
Chapman University
Chapman University Digital Commons

Engineering Faculty Articles and Research Fowler School of Engineering

2011

Generic Trace Logics
Christian Kissig
University of Leicester

Alexander Kurz
Chapman University, akurz@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles

Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering
Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

This Article is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons. It has been
accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For
more information, please contact laughtin@chapman.edu.

Recommended Citation
Christian Kissig, Alexander Kurz: Generic Trace Logics. CoRR abs/1103.3239 (2011)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215787456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/fowler_engineering?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

ar
X

iv
:1

10
3.

32
39

v1
 [

cs
.L

O
]

 1
6

M
ar

 2
01

1

Generic Trace Logics

Christian Kissig and Alexander Kurz

University of Leicester, Department of Computer Science

June 20, 2018

Abstract

We combine previous work on coalgebraic logic with the coalgebraic traces semantics of
Hasuo, Jacobs, and Sokolova.

1 Introduction

The coalgebraic approach to modal logic has been pursued successfully over the last years.
The basic ideas (see eg [16, 17, 19, 11]), are the following.

• A T -coalgebra, consisting of a carrier X and a ‘next-step’ map ξ : X → TX, represents
a transition system. For example, with PX the set of finite subsets of X and Act a set
of actions, X → P(Act ×X) is a labelled transition system.

• Any particular choice of T yields a canonical notion of T -bisimilarity. For example,
for X → P(Act × X) we obtain the Milner-Park notion of bisimilarity [1] whereas for
X → D(Act×X), with DX denoting the set of probability distributions on X, we obtain
the notion of bisimilarity described in [3].

• Moreover, for any choice of T , we can find a logic for T -coalgebras which is expressive
(ie distinguishes non-bisimilar states) and comes with a complete calculus. These logics
are modal logics in the sense that formulas are invariant under T -bisimilarity.

The work on coalgebraic logic so far is focused on T -bisimilarity.

In parallel, Jacobs and collaborators [6, 5, 4] showed that coalgebras not only provide a
framework for bisimilarity, but also for trace semantics:

• A (B, T)-coalgebra X → BTX is now given wrt a ‘transition type’ T and a ‘branching
type’B. For example, with BX = PX and TX = {∗}+Act×X, aX → P({∗}+Act×X)
is a non-deterministic automaton.

• Different choices of B yield different notions of trace semantics. With B = P , the trace
semantics of X → P({∗} + Act × X) identifies states that accept the same language.
With B = D, the trace semantics of X → D({∗}+Act ×X) identifies states that accept
the same (finite) traces with the same probabilities.

The work of Jacobs et al is build on several assumptions, which limit the generality of the
definition of trace semantics. For instance, it is not possible to define the trace semantics of
finitely branching transition systems.

Results In this paper, we reconsider the definition of trace semantics in the category of
algebras for the branching type B. This allows us to includes the often occuring finite non-
determinism and finitely graded branching.

Moreover we propose a generic definition of coalgebraic logics characterising states up
to trace equivalence. Our definition of trace logics is build upon a dual adjunction on the
category of algebras for the branching type, and matches the definition of coalgebraic modal
logics for T -bisimulation.

Structure of the paper After reviewing material known from the literature, Section 4.3
introduces trace semantcis in the category of Eilenberg-Moore algebras of the monad B de-
scribing the branching type. Section 4.4 describes trace logics using the adjunction induced by

1

http://arxiv.org/abs/1103.3239v1

the closed structure a the commutative monad B. Section 4.5 explains how to define logics via
predicate lifting, a notion known set-coalgebras, which is adapted to our setting. Section 4.6
introduces the notion of a generic trace logic and uses it to prove a particular instance to be
sound, complete, and expressive.

Acknowledgements We would like to thank Ichiro Hasuo and Bart Jacobs.

2 Two Examples

Consider γ : X → Pω({∗} + Act × X). (X, γ) is a finitely non-deterministic automaton.
Indeed, with 1 as {∗} and + as (disjoint) union, we read (a, x′) ∈ γ(x) as x can input a and
go to x′ and we read ∗ ∈ γ(x) as x is an accepting state.

Now consider a logic
φ ::= 0 | √ | φ ∨ φ | 〈a〉φ (1)

with compositional semantics

x 6
 0 (2)

x

√ ⇔ ∗ ∈ γ(x) (3)

x
 φ ∨ ψ ⇔ x
 φ or x
 ψ (4)

x
 〈a〉φ ⇔ (a, x′) ∈ γ(x) and x′

 φ (5)

and as axiomatisation the usual laws for falsum (0) and disjunction (∨) plus the axioms

〈a〉0 = 0 〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ (6)

Note that this implies the typical axiom we would expect for trace logics

〈a〉(〈b〉φ ∨ 〈c〉ψ) = 〈a〉〈b〉φ ∨ 〈a〉〈c〉ψ (7)

Our development will not only provide a generic proof for the fact that this logic is sound,
complete and expressive, but also provide conceptual explanations for why we can have falsum
and disjunction, but not negation and conjunction.

To see that the interaction of the modal operators 〈a〉 with the propositional operators
(0,∨) is subtle, consider as a second example γ : X → D({∗}+Act ×X) where DY is the set
of finitely supported discrete probability distributions on Y . γ(x, ∗) ∈ [0, 1] is the probability
of terminating successfully and γ(x, a, x′) ∈ [0, 1] is the probability of continuing with a and
transiting to x′. Two states x, x′ are trace equivalent if (inventing an adhoc notation similar
to the logic above)

x
 p · 〈a0〉 . . . 〈an〉
√ ⇔ x

′

 p · 〈a0〉 . . . 〈an〉

√
(8)

which we read as stating that the probability of x (and x′) to terminate successfully after the
sequence a0 . . . an is p.

The notation in (8) indicates that there must be a definition of logic, semantics, axiomati-
sation paralleling the example of non-determinstic automata and we will show how to obtain
in a systematic fashion from the functors involved.

