and formulas of L(S). Furthermore, we
can define a one-step semantics for a combination of syntax constructors in terms of some given one-step semantics
for the ingredients. Before describing these constructions, we provide one-step semantics for some simple syntax
constructors.

Example 21. We consider the syntax constructors introduced in Example 9.

(1) Suppose D is a set. The function which maps an arbitrary interpretation to the interpretation dD : D → PD,
x 7→ {x} defines a one-step semantics for SD w.r.t. the constant functor T X = D.

(2) A one-step semantics for SId w.r.t. Id is given by

[[SId]](d) : SId L → PX [[SId]](d)(◦ϕ) = {x ∈ X | x ∈ d(ϕ)}

for d : L → PX and ϕ ∈ L .
(3) A one-step semantics for SP w.r.t. P is defined by

[[SP]](d) : SP L → PPX [[SP]](d)(�ϕ) = {x ⊆ X | x ⊆ d(ϕ)}

for d : L → PX and ϕ ∈ L . Similarly, a one-step semantics for SPω w.r.t. Pω is given by the same formula, with
slightly different types:

[[SPω]](d) : SPω L → PPωX [[SPω]](d)(�ϕ) = {x ⊆ X | x finite, x ⊆ d(ϕ)}

where again d : L → PX and ϕ ∈ L .
(4) For the syntax constructor SD associated with the probability distribution functor D, we define a one-step

semantics by

[[SD]](d) : SDL → PDX [[SD]](d)(L pϕ) =

{
µ ∈ DX |

∑
x∈d(ϕ)

µ(x) ≥ p

}
for d : L → PX and ϕ ∈ L .

(5) If T is ω-accessible and preserves inclusions and weak pullbacks, a one-step semantics for the syntax constructor
S = T associated with Moss’s coalgebraic logic is defined by

[[S]](d) : SL → PT X [[S]](d)(Φ) = {x ∈ T X | x (T |=d)Φ}

for d : L → PX and Φ ∈ T L , where the relation |=d ⊆ X × L is given by x |=d ϕ iff x ∈ d(ϕ), and x (T |=d)Φ
iff there exists r ∈ (T |=d) such that Tπ1(r) = x and Tπ2(r) = Φ as described in Section 2.

We now return to the claim made at the beginning of this section, and show that a one-step semantics for a
syntax constructor S w.r.t. a signature functor T gives rise to an interpretation of the associated language L(S) over
T -coalgebras.

Definition 22 (Coalgebraic Semantics). Suppose S is a syntax constructor with one-step semantics [[S]]
T and

(C, γ) ∈ CoAlg(T). The coalgebraic semantics [[ϕ]] = [[ϕ]]C ⊆ C of a formula ϕ ∈ L(S) w.r.t. a T -coalgebra
(C, γ) is defined inductively on the structure of formulas by

[[ff]] = ∅ [[ϕ → ψ]] = (C \ [[ϕ]]) ∪ [[ψ]]

[[σ]] = P̂γ ([[S]]
T (dΦ)(σ)) for σ ∈ SΦ

where we inductively assume that [[ϕ]] is already defined for ϕ ∈ Φ via the map dΦ : Φ → PC . Given c ∈ C , we
write (C, γ, c) |= ϕ for c ∈ [[ϕ]]C , and Th(c) = {ϕ ∈ L(S) | (C, γ, c) |= ϕ}. Finally, we write (C, γ) |= ϕ if
(C, γ, c) |= ϕ for all c ∈ C , and |=T ϕ if (C, γ) |= ϕ for all (C, γ) ∈ CoAlg(T).

92 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

Before showing that this definition captures the standard interpretation of some known modal logics, we need to
show that the coalgebraic semantics is well defined, as we can have σ ∈ SΦ and σ ∈ SΨ for two different sets Φ,Ψ .

Lemma 23. The coalgebraic semantics of L(S) is well defined, that is, for (C, γ) ∈ CoAlg(T) and Φ,Ψ ⊆ L(S),
we have [[S]]

T (dΦ)(σ) = [[S]]
T (dΨ)(σ) for all σ ∈ SΦ ∩ SΨ .

Proof. The claim follows from the definition of a one-step semantics by considering the diagram

SΦ

[[S]]
T (dΦ)

��

Si // S(Φ ∪ Ψ)

[[S]]
T (dΦ∪Ψ)

��

SΨ
S j

oo

[[S]]
T (dψ)

��

P(T C) P(T C) P(T C)

where i : Φ → Φ ∪ Ψ and j : Ψ → Φ ∪ Ψ are the inclusions. �

Our definition of the coalgebraic semantics generalises the semantics of modal formulas, as well as the semantics
of the formulas considered in [10] and [21]:

Example 24. (1) Consider the syntax constructor SP defined in Example 9, and the associated semantics [[SP]] as in
Example 21. The induced coalgebraic semantics w.r.t. (C, γ) is defined inductively by

(C, γ, c) |= �ϕ iff (C, γ, c′) |= ϕ for all c′
∈ γ (c)

with c ∈ C and ϕ ∈ L(SP). This is the standard textbook semantics of modal logic [4].
(2) Consider the syntax constructor SD defined in Example 9, and the associated semantics [[SD]] as in Example 21.

The induced coalgebraic semantics w.r.t. (C, γ) is defined inductively by

(C, γ, c) |= L pϕ iff
∑

(C,γ,c′)|=ϕ

γ (c)(c′) ≥ p

with c ∈ C , ϕ ∈ L(SD) and p ∈ Q ∩ [0, 1]. Note that this agrees with the semantics of the probabilistic modal
logic of [10].

(3) Consider the syntax constructor S = T associated with Moss’s coalgebraic logic, and the corresponding semantics
[[S]] as defined in Example 21. The induced coalgebraic semantics w.r.t. (C, γ) is defined inductively by

(C, γ, c) |= ϕ iff γ (c) (T |=C) ϕ

with c ∈ C and ϕ ∈ T (L(S)) where the relation |=C ⊆ C × L(S) is given by c |=C ϕ iff (C, γ, c) |= ϕ. This
agrees with the standard semantics of Moss’s coalgebraic logic [21].

The above example shows that the coalgebraic semantics specialises to known semantics in concrete cases. We now
turn to the issue of combining one-step semantics, and show that we can derive a one-step semantics for a combination
of syntax constructors (see Definition 10) by combining one-step semantics for the ingredients. To make the notation
bearable, we disregard the dependency on the signature functor.

Definition 25 (Combinations of One-Step Semantics). Let d1 : L1 → PX1 and d2 : L2 → PX2 be interpretations
of L1 and L2 over X1 and X2, respectively, let E be an arbitrary set, and consider the functions

d1 ⊗ d2 : L1 ⊗ L2 → P(X1 × X2), [πi]ϕ 7→ {(x1, x2) | xi ∈ di (ϕ)}

d1 ⊕ d2 : L1 ⊕ L2 → P(X1 + X2), 〈κi 〉ϕ 7→ {ιi (xi) | xi ∈ di (ϕ)}

d1 � E : L1 � E → P(X E), [e]ϕ 7→ { f : E → X | f (e) ∈ d1(ϕ)}.

If [[Si]] is a one-step semantics for a syntax constructor Si w.r.t. an endofunctor Ti , for i = 1, 2, the one-step semantics
of various combinations of S1 and S2 are defined as follows:

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 93

[[S1 ⊗ S2]](d) = [[S1]](d)] ⊗ [[S2]](d)] : MS1L ⊗ MS2L → P(T1 × T2)X

[[S1 ⊕ S2]](d) = [[S1]](d)] ⊕ [[S2]](d)] : MS1L ⊕ MS2L → P(T1 + T2)X

[[S1 � E]](d) = [[S1]](d)] � E : (MS1L)� E → P(T1
E)X

[[S1 � S2]](d) = [[S1]]([[S2]](d)]) : S1 MS2L → PT1T2 X

where d : L → PX .

The intuitions behind the definitions of d1 ⊗ d2, d1 ⊕ d2 and d1 � E are as follows. Assuming that formulas in L1
and L2 are interpreted over X1 and X2, respectively, we can interpret formulas in L1 ⊗ L2 (L1 ⊕ L2) over X1 × X2
(X1 + X2). In the first case, a formula [πi]ϕ holds in x = (x1, x2) iff ϕ holds in xi . Also, 〈κi 〉ϕ holds in x ∈ X1 + X2
iff x = ιi (xi) and ϕ holds in xi . Finally, d1 � E interprets L1 � E in the structure P(X E), where, for a function
f : E → X , we have that f satisfies [e]ϕ iff f (e) satisfies ϕ.

Note that the presence of the ()] operator in the definitions of [[S1 ⊗ S2]], [[S1 ⊕ S2]], [[S1 � E]] and [[S1 � S2]]

ensures that the domains of [[S1 ⊗ S2]](d), [[S1 ⊕ S2]](d), [[S1 � E]](d) and [[S1 � S2]](d) are as required.
We now show that the combination of one-step semantics is well defined.

Proposition 26. Suppose [[Si]] is a one-step semantics for Si w.r.t. Ti , for i = 1, 2. Then [[S1 ⊗ S2]], [[S1 ⊕ S2]],
[[S1 � E]] and [[S1 � S2]] are one-step semantics for S1 ⊗ S2, S1 ⊕ S2, S1 � E and S1 � S2 w.r.t. T1 × T2, T1 + T2,
T1

E and T1 ◦ T2, respectively.

Proof. Straightforward unfolding of the respective definitions. �

We have now seen how we can combine syntax constructors and their associated one-step semantics. This gives
rise to a modular way of constructing logics for coalgebras. The following two sections present applications of this
modular approach. In the next section, we show that a combination of logics has the Hennessy–Milner property if
all the ingredients of the construction satisfy an expressiveness property. In the subsequent section, we show how to
obtain sound and complete proof systems for a combination of logics, by suitably combining sound and complete
proof systems for the building blocks.

5. Behavioural versus logical equivalence

In this section, we investigate the Hennessy–Milner property, stating that any two behaviourally equivalent points
have the same logical theory, on logics arising from syntax constructors and associated one-step semantics. We
introduce the notion of expressiveness for an interpretation, and show that if a one-step semantics for a syntax
constructor preserves expressiveness, then the induced logic has the Hennessy–Milner property. To treat logics which
arise from a combination of syntax constructors and associated one-step semantics, we show that a combination of
one-step semantics preserves expressiveness if all the ingredients do. This allows us to establish the Hennessy–Milner
property for combined logics in a modular fashion.

