
Bandwidth Allocation in BitTorrent-like VoD
Systems under Flashcrowds

Lucia D’Acunto, Tamás Vinkó, Henk Sips
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Abstract—The efficiency of BitTorrent in content distribution
has inspired a number of peer-to-peer (P2P) protocols for on-
demand video (VoD) streaming systems (henceforth BitTorrent-
like VoD systems). However, the fundamental quality-of-service
(QoS) requirements of VoD (i.e. providing peers with a smooth
playback continuity and a short startup delay) make the design of
these systems more challenging than normal file-sharing systems.
In particular, the bandwidth allocation strategy is an important
aspect in the design of BitTorrent-like VoD systems, which
becomes even more crucial in a scenario where a large number
of peers joins in a short period of time, a phenomenon known as
flashcrowd. In fact, the new joining peers all demand for content
while having few or no pieces of content to offer in return yet.
An unwise allocation of the limited bandwidth actually available
during this phase may cause peers to experience poor QoS.

In this work, we analyze the effects of a flashcrowd on the
scalability of a BitTorrent-like VoD system and propose a number
of mechanisms to make the bandwidth allocation in this phase
more effective. In particular, we derive an upper bound for the
number of peers that can be admitted in the system over time
and we find that there is a trade-off between having the seeders
minimize the upload of pieces already injected recently and high
peer QoS. Based on the insights gained from our analysis, we
devise some flashcrowd-handling algorithms for the allocation of
peer bandwidth to improve peer QoS during flashcrowd. We
validate the effectiveness of our proposals by means of extensive
simulations.

I. INTRODUCTION

In recent years, significant research effort has focused on
how to efficiently use a P2P architecture to provide large-scale
VoD services. In particular, much has been investigated on
how to utilize the design of BitTorrent to create efficient P2P
VoD protocols [1], [8], [12], [13], [15]. Adapting BitTorrent’s
bandwidth allocation strategy to VoD is challenging because,
similar to P2P live streaming systems, content has to be deliv-
ered by streaming, which imposes some QoS requirements, i.e.
providing users with smooth playback continuity and a short
startup delay. On the other hand, unlike P2P live streaming
systems, in P2P VoD systems different peers can be interested
in different parts of the video at a certain moment over time,
hence the peer dynamics resemble those of P2P file-sharing
systems.

While it has been demonstrated that these systems can attain
a high performance once they have reached a steady state
[10], it is still unclear how well they deal with a phenomenon
known as flashcrowd, in which a large number of peers joins
within a short period of time. In fact, it is considerably more
challenging for a P2P VoD system to accommodate an abrupt

surge of new joining peers, while still providing an acceptable
service to existing ones. Thus, it is evident that an unwise
bandwidth allocation strategy during this phase may delay
reaching the steady state and cause peers to experience poor
QoS.

Despite the relevance of the problem, to date only a few re-
search efforts have investigated P2P systems under flashcrowds
and they mainly address file-sharing and live streaming ap-
plications (see [4], [5]). However, the analysis presented in
[16] shows that flashcrowds affect P2P VoD systems as well.
Motivated by these observations, in this work, we seek to study
P2P VoD systems under flashcrowds. More specifically, due
to BitTorrent’s efficiency and high proliferation of BitTorrent-
inspired VoD protocols, in our study we focus on a BitTorrent-
like design.

Our analysis aims to answer the following questions: (i)
how does a flashcrowd affect a BitTorrent-like VoD system?
(ii) how can bandwidth allocation be made more effective in
enhancing peer QoS during flashcrowd? With respect to the
second research question, we have especially investigated the
role of the seeders, as they represent the major bottleneck
when bandwidth is scarce [2], [4].

To summarize, we make the following contributions:
• We devise an analytical model that captures the dynam-

ics of peers in a BitTorrent-like VoD system during a
flashcrowd.

• Using this model, first we find an upper bound to the
number of newcomers that can be admitted in the system
over time, and then we show that a trade-off exists
between having the seeder minimize the upload of pieces
already injected recently and high peer QoS.

• Finally, employing the insights of our analysis, we present
and evaluate a class of flashcrowd-handling algorithms
to make bandwidth allocation more effective during
flashcrowds, thereby improving peer QoS.

II. RELATED WORK

BitTorrent is a widely popular P2P protocol for content
distribution. In BitTorrent, files are split into pieces, allowing
peers which are still downloading content to serve the pieces
they already have to others. Nodes find each other through a
central tracker, which provides them with a random subset
of peers in the system. Each node establishes persistent
connections with a large set of peers (typically between 40
and 80), called its neighborhood, and uploads data to a subset
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of this neighborhood. More specifically, each peer divides
equally its upload capacity into a number of upload slots.
Peers that are currently assigned an upload slot from a node
p are said to be unchoked by p; all the others are said to be
choked by p. The unchoking policy adopted by BitTorrent,
and many of its variants, is based on a kind of tit-for-tat:
peers prefer unchoking nodes that have recently provided
data to them at the highest speeds. Each peer maintains
its neighborhood informed about the pieces it owns. The
information received from its neighborhood is used to request
pieces of the file according to the local rarest-first policy. This
policy determines that each peer requests the pieces that are
the rarest among its neighbors, so to increase piece diversity.