3 Preliminaries

3.1 Monads, Algebras and Coalgebras

Definition 3.1. A coalgebra for an endofunctor T on a category C is a morphism γ : X → TX

for an object X of C, that we call γ’s domain. A T -coalgebra morphism between coalgebras
γ : X → TX and δ : Y → TY is a morphism f : X → Y such that Tf ◦ γ = δ ◦ f commutes.
Dually, a T -algebra is an arrow α : TX → X.

Definition 3.2. A monad on Set is an endofunctor B : Set → Set with natural transforma-
tions η : Id ⇒ B and µ : BB ⇒ B such that µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ. If
B preserves filtered colimits, the monads is called finitary.

2

Example 3.3 (finitary monads). 1. The finite powerset Pω, equipped with the singleton
map {(−)} and set-union.

2. The bag functor B takes a set X to the set (NX)ω of its finite multisets, and functions
f : X → Y to multiset-functions Bf : BX → BY taking multisets m ∈ (NX)ω to
λy.

∑
x∈f−1(y)m(x).

3. A (sub-)distribution of a set X is a function d : X → [0, 1] such that
∑

x∈X d(x) = 1
(
∑

x∈X d(x) ≤ 1). The (sub-)distribution functor D=1 (D≤1) takes a set X to the set
of its (sub-)distributions, and functions f : X → Y to λm.λy.

∑
x∈f−1(y)m(x). For the

sake of a brevity we write both, D=1 and D≤1, as D when it is clear from context, which
functor we mean.

For each X we can define functions

µX(d′ ∈ D2X)(x) :=
∑

d∈DX d′(d) · d(x) ηX(x) := λy.

{
1 if y = x

0 otherwise

µ and η are transformations natural in X and form with B a monad.

4. All of the above are examples of functors which take a set X into the set (SX)ω of
evaluations of X into a semiring S with finite support, and functions f : X → Y into
functions (SX)ω → (SY)ω such that m ∈ (SX)ω 7→ λy.

∑
x∈f−1(x)m(x). For Pω the

semiring is the boolean algebra 〈{⊤,⊥},∧,∨,⊤,⊥〉, and for B the semiring are the
natural numbers 〈N,+, ∗, 0, 1〉.

5. If we take for S the real numbers with addition and multiplication, then the category
of algebras for the semiring monad is (isomorphic to) the category of vector-spaces. See
Semadeni [20] for more on this perspective. More generally, if the semiring does not
happen to be a field, the category of algebras for the monad is known as the category
of modules for the semiring.

6. Another example of a semiring monad uses the min-semiring 〈N ∪ {∞},min,+,∞, 0〉
of natural numbers augmented with a top element, ∞, with an idempotent additive
operation, min, and a commutative multiplicative operation, +, such that ∞ is neutral
wrt min and 0 wrt +, and 0 absorbs wrt min.

7. Another example of semiring monads can be found in the weighted automata of Rut-
ten [18], where the stream behaviour is an instance of the finite trace semantics presented
in this paper.

An (Eilenberg-Moore-) algebra for a monad B is an algebra for the functor B satisfying
additionally α◦µX = α◦Bα and α◦ηX = idX . The algebras for a monad B form a category,
the Eilenberg-Moore category B-Alg . U : B-Alg → C maps an algebra to its carrier. U has
a left adjoint F and we write η : Id → UF and ε : FU → Id for the unit and counit of the
adjunction. Recall that UF = B and FεUX = µX .

Each monad admits and initial and a final B-algebra, respectively 〈B∅, µ∅B
2∅ → B∅〉 and

〈{∗}, (λ.∗) : B{∗} → {∗}〉. Synonymously, we denote by 1 a singleton set, when the domain
(Set or B-Alg) is clear from context.

For our definition of generic trace logics, it may be useful when B-Alg is closed in the
sense that homsets in B-Alg have B-algebra structure themselves. Kock [9] showed that this
is true for commutative monads.

Definition 3.4 (Strength Laws). A strength law for a monad B is a transformation stX,Y :=
BX×Y → B(X×Y) natural inX and Y and commutes with the monad’s unit and multiplica-
tion law such that stX,Y ◦(ηX×idY) = ηX×Y and µX×Y ◦BstX,Y ◦stBX,Y = stX×Y ◦(µX×idY).

A double strength law is a natural transformation given as the diagonal dstX,Y : BX ×
BY → B(X × Y) of µX×Y ◦ BstY,X ◦ stX,BY = µX×Y ◦ BstX,Y ◦ stY,BX , given it exists
consistently.

A monad is commutative if it has a double strength law.

The proof of the following can be found in [9].

Proposition 3.5. The Eilenberg-Moore category of a commutative monad is closed.

3

3.2 The Kleisli Construction and Functor Liftings

Definition 3.6 (Kleisli-Categories). The Kleisli-category KlB of a monad B on C has as
objects the objects of C and arrows f : X → Y are the arrows f : X → BY in C. The identity
is given by η : X → BX and composition of f : X → Y and g : Y → Z in KlB is given by
g ◦ f := µZ ◦ Bg ◦ f .

The adjunction F ′ ⊣ U ′ : C → KlB is defined such that for all sets X, F ′X := X, all
functions f : X → Y in Set , F ′f := ηY ◦ f , and for all objects X in KlB, U ′X := BX and
for all morphisms f : X → Y , U ′f := µY ◦ Bf .
Example 3.7. 1. The Kleisli-category for the powerset monad P is Rel , the category of

sets as objects and relations as morphisms.

2. The Kleisli-category for the semiring monad (S(−))ω is the category of free (left) modules
for the semiring S .

A coalgebra γ : X → BTX in Set is a morphisms X → TX in KlB. In order to exhibit γ
as a coalgebra in KlB and to have coalgebra morphisms, one defines the lifting of Set-functors
T to KlB. The lifted functor T makes FT = TF commute. The existence of the functor
lifting is equivalent to the existence of a distributive law.

Definition 3.8 (Distributive Laws). A distributive law for a monad B and a functor T is
a natural transformation π : TB ⇒ BT such that π ◦ Tη = ηT and π ◦ Tµ = µT ◦ Bπ ◦ πB

commute.

