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Abstract
The classical Hennessy-Milner theorem says that two states of an image-finite transition system
are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper
we study this type of result in a general context, moving from transition systems to coalgebras
and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a
coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and
give sufficient conditions on the semantics. The approach is illustrated with logics characterising
similarity, divergence and a behavioural metric on automata.
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1 Introduction

A prominent example of the deep connection between bisimilarity and modal logic is the
Hennessy-Milner theorem: two states of an image-finite labelled transition system (LTS)
are behaviourally equivalent iff they satisfy the same formulas in a certain modal logic [13].
From left to right, this equivalence is sometimes referred to as adequacy of the logic w.r.t.
bisimilarity, and from right to left as expressivity. By proving both adequacy and expressivity,
the Hennessy-Milner theorem thus gives a logical characterisation of behavioural equivalence.

There are numerous variants and generalisations of this kind of result. For instance, a
state x of an LTS simulates a state y if every formula satisfied by x is also satisfied by y,
where the logic only has conjunction and diamond modalities; see [36] for this and many
other related results. Another class of examples is logical characterisations of quantitative
notions of equivalence, such as probabilistic bisimilarity and behavioural distances (e.g., [27,
8, 35, 19, 24, 37, 7]). In many such cases, including bisimilarity, the comparison between
states is coinductive, and the problem is thus to characterise a coinductively defined relation
(or distance) with a suitable modal logic.

Both coinduction and modal logic can be naturally and generally studied within the
theory of coalgebra, which provides an abstract, uniform study of state-based systems [32, 18].
Indeed, in the area of coalgebraic modal logic [26] there is a rich literature on deriving
expressive logics for behavioural equivalence between state-based systems, thus going well
beyond labelled transition systems [29, 33, 22]. However, such results focus almost exclusively
on behavioural equivalence or bisimilarity – a coalgebraic theory of logics for characterising
coinductive predicates other than bisimilarity is still missing. The aim of this paper is to
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26:2 Expressive Logics for Coinductive Predicates

accommodate the study of logical characterisation of coinductive predicates in a general
manner, and provide tools to prove adequacy and expressivity.

Our approach is based on universal coalgebra, to achieve results that apply generally to
state-based systems. Central to the approach are the following two ingredients.
1. Coinductive predicates in a fibration. To characterise coinductive predicates, we make use

of fibrations – this approach originates from the seminal work of Hermida and Jacobs [14].
The fibration is used to speak about predicates and relations on states. In this context,
liftings of the type functor of coalgebras uniformly determine coinductive predicates and
relations on such coalgebras. An important feature of this approach, advocated in [12],
is that it covers not only bisimilarity, but also other coinductive predicates including,
e.g., similarity of labelled transition systems and other coalgebras [16], behavioural
metrics [2, 4, 34], unary predicates such as divergence [5, 12], and many more.

2. Coalgebraic modal logic via dual adjunctions. We use an abstract formulation of coalgebraic
logic, which originated in [30, 22], building on a tradition of logics via duality (e.g., [25, 6]).
This framework is formulated in terms of a contravariant adjunction, which captures the
basic connection between states and theories, and a distributive law, which captures the
one-step semantics of the logic. It covers classical modal logics of course, but also easily
accommodates multi-valued logics, and, e.g., logics without propositional connectives,
where formulas can be thought of as basic tests on state-based systems. This makes the
framework suitable for an abstract formulation of Hennessy-Milner type theorems, where
formulas play the role of tests on state-based systems.

To formulate adequacy and expressivity with respect to general coinductive predicates, we
need to know how to compare collections of formulas. For instance, if the coinductive
predicate is similarity of LTSs, the associated logical theories of one state should be included
in the other, not necessarily equal. This amounts to stipulating a relation on truth values,
that extends to a relation between theories. In the quantitative case, we need a logical
distance between collections of formulas; this typically arises from a distance between truth
values (which, in this case, will typically be an interval in the real numbers). The fibrational
setting provides a convenient means for defining such an object for comparing theories.

With this in hand, we arrive at the main contributions of this paper: the formulation of
adequacy and expressivity of a coalgebraic modal logic with respect to a coinductive predicate
in a fibration, and sufficient conditions on the semantics of the logic that guarantee adequacy
and expressivity. We exemplify the approach through a range of examples, including logical
characterisations of a simple behavioural distance on deterministic automata, similarity of
labelled transition systems, and a logical characterisation of a unary predicate: divergence,
the set of states of an LTS which have an infinite path of outgoing τ -steps. The latter is
characterised, on image-finite LTSs, by a quantitative logic with only diamond formulas, i.e.,
the set of formulas is simply the set of words.

Related work

As mentioned above, there are numerous specific results on Hennessy-Milner theorems, which
– e.g., in the probabilistic setting as in [7] – can be highly non-trivial. A comprehensive
historical treatment is beyond the scope of this paper, which is, instead, broad: it aims at
studying these kinds of results in a general, coalgebraic setting.

The case of capturing bisimilarity and behavioural equivalence of coalgebras by modal
logics has been very well studied, see [26] for an overview. Expressiveness w.r.t. similarity
has been studied in [20], which is close in spirit to our approach, but focuses on the poset
case. On a detailed level, the logic for similarity is based on distributive lattices, hence it
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uses disjunction; this differs from our example, which only uses conjunction and diamond
modalities. Expressiveness of multi-valued coalgebraic logics w.r.t. behavioural equivalence
is studied in [3]. In [1], notions of equivalence are extracted from a logic through a variant of
Λ-bisimulation [11]. To the best of our knowledge, the current work is the first in the area
that connects general coinductive predicates in a fibration to coalgebraic logics.

In the recent [9], the authors prove Hennessy-Milner type theorems for coalgebras including,
but going significantly beyond bisimilarity. The logics are related to a semantics obtained
from graded monads, and the focus is exclusively on semantic equivalence of different types.
In that sense, the scope differs substantially from the current paper, which relates logic
to coinductive predicates and where it is essential to relate theories in different ways than
equivalence (to cover, e.g., similarity, divergence or logical distance). On the one hand, it
appears that none of our examples can be covered immediately in loc. cit.; on the other hand,
trace equivalence of various kinds can be covered in [9] but not in the current paper.