We begin with the easy part, and show that behaviourally equivalent states cannot be distinguished by formulas of
a logic induced by a syntax constructor and associated one-step semantics.

Proposition 27. Suppose S is a syntax constructor, [[S]]
T is a one-step semantics for S w.r.t. an endofunctor T , and

(C, γ), (D, δ) ∈ CoAlg(T). Then, Th(c) = Th(d) whenever c ' d, with c ∈ C and d ∈ D.

Proof. If c ' d , then there exist T -coalgebra morphisms f : (C, γ) → (E, ε) and g : (D, δ) → (E, ε)
such that f (c) = g(d). Thus, to show that Th(c) = Th(d), it suffices to show that Th(c) = Th(f (c)) for any
f : (C, γ) → (E, ε), or equivalently,

(C, γ, c) |= ϕ iff (E, ε, f (c)) |= ϕ

for any ϕ ∈ L(S) and f as above. The last statement follows by induction on the structure of formulas, using
Definition 22 and the functoriality of [[S]]

T . �

94 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

The remainder of this section is concerned with proving the converse of Proposition 27. To this end, we introduce
the notion of one-step expressiveness, which will allow us to derive the Hennessy–Milner property for a logic induced
by a syntax constructor and associated one-step semantics. Moreover, we show that this condition automatically holds
for a combination of syntax constructors and associated one-step semantics, if it holds for the ingredients of the
construction.

The formal definition of one-step expressiveness is as follows:

Definition 28 (One-Step Expressiveness). (1) An interpretation d : L → PX is expressive if the map dĎ
: X → PL

given by x 7→ {ϕ ∈ L | x ∈ d(ϕ)} is injective.
(2) A one-step semantics [[S]]

T is one-step expressive if [[S]]
T (d]) : SM A → PT X is expressive whenever

d : A → PX is.

The idea behind the notion of expressive interpretation is the following: if d : L → PX is expressive, then
the set {d(ϕ) | ϕ ∈ L} contains enough predicates to distinguish individual elements of X . Thinking of the set
Th(x) = {ϕ ∈ L | x ∈ d(ϕ)} as the theory of the point x ∈ X , then d is expressive if Th(x) = Th(x ′) implies
x = x ′ for all x, x ′

∈ X . Now recall that the language induced by a syntax constructor S is generated by the iterated
application of the functor S ◦ M , to an empty set of atoms to begin with (Definitions 13 and 16, and Propositions 14
and 17). Thus, our concern is the preservation of expressiveness at each step. The notion of one-step expressiveness
of a one-step semantics ensures that this is the case. (Recall that d] : M A → PX denotes the natural extension of an
interpretation d : A → PX to propositional formulas over A.)

Given the correspondence between one-step semantics [[S]]
T for S w.r.t. T and natural transformations δ : SP̂ ⇒

P̂T , one can give an alternative characterisation of the one-step expressiveness of [[S]]
T in terms of δ. To see this,

let η : Id ⇒ P̂ ◦ P̂ denote the unit of the adjunction P̂ ` P̂ , mapping x ∈ X to {Y ⊆ X | x ∈ Y }, and let
ρ ::= P̂SMη ◦ P̂δ]

P̂
◦ηT P̂ : T P̂ ⇒ P̂SM . Also, note that for an interpretation d : L → PX , the map dĎ

: X → PL

from Definition 28 is the unique such map with the property that d = P̂dĎ
◦ ηL and dĎ

= P̂d ◦ ηX .
The natural transformation ρ embodies the interpretation of the language given by a syntax constructor, and has

been used by Klin [15] in a category-theoretic setting, where the functor M is absorbed into the structure of the
category on top of which the logic is defined.

Proposition 29. Under the assumption that T preserves monomorphims, a one-step semantics [[S]]
T for S w.r.t. T is

one-step expressive if and only if all the components of the natural transformation ρ are monomorphisms.

Proof. We use the correspondence between one-step semantics [[S]]
T for T and natural transformations δ : SP̂ →

P̂T given in Lemma 20, and denote the inductively-defined interpretation of boolean operators over a set X by
νX : MP̂X → P̂(X); note that ν is natural.

Assume first that all the components of ρ are monomorphisms. To show one-step expressiveness of [[S]]
T , let

d : A → PX be an expressive interpretation. We have: ([[S]]
T (d]))Ď = P̂[[S]]

T (d]) ◦ ηT X = P̂Sd] ◦ P̂δX ◦ ηT X =

P̂SMd ◦ P̂SνX ◦ P̂δX ◦ ηT X = P̂SMd ◦ P̂δ]X ◦ ηT X = P̂SMηA ◦ P̂SMP̂dĎ
◦ P̂δ]X ◦ ηT X = P̂SMηA ◦ P̂δ]

P̂ A
◦

P̂2T dĎ
◦ ηT X = P̂SMηA ◦ P̂δ]

P̂ A
◦ ηT P̂ A ◦ T dĎ

= ρA ◦ T dĎ using the naturality of δ] and η. Now expressiveness

of d together with preservation of monomorphisms by T result in T dĎ being a monomorphism, which, together with
ρA being a monomorphism, result in ([[S]]

T (d]))Ď also being mono. Hence, [[S]]
T is one-step expressive.

Assume now that [[S]]
T is one-step expressive. To show that ρA : T P̂A ⇒ P̂SM A is a monomorphism, consider

the interpretation ηA : A → PPA. Since ηĎA = 1P A is a monomorphism, one-step expressiveness of [[S]]
T results in

[[S]]
T (η

]
A)

Ď also being a monomorphism. But [[S]]
T (η

]
A)

Ď
= ([[S]]

T (1P2 A)◦Sη]A)
Ď

= P̂([[S]]
T (1P2 A)◦Sη]A)◦ηT P̂ A =

P̂Sη]A ◦ P̂[[S]]
T (1P2 A) ◦ ηT P̂ A = P̂SMηA ◦ P̂SνP̂ A ◦ P̂δP̂ A ◦ ηT P̂ A = P̂SMηA ◦ P̂δ]

P̂ A
◦ ηT P̂ A = ρA. Hence, ρA

is a monomorphism. This concludes the proof. �

In what follows, we will refer to a one-step expressive one-step semantics simply as an expressive one-step
semantics. Using this terminology, our first main result can be stated as follows:

Theorem 30. If [[S]]
T is an expressive one-step semantics, then L(S) is expressive w.r.t. 'ω, that is, Th(c) = Th(d)

iff c 'ω d, for all (C, γ), (D, δ) ∈ CoAlg(T) and (c, d) ∈ C × D.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 95

In other words, the induced logic is rich enough to distinguish any two states which exhibit different behaviours in
finitely many steps.

The proof of this theorem uses induction on the rank of formulas (see Definition 13). We begin by showing that a
formula of rank at most n can be semantically represented by a subset of T n1. This representation is computed by the
functions dn , which we now introduce.

Definition 31. For n ∈ ω, the functions dn : An(S) → PT n1 with n ∈ ω are defined inductively by

• d0 : ∅ → P1 is the unique such map, and
• dn+1 = [[S]](d]n) for n ∈ ω.

The relationship between the coalgebraic semantics of a formula ϕ ∈ Ln(S) and the semantical representation
d]n(ϕ) is as follows:

Proposition 32 ([25, Lemma 4.10]). Let (C, γ) be a T -coalgebra and ϕ ∈ Ln(S). Then

c ∈ [[ϕ]]C iff γn(c) ∈ d]n(ϕ)

where the functions γn : C → T n1 with n ∈ ω are as in Definition 4.

Proof. Induction on n. �

Using this terminology, the proof of Theorem 30 can be given as follows:

Proof. Assume that (C, γ), (D, δ) ∈ CoAlg(T), and c ∈ C and d ∈ D have the same logical theory, that is,
(C, γ, c) |= ϕ iff (D, δ, d) |= ϕ for all ϕ ∈ L(S). We have to show that γn(c) = δn(d) for all n ∈ ω. This will follow
from Proposition 32, if we show that dn

Ď
: T n1 → P(Ln(S)) is injective for all n ∈ ω. For n = 0, this is immediate.

For n > 0, this follows from dn = [[S]](d]n−1) using the one-step expressiveness of [[S]]. �

Using the fact that ω-behavioural equivalence coincides with behavioural equivalence for coalgebras of a functor
whose final sequence stabilises in at most ω + ω steps (see Remark 5), we have the following corollary:

Corollary 33. Suppose the final sequence of T stabilises in at most ω + ω steps and [[S]]
T is one-step expressive.

Then L(S) is expressive, that is, Th(c) = Th(d) iff c ' d, for all (C, γ), (D, δ) ∈ CoAlg(T) and (c, d) ∈ C × D.

Note that the accessibility degree of T basically limits the branching degree of T -coalgebras [25], so the above
corollary is a coalgebraic Hennessy–Milner result.

It is easy to see that the one-step semantics for all the basic syntax constructors are one-step expressive:

Example 34. (1) Suppose D is a set. Then [[SD]] is one-step expressive, since the interpretation dD : D → PD,
x 7→ {x} is expressive.

(2) [[SId]] is one-step expressive. For, if d : A → PX is an expressive interpretation, and if the formula ϕ ∈ A ⊆ M A
distinguishes two points x 6= y ∈ X (under the interpretation provided by d), then the formula ◦ϕ ∈ SId M A
also distinguishes these two points (this time under the interpretation provided by [[SId]](d])).

(3) [[SPω]] is one-step expressive. To see this, let d : A → PX be an expressive interpretation, and let Y, Z ∈ PωX
be such that Y 6= Z . Say ∅ 6= (Y \ Z) 3 y. The expressiveness of d together with M A being closed under
negation yields, for each z ∈ Z , a formula ϕz ∈ M A such that z |=d] ϕz and y 6|=d] ϕz . Then, the formula
�
∨

z∈Z ϕz ∈ SPω M A holds in Z but not in Y . Hence, [[SPω]](d
]) : SPω M A → P(PωX) is expressive. We also

note that one-step expressiveness does not hold for the unbounded powerset functor. This observation is consistent
with the fact that Hennessy–Milner logic only characterises bisimulation on image-finite transition systems.

