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Abstract

A novel technique (location-relaxed storage) of mixing products within warehouse storage
bins is presented and evaluated. Analyses of warehouse operations, storage space
efficiency, error sensitivity, and placement policies are presented and compared to
traditional warehousing techniques. The major factors that drive the performance
differences between traditional, highly organized storage and location-relaxed storage are
shown to include the number of unique stock keeping units (SKUs) served by the
warehouse and the picking lot size characteristic of demand. The analyses demonstrate
traditional storage techniques have greater difficulty dealing with a large SKU base.
Furthermore, location-relaxed storage is shown to have a lower sensitivity to operation
errors and a greater opportunity for cost savings through optimization opportunities.
Finally, a new placement strategy especially suited for location-relaxed storage is
presented.

As the popularity of Radio Frequency Identification (RFID) increases and the technical
issues of widespread RFID implementation are addressed, new applications of RFID
technology will change the way the world operates. An ongoing, industry-wide effort to
implement RF-tags throughout the material goods supply chain has the support of
manufacturers, retailers, and technology companies. RFID in the supply chain represents
an enabling technology that will allow warehouse operations to break away from
traditional methodologies and adopt revolutionary techniques, such as location-relaxed
storage.

Thesis Supervisor: Prof. Sanjay E. Sarma
Title: Associate Professor of Mechanical Engineering
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Chapter 1: Introduction

Currently, typical storage warehouses operate under an aggregated and highly organized

system that stores identical items in the same storage bin. By directing all copies of the

same product into a single storage bin, the warehouse system creates an organizational

structure that is simple to understand and maintain. Order-picking needs for specific items

map directly to storage bins with a simple one-to-one correspondence. Encoding identity

through location has been vital for maintaining an accurate database of materials stored in

the warehouse and preventing lost items. This tight association between storage location

and item identity has been the dominant paradigm for warehouse operations for centuries.

Figure 1.1 a illustrates traditional storage which we call strict organization.

a) Strict Organization b) Location-relaxed Storage

Figure 1.1: Strict organization and location-relaxed storage

A new approach to warehouse operations offers to revolutionize the primary

philosophy that binds location and identity in traditional warehouse methodology.

Location-relaxed storage removes the restriction that all copies of the same product must

be directed to the same storage bin. Furthermore, the new storage method permits items of

different types to reside in the same bin at the same time. Figure 1.1 b illustrates the new
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storage method with the same products as in Figure 1.1a. This mixing of products within

the warehouse fundamentally changes how the warehouse operates. The new model

compromises the simplicity found in traditional organization schemes; however, the

benefits of relaxed storage include higher space utilization and increased productivity in

picking and placing items under certain circumstances.

Amazon.com employs this new approach to warehouse storage for its warehouse

fulfillment needs.1 They have seen that mixed storage is appropriate and beneficial for the

specific warehousing characteristics of online, direct-to-consumer business. This thesis

takes the view that radio-frequency identification is an enabling technology for location-

relaxed storage because RFID technology addresses many important disadvantages with

location-relaxed storage. However, Amazon.com's use and success with mixed storage via

bar-coded labeling shows that much of location-relaxed storage benefits do not rely on the

new technology and the benefits sufficiently outweigh the disadvantages to justify

location-relaxed storage. Furthermore, new automatic identification technologies will

offer even greater benefits for location-relaxed storage. This research explores the

ramifications of location-relaxed storage on warehouse operations including storage

capacity, error sensitivity, as well as picking effort, and it demonstrates how location-

relaxed storage is especially suited for warehouse operations with a high number of

unique products and a low picking lot size.

The most robust evaluation of location-relaxed storage would compare its optimal

performance to the optimal performance of traditional methods. Unfortunately, optimal

techniques for warehouse operations are not well understood. Even for traditional

1. Personal conversation with Louis Usarzewicz, director of fulfillment engineering at
Amazon.com.
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warehouse methods, where existing research is much more abundant, optimal solutions

tend to focus on one aspect of warehouse operations rather than the entire system. Both

traditional and location-relaxed warehouse operations are complex optimization problems.

Optimal policies for one may not be optimal for the other. Furthermore, optimal policies

are likely to be problem dependent and different warehousing situations will have

different optimal policies. The complexity of the optimization task and problem

dependency make direct comparison of optimal solutions unwise and limited in scope.

Demonstrating superiority of one storage method over the other for a single warehouse

case will not necessarily prove anything beyond that specific case. This research

demonstrates the potential of location-relaxed storage by presenting the optimization

opportunities for warehouse operations without offering an optimal solution then

analyzing specific characteristics of location-relaxed storage and comparing them to

traditional methods.

