247 research outputs found

    Risk-Aware Planning for Sensor Data Collection

    Get PDF
    With the emergence of low-cost unmanned air vehicles, civilian and military organizations are quickly identifying new applications for affordable, large-scale collectives to support and augment human efforts via sensor data collection. In order to be viable, these collectives must be resilient to the risk and uncertainty of operating in real-world environments. Previous work in multi-agent planning has avoided planning for the loss of agents in environments with risk. In contrast, this dissertation presents a problem formulation that includes the risk of losing agents, the effect of those losses on the mission being executed, and provides anticipatory planning algorithms that consider risk. We conduct a thorough analysis of the effects of risk on path-based planning, motivating new solution methods. We then use hierarchical clustering to generate risk-aware plans for a variable number of agents, outperforming traditional planning methods. Next, we provide a mechanism for distributed negotiation of stable plans, utilizing coalitional game theory to provide cost allocation methods that we prove to be fair and stable. Centralized planning with redundancy is then explored, planning for parallel task completion to mitigate risk and provide further increased expected value. Finally, we explore the role of cost uncertainty as additional source of risk, using bi-objective optimization to generate sets of alternative plans. We demonstrate the capability of our algorithms on randomly generated problem instances, showing an improvement over traditional multi-agent planning methods as high as 500% on very large problem instances

    Intentional fragmentation for material storage

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (p. 165-167).A novel technique (location-relaxed storage) of mixing products within warehouse storage bins is presented and evaluated. Analyses of warehouse operations, storage space efficiency, error sensitivity, and placement policies are presented and compared to traditional warehousing techniques. The major factors that drive the performance differences between traditional, highly organized storage and location-relaxed storage are shown to include the number of unique stock keeping units (SKUs) served by the warehouse and the picking lot size characteristic of demand. The analyses demonstrate traditional storage techniques have greater difficulty dealing with a large SKU base. Furthermore, location-relaxed storage is shown to have a lower sensitivity to operation errors and a greater opportunity for cost savings through optimization opportunities. Finally, a new placement strategy especially suited for location-relaxed storage is presented. As the popularity of Radio Frequency Identification (RFID) increases and the technical issues of widespread RFID implementation are addressed, new applications of RFID technology will change the way the world operates. An ongoing, industry-wide effort to implement RF-tags throughout the material goods supply chain has the support of manufacturers, retailers, and technology companies. RFID in the supply chain represents an enabling technology that will allow warehouse operations to break away from traditional methodologies and adopt revolutionary techniques, such as location-relaxed storage.by Stephen Ho.Ph.D

    What drives the Rebound Effect in transportation? An evaluation based on a Traveling Purchaser Problem

    Get PDF
    Limiting climate change is one of the most important challenges of the 21st century. Focusing on the transport sector, encouraging the use of more energy-efficient transport modes, and improving the performance of vehicles are the main targets in the fight for GHG reductions. However, due to Rebound Effect (RE), it is proven that improvements in engine fuel efficiency result in lower cost per kilometer driven and can induce individuals to use vehicles more often or to drive longer distances. As a result, the potential energy savings from improved energy efficiency could be partially or totally offset. Therefore, we decided to examine "What drives the Rebound Effect in transportation". To answer this research question, a Traveling Purchaser Problem was evaluated. This simple real-life business application models a situation in which a company owns one or several vehicles and has to buy specific products. The goal is to select and visit a subset of suppliers to satisfy a given demand for each product while minimizing both purchasing and travel costs. In total, 510 instances of this problem with various characteristics and parameters were generated and solved using the optimization software AIMMS. The impact of five main experimentations was deeply investigated. In addition, the trends obtained from these experiments were confirmed by fitting a logistic regression and a decision tree. The results of the various experiments showed that four variables can influence the occurrence of RE in a transportation network. On the one hand, RE tended to increase with the number of potential suppliers from which the firm can choose and the number of vehicles that the company owns to procure the products. On the other hand, the exclusivity of the products to source, as well as the introduction of a distance-traveled tax, reduced the occurrence of RE. To sum up, significant conclusions could be drawn from the experiments and the results can be easily transferred to real-life business applications. Recommendations for possible future studies were also discussed.nhhma

    Mathematical formulations and optimization algorithms for solving rich vehicle routing problems.

    Get PDF
    Objectives and methods of study: The main objective of this work is to analyze and solve three different rich selective Vehicle Routing Problems (VRPs). The first problem is a bi-objective variant of the well-known Traveling Purchaser Problem (TPP) in which the purchased products are delivered to customers. This variant aims to find a route for which the total cost (transportation plus purchasing costs) and the sum of the customers’s waiting time are simultaneously minimized. A mixed integer bi-objective programming formulation of the problem is presented and tested with CPLEX 12.6 within an ǫ-constraint framework which fails to find non-dominated solutions for instances containing more than 10 nodes. Therefore, a heuristic based on relinked local search and Variable Neighborhood Search (VNS) is proposed to approximate the Pareto front for large instances. The proposed heuristic was tested over a large set of artificial instances of the problem. Computational results over small-sized instances show that the heuristic is competitive with the ǫ-constraint method. Also, computational tests over large-sized instances were carried out in order to study how the characteristics of the instances impact the algorithm performance. The second problem consists of planning a selective delivery schedule of multiple products. The problem is modeled as a multi-product split delivery capacitated team orienteering problem with incomplete services, and soft time windows. The problem is modeled through a mixed integer linear programming formulation and approximated by means of a multi-start Adaptive Large Neighborhood Search (ALNS) metaheuristic. Computational results show that the multi-start metaheuristic reaches better results than its classical implementation in which a single solution is build and then improved. Finally, an Orienteering Problem (OP) with mandatory visits and conflicts, is formulated through five mixed integer linear programming models. The main difference among them lies in the way they handle the subtour elimination constraints. The models were tested over a large set of instances of the problem. Computational experiments reveal that the model which subtour elimination constraints are based on a single-commodity flow formulation allows CPLEX 12.6 to obtain the optimal solution for more instances than the other formulations within a given computation time limit. Contributions: The main contributions of this thesis are: • The introduction of the bi-objective TPP with deliveries since few bi-objective versions of the TPP have been studied in the literature. Furthermore, to the best of our knowledge, there is only one more work that takes into account deliveries in a TPP. • The design and implementation of a hybrid heuristic based on relinked local search and VNS to solve the bi-objective TPP with deliveries. Additionally, we provide guidelines for the application of the heuristic when different characteristics of the instances are observed. • The design and implementation of a multi-start adaptive large neighborhood search to solve a selective delivery schedule problem. • The experimental comparison among different formulations for an OP with mandatory nodes and conflicts

