1,067 research outputs found

    ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings

    Get PDF
    In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme is also based on the general certificate-based public key setting too. In 2002, Zhang and Kim proposed a new ID-based ring signature scheme using pairings. Later Lin and Wu proposed a more efficient ID-based ring signature scheme. Both these schemes have some inconsistency in computational aspect. In this paper we propose a new ID-based ring signature scheme and a proxy ring signature scheme. Both the schemes are more efficient than existing one. These schemes also take care of the inconsistencies in above two schemes.Comment: Published with ePrint Archiv

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Efficient algorithms for pairing-based cryptosystems

    Get PDF
    We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics.We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairing-based cryptography

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    A Practical Set-Membership Proof for Privacy-Preserving NFC Mobile Ticketing

    Get PDF
    To ensure the privacy of users in transport systems, researchers are working on new protocols providing the best security guarantees while respecting functional requirements of transport operators. In this paper, we design a secure NFC m-ticketing protocol for public transport that preserves users' anonymity and prevents transport operators from tracing their customers' trips. To this end, we introduce a new practical set-membership proof that does not require provers nor verifiers (but in a specific scenario for verifiers) to perform pairing computations. It is therefore particularly suitable for our (ticketing) setting where provers hold SIM/UICC cards that do not support such costly computations. We also propose several optimizations of Boneh-Boyen type signature schemes, which are of independent interest, increasing their performance and efficiency during NFC transactions. Our m-ticketing protocol offers greater flexibility compared to previous solutions as it enables the post-payment and the off-line validation of m-tickets. By implementing a prototype using a standard NFC SIM card, we show that it fulfils the stringent functional requirement imposed by transport operators whilst using strong security parameters. In particular, a validation can be completed in 184.25 ms when the mobile is switched on, and in 266.52 ms when the mobile is switched off or its battery is flat

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    Disertační práce se zabývá kryptografickými protokoly poskytující ochranu soukromí, které jsou určeny pro zabezpečení komunikačních a informačních systémů tvořících heterogenní sítě. Práce se zaměřuje především na možnosti využití nekonvenčních kryptografických prostředků, které poskytují rozšířené bezpečnostní požadavky, jako je například ochrana soukromí uživatelů komunikačního systému. V práci je stanovena výpočetní náročnost kryptografických a matematických primitiv na různých zařízeních, které se podílí na zabezpečení heterogenní sítě. Hlavní cíle práce se zaměřují na návrh pokročilých kryptografických protokolů poskytujících ochranu soukromí. V práci jsou navrženy celkově tři protokoly, které využívají skupinových podpisů založených na bilineárním párování pro zajištění ochrany soukromí uživatelů. Tyto navržené protokoly zajišťují ochranu soukromí a nepopiratelnost po celou dobu datové komunikace spolu s autentizací a integritou přenášených zpráv. Pro navýšení výkonnosti navržených protokolů je využito optimalizačních technik, např. dávkového ověřování, tak aby protokoly byly praktické i pro heterogenní sítě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Efficient Revocable ID-Based Signature With Cloud Revocation Server

    Get PDF
    Over the last few years, identity-based cryptosystem (IBC) has attracted widespread attention because it avoids the high overheads associated with public key certificate management. However, an unsolved but critical issue about IBC is how to revoke a misbehaving user. There are some revocable identity-based encryption schemes that have been proposed recently, but little work on the revocation problem of identity-based signature has been undertaken so far. One approach for revocation in identity-based settings is to update users\u27 private keys periodically, which is usually done by the key generation center (KGC). But with this approach, the load on the KGC will increase quickly when the number of users increases. In this paper, we propose an efficient revocable identity-based signature (RIBS) scheme in which the revocation functionality is outsourced to a cloud revocation server (CRS). In our proposed approach, most of the computations needed during key-updates are offloaded to the CRS. We describe the new framework and the security model for the RIBS scheme with CRS and we prove that the proposed scheme is existentially unforgeable against adaptively chosen messages and identity attacks in the random oracle model. Furthermore, we monstrate that our scheme outperforms previous IBS schemes in terms of lower computation and communication costs

    Identity based cryptography from bilinear pairings

    Get PDF
    This report contains an overview of two related areas of research in cryptography which have been prolific in significant advances in recent years. The first of these areas is pairing based cryptography. Bilinear pairings over elliptic curves were initially used as formal mathematical tools and later as cryptanalysis tools that rendered supersingular curves insecure. In recent years, bilinear pairings have been used to construct many cryptographic schemes. The second area covered by this report is identity based cryptography. Digital certificates are a fundamental part of public key cryptography, as one needs a secure way of associating an agent’s identity with a random (meaningless) public key. In identity based cryptography, public keys can be arbitrary bit strings, including readable representations of one’s identity.Fundação para a Ci~Encia e Tecnologia - SFRH/BPD/20528/2004

    Automated Analysis in Generic Groups

    Get PDF
    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups - and prove \u27\u27computational soundness\u27\u27 theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating \u27\u27pairing-product equations\u27\u27. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an automated tool to search for structure-preserving signatures matching a template. Through exhaustive search we conjecture lower bounds for the number of pairings required in the Type~II setting and prove our conjecture to be true. Finally, our tool exhibits examples of structure-preserving signatures matching the lower bounds, which proves tightness of our bounds, as well as improves on previously known structure-preserving signature schemes

    Pairing-based public-key encryption schemes with backward-and-forward security

    Get PDF
    Identity-based cryptosystems utilize some arbitrary strings as the participants' public key in the underlying system. The encryptioner will not need to obtain the decryptioner's certificate. That will simplify the certificate management. Therefore, it is still interesting to propose some new identity-based encryption schemes. In this paper we will propose two new different constructions, i.e. receiptor-oriented encryption schemes. They are both identity-based encryption schemes and also based on pairings. The proposed encryption schemes have a new advantage, i.e. backward-and-forward security. In addition, we provide the security analysis for the proposed schemes
    corecore