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Abstract

Importance of home healthcare is growing rapidly since populations of developed

and even developing countries are getting older quickly and the number of hospi-

tals, retirement homes, and medical staff do not increase at the same rate. We

present Scenario Based Approach (SBA) for the Home Healthcare Nurse Scheduling

Problem. In this problem, arrivals of patients are dynamic and acceptance and ap-

pointment time decisions have to be made as soon as patients arrive. The primary

objective is to maximise the average number of daily visits. For the sake of service

continuity, patients have to be visited at the same days and times each week during

their service horizon. SBA is basically a simulation procedure based on generating

several scenarios and scheduling new customers with a simple but fast heuristic.

Then results are analysed to decide whether to accept the new patient and at which

appointment day/time. First, two different versions of SBA, Daily and Weekly SBA

are developed and analysed for a single nurse. We compare Daily SBA to two greedy

heuristics from the literature, distance and capacity based, and computational stud-

ies show that Daily SBA makes significant improvements compared to these other

two methods for a single nurse. Next, we extend SBA for a multi-nurse case. SBA

is compared to a greedy heuristic under different conditions such as same depot case

where nurses start their visits from and return to same place, clustered service area,

and nurses with different qualification level. SBA gives superior results under all

experiment conditions compared to the greedy heuristic.
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Chapter 1

Introduction

Home healthcare (HHC), also referred to as in-home care, social care, or domiciliary

care, is becoming one of the most important components of health care. HHC helps

hospitals and retirement homes to create free capacity and decrease care delivering

cost [Hall, 2012]. The most crucial objective of HHC is to ensure people who need

medical attention and daily care to receive high-standard home services. According

to patients’ needs, nurses, physicians, doctors, and operators visit patients’ homes

periodically and provide services. Many elderly, chronically ill, and disabled people

receive HHC services [CMS, 2008]. Although home care and HHC services refer to

the same activity in the literature, they are different. On the one hand, home care

includes daily activities such as cleaning, dressing, bathing, and cooking to help the

elderly, on the other hand, HHC includes medical activities such as providing pills

and shots, physical and mental rehabilitation, watching the daily medication regime.

However, companies often provide both, home care and HHC, by employing trained

and educated staff according to job’s requirement.

In 2008, the US saved $25 billion in hospital costs thanks to HHC services accord-

ing to the National Association for Home Care and Hospice [NAHC, 2016]. HHC

companies employed 1.8 million caregivers and it was estimated that 500,000 more

jobs were potentially created in 2014 [NAHC, 2016]. 40% of adults aged 65+ already

take HHC service. The majority of HHC users are people with an average age of

1



69 [NAHC, 2016]. 59% of them have long-term physical conditions and 26% have

memory problems. 70% of all Americans aged 65 and older will need HHC service

at some points in their lives. Due to some factors such as aging population, chronic

diseases, insufficient capacity of hospitals, etc., it was projected that the demand

for HHC doubled by 2030 compared to 2010 [Albuquerque, 2010]. The following

information shows why HHC is gaining much more importance day by day in the

US:

• The number of people aged 65 and over in the US will be 56 million by 2020,

numbers reach 84 million by 2040 [Census, 2011].

• Care of a patient in the home costs only $45,000 per year for average of 44

hours of care per week while $91,250 are spent for a patient receiving care in

a nursing home [NAHC, 2016].

• Home-based health technologies cost $3 billion in 2007 versus $7.7 billion in

2012 [Hall, 2012].

• The percentage of American adults who are chronically ill is more than 50%

[AHRQ, 2007].

We encounter similar situations in Europe as well. For instance, in Sweden, the

total care cost was approximately e8.8 billion in 2005, and care of an elderly person

cost e49,500 in a retirement home annually whereas only e20,300 was spent per

person receiving care in their home. Moreover, roughly 88,000 of a total 250,000

staff were employed full-time in both public and private HHC organizations, which

was 2% of Sweden’s total work force [Eveborn et al., 2006]. In France, the total

number of HHC providers increased from 68 in 1999 to 123 in 2005 and to 231 in

2008. The number of hours spent for HHC activities rose by 84% while the number

of patients increased by 147% between 2005 and 2008 [Benzarti, 2012].

On the other side of the world, China is experiencing a huge demand of ag-

ing population for HHC services. The number of people aged over 60 in China

was around 212 million, accounting for 15.5% of China’s total population in 2015,

2



Figure 1.1: Projected change in the total number of people in different age groups

in the world between 2015 and 2050 [NIH, 2015]

which was higher than the traditional standard aging society (10%) [Du et al., 2017].

Moreover, 80%-90% of the seniors have chronic diseases and need continuous health

services [Du et al., 2017].

There are some factors that increase demand for HHC in the world. First, the

rise of life expectancy causes demographic changes especially in developed coun-

tries. The proportion of elderly people has been going up for last several decades

and is projected to rise significantly in all over the world as shown in Figure 1.1

and 1.2. Next, the number of people suffering from Alzheimer’s and dementia or

chronic diseases significantly rises, for example, the number of people with dementia

doubled every 20 years [International, 2015]. HHC is very suitable for treatment of

this kind of diseases. Another factor is that people who take HHC services do not

need to leave from their homes, families, and their social life and this makes HHC

more preferable than institutionalized care where people must stay as long as their

treatment continues. Finally, HHC services are supported by governments thanks

to their social and financial benefits [Benzarti, 2012].
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Figure 1.2: Population aged 65 and over by region: 2015 to 2050 [NIH, 2015]

1.1 The HHC Problem and Motivation

The HHC problem starts with a hospital request. When a hospital discharges a

patient who still needs medical attention for a while, the service provider is informed

what kind of treatment the patient needs and how many times he or she needs to

be visited weekly. After that, the service provider has to decide when weekly visits

take place during the service horizon of the patient. Furthermore, which nurse is

assigned to visits should be determined according to qualifications, preferences, and

availability of nurses. After constructing schedules, nurses start their daily trips

from their homes, visit and service patients at pre-specified times, and return to

their homes at the end of each day.

Although our problem setting based on the US HHC system [Bennett and Erera,

2011] is applicable for home care problem in where people and their relatives can

apply directly, it is more suitable for patients being discharged from hospitals and

whose needs (how many times weekly and how long they have to be visited) are

already known since we do not consider extra time or maybe an extra visit for a

triage in this study.
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Figure 1.3: Some criteria and restrictions that affect the decision making process in

HHC [Bertels and Fahle, 2006]

Although HHC has many different constraints and decision criteria as in Fig-

ure 1.3, routing and scheduling decisions are mostly made manually by a senior

nurse or manager in many companies as can be seen in our literature review. There-

fore, the proposed solution methodologies make great improvements in terms of daily

travel times, daily visits, and patient/worker satisfactions compared to manual rout-

ing and scheduling. However, existing studies summarised in Table 2.3 assume that

all patient requests are already known at the beginning of service horizon. Unfortu-

nately, we do not find any explanation how all requests can be known in advance.

One reason can be that requests are being collected till the beginning of a new plan-

ning term, which can be a week or a month. One question is whether or not people

are willing to wait for a decision even though it is possible that their requests are

not accepted due to scarce resource. Furthermore, delaying discharge of a patient

from a hospital due to decision processes of HHC companies causes an extra cost for

the hospital and dissatisfaction for the patient. The other question is how recently

arrived patient requests are integrated into the existing schedule under long HHC
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service horizon.

In this work, we focus on dynamic patient arrivals and decisions where acceptance

and assignment time decisions have to be made as soon as patients arrive. The most

important challenge in the dynamic problem setting is how to decide visit days and

times for a patient without knowing future patient requests. One way for a solution

is to assign the patient the best days and times into the current schedule by simply

ignoring future patients. Of course, this is not a good way since the best assignment

we make now can be the worst depending on locations of future patients. Therefore,

we consider future requests when assigning visits of current requests now in this

study.

The other issue raised from this problem is whether or not accepting all requests

is a good strategy. In the literature, an acceptance policy is also referred to as service

guarantee and occasionally discussed in different areas such as public transportation

[Li et al., 2009] and vehicle dispatching [Ichoua et al., 2000]. It is worth to investigate

whether or not rejecting a patient located at an unsuitable place for the route of a

nurse allows to accept more patient visits in the future. In this study, we do not only

identify suitable assignment days and times, but also make accepting or rejecting

decision for each patient.

1.2 Research Questions and Objectives

The fundamental research question pertaining to the scope of this study is:

”How can we decide to accept or reject a patient, and if he or she is accepted,

how to find suitable visit days and times by considering future demand?”

Our objective is to maximise average daily visits during a service horizon. Fur-

thermore, we explicitly consider travel times per visit, balance nurses’ workloads,

and acceptance rates.
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1.3 Contributions

Our main contribution is twofold. First, we develop a new solution methodology

for a HHC scheduling problem under dynamic patient arrivals. The new method-

ology finds the most suitable nurse, visit days, and times for each accepted patient

depending on future demand to maximise daily visits. Second contribution is em-

pirical. We test our algorithm under different problem settings such as service areas

with different sizes and demand volumes, different weekly visits, service horizons and

durations, continuity and non-continuity of services and so on. In Chapter 3, only a

single nurse servicing patients in a specific area is considered and any overlaps with

other nurses’ regions are ignored. In particular, contributions include:

• A new acceptance and scheduling policy based on a solution methodology

which anticipates future demand for the Dynamic HHC problem.

• A comparison of two different approaches, one depending on constructing tours

for each day of the week independently and the other considering all visits of

requests in the week at the same time when constructing tours for each day.

• A comparison of our solution method to two greedy heuristics proposed by

[Bennett and Erera, 2011].

• Tests our algorithm under violation of the service continuity in terms of service

times.

• A new pricing policy based on patient preferred visit days and times.

In Chapter 4, Scenario Based Approach (SBA) is modified to be able to consider

more than one nurse. The modification is to take all nurses and weekly visits of

patients into consideration at the same time. The main contributions can be defined

as following:

• An improved algorithm that captures real life aspects with multiple nurses

and different skill levels by anticipating future demand for the Dynamic HHC

problem.
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• An empirical insight how much better it is to plan nurses’ routing and schedul-

ing without restricting nurses to districts.

• Insights to algorithmic performance under different conditions such as clustered

service areas, different service times and service horizons.

• Empirically demonstrated improvement over a benchmark heuristic proposed

by [Bennett and Erera, 2011].

• Tests our algorithm under violation of the service continuity in terms of service

times and nurses.

• A new pricing policy based on patient preferred visit days, times, and nurses.

As far as the literature relating to this research are concerned, the relevant pub-

lications are listed below:

• This study, titled ”Dynamically accepting and scheduling patients for home

healthcare.”, was presented in Operational Research Applied to Health Services

Conference, 2017.

• A journal paper, ”Demirbilek Mustafa, Juergen Branke, and Arne Strauss.

‘Dynamically accepting and scheduling patients for home healthcare.’ Health

care management science (2018): 1-16.”, was published.

• A journal paper, ”Demirbilek Mustafa, Juergen Branke, and Arne Strauss.

‘Home Healthcare Routing and Scheduling of Multiple Nurses in a Dynamic

Environment.’”, was submitted to Flexible Services and Manufacturing Journal

in April 2018 and has been under review since then.

1.4 Thesis Organisation

This thesis is composed of five chapters. The organisation of the thesis is as follows:

In Chapter 2, we present a literature review related to home health nurse routing
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and scheduling problems as well as Dynamic Vehicle Routing and Periodic Dynamic

Vehicle Routing Problems. In Chapter 3, we formally define the single nurse prob-

lem and present a solution methodology for a single nurse case. In Chapter 4, we

extend our solution methodology for multiple nurses and examine the nurse district-

ing problem and qualification levels. We conclude our study and talk about future

opportunities in Chapter 5.
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Chapter 2

Literature Review

In this section, we go over the most relevant studies in terms of the problem; nurse

routing and scheduling problems, solution methodology; Dynamic Vehicle Routing

Problem (DVRP)/Dynamic Periodic VRP (DVRP) studies, and others; nurse dis-

tricting and HHC supply chain problems, due to the importance of nurse routing

and scheduling models for our study. Although many opportunities exist to use op-

erations research methods due to the complexity of HHC problems, very few papers

exist in the literature. However, the number of publication has increased significantly

since 2014 as shown in Figure 2.1.
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Figure 2.1: Distribution of HHC Nurse Routing and Scheduling studies in our liter-

ature review over time

2.1 HHC Nurse Routing and Scheduling Models

HHC related models started with [Fernandez et al., 1974], ”A model for community

nursing in a rural country.”. They divided a whole service region into several subre-

gions and assigned nurse teams to each subregions to be able to effectively use the

limited number of nurses. The next important study that HHC related studies were

getting more attentions after was ”An Integrated Spatial DSS for Scheduling and

Routing Home Health Care Nurses.” [Begur et al., 1997] constructed a decision sup-

port system for a home care company to optimise their routing and rostering opera-

tion without considering time windows. Beside our comprehensive literature review,

we also refer readers to [Fikar and Hirsch, 2017] and [Mutingi and Mbohwa, 2013]

for a state-of-the-art review of the models and algorithms that have been reported in

the HHC routing and scheduling literature between 1997 and 2016. Tables 2.1, 2.2,

and 2.3 represent a classification of publications in terms of objectives/performance

measures, constraints, and solution methodologies in the literature.
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We divide existing studies into two main categories, Static and Dynamic Prob-

lems, since our main contributions are under consideration of dynamic problem set-

tings. However, mentioning static problems and solutions are important to be able

to show why we consider dynamism and develop a new solution method.

2.1.1 Static Problems

In static problems, all data are known in advance before the optimisation has started.

Although studies can be categorised according to many criteria such as their objec-

tives, constraints, and optimisation periods (single or multiple), we categorise studies

in this section according to their solution methodologies. Many studies are carried

out by HHC companies from different countries. Therefore, objectives, constraints,

and periods vary based on requirements and work regulations of companies and

countries. Thus, we focus on solution methodologies and divide studies into three

categories, Exact Solution Methods, Heuristic/Metaheuristic Solution Methods, and

Comparative Solutions.

2.1.1.1 Exact Solution Methods

We can find relatively few publications that propose only exact solution methods for

the HHC problem since the problem is a combination of two well known NP-hard

problems, VRP and Nurse Rostering Problem (NSP) [Steeg and Schroder, 2008].

Exact solution methods works for only small instances. For example, an instance

with up to 50 patients requires about 3 hours run time [Fikar and Hirsch, 2017].

Therefore, the following publications worked on small instances and daily or weekly

routing and scheduling activities.

[Carello and Lanzarone, 2014] developed a healthcare application based on nurse

rostering, taking into account the continuity of care requirement. They used the

cardinality-constrained approach which exploited potentialities of a linear program-

ming model, but avoided to generate scenarios for stochastic problem settings. They

tested the approach by using real-life data, taken from a HHC service provider in
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Italy, and observed that it showed superior results in terms of overtime work and

continuity of care compared to non-robust algorithms. However, the algorithms

could provide reasonable results for most a week since computational cost became

very high for longer periods.

[Cappanera and Scutellà, 2014] tried to develop a model that took into account

operators’ skill level matching to patients’ needs. They proposed an integer linear

programming formulation to solve this assignment problem including scheduling and

routing factors. They used real data derived from HHC providers in Italy to evaluate

their model and observed that it worked successfully.

[Yalçındağ et al., 2016a] developed a two-phase solution methodology based on

a similar study of [Cappanera and Scutellà, 2014]. The main difference between the

two studies was that Yalcindag et al. decomposed the joint approach of Cappanera

and Scutella that included assignment, scheduling, and routing solutions in order to

solve large instances in a computationally more efficient way. They tested several

two-phase combinations in which each phase can cover one or two of assignment,

scheduling, and routing solutions. According to computational results based on

large real world instances considering qualification levels, continuity of care, and

multi-period planning horizon, the two-phase method (assignment and scheduling

phase 1; routing in phase 2) provided computationally efficient results in terms of

the optimality gap compared to the single-phase method by Cappanera and Scutella.

[Manerba and Mansini, 2016] proposed a HHC problem defined as an extension

of the multi-vehicle travelling purchaser problem. They aimed to maximise the total

benefit of performed services. The benefit of a service depended on importance and

priority of patient visits. Incompatible services that cannot be performed for the

same patient at the same day, qualification matching, and time windows were con-

sidered as constraints. They modelled the problem by mixed integer programming

and proposed a branch and price approach as the solution method.

[Wirnitzer et al., 2016] developed a nurse rostering model for a HHC company to

optimise scheduling activities done manually before. They proposed five mixed inte-
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ger programming formulations. Each one had a different objective function targeting

continuity of care from the perspective of patients with same hard constraints such

as breaks, maximum daily and weekly working times, patient/nurse preferences, and

shift rotations. They compared the results in terms of the number of assigned and

switched nurses. According to results based on randomly generated data derived

from real-world input and the company’s data, all models outperformed the manual

planning in reasonable time.

[Yalcindag et al., 2012] presented a two-stage approach for routing and rostering

decisions for HHC organizations. Their model used the results of rostering problem

as input to the routing problem. Specifically, they investigated whether or not

different rostering models had an impact on the routing models. A mixed integer

programming was employed to solve the rostering problem, considering workload

balance and continuity of care. On the other hand, they formulated a travelling

salesman problem model to solve the routing part to find the tour with minimum

length.

[Issabakhsh et al., 2018] presented a robust mathematical model for patients

who need peritoneal dialysis in their home. According to their model, patients had

different requirements such as collection of urine or blood samples, visits by nurses

and technicians, and deliveries of some necessary medicines etc. Because of such

necessities, they had to take into account not only depots and patient’s locations,

but also dialysis centres and laboratories. By considering some constraints such as,

labs had to be visited after collecting blood or urine tests, and nurses and technicians

had to be taken from a dialysis centre before visits of patients. Since just on time

visits were a important factor for peritoneal dialysis, they developed the robust

optimisation model to handle uncertainty in travel times. It turned out that in even

the most uncertain scenario, the differences between the robust and deterministic

results were less than 1.2%.

[En-nahli et al., 2015] proposed a solution methodology for HHC by considering

multiple objectives at the same time. They maximised caregivers utilizations and
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fairness of workloads while minimising travel times and waiting times of caregivers.

Their model included service continuity, time windows, skill level compatibility, affin-

ity between patients and caregivers, lunch breaks and pre-specified work times as

constraints. To solve this problem, authors presented a mixed linear integer pro-

gramming and ILOG Cplex Solver was employed.

[Masmoudi and Mellouli, 2014] considered a HHC problem as an application of a

synchronized multiple Travelling Salesman Problem with Time Windows (TSPTW).

The synchronisation in the problem referred to the condition that some patients

needed more than one staff member at the same time. Their aim was to minimise

the total travelling and waiting times of nurses. They employed a two-stage mixed

integer programming. In the first stage, the objective function was replaced by

another objective that minimised the completion time. This objective value was

used as a new scheduling horizon deadline for the second stage that covered the

original objective function. According to experiments based on many instances, they

found that the increase in the number of patients and caregivers also increased the

complexity of the problem while the increase in the number of patients who needed

more than one worker decreased the complexity of the problem. Moreover, the mixed

integer programming could not solve several large instances with 15 caregivers and

7 visits per caregiver.

[Liu et al., 2017] stated a routing and scheduling model for HHC workers. They

considered lunch breaks, qualification levels, and time windows as constraints. Their

aim was to minimise total travel times and the number of unscheduled tasks. They

proposed a three-index mathematical model which was decomposed into a master

problem and several pricing sub-problems, and was optimally solved by a branch-

and-price algorithm. It turned out that the branch-and-price algorithm provided

superior results in reasonable times.

15



2.1.1.2 Heuristic/Metaheuristic Solution Methods

Since exact solution methods are limited to very small instances due to their compu-

tational complexity, many authors have employed heuristic/metaheuristic methods.

Some authors have proposed a singe heuristic/metaheuristic method and compared

results with companies’ existing results provided by manual routing and scheduling.

Moreover, some authors have tested several heuristic/metaheuristic methods and

compared results.

[Di Gaspero and Urli, 2014] focused on finding an optimal multi-day HHC

schedule by employing a two-stage solution approach. First, they used constraint

programming to solve the vehicle routing problem. Next, they introduced a large

neighbourhood search method to improve the initial solution provided by constraint

programming. This method was applied to solve a set of random instances that

mimic a real-world HHC assignment problem. Experimental outcomes showed that

the large neighbourhood search significantly improved the constraint programming

solution in terms of number of unscheduled patients. However, constraint program-

ming is a better way to reduce the total travelling distance.

[Eveborn et al., 2006] considered a staff planning problem in Sweden where

local authorities provided HHC to elder people. They developed a software, LAPS

CARE, to help decision makers when they were planning under some soft and hard

constraints. Some important components such as databases, maps, optimization

routines, and report possibilities were integrated into the system. They proposed a

set partitioning model for the problem and a repeated matching algorithm for the

solution. Their objective was to find optimal schedules. They showed LAPS CARE’s

usefulness to save time during visiting and to increase customers’ satisfaction. They

reported that the software was operational for many local authorities in Sweden due

to its user-friendly interface.

[Steeg and Schroder, 2008] minimised the number of different nurses that served

each patient. Their first aim was to provide ”continuity of care”, which basically

meant that satisfaction of patients increased if they weren’t served by different nurses
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each time. Additionally, they made a periodic model by considering a one-week

schedule horizon. A hybrid approach was employed by combining constraint pro-

gramming and the large neighbourhood search metaheuristic. Performance of their

algorithms with some randomly generated data demonstrated that the large neigh-

bourhood search method worked well.

[Akjiratikarl et al., 2007] examined the scheduling problem of HHC staff by us-

ing particle swarm optimization (PSO), which is a collaborative population-based

metaheuristic. They targeted to minimise the distance travelled with satisfaction

of capacity and service time window constraints. Due to the continuous nature of

PSO, it was modified to be suitable for vehicle routing problems with time windows.

Therefore, the technique also became appropriate for the discrete assignment prob-

lem. The Earliest Start Time Priority with Minimum Distance Assignment, initial

solution generator, and local improvement procedures, a method that prevented the

algorithm to get stuck in local optima, were developed to increase solution quality.

The algorithm produced superior outcomes compared to the existing manual ap-

proaches and results by the AiMES Centre at the University of Liverpool employing

ILOG.