Example 3.9. Let T (−) := {∗}+Act × (−) be a Set-functor for a fixed set Act . With each
of the monads in Example 3.3 T has a distributive law.

1. π : TP → PT : πX(∗) := {∗}, πX(a, Y ⊆ X) := {(a, x) | x ∈ Y }.
2. π : TB → BT : πX(∗) := η{∗}+Act×X(∗), and πX(a,m)(a, x) := {(a, x) 7→ m(x), (b, x) 7→

0, ∗ 7→ 0 | a ∈ Act , b ∈ Act , b 6= a, x ∈ X}
3. π : TD → DT : πX(∗) := η{∗}+Act×X(∗), and πX(a, d) := {(a, x) 7→ d(x), (b, x) 7→ 0, ∗ 7→

0 | a ∈ Act , b ∈ Act , b 6= a, x ∈ X} where D ∈ {D≤1,D=1}
Definition 3.10 (Functor Lifting by Distributive Law). Given a distributive law π : TB →
BT we can define T on objects TX := TX and on morphisms T (f : X → Y) := πY ◦ Tf

There is a full and faithful functor K : KlB → B-Alg mapping X to the free algebra over
X, see [15]. In other words, we can think of KlB as the full subcategory of B-Alg consisiting
of the free algebras.

4 Coalgebraic Logic for Trace Semantics

In this section we show how to set up trace logics in a coalgebraic framework. But first we
review some basic of coalgebraic logic (more can be found in [11]) and the fundamentals of
generic trace semantics [6].

4.1 A Brief Review of Logics for T -Bisimilarity

Suppose we are looking for a logic for T -coalgebras built upon classical propositional logic.
Such a logic would be based on Boolean algebras which precisely capture the axioms of
propositional logic. Then, in the same way as T is a functor Set → Set on the models
(coalgebras) side, the logic will contain modalities given in terms of a functor L : BA → BA
on the category BA of Boolean algebra. The situation is depicted in

Set

Q
,,

T << ⊥ BAop

S

kk Lcc (9)

Q contravariantly takes sets X to their powersets 2X and S maps a Boolean algebra to
the set of maximal consistent theories (ultrafilters). For example, if T = P we may define L
by saying that LA is the Boolean algebra generated by ✸φ, φ ∈ A, modulo the axioms

✸0 = 0 ✸(φ ∨ ψ) = ✸φ ∨✸ψ (10)

4

Note how this definition of L captures the usual modal logic for (unlabelled) transition sys-
tems. The semantics of the logic is given by a map

δX : LQX → QTX (11)

In the example we define δX(✸φ) = {ψ ∈ PTX | φ∩ψ 6= ∅} in order to capture that ✸φ holds
if the set ‘of successors’ ψ satisfies φ ∩ ψ 6= ∅. Finally, (L, δ) gives rise to a logic in the usual
sense as follows. The set of formulas of the logic is the carrier of the initial L-algebra. The
semantics of a formula wrt to a coalgebra X → TX is given by the unique homomorphism
from the initial L-algebra LI → I as in:

LI

L([[·]])
��

// I

[[·]]
��

LQX
δX // QTX

Qγ // QX

(12)

Theorem 4.1. Any (L, δ) with δ as in (11) gives rise to a logic for T -coalgebras. The
semantics [[·]] as in (12) is invariant under T -bisimilarity. The logic is expressive for (finite)
coalgebras, if δX is onto for (finite) X and the equational logic given by the axioms defining
L is complete if δX is injective for all X.

Suppose we are given T , how can we find a logic (L, δ)? Two answers:

Remark 4.2. 1. Moss [16] takes LA to be the free BA generated by TUA where UA is the
underlying set of A. A complete calculus has been given in [10].

2. The standard modal logic for T = P above arises from LA = QTSA on finite A and
extending continuously to all of BA [13]. It is always complete.

Both logics are expressive. A detailed comparison has been given in [12].

4.2 A Brief Review of Finite Trace Semantics

The basic construction Consider a coalgebra X → BTX, the running example being
B = P and TX = {∗} + Act × X as discussed in Section 2. The set of traces will be the
carrier of the initial T -algebra given by the colimit (or union) of the sequence

∅ �
� ∅ // T∅ �

� T∅ // T 2∅ �
� // · · · Tω∅ (13)

In the example Tn∅ = {a1 . . . an | ai ∈ Act} and Tω∅ = Act∗, ie the set of finite words over
Act . The set of traces of length n will be given by a map

trn : X → BT
n∅ (14)

In the example, trn(x) is the set of traces of length n that lead from x to an accepting state.
To compute it, we need the following ingredients.

Assumption 1.

• a map µX : BBX → BX (for this we assume that B is a monad)

• a map πX : TBX → BTX (for this we assume that π is a distributive law)

• an algebra morphism e : A→ F∅ from any B-algebra A into F∅.1

The maps trn then arise from taking n steps of γ, eg in the case n = 2, as

X
γ // BTX

BTγ // BTBTX
BTBTe// BTBTB∅

p // BBBTT∅ m // BT 2∅

(p stands for 3 applications of π and m for 2 applications of µ.)

Definition 4.3. Two states x, y ∈ X of a coalgebra X → BTX are trace equivalent if
trn(x) = trn(y) for all n < ω.

1This means that we assume from hereon B∅ 6= ∅. Also note that in all our examples B is a commutative monad,
hence B∅ 6= ∅ implies B∅ = 1, so that F∅ is the final algebra.

5

For the purposed of the current paper, we consider this the essence of the trace semantics
of [5]. But [5] do much more and, in particular, they show that under additional assumptions
the trace semantics can be given by a final coalgebra in the Kleisli category.

Trace semantics in the Kleisli category [5] show not only that the ingredients of a
monad B and a distributive law TB → BT give rise to trace semantics, they also show that it
can be elegantly formulated in the so-called Kleisli category of the monad B (see Section 3).
The objects in the Kleisli category are the same as in Set , but arrows X → Y in KlB are
maps X → BY in Set . In case of the powerset functor B = P , KlB is the category of sets
with relations as arrows.