Because of its high efficiency, a lot of research has been
conducted on adapting BitTorrent to VoD (see [1], [8], [12],
[13], [15]). These studies mainly focus on the piece selection
policy, exploring the trade-off between the need of sequential
download progress and high piece diversity. Also, extensive
work has been done on modeling and analyzing BitTorrent-like
VoD systems. Parvez et al. [10] study the performance of such
systems and conclude that they are scalable in steady state.
Lu et al. [17] propose a fluid model to analyze the evolution
of peers over time. However, they do not consider the QoS
requirements for VoD (to be discussed in Section III-B) in
their analysis nor they focus on the flashcrowd scenario.

With respect to flashcrowds, Liu et al. [5] study the inherent
relationship between time and scale in a generic P2P live
streaming system and find an upper bound for the system scale
over time. Esposito et al. [4] recognize the seeders to be the
major bottlenecks in BitTorrent systems under flashcrowds and
propose a new class of scheduling algorithms at the seeders
in order reduce peer download times. However, none of these
previous works analyzes the case of P2P VoD applications.

III. SYSTEM MODEL AND FUNDAMENTAL PRINCIPLES

In this section, we present a discrete-time model to describe
a BitTorrent-like VoD system under flashcrowd. Then, we
discuss the fundamental QoS requirements for a VoD system
and derive an upper bound for the system scale over time.

A. Model

We consider a BitTorrent-like VoD system consisting of an
initial seeder, i.e. a peer with a complete copy of the file, with
upload capacity M , and a group of peers, with upload capacity
µ, joining the system at a rate λ(t). The video file shared in
this system has streaming rate R (Kbits/s), size F (Kbits) and
is split into n pieces of equal size, allowing peers who are still
in the process of downloading to serve the pieces they already
have to others. The notation we use is shown in Table I.

In the analysis, we assume that all peers utilize upload slots
of identical size, i.e. the total number of upload slots νs offered
by the initial seeder and the number of upload slots νp offered
by a peer are defined as follows

νs =

⌊
M

r

⌋
, νp =

⌊µ
r

⌋
,

TABLE I
MODEL PARAMETERS.

Notation Definition
F filesize (Kbits).
n number of pieces the file is split into.
R streaming rate (Kbits/s).
N0 number of sharers present in the system at the begin-

ning of timeslot t0.
M initial seeders upload capacity (Kbits/s).
µ peer upload capacity (Kbits/s).
r per-slot capacity (Kbits/s).

νs = bM/rc number of upload slots opened by the initial seeder.
νp = bµ/rc number of upload slots opened by each peer.

λ(t) arrival rate of peers in the system.
z(tk) number of newcomers at timeslot tk .
ẑ(tk) number of newcomers admitted in the system at the

end of timeslot tk .
x(tk) number of sharers at timeslot tk .
y(tk) number of seeders at timeslot tk .
U(tk) total upload capacity available at timeslot tk (Kbits/s).

where r is the per-slot capacity, which, without loss of
generality, we assume to be a submultiple of the streaming
rate R. This is equivalent to the concept of substreams used in
commercial P2P streaming systems (e.g. Coolstreaming [14])
and in P2P streaming literature (e.g. [3], [5]), where a video
stream is divided into many substreams of equal size and nodes
could download different substreams from different peers.

If each uploader has at least as many unchoked peers as
upload slots, the minimum time needed to upload a piece is

τp =
F

nr
,

with F/n being the size (in Kbits) of a piece.
For simplicity, we assume that time is discrete, with the

size of each timeslot tk being τp (i.e. tk = kτp and k ∈
{0, 1, 2, . . . , i, . . .}), and that the upload decisions are made at
the beginning of each timeslot. Consequently, in each timeslot,
a peer will upload to another peer exactly one piece.

In our analysis, we distinguish between two types of down-
loaders: newcomers, having no piece yet, and sharers, having
at least one piece. We denote with z(tk), x(tk) and y(tk), the
number of newcomers, sharers and seeders during timeslot tk,
respectively. In this notation, y(tk) excludes the initial seeder
supplied by the video provider. Furthermore, we assume that,
at timeslot t0, there are already N0 initial sharers in the system
and that no peer leaves the system before its download is
complete. Given this notation, the evolution of peers in the
system can be described by means of the following set of
discrete-time equations

z(tk) = z(tk−1)− ẑ(tk−1) + λ(tk−1),

x(tk) = x(tk−1) + ẑ(tk−1)− x̂(tk−1),

y(tk) = y(tk−1) + x̂(tk−1)− γ(tk−1),

z(t0) = 0, x(t0) = N0, y(t0) = 0,

where λ(tk−1) is the number of peers who joined within
timeslot tk−1, ẑ(tk−1) is the number of newcomers that turned
into sharers at the end of timeslot tk−1 (i.e. they were admitted
in the system), x̂(tk−1) is the number of sharers that turned
into seeders at the end of timeslot tk−1, and γ(tk−1) is the
number of seeders who left at the end of timeslot tk−1.



The total bandwidth available during a timeslot tk is given
by the sum of the contributions of all the sharing peers (seeders
and sharers) available at the beginning of timeslot tk, i.e.

U(tk) =M + µx(tk) + µy(tk). (1)

B. QoS Requirements for VoD

The upload decisions made by peers at the beginning of
each timeslot tk should aim at satisfying the fundamental QoS
requirements for streaming. Firstly, peers should be able to
play the video as smoothly as possible. This means that those
peers whose playback has already started should maintain, on
average, a download rate of at least R. For the purpose of
the analysis, we assume that all sharers have already started
playback and hence we have:

QoS Requirement 1: maximize the number of sharers who
maintain a download rate of at least R at each timeslot tk.

Secondly, it is desirable that joining peers experience low
startup delays. Therefore, we have:

QoS Requirement 2: maximize the number of newcomers
selected for upload at each timeslot tk.