[Duque et al., 2015] constructed a decision support system for a social profit

organisation that provides HHC in Belgium. They modelled the problem as a bi-

objective optimisation model considering two different objectives, satisfying prefer-

ences of both nurses and patients and minimising total travel distances. Consistency

and periodicity of visits, different visits frequencies depending on patient needs, and

caregiver absence were taken into consideration in the model. They suggested a

two-stage approach based on the first maximising the most crucial objective, the

satisfaction of patients and nurses’ preferences independent of minimising travel dis-

tance. At the second stage, the travel distance was minimised with a constraint on

worsening the first objective value below a predefined tolerance limit.

[Hiermann et al., 2015] considered HHC scheduling problem with nurse-patient

preferences, time windows, qualifications, and pre-allocated jobs for a home care
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company operating in Austria. They aimed to minimise the tour length when con-

sidering satisfaction of patients and staff. A two-stage approach was employed to

solve the problem. At the first stage, an initial solution was created by randomly or

constraint programming. At the second stage, the initial solution was iteratively op-

timised by applying one of four metaheuristics: a memetic algorithm, scatter search,

variable neighbourhood search, and Simulating Annealing (SA) hyper-heuristic. Re-

sults showed that the memetic algorithm and variable neighbourhood search provided

superior results.

[Issaoui et al., 2015] solved HHC problem by considering multiple objectives.

They aimed to minimise travel time while maximising patients’ satisfaction and the

number of visits. A three-phase metaheuristic based on a variable neighbourhood

descent and longest processing time algorithms were proposed as solution method-

ologies. The longest processing time algorithm solved the assignment problem at the

first stage. The variable neighbourhood descent algorithm found the shortest path

for patients assigned to nurses at second phase. Finally, patients’ satisfaction was

maximised by using a heuristic that swapped unsatisfied patients between nurses by

considering distances calculated in the final stage.

[Redjem and Marcon, 2016] presented a home care service problem. Their prob-

lem covered multiple visits to the same patient per day and temporal dependencies

between some tasks. They aimed to minimise waiting and travel time of caregivers

under hard time window constraints. They presented a two-stage caregiver routing

heuristic where the shortest travel time was found for each caregiver without coordi-

nation of patients and sequencing restrictions at the first stage while all assumptions

and constraints were integrated into the final solution at the second sage. According

to their results, their algorithm was very efficient in terms of computational time

while it was not sensitive enough to temporal dependencies.

[Rest and Hirsch, 2016] introduced a HHC model which considered daily basis

routing and scheduling. Their objective was to minimise travel and waiting times.

They considered maximum daily working time with shifts, breaks, clients and work-
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ers’ satisfaction factor, and caregivers’ qualification levels as constraints. Public

transportations such as bus, train, and subway were taken into account to model

travelling of caregivers during their visits and real time tables derived from pub-

lic transport service were used when calculating time-dependent travel times. They

proposed three Tabu Search (TS) based solution methods for the scheduling problem.

[Lüers and Suhl, 2017] considered the home healthcare problem with a rolling

planning horizon. Their aim was to develop a multi-period plan considering conti-

nuity of care for patients in terms of visit times and the nurse. At the same time,

the plan was flexible to be able to integrate some changes in preferences of both pa-

tients and nurses, and in demands or capacity during the execution. They covered

skill matching, work regulations, staff satisfaction, and time windows as constraints

in their problem when aiming to minimise travel time and penalties regarding to

unassigned jobs. They proposed an adaptive large neighbourhood search heuristic

as a solution method.

[Hewitt et al., 2016] proposed a HHC problem with longer consistent episodes

of care which lasted between two and three months for each patient. They com-

pared three different strategies, weekly basis assignment with perfect information,

long term assignment with perfect information, and long term assignment with un-

certainty. The first was basically a rolling horizon method that scheduled patients at

the beginning of each week and these assignments were passed on to following weeks

during episode of care of each patient. New patients were scheduled accordingly. In

the second, all visits were scheduled at the beginning of the service horizon. The last

strategy considered both known patients and potential future patients derived from

historical data when scheduling visits at the beginning of the total service horizon.

Future patients were inserted into the schedule as dummy requests and removed

when a close actual request arrived. Results showed that long term assignments

were superior compared to weekly basis schedules while considering uncertainty was

useful for small number of expected patients.

[Shao et al., 2012] constructed weekly schedules for the nurses by minimising
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overtime and travel cost. A two-phase greedy randomized adaptive search proce-

dure with distinct patient classes was used to solve the problem. In phase I, they

found daily routes for nurses and then combined them for weekly schedule while a

neighbourhood search algorithm sought the optimal solution in Phase II. Finally, the

algorithm proved its superiority on both real data derived from US rehabilitation

agency and associated random samples.

[Trautsamwieser and Hirsch, 2011] presented a Variable Neighbourhood Search

(VNS) solution method for a daily planning of HHC services. Their objective was to

minimise nurse travel times and dissatisfaction levels of both patients and caregivers.

They included some constraints such as appropriate assignments of nurses to patients

based on skill level, language match, declinations, daily and weekly working times,

hard time windows, and breaks. The proposed solution methodology was tested with

generated data and a real life data set provided by Austrian Red Cross. According

to results, travel times could be decreased by up to 45% with the proposed solution

method.

[Bertels and Fahle, 2006] developed a software optimizing both rostering and

routing problem simultaneously while considering different hard and soft constraints.

The software employed a combination of linear programming, constraint program-

ming, and metaheuristics to maximise staff and patients’ satisfaction and minimise

transportation cost. They found hybrid approaches such as a combination of TS and

constraint programming were superior to single paradigms such as TS or SA.

[Lin et al., 2017] presented a HHC model with two problems. In the first prob-

lem, they considered rostering and routing of nurses by satisfying time windows,

qualification levels, preferences of nurses, and work regulations such as breaks, max-

imum work hours, and holidays. In the second problem, re-rostering of the current

schedule was considered due to visit time changes of patients and absences of nurses

or patients by minimising the difference between the original and new schedules.

They proposed a modified harmony search algorithm. The experimental and sta-

tistical analysis showed that the modified harmony search provided good results in
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shorter times compared to the standard harmony search algorithm.

2.1.1.3 Comparative Solutions

Although heuristic/metaheuristic methods provide solutions for large instances in

reasonable times, they can never guarantee optimal results. Comparison of results

of these algorithms with each other or with results of manual plans does not show

their performance properly. Therefore, many authors have developed both exact

and heuristic/metaheuristic solution methods to be able to show performance of

heuristic/metaheuristic algorithms by comparing them with exact methods under

same problem settings with smaller instances.

[Rasmussen et al., 2012] presented a home care crew scheduling problem with

soft patient’s nurse preference restrictions and temporal dependencies as synchronisa-

tion, two nurses needed to visit a patient at the same time, and minimum-maximum

difference, a nurse started a duty after another nurse finalized it. The problem was

modelled as a set partitioning problem by adding temporal dependencies as gener-

alised precedence constraints. They used a branch-and-price algorithm and a novel

visit clustering approach based on the soft preference restrictions. The application

of the algorithm to a real-life problem and examples derived from realistic settings

showed that the visit clustering approach provided solutions for larger problems

when the branch-and-price algorithm could not find optimal solutions.

[Bard et al., 2014] constructed weekly schedules of HHC staff servicing in 135

nursing homes. They tried to minimise cost over a 5-day planning horizon under

over time rules, breaks, and time window constraints. Additionally, preferences of

patients and nurses were taken into account unless they violated feasibility of the

model. They modelled the problem as a large-scale mixed integer program and used

a branch-and-price-and-cut algorithm to solve it. Furthermore, a rolling horizon

algorithm was used to find solutions for larger instances since the branch-and-price-

and-cut algorithm was slow to converge. They employed data and regulations such

as the practices, policies, legal restrictions, and compensation rules of Key Rehab, a
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company providing physical, occupational, and speech therapy in US Midwest.

[Braekers et al., 2016] proposed a bi-objective optimisation model to examine

the trade-off between operating cost covering overtime and travel costs and service

level including preferences of clients and nurses. They solved the problem with a

metaheuristic algorithm based on a multi-directional local search framework. They

conducted computational experiments by using several benchmark problem samples

generated based on a real data set. The algorithm performed quite well compared

to exact solution methods for small size instances. The results showed that allowing

for an additional operating cost was able to improve the service level significantly.

[Liu et al., 2013] proposed a HHC problem based on pick up and delivery from

depots and hospitals to patients or vice versa. According to their model, vehicles

delivered drugs and medical devices from the HHC company to patients’ homes, de-

livered special drugs from a hospital to patients, pick up of bio samples and unused

drugs and medical devices from patients to deliver the hospital again in assigned

time windows. They proposed two mixed integer programming models, a Genetic

Algorithm (GA), and a TS method. Exact methods failed to find optimum solu-

tions in the given time interval while metaheuristic methods provided solutions in

reasonable times based on different test instances in the literature.

[Zhan et al., 2015] studied an HHC routing and appointment scheduling problem

with uncertain service times for a doctor. Their objectives are to minimise patients’

waiting times, the doctor’s idle time, and total travel time. First, they solved a small

size problem with a mixed integer programming under the assumption of known

patients’ service time distributions. Next, the problem was modelled as a two-

stage stochastic programming problem and the L-Shape method was used since the

branch-and-cut algorithm was not able to solve the problem in a reasonable time for

larger instances. Finally, they suggested a heuristic method which could calculate

approximate cost of idle and waiting times just by considering the predecessor’s

random service time. Results showed that the heuristic provided good results for

large size problems.
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[Yuan et al., 2015] suggested a stochastic programming model for HHC schedul-

ing and routing problems with stochastic service times. They aimed to minimise

caregiver and service costs and late arrival penalty by considering multiple nurses

with different skill levels. Patients were categorised into their medical needs and

could be served only by a nurse who has an adequate skill level for the treatments.

A column generation method and label algorithm were proposed to solve master and

pricing sub-problems.

[Trautsamwieser and Hirsch, 2014] developed a solution method for a medium

term HHC planning problem in which the planning horizon lasts a week. Only

adequately skilled nurses could serve patients who needed special treatments one

or multiple times in the week. Visits had to be done in the given time windows

and same times in the week if patients required several visits. Nurses were required

to have a break after working a certain number of hours and not to work longer

than a given weekly number of hours. Their objective was to minimise waiting and

travelling times. They introduced a Branch-Price-and-Cut algorithm as a solution

methodology. Furthermore, VNS metaheuristic was proposed to solve the problem

in short computational times.

[Riazi et al., 2014] presented a mixed integer linear programming for HHC

routing and scheduling problem. The model includes some constraints such as

pre-specified time windows for visits and nurse skill levels. Their objective was to

minimise total travel times. They implemented several solution methodologies, the

centralized method, the logic-based Benders decomposition, the gossip algorithm,

and its extensions. The logic-based Benders decomposition method decomposed the

problem into task assignment problem (master) and several vehicle routing problems

(sub-problems). The gossip algorithm decreased the problem size by dividing the

global problem into local problems and solved them independently. Local problems

in the model covered a small number of nurses and customers.

[Mankowska et al., 2014] developed a model for daily HHC routing and schedul-

ing. The model covered nurse qualifications, patients’ preferences, interdependent
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and dependent services where the former requires that some tasks must be handled

before other tasks and the latter is taking into consideration when a task needs more

than one worker. They aimed to minimise travel and idle times of nurses and pro-

vide fair allocation of waiting times among the requests. They introduced a mixed

integer linear model and solved a small size problem with ILOG Cplex Solver and a

large size instance with an adaptive VNS algorithm.

[Guericke and Suhl, 2017] developed a HHC model mainly considering work

regulations and legal requirements. They took into account break times, weekly

work durations, and shift rotations according to laws and regulations in Germany to

be able to investigate their influence on results. They proposed a mixed integer linear

solution for a small size problem setting. Moreover, an adaptive large neighbourhood

search based heuristic was provided to cope with real-size complex problems in a

reasonable computational time. According to results, the heuristic method showed a

good performance compared to the mixed integer program in a relatively short time.

[Frifita et al., 2017] developed a model for a HHC problem with time windows

and synchronization which meant multiple caregivers visit a patient at the same

time. They proposed a general VNS method to be able to minimise travel times of

caregivers. The proposed methodology was compared to a mixed integer model and

a heuristic method for a variety of real life instances. According to results, their

method was fast compared to the mixed integer model and provided results close to

the optimal solution.

[Du et al., 2017] presented a HHC scheduling optimization problem with known

demands and service capabilities. Their aim was to minimise the total service

cost that included travel, service, and penalty costs while considering qualification

matches, time windows, and service priority based on seriousness of the patients’

conditions. They developed an integer programming model and proposed a GA

with local search method in order to solve the problem. They compared results of

the proposed solution method with a commercial software for a case study in China.

It turned out that the GA with local search method provides fast and reasonable
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results for the real life data.

[Triki et al., 2014] introduced a periodic HHC problem consisting weekly and

daily routing and scheduling plans. They proposed a two-phase method that opti-

mised routes and schedules in a week according to known weekly demand in the first

stage and optimised daily routes by minimising deviations from the weekly route in

order to assign new requests in the second stage. Qualification levels, time windows,

and lunch breaks were considered as constraints. They presented a mixed integer

programming for small size instances and a TS method for large size instances in

order to minimise the total routing cost and the exceeding workload. Results showed

that the TS method ensured good solution quality for large size instances for which

CPLEX failed to find any feasible solution.

[Arabzadeh et al., 2016] stated a weekly HHC planning problem. They aimed to

minimise travel times of caregivers and delays in visits of patients. Time windows,

qualifications of nurses, interval times between two consecutive visits of patients on

the same day, and working times of part time and full time workers were considered

as constraints in the problem. They proposed mixed integer programming for small

scale data and a GA and an ”Imperialist Competitive Algorithm” for large size

problems. The metaheuristic methods provided near optimal solutions for small

instances while finding solutions in reasonable times for large instances for which

GAMS failed to find any feasible solution.

[Decerle et al., 2016] presented a daily routing and scheduling problem in HHC.

Their aim was to minimise travel time and work time costs. Main contribution

of their study was to consider nurses with higher salaries and unlicensed assistant

workers with lower salaries separately in order to generate more cost effective sched-

ules for shared visits that need a couple of workers. They proposed a two-phase

metaheuristic method. In the first phase, nurses were optimally scheduled while

unlicensed assistant workers were assigned to shared and the remaining visits in the

second phase. They also developed a mixed integer programming model to pro-

vide global solutions by considering all staff simultaneously. Results showed that
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the metaheuristic ensured fast and near optimal solutions compared to the exact

method.

[Tozlu et al., 2015] presented a HHC routing problem with crew constraints.

In the problem, there were two types of workers, nurses and aides, who visited

patients together or separately. Three different objective functions, minimising travel

times, the total number of staff, and the total number of vehicles, were defined in

the model. They proposed a mixed integer programming model and VNS for the

solution. According to results based on different size instances, the VNS was able

to find quite good and fast results compared to the results given by CPLEX.

2.1.1.4 Why is a Heuristic Method Preferred for Our Problem?

As mentioned before, exact solution methods can provide optimal solutions and work

for small instances in reasonable computational times. The majority of studies have

employed only heuristic/metaheuristic methods to be able to cope with real data

or both exact and heuristic/metaheuristic methods to be able to show how heuris-

tic/metaheuristic methods perform compared to exact methods under same problem

settings. SBA is also a heuristic based method which cannot guarantee optimal solu-

tions. Therefore, one can ask why we employ a heuristic method instead of an exact

method and why we even do not use one of exact methods for a very small instance

to make comparison with results of SBA and show our algorithm’s performance.

Existing papers as we mentioned above, generally focused on static problem settings

for which the number of patients, their locations, the number of weekly visits were

already known. Even under this deterministic setting, exact methods work only for

small instances. In our problem, patients arrive dynamically and details about the

patient locations and their needs are only revealed over time. This also makes the

problem more complicated. First, when we consider tens of nurses, hundreds of pa-

tients, and thousands of visits in a-year simulation horizon, it is quite obvious that

exact solution methods such as multi-stage stochastic programming or stochastic

dynamic programming would fail to find even a solution. Moreover, one of expec-
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tations of this study is to help decision makers to respond requests of patients as

soon as they arrive. Therefore, it is unacceptable that patients wait responses for

long hours when we employ exact methods. Next, decisions in dynamic problems

are made based on optimal expected outcomes and solutions depend on generated

scenarios. Therefore, modelling our problem with one of the exact solution methods

does not give an optimal solution that can show upper or lower bounds for bench-

mark purposes. Lastly, as we will explain in detail later, the only study that is very

close our perspective is study of [Bennett and Erera, 2011]. We already mimicked

their algorithms and compared their results with ours.

2.1.2 Dynamic Problems

As we mentioned above, existing studies in the literature generally focused on static

problem settings for which the number of patients was already known, but requests

arrive to the system dynamically during service horizon in practice. Additionally,

they did not consider any acceptance policy. We have found only the studies of [Ben-

nett and Erera, 2011] and [López-Santana et al., 2016] which consider dynamic pa-

tient sets. [López-Santana et al., 2016] proposed a HHC caregivers daily scheduling

problem. The problem is dynamic since a patient assignment decision had to be

made as soon as the patient request arrived. They employed an agent based sim-

ulation method to model attributes of patients and caregivers, and mixed integer

programming model to find caregivers optimal routing schemes. Their aim was to

minimise the total travel time and the service promise factor depending on visit-

ing patients in specific time windows defined based on their priority levels. They

considered qualification level and working time constraints in the model. Several

scenarios based on the number of caregivers, time periods, and coefficients in the

objective function were tested. Although their model is dynamic, the concept of

their problem is quite different from ours. Their problem is very similar to pick up

and delivery problems where new customer requests arrive when the current plan is

being executed and they should be scheduled in the day if possible. However, we
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start to schedule visits of an accepted patient in the next week and service hori-

zon of each patient is at least 4 weeks. Furthermore, they employ a simulation

method and mathematical model which restrict their study with several scenarios

and limited number of nurses, patients, and simulation time. [Bennett and Erera,

2011] presented a myopic planning approach for the single nurse HHC problem. This

approach proposed a capacity based insertion heuristic when integrating a new pa-

tient request to the existing schedule by considering the nurse’s remaining available

time explicitly. Furthermore, they modelled the problem as dynamic periodic fixed

appointment time, which means that patients arrived dynamically and they were as-

signed to predetermined days over a predetermined number of weeks to visit. Their

objective was to maximise the number of patients being served by a nurse. However,

the proposed distance and capacity based heuristics are greedy algorithms which try

to choose the best movement whenever a new request arrives without considering

future requests or only partially considering. Moreover, these heuristics accept all

requests and ignore that to reject a request now can allow to accept more requests

in the future. The point behind an acceptance or a rejection decision is that if a

request of a patient located far from the tour is rejected, more closer requests in the

future can be assigned to the tour. In other words, we spend time serving patients

instead of travelling between distant locations. Of course, we should project future

demand properly to make this decision. Therefore, we tried to answer two questions

in this study. First, do we accept or reject the request? And second, if we decide to

accept the request, which visit days and time slots should it be assigned to?

2.2 Dynamic Vehicle Routing Problem (DVRP) and Pe-

riodic Dynamic Vehicle Routing Problem (DPVRP)

Studies

In contrast to the classical VRP, real-world applications often force decision makers

to design routing plans online where the visit of next customer is decided as soon
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as it becomes available. This is where DVRP is taken into consideration. DVRP

studies begin with [Wilson and Colvin, 1977]. They employed a greedy insertion

heuristic to put dynamically arriving requests into a tour for a single vehicle. Readers

can find detailed literatures reviews on DVRP in [Thomas, 2010], [Ritzinger et al.,

2016], and [Pillac et al., 2013]. Because DVRP literature is vast, we only discuss

some papers whose solution methods are related to our solution methodology. [Yang

et al., 2000] considered restocking by returning to the depot when a stockout occurs

or in anticipation of a stockout. They developed two heuristics for single vehicle

and multiple vehicles to minimise total travel cost. [Secomandi, 2000] compared the

performance of two neuro-dynamic programming algorithms, optimistic approximate

policy iteration and a roll-out policy for DVRP. According to their results, the roll-

out policy performed better for vehicle routing applications when dynamism is taken

into consideration. [Larsen et al., 2002] described the degree of dynamism concept

to select a suitable algorithm and models depending on the dynamic features of

the system and explored its effectiveness for DVRP and similar problems. They

applied different degree of dynamism to a Partially Dynamic Travelling Repairman

Problem. Results showed that an increasing degree of dynamism caused a linear

increase in tour lengths. [Ichoua et al., 2006] suggested a TS based solution method

to exploit probabilistic knowledge about future request arrivals. They proposed a

waiting strategy where vehicles wait at their current locations based on knowledge

about future requests if there is a time gap until the next customer service. [Hvattum

et al., 2006] proposed a multi-stage stochastic programming model and a heuristic

solution methodology. The heuristic generated scenarios including scheduled visits

and random customers raised from known distributions. Each sample scenario was

solved as a deterministic VRP and common features in the sample scenario solutions

were employed to construct routes. [Bent and Van Hentenryck, 2004] modelled DVRP

with time windows and aimed to maximise the number of daily visits. They proposed

a multiple scenario approach based on generating routing plans including both known

and future customers. A distinguished plan selected by a consensus function in terms
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of the smallest travel cost was employed for decision making processes. The multiple

scenario approach was tested against greedy approaches under dynamism varying

between 30% and 80%. The main difference between the solution methods of Bent

et al. and Hvattum et al. is that the multiple scenario approach from [Bent and

Van Hentenryck, 2004] works as TS with adaptive memory by maintaining and

updating routing and distinguished plans consisted of current and future customers

while the heuristic of [Hvattum et al., 2006] is a multi-stage model in which each

stage represents a time interval over the time horizon. The aim is to find a plan

that minimises the expected cost of visiting both current and future requests at the

beginning of each stage.

Although the problem we consider is certainly related to the dynamic vehicle

routing problem, there are also substantial differences. The typical paper on dynamic

VRP considers a single day, and customer requests arriving while vehicles are already

under way. The customer requests then have to be integrated into the existing tours,

but tours can usually be changed dynamically. On the other hand, in our problem we

assume all customer requests arrive in the week before the first service, they arrive

dynamically, and we have to commit to fixed appointment dates and times for each

request when it arrives. Also, while usually DVRP problems assume a customer

request only has to be serviced once, we assume patients have to be serviced several

times a week, over several weeks, and at the same times and days every week.

It is important to refer online problems and algorithms when discussing DVRP.