The distributive law TB → BT gives rise to a lifting of T : Set → Set to T : KlB → KlB.
The definition of trn can then be defined inductively as

trn+1 = T (trn) ◦ γ (15)

where we assume a morphism tr0 : X → 0 in the base case. The following diagram illustrates
the above definition

X
γ //

tr0

��

trn

��

trn+1

TX T trn

��
∅ · · · T

n∅ T
n+1∅ · · ·

(16)

Furthermore, under conditions for which we refer to [5], the final T -coalgebra Z exists.2

Therefore, with the notation of Definition 4.3, there is a map tr : X → BZ with the property

tr(x) = tr(y)⇔ trn(x) = trn(y)

for all n < ω. Thus, the trace semantics via the final coalgebra (if it exists) in the Kleisli-
category is equivalent to the one of Definition 4.3. The advantage of the trace semantics
via the final coalgebra in the Kleisli-category is that it gives a coinductive account of trace
semantics. The disadvantage is that it excludes some natural examples such as finite powersets
or multisets. The next section shows that these examples can be treated via final coalgebras
if we move from the Kleisli-category to the category of algebras for the monad.

4.3 Trace Semantics in the Eilenberg-Moore Category

In this section we propose to move the trace semantics from the Kleisli-category KlB to
the category B-Alg of Eilenberg-Moore-algebras. There are at least two reasons why this of
interest. The first is that the duality we will exploit for the logic takes place in B-Alg . The
second is that, in general, the limit of Diagram (16) is not a free B-algebra and hence not in
KlB, but it always exists in B-Alg .

Let K denote the functor which embeds KlB into B-Alg. Our first task is to extend
T : KlB → KlB to T̃ : B-Alg → B-Alg so that T̃K ∼= KT (hence T̃ F ∼= FT).

KlωB �
w

J

44

T
′

��
KlB

%

� K ,,

T

��
B-Alg

T̃

��
(17)

On the full subcategory of free algebras we can define T̃FX = KTX = FTX. To extend
this to arbitrary algebras A recall first that any A ∈ B-Alg is a coequaliser of FUεA, εFUA :
FUFUA → FUA. We then define T̃A as the coequaliser of T̃FUεA and T̃ εFUA. It can be
shown that T̃ is the left Kan-extension of KT along K.

Example 4.4. Let B = Pω and T = {√}+ Act × Id . Then T̃A ∼= F1 + Act ·A. Indeed, by
definition, we have T̃ FX = FTX ∼= F1+Act ·FX. Now the claim follows from the fact that
the functor F1 + Act · Id , being a coproduct, preserves coequalisers.

2Moreover, [5] prove the beautiful result that show that the final T -coalgebra is given by the initial T -algebra
with the carrier T

ω∅ as in (13).

6

It is convenient for us to make the following assumptions.

Assumption 2. B : Set → Set is a finitary commutative monad with B∅ 6= ∅ and T : Set →
Set is a finitary functor with a distributive law TB → BT .

Remark 4.5. If B and T are finitary, then T̃ is determined by finitely generated free algebras,
or, in other words, T̃ preserves sifted (hence filtered) colimits [2] and falls within the framework
considered in [14, 21]. For a functor H : A → A on a finitary algebraic category A to be
strongly finitary means that H is determined by its action on finitely generated free algebras.
More formally, H is a left Kan-extension of HK along K where K is the inclusion A0 → A
of the full subcategory A0 of finitely generated free algebras. A pleasant consequence is that
all concrete calculations of some HA can be restricted to the case A = Fn, where F is the
left adjoint of the forgetful functor A → Set and n is finite. This will be exploited in the
following for A = B-Alg . Other consequences of our assumption then are:

• F∅ is the initial and final object of B-Alg.

• The final T̃ sequence converges after ω steps.

In a second step, we can now map a coalgebra γ : X → BTX (ie γ : X → TX) to

γ̃ : FX → T̃FX (ie γ̃ : KX → KTX). Thus γ̃ is a coalgebra for a functor T̃ : B-Alg → B-Alg.
Moreover we observe that we can factor trn : X → BTn∅ from Diagram (16) as

trn : X → BX ∼= UFX
U t̃rn−→ T̃

n
F∅ ∼= BT

n∅
where we define t̃r0 via e as in Assumption 1 and t̃rn+1 = T̃ t̃rn ◦ γ̃. Let us summarise this in
a definition and a proposition.

Definition 4.6. Recall Assumption 2. For any coalgebra α : A → T̃A we define the trace
semantics as follows. First, t̃r : A→ F∅ is given by finality; then, inductively t̃rn+1 = T̃ t̃rn◦γ̃.
This defines a cone on the final T̃ -sequence so we can define the trace semantics t̃r : A→ Z,
where Z → T̃ Z is the final T̃ -coalgebra. For a coalgebra γ : X → BTX we define tr : X → UZ

as U t̃r ◦ ηX , where t̃r is the trace semantics of γ̃ : FX → T̃ FX.

To emphasise that this definition agrees with the one of the previous subsection we state

Proposition 4.7. Consider γ : X → BTX and γ̃ : FX → FTX = T̃ FX. Then U t̃rn ◦ηX =
trn.

Thus, Z and t̃r and tr are just a convenient way to talk about the maps trn for all n ∈ N

simultaneously. In particular, we have now again a coinductive account of trace semantics.
This technique will give, for example, a short and conceptual proof of Theorem 4.16. Under
Assumption 2, and if the final T -coalgebra of [5] exists, then both the trace semantics in KlB
and the trace semantics in B-Alg are equivalent as both boil down to Definition 4.3. (Of

course, this is due to the fact that the definition of T̃ extends to all algebras the lifting T of
T to Kl(B).)