With regards to these requirements we make the following
observation: allowing a peer to start the playback means that
the system has committed itself to provide a satisfactory play-
back continuity to that peer, while no commitment has been
established with a newcomer yet. Hence, when the bandwidth
is scarce, it is more important to serve those peers that have
already started playing, rather than admitting new nodes in
the system (i.e. Requirement 1 has priority over Requirement
2). Furthermore, by doing so, we also avoid admitting in the
system peers whose playback continuity cannot be guaranteed
due to bandwidth scarcity.

C. Scalable System

An immediate consequence of QoS Requirement 1 is that,
for a BitTorrent-like VoD system to scale with the number
of peers, it must hold that R ≤ µ. When this is not the
case (i.e. when R > µ), the sharers alone are not able to
support themselves with a downloading rate of at least R, and
an additional amount of bandwidth equal to R − µ has to
be provided to support each new sharer. In the remainder of
this paper, we will only focus on scalable systems where, by
definition, R ≤ µ holds.

D. Upper bound for the system scale in time

Even for a scalable system, only a limited number of
newcomers can be admitted at each timeslot. This is due to
the fact that, until they complete the download of their first
piece, newcomers consume bandwidth without providing any
bandwidth in return. In this section, we will derive an upper
bound for the number of newcomers that can be admitted in
the system at each timeslot, assuming that all the bandwidth
U(tk) available at a certain timeslot tk is fully utilized. We
proceed by first reserving the necessary bandwidth for the
sharers to satisfy QoS Requirement 1. Then, based on the
remaining bandwidth, we calculate the number of newcomers
that can be admitted in timeslot tk.

Reserving the necessary bandwidth for the sharers

From QoS Requirement 1 it follows that the minimum
amount of bandwidth Ux(tk) that needs to be reserved for
the sharers at timeslot tk is

Ux(tk) = Rx(tk). (2)

Admitting the newcomers and upper bound

After having reserved the necessary bandwidth for the
sharers, the remaining bandwidth (if any), can be used to
admit newcomers in the system. To this end, we find the
following upper bound for the number of newcomers that can
be admitted during timeslot tk.

Lemma 1. For a BitTorrent-like VoD system with streaming
rate R and average peer upload capacity µ ≥ R, the number
of newcomers ẑ(tk) that can be admitted during timeslot tk
has the following upper bound

ẑ(tk) ≤
M + µy(tk) + (µ−R)x(tk)

r
. (3)

Proof. Taking Eq. (2) into account, the bandwidth available
for newcomers at timeslot tk is at most U(tk) − Ux(tk) =
U(tk) − Rx(tk) = M + µy(tk) + (µ − R)x(tk). Since the
capacity of a peer upload slot is r, Eq. (3) follows.

From Lemma 1, it is clear that, at the beginning of a
huge flashcrowd, when there are only few or no seeders
(besides those supplied by the service provider) and few
sharers who can only provide a limited fraction of bandwidth
to newcomers, the system can only admit a small amount of
newcomers per timeslot. When this happens, it is impossible
to avoid newcomers experience longer startup delays, as we
will show with our experiments in Section VI.

IV. SEEDERS’ PIECE ALLOCATION ANALYSIS

In this section, we will to study the piece allocation strategy
of the seeders in a BitTorrent-like VoD system during a
flashcrowd. The reason to focus on the seeders is twofold.
Firstly, their piece allocation strategy is a crucial aspect during
flashcrowd, as seeders are the only interesting peers in that
phase (all other peers have few or no pieces yet). Secondly,
the complete bandwidth allocation problem in a BitTorrent-
like system is NP-hard [4].

We proceed by first defining the features of the BitTorrent-
like VoD protocol we consider and introducing a useful
concept to understand the flow of data from the seeders to the
peers. Then, we analyze in detail the seeders’ piece allocation.

A. Protocol Features

For the purpose our analysis, we assume that the seeders
coordinate their behaviors. Consequently, in the remainder of
this section, we assume that there is only one seeder in the
system holding the total seeding capacity νs(tk) available at
each timeslot tk. We assume that the seeder knows

1) the arrival rate λ(tk), the leaving rate γ(tk); and
2) the last piece it has sent to the sharers.
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Fig. 1. Seeder’s piece allocation at timeslot tk .

Given our first assumption, the seeder always knows the exact
number of peers in the system at each moment in time.

In the following we describe the piece allocation and the
piece download schemes adopted by the seeder and by the
downloaders, respectively.

Seeder Piece Allocation: Having denoted with νs(tk) the
total number of upload slots provided by the seeder at timeslot
tk, we assume that

3) each of these slots is allocated to a different peer;
4) the seeder unchokes, at each timeslot, the oldest νs(tk)

peers in the system; and
5) unless otherwise specified, at each timeslot tk, the seeder

uploads pieces from i to i+ νs(tk)− 1, where i− 1 is
the piece with highest index uploaded at the previous
timeslot tk−1.

Strategy 3) reflects the idea of serving as many peers as
possible. Strategy 4) is justified by the fact that younger
peers, having a lower level of progress than older peers, can
download their needed pieces from older peers, while the
oldest peers can obtain the pieces they need only from the
seeder. As a consequence of our strategy 5), each of the νs(tk)
peers unchoked by the seeder will receive a different piece, as
illustrated in Figure 1. We note that this scheme increases the
bartering abilities among peers, hence allowing a high peer
bandwidth utilization.