An online algorithm is simply a method generating solutions at any state of a problem

without knowing the entire input. In this sense, it looks like DVRP but there are

some differences. In DVRP, the distribution of interarrival times and the distribution

of locations of patients or customers and historical data are partially or fully known

a priori. Furthermore, the proportion of known customers to immediate customers,

called “degree of dynamism”, and arrival times that directly affects the “effective

degree of dynamism”are important factors to increase or decrease the complexity

of DVRP [Larsen et al., 2008]. However, online algorithms are more conservative
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approaches and are usually applied to real-time environments where there are no

known distributions and advanced information [Jaillet and Wagner, 2008]. A new

taxi or delivery company in a city can be an example [Bertsimas et al., 2018]. Online

algorithms are assessed by competitive analyses. Competitive ratios are defined as

the performance of an online algorithms to the performance of an optimal offline

algorithms in where all necessary data are known before optimisations start [Albers,

2003]. Although the competitive analysis framework could be used for evaluation of

algorithms in DVRP, it works only for simple problem sets since real life constraints

such as time windows make problems very complex for competitive analyses [Larsen

et al., 2008]. Moreover, in DVRP, it is hard to provide a competitive ratio when

considering many scenarios caused by different distributions during the optimisation.

On the contrary, a competitive ratio developed for a problem such as online TSP can

be compared to other online algorithms developed by other researchers. Overall, our

current problem setting is closer to the DVRP concept since we know distributions

of interarrival times, locations, and expected number of weekly visits in our problem.

DPVRP considers several visits requested by one customer in the planning hori-

zon. The main challenge is whether or not to postpone a visit of a customer to

another allowable day. The aim of decision is to construct shortest tours today as

well as consecutive days with potential future and postponed requests. The litera-

ture on the DPVRP is very scarce. [Wen et al., 2010] defined a model that a given

number of vehicles serviced orders that were accumulated during a day and had to

be serviced by starting a day after. The problem was to determine orders that could

be serviced as soon as possible or should be delayed next consecutive days to be able

to construct tours which minimised travel cost and customer waiting time. There

was no time window for daily visits. Routes for each day in the planning horizon

were constructed based on the orders known so far and the routes were fixed before

their execution. [Angelelli et al., 2007] similarly outlined a problem that customers

had to be visited in next two consecutive days after their orders were taken. The

problem was to decide which customers had to be served and whose service could
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be postponed. The aim was to minimise total travelled distance during the service

horizon. They tested several simple algorithms in terms of the length of planning

horizon and the location of customers. [Albareda-Sambola et al., 2014] examined

routing and delaying decisions for the problem where locations of future customer

requests were known probabilistically. Although the problem frame was similar to

studies of [Wen et al., 2010] and [Angelelli et al., 2007], [Albareda-Sambola et al.,

2014] used probabilistic data to reduce cost and improve solution quality. The deci-

sion of service in the current time period or delay for the next time period was made

based on the profit of the visit determined by urgency of the service and convenience

of waiting to be able to visit future requests. They compared their results with two

simple strategies based on visiting customers at the beginning or end of their service

windows.

In our problem, we consider multiple visits belonging to the same patients and

assume that patient requests arrive dynamically. In this sense, our problem seems

similar to DPVRP. However, exact service times and visits days are decided as soon

as patient requests arrive and they cannot be changed according to the condition of

tours. DPVRP studies we mentioned above are only restricted in terms of the time

interval that visits of a customer have to be performed. On the other hand, they

solve the routing problem with fully known data set for each day and only decide on

which visits are performed for that day or postponed to another allowed days. [Wen

et al., 2010] and [Angelelli et al., 2007] do not employ any prediction method for

future customer requests while [Albareda-Sambola et al., 2014] employ historical

data sets to improve solution quality. However, we develop a strategy that generates

scenarios mimicking future patient requests in order to find the most suitable visit

days and times for a patient.

2.3 Other Studies

[Hertz and Lahrichi, 2009] aimed to balance the workload of nurses and addition-

ally to minimise long travels. They analysed and used the data of Health and Social

32



Services Centres in Montreal, Canada. The problem was modelled by a mixed inte-

ger programme with some non-linear constraints and objectives. TS algorithm was

employed to the solve problem. Moreover, they compared results of TS algorithm

to results of CPLEX solver after removing some non-linear constraints to indicate

goodness of TS. Results showed that the TS algorithm solved the problem effec-

tively. They concluded that providing similar workload and avoiding overload for

some nurses highly depended on a careful partitioning of the territory.

[Milburn et al., 2012] examined the indirect supply chain cost on HHC by con-

ducting a questionnaire for home health care agencies in US. According to the data

analysis, they found indirect cost, which included ordering, storing, handling, deliv-

ering supplies, could become high under high patient volume and agency affiliation

factors. Therefore, they advised that nurse involvement in non-clinical duties such

as ordering, sorting, and picking supplies should be reduced as much as possible.

[Chahed et al., 2009] presented an anti-cancer drugs supply chain problem, for

which the anti-cancer drug had to be prepared in health centers because of a recent

French health regulation and they had to be delivered to patients under specific

conditions and considering drugs’ shelf life. They tried to minimise the total travel

times under consideration of production starting time and time windows for visits.

CPLEX was employed to solve the standard integer model under limitation of ten

patients per day.

[Marcon et al., 2017] proposed a solution methodology based on simulating

caregiver behaviour by using Agent Based Simulation. They developed four decision

rules for caregivers that were used right before visiting a patient. Nearest Patient

Rule was autonomous caregiver behaviour where caregivers could choose the next

patient by themselves without following any routes. Next, Shortest Route Rule

was that caregivers had to follow a planned route. No-wait Route Rule was that

caregivers had to follow the planned route unless the next patient was unavailable.

Finally, Balanced Route Rule was similar to the previous rule but the fact that

caregivers could return the first patient at the list if the second was not available
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as well. They evaluated performances of decision rules according to five criteria:

efficiency, pertinence, scalability, robustness, and implementability. According to

results, Balanced Route Rule outperformed in terms of minimising travel times.

[Nasir and Dang, 2017] presented a HHC resource dimensioning and assignment

problem consisted of determining patient group based clustering, the number of

HHC offices and workers, routing and scheduling of patients simultaneously. Their

objective was to minimise the total travel times between patients and workers as

well as offices and workers. They proposed a mixed integer programming model

and tested four different scenarios based on relaxation of some cost factors in the

objective function and constraints. It turned out that the model worked well with

small size instances.

[Nguyen et al., 2015] addressed an uncertainty problem on availability of the

nurses in HHC. They minimised costs raised from travel and waiting times, and

hiring external caregivers due to unavailability of caregivers in the company. They

used time windows and different skill levels as constraints. A robust optimisation

approach by taking different conservativeness degrees into account was proposed.

They used a metaheuristic solution method based on a GA and mathematical pro-

gramming.

[Shi et al., 2017] presented a HHC problem with fuzzy demand and time con-

straints. Their aim was to minimise the total driving times of vehicles that delivered

medical drugs patients needed. The main challenge was to carry enough drugs

whose quantity were uncertain when constructing tours in order to prevent return-

ing vehicles to the depot. A fuzzy chance constraint was defined based on the fuzzy

credibility theory. They proposed a hybrid GA integrated with stochastic simulation

methods as a solution. They compared results of the proposed model with a mixed

integer mathematical model and it turned out that the proposed model worked well

for small and large instances.

[Rodriguez et al., 2015] addressed a problem of staff dimensioning in HHC. They

minimised the number of HHC workers with different skills under uncertain demand
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to be able to serve as many patients as possible with a given performance level. The

uncertain demand covered the number of patients, regions where patients came from,

and task and durations that patients needed. They presented a two-stage integer

linear programme, where minimal resource needs had to be found for each demand

scenario at the first phase while the optimal number of employees was calculated to

satisfy the performance level.

[Yalçındağ et al., 2016b] presented a HHC patient assignment problem by esti-

mating travel time of staff with kernel regression technique. Their objectives were

to balance workloads of caregivers and minimise total travel times. Kernel method

predicted travel times by using historical data. The main point behind their study

was that making assignment decisions based on minimising only Euclidean distances

would not be correct since patient attributes such as availability of a family member,

time limitation of treatments, etc. directly affected assignment decisions as well. The

data-driven approach based on kernel regression employed workers’ specific past pat-

terns to be able to predict travel times. Numerical results showed that their approach

was superior to the average value and k-nearest neighbour search methods.
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Chapter 3

HHC Model for A Singe Nurse

In this Chapter, we develop SBA for a single nurse by proposing two different ver-

sions, Daily and Weekly SBA, the former depending on constructing tours for each

day of the week independently and the latter considering all visits of requests in the

week simultaneously when constructing tours for each day. We empirically compare

with two greedy heuristics from the literature, Distance and Capacity Heuristics.

Next, we examine how different service time durations and violation of service con-

tinuity affect results. Finally, we demonstrate a new pricing policy based on patient

preferred visit days and times at the end of this chapter.

All algorithms are coded with Java programming language. We present codes of

the Daily Scenario Based Approach in the Appendix as an example.

3.1 Problem Statement

The problem we consider is a single nurse HHC scheduling problem in a dynamic

environment over a planning horizon.

Nurse: All patients are visited by a single nurse in a defined geographic service

area. Each working day is divided into equally-spaced time intervals to schedule

patient visits. A set of possible appointment times, K, can be defined as:

K={b+iφ : i=0,1,...,k},
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where b is the earliest time for an appointment and φ is the time between appoint-

ment times. Travel time between patient i and j is denoted by m(gi,gj) in minutes

where gi represents the location of patient i. All travel times are always rounded up

to the nearest multiple of time slot.

Patients: Interarrival times between patients’ requests are exponentially distributed

with known parameters over the planning horizon. A request i from location gi con-

tains weekly service frequency fi, episode of care eci that represents how many weeks

patient i needs care, service duration for each visit sdi, starting time for the service

Ki, and weekly allowable visit day combinations. Visits have to be at the same days

and times for consecutive weeks during the episode of care.

Dynamics: The problem is dynamic in that there are many acceptance/rejection

decisions during the planning horizon. Thus, the solution depends on our scenar-

ios. At each stage (a request arrives), decisions are whether or not the request is

accepted, and if so, which day combination and time slot weekly visits should be

assigned to. Patients that cannot be scheduled are rejected. We assume that the ac-

ceptance/reject decision has to be made straight away (e.g. while the patient is still

on the phone) and if we reject a patient, the patient will turn to another homecare

company.

Constraints:

• Let i and j be two consecutive appointments on a day, and let gi and gj

represent locations of the patients assigned to those appointments. Every

route for that day is feasible, if and only if

Ki + sdi + m(gi, gj) ≤ Kj

for any two consecutive appointments, i and j.

• A task, representing a duty at a patient’s home, has to be carried out as often

as determined by its frequency and episode.

• One of the possible weekly visit day combinations can be selected for each

patient.
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• Patients, if accepted, must be serviced at same days and times every week

during their service horizon.

• A nurse starts a tour from his or her home and ends the tour at his or her

home again within the shift’s time window.

• A nurse has to handle a task in its scheduled time period.

Objective: The objective is maximisation of patient visits during the planning

horizon. This is different from maximisation of the number of patients served since

patients need different numbers of visits. If T represents a set of patients accepted

over the planning horizon, our objective is:

max
T

∑
t∈T

ftect.

3.2 Distance and Capacity Heuristics

3.2.1 Distance Heuristic (DH)

The distance heuristic [Bennett and Erera, 2011] is a greedy method which assigns a

new request between the pair of patients with the smallest insertion cost/additional

travel time. The cost is calculated by subtracting the distance between the prede-

cessor and successor of a request from the sum of distances between the request and

its predecessor and successor. If the distance between a request and its predecessor

and successor are represented as k1 and k2 and the distance between its predecessor

and successor is k3, the insertion cost, C is calculated as:

C = k1 + k2 − k3.

Therefore, whenever a new patient arrives to the system, the algorithm calculates

the cost of insertion of that patient between all pairs of requests assigned already

consecutively in each day of the week if intervals are feasible. After that, the method

selects the cheapest interval in a day/days according to visit frequency of the patient.
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Finally, all visits are scheduled to those cheapest days and time slots during the

service horizon of the patient. The appointment time is set according to proximity

of the request to its predecessor or successor. If the distance between the request and

its predecessor is shorter than the distance between the request and its successor,

the visit will start immediately after its predecessor visit and enough travel time of

course. Otherwise, the visit starts immediately before its successor by considering

service duration and travel time. If there are some days which have the same insertion

costs, as a tie-breaker, we assign the visit to the day where fewer patient visits are

already scheduled to balance the workload of days.

3.2.2 Capacity Heuristic (CH)

The distance heuristic schedules appointments next to each other, even if the travel

time from one appointment to the next requires more than one time slot. In such

cases it may be beneficial to allow for a longer time gap between appointments, so

that future patients can be inserted in between, without requiring additional travel

time.

The capacity based heuristic [Bennett and Erera, 2011] avoids scheduling a new

patient directly adjacent to an existing patient if the travel time is larger than a

time slot. If a new patient is more than one time slot away from other patients in

the schedule, the capacity heuristic assigns his or her visit to a time slot which is far

away from predecessor and successor patients to be able to assign a future request

between them. Based on the example from Bennett and Erera [Bennett and Erera,

2011], let us assume that the distance between a new request and its predecessor

(8.00 am) and successor (11.00 am) are 19 and 24 minutes respectively, and service

time is 30 minutes for each one. Thus, candidate time slots are 9.00, 9.15, 9.30, 9.45,

and 10.00 under consideration of 15-minute time intervals. If we use the distance

heuristic, the request is assigned to 9.00 am. In this case, we can assign at most one

additional request to 9.45, 10.00, or 10.15 if we assume that travelling between two

visits takes at least a time slot (we ignore the situation in that two patients live at
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the same flat or similar). On the other hand, if we assign the request to 9.30, there is

a possibility to assign two more patients to 8.45 and 10.15 if they need only one time

slot for travelling between their predecessors and successors. Therefore, the capacity

heuristic ensures to use this time slot to create gaps for suitable future patients. Of

course, there must be enough space between predecessor and successor patients to

put the current request into a suitable time slot. If not, requests are assigned like

they are assigned with the distance heuristic.

3.3 Scenario Based Approach

As mentioned in previous sections, the distance and capacity heuristics are greedy

algorithms which try to choose the best movement whenever a new request arrives

without considering or only partially considering future requests. These heuristics

accept all requests and ignore that to reject a request now can allow to accept more

requests in the future. Therefore, with SBA, we try to answer two questions. First,

do we accept or reject the request? And if we decide to accept the request, which

time slot should weekly visits be assigned?

The basic idea behind the algorithm is to run a number of simulations (scenarios)

and to see how many times the request which we have to decide on is assigned among

all requests and in which time slot visits are scheduled frequently. A scenario includes

a number of randomly generated requests in terms of the expected weekly demand

and number of visits as can be seen in the simulation set-up in Section 3.4. We try

to make a daily tour with randomly generated requests, previously accepted ones,

and the current one by using the cheapest insertion heuristic whose aim is to find the

shortest sub-tour. After the tour is full or all requests in the scenario are assigned,

we look whether the current request has been scheduled and, if so, the time slot.

We study two different variants for SBA. First, the Daily Scenario Based Ap-

proach (DSBA) simply constructs daily tours based on daily demand and indepen-

dent of a request’s multiple visits in the week. Next, the Weekly Scenario Based

Approach (WSBA) constructs weekly tours based on all expected weekly visits of
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the current patient and randomly generated requests in the scenario.

3.3.1 Daily Scenario Based Approach (DSBA)

In DSBA, each day in a week is evaluated separately and independently of other

days in the week. Let us illustrate DSBA with an example. Assume that a new

request arrives on Monday from a random location in the service area with 3-visit-

per-week frequency. Episode of care and service duration do not matter since they

are assumed to be the same for all patients. Now we have to decide whether we

accept or reject the request.

First, we generate several scenarios for each day of the next week. Each scenario

has a number of randomly generated requests and the current request as shown in

Figure 3.1. To find how many requests we need to generate randomly, we calculate

the average weekly demand. If we are looking at next Monday and the expected

demand until that day is 10 new patient requests, the total number of visits for

next week equals 25 (10*2.5), where 2.5 is the expected weekly visit frequency for a

patient. We divide the total number of weekly visits by 5 to determine the average

number of visits for a day. It means that 5 requests are generated for each scenario

and the current request is added to them. Note that we always calculate a week of

demand no matter when a request arrives as explained at the end of this section.

Next, we try to construct a tour by using requests in the scenario and patients

already assigned for that day as illustrated in Figure 3.1. Requests are assigned to the

tour by using the cheapest insertion heuristic until the tour is full or all requests in

the scenario have been scheduled. The cheapest insertion heuristic (CIH) calculates

the cost of all possible insertions and finds the one that has the lowest cost.

Once all the requests have been scheduled or no further request can be inserted,

we check whether the current request has been scheduled and if so, in which time

slot the visit has been scheduled. After all scenario simulations finish, we find how

many times it has been accepted and which time slot it has been assigned to most

frequently that day as seen on bottom right Figure 3.1. To decide which day com-
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bination (Monday-Wednesday-Friday, Tuesday-Thursday-Friday, etc.) weekly visits

are scheduled, we pick up the best one, two or three days in terms of number of

assignments over all scenarios. If the request cannot be scheduled for the number

of days that he or she needs weekly, he or she is rejected. Algorithm 3.1 shows the

pseudo code for DSBA. ”nReqInTour” in Algorithm 3.1 represents how many times

the request has been scheduled over all scenarios. If she or he has been assigned

at least once, which is called threshold, we accept that request. One can see how

different thresholds affect the results in Section 3.4.1.2. The number of scenarios is

represented by ”n” and how to determine the quantity is explained in Section 3.4.1.1.

Figure 3.1: Illustration of generating scenarios and finding the number of acceptance

over all scenarios and the most frequent time slot the request is assigned to.

We generate random requests based on a week of demand. For example, if a

patient arrives on Wednesday, we consider a week demand when checking the next

Monday or Friday. However, we have two working days until Monday and seven

working days until Friday. The reason to this assumption is that requests that

arrive through the end of the week are most likely accepted if the true demand is
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considered since no other random requests are generated due to the lack of demand.

According to our experiments, this set-up outperforms the previous one if the service

horizon for patients is only one week. However, if the service horizon is 4-weeks as in

our case, the number of daily visits dramatically decreases because accepted patients

at the end of the week start blocking acceptance of more suitable requests arriving

in subsequent weeks. Therefore, we use a week of demand in all our experiments.

Algorithm 3.1 Daily Scenario Based Approach CIH: Cheapest Insertion Heuristic

1: TimeSlot ← ∅

2: nReqInTour ← 0

3: for i= 1 To n do

4: ScenarioSize ← DailyVisits

5: Scenario + = CurrentRequest

6: for j= 1 To ScenarioSize do

7: Scenario + = RandomlyGeneratedVisits

8: end for

9: Tour ← Existing Visits

10: while Tour is feasible and Scenario is not empty do

11: MinCost ←∞

12: for k= 1 To ScenarioSize+1 do

13: Cost ← CIH(Request[k])

14: if Cost =< MinCost then

15: MinCost ← Cost

16: index ← k

17: end if

18: end for

19: if Scenario[index] is feasible for Tour then

20: Tour + = Scenario[index]

21: Remove Request[index] from Scenario

22: end if

23: end while
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24: if CurrentRequest is in Tour then

25: nReqInTour++

26: TimeSlot + = CurrentRequestScheduleTime

27: end if

28: end for

29: if nReqInTour>0 then

30: Accept Patient

31: VisitTime ← MostFrequentTime (TimeSlot)

32: end if

3.3.2 Weeky Scenario Based Approach (WSBA)

As explained in the previous section, when generating scenarios for each day in a

week, different visits of the same request are considered separately for each day

in DSBA. However, each request in a scenario can need 1, 2 or 3 visits in a week

and this must be considered when generating scenarios for each day of the week.

This is a more realistic approach since each request mimics a future patient that

mostly needs multiple weekly visits. Therefore, we develop a Weekly Scenario Based

Approach (WSBA) which constructs tours by taking into account all visits of requests

simultaneously in each scenario. In this approach, we generate visits based on weekly

demand and expected weekly visit frequency of patients, and construct a weekly

schedule with corresponding daily tours by using the cheapest insertion heuristic

until the tour is full or all requests in the scenario have been scheduled. After

repeating the same process for several scenarios, we choose the day combination far

which the current request is the most assigned over all scenarios. Patients who cannot

be scheduled in any scenario are rejected. Algorithm 3.2 shows the pseudo code for

WSBA. ”nCombinations” represents the days for which visits of a patient can be

scheduled. As an illustration, assume that there are 5 randomly generated requests

(R1 to R5) with different weekly visits and Request A which is under consideration

whether to accept or not in the scenario. Table 3.1 shows these requests with the

number of visits they need and insertion costs in terms of travel times for each
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day. The insertion cost for each day is calculated as we do in DSBA. The algorithm

selects the cheapest day/days depending on the number of visits that a request needs.

Summing up the cost of those days gives the total cost. Monday and Wednesday

have the cheapest total cost for R4 while R1 should be assigned to Monday since

it needs only one visit and the cheapest insertion cost comes with Monday. Lines

15-19 in Algorithm 3.2 show the calculation of the cheapest day set as shown in the

example above. Table 3.2 shows iterations where the algorithm compares requests

in the scenario and selects the cheapest in terms of the average cost. The point

to calculate average cost is to be able to compare insertion costs of patients who

need different numbers of visits. R2 is chosen and removed from the scenario at the

first iteration in Table 3.2. At the second iteration, the total costs for all remaining

requests are recalculated as in Table 3.1 and Request A is selected and removed

from the scenario this time due to its average cost. These iterations last until no

request remains in the scenario or the tour becomes full. As can be seen in the

next section, we use two different day sets, day set 1 and 2. The former covers all

possible day combinations and the latter includes specific day combinations. When

testing WSBA, we employ day set 2 (”nCombinations” in Algorithm 3.2) since the

computational time is linear with the possible number of day combinations.