(4) [[SD]] is one-step expressive. To see this, let d : A → PX be an expressive interpretation, let µ, ν ∈ DX be
such that µ 6= ν, and let dom(µ) ∪ dom(ν) = {x1, . . . , xn}. Since µ 6= ν, there exists x ∈ dom(µ) such that
µ(x) 6= ν(x). We assume without loss of generality that x = x1 and µ(x1) > ν(x1). The expressiveness of d
together with M A being closed under negation yields, for each i ∈ {2, . . . , n}, a formula ϕi ∈ M A such that
x1 |=d] ϕi and xi 6|=d] ϕi . Now if q ∈ Q with ν(x1) < q < µ(x1), the formula Lq

∧
i=2,...,n ϕi ∈ SDM A holds

in µ but not in ν. Hence, [[SD]](d]) : SDM A → P(DX) is expressive.

96 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

Alternatively, Proposition 29 can be used to derive the expressiveness of the coalgebraic semantics above, using
essentially the same arguments. As the one-step semantics for all the basic syntax constructors are one-step expressive,
our next goal is to show that one-step expressiveness is preserved by all the combinations of syntax constructors and
associated one-step semantics. Again suppressing the dependency on the signature functor, we obtain:

Proposition 35. Suppose [[S1]] and [[S2]] are expressive one-step semantics w.r.t. T1 and T2, respectively. Then so are
the one-step semantics [[S1 ⊗ S2]], [[S1 ⊕ S2]], [[S1 � E]] and [[S1 � S2]] w.r.t. T1 × T2, T1 + T2, T1

E and T1 ◦ T2,
respectively.

Proof. In the case of [[S1 � S2]], the claim follows immediately from the definition of [[S1 � S2]] and from the
one-step expressiveness of [[S1]] and [[S2]]. Now suppose that d : A → PX is expressive; by our assumption,
[[Si]](d]) : Si M A → P(Ti X) are also expressive for i = 1, 2. To see that [[S1 ⊗ S2]] is expressive, assume
(x1, x2), (y1, y2) ∈ T1 X × T2 X with (x1, x2) 6= (y1, y2). Without loss of generality, assume that x1 6= y1.
By expressiveness of [[S1]](d]), we find ϕ ∈ S1 M A that distinguishes x1 and y1, i.e. x1 ∈ [[S1]](d])(ϕ) and
y1 /∈ [[S1]](d])(ϕ), or vice-versa. By construction of [[S1⊗S2]], the formula [π1]ϕ ∈ (S1⊗S2)M A then distinguishes
(x1, x2) from (y1, y2). We now turn to the expressiveness of [[S1⊕S2]](d]). Clearly the formula 〈κ1〉tt ∈ (S1⊕S2)M A
distinguishes any x ∈ ι1(T1 X) from any y ∈ ι2(T2 X), whereas the formula 〈κi 〉ϕ ∈ (S1 ⊕ S2)M A distinguishes
x = ιi (xi) from y = ιi (yi) whenever ϕ ∈ Si M A distinguishes xi from yi . Finally we show that [[S1 � E]] is
expressive. Suppose that f, g ∈ (T1

E)(X) with f 6= g, that is, f, g : E → T1 X with f (e) 6= g(e) for some e ∈ E .
As [[S1]] is one-step expressive, we find ϕ ∈ S1 M A that distinguishes f (e) from g(e), hence [e]ϕ ∈ (S1 � E)M A
distinguishes f from g. �

Thus, Theorem 30 applies to any combination of expressive one-step semantics. As a result, the logic induced by a
combination of syntax constructors with associated expressive one-step semantics distinguishes any two states up to
ω-behavioural equivalence, and in case the final sequence of T stabilises at, or before ω + ω, also up to behavioural
equivalence. As an immediate application, we obtain expressive logics for all system types discussed in Example 2.

In particular, for image-finite simple probabilistic automata, we obtain a variant of the logic described in [13] which
is expressive w.r.t. behavioural equivalence, and hence also w.r.t. the strong version of the notion of bisimulation
considered in [13] (see also Example 7).

6. Modular construction of proof systems

This section extends the methods presented so far to also include the compositional construction of proof systems.
Our main result shows that this can be done in such a way that the combined proof system inherits soundness and
completeness from its building blocks. The key notion needed to modularise the construction of proof systems is that
of a proof system constructor, which operates on the category of boolean theories, described next.

Definition 36. The category BTh of boolean theories is specified by the following data:

• objects are pairs (A,ΦA) where A is a set (of atoms), and ΦA ⊆ M A is a set (of theorems over A),
• morphisms f : (A,ΦA) → (B,ΦB) are functions f : A → B such that ϕ ∈ ΦA =⇒ M f (ϕ) ∈ ΦB .

We write Π1 : BTh → Set for the first projection functor.

It is easy to see that Π1 is actually a fibration that arises by change of base of the fibration Pred → Set along the
functor M [12], where Pred → Set is the standard fibration of subsets over sets. The fact that Π1 is a fibration is
however inconsequential for the later development.

The idea behind an object (A,ΦA) is that ΦA contains the set of all provable formulas over atoms in A. Note that
closure under propositional reasoning and modus ponens is not required in general for boolean theories. However,
there is a canonical way of transforming an arbitrary boolean theory into one which has the previously mentioned
property. This is captured by the inclusion-preserving functor Cl : BTh → BTh which takes a boolean theory (A,Φ)
to the boolean theory (A,Φ′), with Φ′ being obtained by adding all propositional tautologies over A to Φ, and closing
the resulting set of formulas under modus ponens. An immediate consequence of this definition is that Cl ◦ Cl = Cl.
The boolean theories of interest in the following will be obtained by applying Cl to certain sets of axioms.

Using the category BTh of boolean theories, we can now define the notion of proof system constructor as follows.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 97

Definition 37 (Proof System Constructor). Suppose S is a syntax constructor. A proof system constructor for S is an
inclusion-preserving, ω-accessible functor P : BTh → BTh that satisfies Π1 ◦ P = S ◦ M ◦ Π1.

Note that the above definition has several implications. First, it requires that P is compatible with S in the sense
that the diagram

BTh
P //

Π1
��

BTh

Π1
��

Set M
// Set

S
// Set

commutes, that is, P lifts S ◦ M . The presence of M ensures that the syntax constructor is only applied to sets of
formulas that are closed under boolean connectives. Second, the requirement that P is ω-accessible generalises a
standard requirement in proof systems, namely that an inference rule can only contain a finite number of premises.
Since P is ω-accessible, and since every BTh-object (A,Φ) is an ω-directed union of objects (C,Ψ) with C and Ψ
finite, the value P(A,Φ) is determined by the values P(C,Ψ) with C a finite subset of A and Ψ a finite subset of Φ.
That is, any ϕ ∈ P(A,Φ) is constructed using a finite number of atoms C ⊆ A, and is derived using a finite number
of premises Ψ ⊆ Φ. The ω-accessibility of a proof system constructor will later be shown to ensure that the induced
derivability predicate can be given an inductive characterisation.

The intuition behind the definition of a proof system constructor is as follows. The syntax constructor S specifies
a set of modalities to be added to the basic propositional language. The functor S ◦ M takes a set A of atoms to the
set A′ obtained by applying the modal operators defined by S to propositional formulas over A exactly once. Now
a corresponding proof system constructor takes a set of theorems over A, which contains all provable facts among
propositional formulas over A, and produces a set of axioms over A′. Subsequently closing these axioms together
with all propositional tautologies over A′ under modus ponens yields a set of theorems over A′, which contains all
provable facts concerning the next transition step that can be derived from the given theorems over A. In other words,
a proof system constructor specifies how theoremhood can be lifted to formulas containing an extra degree of nesting
of the modal operators. Note that proof system constructors only axiomatise those judgements that are needed on top
of propositional logic.

Since the axioms and rules of modal logic only involve formulas of rank at most one, and since the premises of
these rules only involve formulas of rank zero, it is straightforward to encode the modal logic K into a proof system
constructor. A similar encoding can be given for the probabilistic modal logic described in [10]. The next example
describes these encodings, as well as other proof system constructors that correspond to syntax constructors defined
in Example 9.

Example 38. (1) For the constant functor T X = D and the associated syntax constructor SD , we define a constant
proof system constructor PD by PD(A,Φ) = (D,Φ′), where ϕ ∈ Φ′

⊆ M D iff `
′ ϕ, and `

′ is defined by the
following axioms:

`
′
∨
d∈D

d (only if D finite) `
′
¬(d ∧ d ′) (d 6= d ′

∈ D).

(2) For the identity functor T X = X and the associated syntax constructor SId , we define a proof system constructor
PId by PId(A,Φ) = (SId M A,Φ′), where ϕ ∈ Φ′

⊆ MSId M A iff `
′ ϕ, and `

′ is defined by the following
axioms:

`
′ ◦ff → ff `

′ ◦(ϕ → ψ) ↔ (◦ϕ → ◦ψ)
` ϕ → ψ

`
′ ◦ϕ → ◦ψ

with ϕ,ψ ∈ M A, where we write ` ϕ for ϕ ∈ Φ. Note that, while the last axiom above is written as an
inference rule, it actually represents an axiom schema giving an axiom of the form `

′ ◦ϕ → ◦ψ for any theorem
ϕ → ψ ∈ Φ.

98 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

(3) Consider the syntax constructors SP and SPω from Example 9. For a boolean theory (A,Φ), define PP (A,Φ) =

PPω (A,Φ) = (SPM A,Φ′) where ϕ ∈ Φ′
⊆ MSPM A iff `

′ ϕ, and `
′ is defined by the following axioms:

`
′ �tt `

′ �ϕ ∧ �ψ → �(ϕ ∧ ψ)
` ϕ → ψ

`
′ �ϕ → �ψ

.

Then, PP (PPω) is a proof system constructor for SP (respectively SPω).
(4) Consider the syntax constructor SD from Example 9. For p ∈ Q ∩ [0, 1] and ϕ ∈ A, let Mpϕ ::= L1−p¬ϕ ∈

MSDM A, and E pϕ := L pϕ ∧ Mpϕ ∈ MSDM A. Recall that L p signifies “with probability at least p”;
accordingly Mp stands for “probability at most p”, while E p stands for “probability exactly p”. Thus, given
the one-step semantics [[SD]] of Example 21, we have

[[SD]](d])(Mpϕ) =

µ ∈ DX |

∑
x∈d](ϕ)

µ(x) ≤ p

[[SD]](d])(E pϕ) =

µ ∈ DX |

∑
x∈d](ϕ)

µ(x) = p

for d : A → PX and ϕ ∈ M A. Now given a finite sequence of formulas ϕ1, . . . , ϕm ∈ M A, let ϕ(k) stand for∨

1≤l1<···<lk≤m(ϕl1 ∧ · · · ∧ ϕlk); in particular, ϕ(k) = ff if k > m. Thus, the formula ϕ(k) states that, from among
the formulas ϕ1, . . . , ϕm , at least k are true at any point in X .