Remark 4.8. If B∅ 6= 0 then the sequence (T̃nF∅)n<ω is the finitary part of the final T̃ -
sequence in B-Alg. Moreover, it follows from Remark 4.5 that if B is finitary, then the
ω-limit (T̃ωF∅) of the final sequence is the final T̃ -coalgebra. To summarise, in addition to
the explanation of trace semantics as a final semantics in the Kleisli-category as in [5], we can
also give a final semantics in the Eilenberg-Moore category. These two approaches are slightly
different, for example, the approach of [5] works for B = P but not for B = Pω, whereas for
us it is more natural to work with B = Pω as we then have algebras with a finitary signature.

Example 4.9. Consider B = Pω, T = {√}+ Act × Id . Then T̃ (FX) = F{√} + Act · FX.

We can identify F∅ with {∅} and T̃n(F∅) with Pω(1 + Act + . . .Actn). Thus, elements of

T̃n(F∅) are finite sets of finite words 〈a1 . . . ai〉, i ≤ n. As F∅ is initial and final in B-Alg, the

T̃n(F∅) are part of the initial and of the final T̃ -sequence. The projections pn+1
n : T̃n+1(F∅)→

T̃n(F∅) are finite-union-preserving maps determined by acting as the identity on singletons

{〈a1 . . . ai〉} for i ≤ n and sending {〈a1 . . . an+1〉} to ∅. The embeddings enn+1 : T̃n(F∅) →
T̃n+1(F∅) are given by the obvious inclusions. Note that pn+1

n ◦ enn+1 = idn. The colimit

of the initial T̃ -sequence (enn+1)n<ω is given by all finite subsets of Act∗ =
∐

n<ω Actn. The

limit of the final T̃ -sequence (enn+1)n<ω is given by all subsets of Act∗. Note that although

all approximants T̃n(F∅) are free algebras, the limit P(Act∗) is not free in B-Alg and hence
does not appear in Kl(Pω).

7

4.4 Logics for Finite B-Traces

We develop logics for (B, T)-coalgebras with a semantic invariant under trace equivalence in
analogy to coalgebraic modal logic for T -bisimulation.

Firstly we need a category carrying our logics. We have a number of possible replacements
for BA in Diagram (9): distributive lattices for positive logic, Heyting algebras for intuitionis-
tic logic, complete atomic Boolean algebras for infinitary logic. The minimal choice (without
propositional operators) is Set itself as used for example by Klin in [8].

Set

2(−)

,,⊥ Setop

2(−)

kk (18)

In the above situation, 2 takes the role of a schizophrenic object. Analogously we may
choose a B-algebra Ω to replace 2. In most examples we have considered, F1 is a suitable
choice, but for the moment we do not need to fix a choice.

Notation 4.10. If B is a commutative monad, we write Q for the contravariant endofunctor
[−,Ω] on B-Alg where Ω is for now an arbitrary but fixed object of ‘truth values’.

B-Alg

Q=[−,Ω]
--

⊥ B-Algop

Q=[−,Ω]

ll (19)

Q0 is the contravariant endofunctor U [F−,Ω] = Set(−, UΩ). We have UQA = Q0UA.

Example 4.11. When B = Pω, B-Alg = SLat is the category of (join) semi-lattices. For Ω
we choose the two-element semi-lattice F1 = 2, so that [−, F1] takes a semi-lattice A to the
set of ‘prime filters’ over A. For future calculations, we record some facts about semi-lattices.
First, for finite A, there are order-reversing bijections

A

exp
,,
[A,2]

log

kk (20)

given by exp(a) = λb.¬(b ≤ a) and log(φ) =
∨
φ− where ¬ : 2 → 2 is negation and

φ− = {a ∈ A | φ(a) = 0}. Another description of log goes as follows. Since φ preserves joins
it has a right adjoint φ♯ and log(φ) = φ♯(0). Second, if A = FX with X not necessarily finite,
we have the bijection

UQFX = U [FX,2] ∼= Set(X, 2) ∼= PX (21)

which lifts to a semi-lattice isomorphism

QFX ∼= (PX, ∅,∪) (22)

mapping φ ∈ [FX,2] to {x ∈ X | φ({x}) = 1} and S ⊆ X to the unique φ with φ(x) = 1 ⇔
x ∈ X, or, equivalently, to λS′ ∈ FX .S ∩ S′ 6= ∅ (where we use (21) to identify S′ with a
subset of X). Taking now X = n finite again, we obtain

QFn ∼= Fn. (23)

In this case it is more convenient to use exp and log to denote the order-preserving bijections

Fn

exp
,,
[Fn,2]

log

kk (24)

given by log(φ) = {i ∈ n | φ({i}) = 1} and exp(S) = λS′.S ∩ S′ 6= ∅ (where again we identify
elements S, S′ of Fn with subsets S, S′ ⊆ n).

One can check that exp(exp(a)) = λφ.φ(a). It follows that exp ◦ exp : Id → QQ is the unit
of the adjunction (19), and, moreover, that the unit is an isomorphism on finite semi-lattices.3

In case of Fn→ QQFn we have for S ⊆ n that exp(exp(S))(φ) = log(φ)∩S 6= ∅. The inverse

3This also follows from the fact that the adjunction (19) restricts to an equivalence on finite semi-lattices [7].

8

QQFn→ Fn of Fn→ QQFn maps u : [Fn,2]→ 2 to log(log(u)) = n \ {i ∈ n | ∃φ . u(φ) =
0&φ({i}) = 1}.

We will also use that for finite semi-lattices coproducts and products coincide, with

A+B → A×B
a 7→ (a, 0)
b 7→ (0, b)

a ∨ b ← [(a, b)

(25)

describing the isomorphism.

In Section 4.2 we have defined the finite trace semantics of Set-coalgebras γ : X → BTX

as the final coalgebra semantics of the lifted coalgebra γ : FX → T̃FX in B-Alg .
Secondly we need a functor L providing the modalities for our logics, as in the following

diagram.