1.1 Comparing Apples to Oranges

The two storage systems, while similar in many aspects, have differing features that make

direct comparison both difficult and limited in overall significance. As stated before,

optimization of these systems is very difficult. A very large number of factors influence

warehouse operations. Warehouse size, warehouse shape, item characteristics, and

ordering characteristics are just a few examples of parameters that have potentially

significant influence on warehouse performance. Furthermore, the influences of these

factors may differ between the two systems. Any specific comparison between location-

relaxed storage and strict organization would only be valid for the specific case explored.
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Despite the difficultly, some type of comparison must be made. This thesis explores

location-relaxed storage as a possible alternative to traditional strict organization methods.

To investigate this new approach, several simplified analyses explore the strengths and

weaknesses of location-relaxed storage. In making these specific comparisons between

location-relaxed storage and strict organization, many assumption about the warehouse

operations are necessary, both to establish a system to analyze and to simplify the model

so that an analysis is possible and reasonable. Analysis of carefully selected specific

comparisons yield insights to the trends and influences on the two warehousing systems.

The temptation is to dismiss such analyses with so many assumptions as flawed. However,

the alternative is to do nothing and ignore the potential of location-relaxed storage for

improving material storage techniques. The analyses make a strong case for further

investigation into the effects of warehouse characteristics on location-relaxed storage and

the complex optimization problems imbedded within warehouse routing and order-

fulfillment.

1.2 Outline

Chapter 2 provides background on warehousing and introduces the new approach to

warehouse operations, location-relaxed storage. Chapter 3 discusses location-relaxed

storage in greater detail, including an analysis of the effect of multiple disparate locations

on the picking process and simple heuristics for the warehouse routing problems. Chapter

4 discusses warehouse operations including placement and picking issues under location-

relaxed storage. The first of four analyses compares location-relaxed storage to strict

organization storage and scrutinizes the effect arrival and departure characteristics on

18



warehouse operations. In Chapter 5, the second analytical model quantifies the storage

capacity utilization of strict organization storage to illustrate the benefits of greater

efficiency with location-relaxed storage. The error model of Chapter 6 analyzes the

sensitivity of Auto-ID enabled strict organization storage and location-relaxed storage to

warehouse operations mistakes such as misplacement or mis-picking. Chapter 7

investigates demand-based storage policies and their applicability to location-relaxed

storage with a simple model that compares a demand-based placement policy to

randomized placement. Chapter 8 concludes with a discussion of location-relaxed storage

findings and opportunities for modem warehouse operations.

1.3 Summary

This research provides clear evidence that the two main characteristics that influence

the appropriateness of location-relaxed storage for warehouse operations are the number

of unique products served by the warehouse and the picking characteristics of the

warehouse fulfillment needs. The benefits of location-relaxed storage increase as the

number of unique products involved in warehouse operations increase. Furthermore,

benefits are more substantial when the picking characteristics are such that a small

quantity of a particular product are picked at a time (small picking lot size). The relative

efforts involved between traditional techniques and location-relaxed storage are specific to

each warehouse operations system. However, the strong potential benefits demonstrated

compel the evaluation of each system to determine the appropriateness of location-relaxed

storage in each individual case.
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Chapter 2: Background

2.1 Warehousing

The main purpose of a warehouse is to buffer the disparity between supply and demand.

Whether buffering the need for raw materials against source availability or buffering the

supply of finished products against consumer demand, warehouses accept and store

material goods for some time, then retrieve the item when needed. Three main phases

describe the warehousing process: placement, storage, and retrieval. Placement is the

process of taking arriving products, determining where each product should be stored, and

physically bringing the product to the designated storage location. Storage is a passive

phase where items reside in storage locations until needed. Finally, during the retrieval

stage, the product is removed from the storage location and shipped out of the warehouse.

When addressing warehouse optimization, there are many metrics that are desirable to

optimize as well as many features that influence operational efficiency. Warehouse metrics

include the total utilization of warehouse space, which measures how much of the

warehouse space is used to store items and how much space is left vacant. Another metric

that is indicative of an effective warehouse is the average walk distance to pick and place

an item. An efficient warehouse must keep walking distances to a minimum.

Other metrics of warehouse operations include stockout frequency and turnover rates,

which describe the rate at which the warehouse is unable to meet the needs of an order and

the length of time a particular item resides before being used to fill an order, respectively.

These last two metrics relate to the inventory management, which determines how much

of each stock keeping unit (SKU) should be stored in the warehouse. If the warehouse

stocks too little of an SKU, then the warehouse may not be able to meet demand. This
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situation is called a stockout and is undesirable. Furthermore, if a warehouse stocks too

much of an SKU, the amount of time that an SKU resides in the warehouse will be high,

which is also undesirable because holding too much of an item wastes capital and

occupies additional space in the warehouse. Inventory management and the associated

stockout rate and turnover rate are separate issues from inventory storage and are not

considered in this research. Instead, how warehouses handle incoming supplies and

outgoing demand is the focus of this thesis. Metrics such as storage capacity utilization

and average walking distance to place and pick an item are most relevant to the research.