Next, for each boolean theory (A,Φ), define PD(A,Φ) = (SDM A,Φ′), where ϕ ∈ Φ′
⊆ MSDM A iff `

′ ϕ,
and `

′ is defined by the following axioms:

`
′ L0ϕ `

′ L ptt `
′ L pϕ → ¬Lq¬ϕ `

′
¬L pϕ → Mpϕ

`

max(m,n)∧
k=1

ϕ(k) ↔ ψ (k)

`
′

(m∧
i=1

L piϕi

)
∧

(
n∧

j=2
Mqiψi

)
→ L p1+···+pm−(q2+···+qn)ψ1

with p + q > 1 being required in the third axiom.
All but the last of the above axioms capture immediate properties of the one-step semantics [[SD]] defined

in Example 21. The last axiom exploits the well-definedness of integrals w.r.t. probability distributions. To
see this, assume that the formulas ϕ1, . . . , ϕm, ψ1, . . . , ψn ∈ M A are interpreted using d : A → PX , and
let d](ϕi) = Ei for i = 1, . . . ,m and d](ψ j) = F j for j = 1, . . . , n. Then, the “premise” of the last
axiom holds precisely when the sum of the characteristic functions of E1, . . . , Em coincides with the sum
of the characteristic functions of F1, . . . , Fn . Whenever this is the case, if µ : X → [0, 1] is a probability
distribution, we also have that

∑m
i=1 µ(Ei) =

∑n
j=1 µ(F j). This equality is further exploited in the “conclusion”

of this axiom: whenever µ(Ei) ≥ pi for i = 1, . . . ,m and µ(F j) ≤ q j for j = 2, . . . , n, then necessarily
µ(F1) ≥ p1 + · · · + pm − (q2 + · · · + qn).

The functor PD : BTh → BTh defined above qualifies as a proof system constructor for SD.
We conclude this example by noting that a standard proof system consisting of the axioms and rules in the

definition of PD (with `
′ replaced by `) together with the rule:

` ϕ ↔ ψ

` L pϕ ↔ L pψ

has been studied in [10]. We note, however, that by taking m = n = 1 in the last axiom defining PD, one obtains
both of the following:

` ϕ ↔ ψ

`
′ L pϕ → L pψ

` ϕ ↔ ψ

`
′ L pψ → L pϕ

and therefore the additional rule used in [10] is redundant.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 99

The previous example explains our choice of terminology as regards proof system constructors. Each of the proof
system constructors in Example 38 gives rise to a standard proof system for the language induced by the corresponding
syntax constructor. For example, replacing the symbol `

′ by ` in the axioms defining the proof system constructor
PP for SP yields a set of axioms and rules for standard modal logic.

Now recall that the language L(S) induced by a syntax constructor S was defined as the smallest set of formulas
which is closed under the application of S, as well as under propositional connectives. Similarly, a proof system
constructor P for S induces a derivability predicate on the language L(S), defined as the set of facts that can be
inferred by applying P together with propositional reasoning and modus ponens.

Definition 39 (Theory Induced by P). The theory induced by P, denoted (A(S),ΦP), is the least boolean theory of
the form (A(S),Φ) with the following properties:

• Cl(A(S),Φ) ⊆ (A(S),Φ), and
• P(A(S),Φ) ⊆ (A(S),Φ).

We write `P ϕ for ϕ ∈ ΦP.

Equivalently, (A(S),ΦP) can be characterised as the least boolean theory of the form (A(S),Φ) which satisfies

• (A(S),Φ) contains all instances of propositional tautologies,
• (A(S),Φ) is closed under modus ponens,
• P(A,Ψ) ⊆ (A(S),Φ) for any (A,Ψ) ⊆ (A(S),Φ) with A and Ψ finite.

Note that, since P lifts S ◦ M , we have (Π1 ◦ P)(A(S),ΦP) = (S ◦ M ◦ Π1)(A(S),ΦP) = (S ◦ M)(A(S)) =

S(L(S)) = A(S), and therefore the theory induced by P is well-typed.
We now apply our main programme also to this definition, and show that the theory induced by P can be viewed as

the stratification of a sequence of boolean theories Φn
P ⊆ Ln(S). This will open the road for the proof of soundness

and completeness, where induction on the rank of formulas will be available as a proof technique.

Definition 40. The boolean theories (An(S),Φn
P) with n ∈ ω are defined by:

• (A0(S),Φ0
P) = Cl(∅,∅);

• (An+1(S),Φn+1
P) = (Cl ◦ P)(An(S),Φn

P) for n ∈ ω.

We write `
n
P ϕ for ϕ ∈ Φn

P, with n ∈ ω.

Note that, since Π1◦Cl = Π1 and Π1◦P = S◦M◦Π1, we have (Π1◦Cl◦P)(An(S),Φn
P) = (Π1◦P)(An(S),Φn

P) =

(S◦M◦Π1)(An(S),Φn
P) = (S◦M)(An(S)) = An+1(S) for all n ∈ ω, and therefore the boolean theories (An(S),Φn

P)

with n ∈ ω are well-typed. Moreover, the following holds:

Proposition 41. For n ∈ ω, (An(S),Φn
P) ⊆ (An+1(S),Φn+1

P).

Proof. Induction on n, using the fact that both Cl and P preserve inclusions. �

We are now ready to give an inductive characterisation of the theory induced by P.

Proposition 42. The boolean theories (A(S),ΦP) and
⋃

n∈ω(An(S),Φn
P) coincide.

Proof. Induction on n proves (An(S),Φn
P) ⊆ (A(S),ΦP) for all n ∈ ω, which then yields

⋃
n∈ω(An(S),Φn

P) ⊆

(A(S),ΦP). The reverse inclusion follows by structural induction over ΦP: First, any ϕ ∈ ΦP which is an instance of
a propositional tautology belongs to some Ln(S) = MAn(S), and hence to Φn

P. Second, if ϕ and ϕ → ψ are in ΦP,
and by the induction hypothesis, also in Φn

P for some n ∈ ω, then closure of Φn
P under modus ponens gives ψ ∈ Φn

P.
Finally, suppose that ϕ ∈ P(A(S),ΦP). By ω-accessibility of P, we can assume that ϕ ∈ P(A,Ψ) for some (A,Ψ) ⊆

(A(S),ΦP), with A and Ψ finite. By the induction hypothesis, there exists n ∈ ω such that (A,Ψ) ⊆ (An(S),Φn
P).

Hence, ϕ ∈ P(A,Ψ) ⊆ P(An(S),Φn
P) ⊆ Cl(P(An(S),Φn

P)) = (An+1(S),Φn+1
P) ⊆

⋃
n∈ω(An(S),Φn

P). This
concludes the proof. �

100 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

As a result of Proposition 42, we can use induction on n to prove properties of (A(S),`P). In the following, we
consider soundness and completeness of (A(S),`P) w.r.t. the coalgebraic semantics induced by a one-step semantics
[[S]]

T for S, and show that these follow from soundness and completeness conditions involving [[S]]
T and P.

Definition 43 (One-Step Soundness and Completeness). A boolean theory (A,`) is sound (complete) w.r.t. an
interpretation d : A → PX if ` ϕ implies d](ϕ) = X (respectively d](ϕ) = X implies ` ϕ) for any ϕ ∈ M A.

A proof system constructor P for S is one-step sound (one-step complete) w.r.t. a one-step semantics [[S]]
T if

(Cl◦P)(A,`) is sound (respectively complete) w.r.t. [[S]]
T (d]) : SM A → PT X whenever (A,`) is sound (complete)

w.r.t. d : A → PX .

Using induction, we can derive soundness and weak completeness in the standard way from their one-step
counterparts; due to the lack of compactness, our logics usually fail to be strongly complete.

Theorem 44 (Soundness and Completeness). If the proof system constructor P for S is one-step sound (complete)
w.r.t. [[S]]

T , then (A(S),`P) is sound (respectively complete) w.r.t. the coalgebraic semantics of L(S), that is, |=T ϕ

if (only if) `P ϕ for all ϕ ∈ L(S).

Proof. We assume that T 1 6= ∅, as otherwise T X = ∅ for all X ∈ Set, and the claim is trivial. If the functions
dn : An(S) → PT n1 with n ∈ ω are as in Definition 31, then it follows by induction on n that `

n
P is sound

(complete) w.r.t. dn for n ∈ ω. Now soundness (completeness) of (A(S),`P) w.r.t. the coalgebraic semantics of L(S)
amounts to `P ϕ implies [[ϕ]]C = C for any T -coalgebra (C, γ) (respectively [[ϕ]]C = C for any T -coalgebra (C, γ)
implies `P ϕ). Moreover, if ϕ ∈ Ln(S), then by Proposition 32, [[ϕ]]C = C is equivalent to P̂γn(d

]
n(ϕ)) = C . Thus,

assuming that P is one-step sound, it follows that (A(S),`) =
⋃

n∈ω(An(S),`n
P) is sound w.r.t. the coalgebraic

semantics of L(S). Now assume that P is one-step complete, and let ϕ ∈ Ln(S) be such that [[ϕ]]C = C for any
T -coalgebra (C, γ). Consider the coalgebra (C, γ) = (T n1, T ni), where i : 1 → T 1 is chosen arbitrarily. Then,
(T ni)n = idT n1 : T n1 → T n1. The fact [[ϕ]]C = C now gives d]n(ϕ) = T n1, and hence, using the completeness of
`

n
P w.r.t. dn , `

n
P ϕ. Thus, `P ϕ, which concludes the proof. �

In the case of standard modal logic, the axioms and rules given in Example 38 (with `
′ replaced by `) together

with all instances of propositional tautologies and the modus ponens and uniform substitution rules, form a sound
and complete proof system. Similarly, for probabilistic transition systems, the axioms and rules given in Example 38
yield a sound and complete proof system: this was proved in [10] using the standard filtration method. However, these
results are of limited usefulness here, since in order to be able to derive soundness and completeness results for more
complex signature functors, defined in terms of P and D, we must prove that the proof system constructors PP and
PD are one-step sound and complete.

