13,416 research outputs found

    Analysing Human Mobility Patterns of Hiking Activities through Complex Network Theory

    Full text link
    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities.Comment: 20 pages, 9 figures, accepte

    Integrating spatial and temporal approaches for explaining bicycle crashes in high-risk areas in Antwerp (Belgium)

    Get PDF
    The majority of bicycle crash studies aim at determining risk factors and estimating crash risks by employing statistics. Accordingly, the goal of this paper is to evaluate bicycle-motor vehicle crashes by using spatial and temporal approaches to statistical data. The spatial approach (a weighted kernel density estimation approach) preliminarily estimates crash risks at the macro level, thereby avoiding the expensive work of collecting traffic counts; meanwhile, the temporal approach (negative binomial regression approach) focuses on crash data that occurred on urban arterials and includes traffic exposure at the micro level. The crash risk and risk factors of arterial roads associated with bicycle facilities and road environments were assessed using a database built from field surveys and five government agencies. This study analysed 4120 geocoded bicycle crashes in the city of Antwerp (CA, Belgium). The data sets covered five years (2014 to 2018), including all bicycle-motorized vehicle (BMV) crashes from police reports. Urban arterials were highlighted as high-risk areas through the spatial approach. This was as expected given that, due to heavy traffic and limited road space, bicycle facilities on arterial roads face many design problems. Through spatial and temporal approaches, the environmental characteristics of bicycle crashes on arterial roads were analysed at the micro level. Finally, this paper provides an insight that can be used by both the geography and transport fields to improve cycling safety on urban arterial roads

    Individual accessibility and segregation on activity spaces: an agent-based modelling approach

    Get PDF
    One of the main challenges of cities is the increasing social inequality imposed by the way population groups, jobs, amenities and services, as well as the transportation infrastructure, are distributed across urban space. In this thesis, the concepts of accessibility and segregation are used to study these inequalities. They can be defined as the interaction of individuals with urban opportunities and with individuals from other population groups, respectively. Interactions are made possible by people’s activities and movement within a city, which characterise accessibility and segregation as inherently dynamic and individual-based concepts. Nevertheless, they are largely studied from a static and place-based perspective. This thesis proposes an analytical and exploratory framework for studying individual-based accessibility and segregation in cities using individuals’ travel trajectories in space and time. An agent-based simulation model was developed to generate individual trajectories dynamically, employing standard datasets such as census and OD matrices and allowing for multiple perspectives of analysis by grouping individuals based on their attributes. The model’s ability to simulate people’s trajectories realistically was validated through systematic sensitivity tests and statistical comparison with real-world trajectories from Rio de Janeiro, Brazil, and travel times from London, UK. The approach was applied to two exploratory studies: São Paulo, Brazil, and London, UK. The first revealed inequalities in accessibility by income, education and gender and also unveiled within-group differences beyond place-based patterns. The latter explored ethnic segregation, unveiling patterns of potential interaction among ethnic groups in the urban space beyond their residential and workplace locations. Those studies demonstrated how inequality in accessibility and segregation can be studied both at large metropolitan scales and at fine level of detail, using standard datasets, with modest computational requirements and ease of operationalisation. The proposed approach opens up avenues for the study of complex dynamics of interaction of urban populations in a variety of urban contexts

    Doctor of Philosophy

    Get PDF
    dissertationRecent advancements in mobile devices - such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) - have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories

    Individual accessibility and segregation on activity spaces: an agent-based modelling approach

    Get PDF
    One of the main challenges of cities is the increasing social inequality imposed by the way population groups, jobs, amenities and services, as well as the transportation infrastructure, are distributed across urban space. In this thesis, the concepts of accessibility and segregation are used to study these inequalities. They can be defined as the interaction of individuals with urban opportunities and with individuals from other population groups, respectively. Interactions are made possible by people’s activities and movement within a city, which characterise accessibility and segregation as inherently dynamic and individual-based concepts. Nevertheless, they are largely studied from a static and place-based perspective. This thesis proposes an analytical and exploratory framework for studying individual-based accessibility and segregation in cities using individuals’ travel trajectories in space and time. An agent-based simulation model was developed to generate individual trajectories dynamically, employing standard datasets such as census and OD matrices and allowing for multiple perspectives of analysis by grouping individuals based on their attributes. The model’s ability to simulate people’s trajectories realistically was validated through systematic sensitivity tests and statistical comparison with real-world trajectories from Rio de Janeiro, Brazil, and travel times from London, UK. The approach was applied to two exploratory studies: São Paulo, Brazil, and London, UK. The first revealed inequalities in accessibility by income, education and gender and also unveiled within-group differences beyond place-based patterns. The latter explored ethnic segregation, unveiling patterns of potential interaction among ethnic groups in the urban space beyond their residential and workplace locations. Those studies demonstrated how inequality in accessibility and segregation can be studied both at large metropolitan scales and at fine level of detail, using standard datasets, with modest computational requirements and ease of operationalisation. The proposed approach opens up avenues for the study of complex dynamics of interaction of urban populations in a variety of urban contexts