Algorithm 3.2 Weekly Scenario Based Approach CIH: Cheapest Insertion Heuristic, M: A

large positive constant

1: TimeSlot ← ∅

2: nReqInTour ← 0

3: for i= 1 To n do

4: ScenarioSize ← WeeklyDemand

5: Scenario + = CurrentRequest

6: for j= 1 To ScenarioSize do

7: Scenario + = RandomlyGeneratedRequest

8: end for

9: Tour ← Existing Visits

10: while Tour is feasible and Scenario is not empty do
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11: MinGlobalCost ←∞

12: for k= 1 To ScenarioSize+1 do

13: AverageCost ← 0

14: MinWeekCost ←∞

15: for p= 1 To nCombinations do

16: if CIH(Request[k],p)=<MinWeekCost then

17: MinWeekCost←CIH(Request[k],p)

18: end if

19: end for

20: AverageCost ← MinWeekCost/Frequency[k]

21: if AverageCost =< MinGlobalCost then

22: MinGlobalCost←AverageCost

23: index←k

24: end if

25: end for

26: if Scenario[index] is feasible for Tour then

27: Tour + = Scenario[index]

28: Remove Request[index] from Scenario

29: end if

30: end while

31: if CurrentRequest in Tour then

32: nReqInTour++

33: TimeSlot ← CurrentRequestScheduleTime

34: end if

35: end for

36: if nReqInTour>0 then

37: Accept Patient

38: VisitTime ← MostFrequentTime (TimeSlot)

39: end if
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3.4 Simulation and Results

3.4.1 Experimental Set-up

We run 30 simulations for each experiment. Each simulation horizon is 360 working

days where each day lasts 510 minutes. A day is composed of 35 time slots. Duration

between two time slots is 15 minutes. A nurse works between 08.00 and 16.30 each

day during the planning horizon. Overtime and weekend work are not considered

in our model. 20 days warm-up period is set at the beginning of each replication.

Interarrival times between requests are exponentially distributed with mean 510,

340, or 255 minutes (we have three trials). Each patient has to be serviced 4 weeks

with stochastic visit frequency 1, 2, or 3 visits per week with probabilities 0.05, 0.35,

and 0.60, respectively. The first visit starts the following week after the request is

accepted. Visit durations are deterministic and take 30 minutes. Each arriving cus-

tomer request and randomly generated requests in scenarios uniformly arise from a

small square geographic region subdivided into 900 equally-sized square subregions

and a large square geographic region subdivided into 3,600 equally-sized square sub-

regions. The reason of using two different area sizes is to observe how algorithms

react to short and long travel times. Simulation parameters are shown in Table 3.3.

The nurse (depot) is located in the centre of both regions. To understand differences

between simulation results, we conduct independent samples t-tests and calculate

p-values for each pair. Because we conduct t-tests for all experiments in this study,

we want to give a clear example about how to make tests. Table 3.4 shows average

daily visits of DH, CH, and DSBA by using day set 1, small service area, and 340-

minute interarrival time for each simulation. Our null hypothesis is that the average

daily visit of DSBA is equal to the average daily visits of DH and CH. Therefore,

the alternative hypothesis is that the average daily visit of DSBA is different from

the other two methods. We use Microsoft Excel for tests. To be able to conduct

independent t-tests in Excel, we must determine whether to use one tail or two tails

and whether variances are equal or not. Although we reduce variances by common
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random numbers for each test, it is better to conduct F test to check whether vari-

ances are equal. According to Table 3.5, all p values of the F test in Excel are greater

than the threshold value, 0.05. It means that variances are not statistically different.

After we make sure that samples have equal variances, we can conduct independent

samples t tests with two tails and for equal variances. Table 3.6 shows p values for

t-tests. As can be seen, values are much lower than the threshold value. Thus, we

can reject the null hypothesis and say average daily visits of the three methods are

statistically different. Instead of giving p values for all tests, statistically different

results are written in bold font in tables. We have two different set-ups for visit days

each patient can be assigned to according to his weekly visit frequency. In the first

set-up, each patient can be scheduled any combination of days in the week. Because

we do not allow weekend work, there are
(
n
f

)
day combinations for a patient with

f representing the visit frequency and n representing the number of days (Monday,

Tuesday, Wednesday, Thursday, Friday). This is called day set 1. Although most

studies in the literature do not mention to employ special visit day combinations

when assigning requests, some authors [Duque et al., 2015] emphasize not to use

sequential days if multiple visits are taken into consideration. And, it does not make

sense to perform some tasks such as cooking, bathing, etc. the first two or three days

at the beginning of a week and to do nothing at the remaining days when considering

real life cases. Thus, we also use another day set-up which does not allow to schedule

sequential days when the visit frequency of a patient are two or three. Therefore,

only the following visit day combinations can be assigned to a patient who needs

two visits in a week, ((Monday,Friday),(Monday,Thursday),(Monday,Wednesday),

(Tuesday,Friday),(Tuesday,Thursday)) and a patient who needs three visits in a

week, (Monday,Wednesday,Friday). This set-up is called day set 2.

3.4.1.1 Determination of Scenario Size

In DSBA and WSBA, we fixed the scenario size to 75. Obviously, a large number of

scenarios means longer computational time. On the contrary, a lower size of scenarios
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Table 3.3: Simulation Setup

Simulation Parameters

Simulation Horizon (day) 360

Warm-up Period (day) 20

Daily Working Time (minute) 510

Service Horizon (week) 4

Interarrival Times (minute) 510,340,255

Weekly Visit Frequency 1,2,3

Weekly Visit Probability 0.05,0.35,0.60

Small Area X ∈ [0, 30] and Y ∈ [0, 30]

Large Area X ∈ [0, 60] and Y ∈ [0, 60]

can cause decreasing quality of estimation for appointment times. Therefore, we tried

different numbers of scenarios to observe how it affects results. Figure 3.2 shows the

average number of daily visits under different scenario sizes and interarrival times

for day set 1, a small region, and the predefined experimental setting. The results

for the three different interarrival times stabilise at scenario sizes above 70 or 80.

Although there are other peaks when sizes are between 130-150, it is hard to fix a

number for different interarrival times and computational cost significantly increases

around these points.
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Table 3.4: Average daily visits of DH, CH, and DSBA by using day set 1, small

service area, and 340-minute interarrival time for each simulation

Experiment SBA DH CH Experiment SBA DH CH

1 9.36 9.07 9.17 16 9.46 9.09 9.08

2 9.46 9.08 9.07 17 9.25 9.03 9.22

3 9.52 9.12 9.30 18 9.04 9.05 9.28

4 9.39 9.31 9.41 19 9.35 9.25 9.23

5 9.03 9.10 8.94 20 9.49 9.15 8.99

6 9.07 9.11 9.13 21 9.23 9.07 9.20

7 9.52 9.17 9.33 22 9.39 9.17 9.08

8 9.29 8.91 9.10 23 9.40 8.72 9.05

9 9.42 9.08 9.00 24 9.50 8.83 9.16

10 9.13 8.90 9.19 25 9.54 9.10 9.11

11 9.51 8.95 9.24 26 9.49 8.85 9.17

12 9.57 8.92 9.03 27 9.49 8.97 9.36

13 9.32 8.97 8.72 28 9.44 8.99 9.18

14 9.38 9.00 9.20 29 9.51 8.93 9.22

15 9.41 8.87 9.19 30 9.47 9.19 8.92

Average 9.36 9.04 9.13

Table 3.5: F tests

DSBA DH CH

DSBA ... 0.45 0.75

DH 0.45 ... 0.66

CH 0.75 0.66 ...

Table 3.6: Independent sample t-tests

DSBA DH CH

DSBA ... 1.75E-13 4.57E-08

DH 1.75E-13 ... 2.85E-03

CH 4.57E-08 2.85E-03 ...
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Figure 3.2: Average daily visits under different scenario sizes and interarrival times

3.4.1.2 Determination of Acceptance Threshold

As we mentioned previously, one of our aims in this study is to develop an acceptance

policy. We believe that rejection of some patients helps to accept more patients in

the future. In DSBA and WSBA, some scenarios are generated and daily/weekly

tours are constructed. The purpose is to check whether or not the current request

is accepted. However, how many times across the number of scenarios should a

patient be assigned to be able to accept it? To determine the setting, we tried

different acceptance thresholds as in Figure 3.3. Again we constructed three trials for

different interarrival times and same experimental setting as we do in Section 3.4.1.1.

Figure 3.3 clearly demonstrates that average daily visits tend to reduce when the

acceptance threshold is increased. The reason is that accepting a request is getting

harder when we increase the threshold. Particularly, if the demand is high, the

decline of average number of daily visits is sharper since high scenario sizes and

threshold decrease the probability of acceptance. Therefore, we fixed the acceptance

threshold to 1. It means that we accept a patient if he or she can be scheduled at

least once over 75 scenarios. Note that always accepting the patient would be similar
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Figure 3.3: Average daily visits for different acceptance thresholds

to DH and leads to inferior results.

3.4.1.3 Demand Fluctuations

When generating random requests for each scenario, we calculate the weekly ex-

pected demand based on interarrival times and daily visits based on expected visit

frequency for each patient as mentioned in Section 3.3.1. However, it is possible that

realized demands might be lower or higher than expected. In this section, we test

how robust our algorithm is against demand fluctuations.

According to interarrival times, weekly visit probability, and frequency we employ

in our tests, the realized number of randomly generated visits for each scenario

can be 5, 4, and 3 for 255, 340, and 510 minutes interarrival times, respectively.

In tests, we generate lower or higher number of random visits for each scenario

independently from the current interarrival time when patients arrive according to

predefined interarrival time during the simulation horizon. After 30 simulations, we

calculate average daily visits under the lower or higher number of random visits for

scenarios. We also provide average daily visits of DH and CH as a benchmark. It

is clear that DH and CH are not effected on demand fluctuations since they do not
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make any future estimation when assigning visits now.

Table 3.7: Average daily visits of SBA under demand fluctuations in a small area

Visits 255 340 Visits 510

2 9.56 9.29 1 8.29

3 9.68 9.33 2 8.29

4 9.77 9.38 3 8.31

5 9.79 9.40 4 8.31

6 9.83 9.38 5 8.30

7 9.79 9.36 6 8.19

DH 9.28 9.03 DH 8.19

CH 9.49 9.14 CH 8.21

Table 3.8: Average daily visits of SBA under demand fluctuation in a large area

Visits 255 340 Visits 510

2 8.03 7.73 1 7.01

3 8.10 7.80 2 7.09

4 8.18 7.88 3 7.11

5 8.26 7.88 4 7.09

6 8.27 7.88 5 7.07

7 8.27 7.85 6 7.05

DH 7.79 7.54 DH 6.97

CH 7.46 7.18 CH 6.57

Tables 3.7 and 3.8 show average daily visits of SBA under demand fluctuation

and average daily visits of DH and CH in small and large areas. Bold numbers

represent average daily visits of SBA when the number of randomly generated visits

are identical to the expected number of visits. Particularly, if the demand is realised

lower than it is expected, average daily visits decrease more than when the demand
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is realised higher than it is expected. Furthermore, SBA provides maximum number

of visits when the number of randomly generated requests are one more than they

are supposed to be. Although we can change the algorithm to generate one request

more for each scenario, we prefer not to do that and continue our experiments with

expected number of visits. The most important conclusion derived from results is

that SBA provides higher average daily visits compared to DH and CH even though

weekly demands are estimated higher or lower than real demands.

3.4.1.4 Sampling Methodology

One of the most important parts of our methodology is to generate scenarios to

be able to predict future patient requests. When generating scenarios, we produce

patient requests from different locations in the service area. A patient location is

defined as (X,Y) in the service area and both X and Y are uniformly distributed. We

use Monte Carlo sampling to generate locations of patients independently. Because

it relies on pure randomness, we end up with some locations clustered closely, while

other regions within the service area get no samples. This could affect acceptance or

rejection decisions since if the patient location is far away from the region in which

random requests are clustered, this is always possible not to be integrated into the

tour of nurse. We have to make sure that the Monte Carlo sampling method should

not impact results significantly. Therefore, we employ Latin Hypercube sampling to

see whether or not another sampling method can change results. Latin Hypercube

sampling targets to expand the sample points more evenly across all possible values

[McKay et al., 1979]. In our case, it ensures that generated requests in each scenario

are not clustered in a subregion.

Figure 3.4 shows step by step how to generate requests in the service region

with Latin Hypercube sampling. In this example, we generate three requests for a

scenario. In step 1, the method divides the service region into nine equal subregions.

The number of subregions depends on the number of patient requests in the scenario.

For example, if we have four requests, the method creates 16 subregions. Because
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Figure 3.4: Request generation with Latin Hypercube sampling method

we assume that the service area is a square, each subregion can be defined by the

corresponding column and row. For example, the subregion located at the centre of

service area is called B2. In step 2, the method randomly chooses a column and row,

B1, among all columns and rows. Location of the first request is randomly assigned

from B1 subregion. After that, the method eliminates column 1 and row B. In step

3, the method randomly chooses a column and row among the remaining columns

and rows. Now we have row A and C, and column 2 and 3. Location of the second

request is assigned from A3 subregion. Again, the method eliminates column 3 and

row A. In the last step, location of the third request is assigned from C2 subregion

since that is the only remaining subregion.

Table 3.9 shows results based on different sampling methods for a vary of in-

terarrival times and service areas. It is clear that there is no significant difference

between results of both methods. However, samplings based on Latin Hypercube

method result in slightly lower average daily visits and acceptance rates, and longer

travel times compared to samplings based on Monte Carlo method. The reason

might be that we generate actual patient arrivals based on Monte Carlo method

while generating patient requests in scenarios based on Latin Hypercube method. It
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is hard to generate actual patient arrivals based on Latin Hypercube method since

we do not know how many patients arrive during the planning horizon. Because

results of both methods are not statistically different, we use random assignments

for our all experiments.

3.4.2 WSBA and DSBA

In this section, we compare the two different solution methodologies which we devel-

oped, WSBA and DSBA. As explained in the previous section, the main difference

between the two methodologies is that each tour constructed for a day is indepen-

dent of the remaining days in the week in DSBA. On the other hand, weekly tours

are constructed by using weekly visits belonging to same requests in WSBA. The

latter is closer to our problem setting since requests need one, two, or three visits in

a week and generating different requests for each scenario without considering these

visits as in DSBA can affect the results. However, Figures 3.5, 3.6, 3.7, and Ta-

bles 3.10 and 3.11 show that results of average daily visits, travel times per visit, and

acceptance rates are close to each other. It is hard to say whether one is superior to

the other since DSBA provides slightly better results in some cases while there are

other cases where WSBA works well. Because our objective is to maximise average

daily visits, it is more important to look at results of visits for WSBA and DSBA.

As can be seen in Figure 3.5 and the first three rows in Table 3.10, DSBA results

are slightly higher for the small region, but the only difference between the average

number of visits for WSBA and DSBA under large area and high demand scenario

is statistically significant in favour of WSBA.

Computational cost is a crucial factor for this study since the decision has to

be made as soon as someone requests for the service. In other words, faster deci-

sion making means happier customers. Therefore, execution times are measured for

WSBA, DSBA, DH, and CH as in Table 3.12. Each time is measured during a-year

simulation horizon in which day set 2 and a small area are considered. Although

execution times for DSBA and WSBA seem relatively long compared to DH and CH,
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the execution time for a patient’s acceptance and assignment decision lasts less than

a second for the longest case as shown in Table 3.13. Execution times for WSBA is

significantly longer than DSBA execution times even though we use day set 2 for the

trial. It is clear that assessing a whole week with all visits of different requests in

WSBA significantly increases computations compared to decomposing a week into

separate days and evaluating them independently in DSBA. We decided to use DSBA

since results explained above do not show a large difference and computational cost

of DSBA is much lower than WSBA’s.

Figure 3.5: Average daily visits for WSBA and DSBA

3.4.3 DSBA, Distance, and Capacity Heuristics

Table 3.14 shows average daily visits according to DH, CH, and DSBA. As one can

see in the tables, our methodology gives superior results for both small and large

regions and different interarrival times. Particularly, daily visits increase substan-

tially compared to DH and CH in a small region if demand is relatively high. In

a large area, average daily visits by using DH is higher than by using CH, but the

improvement by SBA reaches around 11% and 6% compared to CH and DH. If

0.05 is selected as a threshold for t test, it can be seen that all improvements are

statistically significant.

Table 3.15 demonstrates travel times per visit for the three approaches. DH and
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Figure 3.6: Travel times per visit for WSBA and DSBA (minutes)

Figure 3.7: Acceptance rates for WSBA and DSBA
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Table 3.10: Comparisons of WSBA and DSBA in terms of average daily visits, travel

times per visit, and acceptance rates for the small region

WSBA DSBA p value

Daily Visits

510 6.97 7.00 0.282

340 8.07 8.09 0.648

255 8.61 8.65 0.282

Travel Times

510 16.67 17.36 0.005

340 15.35 15.64 0.017

255 14.18 13.92 0.013

Acceptance Rate

510 0.72 0.73 0.039

340 0.58 0.59 0.173

255 0.49 0.49 0.535

Table 3.11: Comparisons of WSBA and DSBA in terms of average daily visits, travel

times per visit, and acceptance rates for the large region

WSBA DSBA p value

Daily Visits

510 6.05 6.08 0.499

340 6.81 6.81 0.865

255 7.28 7.18 0.001

Travel Times

510 28.58 29.43 0.005

340 26.66 25.34 0.001

255 24.75 24.03 0.005

Acceptance Rate

510 0.51 0.51 0.067

340 0.64 0.65 0.202

255 0.41 0.41 0.338
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Table 3.12: Execution times for each method (milliseconds) in a-year simulation

horizon

Method 510 340 255

WSBA 24927 78676 177489

DSBA 1741 2813 6873

CH 33 47 56

DH 32 42 51

Table 3.13: Execution times for each method (milliseconds) for a patient’s acceptance

and assignment decision

Method 510 340 255

WSBA 77.90 163.91 277.33

DSBA 5.44 5.86 10.74

CH 0.10 0.10 0.09

DH 0.10 0.09 0.08

Table 3.14: Average daily visits for DH, CH, and DSBA by using day set 1

Region Times DH DSBA % CH DSBA %

Small 510 8.19 8.31 1.46 8.21 8.31 1.32

Small 340 9.03 9.38 3.87 9.14 9.38 2.61

Small 255 9.28 9.79 5.50 9.49 9.79 3.22

Large 510 6.97 7.09 1.81 6.57 7.09 7.98

Large 340 7.54 7.88 4.49 7.18 7.88 9.68

Large 255 7.79 8.26 5.97 7.46 8.26 10.75
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Table 3.15: Average travel time per visit for DH, CH, and DSBA (minutes) by using

day set 1

Region Times DH DSBA % CH DSBA %

Small 510 14.75 15.46 4.76 14.92 15.46 3.57

Small 340 15.24 14.68 -3.72 15.07 14.68 -2.62

Small 255 14.98 13.68 -8.68 14.88 13.68 -8.05

Large 510 26.63 25.87 -2.86 26.83 25.87 -3.58

Large 340 26.17 24.42 -6.70 26.64 24.42 -8.35

Large 255 25.75 22.63 -12.11 26.07 22.63 -13.19

CH provide shorter travel times than DSBA under low demand since it does not

benefit from its ability to select more suitable requests. When demand is higher,

DSBA also ensures travel times at least as good as DH and CH or better even

though number of patients serviced is more compared to the other two methods.

Particularly, travel times in SBA are significantly lower in a large area and when

demand is moderate and high.

Table 3.16 represents acceptance rates (number of accepted requests/total re-

quests) for the three methods. Although DH and CH accept all they can and do

not reject any request if they have an available place for it, acceptance rates by our

methodology are higher in all circumstances. This demonstrates that rejection of

some requests now can help to accept more requests overall in the future. The pro-

posed methodology takes demand fluctuation into account and is willing to accept

as many patients as possible if the demand is low. However, it can be seen that

our methodology significantly increases acceptance rates under scenarios of small

region-high demands and large region. All the results of average daily visits, travel

times per visit and acceptance rates are statistically different.

Tables 3.17 to 3.19 show average daily visits, travel times per visit, and accep-

tance rates for DH, CH, and DSBA for day set 2. DSBA provides higher average
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Table 3.16: Acceptance rates for DH, CH, and DSBA by using day set 1

Region Times DH DSBA % CH DSBA %

Small 510 0.81 0.83 2.34 0.82 0.83 1.73

Small 340 0.62 0.65 4.63 0.63 0.65 3.18

Small 255 0.48 0.53 8.50 0.49 0.53 7.16

Large 510 0.71 0.72 1.24 0.67 0.72 6.78

Large 340 0.52 0.55 5.82 0.50 0.55 9.68

Large 255 0.41 0.45 9.39 0.40 0.45 13.62

Table 3.17: Average daily visits for DH, CH, and DSBA by using day set 2

Region Times DH DSBA % CH DSBA %

Small 510 6.52 7.00 7.4 6.63 7.00 5.6

Small 340 7.80 8.09 3.7 7.85 8.09 3.1

Small 255 8.29 8.65 4.3 8.51 8.65 1.6

Large 510 5.9 6.08 3.1 5.52 6.08 10.2

Large 340 6.69 6.81 1.9 6.32 6.81 7.8

Large 255 7.06 7.18 1.7 6.73 7.18 6.7
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Table 3.18: Average travel time per visit for DH, CH, and DSBA (minutes) by using

day set 2

Region Times DH DSBA % CH DSBA %

Small 510 18.88 17.36 -8.6 18.15 17.36 -4.4

Small 340 16.67 15.64 -6.32 16.82 15.64 -7.5

Small 255 16.35 13.92 -14.9 16.11 13.92 -13.4

Large 510 30.95 29.27 -5.4 32.22 29.27 -9.2

Large 340 27.40 25.34 -7.5 28.50 25.34 -11.1

Large 255 28.46 24.03 -15.6 29.23 24.03 -17.8

Table 3.19: Acceptance rates for DH, CH, and DSBA by using day set 2

Region Times DH DSBA % CH DSBA %

Small 510 0.68 0.73 7.4 0.71 0.73 2.8

Small 340 0.60 0.60 0 0.59 0.60 1.7

Small 255 0.48 0.49 2.1 0.51 0.49 4.1

Large 510 0.65 0.65 0 0.62 0.65 4.8

Large 340 0.53 0.54 1.9 0.50 0.54 8

Large 255 0.44 0.43 -2.3 0.42 0.43 2.3
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daily visits and lower travel times per visit for both small and large regions and all

examined interarrival times. All differences of average daily visits and travel times

are statistically significant. Particularly, percentages of increase for average daily

visits provided by DSBA tend to increase when the demand is low. On the other

hand, saving travel times per visit is going up when size of area gets bigger and

demand gets higher for DSBA. However, we cannot say that acceptance rates are

statistically different from each other in some cases.

If one compares average daily visits in Table 3.14 with visits in Table 3.17, one

can observe that the percentage increase for average daily visit for day set 2 lessens

when demand is getting higher compared to the situation for day set 1. A possible

explanation is that the only day combination for a patient who needs three visits

per week is (Monday,Wednesday,Friday). Since 60% of patients demand three day

visits, these days are quickly getting full at the high demand and SBA does not have

many options to optimise remaining requests and days. Therefore, the gap between

average daily visits of SBA and DH is getting smaller.