We now establish one-step soundness and completeness for all the proof system constructors introduced in
Example 38. Together with the fact that the combination of proof system constructors preserves one-step soundness
and completeness (which we will establish later), this puts us in the position to apply our modular techniques to a
large class of probabilistic system types, including probabilistic transition systems and probabilistic automata.

We begin with a simple technical lemma; recall that a disjunctive clause over a set A of atoms is a formula of the
form a1 ∨ · · · ∨ am ∨ ¬a′

1 ∨ · · · ∨ ¬a′
n with m, n ≥ 0 and a1, . . . , am, . . . , a′

1, . . . , a′
n ∈ A.

Lemma 45. Suppose (A,ΦA) ∈ BTh and let (A,`) = Cl(A,ΦA). If d : A → PX is an interpretation, the following
are equivalent:

(1) (A,`) is sound (complete) w.r.t. d,
(2) d(ϕ) = X if (only if) ` ϕ for every disjunctive clause ϕ over A.

Proof. Follows immediately by converting every formula ϕ ∈ M A into conjunctive normal form. �

We can now tackle completeness for our basic proof system constructors.

Proposition 46. The proof system constructors PD and PId defined in Example 38 are one-step sound and complete
w.r.t. [[SD]] and [[SId]], respectively.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 101

Proof. One-step soundness of both proof system constructors follows easily by unfolding their respective definitions.
To show one-step completeness, we fix (A,`) that is complete w.r.t. d : A → PX .

For the one-step completeness of PD , we have to show that (Cl ◦ PD)(A,`) = (SD M A,`′) is complete
w.r.t. [[SD]](d]) : SD M A → PD. Note that SD M A = D, and hence ([[SD]](d]))] : M D → PD is the inductive
extension of the mapping x 7→ {x}. For ϕ ∈ M D, we abbreviate ([[SD]](d]))](ϕ) by [[ϕ]]. Using this notation,
by Lemma 45 it suffices to show that [[

∨m
i=1 ¬ϕi ∨

∨n
j=1 ψ j]] = X implies `

′
∨m

i=1 ¬ϕi ∨
∨n

j=1 ψ j , where
ϕi , ψ j ∈ D. That is, we have to show that [[

∧m
i=1 ϕi]] ⊆ [[

∨n
j=1 ψ j]] implies `

′
∧m

i=1 ϕi →
∨n

j=1 ψ j . Assuming that
[[
∧m

i=1 ϕi]] ⊆ [[
∨n

j=1 ψ j]] holds, we have one of the three cases:
Case m = 0. Then [[

∧m
i=1 ϕi]] = D ⊆ [[

∨n
j=1 ψ j]], hence D is finite and {ψ j | 1 ≤ j ≤ n} = D. In this case, we

have `
′
∨

d∈D d , and `
′
∨n

j=1 ψ j follows by propositional reasoning.
Case {ϕi | 1 ≤ i ≤ m} = {d} for some d ∈ D. Then there exists 1 ≤ j ≤ n with ψ j = d = ϕ1, and since d → d

is a propositional tautology, the claim follows by propositional reasoning.
Case {ϕi | 1 ≤ i ≤ m} ⊇ {d0, d1} for some d0 6= d1 ∈ D. Then [[

∧m
i=1 ϕi]] = ∅, and we have, by the definition of

PD , that
∧m

i=1 ϕi → d0 ∧ d1 → ff →
∨n

j=1 ψ j , and the proof of the claim is complete.
We now establish the one-step completeness of PId , where we have to show that (Cl◦PId)(A,`) = (SId M A,`′)

is complete w.r.t. [[SId]](d]) : SId M A → PX . Similarly to the proof of the one-step completeness of PD , and also
abbreviating ([[SId]](d]))](ϕ) by [[ϕ]], it suffices to show that [[ϕ → ψ]] = X implies `

′ ϕ → ψ , where ϕ =∧m
i=1 ◦ϕi and ψ =

∨n
j=1 ◦ψ j with ϕ1, . . . , ϕm, ψ1, . . . , ψn ∈ M A. The assumption that [[ϕ → ψ]] = X together

with the definition of [[SId]] give
⋂m

i=1 d](ϕi) ⊆
⋃n

j=1 d](ψ j), or equivalently, d](
∧m

i=1 ϕi →
∨n

j=1 ψ j) = X .
The completeness of (A,`) w.r.t. d now gives `

∧m
i=1 ϕi →

∨n
j=1 ψ j . Finally, the axioms defining PId can be

used to derive first `
′ ◦

∧m
i=1 ϕi → ◦

∨n
j=1 ψ j , and then, also using propositional reasoning and modus ponens,

`
′
∧m

i=1 ◦ϕi →
∨n

j=1 ◦ψ j . (Note that the first two axioms in the definition of PId result in the modal operator ◦
distributing over all boolean operators.) Thus, `

′ ϕ → ψ . This concludes the proof. �

We proceed to establish one-step completeness for the powerset functor (as in [24], but with a different proof) and
the probability distribution functor.

Proposition 47. The proof system constructors PP and PPω defined in Example 38 are one-step sound and complete
w.r.t. [[SP]] and [[SPω]], respectively.

Proof. The one-step soundness of PP w.r.t. [[SP]] follows easily from the definitions of PP and [[SP]]. To prove
one-step completeness, we fix (A,`) complete w.r.t. d : A → PX , and show that (Cl ◦ PP)(A,`) = (SPM A,`′)

is complete w.r.t. [[SP]](d]) : SPM A → PPX . By Lemma 45, it suffices to show that ([[SP]](d]))](ϕ → ψ) = PX
implies `

′ ϕ → ψ , where ϕ =
∧m

i=1 �ϕi and ψ =
∨n

j=1 �ψ j with ϕ1, . . . , ϕm, ψ1, . . . , ψn ∈ M A. So assume, for
the sake of contradiction, that d](

∧m
i=1 ϕi) 6⊆ d](ψ j) for any j ∈ {1, . . . , n}. By choosing x j ∈ d](

∧m
i=1 ϕi) \

d](ψ j) for j ∈ {1, . . . , n}, we obtain {x1, . . . , xn} ∈ ([[SP]](d]))](�
∧m

i=1 ϕi) = ([[SP]](d]))](
∧m

i=1 �ϕi) ⊆

([[SP]](d]))](
∨n

j=1 �ψ j). This yields j0 ∈ {1, . . . , n} such that {x1, . . . , xn} ∈ ([[SP]](d]))](�ψ j0). But this
contradicts the fact that x j0 6∈ d](ψ j0). Hence, there exists some j ∈ {1, . . . , n} such that d](

∧m
i=1 ϕi) ⊆ d](ψ j)

(or equivalently, d](
∧m

i=1 ϕi → ψ j) = X). The completeness of (A,`) w.r.t. d now gives `
∧m

i=1 ϕi → ψ j . The last
axiom in the definition of PP (see Example 38) then gives `

′ �
∧m

i=1 ϕi → �ψ j , which, together with the second
axiom in the definition of PP and some suitable use of propositional reasoning, yield `

′
∧m

i=1 �ϕi → �ψ j . Some
further use of propositional reasoning finally gives `

′
∧m

i=1 �ϕi →
∨n

j=1 �ψ j , that is, `
′ ϕ → ψ as required. The

one-step soundness and completeness of PPω w.r.t. [[SPω]] is proved similarly. �

Proposition 48. The proof system constructor PD defined in Example 38 is one-step sound and complete w.r.t. [[SD]].

Proof. The one-step soundness of PD w.r.t. [[SD]] follows easily from the definitions of PD and [[SD]] (see also the
discussion motivating the last axiom in Example 38).

The one-step completeness of PD w.r.t. [[SD]] is proved using a version of the theorem of the alternative. Before
stating this theorem, we fix some notations. If Z is a sub-vector space of QN , we write Z⊥ for the orthogonal subspace
{z̄ ∈ QN

| z̄z = 0 for every z ∈ Z}, where, for z = (z1, . . . , zN) and z̄ = (z̄1, . . . , z̄N), z̄z = z̄1z1 + · · · + z̄N zN is
the usual dot product. Also, if q ∈ Q and I is an interval in Q, we write q I for the interval in Q defined by the set

102 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

{q ∗ i | i ∈ I }. We identify an element q ∈ Q with the singleton set {q} and write I < J , for I, J ⊆ Q whenever i < j
for all i ∈ I and all j ∈ J . In particular, I > 0 is used as a shorthand for i > 0 for all i ∈ I . Finally, if I1, . . . , IN are
intervals in Q, we write I1 +· · ·+ IN for the interval {i1 +· · ·+ in | i1 ∈ I1, . . . , iN ∈ IN }. The previously-mentioned
result can now be stated as follows.

Theorem 49 (Rockafellar [26]). Let Z be a subspace of QN and I1, . . . , IN be intervals in Q. Then, one and only
one of the following alternatives holds:

(*) There exists a vector z = (z1, . . . , zN) ∈ Z such that z1 ∈ I1, . . . , zN ∈ IN ;
(**) There exists a vector z̄ = (z̄1, . . . , z̄N) ∈ Z⊥ such that z̄1 I1 + · · · + z̄N IN > 0.

We now return to the proof of one-step completeness of PD. We fix (A,`) complete w.r.t. d : A → PX , and
show that (Cl ◦ PD)(A,`) = (SDM A,`′) is complete w.r.t. [[SD]](d]) : SDM A → PDX . Again, by Lemma 45, it
suffices to show that ([[SD]](d]))](ϕ → ψ) = DX implies `

′ ϕ → ψ , where ϕ =
∧m

i=1 Lαiϕi andψ =
∨n

j=1 Lβ jψ j
with ϕ1, . . . , ϕm, ψ1, . . . , ψn ∈ M A. This can, in turn, be reduced (through propositional reasoning and the use of the
second axiom in the definition of PD) to show that `

′ L1tt ∧ ϕ ∧ ¬ψ → ff. To show this, let α0 = 1 and ϕ0 = tt, and
consider all (finitely many) formulas of the form ξ = ϕ′

0 ∧· · ·∧ϕ′
m ∧ψ ′

1 ∧· · ·∧ψ ′
n , where each ϕ′

i is either ϕi or ¬ϕi ,
each ψ ′

j is either ψ j or ¬ψ j , and such that 6` ξ → ff. Now let Ξ contain exactly one such ξ from each equivalence
class for the equivalence relation ξ ∼ ξ ′ iff ` ξ ↔ ξ ′. Some immediate properties of Ξ are:

• ` ξ ∧ ξ ′
→ ff for any ξ, ξ ′

∈ Ξ s.t. ξ 6= ξ ′,
• `

∨
ξ∈Ξ ξ .