2.2 Warehouse Characteristics

Many factors contribute to warehouse efficiency including physical characteristics, the

number of unique SKUs served by the warehouse, SKU demand level, storage policy,

placement policy, and picking policy. Physical characteristics include the area of the

warehouse footprint, number of aisles, number of cross aisles, size of each storage bin,

and location of pick up and drop off locations. The number of unique SKUs refers to how

many different products the warehouse will handle. Storage policies refer to rules that

impose in which storage bins a particular item may or may not be stored. Placement

policies indicate where an item is to be stored while following the restrictions of the

storage policy. Picking policies select which item should be picked to fill an order when

multiple copies of the same SKU make a choice necessary.

2.2.1 Warehouse Design

The physical layout of the warehouse determines the storage capacity and affects the

overall efficiency of operations. Physical layout includes the overall storage capacity,

number of aisles, length of the aisles, number of storage bins in each aisle, and the number
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of cross aisles. Petersen [1997] investigated the effect of aspect ratio on warehouse

performance when the storage capacity is fixed and reports that performance improves

with deeper warehouses (warehouses with fewer but longer aisles). Petersen also

investigates the effect of pick-up/drop-off (p/d) location by comparing simulations of

warehouse operations with different p/d locations and concludes that a middle location p/d

point results in shorter walking distances than locating the p/d at a corner. The significance

of p/d location increases with wider (more aisles) warehouse configurations and smaller

pick list sizes. Vaughan and Petersen [1999] report that the number of cross aisles in the

warehouse configuration also has an effect on performance, in general, additional cross

aisles provide more efficient warehouse operations.

2.2.2 Storage Policy

In addition to physical considerations, operational rules and policies have a strong

influence on warehouse performance. The warehouse storage policy describes the rules

that determine where an item may and may not be placed. Traditionally, warehouses fall

into two main categories of storage policies, dedicated storage and shared storage. Under

dedicated storage, every storage bin within the warehouse is assigned to a particular SKU

permanently. Only items with a matching SKU may be placed in a particular storage bin.

This static assignment means that when an item arrives at the warehouse for placement,

there is a set number of possible locations in which to place the newly arrived item.

Furthermore, this set of possible locations does not change over time. In contrast to

dedicated storage, shared storage assigns a particular SKU to a storage bin when needed.

Empty locations within a shared storage warehouse are not assigned to any particular

SKU. If needed, these empty bins may be assigned to a particular SKU and accept newly
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arriving items of a matching SKU. When the last item in a storage bin is removed, leaving

the bin empty, the SKU assignment that previously existed for the bin is then erased, and

the bin may be reassigned to any SKU as needed in the future. In the relevant literature,

this storage policy is also referred to as random storage.

The new method for storage, called location-relaxed storage, permits even greater

flexibility in storage. Although dedicated storage and shared storage enforce a one SKU

per storage bin rule, location-relaxed storage removes this restriction. For example,

compact discs of different titles could be stored in the same bin under location-relaxed

storage, but such mixing is not permitted by dedicated storage or shared storage.

Each of these three policies has its advantages and disadvantages. On the surface,

dedicated storage is the simplest methodology but is also the least flexible. Shared storage

adds greater flexibility and benefits at the cost of a more complex implementation. Finally,

the newest method, location-relaxed storage, is the most flexible and complex. The extent

to which flexibility adds to overall effectiveness will depend on other aspects of

warehouse operations. Furthermore, the cost of complexity will be influenced by the

warehouse operations and level of technology implementation.

For simplicity, we refer to dedicated storage and shared storage as strict organization

storage policies to contrast them collectively with location-relaxed storage. Strict

organization storage is homogeneous as all the items in a single storage bin must have the

same SKU number. Location-relaxed storage is heterogeneous since a single storage bin

may contain multiple SKU numbers.
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2.2.3 Placement Policy

Related to the storage policy is the placement policy which determines how incoming

items are assigned to a storage bin and the method by which incoming items arrive at the

assigned bin. While the storage policy determines the rules that govern which SKU may

be assigned to which storage bin, the placement policy determines the actual assignment.

The placement policy arises from the fact that not all storage bins are the same. Even if all

storage bins have the same size and dimensions, the location of the bin effects the ease

with which one can access it. For example, Heskett [1963] offered the cube-per-order

index (COI) placement policy to determine product assignments for the dedicated storage

policy. The COI equals the total required space divided by the turnover frequency. Having

calculated the COI, Heskett locates items with a low COI closer to the dock with the

understanding that locations closer to the dock are easier to access. As a result, the COI

placement policy creates an assignment that matches storage bins close to the dock with

high turnover items. In other words, COI matches popular items to favorable locations.