3.5 Patient Dependent Service Times

In the previous setting, we assume that the service time for each visit is deterministic

and takes 30 minutes. However, it is highly possible that some tasks last longer or

shorter than other tasks in real life. Therefore, we add this case into our model by

using two different scenarios. When a patient arrives, the visit time is generated

stochastically. Visit times can be 15, 30, and 45 minutes with probability 0.30,

0.35, and 0.35 in the first scenario and 0.10, 0.30, and 0.60 respectively in the

second scenario. When generating random requests for DSBA, we also take patient

dependent service times into consideration. For example, let us assume that we

generate 10 requests for each scenario. We expect that 6 of them need 45 minute

service, 3 of them need 30 minute service, and one takes 15 minute service according

to the second scenario. Moreover, we test two different cost factors when assigning

requests in the scenario generation phase. First, as in the previous setting, we only
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consider travel times when searching for the most suitable request. Second, the ratio

of travel time to service time is employed as a criterion for insertion. The point of

service time consideration is that acceptance of requests with longer service times

can shorten overall daily travel times since the nurse must visit less patients. Of

course, accepted average number of patients decreases due to longer service times,

but we look at average daily service duration representing how long a nurse spent

for only service purpose to be able to compare results. For example, assume that

we have three requests in a scenario and their insertion costs in terms of travel time

are 20, 30, and 35 minutes. If only travel time cost is taken into consideration as a

selection criterion, the algorithm chooses the first request due to the lowest travel

time cost. Now, assume that service time of requests is 15, 30, and 45. If we divide

travel times by service times, we get 1.33, 1, and 0.78. If the ratio of travel time to

service time is considered as cost, we choose the third request.

According to Table 3.20 and 3.21, there is no statistically significant differences

between the two cost factors. However, when we consider the ratio of travel time to

service time as cost criterion, daily service duration is always slightly higher than

when we use only travel time as cost factor. However, results of both cost strategies

for service durations, average daily visits, travel times per visit, and acceptance

rates are very close. No matter what cost strategy is chosen, results under patient

dependent service times are superior compared to DH and CH.

3.6 Relaxation of Visit Times

One of constraints in this study is to keep service continuity which guarantees that

patients are visited at the same times during their service horizons. It is a quite

common practice accepted by HHC companies and researchers. However, one may

wonder how violation of service continuity affects daily visits and travel times. In

other words, how should the trade off between the service continuity and daily vis-

it/travel cost be handled if the service continuity is a soft constraint? To answer this

question, we develop a new model where schedules are made weekly. According to
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this model, schedule times of accepted patients are determined at the beginning of

each week by the cheapest insertion heuristic after their first week visits have been

decided when they arrive. Therefore, patients are informed of visit times at least one

week before, but may not be informed of all visit times for all weeks at the start of

service horizon. For example, let us assume that a patient arrives on Monday and is

accepted. He or she is only informed about next week’s visit times. At the beginning

of next week, which can be on Monday or Sunday depending on a decision maker,

all accepted patients’ visits are scheduled for the following week. So if we assume

that the patient arrives at week 0, his first weekly visits are scheduled in week 1 and

second weekly visits are scheduled in week 2 at the beginning of week 1. Note that

the first weekly visits of a patient are assigned as soon as he or she arrives since

dynamic patient arrivals and fast decisions are main considerations of this research.

If we made routing and scheduling decisions after collecting a number of patient

requests in a period of time, this would be a static HHC problem and, as we have

discussed in the Literature Review Section, there are many studies considering this

problem setting.

Table 3.22: Average daily visits under strict and flexible assignments for two day

sets

Day Set 1 Day Set 2

Region Interarrival times Strict Flexible % Strict Flexible %

Small 510 8.31 8.85 6.5 7.00 7.57 8.1

Small 340 9.38 9.94 6.0 8.09 8.83 9.2

Small 255 9.79 10.31 5.3 8.65 9.43 9.0

Large 510 7.09 7.78 9.7 6.08 6.67 9.7

Large 340 7.88 8.49 7.7 6.81 7.67 12.6

Large 255 8.26 8.85 7.2 7.18 8.14 13.4

Table 3.22 shows average daily visits under strict and flexible assignments for

two day sets. The strict assignment considers service continuity while schedules are

80



prepared at the beginning of each week as explained above in the flexible assign-

ment. According to results, average daily visits increase between 5% and 13% when

schedules are made by ignoring service continuity. Table 3.23 shows travel times per

visit under strict and flexible assignments for two day sets. The flexible assignments

shortens travel times per patient above 10% most of the times compared to the strict

assignments. All differences among results are statistically significant.

Table 3.23: Travel times per visit under strict and flexible assignments for two day

sets

Day Set 1 Day Set 2

Region Interarrival times Strict Flexible % Strict Flexible %

Small 510 15.46 13.80 -10.7 17.36 14.99 -13.6

Small 340 14.68 12.49 -14.9 15.64 13.54 -13.4

Small 255 13.68 11.34 -17.1 13.92 12.39 -11.0

Large 510 25.87 23.21 -10.3 29.27 25.45 -13.1

Large 340 24.42 22.02 -9.8 25.34 23.22 -8.4

Large 255 22.63 19.90 -12.1 24.03 21.67 -9.8

Although visiting patients at the same times during their service horizons is

preferred by patients, violating this preference or constraint apparently increases

average daily visits and decreases travel times per visit. Under consideration of high

demand for HHC service and the number of rejected requests, flexible assignments

can be an option for companies to service more patients without increasing their

resources.

3.7 Patient Preference and Pricing Policy

In the experiments we carried out so far, patient visit days and times are decided by

the algorithm. The aim is to find the best days and times combination to optimise

the schedule by considering future requests. We assume that patients accept visit
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days and times that we provide. However, it is highly possible that patients want to

select visit days and times according to their schedules. Of course, their preferences

are most likely not the best when we attempt to optimise the route and schedule.

In this case, HHC providers choose to accept preferences of patients if patients are

willing to pay more. The question then arises, how can the cost of a patient’s visit

times preference be calculated? If we had this cost, then we could use it in pricing

of the service in real time. In this section, we estimate the cost to a provider of

allowing patients to select day/time.

To be able to calculate the cost, we have to estimate how many visits we lose if we

assign visits according to the preferences instead of visits that our algorithm provides.

We simply run two simulations, corresponding to either scheduling according to

preferences of patients or based on the company’s assignments. It is important that

other parameters such as randomly generated requests, other patients’ arrival times,

locations, weekly visits frequencies, and etc. are identical in both simulations so as

to be able to compare them. We compare both simulation results in terms of total

visits during the service horizon of the patient and charge the customer according

to the difference. For example, if we make three visits less under patient preference

days and times, we charge the patient considering those three visits. Calculation

steps are as the following:

• Put times and days that a patient prefers into the existing schedule, if possible,

during the service horizon,

• Simulate during the service horizon under dynamic patient demand,

• Count the number of visits and travel times,

• Let the algorithm assign that patient’s visits during the service horizon,

• Simulate during the service horizon with patient arrivals that we used in the

previous simulation,

• Count the number of visits and travel times.
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In the test, the service area is large and the nurse is located at the centre of

the area. We have a patient that is located at (14,9) and needs 3 visits each week

during his or her service horizon. Two different scenarios are defined according

to preferences of the patient. In the first scenario, the patient selects Tuesday,

Wednesday, and Friday and 15.30, 10.30, and 15.15, days and times respectively. In

the second scenario, selected days and times are Monday, Tuesday, Thursday and

11.00, 12.45, 13.00. In the visit days and times that the algorithm provides, the

patient is assigned to Monday, Tuesday, and Wednesday, 10.45, 10.45, and 10.15.

We assign two randomly generated visits to each day during the service horizon.

4-week and 8-week service horizons are assigned to requests.

Table 3.24: Total number of visits in both scheduling methods during 4-week and

8-week service horizons for scenario 1

4 weeks 8 weeks

Interarrival times Preference SBA Difference Preference SBA Difference

510 141.77 144.10 2.33 310.10 313.17 3.07

340 154.13 156.27 2.13 318.07 322.67 4.60

255 160.27 164.13 3.87 330.13 340.47 9.33

Table 3.25: Total number of visits in both scheduling methods during 4-week and

8-week service horizons for scenario 2

4 weeks 8 weeks

Interarrival times Preference SBA Difference Preference SBA Difference

510 141.77 144.10 2.33 311.93 313.17 1.23

340 155.20 156.27 1.07 318.83 322.67 3.83

255 162.07 164.13 2.07 335.43 340.47 5.03

As expected, assignments of SBA always allow more total visits in both scenarios

as seen in Table 3.24 and 3.25. When the demand and service horizon increase,
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the gap between total visits increases as well. Under longer service horizons and

higher demands, we expect that preferences of patients negatively affect total visits.

However, different preferences can influence total visits significantly. For example,

the preference in Scenario 1 causes 5 fewer visits under high demand and 8-week

service length compared to Scenario 2. The suggested strategy here is to charge

patients based on the number of less visits they cause. For example, if the patient

needs 8-week service and the demand is high, we should charge the patient for regular

visit cost and around extra 10 visits that we lost due to the patient visit days and

times selection. Note that we only focus on total visits by ignoring travel times since

our objective is to maximise patient visits.

In the above example, we consider how only one patient preference affects the

schedule during his service horizon. Each preference can change the total daily visits

and travel times dramatically as can be seen results of Scenario 1 and 2. However,

there are also many factors to affect daily visits and travel times. For example, the

number of weekly visits of a patient can be an important factor since days/times

preferences of a patient who needs to be visited three times in a week has more effect

on the schedule during his or her service horizon than the preference of a patient

who needs only one visit per week. The other factor is the workload of a nurse. If

the schedule of the nurse is totally empty or there are few visits in it, assigning visits

of the patient based on his or her preference unlikely have a big effect on acceptance

decisions and visits of future patients since there are most likely large gaps between

its predecessors and successors that can be used to assign future patients’ visits.

By considering above factors, it is better to test one year simulation horizon

instead of testing scenarios based on each factor. We apply the procedure that

calculates the difference between total visits of assignment of SBA and assignment

based on a patient preference for all patients during the simulation horizon. When-

ever a new patient arrives, he or she randomly chooses visits’ days and times among

all available days and times in the current schedule. Next, the algorithm starts a

secondary simulation lasting the service horizon of the patient after we have taken
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the current schedule of the nurse and the patient’s information such as the number of

weekly visits, location, service horizon, and selected visits days/times from the main

simulation. We calculate the total visits we have after the simulation has finished.

Next, we let the algorithm assign the patient’s visits and run the same simulation

with the same parameters again. Finally, we calculate the total number of visits

and the difference between visits of assignment of SBA and assignment based on the

preference. The secondary simulation returns that difference to the main simulation.

After that, the patient is assigned to the schedule according to his or her preference.

We repeat this procedure for each arriving patient and accumulate differences dur-

ing the simulation horizon. Note that the patient can select days/times from only

available days/times in the schedule.

Accumulated differences represent visits we have lost due to preferences of pa-

tients. Therefore, we expect that summing up the total number of visits based on

preferences of patients during the year and the total differences should more or less

equal to the total number of visits in which all assignment decisions are made based

on SBA.

Table 3.26 demonstrates a year period results according to the preference based

and assignments of SBA. ”Extra Visits” represents summing up visits we have lost

due to preferences of patients during a year. Results in Table 3.24 and 3.25 come from

replications running during only one patient’s service horizon. However, we apply

this procedure for hundreds of patients arrived during a year in this setting. “Total

Visits”is the total number of visits for a year based preference based assignments and

“Extra Visits”. As explained above, we expect that “Total Visits”should be more

or less equal to the total number of visits based on assignments of SBA. Note that

we use the same simulation setting as in Table 3.3. All experiments in this section

are carried out by using day set 1 since we assume that patients can select any days

in a week.

It turns out that differences between results are mainly not statistically signif-

icant under different demands and area sizes. Costs of patient preference based
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scheduling are roughly 15% less total number of visits for a year. We can also con-

clude that manual patient assignments performed by a nurse provide more or less

the same results as preference based assignments since manual assignments mostly

concern feasible scheduling more than optimisation. Table 3.27 shows average daily

visits, travel times per visit, and acceptance rates according to preference based and

assignments of SBA based on day set 1 and the small service area. Preference based

assignments cause more than one visit lost, around 16% longer travel time per visit,

and 6% less patient acceptance compared to assignments of SBA.

Table 3.27: Average daily visits, travel times per visit, and acceptance rates accord-

ing to preference based assignments and assignments of SBA

Average daily visits Travel times per visit Acceptance rates

Interarrival times Preference SBA Preference SBA Preference SBA

510 7.48 8.30 18.36 15.54 0.78 0.84

340 8.24 9.39 17.61 14.25 0.59 0.65

255 8.55 9.79 16.84 13.09 0.46 0.52

We proposed an algorithm based on SBA in order to price a patient’s preference

of visit times and days. The main idea was to calculate the difference between the

number of visits based on times and days that a patient selects and times and days

assigned by SBA. We tested the idea under different service horizons and interarrival

times. Finally, we tested the idea for one year simulation horizon to be able to

see whether or not overall it works under all situations we can encounter during a

planning horizon. In practice, HHC companies can provide different prices for each

patient based on how many visits are lost due to days and times patients select or

a standard average price based on how many visits a patient needs and an average

cost per visit. For example, according to assignments based on patients’ preferences

in Table 3.26, a nurse performed 2395 visits in the small area and under the low

demand during a year. The company lost 373 visits due to visit days and times
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patients preferred. The average cost per visit is 0.16 (373/2395). Let us assume that

the company has a patient request who needs three weekly visits and 8 week service

horizon. So he or she needs to be serviced 24 times overall. The extra charge should

be value of 3.73 (0.16*24) visits. Our algorithm supports both pricing policies. Note

that we ignore travel time cost and rejection possibility of a patient to feasible times

and days we provide.
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Chapter 4

HHC Model for Multiple Nurses

In the previous chapter, SBA has been demonstrated for a single nurse who is trav-

elling and servicing in a specified area. In this section, more realistically, we apply

SBA to the case where there is more than one nurse. Several methodologies are ap-

plied to find optimum solutions in terms of total daily visits of all nurses and results

are compared to the distance heuristic. After explaining solution methodologies,

we explain why the solution methodology for a single nurse does not work well for

multiple nurses by simply dividing the service area and total demand according to

the number of nurses. Next, we examine how different visit durations and violation

of service continuity affect results. Finally, we demonstrate a simple pricing policy

based on patient preferred visit days, times, and nurses at the end of this chapter.

4.1 Distance and Capacity Heuristics for Multiple Nurses

The distance heuristic for multiple nurses (DHM) is similar to the distance heuristic

for the single nurse (DH). We make small modifications to work with more than

one nurse. Whenever a new patient arrives to the system, the algorithm calculates

the cost of insertion of that patient between all requests assigned already in each

day of the week and nurse. After that, the method finds intervals with the cheapest

insertion costs according to visit frequency of the patient for each nurse and sum

them up to be able to select the nurse with the smallest insertion cost. Finally,
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all visits are scheduled to those cheapest days and time slots of the nurse during

the service horizon of the patient. The algorithm assigns visits of patients to time

slots right before or after their successors or predecessors in terms of their proximity

to them. If there are several nurses which have the same insertion costs, as a tie-

breaker, we assign the visit to one where fewer patient visits are already scheduled

to balance the workload of nurses.

Results in both [Bennett and Erera, 2011] and the previous chapter showed that

the distance heuristic outperformed the capacity heuristic under high demand, large

uniform, and large uniform-clustered areas for the single nurse case. In the problem

settings of this study, we test our algorithm only in the large area and high demand

case since we have many nurses. Therefore, we only compare our algorithm with the

distance heuristic.

4.2 Extended SBA

We use SBA for the multiple nurse case in the same way as for the single nurse case.

According to the approach, we generate several scenarios for each nurse independent

of other nurses. This procedure is applied for each day in the week. As a result,

we find how many times and which time slots a request is assigned for each nurse

and day. To select the most suitable nurse for a request, we simply compare the

number of acceptances. The nurse who has the highest number of acceptances over

all scenarios and weekly visit days are assigned to the patient. If some nurses have

an equal number of acceptances, distances between nurses and the request are used

for tie-breaking. In this condition, the nearest nurse to the request is selected. The

following example illustrates the above proposal. Let’s assume that there are three

nurses, A, B, and C located at different parts of the service area. Moreover, assume

that a request arrives on Monday from a random location in the service area and

demands two visits per week. Episode of care and service duration are not considered

since they are same for all patients. Now we have to decide whether we accept or

reject the request. Firstly, for nurse A, we generate several scenarios for each day
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of the next week. Each scenario has a number of randomly generated requests and

the current request. To find how many requests we need to generate randomly, we

calculate the average weekly demand. If we are looking at next Monday and the

expected weekly demand is 12 new patient requests, the total number of visits for

next week equals 30 (12*2.5), where 2.5 is the expected visit frequency per week

for a patient. Thus, we divide the total number of weekly visits by 5 to find the

average number of visits for a day and by 3 to find the demand per nurse. It means

that 2 requests are generated for each scenario and the current request is added

to them. After that, we try to construct a tour by considering the requests in the

scenario and those previously assigned for that day and nurse. Requests are being

assigned to the tour by the cheapest insertion heuristic until the tour is full or all

requests in the scenario have been scheduled. Finally, we check whether the current

request has been scheduled and if so, in which time slot he or she has been scheduled.

After all scenarios have been simulated, we find how many times the new request is

accepted and which time slot he or she has been frequently assigned for that day. To

decide which day combination (Monday-Friday, Tuesday-Thursday, etc.) he or she

is scheduled, we pick up the best one, two or three days in terms of the number of

assignments over all scenarios. Next, we repeat the same process for nurse B and C,

and suppose that the number of acceptances for the best day combinations are 150,

180, and 120, for nurse A, B, and C respectively. We choose nurse B since he or she

has the highest number of acceptances for the request. As can be seen in Figure 4.1,

the best nurse and service days for the request are time slots of nurse B on Monday

and Thursday. If there is a nurse to whom the request is never assigned over all

scenarios, the request is ignored during the comparison. Of course, if the request

cannot be assigned to any nurse in any scenario, the request is rejected. Under

condition of equal acceptances for several nurses, distances between the request and

nurses are used for tie-breaking. The patient is assigned to the nearest nurse.
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4.2.1 Simulation Settings

Simulation settings are similar to the settings for the single nurse case. 30 replica-

tions are run for each experiment. Each replication lasts 360 days where each day

takes 510 minutes. A day is composed of 35 time slots. Duration between two time

slots is 15 minutes. Interarrival times between requests are exponentially distributed

with mean 510, 340, 255, and 150 minutes. We add a four-week warm up period at

the beginning of each experiment. The patient requests to be serviced with stochas-

tic visit frequency 1, 2, or 3 visits per week with probabilities 0.05, 0.35, and 0.60,

respectively. The service horizon lasts 4 weeks for each accepted patient. However,

we will change the duration for later trials which is explained in the related sec-

tions. We have two different set-ups for visit days each patient can be assigned to

according to his or her weekly visit frequency. At the first set-up, day set 1, each

patient can be scheduled any combination of days in the week. Day combinations for

a patient can be
(
n
f

)
when f represents the visit frequency and n shows the number

of days (Monday, Tuesday, Wednesday, Thursday, Friday). On the other hand, we

also use another day set-up, day set 2, which does not allow to schedule sequential

days when the visit frequency of a patient is two or three since it is not realistic

to perform some tasks such as cooking, bathing, etc. the first two or three days at

the beginning of a week and to do nothing at the remaining days. Therefore, only

following visit day combinations can be assigned to a patient who needs two vis-

its in a week, ((Monday,Friday),(Monday,Thursday),(Monday,Wednesday), (Tues-

day,Friday),(Tuesday,Thursday)) and a patient who needs three visits in a week,

(Monday-Wednesday-Friday). First visit starts the following week after the request

is accepted. Visit durations are deterministic and take 30 minutes. Each arriving

customer request is equally likely to arise in a square geographic region subdivided

into 3600 equally-sized square subregions. The nurses are located at (10,10), (30,30),

and (40,50) for three-nurse case and (10,10), (30,30), (40,50), (60,30), (20,20), and

(3,55) for six-nurse case in the region. To understand differences between results, we

construct independent samples t-test and calculate p-values for each pair. Numbers
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Figure 4.1: Nurse and day selection process for multi-nurse case

written in bold font mean that they are statistically better.

4.2.2 Results

Table 4.1 and 4.2 represent total daily visits and travel times per visit for three

nurses according to SBA, DHM and different visit day sets. Statistically there is

no significant difference between results when interarrival times are 510 and 340

minutes, but SBA works better when the interarrival time is 255 minutes for day set

2 and 150 minutes for day set 1. In terms of travel times per visit, SBA provides

significantly lower travel times compared to DHM’s travel times. Furthermore, SBA

distributes patient visits to three nurses mostly equally while distributions of daily

visits seem unfair in terms of workload balance of nurses in DHM. It is highly possible

to assign a request to a nurse whose tour is busier than others since the chance to

find the cheapest insertion in a busy tour is higher in DHM. However, we generate

random requests for each nurse when constructing tours during the scenario phase

in SBA. Therefore, the chance of assigning a request to a busy nurse decreases since

most likely more suitable random requests are scheduled to the remaining nurses.

We find a visit range for each run, which is the difference between maximum and

minimum daily visits of nurses. For example, if Nurse 1, 2, and 3 visit on average 4,

5, and 6 patients in a run, the range for this trial is 2 visits. After that, we calculate

the average range for 30 runs and a confidence interval for the mean. Means closer

to zero are more desirable since they indicate that average daily visits of nurses are
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almost equal. ”Range” in tables shows average ranges and confidence intervals with

95% confidence level. The range exceeds 2 visits per day in DHM when interarrival

time is 255 minute. In real life, it is not tolerated that one nurse in the company

visits 2 patients more than another nurse every day if they are paid the same wage.

Table 4.3 and 4.4 show total daily visits and travel times per visit for six nurses

according to SBA and DHM. Total daily visits of six nurses are not statistically

different for both methods. The most important reason is that the number of nurses

is adequate to accept all patient requests. However, travel times per visit in SBA

sharply decrease compared to DHM travel times. When the interarrival time is 150

minutes, SBA decreases travel time almost 40% compared to DHM for day set 1 and

around 32% for day set 2. All patients are accepted under lower demands (510 and

340) while acceptance rate goes down to 91% when the demand is high for day set

2.