In [37] a characterisation theorem is shown for fuzzy modal logic, and in [24] for a wide
class of behavioural metrics. These papers are not aimed at other kinds of coinductive
predicates, and they do not cover the examples in Section 4 (including the behavioural metric
for deterministic automata, as we use a much simpler logic than in [24]). Conversely, the
question whether the logical characterisation results of [24] can be covered in the current
framework is left open. These papers also treat game-based characterisations of bisimilarity,
which are studied in a general setting in the recent [23]. The latter paper, however, does not
yet feature modal logic explicitly; in fact, the connection is posed there as future work.

2 Preliminaries

The category of sets and functions is denoted by Set. The powerset functor is denoted by
P : Set→ Set, and the finite powerset functor by Pω. The diagonal relation on a set X is
denoted by ∆X = {(x, x) | x ∈ X}.

Let C be a category, and B : C → C a functor. A (B)-coalgebra is a pair (X, γ) where X is
an object in C and γ : X → BX a morphism. A homomorphism from a coalgebra (X, γ) to a
coalgebra (Y, θ) is a morphism h : X → Y such that θ ◦ h = Bh ◦ γ. An algebra for a functor
L : D → D on a category D is a pair (A,α) of an object A in D and an arrow α : LA→ A.

I Example 1. A labelled transition system (LTS) over a set of labels A is a coalgebra (X, γ)
for the functor B : Set → Set, BX = (PX)A. For states x, x′ ∈ X and a label a ∈ A,
we sometimes write x a−→ x′ for x′ ∈ γ(x)(a). Image-finite labelled transition systems are
coalgebras for the functor BX = (PωX)A. A deterministic automaton over an alphabet A
is a coalgebra for the functor B : Set → Set, BX = 2 ×XA. For many other examples of
state-based systems modelled as coalgebras, see, e.g., [18, 32].

2.1 Coinductive Predicates in a Fibration
We recall the general approach to coinductive predicates in a fibration, starting by briefly
presenting how bisimilarity of Set coalgebras arises in this setting (see [12, 14, 18] for details).
Let Rel be the category where an object is a pair (X,R) consisting of a set X and a relation
R ⊆ X × X on it, and a morphism from (X,R) to (Y, S) is a map f : X → Y such that
x R y implies f(x) R f(y), for all x, y ∈ X. Below, we sometimes refer to an object (X,R)
only by the relation R ⊆ X × X. Any set functor B : Set → Set gives rise to a functor
Rel(B) : Rel→ Rel, defined by relation lifting:

Rel(B)(R ⊆ X ×X) = {((Bπ1)(z), (Bπ2)(z)) ∈ BX ×BX | z ∈ BR} . (1)

CSL 2020
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Given a B-coalgebra (X, γ), a bisimulation is a relation R ⊆ X × X such that R ⊆
(γ × γ)−1(Rel(B)(R)), i.e., if x R y then γ(x) Rel(B)(R) γ(y). Bisimilarity is the greatest
such relation, and equivalently, the greatest fixed point of the monotone map R 7→ (γ ×
γ)−1(Rel(B)(R)) on the complete lattice of relations on X, ordered by inclusion.

The functor Rel(B) is a lifting of B: it maps a relation on X to a relation on BX. A
first step towards generalisation beyond bisimilarity is obtained by replacing Rel(B) by an
arbitrary lifting B : Rel→ Rel of B. For instance, for BX = (PωX)A one may take

B(R) = {(t1, t2) | ∀a ∈ A.∀x ∈ t1(a).∃y ∈ t2(a).(x, y) ∈ R} . (2)

Then, for an LTS γ : X → (PωX)A, the greatest fixed point of the monotone map R 7→
(γ × γ)−1 ◦ B(R) is similarity. In the same way, by varying the lifting B, one can define
many different coinductive relations on Set coalgebras.

Yet a further generalisation is obtained by replacing Set by a general category C, and Rel
by a category of “predicates” on C. A suitable categorical infrastructure for such predicates
on C is given by the notion of fibration. This allows us, for instance, to move beyond (Boolean,
binary) relations to quantitative relations (e.g., behavioural metrics) or unary predicates.
Such examples follow in Section 4; also see, e.g., [12, 5].

To define fibrations, it will be useful to fix some associated terminology first. Let p : E → C
be a functor. If p(R) = X then we say R is above X, and similarly for morphisms. The
collection of all objects R above a given object X and arrows above the identity idX form a
category, called the fibre above X and denoted by EX .

I Definition 2. A functor p : E → C is a (poset) fibration if
each fibre EX is a poset category (that is, at most one arrow between every two objects);
the corresponding order on objects is denoted by ≤;
for every f : X → Y in C and object S above Y there is a Cartesian morphism f̃S : f∗(S)→
S above f , with the property that for every arrow g : Z → X, every object R above Z and
arrow h : R → S above f ◦ g, there is a unique arrow k : R → f∗(S) above g such that
f̃S ◦ k = h.

R

k &&
h

++f∗(S)
f̃S

// S

Z

g &&

f◦g

++X
f

// Y

I Remark 3. In this paper we only consider poset fibrations, and refer to them simply as
fibrations. The usual definition of fibration is more general (e.g., [17]): normally, fibres are
not assumed to be posets. Poset fibrations have several good properties, mentioned below.
In the application to coinductive predicates, it is customary to work with poset fibrations.

For a morphism f : X → Y , the assignment R 7→ f∗(R) gives rise to a functorf∗ : EY →
EX , called reindexing along f . (Note that functors between poset categories are just monotone
maps.) We use a strengthening of poset fibrations, following [34, 23].

I Definition 4. A poset fibration p : E → C is called a CLat∧-fibration if (EX ,≤) is a complete
lattice for every X, and reindexing preserves arbitary meets.
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Any poset fibration p is split: we have (g ◦ f)∗ = f∗ ◦ g∗ for any morphisms f, g
that compose. Further, p is faithful. This captures the intuition that morphisms in E
are morphisms in C with a certain property; e.g., relation-preserving, or non-expansive
(Examples 5, 6). We note that CLat∧-fibrations are instances of topological functors [15]. We
use the former, in line with existing related work [12, 23]. This also has the advantage of
keeping our results amenable to possible future extensions to a wider class of examples.