Another component of the placement policy is how the item is handled in order to

reach the assigned storage bin. In essence, putting items away is the simple task of

carrying the item to the storage bin and storing it there. However, how warehouse

operations physically handle the items arriving as a group will affect overall efficiency as

well and is also consider part of the placement policy. One example of this placement

policy component is batch placement. Batching is a common method for putting items

away that involves sorting the items into groups based on warehouse geography. The

sorted groups can then be placed into the warehouse more easily since all items in the

group need to go to the same general area within the warehouse.
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2.2.4 Picking Policy

The opposite of placement policy is the picking policy, which determines which copy

of an SKU should fill a particular need. Having stored the items in the warehouse

according to the selected storage policy and placement policy, the final action of the

warehouse requires the retrieval of items for order-fulfillment. At a minimum, the picking

policy must determine which storage bins to visit and the order in which to visit them. For

cases where there is only one storage bin for each SKU, bin selection is trivial; however,

determining the path to follow in order to visit the required bins is more complex.

Extensive research has been devoted to the path planning component of the warehouse

order-picking policy. Sections 2.3 and 2.4 discuss order-picking and path planning in

greater detail, including a discussion on the additional complexity involved when the

number of storage bins for an SKU exceeds one.

Similar to the placement policy, the picking policy also goes beyond determining

which item should be used to fill a need. The policy also entails the method by which

picking a group of items should be handled. Such methodologies include zone picking,

which is similar to batch placement. In zone picking, items within a predefined area are

picked in the same group, then all picked groups are sorted into individual orders and

shipments. Another methodology is order batching, which aggregates several orders into

one picking batch to be picked during one pass through the warehouse.

The picking policy also can take additional information into account while

determining which copy of an SKU should meet the needs of an order. For example,

imposing a first-in-first-out (FIFO) restriction uses the SKU copy that has been in the
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warehouse for the longest time. FIFO restrictions enforce stock rotation, which is

important for items that expire or degrade over time.

A large portion of research in warehouse operations focuses on order-picking, the

process by which items are retrieved from the warehouse storage bins to fill the desired

orders. Frazelle [2002] explains the importance of order-picking efficiency by noting that

improvements to warehouse efficiency often target order-picking as the area capable of

providing the greatest productivity improvements. Frazelle cites studies that show

typically 63% of all warehouse operation costs are from order-picking. He also notes that

new operating paradigms such as just-in-time and quick response as well as new

marketing trends such as micromarketing and megabranding have introduced added

difficulties to order-picking management. These changes have led to a greater number of

smaller order deliveries and a higher number of SKUs in the warehouse system, which

further complicates the order-picking process.

2.3 Traditional Storage

The prominence of warehouse order-picking in overall costs makes it a primary area of

research. Much research focuses on the travel distance involved with order-fulfillment. In

traditional warehousing, maintaining order within the warehouse shelves is essential for

smooth operations. The first step in organizing the warehouse typically takes the form of

storing items of the same SKU in the same bin (strict organization storage policy). In other

words, location encodes identity.1 Figure 2.1 illustrates typical strict organization used in

warehousing. Identical colors indicate identical SKUs. Both dedicated storage and shared

storage discussed in Section 2.1 are examples of strict organization. The order created and

1. "Location encodes identity" is a concept of Dr. David Brock of the MIT Auto-ID center.
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maintained with strict organization is crucial for finding inventory and as well as

preventing lost merchandise. These needs are critical to warehouse operations and have

mandated the use of strict organization in warehouse operations for centuries.

Figure 2.1: Strict organization for traditional warehouse storage

Strict organization storage relies heavily on order to meet the needs of warehouse

operations. Deviations from order degrade the ability of the warehouse to operate

properly. For example, the location encodes identity paradigm relies on maintaining a

mapping between SKUs and storage bins. Given the task of finding a specific SKU, the

mapping indicates where in the warehouse the desired SKU is stored. Placing a product

within the warehouse that is inconsistent with the mapping prevents future retrieval as it

creates a disconnection between where the item physically resides and where the mapping

believes the item resides.

Inconsistency between the mapping and physical inventory adds inefficiency to

warehouse operations because irretrievable items lead to the inability to fill orders.

Occasional counting of products in the warehouse helps maintain map accuracy but costs

additional effort. Maintenance is usually achieved through continuous cycle-counting and

annual full physical inventory of the warehouse contents.
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2.3.1 Strict Organization order-picking

Under a strict organization storage policy, there is generally a one-to-one correspondence

between SKUs and storage bins. In the case where a particular SKU requires more storage

space than a single bin allows, secondary storage bins handle the overflow but order-

picking continues to use the primary bin exclusively. As a result, the mapping of an SKU

to a storage bin remains one-to-one. For a given order, retrieval of items requires visiting

specific storage bins. The decision that remains is what sequence should the order picker

visit the required storage bins. A common optimization criterion for determining the

picking route is the minimization of walking distance to visit the list of storage locations.

The task of creating a minimum distance path that visits all the needed storage bins is a

variation of the traveling salesman problem.