Next, let L ′
⊆ MSDM A consist of formulas which contain only ϕi s, ψ j s and ξs as atomic sub-formulas, and

only multiples of 1
q as probability values, where q is the smallest common denominator of α1, . . . , αm, β1, . . . , βn .

Showing that `
′ L1tt∧ϕ∧¬ψ → ff can be reduced (through propositional reasoning and the use of the fourth axiom

in the definition of PD) to show that `
′
∧m

i=0 Lαiϕi ∧
∧n

j=1(Mβ jψ j ∧ ¬Eβ jψ j) → ff. So assume, for the sake of
contradiction, that this does not hold. We can then construct a maximally consistent set of formulas Φ ⊆ L ′ which
contains Lαiϕi for i = 0, . . . ,m, as well as Mβ jψ j and ¬Eβ jψ j for j = 1, . . . , n. As a result of being maximal, Φ
will contain, for each ζ ∈ {ϕ0, . . . , ϕm}∪ {ψ1, . . . , ψn}∪Ξ and each m ∈ [0, 1] which is a multiple of 1

q , one of Lmζ

or ¬Lmζ , one of Mmζ or ¬Mmζ , and one of Emζ or ¬Emζ . We now define

mζ = max{ m | Lmζ ∈ Φ } Mζ = min{ m | Mmζ ∈ Φ }

for ζ ∈ {ϕ0, . . . , ϕm} ∪ {ψ1, . . . , ψn} ∪ Ξ . The fact that Φ is maximally consistent gives:

• mζ ≤ Mζ ,
• either mζ = Mζ and Emζ ζ ∈ Φ, or mζ 6= Mζ and Eαζ 6∈ Φ for any α,
• mϕ0 = Mϕ0 = 1,

where the first and third axioms in the definition of PD are needed to obtain the last statement. We can then apply
Rockafellar’s theorem to the subspace

Z =

(vζ)ζ∈{ϕ0,...,ϕm }∪{ψ1,...,ψn}∪Ξ | vζ ∈ Q,
∑
ξ∈Ξ

`ξ→ϕi

vξ = vϕi ,
∑
ξ∈Ξ

`ξ→ψ j

vξ = vψ j

 ,
where ξ ranges over Ξ , and to the intervals Iζ defined by

Iζ =

{
(mζ ,Mζ) if mζ 6= Mζ

{mζ } if mζ = Mζ .

The first alternative in Rockafellar’s theorem yields a vector

(vζ)ζ∈{ϕ0,...,ϕm }∪{ψ1,...,ψn}∪Ξ ∈ Z

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 103

such that vζ ∈ Iζ for each ζ . This, in turn, allows us to construct a probability distribution µ : X → [0, 1] which has
the property that µ([[ζ]]) ∈ Iζ for each ζ (where we use µ([[ζ]]) as a shorthand for

∑
x∈d](ζ) µ(x)), and moreover,

satisfies all formulas in Φ: we pick xξ ∈ d(ξ) 6= ∅ (as ξ 6` ff and (A,`) is complete w.r.t. d) for each ξ ∈ Ξ , and
define µ(xξ) = vξ for each ξ ∈ Ξ , and µ(x) = 0 elsewhere. The properties of Ξ mentioned earlier together with the
soundness of (A,`) w.r.t. d ensure that µ is a probability distribution:

∑
ξ∈Ξ vξ =

∑
ξ`tt vξ =

∑
ξ`ϕ0

vξ = vϕ0 ∈

{mϕ0} = {1}. Also, by construction, µ([[ξ]]) = vξ ∈ Iξ , while for ϕ ∈ {ϕ1, . . . , ϕm}, the fact that µ([[ϕ]]) ∈ Iϕ follows
from µ([[ϕ]]) =

∑
ξ`ϕ µ([[ξ]]) =

∑
ξ`ϕ vξ = vϕ , and similarly for ψ ∈ {ψ1, . . . , ψn}. Finally, the fact that µ satisfies

all formulas in Φ follows by case analysis on the basic formulas in Φ:

• If Lαζ ∈ Φ, then α ≤ mζ , and hence µ([[ζ]]) ≥ mζ ≥ α, i.e. µ satisfies the formula Lαζ . If ¬Lαζ ∈ Φ, then
since Φ is maximally consistent, the fourth axiom in the definition of PD together with propositional reasoning
give Mαζ ∈ Φ and ¬Eαζ ∈ Φ; hence, α ≥ Mζ , and either Mζ = mζ 6= α or Mζ 6= mζ . In the first case,
µ([[ζ]]) = Mζ < α, whereas in the second case, µ([[ζ]]) < Mζ ≤ α. Hence, in both cases, µ satisfies the formula
¬Lαζ .

• The cases of Mαζ ∈ Φ and ¬Mαζ ∈ Φ are treated similarly.
• The cases of Eαζ ∈ Φ and ¬Eαζ ∈ Φ are treated using the definition of Eαζ .

Now since Φ contains Lαiϕi for i = 0, . . . ,m, as well as Mβ jψ j and ¬Eβ jψ j for j = 1, . . . , n, we have
µ ∈ [[(SD]](d]))](ϕ) \ ([[SD]](d]))](ψ). Thus, under this alternative, we have arrived at a contradiction.

The second alternative in Rockafellar’s theorem yields values aζ , with ζ ∈ {ϕ0, . . . , ϕm} ∪ {ψ1, . . . , ψn} ∪ Ξ ,
subject to the following conditions:

(1)
∑
ζ aζ vζ = 0 for all v ∈ Z ;

(2)
∑
ζ aζ Iζ > 0.

By manipulating these (in)equalities, namely multiplying by the least common denominator of the aζ s and
separating positive coefficients from negative ones, we obtain non-negative integer values bζ and b′

ζ , with ζ ∈

{ϕ0, . . . , ϕm} ∪ {ψ1, . . . , ψn} ∪ Ξ , such that:∑
ζ

bζ vζ =

∑
ζ

b′
ζ vζ for all v ∈ Z (1)∑

ζ

bζ Iζ >
∑
ζ

b′
ζ Iζ . (2)

We then define the formulas ζ1, . . . , ζk, ζ
′

1, . . . , ζ
′

l ∈ {ϕ0, . . . , ϕm} ∪ {ψ1, . . . , ψn} ∪ Ξ , by taking bζ copies of each
ζ in ζ1, . . . , ζk , and b′

ζ copies of each ζ in ζ ′

1, . . . , ζ
′

l . We immediately obtain Lmζi
ζi ∈ Φ for i = 1, . . . , k and

MMζ ′j
ζ ′

j ∈ Φ for j = 1, . . . , l. Moreover, the following hold:

(1) `
∧max(k,l)

i=1 ζ (i) ↔ ζ ′(i)

(2)
∑

i=1,...,k mζi >
∑

j=1,...,l Mζ ′
j
.

To see why the statement in item (1) above is true, note that the equality (1) results in the sum of the characteristic
functions of d](ζ1), . . . , d](ζk) being equal to the sum of the characteristic functions of d](ζ ′

1), . . . , d](ζ ′

l): for each
x ∈ X , substituting the vector v ∈ Z defined by vζ = 1 if x ∈ d](ζ) and vζ = 0 otherwise into (1) gives
the equality of the previously-mentioned functions on the value x . As a result, we have d](ζ (i)) = d](ζ ′(i)) for
i = 1, . . . ,max(k, l), and hence d](

∧max(k,l)
i=1 ζ (i) ↔ ζ ′(i)) = X . Now the completeness of (A,`) w.r.t. d : A → PX

gives `
∧max(k,l)

i=1 ζ (i) ↔ ζ ′(i).
The inequality in item (2) above follows directly from the inequality (2), after recalling that Iζ is either the set

{mζ } or the open interval (mζ ,Mζ), and hence the lower endpoint of the interval
∑
ζ bζ Iζ is

∑
i=1,...,k mζi , while the

upper endpoint of the interval
∑
ζ b′

ζ Iζ is
∑

j=1,...,l Mζ ′
j
.

Now let p = Mζ ′

1
and q = mζ1 + · · · + mζk − (Mζ ′

2
+ · · · + Mζ ′

l
). Item (1) together with the last axiom defining `

′

give `
′ (
∧k

i=1 Lmζi
ζi)∧ (

∧l
j=2 MMζ ′j

ζ ′

j) → Lqζ
′

1. Hence, since Φ is maximally consistent, and since each of Lmζi
ζi

with i = 1, . . . , k and MMζ ′j
ζ ′

j with j = 2, . . . , l belong to Φ, so does Lqζ
′

1. Moreover, by item (2) we have p < q,

104 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

hence (1 − p) + q > 1. Now Mpζ
′

1 ∈ Φ implies, by the definition of Mp, that L1−p¬ζ
′

1 ∈ Φ, hence, by the third
axiom in the definition of PD, we have ¬Lqζ

′

1 ∈ Φ, as (1 − p) + q > 1. As also Lqζ
′

1 ∈ Φ, we have arrived at the
required contradiction also under the second alternative. This concludes the proof. �

We note that, while the proof of one-step completeness of PD resembles the completeness proof in [10] (which
also uses Rockafellar’s theorem), the one-step completeness of PD will, in addition, allow the modular derivation of
completeness results for functor combinations.

In what follows, we show how one can combine proof system constructors for simple languages in order to derive
proof systems constructors, and hence proof systems, for more complex languages. Moreover, we show that whenever
the building blocks of such constructions are one-step sound and complete w.r.t. some given one-step semantics, the
resulting proof systems are sound and complete w.r.t. the induced coalgebraic semantics. For ease of exposition, we
abbreviate [κi]ϕ := ¬〈κi 〉¬ϕ ∈ M((S1 ⊕ S2)L), where ϕ ∈ MSi L and i ∈ {1, 2}.

Definition 50 (Combinations of Proof System Constructors). Let (A1,`1) and (A2,`2) be boolean theories.

(1) We let (A1,`1) ⊗ (A2,`2) = (M A1 ⊗ M A2,`⊗), where ⊗ is defined on sets as in Definition 10, and the
predicate `⊗ is defined by the following axioms:

`⊗ [πi]ff → ff `⊗ [πi](ϕ → ψ) ↔ ([πi]ϕ → [πi]ψ)

`i ϕ → ψ

`⊗ [πi]ϕ → [πi]ψ
.