Although SBA is at least as good as DHM in terms of average daily visits and

much better in terms of travel times per visit under a variety of scenarios, there is

an important drawback of SBA for the multiple-nurse case. How to distribute an

existing demand to nurses is a great problem for this method. Previous tests, we

simply distributed the demand to nurses equally. For example, If we expect 12 new

patients (30 weekly visits) for the next week, expected visits for each day are 6 and

for each nurse are 2 if we have 3 nurses. However, based on the current tours of

nurses, it is highly possible that more or less than 2 visits can be assigned to one

of nurses. Moreover, when the demand is low, most likely, the number of expected

visits for each nurse becomes less than 1 visit for each day. In this situation, we have

to round down or up zero or one and this can affect results significantly. Another

method can be to generate the number of random request for each nurse based on the

total expected daily visits. By considering the above example, we generate 6 visits

for each nurse instead of 2. At this time, when the demand is high, we generate

many random requests and the probability that a patient is accepted dramatically

decreases. Therefore, we modify SBA to be able to consider all nurses and randomly

96



T
ab

le
4
.3

:
T

ot
a
l

d
a
il

y
v
is

it
s

an
d

tr
av

el
ti

m
es

p
er

v
is

it
fo

r
S

B
A

an
d

D
H

M
w

h
en

em
p

lo
y
in

g
si

x
n
u

rs
es

u
si

n
g

d
ay

se
t

1

In
te

ra
rr

iv
al

ti
m

es
M

et
h

o
d

T
ot

al
d

ai
ly

v
is

it
s

T
ra

v
el

ti
m

e
p

er
v
is

it
%

A
cc

ep
ta

n
ce

ra
te

(%
)

51
0

S
B

A
10

.5
0

2
0
.2

4

-2
8.

9

10
0

D
H

M
10

.4
5

28
.4

6
10

0

34
0

S
B

A
15

.7
2

1
8
.3

0

-3
0.

2

10
0

D
H

M
15

.9
1

26
.2

3
10

0

25
5

S
B

A
21

.0
0

1
8
.1

5

-2
7.

5

99
.6

0

D
H

M
20

.9
4

25
.0

3
10

0

15
0

S
B

A
34

.5
5

1
4
.1

9

-3
9.

5

99
.8

6

D
H

M
35

.5
0

23
.4

5
99

.9
7

97



T
ab

le
4
.4

:
T

ot
a
l

d
a
il

y
v
is

it
s

an
d

tr
av

el
ti

m
es

p
er

v
is

it
fo

r
S

B
A

an
d

D
H

w
h

en
em

p
lo

y
in

g
si

x
n
u

rs
es

u
si

n
g

d
ay

se
t

2

In
te

ra
rr

iv
al

ti
m

es
M

et
h

o
d

T
ot

al
d

ai
ly

v
is

it
s

T
ra

v
el

ti
m

e
p

er
v
is

it
%

A
cc

ep
ta

n
ce

ra
te

(%
)

51
0

S
B

A
10

.5
0

2
0
.0

7

-2
7.

5

10
0

D
H

M
10

.5
2

27
.6

7
10

0

34
0

S
B

A
15

.7
3

1
9
.9

3

-2
3.

4

10
0

D
H

M
15

.8
7

26
.0

3
10

0

25
5

S
B

A
21

.0
9

2
0
.1

3

-1
9.

9

99
.7

3

D
H

M
20

.9
2

25
.1

2
99

.9
8

15
0

S
B

A
32

.3
9

1
8
.2

3

-3
1.

5

92
.5

3

D
H

M
32

.2
3

26
.6

7
91

.9
3

98



generated requests together when generating scenarios and making decisions at the

next section.

4.3 Scenario Based Approach for Multiple Nurses (SBAM)

As it is explained in the previous section, evaluating each nurse independently is

an oversimplification even though overall results are at least as good as results of

the greedy algorithm. In this section, a new approach that considers all nurses and

randomly generated requests at the same time when generating scenarios is proposed.

The basic idea behind the approach is when constructing tours for each scenario,

assignment of random requests and actual one are done by considering the existing

tours of each nurse. Now we explain more in detail.

First, we again start to generate several scenarios for the first day of the week.

Cost of assigning the request to each time slot of each nurse is calculated by using

the cheapest insertion heuristic. After calculating assignment cost of each random

request and the current request, the one who has the lowest insertion cost is selected

and assigned to the schedule. This scheduling lasts until all randomly generated

requests and the actual one have been assigned or no further request can be inserted

into any tour. Next, whether the actual request has been assigned and which time

slot it has been scheduled in is recorded. After repeating this procedure for a pre-

defined number of scenarios, we determine how many times the request has been

assigned to each nurse and which time slots it has been scheduled in. We reiterate

the same process and find the number of acceptances and visit times for the remain-

ing days of the week. Finally, comparisons between nurses are performed in terms

of the total number of acceptances in terms of the patient’s weekly visits. If the

request cannot be assigned to any nurse, it is rejected. The following example shall

demonstrate the process.

Let us again assume that there are three nurses, A, B, and C, who live in different

parts of the service area and their Monday schedules are presented in Figure 4.2.

Moreover, assume that a patient request arrives on Monday from a random location
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Figure 4.2: Monday schedules of Nurse A, B, and C

in the service area with 2-day-visit frequency. First, we have to calculate the demand

for Monday. If the demand is predicted 6 patients for the next week, the total visits

for the week will be 15 (6*2.5 (the expected weekly visits for each request) ) and 3

visits (15/5) will be expected for each day. It means that 3 requests are generated

for each scenario on Monday and we add our actual request, of course.

Next step is to calculate insertion cost of each request. Insertion costs of each

request in the scenario to feasible time slots of nurses are calculated by the cheapest

insertion heuristic as explained in Section 3.2.1. SBAM calculates the cost of each

insertion to each feasible time slot of nurses as demonstrated in Figure 4.3. CA1

represents insertion cost of a request to the first time interval of nurse A. After

calculating the cost for each feasible time interval of nurse A, the algorithm picks

up the cheapest one, CA2. Next, the same calculations are done for nurse B and C,

and the cheapest insertions are found. In our example, let us assume that the cost

order is CC1 < CB3 < CA2. So CC1 is the cheapest cost for the request. However,

we have 3 randomly generated and the actual request in the scenario. Therefore, we

need to calculate and find the cheapest cost for each. After finding the request that

has the cheapest insertion cost among all requests in the scenario, the algorithm

removes it from the scenario and adds it into the time interval of the nurse observed
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Figure 4.3: Nurse and day selection by finding the interval with the cheapest insertion

cost

before. This procedure is repeated until all requests in the scenario are assigned or

no feasible time interval exists.

This procedure is repeated for a given number of scenarios. After that, the

algorithm produces a record as in Table 4.5. So we know how many times, when,

and which nurses the request has been assigned to for only Monday. The same

information is produced for the remaining days to be able to compare and decide

the most suitable nurse and day combination. The results may look similar to

Figure 4.1. In our example, the patient needs 2 visits in a week. The best choice

is that the patient should be served by nurse B on Mondays and Thursdays during

his or her service horizon since the total number of acceptances is the highest (100

scenarios are generated for each day in the example.).

Table 4.5: Assignments times for each nurses

Scenario No 1 2 3 4 5 .... n

Assignment Yes Yes No Yes No .... Yes

Nurse C A .... C .... .... B

Time 10:45 11:00 .... 10:45 .... .... 12:00

101



T
ab

le
4.

6:
T

o
ta

l
d

ai
ly

v
is

it
s

an
d

tr
av

el
ti

m
es

p
er

v
is

it
fo

r
S

B
A

M
,

S
B

A
an

d
D

H
M

,
an

d
th

e
p

er
ce

n
ta

ge
ch

an
ge

s
b

et
w

ee
n

d
ai

ly
v
is

it
s

a
n

d
tr

av
el

ti
m

es
of

S
B

A
M

a
n

d
S

B
A

w
h

en
em

p
lo

y
in

g
th

re
e

n
u

rs
es

fo
r

d
ay

se
t

1

In
te

ra
rr

iv
al

ti
m

es
M

et
h

o
d

R
an

ge
T

ot
al

d
ai

ly
v
is

it
s

%
T

ra
ve

l
ti

m
e

p
er

v
is

it
%

5
1
0

S
B

A
1.

79
±

0
.1

1
10

.4
9

0

2
4
.7

0

-1
2.

17
S

B
A

M
1.

70
±

0
.2

7
10

.4
9

2
1
.6

9

D
H

M
1.

92
±

0
.2

0
10

.4
5

29
.1

4

3
4
0

S
B

A
0.

43
±

0
.0

8
15

.6
3

0

2
3
.0

2

-1
2.

48
S

B
A

M
1.

06
±

0
.1

5
15

.6
9

2
0
.1

4

D
H

M
1.

03
±

0
.1

4
15

.8
8

26
.5

2

2
5
5

S
B

A
0.

27
±

0
.0

5
20

.0
1

2.
79

1
8
.9

7

2.
67

S
B

A
M

0.
36
±

0
.0

8
2
0
.5

7
1
9
.4

8

D
H

M
0.

38
±

0
.0

6
19

.9
8

25
.8

1

1
5
0

S
B

A
0.

23
±

0
.0

3
24

.3
2

6.
68

1
6
.9

3

5.
31

S
B

A
M

0.
19
±

0
.0

3
2
5
.9

5
1
7
.8

3

D
H

M
0.

17
±

0
.0

4
23

.6
6

25
.3

6

102



Table 4.6 represents total daily visits and travel times per visit for the three

nurse case according to SBAM, SBA, and DHM for day set 1. For 510 and 340

minutes interarrival times, SBAM gives statistically the same average daily visits,

but shorter travel times than DHM and SBA. SBAM decreases travel times by 12%

and 25% compared to SBA and DHM respectively. In higher demand cases (255

and 150 minutes), increases of total daily visits are remarkable than DHM and SBA.

Although SBAM ensures more than one additional visit than SBA and two additional

visits than DHM daily when the interarrival time is 150 minutes, travel times per

visit are slightly longer than SBA but much shorter than DHM. It is important to

remember that an increase in daily visits by one means 360 extra visits in a year.

Table 4.7 shows total daily visits and travel times per visit for a six-nurses case

according to SBAM, SBA and DHM for day set 1. Again total daily visits are not

different for all methods in case of low demands (510 and 340 minutes). However,

travel times per visit of SBAM are much shorter than travel times provided by SBA

and DHM. When the demand is getting higher (255 and 150 minutes), differences

between average daily visits are becoming significant as well. Furthermore, SBAM

still gives the shortest travel times in the last two cases. It is worthwhile to emphasize

that acceptance rates in Table 4.7 are around 100% which mean that almost all

patient requests are accepted. One may wonder why smaller interarrival times are not

tested. An interarrival time with mean 150 minutes equals 3.4 requests per day from

a region of 3600 square kilometres. This is a quite reasonable demand when compared

with demands in some application studies [Bennett and Erera, 2011] [Duque et al.,

2015]. If the demand overcomes service availability significantly, of course, HHC

providers will employ more nurses to be able to fulfil them as soon as possible.

Table 4.8 and 4.9 represent total daily visits and travel times per visit for the three

and six-nurses cases according to SBAM, SBA and DHM for day set 2. Different

from day set 1 cases, SBAM performs worse compared to DHM and SBA especially

in low demand scenarios. It is only competitive when the interarrival time is 150

minutes. It can happen that the new patient is allocated a visit by one nurse on one
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day, and another nurse on another day, which violates the consistency constraint.

Let us assume that we have three nurses, A, B, and C, and a new request that needs

three day visits. We create 75 scenarios for each day in the week and the number of

acceptances for each nurse can be seen in Table 4.10.

Table 4.10: The number of acceptance for each nurse

Monday Tuesday Wednesday Thursday Friday

Nurse A 75 0 0 0 0

Nurse B 0 0 75 0 0

Nurse C 0 0 0 0 75

In this case, although we have many available slots, we have to reject the pa-

tient since none of the nurses seems available for Monday, Wednesday, and Friday.

According to our experiments, the possibility to encounter tables as above highly

increases under low demands. Therefore, we also need to look at a model where

future requests were generated with weekly visits, and inserted into the week as one

combination.

4.4 Modification of SBAM

Because of the drawback of SBAM as explained above, it is necessary to modify it

to be able to improve its performance. The idea behind SBAM is to consider all

nurses and randomly generated requests at the same time when generating scenarios.

However, we consider each day of the week separately, independent of several visits

of each patient in that week. When more nurses start to be taken into consideration,

it causes a problem that one visit of a patient is assigned to one nurse while other

visits can be assigned to another nurse. As it is emphasized from the beginning,

service consistency, i.e. a patient is visited same days and times by the same nurse

during his or her service horizon, is an important constraint. Therefore, we have to

consider all patient visits in the week simultaneously when generating scenarios to
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be able to eliminate this drawback and keep service continuity. The method we will

use is similar to WSBA in Section 3.3.2. The modification is to consider all nurses

instead of a single nurse when calculating cost risen from insertion of all weekly

visits of requests. In other words, to find which nurse’s tours are the most suitable

for all weekly visits of a request, the algorithm looks at the smallest cost over all

possible insertions into each nurse’s routes and calculates the total insertion cost for

all weekly visits and the average insertion cost per visit. Algorithm 4.1 shows the

pseudo code for SBAM. ”nCombinations” represents the days for which visits of a

patient can be scheduled and ”nReqInTour” represents how many times the request

has been assigned over all scenarios. Note that we use the same number of scenarios

and acceptance threshold as we did for the single nurse case.

Let’s give a concrete example to make the method more understandable. We

have three nurses, A, B, and C, and a request R that needs three visits per week.

We generate scenarios to decide whether or not we accept request R. The algorithm

generates 5 random requests according to expected weekly demand. Table 4.11 shows

the assignment costs of random request 2 calculated with the cheapest insertion

heuristic for each visit day and nurse. In this illustration, the request that needs

three visits has to be scheduled on Monday, Wednesday, and Friday. After finding

the total assignment cost by summing up daily costs for each nurse, we select the

lowest one. In this example, Nurse A provides the cheapest insertion cost. We can

observe the left side of Table 4.12 (Iteration 1) after calculating insertion cost for all

requests in the scenario.

Algorithm 4.1 Scenario Based Approach for Multiple Nurses CIH: Cheapest Insertion

Heuristic, M: A large positive constant

1: TimeSlot ← ∅

2: nReqInTour ← 0

3: for i= 1 To n do

4: ScenarioSize ← WeeklyDemand

5: Scenario + = CurrentRequest

6: for j= 1 To ScenarioSize do
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7: Scenario + = RandomlyGeneratedRequest

8: end for

9: Tour ← Existing Visits

10: while Tour is feasible and Scenario is not empty do

11: MinGlobalCost ←∞

12: for k= 1 To ScenarioSize+1 do

13: AverageCost ← 0

14: MinNurseCost ←∞

15: for n= 1 To NumberofNurse do

16: MinDayCost ←∞

17: for p= 1 To nCombinations do

18: if CIH(Request[k],Nurse[n],p)=<MinDayCost then

19: MinDayCost←CIH(Request[k],Nurse[n],p)

20: end if

21: end for

22: if MinNurseCost => MinDayCost then

23: MinNurseCost←MinDayCost

24: end if

25: end for

26: AverageCost ← MinNurseCost/Frequency[k]

27: if AverageCost =< MinGlobalCost then

28: MinGlobalCost←AverageCost

29: index←k

30: NurseIndex←n

31: end if

32: end for

33: if Scenario[index] is feasible for Nurse[NurseIndex] Tour then

34: Nurse[NurseIndex] Tour+ = Scenario[index]

35: Remove Request from Scenario
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36: end if

37: end while

38: if CurrentRequest in anyTour then

39: nReqInTour++

40: TimeSlot ← CurrentRequestScheduleTime

41: end if

42: end for

43: if nReqInTour>0 then

44: Accept Patient

45: Time ← MostFrequentTime (TimeSlot)

46: end if

Table 4.11: Assignment cost for each visit of random request 2 and total cost

Monday Tuesday Wednesday Thursday Friday Total Cost

Nurse A 50 ... 20 ... 20 90

Nurse B 30 ... 60 ... 50 140

Nurse C 70 ... 50 ... 70 190

“Visits”column shows how many weekly visits patients need. “Nurse”and “Total

Cost”show the selected nurse at the previous step and the total insertion cost of all

visits. “Average Cost”is calculated by dividing the total cost by the number of weekly

visits. We need average cost to be able to compare visit cost of different requests to

select the cheapest one. In the example, random request 2 has the cheapest insertion

cost. Thus the algorithm chooses it to assign it to the weekly schedule with all its

visits. It is removed from the scenario before iteration 2. Same calculation procedure

is repeated in iteration 2 and results in Table 4.12 are observed. As can be seen,

our actual request has the cheapest insertion cost this time and it is assigned to the

weekly schedule with its three visits and removed from the scenario before iteration

3. Iterations last until all requests are scheduled or no more request can be inserted.

After repeating this procedure for a predefined number of scenarios, we determine
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how many times the request has been assigned to each nurse and which time slots it

has been scheduled in for each visit day. Finally, the algorithm selects the nurse/time

slot combination.

Table 4.12: Total and average costs for each visit of all requests

Iteration 1 Iteration 2

Visits Nurse Total cost Average Cost Nurse Total cost Average Cost

RandomR1 1 A 50 50 B 60 60

RandomR2 3 A 90 30

RandomR3 3 B 120 40 B 150 50

RandomR4 2 C 100 50 A 120 60

RandomR5 3 C 150 50 C 150 50

RequestR 3 A 105 35 A 100 33

Table 4.13 and 4.14 show total daily visits and travel times per visit for SBAM,

SBA, and DHM when employing three and six nurses for day set 2 after the modifica-

tion. First, when Table 4.13 and Table 4.8 that shows results before the modification

are compared, it can be observed that total daily visits obviously increases under the

same experimental setting. Moreover, comparison of Table 4.14 and Table 4.9 indi-

cates that the modification successfully works for the six nurses. Thus, we can say

that the modification improves results. We discuss further details about comparisons

in the next section.

4.4.1 High Number of Nurses and Longer Service Horizon/Time

We tested the algorithms for 3 and 6 nurses so far. Note that as we increase the

number of nurses, we have to increase demand proportionally in order to keep ac-

ceptance rates under 100%. Otherwise, we cannot understand whether or not our

algorithm is superior since there are sufficient nurses to accept almost all requests

for both methods. However, higher arrival rate increases computational cost sub-

stantially as shown in Figure 4.4. Instead, we increase visit times and the service
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horizon to 50 minutes and 8 weeks respectively. So caregivers spend 50 minutes for

each visit and patients are served over 8 weeks instead of 4 weeks.

We test the SBAM for 12 and 24 nurses. In this trial, all nurses are homogeneous

in terms of their qualifications. Location of nurses are assigned uniformly across the

service area. Table 4.15 and 4.16 show total daily visits and travel times per visit

for 12 and 24 nurses, respectively. For 12 nurses, there is no statistical difference

between total daily visits of SBAM and DHM since the acceptance rate is 100% for

both in the 255 minute interarrival time case. For other cases, SBAM is able to

schedule significantly more visits than DHM, and the improvement is even larger for

travel times per visit. All differences are statistically significant.

We have similar results for 24 nurses. Although the demand is more than 5

requests every day (interarrival time is 100 minutes), acceptance rates are 100%.

When the acceptance rate is around 98%, SBAM provides 4 more visits than DHM

every day. It is obvious based on previous experiments that the gap between total

visits of SBAM and DHM is getting larger when the demand increases. On the other

hand, travel times per visit shorten more than 50% with SBAM.

Now we can demonstrate several different extensions such as depot locations,

clustered regions, and nurse skill levels to test how SBAM works under different

conditions that mimic real life in the following sections.

4.4.2 Clustered Service Area

We assume that patient requests arrive equally likely from a region in all simulation

experiments that we carried out so far. However, the number of patient request

arriving from one region can be higher than from another region. Maybe some

regions are slightly or not populated. To be able to test our algorithm under those

conditions, we cluster patient requests in three rectangular subregions with given

coordinates X ∈ [0, 60] and Y ∈ [0, 60], as shown in Figure 4.5. Two different cluster

types are proposed. Patient requests arrive only from these subregions equally likely

in Cluster 1. In Cluster 2, 70% of patient requests arise from those subregions
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Figure 4.4: Execution times (minute) of 30 trials for different number of nurses and

interarrival times

while 30% arrive from the remaining area of the whole service region. We use three

interarrival times (340,255,150) and three nurses who are located at (10,10), (30,30),

and (40,50) in a square region.

Table 4.17 reports the result of this evaluation for the case of 3 nurses and day

set 1. When the demand intensity is low (interarrival time is 340 minutes) for each

regional demand case, there are no meaningful differences between average daily

visits of the two methods since acceptance rates for both approaches are 100%.

In other words, nurses have sufficient capacity to accept all patients. However,

when we look at travel time per visit, SBAM reduces it by 24%, 51%, and 34%.

When the demand intensity is higher (interarrival times 255 or 150 minutes), SBAM

accommodates more total daily visits than DHM. Particularly if patient demand

arrives only from subregions (Cluster 1), increases in total daily visits are higher.

SBAM improves total daily visits by 11% in the high demand scenario (150 minutes

interarrival time). It is important to emphasize that acceptance rate is around 85%

in that case. When demand increases, the gap between average daily visits of the two

methods increases as well. All differences between results except those for average
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Figure 4.5: Spatial distribution of clusters and nurses

daily visits for 340 minutes are statistically significant. Similarly SBAM provides

equal daily visit distribution to nurses while the differences between daily visits of

nurses sometimes exceed 2 visits per day in DHM.

Table 4.18 reports the result of this evaluation for the case of 3 nurses and

day set 2. Because we can assign patients to only some specific day combinations,

average daily visits decreases compared to day set 1. However, we can observe

the same overall picture as before. In low demand scenarios, SBAM reduces travel

time per visit significantly for uniform and clustered demand scenarios even though

total daily visits of both methods are similar. Under high demand (150 minutes),

SBAM improves average daily visits by 11%, 19%, and 16% for each regional demand

scenario respectively. Again, all differences between results except those for average

daily visits for 340 minutes are statistically significant.