2.3.2 Traveling Salesman Problem

The traveling salesman problem (TSP) seeks to find the minimum cost tour for visiting n

cities exactly once, where the cost of traveling from city i to cityj is c. This seemingly

simple problem is very difficult to solve and belongs to the set of NP-hard problems [Karp

1972]. Consequently, no known polynomial time algorithm exists for solving the traveling

salesman problem and computation times increase exponentially with the size of the

problem.

In the case of warehouse order-fulfillment, the need for items translates directly to a

need to visit a set of storage bins. By setting the cost between locations equal to the

distance between locations the order-fulfillment problem becomes an instance of the TSP.

Thus, the order-fulfillment problem must address the traveling salesman problem to obtain

an optimal solution.
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2.3.3 Warehouse-TSP

In the case of minimizing walking distance, the cost associated with traveling from

location to location is simply the distance between locations. When the city-to-city transit

cost equals the distance between the cities, the problem is called the Euclidean traveling

salesman problem (Euclidean-TSP) and is also NP-hard [Papadimitriou 1977].

Unlike the general Euclidean traveling salesman problem, the warehouse traveling

salesman problem (warehouse-TSP) has additional constraints. The locations to be visited

must lie in the regular pattern found in the warehouse structure and walking is restricted to

the aisles only. The rectilinear-TSP (also called the Manhattan-TSP) is a special case of

the Euclidean-TSP where the distances between locations is the sum of travel along the

two perpendicular axes rather than the euclidean distance. The rectilinear-TSP is also NP-

hard [Garey 1976].

Typical warehouses are rectilinear, but the warehouse-TSP has one additional

constraint. Not only is movement restricted along the x and y axes, the arrangement of the

warehouse into rows of storage bins restricts movement along the aisles and movement

from one aisle to the next may only occur at the cross aisles. Figure 2.2 illustrates the

different forms of the traveling salesman problem. Unlike the Euclidean and rectilinear

TSPs, the restricted movement found in the warehouse version of the TSP permits a

polynomial time solution.

Ratliff and Rosenthal [1997] provide a solution to the warehouse-TSP using dynamic

programming. Their presentation includes a detailed solution of the warehouse with no

center cross aisles (Figure 2.3), where movement from one aisle to the next is restricted to

the ends of the aisles; however, this technique can also extend to include additional cross
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Figure 2.3: Warehouse layout with no cross aisles

aisles. When row crossing occurs only at the ends of the aisles, the configuration is also

referred to as a single block. Figure 2.4 shows a warehouse configuration with one

additional cross aisle, which permits movement between aisles at the midpoint of an aisle

in addition to the two ends. With one additional cross aisle, the configuration is referred to
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as having two blocks. Roodbergen and DeKoster [2001 a] show the solution for a mid-

cross aisle warehouse and note that additional cross aisles (i.e. additional blocks) greatly

complicate the solution. These techniques provide the means for establishing an optimal

tour for warehouse order-picking when SKU to storage bins have a one-to-one

correspondence.

I EI I II I I I I I I I
aisle

sub-aisle

sub-aisle s

aisle
I I I IIITI I T I I I I I I I I I I I I I I

Figure 2.4: Warehouse with one cross aisle

2.3.4 Heuristics

Despite the existence of methods to compute optimal walking paths for warehouse

locations, actual warehouse operations do not use the optimal solution and instead rely on

routing heuristics. Petersen [1995] cites the non-intuitiveness and lack of consistency in

optimal paths, which lead to confusion for human order pickers, as the reason heuristics

are preferred over the optimal solution.

Petersen [1997] describes six routing strategies, including five heuristics and the

optimal solution for a warehouse with no cross aisles (Figure 2.3). Figure 2.5 illustrates

four of the heuristics investigated by Petersen. The heuristics include simple routes such

as the transversal strategy where the picker traverses the entire length of all aisles that

contain at least one pick as well as the return strategy where the picker always enters and
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exits an aisle from the same side. More complex heuristics include the midpoint strategy

where the picker enters and leaves an aisle from the same side, but may also enter (and

subsequently exit) both sides of the same aisle. The largest-gap strategy is similar to the

midpoint strategy but allocates the break between sides by the greatest distance between

two targeted locations rather than the midpoint. Finally, Petersen [1995] includes a fifth

heuristic called the composite strategy that combines elements of the transversal and

return strategies so that route construction has the option of either traversing the entire

aisle or entering and exiting the aisle from the same side. Petersen reports that the largest-

gap heuristic performs well when the number of picks is small; however with larger pick

numbers, the composite heuristic yields the best performance of the heuristic solutions.