I Example 5. Consider the relation fibration p : Rel → Set, where p(R ⊆ X × X) = X.
Reindexing is given by inverse image: for a map f : X → Y and a relation S ⊆ Y × Y , we
have f∗(S) = (f × f)−1(S). The functor p is a CLat∧-fibration.

Closely related is the predicate fibration p : Pred → Set. An object of Pred is a pair
(X,Γ) consisting of a set X and a subset Γ ⊆ X, and an arrow from (X,Γ) to (Y,Θ) is a
map f : X → Y such that x ∈ Γ implies f(x) ∈ Θ. The functor p is given by p(X,Γ) = X,
reindexing is given by inverse image, and p is a CLat∧-fibration as well.

In the relation fibration, we sometimes refer to an object (X,R ⊆ X2) simply by R, and
similarly in the predicate fibration.

I Example 6. Let V be a complete lattice. Define the category RelV as follows: an
object is a pair (X, d) where X is a set and a function d : X × X → V, and a morphism
from (X, d) to (Y, e) is a map f : X → Y such that d(x, y) ≤ e(f(x), f(y)). The forgetful
functor p : RelV → Set is a CLat∧-fibration, where reindexing along f : X → Y is given by
f∗(Y, e) = (X, e ◦ f × f).

For V = 2 = {0, 1} with the usual order 0 ≤ 1, RelV coincides with Rel. Another example
is given by the closed interval V = [0, 1], with the reverse order. Then, a morphism from
(X, d) to (Y, e) is a non-expansive map f : X → Y , that is, s.t. e(f(x), f(y)) ≤ d(x, y) (with
≤ the usual order, i.e., where 0 is the smallest). This instance will be denoted by Rel[0,1].

Liftings and Coinductive Predicates

Let p : E → C be a fibration, and B : C → C a functor. A functor B : E → E is called a lifting
of B if p ◦B = B ◦ p. In that case, B restricts to a functor BX : EX → EBX , for any X in C.

A lifting B of B gives rise to an abstract notion of coinductive predicate, as follows. For any
B-coalgebra (X, γ) there is the functor, i.e., monotone function defined by γ∗◦BX : EX → EX .
We think of post-fixed points of γ∗ ◦ BX as invariants, generalising bisimulations. If p is
a CLat∧-fibration, then γ∗ ◦ BX has a greatest fixed point ν(γ∗ ◦ BX), which is also the
greatest post-fixed point. It is referred to as the coinductive predicate defined by B on γ.

I Example 7. First, for a Set functor B : Set→ Set, recall the lifting Rel(B) of B defined
in the beginning of this section. We refer to Rel(B) as the canonical relation lifting of B.
For a coalgebra (X, γ), a post-fixed point of the operator γ∗ ◦ Rel(B)X is a bisimulation, as
explained above. The coinductive predicate ν(γ∗ ◦Rel(B)X) defined by Rel(B) is bisimilarity.
Another example is given by the lifting B for similarity defined in the beginning of this
section, which we further study in Section 4. In that section we also define a unary predicate,
divergence, making use of the predicate fibration. Coinductive predicates in the fibration
Rel[0,1] can be thought of as behavioural distances, providing a quantitative analogue of
bisimulations, measuring the distances between states. A simple example on deterministic
automata is studied in Section 4.1.

I Remark 8. In the quantitative examples, such as Rel[0,1], one can replace the latter by a
category with more structure, such as the category of pseudometrics and non-expansive maps.

CSL 2020
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Similarly, one can replace Rel by the category of equivalence relations. Defining liftings then
requires slightly more work, and since we use fibrations to define coinductive predicates, this
unnecessarily complicates matters. Therefore, we do not use such categories in our examples.

We sometimes need the notion of fibration map: if B is a lifting of B, the pair (B,B) is
called a fibration map if (Bf)∗ ◦BY = BX ◦ f∗ for any arrow f : X → Y in C. If B preserves
weak pullbacks, then (Rel(B), B) is a fibration map [18] in the relation fibration (Example 5).

2.2 Coalgebraic Modal Logic
We recall a general approach to coalgebraic modal logic, in the context of a contravariant
adjunction [30, 22, 19]. We assume the following setting, involving an adjunction P a Q and
a natural transformation δ : BQ⇒ QL:

C
P

**
B

"" ⊥ Dop

Q

ii Ldd with BQ
δ +3 QL (3)

In this context, a logic for B-coalgebras is a pair (L, δ) as above. The functor L : D → D
represents the syntax of the modalities. It is assumed to have an initial algebra α : LΦ

∼=→
Φ, which represents the set (or other structure) of formulas of the logic. The natural
transformation δ gives the one-step semantics. It can equivalently be presented in terms of
its mate δ̂ : LP ⇒ PB, which is perhaps more common in the literature. However, we will
formulate adequacy and expressiveness in terms of the current presentation of δ.

Let (X, γ) be a B-coalgebra. The semantics J_K of a logic (L, δ) arises by initiality of α,
making use of the mate δ̂, as the unique map making the diagram on the left below commute.

LΦ
LJ_K //

α

��

LPX
δ̂ // PBX

Pγ

��

X
th //

γ

��

QΦ

Qα

��
Φ

∃!J_K // PX BX
Bth // BQΦ δ // QLΦ

The theory map th : X → QΦ is defined as the transpose of J_K. It is the unique map making
the diagram on the right above commute.

I Example 9. Let C = D = Set, P = Q = 2− the contravariant powerset functor, and
BX = 2 ×XA. We define a simple logic for B-coalgebras, where formulas are just words
over A. To this end, let LX = A×X + 1. The initial algebra of L is the set A∗ of words.
Define δ : BQ⇒ QL on a component X as follows:

δX : 2× (2X)A → 2A×X+1 δX(o, t)(u) =
{
o if u = ∗ ∈ 1
t(a)(x) if u = (a, x) ∈ A×X

For a coalgebra 〈o, t〉 : X → 2 ×XA, the associated theory map th : X → 2A∗ is given by
th(x)(ε) = o(x) and th(x)(aw) = th(t(x)(a))(w) for all x ∈ X, a ∈ A, w ∈ A∗. This is, of
course, the usual semantics of deterministic automata.