Piece Download Scheme: According to the QoS Require-
ment 1 for VoD, a sharer should keep an average download
rate of at least R, in order to maintain a good stream conti-
nuity. However, the pieces needed by peers cannot always be
downloaded in a strict sequential order, otherwise the bartering
abilities among nodes are hampered. To avoid this scenario,
we assume that

6) each peer defines a download buffer Bα of size B which
includes pieces [i, i+B − 1], where i = αB, with α ∈
{0, 1, 2, . . . , b nB c}.

Once all the pieces in the current buffer Bα are downloaded,
a peer defines the next buffer Bα+1 = Bα + B = [i +
B, i + 2B − 1]. Although pieces from outside the buffer can
be downloaded, it is necessary to enforce the buffer filling
rate to be at least R, in order to satisfy QoS Requirement
1. Even if the schemes used in practice are more practically
convenient (with the buffer being implemented as a sliding
window following the playback position or the first missing
piece of the file [11], [12], [15]), a static buffer makes the

level 1 (L  )

level 2 (L  )

S

1 2

3 4 5

1

2

Fig. 2. Organized view of an overlay mesh relative to a BitTorrent-like VoD
system. Solid arrows and dashed arrows represents diffusion connections and
swarming connections, respectively.

computation of its filling rate easier, which will be useful in
the analysis in Section IV-C.

B. Organized View of an Overlay Mesh

To understand the flow of data from the seeder to the
downloading peers, we use the concept of organized view of
an overlay mesh, originally proposed for P2P live streaming
systems [9]. In this view, downloaders are grouped into levels
based on their shortest distance from the seeder through the
overlay as shown in Figure 2. The set of peers on level i is
denoted by Li. L1 peers are directly served by the seeder, L2

peers are served by L1 peers, and so on. The connections from
Li peers to Li+1 peers are called diffusion connections, since
they are used for diffusing new pieces through the overlay.
On the other hand, the connections from Li peers to Lj peers,
where j ≤ i, are used to exchange missing content through
longer paths in the overlay (i.e. swarming). We call these
connections swarming connections.

C. Piece Replication at the Seeder

A seeder might decide to upload only pieces not yet present
in the overlay or upload again some pieces already injected
recently (a behavior which we term piece replication).

As observed earlier, a system where the seeder adopts the
first strategy allows a higher peer bandwidth utilization.

On the other hand, a higher piece replication at the seeder,
when properly implemented, allows a faster diffusion of pieces
in the system and increases the system scale. In fact, if the
seeder serves to the peers the pieces they need in the imme-
diate future (rather than new, far-away ones), then these peers
have a lower chance of missing a piece before its playback
deadline. Furthermore, since these nodes obtain some of the
needed pieces directly from the seeders, they need to obtain
fewer pieces from their neighbors, which can then utilize a
higher fraction of their bandwidth to serve newcomers, thereby
reducing startup delays and increasing the system scale.

However, even if the seeder decides to upload again some
pieces already present in the system, a certain minimum
number of new pieces has to be injected at each timeslot,
to allow older peers maintain a download speed of at least R.

Hence, a balance is necessary between injecting enough new
pieces in the system and serving pieces needed right away.
We study this issue using the concept of seeder replication



factor Fk at timeslot tk, which we define as the fraction of
replicated pieces over the total number of pieces that a seeder
allocates in that timeslot. Thus, a seeder replication factor of
a/b, for a seeder with b upload slots, means that a of the
allocated pieces will be a replica while the other b − a will
be pieces not yet present in the system. In the following, we
show how to determine an upper and a lower bound for the
seeder replication factor Fk.

Theorem 1. Let a BitTorrent-like VoD system with streaming
rate R consist, at the beginning of timeslot tk, of a seeder with
upload capacity rνs ≥ R and at least x(tk) ≥ νs sharers with
upload capacity rνp ≥ R. Then, the maximum value of the
seeder replication factor Fk guaranteeing that, independently
from previous upload allocations, the sharers keep a buffer
filling rate of R at timeslot tk+1, is

maxFk =
νs − R

r

νs
. (4)

Proof. Let us assume that Fk >
νs−R

r

νs
. This means that the

number of replicated pieces uploaded by the seeder at timeslot
tk is C(tk) ≥ νs− R

r , which in turn means that the seeder has
injected at most D(tk) <

R
r new pieces. Now, let us assume

that previous upload allocations are such that, by the end of
timeslot tk, all L1 peers complete the download of all pieces
until (and including) piece i, where i is the piece with highest
index uploaded by the seeder at timeslot tk−1. Consequently,
at timeslot tk+1, the L1 sharers can complete, at most, the
download of the D(tk) <

R
r new pieces injected by the seeder

at timeslot tk, which means that their average download rate
can be at most D(tk)r < R. Hence, we have demonstrated
that there exist at least one scenario in which the sharers will
not be able to maintain a piece buffer filling rate of at least
R when Fk >

νs−R
r

νs
. On the other hand, when Fk ≤

νs−R
r

νs
,

then D(tk) ≥ R
r , which means that the sharers can potentially

reach an average download rate of D(tk)r ≥ R.
As we will see later on in this paper (Section VI), the

upper bound for the seeder replication factor is also the value
yielding the best playback continuity. In fact, on one hand this
value allows enough replication to limit the number of pieces
peers miss, and on the other hand it guarantees that the oldest
peers have enough new pieces to keep an average download
rate as high as the playback rate.