Roodbergen and De Koster address the situation where the warehouse has a single

cross aisle [2001a] and multiple cross aisles [2001b] by providing heuristics and

comparing performance against optimal solutions. Several of the heuristics are similar to

the heuristics for a single block (no middle cross aisles), but are adapted to accommodate

the additional cross aisles. The S-shape heuristic parallels the transverse strategy by

having the picker walk through an entire sub-aisle that requires at least one pick. The

largest-gap heuristic contains features that resemble the largest-gap strategy for the single

block case, where typically the picker enters and exits a sub-aisle from the same side. The

aisle-by-aisle heuristic, originally presented by Vaughan [1999], visits every aisle once

and determines which cross aisle is best to access the next aisle. Finally, Roodbergen and

De Koster present a combined heuristic that visits a sub-aisle containing at least one item

exactly once; either the route will traverse the entire sub-aisle (transversal / S-shape) or

the route will enter and exit the sub-aisle from the same side (return strategy).
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Figure 2.5: Order-picking routing strategies for warehouses with no cross aisles
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Roodbergen and De Koster's evaluation of the heuristics with multiple cross aisles

showed that the S-Shape heuristic never yields the best performance of the heuristic

methods. The authors note that the combined heuristic considers the S-shape solution in its

search; therefore at best, the S-shape may only equal the combined heuristic solution and

never surpass it. They also note that the aisle-by-aisle heuristic and the combined heuristic

produce the same results when the number of cross aisles is limited to the two end cross

aisles (single block). For warehouses with three or more cross aisles, the combined

heuristic gave the best results.

2.4 Location-Relaxed Storage

Traditional warehouse techniques also include an exception for low demand items called

library shelving. Since allocating an entire storage bin for a low demand item can be very

wasteful of storage space, library shelving assigns all low demand items into the same

storage bin or bins. This mixing is similar to libraries where books of different titles are

placed one after the other. The result saves considerable space at the cost of making the

retrieval of the items more difficult since the picker must sift through an array of items

rather than a bin of matching items to find the correct one. In other words, the task of

finding a specific item in a mixed bin is harder than simply finding the bin. However,

since library shelving is a special case for low demand items, the added difficulty

encountered in picking is small and easily compensated by savings in storage space.

Extending library shelving to the entire warehouse is not traditionally done in

warehouse operations. We designate the storage policy where all SKUs are subject to

library shelving as location-relaxed storage. Unlike designated storage and shared storage,

location-relaxed storage does not match a storage bin to a particular SKU. Under location-
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relaxed storage, any item may be placed in any location at any time. Furthermore, the

correspondence between SKU and storage bins is no longer one-to-one. Figure 2.6

illustrates location-relaxed storage.

Figure 2.6: Location-relaxed storage

In addition to storage space advantages, location-relaxed storage offers a simplified

storage placement process. Rather than having to seek out a specific storage bin

corresponding to an SKU, location-relaxed storage permits storage in any bin that is not

full. As a result, this simplified storage process leaves SKUs of the same type in many

different storage bins as well as SKUs of different types within the same bin.

Despite the obvious advantage in storage space utilization and the possible advantages

in storage and retrieval efforts, location-relaxed storage is not generally used by

warehouses.1 Location-relaxed storage, as described so far in this section, has serious

disadvantages that outweigh the possible advantages. The main disadvantage is sensitivity

to errors. If warehouse operations were 100% accurate, then location-relaxed storage

would function smoothly and all the advantages of location-relaxed storage could be

realized. However, operations are never fully error free; mistakes in placement are a

common occurrence in warehouse operations. The warehouse database that tracks all

items in the warehouse assumes that all items are placed correctly, and that item location

1. The vast majority of warehouse operations use strict organization storage. Few exceptions exist

such as Amazon.com's implementation of a barcode based location-relaxed storage system.
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remains static while stored in the warehouse. These two assumptions are fundamentally

unrealistic. Items placed into the warehouse are often placed in the wrong storage bin,

placement can sometimes fail to occur, and items may unintentionally migrate from one

location to another. As a result of these errors, the database that maps SKU to storage bins

becomes out of synchronization and inconsistent with where the items actually are.

Regardless of whether the storage policy is strict organization or location-relaxed, a

misplaced item is not useful for order-fulfillment.

The difference in how errors impact the two storage policies, strict organization and

location-relaxed, lies in the ease with which operations can deal with errors. In the strict

organization case, a misplaced item will likely be visually detectable. Figure 2.7 illustrates

two possible cases of a misplaced item in a strict warehouse. Figure 2.7a shows a mix of

items in the third storage bin. Warehouse workers can identify a problem with the items

when noticing a commingling of items. Figure 2.7b shows a case where detection of an

error is not as easy where the item has been misplaced into a previously empty bin.

Visually, there appears to be nothing amiss. The error will not be detected until the

warehouse system directs a different SKU into the third storage bin, or an audit of the

warehouse contents finds the mistake. With location-relaxed storage, visual detection of

misplaced items is not possible. Since all storage bins may contain a mix of SKUs, a

misplaced item will not stand out as incorrect. More direct means are required to detect

mistakes in location-relaxed storage.