    The bi-objective travelling salesman problem with profits and its connection to computer networks.

    Get PDF
    This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances

    Managing Advanced Synchronization Aspects in Logistics Systems

    Get PDF
    In this thesis, we model various complex logistics problems and develop appropriate techniques to solve them. We improve industrial practices by introducing synchronized solutions to problems that were previously solved independently. The first part of this thesis focuses on cross-docks. We simultaneously optimize supplier orders and cross-docking operations to either reduce the storage space required or evenly distribute workload over the week. The second part of this thesis is devoted to transport problems in which two types of vehicles are synchronized, one of which can be transported by the other. The areas of application range from home services to parcel delivery to customers. After analyzing the complexity associated with these synchronized solutions (i.e., largescale problems for which the decisions depend on each other), we design algorithms based on the "destroy-and-repair" principle to find efficient solutions. We also introduce mathematical programs for all the considered problems. The problems under study arose directly from collaborations with various industrial partners. In this respect, our achieved solutions have been benchmarked with current industrial practice. Depending on the problem, we have been able to reduce the environmental impact generated by the industrial activities, the overall cost, or the social impact. The achieved gains compared to current industrial practice range from 10 to 70%, depending on the application. -- Dans cette thèse, nous modélisons divers problèmes logistiques complexes et développons des techniques appropriées pour les résoudre. Nous cherchons à améliorer certaines pratiques industrielles en introduisant des solutions synchronisées à des problèmes qui étaient auparavant résolus indépendamment. La première partie de cette thèse porte sur les cross-docks. Nous optimisons simultanément les commandes fournisseurs et les opérations au sein de la plateforme de logistique pour réduire l’espace de stockage requis ou répartir uniformément la charge de travail sur la semaine. La deuxième partie de cette thèse est consacrée aux problèmes de transport dans lesquels deux types de véhicules sont synchronisés, l’un pouvant être transporté par l’autre. Les domaines d’application vont du service à domicile à la livraison de colis chez des clients. Après avoir analysé la complexité des solutions synchronisées (c’est-à-dire des problèmes de grandes dimensions pour lesquels les décisions dépendent les unes des autres), nous concevons des algorithmes basés sur le principe de "destruction / reconstruction" pour trouver des solutions efficaces. Nous modélisons également les problèmes considérés avec la programmation mathématique. Les problèmes à l’étude viennent de collaborations avec divers partenaires industriels. A cet égard, les solutions que nous présentons sont comparées aux pratiques industrielles actuelles. En fonction du problème, nous avons pu réduire l’impact environnemental généré par les activités industrielles, le coût global, ou l’impact social des solutions. Les gains obtenus par rapport aux pratiques industrielles actuelles varient de 10 à 70%, selon l’application. Mot-clefs: Logistique, Synchronisation, Problème de transport, Tournée de véhicules, Plateforme de Cross-dock (transbordement), Programmation Mathématiques, Métaheuristiques, Matheuristiques, Instances Réelle

    Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-Mile Technologies and Strategies

    Get PDF
    Caltrans 65A0686 Task Order 066USDOT Grant 69A3551747114E-commerce can potentially make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities, particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include the use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection-points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic

    Dynamically accepting and scheduling patients for home healthcare

    Get PDF
    Importance of home healthcare is growing rapidly since populations of developed and even developing countries are getting older quickly and the number of hospitals, retirement homes, and medical staff do not increase at the same rate. We present Scenario Based Approach (SBA) for the Home Healthcare Nurse Scheduling Problem. In this problem, arrivals of patients are dynamic and acceptance and appointment time decisions have to be made as soon as patients arrive. The primary objective is to maximise the average number of daily visits. For the sake of service continuity, patients have to be visited at the same days and times each week during their service horizon. SBA is basically a simulation procedure based on generating several scenarios and scheduling new customers with a simple but fast heuristic. Then results are analysed to decide whether to accept the new patient and at which appointment day/time. First, two different versions of SBA, Daily and Weekly SBA are developed and analysed for a single nurse. We compare Daily SBA to two greedy heuristics from the literature, distance and capacity based, and computational studies show that Daily SBA makes significant improvements compared to these other two methods for a single nurse. Next, we extend SBA for a multi-nurse case. SBA is compared to a greedy heuristic under different conditions such as same depot case where nurses start their visits from and return to same place, clustered service area, and nurses with different qualification level. SBA gives superior results under all experiment conditions compared to the greedy heuristic

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies
    corecore