Theorem 2. Let a BitTorrent-like VoD system with streaming
rate R consist, at the beginning of timeslot tk, of a seeder
with upload capacity rνs ≥ R, x(tk) ≥ νs sharers with
upload capacity rνp ≥ R and z(tk) newcomers. Then, the
minimum value of the seeder replication factor Fk at timeslot
tk necessary to maximize the number of newcomers to be
admitted, while still guaranteeing the sharers a buffer filling
rate of R, is

minFk =


0 if z(tk) ≤ Z1(tk),
z(tk)−R

r −Kx(tk)
νs−1 if Z1(tk) < z(tk) < Z2(tk),

νs − R
r

νs − 1
if z(tk) ≥ Z2(tk),

where

K = νp −
R

r
, (5)

Z1(tk) =
R

r
+Kx(tk), (6)

Z2(tk) = νs +Kx(tk). (7)

In order to prove Theorem 2 we need to introduce the
following

Lemma 2. Given a BitTorrent-like VoD system under the same
conditions as in Theorem 2, if the seeder does not replicate,
then its average contribution of pieces within the buffer of
each L1 sharer is

νs
R
r +Kx(tk)−min{Z2(tk), z(tk)}

νs − 1

pieces per timeslot, where K and Z2(tk) are defined in Eq. (5)
and (7), respectively.

For the proof of Lemma 2 we refer the reader to our
technical report [6]

Proof of Theorem 2. When the sharers are able to serve all the
newcomers (with at least one piece each), as well as complete
the download of the R

r pieces within their respective current
buffers necessary to maintain a good stream continuity (QoS
Requirement 1), utilizing only their aggregate bandwidth, then
the seeder does not need to replicate and can inject new pieces
into the system.

Specifically, if the sharers serve the newcomers, they will
be having a total of X1(tk) = νpx(tk) − Zm(tk) slots left,
being νpx(tk) the total number of slots offered by the sharers,
Zm(tk) := min{Z2(tk), z(tk)}, and Z2(tk) the maximum
number of newcomers that can be served at this timeslot (as
derived from Lemma 1 applied to this case). Hence, it holds
that X1(tk) ≥ νpx(tk) − Z2(tk) = R

r x(tk) − νs. Of these
slots, X2(tk) = (x(tk)− νs) Rr can be used to provide the R

r
needed pieces to the Lj sharers (j > 1), which are x(tk)−νs
in total. Consequently, the number of slots from the sharers
available for the L1 peers are

Xs(tk) = X1(tk)−X2(tk) = νs
R

r
+Kx(tk)−Zm(tk). (8)

Alternatively, Xs(tk) can be considered as the maximum
number of pieces that L1 peers can receive through swarming.
Now, the piece replication at the seeder should be such to allow
each of these peers complete the download of the R

r pieces
within their current buffers at the end of timeslot tk. This
makes a total of Rνs/r needed pieces for all the L1 peers. Of
these pieces, Xs(tk) can be obtained from swarming, and, by
Lemma 2, at most other

Xs(tk)

νs − 1

pieces are provided by the seeder (when not taking replication
into account). Hence, the total amount of needed pieces minus
those provided through swarming and by the non-replicating



activity of the seeder corresponds to the minimum number of
pieces that the seeder needs to replicate at timeslot tk

C(tk) = max

{
0,
R

r
νs −Xs(tk)−

Xs(tk)

νs − 1

}
=

= max

{
0,

νs
νs − 1

(
Zm(tk)−

R

r
−Kx(tk)

)}
.

Hence, the minimum replication factor Fk is

Fk =
C(tk)

νs
= max

{
0,
Zm(tk)− R

r −Kx(tk)
νs − 1

}
. (9)

From Eq. (9) we notice that, when z(tk) ≤ Z1(tk) = R
r +

Kx(tk), the seeder does not need to perform any replication.
Furthermore, we observe that, when z(tk) ≥ Z2(tk) =
νs + Kx(tk), the minimum seeder replication factor equals
to νs−R

r

νs−1 , which completes our proof.

V. ALGORITHMS FOR FLASHCROWDS

In this section, we present a class of flashcrowd-handling
algorithms that use the insights gained by our analysis to make
the bandwidth allocation in BitTorrent-like VoD systems under
flashcrowds more effective in enhancing the QoS requirements
of peers. First, we explore some methods to allow a peer to
detect whether the system is under flashcrowd, and then, we
describe our algorithms in detail.

A. Flashcrowd Detection

Ideally, the bandwidth allocation of each peer at every
moment in time should rely on some global knowledge of
the state of the system at that time (e.g. total number of peers,
number of newcomers, current download progress of all peers,
etc.). However, providing all the nodes in the system with this
kind of information is not feasible in practice. Furthermore,
the bandwidth allocation problem in BitTorrent-like systems
has been shown to be NP-hard [4].

Hence, in this paper, we will use an heuristic approach
where each peer considers the system to be either in “normal
state” or “under flashcrowd”. Depending on which state the
peer assumes the system is in, it will utilize a different band-
width allocation algorithm. To implement this mechanism,
peers need some way to detect the occurrence of a flashcrowd.
Based on a peer’s local knowledge, a natural choice to identify
a flashcrowd would be to measure the following:

(a) Increase in the perceived number of newcomers. A
peer can track the number of newcomers that connect to
it by checking the pieces owned by its neighbors.

However, when the peerlist provided by the tracker contains a
constant number of nodes, this is not a good metric for detect-
ing a flashcrowd, as its accuracy decreases with the size of the
system (see Figure 3(a), obtained running the BitTorrent-like
VoD protocol proposed in [15] under the settings described
in Section VI-A of this paper). On the other hand, since
the tracker provides each peer with a random subset of the
nodes, we can assume that each peer encounters a random
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(b) Flashcrowd detection based on the percentage
of peers with less than 50% of the file.