In the above example, the logic does not contain propositional connectives; this is reflected
by the choice D = Set. To add those, one chooses a category of algebras for D. For instance,
Boolean algebras are a standard choice for propositional logic, and in Section 4 we use the
category of semilattices to represent conjunction. In fact, if one is only interested in defining
the semantics of the logic, one can simply work with algebras for a signature; this is supported
by the adjunctions presented in the next subsection. We outline in the next subsection how
this can be used to represent the propositional part of a real-valued modal logic.
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2.3 Contravariant Adjunctions
In this subsection we discuss several adjunctions that we use for presenting coalgebraic logic
as above, and will allow us in Section 4 to demonstrate that a large variety of concrete
examples is covered by our framework. In all cases, the adjunctions that we use for the logic
are generated by an object Ω of “truth values”. In fact, we believe all of the dual adjunctions
listed in this section are instances of the so-called concrete dualities from [31] where Ω is the
dualising object inducing the adjunction.

For a simple but useful class of such adjunctions, let D be a category with products, and
Ω an object in D. Then there is an adjunction

P a Q : Set� Dop where PX = ΩX and QX = Hom(X,Ω) , (4)

where ΩX is the X-fold product of Ω.

I Example 10. To illustrate the usefulness of this simple adjunction, consider the real-valued
coalgebraic modal logics from [24]. The set Φ of formulas of these logics is given by the
following definition that is indexed by a set E of modal operators:

Φ ::= > | [e]ϕ, e ∈ E | min(ϕ1, ϕ2) | ¬ϕ | ϕ	 q, q ∈ Q ∩ [0,>]

where 	 is interpreted as truncated subtraction on [0,>] given by p 	 q := max(p − q, 0),
min is interpreted as minimum and where negation on [0,>] is defined as ¬q := > − q.
Describing the category of L-algebras that precisely represents a given logic (i.e., where the
initial algebra corresponds to the set of formulas modulo equivalence) is in general nontrivial.
For studying expressivity, however, it is sufficient to consider formulas and their semantics,
i.e., expressivity of a real-valued logic for B-coalgebras for some functor B : Set→ Set can
be studied by considering the dual adjunction

Set
P=[0,>]−

--
B

$$ ⊥ Alg(Σ)op

Q=Hom(−,[0,>])

jj Lcc

where ΣX = 1 +X2 +X +X × (Q∩ [0,>]) and L(A) = TΣ({[e]a | a ∈ A, e ∈ E}) with TΣ(G)
denoting the free Σ-algebra over a set G of generators.

Another class of adjunctions we use relates Rel to categories of algebras. To formulate it,
we assume:

V is a complete lattice of distance values,
Ω is a bounded poset of truth values,
Σ: Set→ Set is a functor,
aΩ : ΣΩ→ Ω is a Σ-algebra,
(Ω, RΩ : Ω× Ω→ V) ∈ RelV , and
Σ has a lifting Σ: RelV → RelV such that
1. there is a morphism aΩ : ΣRΩ → RΩ above aΩ and
2. for any (X,R), (Y, S) ∈ RelV there is a morphism stR,S : R× ΣS → Σ(R× S) above

the strength map stX,Y : X × ΣY → Σ(X × Y ) for the set functor Σ.

I Proposition 11. Under the above assumptions there is a dual adjunction

RelV

Hom(_,RΩ)
,,

⊥ Alg(Σ)op

Hom(_,aΩ)

kk (5)

CSL 2020



26:8 Expressive Logics for Coinductive Predicates

I Corollary 12. In the above scenario, assume that Σ is a polynomial functor and Σ: RelV →
RelV is interpreted to be the canonical lifting of Σ that interprets products and coproducts
occurring in Σ as products and coproducts in RelV , respectively. Then the condition on
stR,S is always satisfied and the dual adjunction from (5) exists if there is a morphism
aΩ : ΣRΩ → RΩ above aΩ.

The following remark is obvious, but at the same time useful for concrete examples.
I Remark 13. In the above cases, let C be a full subcategory of RelV and D a full subcategory
of Alg(Σ) such that Hom(−, aΩ) and Hom(−, RΩ) restrict to functors of type D → C and
of type C → D, respectively. Then the above dual adjunction restricts to a dual adjunction
between C and D.

3 Abstract Framework: Adequacy & Expressivity

In this section, we define when a logic is adequate and expressive with respect to a coin-
ductive predicate, and provide sufficient conditions on the logic. Coinductive predicates
are expressed abstractly via fibrations and functor lifting, and logic via a contravariant
adjunction. Therefore, we make the following assumptions.

I Assumption 14. Throughout this section, we assume:
1. (Type of coalgebra) An endofunctor B : C → C on a category C;
2. (Coinductive predicate) A CLat∧-fibration p : E → C and a lifting B : E → E of B;
3. (Coalgebraic logic) An adjunction P a Q : C � Dop, a functor L : D → D with an initial

algebra α : L(Φ)
∼=→ Φ, and a natural transformation δ : BQ⇒ QL.

As explained in the introduction, to formulate adequacy and expressiveness, we need
one more crucial ingredient: an object that stipulates how collections of formulas should
be compared. In the abstract fibrational setting, we assume an object above QΦ; more
systematically, a functor Q above Q.

I Definition 15 (Adequacy and Expressivity). Let Q : Dop → E be a functor such that p◦Q = Q.
We say the logic (L, δ) is

adequate if ν(γ∗ ◦BX) ≤ th∗(QΦ) for every B-coalgebra (X, γ);
expressive if ν(γ∗ ◦BX) ≥ th∗(QΦ) for every B-coalgebra (X, γ).