To maintain order, warehouses rely on cycle-counting and occasionally taking a full

physical inventory of the warehouse. Furthermore, these item-by-item checks maintain

synchronicity between the warehouse SKU-to-storage bin mapping and the warehouse
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Figure 2.7: Misplacement in a strict organization setting

Incorrect placement (a) of the purple item into the center storage bin is visually detectable due to the

conflict with the orange items. Incorrect placement (b) of the purple item into the center storage bin is not

noticeable since there are no other items in the bin.

physical inventory. When strictly organized, cycle-counting an item involves visiting the

storage bin(s) assigned to a particular SKU and counting the number of items in each bin.

The cycle count can then be compared to the database and appropriate adjustments then

maintain correspondence. Under location-relaxed storage, database maintenance becomes

more arduous. Two approaches are possible, neither of which is simple. If one tried to

count the number of copies of each SKU in the warehouse, the counter would have to visit

many storage bins, and search each bin to verify the existence of the SKU in that bin. If

one tried to count bin-by-bin, then the counter must determine the number of each SKU in

the bin, of which there will be many. Furthermore, reconciliation of discrepancies between

the physical inventory and the database requires greater detail in the location-relaxed

storage case than in the strict organization case. In strict organization, the database assigns

an SKU to each location and tracks the number of copies of the SKU in each location.

Reconciliation between database and physical count involves simply changing the number

38

.. ........ ...........



of copies to match the physical count. Under location-relaxed storage, the database must

track a list of SKUs in each location and the number of copies of each SKU found in the

storage bin. This listing alone is more complex than the analogous list for strict

organization. Furthermore, the location-relaxed listing requires an elaborate reconciliation

process that must verify all copy counts as well as add and delete SKUs found/not found

during the counting.

As a result of the high maintenance costs involved with keeping order with location-

relaxed storage, the benefits of greater storage space utilization and distributed storage are

severely diminished. In the case of library shelving, the application of mixed storage to a

small subset of the SKUs rather than the entire SKU population mitigates the issues that

make mixed storage undesirable. Furthermore, limiting library shelving to low demand

items further diminishes the negative aspects involved. Although the problems with

location-relaxed storage have prevented warehouses from applying location-relaxed

storage in the past, Section 2.5 describes a technological advancement that makes

location-relaxed storage a feasible option for the entire warehouse operation.

2.4.1 Traveling Purchaser Problem

All previous literature on routing for order-picking focuses on the warehouse version of

the traveling salesman problem in which the required warehouse locations to be visited are

determined in advance. With the introduction of location-relaxed storage, a slight change

in the problem statement leads to significant changes to the solution and solution

technique. Instead of listing the required locations definitively, the option of several

storage bins provides additional choices that must be addressed in pick routing and
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optimization. This change greatly alters the solution process for both optimal and heuristic

route planning.

The optimization problem,

Given a set of markets, M = { .m}, a set of commodities N =1, ..., n}, the cost of
travel between market i and marketj, c , and the cost of product k at marketj, dkl; find
a tour of markets that purchases one of each n products with minimum total travel and
purchasing cost.

was labelled the Traveling Purchaser Problem (TPP) by Ramesh [1981]. The problem is

similar to the Traveling Salesman Problem but contains additional decisions. In the TSP,

route selection requires determining the visiting sequence of the markets (cities). For the

TPP, in addition to sequencing the market locations, the route planner must also determine

which market of many should be visited to satisfy the commodity needs. The TPP reduces

to the TSP when each commodity is sold exclusively at one market.

Table 2.1 shows the effect of multiple locations on the number of feasible solutions to

the TPP with the assumption that all n items are unique. The traveling salesman problem

with n cities has n! possible routes. In other words, there are n! possible orderings of n

items. Expanding the problem to the traveling purchaser problem, the number of possible

routes increases. If there are two locations that satisfy each of the n products then the

number of possible routes becomes 2" - n!. 2" describes the selection of locations; since

each item appears in two distinct locations and there are n items, then 2" combinations of

40



locations are possible. In general, when there are n items to be picked and each item

appears in k unique locations, the number of routes to consider is k" n n!.

Table 2.1: Possible combinations for the traveling purchaser problem

TSP_ Traveling Purchaser Problem

I Location 2 Locations 3 Locations k Locations
per SKU per SKU per SKU per SKU

I pick 1 2 3 k

2 picks 2 22 . 2 32 . 2 k2 -.2

3 picks 3! 2 .3! 3 .3! k .3!

n picks n! 2" -n! 3 n! k . n!

Shortly after Ramesh formalized the traveling purchaser problem, Ong [1982]

presented four computationally fast approximation solutions for the Traveling Purchaser

Problem. Singh and van Oudheusden [1997] provide an optimal solution via a branch and

bound algorithm. Improved approximation solutions are presented by Pearn and Chien

[1998].