    Simulating the Impact of Traffic Calming Strategies

    Get PDF
    This study assessed the impact of traffic calming measures to the speed, travel times and capacity of residential roadways. The study focused on two types of speed tables, speed humps and a raised crosswalk. A moving test vehicle equipped with GPS receivers that allowed calculation of speeds and determination of speed profiles at 1s intervals were used. Multi-regime model was used to provide the best fit using steady state equations; hence the corresponding speed-flow relationships were established for different calming scenarios. It was found that capacities of residential roadway segments due to presence of calming features ranged from 640 to 730 vph. However, the capacity varied with the spacing of the calming features in which spacing speed tables at 1050 ft apart caused a 23% reduction in capacity while 350-ft spacing reduced capacity by 32%. Analysis showed a linear decrease of capacity of approximately 20 vphpl, 37 vphpl and 34 vphpl when 17 ft wide speed tables were spaced at 350 ft, 700 ft, and 1050 ft apart respectively. For speed hump calming features, spacing humps at 350 ft reduced capacity by about 33% while a 700 ft spacing reduced capacity by 30%. The study concludes that speed tables are slightly better than speed humps in terms of preserving the roadway capacity. Also, traffic calming measures significantly reduce the speeds of vehicles, and it is best to keep spacing of 630 ft or less to achieve desirable crossing speeds of less or equal to 15 mph especially in a street with schools nearby. A microscopic simulation model was developed to replicate the driving behavior of traffic on urban road diets roads to analyze the influence of bus stops on traffic flow and safety. The impacts of safety were assessed using surrogate measures of safety (SSAM). The study found that presence of a bus stops for 10, 20 and 30 s dwell times have almost 9.5%, 12%, and 20% effect on traffic speed reductions when 300 veh/hr flow is considered. A comparison of reduction in speed of traffic on an 11 ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 30s with a standard deviation of 5s dwell time case was conducted. Results showed that a bus stop bay with the stated bus dwell time causes an approximate 8% speed reduction to traffic at a flow level of about 1400 vph. Analysis of the trajectories from bust stop locations showed that at 0, 25, 50, 75, 100, 125, 150, and 175 feet from the intersection the number of conflicts is affected by the presence and location of a curbside stop on a segment with a road diet

    Space syntax and spatial cognition: or why the axial line?

    Get PDF
    200

    Morphology of travel routes and the organization of cities

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this recordData availability. All data needed to evaluate the conclusions are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors and are also available at https://github.com/mlee96/inness_research.The city is a complex system that evolves through its inherent social and economic interactions. Mediating the movements of people and resources, urban street networks offer a spatial footprint of these activities. Of particular interest is the interplay between street structure and its functional usage. Here, we study the shape of 472,040 spatiotemporally optimized travel routes in the 92 most populated cities in the world, finding that their collective morphology exhibits a directional bias influenced by the attractive (or repulsive) forces resulting from congestion, accessibility, and travel demand. To capture this, we develop a simple geometric measure, inness, that maps this force field. In particular, cities with common inness patterns cluster together in groups that are correlated with their putative stage of urban development as measured by a series of socio-economic and infrastructural indicators, suggesting a strong connection between urban development, increasing physical connectivity, and diversity of road hierarchies.US Army Research OfficeNational Research Foundation of Korea funded by the Ministry of Science and ICTMinistry of Education of the Republic of Kore

    Visitor bikeshare usage: tracking visitor spatiotemporal behavior using big data

    Get PDF
    Bikeshare programs are a popular, convenient, and sustainable mode of transportation that provide a range of benefits to urban communities such as reduction in carbon emissions, decreased travel times, financial savings, and heightened physical activity. Although, tourists are especially inclined to use bikeshare to explore a destination as the programs are a convenient, cheap, flexible, and an active alternative to vehicles and mass transit little research or attention has focused on visitor usage. As such the current study investigated the spatial-temporal usage patterns of bikeshare by visitors to an urban community using GPS based big data (N = 353,733). The results revealed differential usage patterns between visitors and local residents based on user provided ZIP Codes using a 50 mile geometric circular buffer around the urban destination. The visitors and residents significantly varied on numerous trip behaviors including route selection, time of rental, checkout/check-in locations, distance, speed, duration, and physical activity intensity. The user patterns uncovered suggest visitors primarily use bikeshare for leisure based urban exploration, compared to residents’ primary use of bikeshare to be public transportation related. Implications for bikeshare, urban planning, and tourism management are provided aimed at delivering a more sustainable and richer visitor experience
    • …
    corecore