When we need to refer to the functors Q or B explicitly, we speak about adequacy and
expressivity via Q w.r.t. B. Examples follow in Section 3.2, where classical expressivity and
adequacy w.r.t. bisimilarity is recovered, and Section 4, where other instances are treated.
I Remark 16. Definition 15 can be generalised to arbitrary poset fibrations, not necessarily
assuming complete lattice structure on the fibres, as follows. Adequacy means that for any
B-coalgebra (X, γ), if R ≤ γ∗ ◦BX(R) then R ≤ th∗(QΦ). Expressivity means that for any
B-coalgebra (X, γ), we have th∗(QΦ) ≤ R for some R with R ≤ γ∗ ◦BX(R). In fact, with
these definitions, if (L, δ) is both adequate and expressive then γ∗ ◦BX has a greatest fixed
point, given by th∗(QΦ). We prefer to work with CLat∧-fibrations, since the definition is
slightly simpler, and it covers all our examples.

3.1 Sufficient conditions for expressivity and adequacy
The results below give conditions on B, Q and primarily the one-step semantics δ that
guarantee expressivity (Theorem 19) and adequacy (Theorem 18). For simplicity we fix the
functor Q.
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I Assumption 17. In the remainder of this section we assume a functor Q : Dop → E such
that p ◦Q = Q.

For adequacy, the main idea is to require sufficient conditions to lift δ to a logic for B.

I Theorem 18. Suppose that
1. BQX ≤ δ∗X(QLX) for every object X in D, and
2. the functor Q has a left adjoint.
Then (L, δ) is adequate.

Proof. The first assumption yields a natural transformation δ : BQ ⇒ QL, defined on a
component X by

δX =
(
BQX // δ∗X(QLX) δ̃ // QLX

)

where the left arrow is the inclusion BQX ≤ δ∗X(QLX), and the right arrow δ̃ is the Cartesian
morphism to QLX above δX . It follows that δX is above δX . Further, naturality follows
from p being faithful (as it is a poset fibration, see Section 2.1) and naturality of δ. Observe
that we have thus established (L, δ) as a logic for B-coalgebras, via the adjunction P a Q.

Now let (X, γ) be aB-coalgebra, andR = ν(γ∗◦BX). Then, in particular, R ≤ γ∗◦BX(R),
which is equivalent to a coalgebra γ : R→ BR above γ : X → BX. The logic (L, δ) gives us
a theory map th of (R, γ) as the unique map making the following diagram commute.

R
th //

γ

��

QΦ

Qα

��
BR

B th // BQΦ δ // QLΦ

Since p ◦ Q = Q and p(δΦ) = δΦ, it follows that p(th) equals the theory map th of (X, γ).
Hence R ≤ th∗(QΦ) as required. J

Expressivity requires the converse inequality of the one in Theorem 18, but only on one
component: the carrier Φ of the initial algebra. Further, the conditions include that (B,B)
is a fibration map. In particular, for the canonical relation lifting Rel(B) this means that B
should preserve weak pullbacks; this case is explained in more detail in Section 3.2.

I Theorem 19. Suppose (B,B) is a fibration map. If δ∗Φ(QLΦ) ≤ BQΦ then (L, δ) is
expressive.

Proof. Let (X, γ) be a B-coalgebra, with th the associated theory map. We show that
th∗(QΦ) is a post-fixed point of γ∗ ◦BX :

th∗(QΦ) = (Q(α−1) ◦ δΦ ◦Bth ◦ γ)∗(QΦ)
= γ∗ ◦ (Bth)∗ ◦ δ∗Φ ◦Q(α−1)∗(QΦ)
= γ∗ ◦ (Bth)∗ ◦ δ∗Φ(QLΦ) (follows from α−1 being an iso)
≤ γ∗ ◦ (Bth)∗(BQΦ) (assumption)
= γ∗ ◦BX ◦ th∗(QΦ) ((B,B) fibration map)

Expressivity follows since ν(γ∗ ◦BX) is the greatest post-fixed point. J
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3.2 Adequacy and Expressivity w.r.t. Bisimilarity
In the setting of coalgebraic modal logic recalled in Section 2.2, Klin [22] proved that
1. the theory map th of a coalgebra (X, γ) factors through coalgebra morphisms from (X, γ);
2. if δ has monic components, then th factors as a coalgebra morphism followed by a mono.
The first item can be seen as adequacy w.r.t. behavioural equivalence (i.e., identification by
a coalgebra morphism), and the second as expressivity.

In the current section we revisit this result for Set functors, as a sanity check of Defini-
tion 15. To this end, we focus on the canonical lifting Rel(B) : Rel→ Rel of a Set functor
B in the relation fibration, so that, for a coalgebra (X, γ), ν(γ∗ ◦ Rel(B)X) is coalgebraic
bisimilarity. We have to restrict to weak pullback preserving functors B. The reason is that
expressive logics typically capture behavioural equivalence rather than bisimilarity. As is
well-known, for weak pullback preserving functors, the two coincide [32].

To obtain the appropriate notion of adequacy and expressivity, we need to compare
collections of formulas for equality. Therefore, the functor Q in Definition 15 will be
instantiated with QX = (QX,∆QX) where ∆QX denotes the diagonal. Then, for a coalgebra
(X, γ), th∗(QΦ) is the set of all pairs of states (x, y) such that th(x) = th(y). Adequacy
then means that for every coalgebra (X, γ), bisimilarity is contained in th∗(QΦ), i.e., if x is
bisimilar to y then th(x) = th(y). Expressivity is the converse implication.

To state and prove the result, let Eq : Set→ Rel be the functor given by Eq(X) = ∆X .
This functor has a left adjoint Quot : Rel→ Set, which maps a relation R ⊆ X ×X to the
quotient of X by the least equivalence relation containing R (cf. [14]).
I Proposition 20 (Adequacy and expressivity w.r.t. bisimilarity). Consider the relation fibration
p : Rel→ Set, let B : Set→ Set be a weak pullback preserving functor, let P a Q : Set� Dop

for some category D, L : D → D a functor with an initial algebra and δ : BQ⇒ QL. Then
1. (L, δ) is adequate w.r.t. Rel(B);
2. if δ is componentwise injective, then (L, δ) is expressive w.r.t. Rel(B),
via Q = Eq ◦Q.
Proof. For adequacy, we use Theorem 18. By composition of adjoints, P ◦ Quot is a left
adjoint to Eq ◦Q. It will be useful to simplify Rel(B) ◦ Eq ◦QX and δ∗X(Eq ◦Q ◦ LX):

Rel(B) ◦ Eq ◦QX = Rel(B)(∆QX) = ∆BQX , (6)
δ∗X(Eq ◦Q ◦ LX) = (δX × δX)−1(∆QLX) , (7)

using that Rel(B) ◦ Eq = Eq ◦B in the first equality (e.g., [18]). The remaining hypothesis
of Theorem 18 is that Rel(B) ◦ Eq ◦ QX ≤ δ∗X(Eq ◦ Q ◦ LX) for all X, i.e., ∆BQX ⊆
(δX × δX)−1(∆QLX), which is trivial.

