82 research outputs found

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page

    Graph Models of Neurodynamics to Support Oscillatory Associative Memories

    Get PDF
    Recent advances in brain imaging techniques require the development of advanced models of brain networks and graphs. Previous work on percolation on lattices and random graphs demonstrated emergent dynamical regimes, including zero- and non-zero fixed points, and limit cycle oscillations. Here we introduce graph processes using lattices with excitatory and inhibitory nodes, and study conditions leading to spatio-temporal oscillations. Rigorous mathematical analysis provides insights on the possible dynamics and, of particular concern to this work, conditions producing cycles with very long periods. A systematic parameter study demonstrates the presence of phase transitions between various regimes, including oscillations with emergent metastable patterns. We studied the impact of external stimuli on the dynamic patterns, which can be used for encoding and recall in robust associative memories. © 2018 IEEE

    Self-organized criticality as a fundamental property of neural systems

    Get PDF
    The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored.Peer Reviewe

    Linear and nonlinear approaches to unravel dynamics and connectivity in neuronal cultures

    Get PDF
    [eng] In the present thesis, we propose to explore neuronal circuits at the mesoscale, an approach in which one monitors small populations of few thousand neurons and concentrates in the emergence of collective behavior. In our case, we carried out such an exploration both experimentally and numerically, and by adopting an analysis perspective centered on time series analysis and dynamical systems. Experimentally, we used neuronal cultures and prepared more than 200 of them, which were monitored using fluorescence calcium imaging. By adjusting the experimental conditions, we could set two basic arrangements of neurons, namely homogeneous and aggregated. In the experiments, we carried out two major explorations, namely development and disintegration. In the former we investigated changes in network behavior as it matured; in the latter we applied a drug that reduced neuronal interconnectivity. All the subsequent analyses and modeling along the thesis are based on these experimental data. Numerically, the thesis comprised two aspects. The first one was oriented towards a simulation of neuronal connectivity and dynamics. The second one was oriented towards the development of linear and nonlinear analysis tools to unravel dynamic and connectivity aspects of the measured experimental networks. For the first aspect, we developed a sophisticated software package to simulate single neuronal dynamics using a quadratic integrate–and–fire model with adaptation and depression. This model was plug into a synthetic graph in which the nodes of the network are neurons, and the edges connections. The graph was created using spatial embedding and realistic biology. We carried out hundreds of simulations in which we tuned the density of neurons, their spatial arrangement and the characteristics of the fluorescence signal. As a key result, we observed that homogeneous networks required a substantial number of neurons to fire and exhibit collective dynamics, and that the presence of aggregation significantly reduced the number of required neurons. For the second aspect, data analysis, we analyzed experiments and simulations to tackle three major aspects: network dynamics reconstruction using linear descriptions, dynamics reconstruction using nonlinear descriptors, and the assessment of neuronal connectivity from solely activity data. For the linear study, we analyzed all experiments using the power spectrum density (PSD), and observed that it was sufficiently good to describe the development of the network or its disintegration. PSD also allowed us to distinguish between healthy and unhealthy networks, and revealed dynamical heterogeneities across the network. For the nonlinear study, we used techniques in the context of recurrence plots. We first characterized the embedding dimension m and the time delay δ for each experiment, built the respective recurrence plots, and extracted key information of the dynamics of the system through different descriptors. Experimental results were contrasted with numerical simulations. After analyzing about 400 time series, we concluded that the degree of dynamical complexity in neuronal cultures changes both during development and disintegration. We also observed that the healthier the culture, the higher its dynamic complexity. Finally, for the reconstruction study, we first used numerical simulations to determine the best measure of ‘statistical interdependence’ among any two neurons, and took Generalized Transfer Entropy. We then analyzed the experimental data. We concluded that young cultures have a weak connectivity that increases along maturation. Aggregation increases average connectivity, and more interesting, also the assortativity, i.e. the tendency of highly connected nodes to connect with other highly connected node. In turn, this assortativity may delineates important aspects of the dynamics of the network. Overall, the results show that spatial arrangement and neuronal dynamics are able to shape a very rich repertoire of dynamical states of varying complexity.[cat] L’habilitat dels teixits neuronals de processar i transmetre informació de forma eficient depèn de les propietats dinàmiques intrínseques de les neurones i de la connectivitat entre elles. La present tesi proposa explorar diferents tècniques experimentals i de simulació per analitzar la dinàmica i connectivitat de xarxes neuronals corticals de rata embrionària. Experimentalment, la gravació de l’activitat espontània d’una població de neurones en cultiu, mitjançant una càmera ràpida i tècniques de fluorescència, possibilita el seguiment de forma controlada de l’activitat individual de cada neurona, així com la modificació de la seva connectivitat. En conjunt, aquestes eines permeten estudiar el comportament col.lectiu emergent de la població neuronal. Amb l’objectiu de simular els patrons observats en el laboratori, hem implementat un model mètric aleatori de creixement neuronal per simular la xarxa física de connexions entre neurones, i un model quadràtic d’integració i dispar amb adaptació i depressió per modelar l’ampli espectre de dinàmiques neuronals amb un cost computacional reduït. Hem caracteritzat la dinàmica global i individual de les neurones i l’hem correlacionat amb la seva estructura subjacent mitjançant tècniques lineals i no–lineals de series temporals. L’anàlisi espectral ens ha possibilitat la descripció del desenvolupament i els canvis en connectivitat en els cultius, així com la diferenciació entre cultius sans dels patològics. La reconstrucció de la dinàmica subjacent mitjançant mètodes d’incrustació i l’ús de gràfics de recurrència ens ha permès detectar diferents transicions dinàmiques amb el corresponent guany o pèrdua de la complexitat i riquesa dinàmica del cultiu durant els diferents estudis experimentals. Finalment, a fi de reconstruir la connectivitat interna hem testejat, mitjançant simulacions, diferents quantificadors per mesurar la dependència estadística entre neurona i neurona, seleccionant finalment el mètode de transferència d’entropia gereralitzada. Seguidament, hem procedit a caracteritzar les xarxes amb diferents paràmetres. Malgrat presentar certs tres de xarxes tipus ‘petit món’, els nostres cultius mostren una distribució de grau ‘exponencial’ o ‘esbiaixada’ per, respectivament, cultius joves i madurs. Addicionalment, hem observat que les xarxes homogènies presenten la propietat de disassortativitat, mentre que xarxes amb un creixent nivell d’agregació espaial presenten assortativitat. Aquesta propietat impacta fortament en la transmissió, resistència i sincronització de la xarxa

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review
    • …
    corecore