For lack of general algorithmic methods that apply to wide classes of logics,
establishing a complexity bound for a given modal logic is often a laborious
task. The present work is a step towards a general theory of the complexity of
modal logics. Our main result is that all rank-1 logics enjoy a shallow model
property and thus are, under mild assumptions on the format of their
axiomatisation, in PSPACE. This leads to a unified derivation of tight
PSPACE-bounds for a number of logics including K, KD, coalition logic, graded
modal logic, majority logic, and probabilistic modal logic. Our generic
algorithm moreover finds tableau proofs that witness pleasant proof-theoretic
properties including a weak subformula property. This generality is made
possible by a coalgebraic semantics, which conveniently abstracts from the
details of a given model class and thus allows covering a broad range of logics
in a uniform way