For expressivity, we use Theorem 19. Since B preserves weak pullbacks, (Rel(B), B) is a
fibration map. We need to prove that δ∗Φ(Eq ◦Q ◦ LΦ) ≤ Rel(B) ◦ Eq ◦QΦ, which amounts
to the inclusion

(δΦ × δΦ)−1(∆QLΦ) ⊆ ∆BQΦ

But this is equivalent to injectivity of δΦ. J

4 Examples

In this section we instantiate the abstract framework to three concrete examples: a behavioural
metric on deterministic automata (Section 4.1), captured by [0, 1]-valued tests; a unary
predicate on transition systems (Section 4.2); and similarity of transition systems, captured
by a logic with conjunction and diamond modalities (Section 4.3).
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4.1 Shortest distinguishing word distance
We study a simple behavioural distance on deterministic automata: for two states x, y and
a fixed constant c with 0 < c < 1, the distance is given by cn, where n is the length of the
smallest word accepted from one state but not the other. Following [4], this is referred to as
the shortest distinguishing word distance, and, for an automaton with state space X, denoted
by dsdw : X ×X → [0, 1].

Formally, fix a finite alphabet A, and consider the functor B : Set→ Set, BX = 2×XA

of deterministic automata. We make use of the fibration p : Rel[0,1] → Set, and define the
lifting B : Rel[0,1] → Rel[0,1] by

B(X, d) =
(
BX, ((o1, t1), (o2, t2)) 7→

{
1 if o1 6= o2

c ·maxa∈A{d(t1(a), t2(a))} otherwise

)

The shortest distinguishing word distance dsdw on a deterministic automaton γ : X → 2×XA

is the greatest fixed point ν(γ∗ ◦BX).
For an associated logic, we simply use words over A as formulas, and define a satisfaction

relation which is weighted in [0, 1]. Consider the following setting.

Set
P=[0,1]−

**
B=2×IdA

$$ ⊥ Setop

Q=[0,1]−
ii L=A×Id+1ff with B([0, 1]−) δ +3 [0, 1]L−

The initial algebra of L is the set of words A∗. The natural transformation δ is given by
δX : 2× ([0, 1]X)A → [0, 1]A×X+1,

δX(o, t)(u) =
{
o if u = ∗ ∈ 1
c · t(a)(x) if u = (a, x) ∈ A×X

which is a quantitative, discounted version of the Boolean-valued logic in Example 9. The
logic (L, δ) defines, for any deterministic automaton 〈o, t〉 : X → 2 × XA, a theory map
th : X → [0, 1]A∗ , given by

th(x)(ε) = o(x) and th(x)(aw) = c · th(t(x)(a))(w) ,

for all x ∈ X, a ∈ A, w ∈ A∗.
We characterise the shortest distinguishing word distance with the above logic, by

instantiating and proving adequacy and expressivity. Define

Q : Setop → Rel[0,1] , Q(X) =
(

[0, 1]X , (φ1, φ2) 7→ sup
x∈X
|φ1(x)− φ2(x)|

)
.

Technically, this functor is given by mapping a set X to the X-fold product of the object
[0, 1] = ([0, 1], (r, s) 7→ |r − s|). It follows immediately that Q has a left adjoint, mapping
(X, d) to Hom((X, d), [0, 1]), see Equation 4. This will be useful for proving adequacy below.

The functor Q yields a “logical distance” between states x, y ∈ X, given by th∗(QΦ). We
abbreviate it by dlog : X ×X → [0, 1]. Explicitly, we have

dlog(x, y) = sup
w∈A∗

|th(x)(w)− th(y)(w)| . (8)

Instantiating Definition 15, the logic (L, δ) is
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adequate if dsdw ≥ dlog, and
expressive if dsdw ≤ dlog.

Here ≤ is the usual order on [0, 1], with 0 the least element (the order in Rel[0,1] is reversed).
To prove adequacy and expressivity, we use Theorem 18 and Theorem 19. The functor Q

has a left adjoint, as explained above. Further, (B,B) is a fibration map [4]. We prove the
remaining hypotheses of both propositions by showing the equality BQX = δ∗X(QLX) for
every object X in D. To this end, we compute (suppressing the carrier set BQX):

δ∗X(QLX)
=

(
((o1, t1), (o2, t2)) 7→ supu∈A×X+1 |δX(o1, t1)(u)− δX(o2, t2)(u)|

)
=

(
(o1, t1), (o2, t2)) 7→

{
1 if o1 6= o2

supu∈A×X |δX(o1, t1)(u)− δX(o2, t2)(u)|) otherwise

)

=
(

(o1, t1), (o2, t2)) 7→
{

1 if o1 6= o2

sup(a,x)∈A×X |c · t1(a)(x)− c · t2(a)(x)|) otherwise

)

=
(

(o1, t1), (o2, t2)) 7→
{

1 if o1 6= o2

c ·maxa∈A supx∈X |t1(a)(x)− t2(a)(x)|) otherwise

)
= BQX

Hence, the logic (L, δ) is adequate and expressive w.r.t. the shortest distinguishing word
distance, i.e., dsdw coincides with the logical distance dlog given in Equation 8.

4.2 Divergence of processes
A state of an LTS is said to be diverging if there exists an infinite path of τ -transitions
starting at that state. To model this predicate, let B : Set→ Set, BX = (PωX)A, where A is
a set of labels containing the symbol τ ∈ A. Consider the predicate fibration p : Pred→ Set,
and define the lifting B : Pred→ Pred by

B(X,Γ) = ((PωX)A, {t | ∃x ∈ Γ. x ∈ t(τ)}) .