(2) We let (A1,`1) ⊕ (A2,`2) = (M A1 ⊕ M A2,`⊕), where ⊕ is defined on sets as in Definition 10, and the
predicate `⊕ is defined by the following axioms:

`⊕ [κi]tt `⊕ [κi]ϕ ∧ [κi]ψ → [κi](ϕ ∧ ψ)

`⊕ [κ1]ff ∨ [κ2]ff `⊕ [κi](ϕ ∨ ψ) → [κi]ϕ ∨ [κi]ψ

`⊕ [κ1]ff ∧ [κ2]ff → ff `i ϕ → ψ
`⊕ [κi]ϕ → [κi]ψ

.

(3) For an arbitrary set E , we let (A1,`1)�E = ((M A1)�E,`�E), where �E is defined on sets as in Definition 10,
and the predicate `�E is defined by the following axioms:

`�E [e]ff → ff `�E [e](ϕ → ψ) ↔ ([e]ϕ → [e]ψ)

`1 ϕ → ψ

`�E [e]ϕ → [e]ψ
.

If P1 and P2 are proof system constructors for S1 and S2, respectively, define:

(P1 ⊗ P2)(A,`) = (Cl ◦ P1)(A,`)⊗ (Cl ◦ P2)(A,`)

(P1 ⊕ P2)(A,`) = (Cl ◦ P1)(A,`)⊕ (Cl ◦ P2)(A,`)

(P1 � E)(A,`) = (Cl ◦ P1)(A,`)� E

(P1 � P2)(A,`) = (P1 ◦ Cl ◦ P2)(A,`).

We note in passing that, in the case of `⊗ and `�E , the axiomatisations used here have been chosen so as to minimise
the number of axioms required. An alternative, equivalent axiomatisation for `⊗, which is closer in spirit to the
definition of `⊕, can be given by replacing the first two axioms in the definition of `⊗ by:

`⊗ [πi]tt `⊗ [πi]ϕ ∧ [πi]ψ → [πi](ϕ ∧ ψ)

`⊗ [πi]¬ϕ → ¬[πi]ϕ `⊗ [πi](ϕ ∨ ψ) → [πi]ϕ ∨ [πi]ψ

(and similarly for `�E).
With these definitions, we obtain that one-step soundness and completeness are preserved by combinations of proof

system constructors; for readability we have suppressed the dependency of the one-step semantics on the signature
functor.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 105

Proposition 51. Suppose Pi is a proof system constructor for Si , for i = 1, 2, and E is an arbitrary set. Then,
P1 ⊗ P2, P1 ⊕ P2, P1 � E and P1 � P2 are proof system constructors for S1 ⊗ S2, S1 ⊕ S2, S1 � E and S1 � S2,
respectively. Moreover, if P1 and P2 are one-step sound (complete) w.r.t. [[S1]] and [[S2]], respectively, then P1 ⊗ P2,
P1 ⊕ P2, P1 � E and P1 � P2 are one-step sound (complete) w.r.t. [[S1 ⊗ S2]], [[S1 ⊕ S2]], [[S1 � E]] and [[S1 � S2]],
respectively.

Proof. It is immediate from the definitions that P1 ⊗P2, P1 ⊕P2, P1 � E and P1 �P2 are proof system constructors.
Also, the one-step soundness and completeness of P1 � P2 follows directly from the definitions.

Checking the one-step soundness of P1 ⊗ P2, P1 ⊕ P2 and P1 � E is just a matter of unfolding the respective
definitions. For the one-step completeness of P1 ⊗ P2, P1 ⊕ P2 and P1 � E , we assume that Pi is one-step complete
w.r.t. the one-step semantics [[Si]], where [[Si]] = [[Si]]

Ti is a one-step semantics for Si w.r.t. the endofunctor Ti , for
i = 1, 2. Throughout the proof, we fix (A,`) ∈ BTh complete w.r.t. d : A → PX . We write `P for the entailment
relation on (Cl ◦ P)(A,`), whenever P is a proof system constructor.

We first consider the one-step completeness of P1⊗P2 w.r.t. [[S1⊗S2]]. We have to show that (Cl◦(P1⊗P2))(A,`)
is complete w.r.t. [[S1 ⊗ S2]](d]) : MS1 M A ⊗ MS2 M A → P(T1 X × T2 X). By Lemma 45, it suffices to show that
([[S1 ⊗ S2]](d]))](ϕ → ψ) = T1 X × T2 X implies `P1⊗P2 ϕ → ψ , where ϕ =

∧n
i=1[π1]ϕ

1
i ∧

∧m
j=1[π2]ϕ

2
j and

ψ =
∨l

i=1[π1]ψ
1
i ∨

∨k
j=1[π2]ψ

2
j . Using the fact that [πi], for i = 1, 2, distributes over all propositional connectives

(as a result of the axioms in the definition of `P1⊗P2), this can be reduced further to assuming ϕ = [π1]ϕ1 ∧ [π2]ϕ2
and ψ = [π1]ψ1 ∨ [π2]ψ2 (where we take ϕ1 and ϕ2 to be tt if n = 0 or m = 0, respectively, and ψ1 and ψ2 to be ff
if l = 0 or k = 0, respectively). Writing S for S1 ⊗ S2, our assumption is now

([[S]](d]))]([π1]ϕ1) ∩ ([[S]](d]))]([π2]ϕ2) ⊆ ([[S]](d]))]([π1]ψ1) ∪ ([[S]](d]))]([π2]ψ2)

and we have to show that `P1⊗P2 [π1]ϕ1 ∧ [π2]ϕ2 → [π1]ψ1 ∨ [π2]ψ2.
Unravelling the definition of [[S]] = [[S1 ⊗ S2]], we obtain that ([[Si]](d]))](ϕi) ⊆ ([[Si]](d]))](ψi) for i = 1

or i = 2. By completeness of Pi , we obtain that `Pi ϕi → ψi , and from the definition of `P1⊗P2 , we conclude
`P1⊗P2 [πi]ϕi → [πi]ψi , from which we obtain the desired conclusion `P1⊗P2 [π1]ϕ1 ∧ [π2]ϕ2 → [π1]ϕ1 ∨ [π2]ϕ2
by propositional reasoning. The one-step completeness of P1 � E is proved analogously.

We now turn to the completeness of P1 ⊕ P2 w.r.t. [[S1 ⊕ S2]]. As above, it suffices to show that ([[S1 ⊕

S2]](d]))](ϕ → ψ) = T1 X + T2 X implies `P1⊕P2 ϕ → ψ , where ϕ =
∧n

i=1[κ1]ϕ
1
i ∧

∧m
j=1[κ2]ϕ

2
j and

ψ =
∨l

i=1[κ1]ψ
1
i ∨

∨k
j=1[κ2]ψ

2
j . We distinguish several cases:

Case 1. l = k = 0. Then ψ = ff and ([[S1 ⊕ S2]](d]))](ϕ) = ∅. Let ϕ1 =
∧n

i=1 ϕ
1
i and ϕ2 =

∧m
j=1 ϕ

2
j .

Then ([[S1]](d]))](ϕ1) = ∅ and ([[S2]](d]))](ϕ2) = ∅ by the definition of [[S1 ⊕ S2]], hence `P1 ϕ1 → ff and
`P2 ϕ2 → ff by one-step completeness of P1 and P2. Using the last rule in the definition of `P1⊕P2 , the axiom
`⊕ [κ1]ff ∧ [κ2]ff → ff and propositional reasoning, we obtain `P1⊕P2 [κ1]ϕ1 ∧ [κ2]ϕ2 → ff. Given that [κi]

distributes over conjunctions (as a result of the axioms in the definition of `P1⊕P2), this shows `P1⊕P2 ϕ → ψ .
Case 2. l > 0 and k = 0. Taking ψ1 =

∨l
i=1 ψ

1
i and ϕ1, ϕ2 as above, we have

([[S1 ⊕ S2]](d]))]([κ1]ϕ1) ∩ ([[S1 ⊕ S2]](d]))]([κ2]ϕ2) ⊆ ([[S1 ⊕ S2]](d]))]([κ1]ψ1)

from which we deduce that ([[S1]](d]))](ϕ1) ⊆ ([[S1]](d]))](ψ1) by the definition of [[S1 ⊕ S2]]. Hence, by one-
step completeness of P1 and P2, we have `P1 ϕ1 → ψ1, which yields `P1⊕P2 [κ1]ϕ1 → [κ1]ψ1, and our claim
`P1⊕P2 ϕ → ψ follows by propositional reasoning, using the distributivity of [κ1] over conjunctions and non-empty
disjunctions.

Case 3. l = 0 and k > 0. Similar.
Case 4. l > 0 and k > 0. Taking ϕ1, ϕ2, ψ1 as above and ψ2 =

∨k
j=1 ϕ

2
j , we have that `P1⊕P2 [κ1]ff ∨ [κ2]ff →

[κ1]ψ1 ∨[κ2]ψ2, hence `P1⊕P2 [κ1]ψ1 ∨[κ2]ψ2 and therefore `P1⊕P2 [κ1]ϕ1 ∧[κ2]ϕ2 → [κ1]ψ1 ∨[κ2]ψ2. The claim
that `P1⊕P2 ϕ → ψ now follows by propositional reasoning, using the fact that [κi] distributes over conjunctions and
non-empty disjunctions. �

An important observation is that, if P1 and P2 are defined in terms of axioms (as is, for instance, the case for
PP and PD), then all their combinations can be described in the same way (namely by incorporating the axioms of
Definition 50 together with all propositional tautologies and modus ponens with the original definitions of P1 and P2).

106 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

Below we only give the full axiomatic definition of P1 � P2. The definitions of P1 ⊗ P2, P1 ⊕ P2 and P1 � E are
similar.