B-Alg

Q
--

T̃ ;; ⊥ B-Algop

Q

ll Lee (26)

In analogy to Section 4.1, we develop finite trace logics as the initial L-algebra L : LI → I

in B-Alg . Note that under the assumptions of Remark 4.5, we have that I is the ω-colimit of
the initial L-sequence:

0 // L0 // L20 // · · · (27)

Definition 4.12. A trace logic is given by a functor L : B-Alg → B-Alg and a natural
transformation δ : LQ → QT̃ . Formulas of the logic are given by elements of the initial
L-algebra. The semantics [[·]]γ̃ wrt a T̃ -coalgebra γ̃ : FX → T̃ FX is given by initiality as in

LI

L[[·]]γ̃
��

// I

[[·]]γ̃
��

LQFX
δFX // QT̃FX

Qγ̃ // QFX

(28)

This induces the semantics [[·]]γ wrt a coalgebra γ : X → BTX via

UI
U [[·]]γ̃ // UQFX

∼= // Q0UFX
Q0ηX // Q0X (29)

For future reference, we record that the semantics in terms of γ and γ̃ agree:

Proposition 4.13. Let γ̃ : FX → T̃FX be the T̃ -coalgebra induced by the (B, T)-coalgebra
γ : X → BTX, that is, γ = Uγ̃ ◦ ηX with ηX : X → BX the unit of the monad B. Then
[[φ]]γ(x) = [[φ]]γ̃(ηX(x)).

Example 4.14. Continuing from Example 4.11, in order to describe the logic (1), we let
LA be the join-semilattice which is freely generated by

√
and 〈a〉φ for a ∈ Act and φ ∈ A,

quotienting by (6). To describe δFX it is convenient to note that QFX can be identified with

the set of subsets of X as in (22) and QT̃FX = QFTX with the set of subsets of TX. It
therefore makes sense to define

δFX : LQFX → QT̃FX
√ 7→ {S ⊆ TX | ∗ ∈ S}

〈a〉φ 7→ {S ⊆ TX | ∃x(x ∈ φ & (a, x) ∈ S)}

Proposition 4.15. (L, δ) of Example 4.14, together with (28), describes the same logic as
(1) in Section 2.

Proof. For example, we calculate x |= 〈a〉φ ⇔ γ(x) ∈ {S ⊆ TX | ∃x′(x′ ∈ φ & (a, x′) ∈
S)} ⇔ γ(x) ∈ δFX(〈a〉φ)⇔ x ∈ QFγ(δFX(〈a〉φ)) ⇔ x ∈ [[〈a〉φ]] where we use, respectively,
(5), the definition of δ, the definition of Q, and (28).

9

Theorem 4.16. Consider a functor T : Set → Set, a monad B, and a distributive law
TB → BT . Any (L, δ) with L : B-Alg → B-Alg and δK : LQK → QKT gives rise to a logic
for BT -coalgebras invariant under B-trace semantics.

Proof. For a given γ : X → BTX and formula φ, we have to show that tr(x) = tr(y) implies
x
 φ ⇔ y
 φ. Expressing this in B-Alg , this amounts to t̃r(ηX (x)) = t̃r(ηX(y)) only if
x ∈ [[φ]]γ̃ ⇔ y ∈ [[φ]]γ̃ . But this is immediate from the initiality of the algebra of formulas as

follows. Let (Z, ζ) be the final T̃ -coalgebra.

LI

L[[·]]ζ
��

// I

[[·]]ζ
��

LQZ
δZ //

LQt̃r

��

QT̃Z
Qζ //

QT̃ t̃r

��

QZ

Qt̃r

��
LQFX

δFX // QT̃FX
Qγ̃ // QFX

(30)

Since morphisms from the initial algebra LI → I are uniquely determined, we must have
[[·]]γ̃ = Qt̃r ◦ [[·]]ζ .

4.5 Predicate Liftings

Whereas the previous section treats logics from an abstract point of view, we are now going
to see how to describe them concretely using predicate liftings. First, we need to extend the
set-based notion of predicate lifting [17, 19] to coalgebras over B-Alg .

Suppose we have L and
LQ→ QT̃ .

Using Id → QQ from the adjunction (19) this gives us

L→ LQQ→ QT̃Q.

We will see below that QT̃Q gives us predicate liftings, but first we are going to show how to
recover LQ→ QT̃ from L→ QT̃Q. Write

J : KlωB → B-Alg

for the inclusion of the category of finitely generated free algebras into B-Alg.

Proposition 4.17. Let L be determined by finitely generated free algebras as in Remark 4.5.
Then there is a bijection between natural transformations LQ→ QT̃ and natural transforma-
tions LJ → QT̃QJ.

Proof. Given δ : LQ → QT̃ we obtain ρ : LJ → QT̃QJ as δQ ◦ Lη. Conversely, given ρ, we
write QA as a colimit φi : Fni → QA, which is preserved by L, and obtain δ via

QA LQA
δA // QT̃A

Fni

φi

OO

LFni

Lφi

OO

ρFni // QT̃QFni

QT̃ φ̌i

OO
(31)

where φ̌i : A→ QFni is the adjoint transpose of φi. To check that these two assignments are
inverse to each other, we first note that the diagram (31) can be rewritten as

LQA
δA // QT̃A

LFni

Lφi

::
u

u
u

u
u

u
u

u
u

u Lη // LQQFni

LQφ̌i

OO

δQFni

// QT̃QFni

QT̃ φ̌i

OO
(32)

10

where the triangle commutes because of the adjunction (19) and the quadrangle commutes
because of naturality. It follows that starting from δ and defining ρ, the original δ satisfies
(31) and therefore agrees with the δ defined from ρ. Conversely, defining δ from ρ in (31),
one can choose A = QFn, ni = n and φ̌ = id , which shows that δ determines the ρ it comes
from uniquely.

We can interpret the proposition as follows. An element of

Q0A = UQA

is a predicate on A. An element of
[n,Q0A]

is an n-ary predicate on A. We have [n,Q0A] ∼= [Fn,QA] ∼= [A,QFn] and find it useful to
introduce the following notation. We want to write φ for n-ary predicates and if we want to
make precise which of the three presentations we use, we write

φ ∈ [n,Q0A] φ = φ̂ ∈ [Fn,QA] φ̌ ∈ [A,QFn]. (33)

Next we show how elements l ∈ LFn are n-ary modal operators. Given an n-ary predicate φ
on A, the ‘modal operator’ l induces an predicate on T̃A as follows.