The coinductive predicate defined by B on a B-coalgebra (X, γ) is the set of diverging states:

ν(γ∗ ◦BX) = (X, {x | x is diverging}) .

Now, we want to prove in our framework of adequacy and expressivity that x is diverging
iff for every n ∈ N there is a finite path of τ -steps starting in x, i.e., x |= 〈τ〉n> for every n.
The proof relies on two main observations:

if x satisfies infinitely many formulas of 〈τ〉n>, then one of its τ -successors does, too;
if a state x satisfies 〈τ〉n> for some n then x satisfies 〈τ〉m> for all 0 ≤ m ≤ n.

Combined, one can then give a coinductive proof, showing that if the current state satisfies
all formulas of the form 〈τ〉n> then one of its τ -successors also satisfies all these formulas.

We make this argument precise by casting it into the abstract framework. First, for the
logic, we have the following setting:

Set
P=2−

**
B=(Pω−)A

$$ ⊥ Posop

Q=Hom(−,2)

ii L=Id>ff with BHom(−, 2) δ +3 Hom(L−, 2)

Here Pos is the category of posets and monotone maps, and 2 = {0, 1} is the poset given by
the order 0 ≤ 1. For a poset S, Hom(S, 2) is then the set of upwards closed subsets of S.
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The functor LS = S> is defined on a poset S by adjoining a new top element >, i.e., the
carrier is S + {>} and > is strictly above all elements of S. The initial algebra Φ of L is
the set of natural numbers, representing the formulas of the form 〈τ〉n>, linearly ordered,
with 0 the top element. The choice of Pos means that the set Hom(Φ, 2) used to represent
the theory of a state x ∈ X consists of upwards closed sets (so closed under lower natural
numbers in the usual ordering), corresponding to the second observation above concerning
the set of formulas satisfied by x.

The natural transformation δ is given by δS : (PωHom(S, 2))A → Hom(S>, 2),

δS(t)(x) =
{

1 if x = >∨
φ∈t(τ) φ(x) otherwise

.

To show that this is well-defined, suppose x, y ∈ S> with x ≤ y, and suppose δS(t)(x) = 1.
If x = > then y = >, so δS(t)(y) = 1. Otherwise, there is φ ∈ Hom(S, 2) such that φ ∈ t(τ)
and φ(x) = 1. Since φ is upwards closed, φ(y) = 1 and consequently δS(t)(y) = 1 as needed.

Now, the theory map th : X → Hom(Φ, 2) is given by th(x)(n) = 1 iff there exists a path
of τ -steps of length n from x. We define

Q : Posop → Pred , Q(S) = (Hom(S, 2), {φ | ∀x ∈ S. φ(x) = 1}) .

Instantiating Definition 15, adequacy means that if x is diverging, then x |= 〈τ〉n> for all n;
and expressivity is the converse.

We start with proving adequacy, using Theorem 18. The left adjoint P is given by
P (X,Γ) = (Hom((X,Γ), (2, {1})), {(φ1, φ2) | ∀x ∈ X.φ1(x) ≤ φ2(x)}). It remains to prove
that BQ(S) ≤ δ∗S(QLS) for all S. To this end, we observe BQS = (Pω(Hom(S, 2)))A and
compute:

δ∗S(QLS) = {t | δS(t) ∈ QLS}
= {t | ∀x ∈ S>. δS(t)(x) = 1}
= {t | ∀x ∈ S. δS(t)(x) = 1}

= {t | ∀x ∈ S.
∨

φ∈t(τ)

φ(x) = 1}

and BQ(S) = {t | (λx.1) ∈ t(τ)}. The needed inclusion is now trivial.
For expressivity we have to prove the reverse inclusion with S = Φ, i.e.,

{t ∈ (Pω(Hom(Φ, 2)))A | ∀x ∈ Φ.
∨

φ∈t(τ)

φ(x) = 1} ⊆ {t ∈ (Pω(Hom(Φ, 2)))A | (λx.1) ∈ t(τ)}.

To this end, let t be an element of the left-hand side, and suppose towards a contradiction
that for all φ with φ ∈ t(τ), there is an element xφ ∈ Φ with φ(xφ) = 0. Choosing an
assignment φ 7→ xφ of such elements, we get a finite set {xφ | φ ∈ t(τ)}. Let xφ be the
smallest element of that set (w.r.t. the order of Φ, i.e., the largest natural number), and let
ψ ∈ Hom(Φ, 2) be such that ψ(xφ) = 1; such a ψ exists by assumption on t. However, since
xφ ≤ xψ and ψ is upwards closed we have ψ(xψ) = 1, which gives a contradiction. Hence,
the inclusion holds as required. The lifting (B,B) is a fibration map. We thus conclude
from Theorem 19 that the logic is expressive.

4.3 Simulation of processes
Let B : Set→ Set, BX = (PωX)A, and let γ : X → (PωX)A be B-coalgebra, i.e., a labelled
transition system. Denote similarity by - ⊆ X ×X, defined more precisely below. Consider
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the logic with the following syntax:

ϕ,ψ ::= 〈a〉ϕ | ϕ ∧ ψ | > (9)

where a ranges over A, with the usual interpretation x |= ϕ for states x ∈ X. A classical
Hennessy-Milner theorem for similarity is:

x - y iff ∀ϕ. x |= ϕ→ y |= ϕ . (10)

We show how to formulate and prove this result within our abstract framework.
First, recall from Equation 2 in Section 2.1 the appropriate lifting B : Rel→ Rel in the

relation fibration p : Rel→ Set. A simulation on a B-coalgebra (X, γ) is a relation R such
that R ≤ γ∗ ◦BX(R), and similarity - is the greatest fixed point of γ∗ ◦BX .

For the logic, to incorporate finite conjunction, we instantiate D with the category SL
of bounded (meet)-semilattices, i.e., sets equipped with an associative, commutative and
idempotent binary operator ∧ and a top element >.