Recall from Example 11 that the composition of syntax constructors can be thought of as introducing an additional
sort. In the same way, the composition of proof system constructors can be regarded as introducing a derivability
predicate on formulas of this sort: suppose P1 and P2 are defined in terms of the rules (possibly with empty premise)
R1 andR2, respectively. Then, for a boolean theory (A,`), the boolean theory (P1 �P2)(A,`) = (S1 MS2 M A,`′′)

is generated using an intermediate derivability predicate `
′ on S2 M A, by means of the following axioms:

` ϕ

`
′ ρ

(
if

` ϕ

`
′ ρ

∈ R2

)
`

′ ρ
(if ρ is an instance of a tautology)

`
′ ρ `

′ ρ → ρ′

`
′ ρ′

(modus ponens for `
′)

`
′ ρ

`
′′ ϕ′

(
if

`
′ ρ

`
′′ ϕ′

∈ R1

)
where S1 and S2 are the syntax constructors associated to P1 and P2, respectively, ϕ ranges over formulas in M A, ρ
and ρ′ range over formulas in MS2 M A, and ϕ′ ranges over formulas in MS1 MS2 M A. In particular, the second and
third rules account for the presence of Cl in the definition of P1 � P2.

As we have already argued in the beginning, a large class of systems, including Kripke structures, (probabilistic)
transition systems and probabilistic automata can be modelled as coalgebras of signature functors of the following
form:

T ::= D | Id | Pω | P | D | T1 × T2 | T1 + T2 | T1
E

| T1 ◦ T2

where D and E are arbitrary sets.
We can therefore use Propositions 12, 26, 35 and 51 to derive, for any (probabilistic) system type of the above form,

a logic which is sound and complete, and which is also expressive provided that the unbounded powerset functor is
not used in the signature functor.

Example 52 (Probabilistic Automata). Simple probabilistic automata [29] are modelled coalgebraically using the
functor T = (P ◦D)E . The language L1 = L(T) obtained by applying the modular techniques presented in Section 3
can be described by the following grammar:

L1 3 ϕ ::= ff | ϕ → ϕ′
| [e]ψ (ψ ∈ L2)

L2 3 ψ ::= ff | ψ → ψ ′
| �ξ (ξ ∈ L3)

L3 3 ξ ::= ff | ξ → ξ ′
| L pϕ (ϕ ∈ L1).

The coalgebraic semantics |=1 of L1 is obtained automatically from the one-step semantics for SP and SD (as defined
in Example 21), using the modular techniques presented in Section 4. The resulting logic is essentially the same as the
probabilistic modal logic of [13]. Moreover, if we replace the unbounded powerset functor by its finite variant in the
signature functor T and adjust the one-step semantics according to Example 21, Proposition 35 automatically yields
a Hennessy–Milner result for this logic (w.r.t. image-finite simple probabilistic automata).

In addition, the techniques described in this section allow us to derive a sound and complete proof system for the
above logic, both w.r.t. simple probabilistic automata and w.r.t. their image-finite variants. This proof system can be
described by three entailment relations, corresponding to entailment in L1,L2 and L3, respectively, as follows:

0. Axioms for all `i (ϕ,ψ ∈ Li):

`i ϕ (ϕ instance of tautology)
`i ϕ `i ϕ → ψ

`i ψ
.

1. Axioms for `1 (ϕ,ψ ∈ L2, e ∈ E):

`1 [e]ff → ff `1 [e](ϕ → ψ) ↔ ([e]ϕ → [e]ψ)
`2 ϕ → ψ

`1 [e]ϕ → [e]ψ
.

2. Axioms for `2 (ϕ,ψ ∈ L3):

`2 �tt `2 �ϕ ∧ �ψ → �(ϕ ∧ ψ)
`3 ϕ → ψ

`2 �ϕ → �ψ
.

C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108 107

3. Axioms for `3 (ϕ,ψ, ϕi , ψ j ∈ L1, p, q ∈ Q ∩ [0, 1] with p + q > 1, m, n ≥ 0):

`3 L0ϕ `3 L ptt `3 L pϕ → ¬Lq¬ϕ `3 ¬L pϕ → Mpϕ

`1

max(m,n)∧
k=1

ϕ(k) ↔ ψ (k)

`3

(m∧
i=1

L piϕi

)
∧

(
n∧

j=2
Mqiψi

)
→ L p1+···+pm−(q2+···+qn)ψ1

.

Now Proposition 42 shows that the entailment relation `1 defined above coincides with the entailment relation
defined by iteratively applying the corresponding proof system constructor. Since all our constructions preserve
completeness, we obtain |=T ϕ iff `1 ϕ for all ϕ ∈ L1, i.e. completeness of `1 w.r.t. the coalgebraic semantics
of L1.

7. Conclusions

We have studied modular construction principles for coalgebraic logics. When modelling systems coalgebraically,
one typically constructs an endofunctor that represents the behaviour of the associated class of systems from a small
number of basic ingredients, such as constants, powersets and probability distributions, by means of a small number
of operations, viz products, coproducts and functor composition. We have demonstrated that this modular approach
carries over to the associated logics. On the logical side, every endofunctor is paired with a proof system constructor,
and operations on endofunctors such as products and functor composition give rise to corresponding operations on
proof system constructors. By showing that the basic ingredients admit a (sound and) complete proof system, we
have shown (soundness and) completeness for combined systems by showing that the operations on proof system
constructors preserve (soundness and) completeness. In this way, we have obtained (sound and) complete logics for
a wide range of state-based systems, in particular for the probabilistic automata of [29], for which completeness was
hitherto an open question.

Acknowledgements

We would like to thank Bart Jacobs for his suggestion to add the characterisation of one-step expressiveness in
Proposition 29, and the anonymous referees for their valuable comments. The first author’s research was partially
supported by EPSRC research grant EP/D000033/1.

References

[1] P. Aczel, N. Mendler, A final coalgebra theorem, in: D.H. Pitt, et al. (Eds.), Category Theory and Computer Science, in: LNCS, vol. 389,
Springer, 1989.

[2] F. Bartels, On generalised coinduction and probabilistic specification formats, Ph.D. Thesis, CWI, Amsterdam, 2004.
[3] F. Bartels, A. Sokolova, E. de Vink, A hierarchy of probabilistic system types, in: H.P. Gumm (Ed.), Proc. CMCS 2003, in: ENTCS, vol. 82,

Elsevier, 2003.
[4] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2000.
[5] C. Cı̂rstea, On expressivity and compositionality in logics for coalgebras, in: H.P. Gumm (Ed.), Proc. CMCS 2003, in: ENTCS, vol. 82,

Elsevier, 2003.
[6] C. Cı̂rstea, A compositional approach to defining logics for coalgebras, Theoretical Computer Science 327 (1–2) (2004) 45–69.
[7] E. Clarke, E. Emerson, Synthesis of synchronisation skeletons for branching temporal logics, in: Workshop on Logics of Programs, in: LNCS,

vol. 131, Springer, 1981.
[8] E. de Vink, J. Rutten, Bisimulation for probabilistic transition systems: A coalgebraic approach, Theoretical Computer Science 221 (1999)

271–293.
[9] J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for labelled Markov processes, Information and Computation 179 (2002) 163–193.

[10] A. Heifetz, P. Mongin, Probability logic for type spaces, Games and Economic Behaviour 35 (2001) 31–53.
[11] B. Jacobs, Many-sorted coalgebraic modal logic: A model-theoretic study, Theoretical Informatics and Applications 35 (1) (2001) 31–59.
[12] B. Jacobs, Categorical logic and type theory, in: Studies in Logic and the Foundations of Mathematics, vol. 141, North Holland, 1999.
[13] B. Jonsson, K.G. Larsen, W. Yi, Probabilistic extensions of process algebras, in: J.A. Bergstra, et al. (Eds.), Handbook of Process Algebra,

Elsevier, 2001, pp. 685–710 (Chapter 11).
[14] M. Kick, Bialgebraic modelling of timed processes, in: P. Widmayer, et al. (Eds.), Proc. ICALP 2002, in: LNCS, vol. 2380, Springer, 2002.

108 C. Cı̂rstea, D. Pattinson / Theoretical Computer Science 388 (2007) 83–108

[15] B. Klin, Coalgebraic modal logic beyond sets, in: M. Fiore (Ed.), Proc. MFPS XXIII, in: ENTCS, vol. 173, Elsevier, 2007.
[16] D. Kozen, Results on the propositional mu-calculus, Theoretical Computer Science 27 (1983) 333–354.
[17] A. Kurz, Specifying coalgebras with modal logic, Theoretical Computer Science 260 (1–2) (2001) 119–138.
[18] C. Kupke, A. Kurz, D. Pattinson, Algebraic semantics for coalgebraic modal logic, Electronic Notes in Theoretical Computer Science 106

(2004) 219–241.
[19] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and Computation 94 (1991) 1–28.
[20] R. Milner, Communication and Concurrency, in: International Series in Computer Science, Prentice Hall, 1989.
[21] L.S. Moss, Coalgebraic logic, Annals of Pure and Applied Logic 96 (1999) 277–317.
[22] P. Naur, B. Randell (Eds.), Software Engineering: Report of a Conference Sponsored by the NATO Science Committee, Garmisch, Germany,

7–11 Oct., 1968. Scientific Affairs Division, NATO, 1969.
[23] D. Park, Concurrency and automata on infinite sequences, in: Proceedings of the 5th GI Conference, in: LNCS, vol. 104, Springer, 1981.
[24] D. Pattinson, Coalgebraic modal logic: Soundness, completeness and decidability of local consequence, Theoretical Computer Science 309

(1–3) (2003) 177–193.
[25] D. Pattinson, Expressive logics for coalgebras via terminal sequence induction, Notre Dame Journal of Formal Logic 45 (1) (2004) 19–33.
[26] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
[27] M. Rößiger, From modal logic to terminal coalgebras, Theoretical Computer Science 260 (2001) 209–228.
[28] J.J.M.M. Rutten, Universal coalgebra: A theory of systems, Theoretical Computer Science 249 (2000) 3–80.
[29] R. Segala, Modelling and verification of randomized distributed real-time systems, Ph.D. Thesis, Massachusetts Institute of Technology, 1995.
[30] D. Turi, G. Plotkin, Towards a mathematical operational semantics, in: Proc. 12th LICS Conference, IEEE, Computer Society Press, 1999,

pp. 280–291.
[31] R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes, Information and

Computation 121 (1995) 59–80.
[32] J. Worrell, On the final sequence of a finitary set functor, Theoretical Computer Science 338 (2005) 184–199.

	Modular construction of complete coalgebraic logics
	Introduction
	Preliminaries and notation
	Modular construction of modal languages
	Modular construction of coalgebraic semantics
	Behavioural versus logical equivalence
	Modular construction of proof systems
	Conclusions
	Acknowledgements
	References