Fig. 3. Comparison between the real value and the value perceived by a peer
for different flashcrowd detection metrics. Peers join at rate λ(t) = λ0e

− t
τ

with λ0 = 5 and τ = 1500 from time t0 = 5000s in a system with a seeder
and N0 = 7 initial peers. All the other parameters are like in Table II.

and therefore representative selection of other peers and we
can measure the following:

(b) Fraction of neighbors having less than 50% of the
file. Esposito et al. [4] observed that, in the BitTorrent
file-sharing system, the average file completion level of
peers during a flashcrowd is biased towards less than
half of the file, i.e. there are many more peers with few
pieces than peers with many pieces.

Our experiments corroborate the findings of Esposito et
al. [4]. Furthermore, our experiments also show that the
difference between the real value of peers having less than
50% of the file and the value perceived by a peer (i.e. based on
the nodes in its neighborhood) is barely visible (Figure 3(b)).
These results confirm that (b) represents a good metric for a
peer to detect a flashcrowd only based on his local information.
Furthermore, using this method, peers can estimate the end of a
flashcrowd as well, by checking when the fraction of neighbors
with more than half of the file becomes higher than that of
peers with less than half of the file. Hence, in our experiments,
we will use this method to detect a flashcrowd.

Once detected a flashcrowd, a peer needs also to know
whether the flashcrowd is negatively affecting the system per-
formance. In fact, the same flashcrowd might have a different
impact on the system performance depending on how many
peers are already there when the flashcrowd hits. Therefore,
each sharer periodically measures its download performance
and checks whether it is enough to meet the QoS Requirement



1 for VoD. On the other hand, a seeder does not download data
nor it can trust information received by other peers (as they
might lie). Therefore, a seeder will only use the flashcrowd
detection method to activate its flashcrowd-handling algorithm.

B. Flashcrowd-Handling Algorithms

In our proposal, a peer runs a certain default algorithm
until it detects both a flashcrowd and (in the case of a
sharer) it measures that its performance is low. When this
happens, it will switch to a flashcrowd-handling algorithm.
More specifically, a peer will assume the system to be under
flashcrowd once the number of its neighbors having less than
50% of the file is gone above a certain threshold T . If the
peer is a seeder, this is enough for it to activate its flashcowd-
handling algorithm. If it is a sharer, it will only activate its
flashcrowd-handling algorithm if its sequential progress1 is
below the streaming rate R. The sequential progress is a good
metric for a real-time check of the preservation of a peer’s
stream continuity. Furthermore, it has the advantage of being
agnostic with respect to the piece selection policy adopted by
the underlying BitTorrent-like VoD protocol.

In the following we present our flashcrowd-handling algo-
rithms for the sharers and the seeder respectively, which are
derived from the insights gained from our analysis in Sections
III-A and IV-C.

Flashcrowd-handling algorithm for the sharers

Recall that, when bandwidth is scarce, the priority of a
BitTorrent-like VoD system is to meet the QoS Requirement
1, i.e. maximize the number of sharers that keep a smooth
playback continuity (Section III-B). Hence, newcomers should
only be allowed in the system if there is enough bandwidth
available for them, after the necessary bandwidth for all the
current sharers has been reserved (Lemma 1). Peers, however,
do not have (nor it is reasonable for them to have) global
knowledge of what is happening in the system at a certain
instant in time (how many sharers and newcomers there are,
how many newcomers have been already unchoked, etc.).
Therefore, we propose that, when a sharer is running the
flashcrowd-handling algorithm, it will choke all the newcom-
ers and keep them choked until it switches back to the default
algorithm. Newcomers might still be unchoked by peers who
are not running the flashcrowd-handling algorithms, if any.
This strategy avoids wasting bandwidth to admit newcomers,
when existing peers struggle to keep a smooth playback
continuity.

Flashcrowd-handling algorithm for the seeder

As we have observed in Section IV-C, the seeder’s behavior
is crucial during a flashcrowd. Similarly to sharers, seeders
choke all newcomers when they are running the flashcrowd-
handling algorithm. Furthermore, based on the observation
from our analysis in Section IV that older peers can only get
their pieces from the seeder and given that the competition

1a peer’s sequential progress is defined as the rate at which the index of
the first missing piece in the file grows [8]
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for the seeder is higher during flashcrowd, we designed our
flashcrowd-handling algorithm to have the seeder keep the
oldest peers always unchoked. Then, we have implemented
two different classes of seeding behavior as reported below.

1) Passive seeding (FH with PS): the seeder does not
directly decide which pieces it will upload and the
decision is left to the requesting peers.

With this strategy we will evaluate the effectiveness during
flashcrowd of the piece selection strategy employed by peers.

2) Active seeding (FH with AS): the seeder decides which
piece to send to each requesting peer.

This second strategy allows us to evaluate the impact of
different replication factors. For what concerns the pieces
to replicate, we have chosen a proportional approach, in
order to reduce the skewness of piece rarity: all pieces are
replicated the same number of times. More specifically, given
a replication factor Fk at seeder’s unchoking round k, the
number of new pieces the seeder injects in the system is
w = (1 − Fk)νs, νs being the number of upload slots of the
seeder. Then, the number of peers directly unchoked by the
seeder is divided in g = νs

w groups of size w each and peers
within each group are assigned pieces from i to i + w − 1,
where i − 1 is the piece with highest index uploaded by the
seeder in the previous round. For an illustration see Figure 4.