To add the modalities 〈a〉 for each a ∈ A, we proceed as follows. Let U : SL→ Set be the
forgetful functor. It has a left adjoint F : Set→ SL, mapping a set X to the meet-semilattice
Pω(X) with the top element given by ∅ and the meet by union. The functor L : SL→ SL is
given by LX = F(A× UX); its initial algebra Φ consists precisely of the logic presented in
Equation 9, quotiented by the semilattice equations. For the adjunction, we use:

Set
P=2−

**
B=(Pω−)A

$$ ⊥ SLop

Q=Hom(−,2)

ii L=F(A×U−)ee with BHom(−, 2) δ +3 Hom(L−, 2)

which is an instance of Equation 4. Here 2 = {0, 1} is the meet-semilattice given by the order
0 ≤ 1. For a semilattice S, the set Hom(S, 2) of semi-lattice morphisms is isomorphic to the
set of filters on S: subsets X ⊆ S such that > ∈ X, and x, y ∈ X iff x ∧ y ∈ X.

To define the natural transformation δS : (Pω(Hom(S, 2)))A → Hom(F(A× US), 2) on
a semilattice S, we use that for every map f : A × US → 2 there is a unique semilattice
homomorphism f ] : F(A× US)→ 2:

δS(t) = ((a, x) 7→
∨

φ∈t(a)

φ(x))] =

W 7→ ∧
(a,x)∈W

∨
φ∈t(a)

φ(x)

 .

For an LTS (X, γ), the associated theory map th : X → Hom(Φ, 2) maps a state to the
formulas in (9) that it accepts, with the usual semantics.

To recover (10), we need to relate logical theories appropriately. Define

Q : SLop → Rel , QS = (Hom(S, 2), {(φ1, φ2) | ∀x ∈ S. φ1(x) ≤ φ2(x)}) .

Then th∗(QΦ) = {(x, y) | ∀ϕ ∈ Φ. th(x)(ϕ) ≤ th(y)(ϕ)}, i.e., it relates all (x, y) such that
the set of formulas satisfied at x is included in the set of formulas satisfied at y. Thus,
instantiating Definition 15, adequacy - = ν(γ∗ ◦BX) ≤ th∗(QΦ) is the implication from left
to right in Equation 10, and expressivity is the converse.

We prove adequacy and expressivity. The functor Q has a left adjoint, given by
P (X,R) = Hom((X,R), 2), where 2 = (2, {(x, y) | x ≤ y}). This follows by a straight-
forward computation, or using Proposition 11 with Remark 13, with SL as a full subcategory
of the category of all algebras for the corresponding signature.
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Given a semilattice S, we compute δ∗S(QLS) ⊆ (BQS)2 = ((Pω(Hom(S, 2)))A)2:

δ∗S(QLS) = δ∗S({(φ1, φ2) | ∀W ∈ F(A× US). φ1(W ) ≤ φ2(W )})

= {(t1, t2) | ∀W ∈ F(A× US).
∧

(a,x)∈W

∨
φ∈t1(a)

φ(x) ≤
∧

(a,x)∈W

∨
φ∈t2(a)

φ(x)} .

Further, BQS = {(t1, t2) | ∀a ∈ A.∀φ1 ∈ t1(a).∃φ2 ∈ t2(a).∀x ∈ S. φ1(x) ≤ φ2(x)}.
For adequacy, we need to prove BQS ≤ δ∗S(QLS); but this is trivial, given the above
computations. For expressivity, let (t1, t2) ∈ δ∗S(QLS). We need to show that (t1, t2) ∈ BQS.
Suppose, towards a contradication, that (t1, t2) 6∈ BQS, i.e., there exist a ∈ A and φ1 ∈ t1(a)
such that for all φ2 ∈ t2(a), there is x ∈ S with φ1(x) = 1 and φ2(x) = 0. We choose
such an element xφ2 for every φ2 ∈ t2(a). Note that the collection {xφ2 | φ2 ∈ t2(a)}
is finite – here we make use of the image-finiteness captured by the functor B. Now,
consider the conjunction ψ =

∧
φ2∈t2(a) xφ2 ∈ S. Using that φ1 is a homomorphism, we have

φ1(ψ) = φ1(
∧
φ2∈t2(a) xφ2) =

∧
φ2∈t2(a) φ1(xφ2) = 1, and consequently

∨
φ∈t1(a) φ(ψ) = 1.

We also have
∨
φ∈t2(a) φ(ψ) =

∨
φ∈t2(a)

∧
φ2∈t2(a) φ(xφ2) = 0 since φ2(xφ2) = 0 for every

φ2 ∈ t2(a). Finally, to arrive at a contradiction, let W = {(a, ψ)}. Since (t1, t2) ∈ δ∗S(QLS)
this implies

∨
φ∈t1(a) φ(ψ) ≤

∨
φ∈t2(a) φ(ψ), which is in contradiction with the above. It is

easy to check that (B,B) is a fibration map (cf. [16]). Hence, we conclude expressivity from
Theorem 19.

5 Future work

We proposed suitable notions of expressivity and adequacy, connecting coinductive predicates
in a fibration to coalgebraic modal logic in a contravariant adjunction. Further, we gave
sufficient conditions on the one-step semantics that guarantee expressivity and adequacy,
and showed how to put these methods to work in concrete examples.

There are several avenues for future work. First, an intriguing question is whether the
characterisation of behavioural metrics in [24, 37] can be covered in the setting of this
paper, as well as logics for other distances such as the (abstract, coalgebraic) Wasserstein
distance. Those behavioural metrics are already framed in a fibrational setting [4, 34, 2, 23].
While all our examples are for coalgebras in Set, the fibrational framework allows different
base categories, which might be useful to treat, e.g., behavioural metrics for continuous
probabilistic systems [35].

A further natural question is whether we can automatically derive logics for a given
predicate. As mentioned in the introduction, there are various tools to find expressive
logics for behavioural equivalence. But extending this to the current general setting is
non-trivial. Finally, we note that our expressivity result requires the relevant lifting defining
the coinductive predicate to be a fibration map, which in particular implies weak pullback
preservation for the canonical relation lifting. This is natural, since the latter captures
bisimilarity, while logics capture coalgebraic behavioural equivalence. However, it remains
an interesting question whether we can use different liftings to obtain expressivity for
behavioural equivalence; perhaps based on the lifting in [21], techniques related to Λ-
bisimulations [11, 1, 10] or the lax relation lifting from [28].
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