T̃A
T̃ (ǎ) // T̃QFn

ρFn(l) // Ω (34)

This shows that the meaning of the modal operator l ∈ LFn is fully determined by the image
ρFn(l) ∈ QT̃QFn. We turn this observation into a definition.

Definition 4.18. Elements of QT̃QFn are called n-ary predicate liftings. Each λ ∈ QT̃QFn
induces a natural transformation

[Fn,QA] → QT̃A

φ 7→ λ ◦ T̃ (φ̌) (35)

Example 4.19. Consider B = Pω, T = {∗} + Act × Id , T̃ (A) = F{∗} + Act · A. As

in Example 4.9, we identify F∅ with {∅} and T̃n(F∅) with Pω(1 + Act + . . .Actn). The

initial and final T̃ -algebras are then Pω(Act
∗) and P(Act∗), respectively. Recall that QA =

[A,F1] = [A,2] and we write 0, 1 ∈ 2. Further note that, for finite n, there is a bijection
UQFn = U [Fn,2] ∼= Set(n, 2) ∼= Bn = UFn which extends to a semi-lattice isomorphism
QFn ∼= Fn.

In order to obtain the clause for
√
, we instantiate (35) with n = ∅ (because

√
is a

constant) and let λ√ be the unique isormorphism

T̃QF∅ ∼= T̃F∅ = F{∗}+Act · F∅ ∼= F{∗} −→ 2. (36)

Consider A and φ : F∅ → QA and φ̌ : A → QF∅ ∼= F∅. This gives us the semantics of
√

as

follows. δA(
√
) ∈ QT̃A as in (31) is the map

F{∗}+ Act · A δ(
√

) //

F{∗}+Act·φ̌
��

2

F{∗}+ Act · F∅
λ√

99rrrrrr
rrrrr

(37)

Finally, putting this together with (28) and (29) we find that, as expected,

x

√ ⇔ ∗ ∈ γ(x).

In order to obtain the clause for 〈a〉φ, we instantiate (35) with n = 1 and let λa be given
by the map

T̃QF1 ∼= T̃F1 = F{∗}+ Act · F1 −→ 2 (38)

11

which sends all generators ∗ and b ∈ A, b 6= a to 0 and a to 1. Consider A and choose some
φ : F1 → QA. Note that φ̌ : A → QF1 ∼= F1 ∼= 2. This gives us the semantics of 〈a〉φ as

follows. δ(〈a〉φ) ∈ QT̃A as in (31) is the map

F{∗}+ Act · A δ(〈a〉φ) //

F{∗}+Act·φ̌
��

2

F{∗}+ Act · F1

λa

99rrrrr
rrrrrr

(39)

Finally, putting this together with (28) and (29) we find that, as expected,

x
 〈a〉φ ⇔ (a, x′) ∈ γ(x) and x′

 φ.

Every collection of predicate liftings defines a functor.

Definition 4.20. Given a collection of predicate liftings Λ let LΛA = F
∐

λ∈Λ[F (nλ), A],

where nλ is the arity of λ. The semantics δΛ acts on a generator (λ, φ) ∈ QT̃QFn× [Fn,QA]
as given by (35).

Example 4.21. Let Λ = {λ√}∪ {λa | a ∈ Act} as in Example 4.19. Then LΛA ∼= F1+Act ·
FUA and δΛ is given by (37) and (39).

It is possible to incorporate logical laws into the functor.

Example 4.22. Let Λ = {λ√} ∪ {λa | a ∈ Act} as in Example 4.19 and consider the set
E of equations given by (6). Then LΛE

∼= F1 + Act · Id and δΛE is given by (37) and (39).
Furthermore, we have

F1 + Act ·Q

∼=
��

κ

**UUUUUUU

QT̃

LΛEQ
δΛE

44iiiiiiii

(40)

where, on finite A, κA is the isomorphism

F1 +Act ·QA // F1×∏
Act

QA // Q(F1 +Act ·A) // QT̃A (41)

where the first iso comes from (25), the second is due to Q being a hom-functor, and the third

is from the definition of T̃ .

To summarise, we have extracted from the example in Section 2 a general framework that
allows to define trace logics for general functors T and monads B satisfying Assumption 2.

4.6 A generic trace logic

In this section, we show how to define a logic (LT , δT) for general functors T and monads B
satisfying Assumption 2. We show that the example from the previous section arises in that
way.

Definition 4.23. The functor LT : B-Alg → B-Alg is defined on finitely generated free
algebras Fn as LTFn = QT̃QFn. Since every A ∈ B-Alg is a colimit of finitely generated
free algebras, this extends continuously to all A ∈ B-Alg .

Definition 4.24. The semantics δT : LTQ → QT̃ is given by considering QA as a colimit
φi : Fni → QA, which is, by construction, preserved by LT . More explicitly, (δT)X is the
unique arrow making the following diagram

QA LTQA
(δT)A // QT̃A

Fni

φi

OO

LTFni

LT φi

OO

= // QT̃QFni

QT̃ φ̌i

OO
(42)

commute for each i; as in (33), the arrow φ̌i comes from applying the isomorphism
B-Alg(Fni, QA) ∼= B-Alg(A,QFni) to φi.

12

To show that the example of the previous section is actually the generic one, we need a
lemma helping us to compare the two logics.

Lemma 4.25. Let (L, δ), (L′, δ′) be two logics and ρ, ρ′ as in (31). If there is an isomorphism
α : LJ → L′J such that for all finite sets n we have

LFn

αn

��

ρ

**TTTTTT

QT̃QFn

L′Fn
ρ′

44jjjjjj

(43)

then this extends to an isomorphism β : L→ L′ of logics, ie, β satisfies

LQ

βQ

��

δ

((QQQQQQ

QT̃

L′Q
δ′

66nnnnnn

(44)

Moreover, βFn = αn.