For what concerns the coordination of multiple seeders,
we make the following observations. Firstly, in a flashcrowd
scenario, typically there is only one or a few seeders in the
swarm, i.e. the content injectors. In the case of only one
seeder, no coordination is needed, while in the case of few
seeders, the coordination overhead is not very high. In fact,
since the seeders do not unchoke new nodes until some of
the currently unchoked peers leave, and since the behavior of
the seeders is deterministic, they need to coordinate only at
the beginning, when getting their first connections, and every
time an unchoked peer leaves. Secondly, the creation of new
seeders at a later stage, as a consequence of peers completing
their downloads and remaining in the system to seed, indicates
per se that more and more bandwidth becomes available in the
system. At this stage, the system would likely be already able
to deliver a reasonably good service even for short seeding
times and no flashcrowd-handling mechanism in place [7].



Thus, the coordination between these newly created seeders
and the initial seeder(s) can be avoided.

Finally, we note that, even if a seeder activates its
flashcrowd-handling algorithm in a flashcrowd that would not
affect the system very seriously, peer QoS will not degrade.
In fact, although the seeder does not unchoke any newcomers,
they will still be unchoked by many other sharers in the
system. Hence the impact on newcomers’ startup delay would
be minimal. Regarding the fact that older peers always remain
unchoked, we believe that this is not a problem either. In fact,
as pointed out earlier, older peers can only obtain their pieces
from the seeders and, if they do not need to compete with
other peers for the seeder’s slots, they are likely to experience
better QoS, and hence able to serve more peers with a lower
level of progress.

VI. EVALUATION

In this section, we evaluate our proposed flashcrowd-
handling algorithms by means of simulations. First, we in-
troduce the details of the experimental setup, the evaluation
metrics, and we describe the different flashcrowd scenarios
used. Then, we present and analyze the simulation results.

A. Experimental Setup

We have implemented a default BitTorrent-like VoD al-
gorithm and our flashcrowd-handling algorithms on top of
the MSR BitTorrent simulator [2]. This discrete event-based
simulator accurately emulates the behavior of BitTorrent at
the level of piece transfers and has been widely used, also for
simulating BitTorrent-like VoD protocols [15], [18]. In all our
experiments we have utilized the algorithm presented in [15]
as our default BitTorrent-like VoD protocol, with tit-for-tat as
peer selection policy and local rarest-first within the buffer as
piece selection policy2. We have set the flashcrowd detection
threshold value T to 0.5, since our simulations show that, in
normal state, the fraction of a peer’s neighbors having less than
50 % of the file lies, on average, below 0.5 (see Figure 3(b)).
Different threshold values will be explored in future work.

The settings for our experiments are shown in Table II.
The system is initially empty, until a flashcrowd of N peers
starts joining. In our simulations, we have utilized both an
exponentially decreasing arrival rate λ(t) = λ0e

− t
τ , and an

arrival rate with N peers joining altogether at time t0 = 0. The
simulation stops after the last peer completes its download. In
our experiments, we have assumed the worst case scenario of
peers leaving immediately after their download is complete.
On the other hand, the initial seeder never leaves the system.

Finally, to decide when playback can safely commence, the
method introduced in [8] is used. Specifically, a peer will
start playback only when it has obtained all the pieces in the
initial buffer and its current sequential progress is such that, if

2The VoD protocol presented in [15] employes an adaptive mechanism to
increase a peer’s buffer size if that peer is experiencing a good QoS. In this
way, peers bartering abilities are increased when the conditions are favorable.
The parameter “initial buffer size B” reported in Table II represents the default
initial size of each peer’s buffer.

TABLE II
SIMULATION SETTINGS

Parameter Value
Flashcrowd size N 1500 peers
Video playback rate R 800 Kbits/s
Video length L 1 hour
Initial buffer size B 20 pieces
Piece size 256 KBytes
Upload capacity of the initial seeder M 8000 Kbits/s (10R)
Peer upload capacity µ 1000 Kbits/s
Per-slot capacity r 200 Kbits/s
Flashcrowd detection threshold T 0.5

maintained, the download of the file will be completed before
playback ends.

B. Evaluation Metrics

To evaluate how well our solutions meet the QoS require-
ments for VoD, we have utilized the following metrics:

1) Playback Continuity Index (PCI): defined as the ratio
of pieces received before their playback deadline over
the total number of pieces. The higher a peer’s PCI, the
smoother the playback it experienced. Hence, the PCI
measures how well the QoS Requirement 1 is met.

2) Startup delay, to measure how well the QoS Require-
ment 2 is met.

C. Scenarios

In our simulations, we have considered three scenarios
characterized by three different flashcrowd intensities:

• low intensity: exponentially decreasing arrival rate λ(t) =
λ0e

− t
τ , with λ0 = 5 and τ = N

λ0
= 300;

• medium intensity: exponentially decreasing arrival rate
λ(t) = λ0e

− t
τ , with λ0 = 10 and τ = N

λ0
= 150;

• high intensity: N peers joining altogether at time t0.

D. Results

We will first analyze the effect of different replication
factors Fk over the performance of our flashcrowd-handling
algorithms and then we will compare the default BitTorrent-
like VoD algorithm with our flashcrowd-handling algorithms.