Another important issue for HHC providers is to ensure fair workloads for their

caregivers. It is not acceptable for a member of staff to have to substantially work

more than others over a prolonged period of time without any compensation. In

the literature, some studies are devoted to balance workloads of workers [Hertz and

Lahrichi, 2009]. Although our objective is to maximise total daily visits, we should

examine workloads of nurses explicitly. We find a visit range for each trial, which is
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the difference between maximum and minimum daily visits of nurses. ”Range” in Ta-

ble 4.17 and 4.18 show average ranges and confidence intervals with 95% confidence

level. The only case when the difference between daily visits of nurses clearly exceed

one visit is day set 1-low demand-uniform scenario. In other scenarios, particularly

high demands, differences between daily visits of nurses are very close to zero. On

the other hand, DHM causes unbalanced workloads in many scenarios. Differences

between daily visits of nurses exceed one visit and sometimes two visits.

4.4.3 Same Depots

In the HHC problem, nurses usually start the daily routine from their home and

return to their home after finishing all visits. In our case and simulation settings, we

also accept this common situation. However, some HHC companies can request their

workers to arrive at the work office of the company at the beginning and end of each

day. For example, if nurses should pick up some medicines or necessary appliances

before visits or the company requests daily discussions and reports about visits, this

condition can be taken into consideration. In this case, we have to consider only one

depot instead of multi depots where each represents the home of a nurse. We assume

that there are three nurses that have to arrive and return to a care office located at

the centre of the service area (30,30). Nurses should start daily visits from the office

at 8.00 and return to the office at 16.30. We ignore travel times between the office

and nurses’ homes.

Table 4.17 and 4.18 represent that nurses start daily visits from their homes. If

they are compared with Table 4.19 and 4.20, total daily visits are slightly different

while travel times per visit increase somewhat even though the depot is located at

the centre of the service area.

As in the case of nurses starting from their home, SBAM outperforms DHM

in terms of total daily visits and travel times per visit under medium and high

demands. SBAM provides up to 31% shorter travel times and 14% higher total daily

visits compared to DHM under high demands. The differences under low demands
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are statistically not significant. Another issue as we mentioned before about DHM

is unbalanced workloads. In some cases, a nurse can work almost 50% more than

another nurse. It is quite doubtful that workers and companies would tolerate unfair

workloads like this in the long term.

In this section, we tested the performance of our algorithm when nurses have to

arrive at a central office before starting and after ending their daily visits. According

to results, SBAM shows that it is still robust in this case. Furthermore, results show

that even if the depot is located at the centre of the service area, the fact that nurses

begin daily services from their home ensures shorter travel times and higher daily

visits even though daily travel times between homes of nurses and their workplaces

are ignored.

4.5 Nurse Districting Problem

One way to adapt single nurse approaches to the case of multiple nurses is to split a

service region into several districts. Districting problems, also called territory design,

territory alignment, zone, or sector design, are concerned with defining areas in a

geographical region in order to distribute scarce sources into those areas effectively

[Kalcsics, 2015]. Effectiveness depends on some criteria such as balance, contiguity,

and compactness. Balance can be described in terms of workloads of workers and the

number of customers. Contiguity and compactness are related to the geographical

shape and boundaries of territories, and have effect on travel times [Kalcsics, 2015].

The districting problem has a broad range of application areas such as political,

school, waste collection, police patrolling area districtings. The districting problem

for HHC is simply how the shape and size of the subregions we have to define in order

to minimise travel times, balance workloads of nurses, and maximise acceptance of

patients. It is not very straightforward since demand and population fluctuations in

subregions cause workload inequities between nurses. In addition, if more qualified

nurses are scarce resources, we have to need overlapping areas. Finally, the territories

are fixed and can not quickly react to the dynamically changing requests.
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Besides multiple nurses routing and scheduling problem, we want to show in this

study how average daily visits and travel times per visit are affected if we use DH

and SBA for more than one nurse servicing in several territories as considered in the

nurse districting problem against SBAM for same nurses servicing across the whole

service region without any territory restriction.

In this study, we use idealistic settings which include a square service area, equal

size subregions, and equal expected demand for each subregion. In real life, district-

ing problems are complicated and there are many studies related to determination

of optimal area size for each subregion by considering different constraints [Kalcsics,

2015].

4.5.1 Simulation Settings

We tested two different nurse sets with 2 and 4 nurses. In the first scenario, nurses

are located in the centre of their service regions. The whole service region is divided

into two equal size subregions, X1 ∈ [0, 30] and Y1 ∈ [0, 60] and X2 ∈ [30, 60] and

Y2 ∈ [0, 60], and nurses are located at (15,30) and (45,30). For four nurses, the whole

service region is divided into four equal size subregions, X1 ∈ [0, 30] and Y1 ∈ [0, 30],

X2 ∈ [0, 30] and Y2 ∈ [30, 60], X3 ∈ [30, 60] and Y3 ∈ [0, 30], and X4 ∈ [30, 60] and

Y4 ∈ [30, 60]. Nurses are located at (15,15), (15,45), (45,15), and (45,45). In the

second scenario, nurses are not located in the centre of their service regions. For two

nurses, they are located at (5,10) and (60,25), and four nurses, their locations are

(5,10), (55,30), (0,50), and (60,25). Interarrival times between patient arrivals are

255 and 510 minutes for two nurse and 100 and 200 minutes for four nurse cases. The

expected demand is divided equally among subregions. We compare this case with

the case where nurses can service the whole service area without any restriction. Of

course, the overall area and locations of nurses are identical. Moreover, we also test

DH performance for the case that nurses only service in their subregions and the case

that they can visit patient in the whole service area (DHM). To understand whether

or not differences between average daily visits of both approaches are statistically
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significant, we use t-test and all results are statistically different.

4.5.2 Results

Tables 4.21 and 4.22 show average daily visits and travel times per visit for SBA,

DH, DHM and SBAM. SBAM clearly increases average daily visits compared to

SBA. Although differences are slightly higher for 2 nurses, SBAM allows to schedule

at least one additional daily visit for four nurses case. As it is expected, districting

service area reduces travel times per visit. For four nurses, the fact that nurses travel

in the whole area increases travel times per visit by up to 23% while average daily

visits rise by around 5%. It is considerable to sacrifice the small amount of visits in

order to reduce long travel times. Note that nurses are located at the centre of their

subregions and the demand in each subregion is equal in Scenario 1. Furthermore,

DH increases average daily visits when nurses service in the whole area rather than

only their own subregions as seen in Table 4.21. However, under high demand and

4 nurses, districting areas gives better results. The most important reason is that

DHM fails to balance the workload of nurses. Therefore, once workload of a nurse

is quickly filled, patients are assigned to nurses whose tours are not suitable. This

causes higher travel times and fewer visits. Table 4.22 clearly shows quite long travel

times when four nurses service in the whole region under high demand compared to

their assignment to small regions.

Table 4.21: Average daily visits for SBA, DH, DHM and SBAM in Scenario 1

Interarrival times DH SBA DHM SBAM

2 Nurses

510 8.58 8.99 9.17 9.21

255 12.06 12.93 12.25 13.49

4 Nurses

200 21.26 22.02 22.14 23.08

100 29.22 31.34 28.57 32.56

Although it is desirable that nurses are located close to the middle of their service
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Table 4.22: Travel times per visit for SBA, DH, DHM and SBAM in Scenario 1

Interarrival times DH SBA DHM SBAM

2 Nurses

510 24.10 23.90 30.14 26.63

255 22.39 19.58 29.81 24.20

4 Nurses

200 15.40 15.37 27.91 18.97

100 14.54 13.66 27.65 16.45

regions, it is not always possible. Scenario 2 represents a situation where nurses are

not located close to the middle of their service areas. Table 4.23 and 4.24 represent

average daily visits and travel times per visit for SBA and SBAM in Scenario 2. Al-

though SBAM increases average daily visits in each case as in Scenario 1, increments

are higher compared to results in Table 4.21. Moreover, changing location of nurses

affects results in SBA more than SBAM. For example, average daily visits of nurses

by SBA decrease around 10% while visits by SBAM decrease only 2%. On the other

hand, DH shows the same pattern as in Scenario 2. When there are four nurses and

the demand is high, assigning nurses to subregions increases average daily visits and

lessens travel times per visit.

Table 4.23: Average daily visits for SBA, DH, DHM, and SBAM in Scenario 2

Interarrival times DH SBA DHM SBAM

2 Nurses

510 8.27 8.58 9.02 9.06

255 11.76 12.38 12.04 13.46

4 Nurses

200 20.57 21.80 21.90 22.83

100 28.69 30.17 28.15 32.00

Overall, results show that considering the whole service area, demand over the

whole service area and all nurses at the same time when routing and scheduling

provides better results in terms of average daily visits in each scenario. Moreover,

SBAM seems more robust against changes of nurses’ locations and expected de-
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Table 4.24: Travel times per visit for SBA, DH, DHM, and SBAM in Scenario 2

Interarrival times DH SBA DHM SBAM

2 Nurses

510 26.65 26.61 32.77 29.26

255 24.41 21.65 32.02 25.71

4 Nurses

200 17.95 16.01 29.64 21.00

100 16.51 14.95 29.26 18.19

mands. It is notable that Scenario 1, with equal size territories, equal demand and

central nurse locations, is an idealistic condition for a districting problem. There-

fore, average daily visits and travel times per visit are near the best. When some

conditions change as Scenario 2, results also deteriorate.

4.6 Qualification Levels

So far, we assumed that all nurses are homogeneous in terms of their skill level.

The assumption may be justifiable in real life since a company can be specialized

for only one type of nursing service. However, companies often provide a range of

services to patients. If all workers in a company are just assigned to tasks that

exactly match their skill level, we can consider this problem as homogeneous nurses

that we have constructed before. All we need to do is to find demand for all different

tasks, distinguish nurses in terms of their qualifications, and construct schedules and

routes for them separately. However, caregivers qualified for a particular level can

also perform tasks of lower qualification levels. For example, if a company employs

two different nurses, senior and junior, senior nurses can be asked to perform some

tasks that junior nurses can perform due to lack of junior nurses at that time or lack

of demand for tasks that only senior nurses are qualified for. On the other hand,

junior nurses are not allowed to perform some tasks that require higher qualifications.

Of course, hourly cost of more skilled workers’ qualifications is higher than that of

less skilled workers. Therefore, decision makers have to take this into account when
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Table 4.25: Total daily visits, travel times per visit, and acceptance rates for 3

assignment strategies and DHM under 60/40% demand estimation for Type 1 and

Type 2 patients

Scenario Total daily visit Travel time per visit TotalAcc Type1Acc Type2Acc

Mixed 51.82 19.70 0.75 0.95 0.47

Homo 52.21 22.51 0.76 0.84 0.65

Prior 51.97 22.0 0.76 0.91 0.55

DHM 49.29 25.96 0.73 0.90 0.47

maximising the number of visits.

In this case, we examine different assignment strategies, “Mixed”, “Homo”, and

“Prior”. “Mixed”strategy represents mixed assignments where a patient can be

assigned to a nurse if the nurse has sufficient skill level. “Homo”is a homogeneous

assignment where patients can only be assigned to nurses who are exactly matched

in terms of skill levels. “Prior”gives priority to patients who need high skill services

when assigning them in the scenario generation phase and we can assign patients who

need lower skill to higher skilled nurses if and only if there is no patient who needs

higher skilled nurses in the scenario. Finally, we demonstrate results of DHM by

considering only mixed assignments since SBAM has given better results compared

to DHM under homogeneous assignments that we have tested in previous sections.

We test three assignment strategies for two different types of patients (Type 1

and Type 2) according to their need of nurses, junior and senior. Moreover, we have

two different demand estimations for patients. First, we assume that 60% of patients

need nurses qualified at least junior level and others need senior nurses. Second, 80%

of patients need nurses qualified at least junior level. There are 9 nurses, 6 junior

and 3 senior. Locations of nurses are generated randomly from the service area and

remain the same for each trial.

In Tables 4.25 and 4.26, we show some results where “TotalAcc”refers to the pro-

portion of patients accepted. “Type1Acc and Type2Acc”represent acceptance rates
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Table 4.26: Total daily visits, travel times per visit, and acceptance rates for 3

assignment strategies and DHM under 80/20% demand estimation for Type 1 and

Type 2 patients

Scenario Total daily visit Travel time per visit TotalAcc Type1Acc Type2Acc

Mixed 54.28 20.02 0.79 0.85 0.54

Homo 50.41 21.83 0.74 0.69 0.95

Prior 54.09 20.73 0.79 0.84 0.61

DHM 51.80 24.90 0.76 0.82 0.54

of Type 1 and Type 2 patients, respectively. According to Table 4.25, “Homo”provides

the highest acceptance rate for Type 2 patients while keeping total daily visits and

total acceptance rate at the same level (even slightly better but not statistically

significant) with other strategies. This is expected since we know that although

40% of patients need senior nurses, only 33% of nurses have this skill level. Thus,

dedicating senior nurses to Type 2 patients causes the highest acceptance rate for

those patients. The second best, “Prior”, shows that giving absolute priority Type

2 patients and assign Type 1 patients to senior nurses only after there is no Type 2

patient in the scenario seems a good strategy since we do not know exact demands,

but we can guess more or less which type of service has a higher demand. Therefore,

“Prior”looks applicable under different demands and when acceptance of some kind

of patients is more valuable.

Table 4.26 shows total daily visits, travel times per visit, and acceptance rates

for 3 assignment strategies and DHM when 80% of patients need junior nurses and

20% need senior nurses. In this setting, total daily visits in “Homo”is lower than

other strategies since dedicating all senior nurses to only Type 2 patients cause inef-

fective utilization. Although the difference between total daily visits of “Prior”and

“Mixed”is not statistically significant, the acceptance rate of “Prior”for Type 2 pa-

tients is higher than “Mixed”. However, when comparing the acceptance rates of

Type 2 patients in “Prior”with “Homo”, the gap is massive since the possibility of
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accepting Type 1 patients during scenario generation phase is high even if the algo-

rithm gives priority to Type 2 patients. Travel times per visit in “Prior”are slightly

higher than “Mixed”, but lower than “Homo”and DHM. This shows that we have

to accept longer travel times to accept less suitable requests for tours.

Although “Prior”where the algorithm gives priority to patients who demand

higher skilled nurses in the scenario generation phase provides robust results de-

pending on two different demand structures, mixed and homogeneous assignments

can be reasonable according to targets of companies. For example, according to

acceptance rates in Table 4.26, if the company charges Type 1 patient service hour

100$, the most profitable strategy is mixed assignment if hourly price for Type 2

patient is up to 108$. If hourly price for Type 2 patient is considered between 108$

and 176$, “Prior”gives the highest profit. After 176$, the best strategy is to use

homogeneous assignment. This is valid if the company only consider profit maximi-

sation. If the aim is to visit as many patient as possible, the mixed assignment can

be chosen.

4.7 Patient Dependent Service Times

As we explained in Section 3.5, some patients’ tasks can take longer than others.

Therefore, employing a variety of service times can be more reasonable if one con-

siders real cases. We test two different service time distributions and cost factors

similar to those as in Section 3.5 for three nurses. Visit times can be 15, 30, and 45

minutes with probability 0.30, 0.35, and 0.35 in the first scenario and 0.10, 0.30, and

0.60 respectively in the second scenario. Three nurses who are located at (10,10),

(30,30), and (40,50) in a square region X ∈ [0, 60] and Y ∈ [0, 60] are employed

in each scenario and we test the interarrival time with 150 minutes instead of 340

minutes to be able to observe more hectic schedules. Patient requests are uniformly

distributed across the service area. We use exactly the same cost factors that are

explained in Section 3.5.

Tables 4.27 and 4.28 show test results in terms of total daily service durations,
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daily visits, travel times per visit, acceptance rates for two day sets. First, no matter

what cost factor is used, SBAM always provides longer daily service durations, higher

daily visits, and shorter travel times per visit than DHM. If the demand is high,

using “Travel/Service”cost factor when constructing tours in scenario phase ensures

slightly better results compared to using “Travel”.

4.8 Relaxation of Visit Time and Nurse Continuity

As we mentioned in Section 3.6, service continuity, which is that same nurse visits

a patient at same days/times during his/her service horizon is one of constraints

in this study. However, companies maybe interested in how this restriction affects

costs in terms of travel times per visit and total daily visits. In Section 3.6, we

tested how average daily visits and travel times per visit are changed if weekly visits

are made at different times each week during patients’ service horizons. In this

section, we consider not only flexible visit times but also the flexible nurse, different

nurses can service a patient during his/her service horizon which represented in

“Flex Time/Nurse”column. Whenever a patient arrives, he or she is only informed

whether or not his or her request is accepted and visit days and times for only next

week. For the remaining episode of care, weekly schedules are made at the beginning

of the previous week. All accepted patients’ visits are optimally scheduled by the

cheapest insertion heuristic at the beginning of the week. SBAM is only used for

scheduling new patients’ next week visits. We have three nurses who are located at

(10,10), (30,30), and (40,50) in a square region X ∈ [0, 60] and Y ∈ [0, 60].

Tables 4.29 and 4.30 show total daily visits and travel times per visit for three

nurses and two day sets. Under the low demand, total daily visits are slightly better

if we violate service continuity while travel times per visit decrease between 5% and

10% for day set 1. However, total daily visits increase around 14% while travel times

per visit falls by roughly 9% for day set 2. The flexibility of both visit times and

nurses significantly decreases travel times per visit compared to the flexibility of only

visit times.
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Table 4.29: Total daily visits under strict and flexible assignments for three nurses

and two day sets

Region Times Strict Flex Time % Strict Flex Time/Nurse %

Day Set 1
255 20.57 20.91 0 20.57 21.01 2.15

150 25.95 27.55 6.18 25.95 28.43 9.58

Day Set 2
255 17.36 18.82 8.45 17.36 19.79 14.03

150 22.22 24.87 11.91 22.22 24.96 12.34

Table 4.30: Travel time per visit under strict and flexible assignments for three

nurses and two day sets

Region Times Strict Flex Time % Strict Flex Time/Nurse %

Day Set 1
255 19.48 18.36 -5.74 19.48 17.06 -12.42

150 18.17 16.18 -10.93 18.17 14.73 -18.89

Day Set 2
255 22.80 20.21 -9.78 22.80 18.23 -20.04

150 20.58 18.04 -12.32 20.58 17.22 -16.33
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For both a singe and multiple nurse cases, the flexibility of visit times and nurses

provide more patient visits and shorter travel times under different scenarios. There-

fore, companies and decision makers can offer patients cheaper services without the

service continuity or expensive services with the service continuity.

4.9 Patient Preference and Pricing Policy

As we mentioned in Section 3.7, patients want to choose visit days and times during

their service horizon. If we have more than one nurse, patients also want to select a

nurse due to some reasons such as gender and language preferences. In this section,

we examine how a nurse and visit days/times preferences of a patient affects the

total visits under different demands and service horizons. The logic is similar to

Section 3.7. First, we assign the patient to a nurse that he or she preferred and

run the simulation during his or her service horizon. After that, let the algorithm

assign the patient to the nurse. Finally, we count the number of visits for both cases

and compare results. Note that randomly generated requests, other patients arrival

times, locations, weekly visits frequencies, and etc. are same for both cases.

We have three nurses located at (0,0), (30,30), and (60,60) in a service region

X ∈ [0, 60] and Y ∈ [0, 60]. The patient located at (59,55) needs 3 weekly visits

during his or her service horizon. We test three different situations. First, the patient

chooses both a nurse and service days and times. It is represented as ”Nurse/Time”

in the tables. Next, the patient only selects a nurse and service days/times are

assigned by the algorithm. This is represented as ”Nurse” in the tables. Finally, the

algorithm is allowed to choose the nurse, visit days, and times.

Table 4.31: Total number of visits for three cases under 4 week service horizon

Times Nurse/Time SBAM Difference Nurse SBAM Difference

255 290.47 292.87 2.40 291.47 292.87 1.40

150 395.93 408.50 12.57 400.3 408.50 8.20
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Table 4.32: Total number of visits for three cases under 8 week service horizon

Times Nurse/Time SBAM Difference Nurse SBAM Difference

340 675.30 693.50 18.20 680.30 693.50 13.20

255 785.63 808.87 23.23 789.67 808.87 19.20

150 935.60 964.13 28.53 941.03 964.13 23.10

Table 4.31 and 4.32 show the total number of visits for three cases under 4

and 8 week service horizons. Because the acceptance rate is around 100% when the

interarrival time is 340 minutes and the service horizon is 4 weeks, we do not test 340

minute interarrival time for 4 week service horizon. In our example, let us assume

that the patient selects the nurse located at (0,0). The algorithm assigns the patient

to nurse located at (60,60) as expected since location of the patient is quite close

and suitable for that nurse when we start with an empty schedule. Results clearly

indicate that selection of an inappropriate nurse in terms of the location causes

too many visits in both short and long service horizons. Although the algorithm

decreases the lost around 30% by finding more suitable times, the gap between the

results of SBAM and results of the patient’ preferences is still high compared to the

case of algorithm selected nurse.

Table 4.33: Total number of visits under only weekly visit days and times selection

4 weeks 8 weeks

Times Preference SBAM Difference Preference SBAM Difference

340 ** ** ** 691.70 693.50 1.80

255 291.90 292.87 0.97 802.93 808.87 5.93

150 405.23 408.50 3.27 948.87 964.13 15.27

Table 4.33 shows results when the patient only selects service day and times

while the nurse is assigned by the algorithm. It is clear that the gap between results

significantly decreases if the patient is assigned to the nurse whose tour is suitable to
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the location of patient. Although patients choose their own visit times, differences

between the total visits are relatively low for the 4 week service horizon and low

demand compared to the difference when the patient selects a nurse whose tour is

not suitable for the location of the patient.

In this setting, we assign visit days and times of a patient into the schedule of a

nurse whose tour is not suitable for the location of the patient by assuming preference

of the patient. It turns out that this causes significant visit loss even though the

algorithm finds the most suitable days and times. Note that results are ensured by

specific conditions of nurses and patient locations, current schedules of nurses, and

etc. Therefore, differences between total visits of preferences and the algorithm can

be highly volatile. As we mentioned in Section 3.7, pricing policy should reimburse

a company for its losses in terms of visits. Thus, if a patient wants to select a special

nurse and/or days and times, he or she should be charged as much as the deviation

between results of his or her preference and assignments of the algorithm.

As we discussed in Section 3.7, although it is clear that the preferences of patients

can change the total daily visits and travel times per visit dramatically, some other

factors such as workloads of nurses and weekly visit needs of patients also affect the

total number of visits. To evaluate the algorithm under different scenarios, it is wise

to run a long simulation where we apply above procedure for each patient arriving

during the simulation horizon. We find difference between the total number of

visits based on the preference of patient and assignments of SBAM for each patient.