Consequently, any collection of isomorphisms Ln → QT̃QFn, n ∈ N, defines the same
logic, or, more precisely:

Corollary 4.26. The generic logic LT is determined up to isomorphism, that is, for any other
logic (L, δ) with the LFn → QT̃QFn as in (31) being isos, there is a unique isomorphism
L→ LT such that

LQ

��

δ

((QQQQQQ

QT̃

LTQ
δT

66mmmmmm

(45)

Finally, we can show that the generic logic of this subsection agrees with the logic defined,
in different ways, by (1)-(6), or again in Example 4.14 or in Example 4.22.

Proposition 4.27. Going back to Example 4.22, there is an isomorphism such that

LΛEQ

∼=
��

δΛE

((RRRRRR

QT̃

LTQ
δT

66llllll

(46)

Proof. We write (L, δ) for (LΛE , δΛE) and ρ for the natural transformation as in (31). Ac-

cording to Corollary 4.26, it is enough to show that ρFn : LFn→ QT̃QFn is an isomorphism.
From the proof of Proposition 4.17, we know that ρFn = δQFn◦Lη. Since η is an isomorphism
for finite semi-lattices, the result now follows from δQFn being iso, see Example 4.22.

Finally, Definition 4.24 does not depend on the choice of a partiuclar T or B, so we can
summarise this section as follows.

Theorem 4.28. For every monad B on Set and functor T : Set → Set satisfying Assump-
tion 2 there is a generic trace logic.

Of course, given B and T , the real work consists in finding a good explicit description of
the generic logic. We have illustrated this for the moment only with one example.

We can apply the general framework to obtain results about generic logics. For example,
we have

Theorem 4.29. The logic of Example 4.22 is expressive and complete.

Proof. We write (L, δ) for (LΛE , δΛE). The proof is straightforward due to the following facts:

B and T̃ preserve finite algebras and on finite algebras we have that δ is an isomorphism. In
detail:

13

Expressiveness means that any two non-trace equivalent states can be separated by a
formula. Consider a coalgebra X → BTX with x, x′ ∈ X and suppose x accepts trace t and
x′ does not. Since the initial L-algebra is the free B-algebra over the set of traces, t can be
considered as a formula and we have x
 t and x′ 6
 t.

Completeness means that if L does not prove φ = φ′, then there must be a coalgebra
X → BTX and x ∈ X such that, wlog, x
 φ and x 6
 φ′. Since φ and φ′ appear at some
stage n in the initial algebra construction of L, the semantics of φ and φ′ is determined at
stage n. Since δ is an iso on finite algebras, the images of φ and φ′ in QT̃nF∅ are different.
It follows from a standard argument that there is a T̃ -coalgebra γ̃ : T̃nF∅ → T̃ (T̃nF∅)
that refutes the equation φ = φ′. In particular, [[φ]]γ̃ 6= [[φ′]]γ̃ are two different morphisms

FTn∅ = QT̃nF∅ → 2, so they must differ on some generator ηX(x) where ηX : X → BX maps
elements x to singletons {x}. It follows now from Proposition 4.13 that the (B, T)-coalgebra
Uγ ◦ ηX : X → BTX contains a state x with x
 φ and x 6
 φ.

References

[1] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[2] J. Adámek, J. Rosický, and E. Vitale. Algebraic Theories. Cambridge University Press,
2011.

[3] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic
approach. In ICALP’97.

[4] I. Hasuo. Tracing Anonymity with Coalgebras. PhD thesis, University of Nijmegen, 2008.

[5] I. Hasuo, B. Jacobs, and A. Sokolova. Generic Trace Theory. In CMCS’06.

[6] B. Jacobs. Trace Semantics for Coalgebras. Electronic Notes in Theoretical Computer
Science, 106, 2004.

[7] P. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[8] B. Klin. Bialgebraic operational semantics and modal logic. In LICS’07.

[9] A. Kock. Monads on symmetric monoidal closed categories. Archiv der Mathematik,
21(1):1–10, Dec. 1970.

[10] C. Kupke, A. Kurz, and Y. Venema. Completeness of the finitary Moss logic. In AiML’08.

[11] A. Kurz. Coalgebras and their logics. SIGACT News, 37, 2006.

[12] A. Kurz and R. Leal. Equational Coalgebraic Logic. In MFPS’09.

[13] A. Kurz and J. Rosický. The Goldblatt-Thomason-theorem for coalgebras. InCALCO’07.

[14] A. Kurz and J. Rosický. Strongly complete logics for coalgebras. July 2006.

[15] S. MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, New York, 2nd edition edition, 1998.

[16] L. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96, 1999.

[17] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theor. Comp. Sci., 309, 2003.

[18] J. J. Rutten. Coinductive Counting With Weighted Automata, 2002. Journal of Au-
tomata, Languages and Combinatorics, 8, 2003.

[19] L. Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In
FOSSACS’05.

[20] Z. Semadeni. Monads and their Eilenberg-Moore algebras in functional analysis. Queen’s
Papers in Pure and Applied Mathematics, No. 33. Queen’s University, Kingston, Ont.,
1973.

[21] J. Velebil and A. Kurz. Equational presentations of functors and monads. Math. Struct.
Comput. Sci., 2011.

14

	Chapman University
	Chapman University Digital Commons
	2011

	Generic Trace Logics
	Christian Kissig
	Alexander Kurz
	Recommended Citation

	1 Introduction
	2 Two Examples
	3 Preliminaries
	3.1 Monads, Algebras and Coalgebras
	3.2 The Kleisli Construction and Functor Liftings

	4 Coalgebraic Logic for Trace Semantics
	4.1 A Brief Review of Logics for T-Bisimilarity
	4.2 A Brief Review of Finite Trace Semantics
	4.3 Trace Semantics in the Eilenberg-Moore Category
	4.4 Logics for Finite B-Traces
	4.5 Predicate Liftings
	4.6 A generic trace logic

