492 research outputs found

    High Efficiency Power Side-Channel Attack Immunity using Noise Injection in Attenuated Signature Domain

    Full text link
    With the advancement of technology in the last few decades, leading to the widespread availability of miniaturized sensors and internet-connected things (IoT), security of electronic devices has become a top priority. Side-channel attack (SCA) is one of the prominent methods to break the security of an encryption system by exploiting the information leaked from the physical devices. Correlational power attack (CPA) is an efficient power side-channel attack technique, which analyses the correlation between the estimated and measured supply current traces to extract the secret key. The existing countermeasures to the power attacks are mainly based on reducing the SNR of the leaked data, or introducing large overhead using techniques like power balancing. This paper presents an attenuated signature AES (AS-AES), which resists SCA with minimal noise current overhead. AS-AES uses a shunt low-drop-out (LDO) regulator to suppress the AES current signature by 400x in the supply current traces. The shunt LDO has been fabricated and validated in 130 nm CMOS technology. System-level implementation of the AS-AES along with noise injection, shows that the system remains secure even after 50K encryptions, with 10x reduction in power overhead compared to that of noise addition alone.Comment: IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 201

    Stream ciphers for secure display

    Get PDF
    In any situation where private, proprietary or highly confidential material is being dealt with, the need to consider aspects of data security has grown ever more important. It is usual to secure such data from its source, over networks and on to the intended recipient. However, data security considerations typically stop at the recipient's processor, leaving connections to a display transmitting raw data which is increasingly in a digital format and of value to an adversary. With a progression to wireless display technologies the prominence of this vulnerability is set to rise, making the implementation of 'secure display' increasingly desirable. Secure display takes aspects of data security right to the display panel itself, potentially minimising the cost, component count and thickness of the final product. Recent developments in display technologies should help make this integration possible. However, the processing of large quantities of time-sensitive data presents a significant challenge in such resource constrained environments. Efficient high- throughput decryption is a crucial aspect of the implementation of secure display and one for which the widely used and well understood block cipher may not be best suited. Stream ciphers present a promising alternative and a number of strong candidate algorithms potentially offer the hardware speed and efficiency required. In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. Although these new-generation designs have done much to respond to this concern, the relatively short 80-bit key lengths of some proposed hardware candidates, when combined with ever-advancing computational power, leads to the thesis identifying exhaustive search of key space as a potential attack vector. To determine the value of protection afforded by such short key lengths a unique hardware key search engine for stream ciphers is developed that makes use of an appropriate data element to improve search efficiency. The simulations from this system indicate that the proposed key lengths may be insufficient for applications where data is of long-term or high value. It is suggested that for the concept of secure display to be accepted, a longer key length should be used

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Algorithmic Regulation using AI and Blockchain Technology

    Get PDF
    This thesis investigates the application of AI and blockchain technology to the domain of Algorithmic Regulation. Algorithmic Regulation refers to the use of intelligent systems for the enabling and enforcement of regulation (often referred to as RegTech in financial services). The research work focuses on three problems: a) Machine interpretability of regulation; b) Regulatory reporting of data; and c) Federated analytics with data compliance. Uniquely, this research was designed, implemented, tested and deployed in collaboration with the Financial Conduct Authority (FCA), Santander, RegulAItion and part funded by the InnovateUK RegNet project. I am a co-founder of RegulAItion. / Using AI to Automate the Regulatory Handbook: In this investigation we propose the use of reasoning systems for encoding financial regulation as machine readable and executable rules. We argue that our rules-based “white-box” approach is needed, as opposed to a “black-box” machine learning approach, as regulators need explainability and outline the theoretical foundation needed to encode regulation from the FCA Handbook into machine readable semantics. We then present the design and implementation of a production-grade regulatory reasoning system built on top of the Java Expert System Shell (JESS) and use it to encode a subset of regulation (consumer credit regulation) from the FCA Handbook. We then perform an empirical evaluation, with the regulator, of the system based on its performance and accuracy in handling 600 “real- world” queries and compare it with its human equivalent. The findings suggest that the proposed approach of using reasoning systems not only provides quicker responses, but also more accurate results to answers from queries that are explainable. / SmartReg: Using Blockchain for Regulatory Reporting: In this investigation we explore the use of distributed ledgers for real-time reporting of data for compliance between firms and regulators. Regulators and firms recognise the growing burden and complexity of regulatory reporting resulting from the lack of data standardisation, increasing complexity of regulation and the lack of machine executable rules. The investigation presents a) the design and implementation of a permissioned Quorum-Ethereum based regulatory reporting network that makes use of an off-chain reporting service to execute machine readable rules on banks’ data through smart contracts b) a means for cross border regulators to share reporting data with each other that can be used to given them a true global view of systemic risk c) a means to carry out regulatory reporting using a novel pull-based approach where the regulator is able to directly “pull” relevant data out of the banks’ environments in an ad-hoc basis- enabling regulators to become more active when addressing risk. We validate the approach and implementation of our system through a pilot use case with a bank and regulator. The outputs of this investigation have informed the Digital Regulatory Reporting initiative- an FCA and UK Government led project to improve regulatory reporting in the financial services. / RegNet: Using Federated Learning and Blockchain for Privacy Preserving Data Access In this investigation we explore the use of Federated Machine Learning and Trusted data access for analytics. With the development of stricter Data Regulation (e.g. GDPR) it is increasingly difficult to share data for collective analytics in a compliant manner. We argue that for data compliance, data does not need to be shared but rather, trusted data access is needed. The investigation presents a) the design and implementation of RegNet- an infrastructure for trusted data access in a secure and privacy preserving manner for a singular algorithmic purpose, where the algorithms (such as Federated Learning) are orchestrated to run within the infrastructure of data owners b) A taxonomy for Federated Learning c) The tokenization and orchestration of Federated Learning through smart contracts for auditable governance. We validate our approach and the infrastructure (RegNet) through a real world use case, involving a number of banks, that makes use of Federated Learning with Epsilon-Differential Privacy for improving the performance of an Anti-Money-Laundering classification model