The effect of different replication factors

Figure 5 shows the percentage of peers experiencing perfect
(PCI = 100%) and good (PCI ≥ 95%) playback continuity for
flashcrowd-handling algorithms with active seeding having dif-
ferent replication factors under the three simulated scenarios.
As we can see, no replication (i.e. Fk = 0) is not an optimal
strategy, as it always causes a considerable amount of peers
experience poor stream continuity (in the case of flashcrowd
of high intensity, for example, only 36% of peers experience
perfect playback continuity). On the other hand, when the
seeder performs replication, the playback continuity index of
peers increases. In fact, as we observed in Section IV, a higher
piece replication at the seeder decreases the chance of peers
missing pieces. However, we have also showed that the seeder
replication shall not be too high: the seeder needs to inject new
pieces at a rate of at least R (which means a replication factor
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Fig. 5. Percentage of peers experiencing perfect playback continuity (PCI = 100%) and good playback continuity (PCI ≥ 95%) in a system hit by
flashcrowds of different intensities as defined in Section VI-C. The graphs compare the performance of the flashcrowd-handling algorithms with different
replication factors. The vertical bars represent the confidence intervals over 10 simulation runs. Note that the scale of the horizontal axis is not linear.

Fk ≤
νs−R

r

νs
), in order to make sure that its unchoked peers

keep a download rate of at least R necessary to meet the first
QoS Requirement for VoD. Indeed, from Figure 5 we can
observe that, in all scenarios, the playback continuity index
improves as the replication factor grows until it reaches the
limit Fk =

νs−R
r

νs
. When Fk >

νs−R
r

νs
, the playback continuity

index starts degrading again.

Default algorithm vs flashcrowd-handling algorithms
Figure 6 shows the CDF of peer playback continuity in-

dex for the default BitTorrent-like VoD algorithm and our
flashcrowd-handling algorithms under the three simulated sce-
narios. The algorithm with active seeding pictured has repli-
cation factor Fk =

νs−R
r

νs
, which, as shown by the previously

presented results, is the one that maximizes QoS Requirement
1. As we can observe, the flashcrowd-handling algorithm with
active seeding (FH with AS) consistently outperforms the other
ones, with never more than 10% of the peers receiving a
playback continuity index below 100%. By contrast, in the
case of flashcrowd with high intensity, the default algorithm is
not able to provide any peer with a PCI of 100%. Furthermore,
we can notice that, while the performance of the other two
algorithms degrades with more intense flashcrowds, that of FH
with AS stays constant. Finally, we note that the flashcrowd-
handling algorithm with passive seeding (FH with PS) works
relatively well for not too intense flashcrowds, but suffers
performance degradation with a very intense flashcrowd. This
is due to the fact that the seeder replication factor is controlled
by the peers, which do not coordinate their piece requests
among each other. The local rarest-first strategy used by each
peer to select a piece to download is supposed to smoothen
this effect. However, since its effectiveness builds up once a
peer has been in the system for some time, it is less powerful
when the system is under a heavy flashcrowd.

For what concerns the startup delay (Figure 7), we can
make the following observations. First we note that, for a
flashcrowd with low or medium intensity, FH with AS is
able to maintain a relatively low startup delay for all peers
(comparable to that of the default algorithm). This is a sign

that an adequate replication of pieces at the seeder results
in satisfying both QoS requirements, when possible. On the
other hand, FH with AS significantly increases the startup
delay of peers in the scenario of heavy flashcrowd. This is
an experimental validation of what stated in Lemma 1: the
bandwidth available at the beginning of the flashcrowd is not
enough to serve all the joining peers, which, consequently, will
experience longer startup delays.

We have simulated each of the three flashcrowd scenarios
10 times and found out that the behavior of the different
algorithms is very stable, with the standard deviation never
exceeding 1.6 and 3.4 of the mean values of PCI and startup
delay, respectively.

VII. CONCLUSION AND FUTURE WORK

In this work, we have studied the allocation of bandwidth
in a BitTorrent-like VoD system under flashcrowd. We have
defined what the priorities are when bandwidth is scarce, so to
provide a good QoS to as many peers as possible. In doing so,
we have shown that there is an upper bound for the number of
peers that can be admitted in the system in time. Furthermore,
we have demonstrated that a trade-off exists between low piece
replication at the seeders and high peer QoS. In particular,
we have shown that, the larger a flashcrowd, the more pieces
(up to a certain limit) the seeders need to replicate, in order
to have peers experience an acceptable QoS. Then, we have
used the insights gained from our analysis to design a class of
flashcrowd-handling algorithms that improve peer QoS when
the system is under a flashcrowd.

On a different note, our study also shows that heavy
flashcrowds have a huge impact on BitTorrent-like VoD
systems, although peers are incentivized to contribute their
bandwidth to the network. We therefore expect that systems
which do not incorporate such incentives are (i) either likely to
provide lower QoS to their users, since peers are not “forced”
to contribute their bandwidth (and might decide not to), or (ii)
they need to supply considerably more server bandwidth in
order to have their service scale with the flashcrowd size, as
compared to BitTorrent-like (incentivized) systems.
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Fig. 6. CDFs of peer’s playback continuity index in a system hit by flashcrowds of different intensities as defined in Section VI-C. The graphs compare the
performance of the default algorithm without flashcrowd-handling (no FH) with the flashcrowd-handling algorithm with passive seeding (FH with PS) and
active seeding (FH with AS), respectively. The active seeding algorithm uses the maximum replication factor according to Eq. (4).
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Fig. 7. CDFs of peer’s startup delays. The notations and the setups as the same as for Figure 6.

There are several directions for further studies. For example,
it would be desirable to consider the effect of early peer de-
partures due to users impatience in getting access to the video
content. Furthermore, it might be interesting to dynamically
adjust the capacity provisioning of the service provider to
adapt to the size of flashcrowd. This will also require a deep
investigation of different flashcrowd detection techniques.
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