176 research outputs found

    Improving BitTorrent's Peer Selection For Multimedia Content On-Demand Delivery

    Get PDF
    The great efficiency achieved by the BitTorrent protocol for the distribution of large amounts of data inspired its adoption to provide multimedia content on-demand delivery over the Internet. As it is not designed for this purpose, some adjustments have been proposed in order to meet the related QoS requirements like low startup delay and smooth playback continuity. Accordingly, this paper introduces a BitTorrent-like proposal named as Quota-Based Peer Selection (QBPS). This proposal is mainly based on the adaptation of the original peer-selection policy of the BitTorrent protocol. Its validation is achieved by means of simulations and competitive analysis. The final results show that QBPS outperforms other recent proposals of the literature. For instance, it achieves a throughput optimization of up to 48.0% in low-provision capacity scenarios where users are very interactive.Comment: International Journal of Computer Networks & Communications(IJCNC) Vol.7, No.6, November 201

    Robustness of BitTorrent-like VoD protocols

    Get PDF
    Besides server supported solutions for Video-on-demand, approaches based on distributed systems such as BitTorrent are being used due to their efficiency and high scalability. There are several protocol variants proposed in the literature, which are mainly concerned with providing mechanisms for piece selection and peer selection. In this paper, using the concept of Design Space Analysis, we give comparisons of the performances of several BitTorrent-like Video-on-demand protocols under the assumption that other protocol variants may also enter the system

    Analysis and implementation of the Large Scale Video-on-Demand System

    Full text link
    Next Generation Network (NGN) provides multimedia services over broadband based networks, which supports high definition TV (HDTV), and DVD quality video-on-demand content. The video services are thus seen as merging mainly three areas such as computing, communication, and broadcasting. It has numerous advantages and more exploration for the large-scale deployment of video-on-demand system is still needed. This is due to its economic and design constraints. It's need significant initial investments for full service provision. This paper presents different estimation for the different topologies and it require efficient planning for a VOD system network. The methodology investigates the network bandwidth requirements of a VOD system based on centralized servers, and distributed local proxies. Network traffic models are developed to evaluate the VOD system's operational bandwidth requirements for these two network architectures. This paper present an efficient estimation of the of the bandwidth requirement for the different architectures.Comment: 9 pages, 8 figure

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Bandwidth allocation in BitTorrent-like VoD systems under flashcrowds

    Get PDF

    Peer-to-peer stream merging for stored multimedia

    Get PDF
    In recent years, with the fast development of resource capability of both the Internet and personal computers, multimedia applications like video-on-demand (VOD) streaming have gained dramatic growth and been shown to be potential killer applications in the current and next-generation Internet. Scalable deployment of these applications has become a hot problem area due to the potentially high server and network bandwidth required in these systems.The conventional approach in a VOD streaming system dedicates a media stream for each client request, which is not scalable in a wide-area delivery system serving potentially very large numbers of clients. Recently, various efficient delivery techniques have been proposed to improve the scalability of VOD delivery systems. One approach is to use a scalable delivery protocol based on multicast, such as periodic broadcast or stream merging. These protocols have been mostly developed for single-server based systems and attempt to have each media stream serve as many clients as possible, so as to minimize the required server and network bandwidth. However, the performance improvements possible with techniques that deliver all streams from a single server are limited, especially regarding the required network bandwidth. Another approach is based on proxy caching and content replication, such as in content delivery networks (CDN). Although this approach is able to effectively distribute load across multiple CDN servers, the cost of this approach may be high.With the focus on further improving the system efficiency regarding the server and network bandwidth requirement, a new scalable streaming protocol is developed in this work. It adapts a previously proposed technique called hierarchical multicast stream merging (HMSM) to use a peer-to-peer delivery approach. To be more efficient in media delivery, the conventional early merging policy associated with HMSM is extended to be compatible with the peer-to-peer environment, and various peer selection policies are designed for initiation of media streams. The impact of limited peer resource capability is also studied in this work. In the performance study, a number of simulation experiments are conducted to evaluate the performance of the new protocol and various design policies, and promising results are reported

    Robustness of BitTorrent-like VoD Protocols

    Full text link
    corecore