    Dictionary of privacy, data protection and information security

    Get PDF
    The Dictionary of Privacy, Data Protection and Information Security explains the complex technical terms, legal concepts, privacy management techniques, conceptual matters and vocabulary that inform public debate about privacy. The revolutionary and pervasive influence of digital technology affects numerous disciplines and sectors of society, and concerns about its potential threats to privacy are growing. With over a thousand terms meticulously set out, described and cross-referenced, this Dictionary enables productive discussion by covering the full range of fields accessibly and comprehensively. In the ever-evolving debate surrounding privacy, this Dictionary takes a longer view, transcending the details of today''s problems, technology, and the law to examine the wider principles that underlie privacy discourse. Interdisciplinary in scope, this Dictionary is invaluable to students, scholars and researchers in law, technology and computing, cybersecurity, sociology, public policy and administration, and regulation. It is also a vital reference for diverse practitioners including data scientists, lawyers, policymakers and regulators

    An Empirical Analysis of Security and Privacy in Health and Medical Systems

    Get PDF
    Healthcare reform, regulation, and adoption of technology such as wearables are substantially changing both the quality of care and how we receive it. For example, health and fitness devices contain sensors that collect data, wireless interfaces to transmit data, and cloud infrastructures to aggregate, analyze, and share data. FDA-defined class III devices such as pacemakers will soon share these capabilities. While technological growth in health care is clearly beneficial, it also brings new security and privacy challenges for systems, users, and regulators. We group these concepts under health and medical systems to connect and emphasize their importance to healthcare. Challenges include how to keep user health data private, how to limit and protect access to data, and how to securely store and transmit data while maintaining interoperability with other systems. The most critical challenge unique to healthcare is how to balance security and privacy with safety and utility concerns. Specifically, a life-critical medical device must fail-open (i.e., work regardless) in the event of an active threat or attack. This dissertation examines some of these challenges and introduces new systems that not only improve security and privacy but also enhance workflow and usability. Usability is important in this context because a secure system that inhibits workflow is often improperly used or circumvented. We present this concern and our solution in its respective chapter. Each chapter of this dissertation presents a unique challenge, or unanswered question, and solution based on empirical analysis. We present a survey of related work in embedded health and medical systems. The academic and regulatory communities greatly scrutinize the security and privacy of these devices because of their primary function of providing critical care. What we find is that securing embedded health and medical systems is hard, done incorrectly, and is analogous to non-embedded health and medical systems such as hospital servers, terminals, and personally owned mobile devices. A policy called bring your own device (BYOD) allows the use and integration of mobile devices in the workplace. We perform an analysis of Apple iMessage which both implicates BYOD in healthcare and secure messaging protocols used by health and medical systems. We analyze direct memory access engines, a special-purpose piece of hardware to transfer data into and out of main memory, and show that we can chain together memory transfers to perform arbitrary computation. This result potentially affects all computing systems used for healthcare. We also examine HTML5 web workers as they provide stealthy computation and covert communication. This finding is relevant to web applications such as personal and electronic health record portals. We design and implement two novel and secure health and medical systems. One is a wearable device that addresses the problem of authenticating a user (e.g., physician) to a terminal in a usable way. The other is a light-weight and low-cost wireless device we call Beacon+. This device extends the design of Apple's iBeacon specification with unspoofable, temporal, and authenticated advertisements; of which, enables secure location sensing applications that could improve numerous healthcare processes

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Technical Report: Big Data - Concepts, Infrastructure, Analytics, Challenges and Solutions

    Get PDF
    Industry 5.0 is emerging while swarms of Cyber-Physical Systems (CPSs) are being integrated with other swarms of CPSs and humans to work co-actively in collaborative and sustainable environments, which leads to the development of cyber-physical-social-systems (CPSSs) by leveraging the insights filtered from the passed experiences, i.e. Big Data (BD). With Industry 5.0, the borders between humans and intelligent machines cannot be readily distinguished in the new decentralised world - what is created by AI? What is produced by humans or what is built by both? The recent advances in the CPSs and domains, cloud and edge platforms along with the advanced communication technologies are playing a crucial role in connecting the globe more than ever, which is creating large volumes of data at astonishing rates and a tsunami of computation within hyper-connectivity. Data analytic tools (e.g. ChatGPT, Gemini) are evolving rapidly to harvest these explosive increasing data volumes. In this direction, this technical report analyses the concept of BD, BD analytics, and challenges in the processing of BD and discusses practical solutions for these challenges toward Industry 5.0
    • …
    corecore