Summing up those differences, called ”Extra visits” in Table 4.34, and the total

number of visits in schedules of nurses should be more or less equal the total number

of visits according to assignments of SBAM. Similar to the procedure in Section 3.7,

we assign each patient to days, times, and nurses by randomly picking up from

feasible days and times of a nurse. Only difference is that the nurse is also randomly

selected among all available nurses. If there is no space for the patient, he or she is

rejected. We assume that each patient is willing to choose one of feasible day and

time combinations from the schedule of a nurse. In other words, patients cannot
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select previously scheduled days and times.

Table 4.34: Comparison of the preference based assignment with the assignments of

SBAM in terms of total number of visits for a year simulation horizon

Interarrival times Preference Extra visits Total visits SBAM p-value

340 4739 276 5014 4969 0.26

255 5690 957 6647 6567 0.15

150 6979 1377 8356 8305 **

According to Table 4.34, it turns out that summing up the total number of visits

based on preferences and the total differences, ”Extra visits”, approximately equal

to the total number of visits based on the assignments of SBAM. According to p

values, we can say that there are no statistical differences between results when

interarrival times are 340 and 255 minutes. We can run only one simulation for

the highest demand case while we run 20 replications for the other two since it is

computationally very demanding (one simulation with a year time horizon takes

approximately 60 hours). This is why we cannot conduct t-test and provide p value.

In even one trial, total number of visits of both approaches are close.

Table 4.35: Average daily visits, travel times per visit, and acceptance rates accord-

ing to preference based and assignments of SBAM

Average daily visits Travel times per visit Acceptance rates (%)

Times Preference SBAM Preference SBAM Preference SBAM

340 14.81 15.69 37.67 20.06 98 100

255 17.78 20.57 35.92 19.51 91 98

150 21.81 25.95 29.45 17.88 66 76

Table 4.35 shows average daily visits, travel times per visit, and acceptance rates

according to preference based and assignments of SBAM. Although the acceptance

rate is 100% when interarrival time is 340 minutes, SBAM provides 276 more visits
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with around 60% less travel time per visit. When the interarrival time is 150 minutes,

the preference based assignment decreases the acceptance rate by 10%.

Overall, results of one-year simulation confirm that our pricing policy based on

difference between patients’ preferences and the algorithm based assignments for each

patient provides more or less same results with assignments of SBAM. Therefore,

we can say that if a company charges a patient according to lost visits due to days,

times, and the nurse preferences of the patient, it will not make a loss in the long

term. Note that we ignore travel time cost and rejection possibility of a patient

to feasible times and days we provide. Furthermore, as discussed in Section 3.7,

decision makers can derive an average cost per patient preference based visit from

the proportion of lost visits to the total visits in a year and charge each visit of a

patient with a standard fee.
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Chapter 5

Conclusion and Future Work

Because of increasing average life expectancy, chronic diseases, and insufficiency of

healthcare facilities, home care is getting more and more crucial everyday. However,

many people who need care cannot access home care services due to lack of care

workers. Therefore, companies have to use their workers’ time efficiently in the

scheduling and routing process.

In this study, acceptance and assignment time decisions have to be made as soon

as patients arrive, where dynamic perspective is taken into consideration. Although

there are some studies providing solutions to this problem by using greedy algorithms

in the literature, these algorithms do not consider future demand. We propose a

Scenario Based Approach (SBA) which is based on generating several scenarios of

future demand to see whether or not we can assign visits of the patient who is

currently under consideration. A scenario includes number of randomly generated

requests in terms of weekly demand and expected number of visits. The basic idea

behind the algorithm is to run a number of simulations (scenarios) to see how many

times the patient is assigned among all requests and which time slot the patient is

scheduled frequently. Based on this information, we decide to accept or reject the

patient and the time slots he or she is scheduled.

First, we develop and analyse two different approaches, Daily SBA (DSBA) and

Weekly SBA (WSBA). The former is constructing tours based on daily demand and
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independently for each day. The latter is based on generating visits based on weekly

demand and visit frequency of patients, and construct a week tour. The results

are close to each other while the computational time for WSBA is significantly

higher than DSBA’s. Therefore, we test and compare DSBA to the distance and

capacity heuristics. We construct a simulation model where patients’ requests arrive

exponentially. We make 6 trials based on two different size regions and 3 different

interarrival times where each trial includes 30 replications. DSBA is clearly superior

to the distance and capacity heuristics in each scenario based on average daily visits.

However, travel times of our method are slightly higher under low-demand scenarios

while DSBA provides significantly shorter travels at medium and high demands and

larger areas. Particularly, we have significant improvements compared to other two

methods under 1.5 and 2 requests per day for most of cases. Additionally, we also

test our algorithm for special day combination a patient’s visits can be assigned.

Results show that DSBA provides better performance under all scenarios. We also

test the condition that continuity of care constraint is violated. We reschedule weekly

visits at the beginning of each week and show how this affects the average daily visits

and travel times. Finally, we develop a new method to determine cost of a patient

preference based assignment and how to charge by comparing it with the assignment

of SBAM.

Next, we propose an improved algorithm for multi-nurse case since the previous

SBA does not work properly if each nurse and the demand are considered indepen-

dently during the scenario generation phase. Therefore, we modify SBA to be able

to consider all nurses in the setting and expected demand at the same time when

assigning requests into tours. This modification, which is called SBA for multiple

nurses (SBAM), gives better results compared to results of previous SBA and the

distance heuristic. On the other hand, we test how SBAM works based on all nurses

service in the whole area versus SBA by assigning each nurse to a subregion. SBAM

provides significantly higher average daily visits and acceptance rates with longer

travel times. After that, we test SBAM against the distance heuristic for multi-
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ple nurses (DHM) for three, twelve, and twenty-four nurses under different demand

structures, interarrival times and day sets. Results show that SBAM significantly

increases the total daily visits and decreases travel times per visit compared to DHM.

In high demands, average daily visits increase around 20% and travel times per visit

are reduced by up to 50%. We test our algorithm if nurses are not homogeneous in

terms of their skill levels. Three different strategies in terms of assignment struc-

ture are reviewed. The purpose is to propose different strategies to decision makers

according to their needs or targets. We show how to choose a strategy in terms of

hourly service prices of different patients. We also test how the violation of conti-

nuity of care and the patient preference based assignment affect daily visits, travel

times, and acceptance rates. Results should support companies for their pricing

policies depending on preferences of patients.

Overall, performance of our algorithm increases for higher demands and clustered

areas compared to the greedy algorithms. Under considering a variety of scenarios

such as different service times, service horizon, and violation of service continuity, our

algorithm is superior to greedy algorithms. Although computational times for high

number of nurses and demand significantly goes up for a year simulation horizon,

they are still reasonable when considering assessment of each patient. Furthermore,

if we consider nurse qualifications and a limited number of nurses whose tours are

more suitable to location of a patient, computational times can be reduced notably.

We use data of [Bennett and Erera, 2011] derived from a HHC company in

our experiments. Since many companies running all over the world under different

restrictions and regulations, deriving data from these companies might not be so

easy going and derived data can not be so suitable for our settings. For example,

we assume that interarrival times of patients are exponentially distributed and next

week demands are expected accordingly. However, interarrival times and demand can

be remarkably vary over time. Furthermore, we ignore some common applications in

HHC such as delay or cancel some visits, visit synchronisations, absence of nurses,

etc. These factors are opportunities for future research.
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In future research, I plan to extend this study in perspective of revenue man-

agement. In that case, patients are evaluated according to their profit margins that

cover their visit durations, frequencies, service horizons, and type of their treatments.

Furthermore, some patient visits need more than one nurse due to their complexities

and optimising routing and scheduling of nurses under this constraint seems quite

interesting as well as a challenge for future research. Lastly, I am interested in de-

veloping a software with a graphical user interface based on requirements of HHC

companies. With this software, HHC companies easily schedules their nurses with

minimum cost as well as considering special requirements and preferences of patients

and caregivers.
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Chapter 6

Appendix

1 // DSBA

2 // A−year s imu la t i on hor i zon

3 pub l i c c l a s s Separate Days {

4 s t a t i c Random ran=new Random(1238) ; // Use the same seed f o r each

experiment

5 s t a t i c double totalTim=360; // Simulat ion hor i zon

6 s t a t i c i n t mean=510; // I n t e r a r r i v a l time

7 s t a t i c i n t warmup=20; // Warm up per iod

8 s t a t i c f i n a l i n t s e rv i c ePe =4; // Episode o f care

9 pub l i c s t a t i c f i n a l double one=0.05; // Probab i l i t y o f a r r i v a l o f a

pa t i en t who needs a v i s i t per week

10 pub l i c s t a t i c f i n a l double two=0.35; // Probab i l i t y o f a r r i v a l o f a

pa t i en t who needs two v i s i t s per week

11 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

12 long startTime = System . cur rentT imeMi l l i s ( ) ;

13 ArrayList<Str ing> data=new ArrayList<Str ing >() ;

14 f o r ( i n t q = 0 ; q < 30 ; q++) { //The number o f r e p l i c a t i o n s

15 double simTime=0;

16 double count=0;

17 double countReq=0;

18 double tour=0;

19 i n t weekCal=( i n t ) ( totalTim/5+se rv i c ePe ) ;

20 s e rv i c eTot =0;
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21 //Create weeks

22 Methodweek weeks [ ]=new Methodweek [ weekCal ] ;

23 f o r ( i n t i = 0 ; i < weeks . l ength ; i++) {

24 weeks [ i ]=new Methodweek ( i ) ;

25 }

26 whi le ( simTime<totalTim ∗MethodDay . dayLength ) { //Termination

27 i n t weekNum=( in t ) ( simTime/(MethodDay . dayLength ∗5) ) ;

28 St r ing k=”” ;

29 Request rex=new Request ( ”X” , ran . next Int ( Request . AreaX) , ran . next Int (

Request . AreaY) ,0 ) ; // Generating a pa t i en t

30 countReq++;

31 i n t f r e q=frequency ( ) ; // Generating weekly v i s i t f requency o f the

pa t i en t

32 k=”Pat ient r eque s t a r r i v e s week ”+(weekNum+1)+” ”+timeCal ( simTime )+”

from ”+rex . getX ( )+” ”+rex . getY ( )+” with f requency ”+f r e q ;

33 // L i s t the number o f acceptances and time s l o t s

34 ArrayList<ent i ty> l i s t=new ArrayList<ent i ty >() ;

35 f o r ( i n t i = 0 ; i < 5 ; i++) {

36 i n t z=0;

37 f o r ( i n t j = 0 ; j < s e rv i c ePe ; j++) {

38 i n t t=de c i s i o n ( weeks [weekNum+j ] . getday ( i ) . getOrder ( ) , rex , simTime , ( f ) )

[ 0 ] ;

39 i f ( t<=0) {

40 z=In t eg e r .MIN VALUE;

41 break ;

42 } e l s e {

43 z+=t ;

44 }}

45 i n t [ ] a=de c i s i o n ( weeks [weekNum ] . getday ( i ) . getOrder ( ) , rex , simTime , f ) ;

46 l i s t . add (new en t i t y ( weeks [weekNum ] . getday ( i ) . getDaynumber ( ) , z , a [ 1 ] ) ) ;

47 }

48 //Find best v i s i t days accord ing to weekly v i s i t f requency o f the

pa t i en t

49 ArrayList<ent i ty> be s t s=new ArrayList<ent i ty >() ;

50 ArrayList<Integer> maxfre=new ArrayList<Integer >() ;

51 f o r ( i n t i = 0 ; i < f r e q ; i++) {
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52 i n t max=In t eg e r .MIN VALUE;

53 i n t ind=0;

54 f o r ( i n t j = 0 ; j < l i s t . s i z e ( ) ; j++) {

55 i f ( l i s t . get ( j ) . getAcceptance ( )>=max) {

56 max=l i s t . get ( j ) . getAcceptance ( ) ;

57 ind=j ;

58 }}

59 be s t s . add ( l i s t . get ( ind ) ) ;

60 l i s t . remove ( ind ) ;

61 }

62 //Check acceptance th r e sho ld s f o r each day are g r e a t e r zero

63 i n t d e c i s i o n =0;

64 f o r ( i n t i = 0 ; i < be s t s . s i z e ( ) ; i++) {

65 i f ( b e s t s . get ( i ) . getAcceptance ( )<=0) {

66 de c i s i o n=−1;

67 break ;

68 }}

69 i f ( d e c i s i o n !=−1) {

70 k+=” . I t i s accepted . Days and times : \n” ;

71 count++;

72 i f ( simTime>=warmup∗MethodDay . dayLength ) {

73 s e rv i c eTot+=(f r e q ∗ s e rv i c ePe ) ;

74 }

75 // Se rv i c e weeks

76 f o r ( i n t j = 0 ; j < s e rv i c ePe ; j++) {

77 i n t s=0;

78 i n t day=0;

79 // V i s i t s in each week

80 f o r ( i n t i = 0 ; i < f r e q ; i++) {

81 s=be s t s . get ( i ) . g e t t imeS lo t ( ) ;

82 day=bes t s . get ( i ) . getDayNumber ( ) ;

83 Request re=new Request ( S t r ing . valueOf ( count ) , rex . getX ( ) , rex . getY ( ) ,1 , s ,

s+(Request . PatServ ice /Request . TimeSlot ) ) ;

84 f o r ( i n t t = 0 ; t < weeks [weekNum+j ] . getday ( day ) . getOrder ( ) . s i z e ( ) −1; t

++) {

85 i f ( s>=weeks [weekNum+j ] . getday ( day ) . getOrder ( ) . get ( t ) . getEnd ( ) && s<
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weeks [weekNum+j ] . getday ( day ) . getOrder ( ) . get ( t+1) . g e tS ta r t ( ) ) {

86 weeks [weekNum+j ] . getday ( day ) . getOrder ( ) . add ( t+1, re ) ;

87 i f ( j==0) {

88 k+=weeks [weekNum ] . getday ( day ) . t oS t r i ng ( )+” ”+re . s ta r tToSt r ing ( )+” ”+re .

endToString ( )+”\n” ;}

89 break ;

90 }}}}}

91 e l s e {k+=” . I t i s r e j e c t e d . ” ;}

92 data . add (k ) ;

93 simTime+=expDistr (mean) ;

94 }}

95 long endTime = System . cur rentT imeMi l l i s ( ) ;

96 System . out . p r i n t l n ( ”That took ” + ( endTime − startTime ) + ”

m i l l i s e c ond s ” ) ;

97 }

98

99 // Dec i s i on block o f DSBA

100 pr i va t e s t a t i c i n t [ ] d e c i s i o n ( ArrayList<Request> or , Request re , double

time , i n t day ) {

101 ArrayList<Integer> t imeS lo t=new ArrayList<Integer >() ;

102 i n t counter=0;

103 i n t week=( i n t ) ( time /2550 . ) ;

104 long s c e n a r i o S i z e=( i n t ) ( ( ( 2550 ) /(mean) ) ∗0 .2∗ (1∗Request . one+2∗Request .

two+3∗(1−Request . one−Request . two ) ) ) ;

105 //Generating Scenar i o s

106 f o r ( i n t p = 0 ; p < 75 ; p++) {

107 ArrayList<Request> ordersCopy=new ArrayList<Request>() ;

108 ArrayList<Request> s c ena r i o = new ArrayList<Request>() ;

109 //Gett ing p r ev i ou s l y a s s i gned v i s i t s

110 f o r ( i n t i = 0 ; i < or . s i z e ( ) ; i++) {

111 ordersCopy . add ( or . get ( i ) ) ;

112 }

113 s c ena r i o . add ( re ) ;

114 //Generating random reque s t s

115 f o r ( i n t j = 0 ; j < s c e n a r i o S i z e ; j++) {

116 s c ena r i o . add (new Request ( ”R” , ran . next Int ( Request . AreaX) , ran . next Int (
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Request . AreaY) ,0 ) ) ;

117 }

118 ArrayList<Integer> f o rb In t=new ArrayList<Integer >() ;

119 // Construct ing da i l y tour with the cheapest i n s e r t i o n h e u r i s t i c

120 i n t a=0;

121 i n t loop=0;

122 whi le ( a<15){

123 i n t indexo f r eq =0;

124 i n t i nd exo f i n t =0;

125 double min=In t eg e r .MAXVALUE;

126 f o r ( i n t j = 0 ; j < s c ena r i o . s i z e ( ) ; j++) {

127 f o r ( i n t j 2 = 0 ; j 2 < ordersCopy . s i z e ( ) −1; j 2++) {

128 i f ( f o rb In t . conta in s ( j 2 ) ) {

129 cont inue ;}

130 e l s e {

131 double c1=0;

132 double c2=0;

133 double c3=0;

134 i f ( ordersCopy . get ( j 2 ) . getAss ign ( )==2) {

135 c1=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,

ordersCopy . get ( j2−1) . getX ( ) , ordersCopy . get ( j2−1) . getY ( ) ) ;

136 c2=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,

ordersCopy . get ( j 2+1) . getX ( ) , ordersCopy . get ( j 2+1) . getY ( ) ) ;

137 c3=Dis tanceCa ld i s ( ordersCopy . get ( j 2+1) . getX ( ) , ordersCopy . get ( j 2+1) . getY

( ) , ordersCopy . get ( j2−1) . getX ( ) , ordersCopy . get ( j2−1) . getY ( ) ) ;

138 }

139 e l s e i f ( ordersCopy . get ( j 2+1) . getAss ign ( )==2){

140 c1=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,

ordersCopy . get ( j 2 ) . getX ( ) , ordersCopy . get ( j 2 ) . getY ( ) ) ;

141 c2=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,

ordersCopy . get ( j 2+2) . getX ( ) , ordersCopy . get ( j 2+2) . getY ( ) ) ;

142 c3=Dis tanceCa ld i s ( ordersCopy . get ( j 2 ) . getX ( ) , ordersCopy . get ( j 2 ) . getY ( ) ,

ordersCopy . get ( j 2+2) . getX ( ) , ordersCopy . get ( j 2+2) . getY ( ) ) ;

143 }

144 e l s e {

145 c1=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,
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ordersCopy . get ( j 2 ) . getX ( ) , ordersCopy . get ( j 2 ) . getY ( ) ) ;

146 c2=Dis tanceCa ld i s ( s c ena r i o . get ( j ) . getX ( ) , s c ena r i o . get ( j ) . getY ( ) ,

ordersCopy . get ( j 2+1) . getX ( ) , ordersCopy . get ( j 2+1) . getY ( ) ) ;

147 c3=Dis tanceCa ld i s ( ordersCopy . get ( j 2+1) . getX ( ) , ordersCopy . get ( j 2+1) . getY

( ) , ordersCopy . get ( j 2 ) . getX ( ) , ordersCopy . get ( j 2 ) . getY ( ) ) ;

148 }

149 double co s t=c1+c2−c3 ;

150 i f ( cost<=min) {

151 min=cos t ;

152 i ndexo f r eq=j ;

153 i n d exo f i n t=j2 +1;

154 }}}}

155 ordersCopy . add ( indexo f in t , s c ena r i o . get ( i ndexo f r eq ) ) ;

156 //Checking f e a s i b i l i t y o f the tour f o r the s e l e c t e d reques t

157 i f ( f e a s i b i l i t y ( ordersCopy , i nd exo f i n t )==true ) {

158 s c ena r i o . remove ( indexo f r eq ) ;

159 f o rb In t . c l e a r ( ) ;

160 a++;

161 loop=0;}

162 e l s e {

163 ordersCopy . remove ( i nd exo f i n t ) ;

164 f o rb In t . add ( indexo f in t −1) ;

165 loop++;}

166 i f ( loop>ordersCopy . s i z e ( ) | | s c ena r i o . s i z e ( )==0) {

167 break ;} }

168 //Ass ign ing t imes to r eque s t s

169 i n t t imeInt=−1;

170 f o r ( i n t i = 0 ; i < ordersCopy . s i z e ( ) −1; i++) {

171 i n t d i s t ance=DistanceCal ( ordersCopy . get ( i +1) . getX ( ) , ordersCopy . get ( i +1)

. getY ( ) , ordersCopy . get ( i ) . getX ( ) , ordersCopy . get ( i ) . getY ( ) ) ;

172 t imeInt+=d i s t ance ;

173 i f ( ordersCopy . get ( i ) . getAss ign ( )==2) {

174 t imeInt−=di s t anc e ;

175 t imeInt=ordersCopy . get ( i ) . getEnd ( ) ;

176 cont inue ;

177 }
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178 e l s e i f ( ordersCopy . get ( i +1) . getAss ign ( )==1 ) {

179 t imeInt=ordersCopy . get ( i +1) . getEnd ( ) ;

180 cont inue ;}

181 e l s e i f ( ordersCopy . get ( i +1) . getAss ign ( )==2) {

182 t imeInt−=di s t anc e ;

183 t imeInt=ordersCopy . get ( i +1) . getEnd ( ) ;

184 cont inue ;}

185 e l s e {

186 ordersCopy . get ( i +1) . s e t S t a r t ( t imeInt ) ;

187 ordersCopy . get ( i +1) . setEnd ( t imeInt+(Request . PatServ ice /Request . TimeSlot

) ) ;

188 t imeInt+=(Request . PatServ ice /Request . TimeSlot ) ;}}

189 //Find i f the pa t i en t i s ass igned , f i nd i n g which time s l o t he or she i s

a s s i gned

190 f o r ( i n t i = 0 ; i < ordersCopy . s i z e ( ) ; i++) {

191 i f ( ordersCopy . get ( i ) . getNumber ( )==re . getNumber ( ) ) {

192 counter++;

193 t imeS lo t . add ( ordersCopy . get ( i ) . g e tS ta r t ( ) ) ;}}}

194 // Ca l cu la t e Frequency

195 i n t maxFre=In t eg e r .MIN VALUE;

196 i n t s l o t =0;

197 f o r ( i n t i = 0 ; i < t imeS lo t . s i z e ( ) ; i++) {

198 i n t a=Co l l e c t i o n s . f requency ( t imeSlot , t imeS lot . get ( i ) ) ;

199 i f ( a>=maxFre ) {

200 maxFre=a ;

201 s l o t=t imeS lot . get ( i ) ;}}

202 i n t [ ] r e s u l t s=new in t [ 2 ] ;

203 r e s u l t s [0 ]= counter ;

204 r e s u l t s [ 1 ]=( s l o t ) ;

205 re turn r e s u l t s ;

206 }
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