2.4.2 Warehouse-TPP

The general TPP describes the location-relaxed warehouse retrieval problem when the

costs of travel, cgj, equals the walking distance between storage bins; the purchase costs,

dkj, are zero when the product is available in the storage binj; and the purchase cost is

very large (infinite) when the product is not available in the storage bin.

c, = walking distance from storage bin i to storage bin j

dkj 0, when item k appears in storage bin j (2.1)

[, otherwise

General TPP heuristics, discussed in Section 2.4.1, could be used for the Warehouse-

TPP, since the Warehouse-TPP has a more specific definition than the general TPP.
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Unfortunately warehouse-TSP heuristics that address the warehouse structure in route

construction, such as those discussed in Section 2.3.4, do not extend directly to the TPP

case. Even with a heuristic for determining visitation order, the number of choices for

which location to visit remains very large. Short of randomly choosing locations and then

applying warehouse-TSP heuristics, the heuristics outlined in Section 2.3.4 offer little help

in establishing a Warehouse-TPP heuristic. A method could be constructed by combining

the warehouse-TSP heuristic with a separate location selection heuristic. However, the

problem then shifts to finding a proper selection method for the locations to choose.

Chapter 3 discusses the Warehouse-TPP in greater detail, including simple heuristics for

Warehouse-TPP solutions for comparison to strict organization (warehouse-TSP)

solutions.

2.5 RFID Technology

Due to the critical need for maintaining order within a warehouse, strict organization is the

logical choice over location-relaxed storage. By aggregating and segregating SKUs the

subsequent database is a simple mapping between SKU and storage bin. This "location

encodes identity" paradigm provides the necessary structure with very simple

maintenance.

New technologies, however, enable an escape from the "location encodes identity"

philosophy of strict organization. Instead of inferring an object's identity based on the

storage bin, new identification methods permit identity to be ascertained automatically

and independent of location. Furthermore, these new technologies simplify database

management through automated rather than manual maintenance. As a result, warehouses

no longer need a well organized structure for the sake of maintenance. The new-found
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insignificance of location-to-SKU correspondence, which previously had been a guiding

principle in warehouse design, changes the rules under which warehouses must function.

Radio frequency tags (RF-tags) are one example of an automatic identification

enabling technology. An ongoing, industry-wide effort to place RF-tags on consumer

products supports the idea of using RF-tags for identification in warehouse operations.

Unlike traditional bar-code labeling, RF-tags do not require line-of-sight scanning and can

be read automatically without being re-oriented and without manual assistance. This

significant advantage over bar-codes eliminates the requirement for either human

manipulation to get the scanner close to the marking, or elaborate automation via

conveyor-systems to move objects past a scanner in a very controlled and predictable

manner. RF-tags have other advantages as well; each RF-tag has sufficient memory to

provide each individual item with a unique identity code.1 For this reason, the technology

is referred to as Radio Frequency Identification (RFID).

Implementation of RFID technology in warehouse operations is expected to provide

several benefits. First, RFID will directly alleviate the problem of database inconsistency.

In traditional warehousing, information updates occur when the system directs an item to

be moved. Between initial placement and ultimate removal, the system assumes that the

item remains static. Furthermore, traditional methods assume placement is always correct.

These two fundamental assumptions, however, are incorrect. Misplacement and

intermediate movements, while undesirable, occur regularly in warehouse operations and

create inconsistencies between where the system believes items are stored and where

1. Universal product codes, which label items of the same type with the same barcode identifier,
are not able to distinguish one copy of an SKU from another of the same SKU. RF-tags have a
much greater number of unique labels and can assign a unique identifier to each item. Thus mass
serialization of all products enables the system to distinguish one copy of an SKU from another.
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items actually reside. Active observation of RF-tags unifies what is believed to be true

with what is actually true. RF-tag readers continuously note each item's presence, identity,

and location and detect all movements whether intended or not. The database remains up-

to-date at all times and the system immediately 'finds' any 'lost' item.

Automatic database consistency opens new opportunities in warehouse operations.

The main motivation for using strict organization over location-relaxed storage was the

need for database integrity, the sensitivity of location-relaxed storage to placement errors,

and the difficulty of maintenance with location-relaxed storage. RFID technology,

however, addresses these issues and permits access to all of the advantages of location-

relaxed storage.

Under strict organization, the requirement of putting items into specific storage

locations increases the storage effort since additional walking is necessary to visit specific

locations. Organization requires effort. Greater flexibility for item placement under

location-relaxed storage leads to a reduction in the effort required to place items in the

warehouse, since placement into any location is easier than placement into a specific

location. Although placing items in a seemingly random manner will lead to items stored

at unpredictable locations, the RF-tag on each product compensates for the lack of

organization.

On the order-fulfillment aspect of warehouse operations, location-relaxed storage

changes the dynamics of order-picking. Under strict organization the warehouse operates

under a strongly organized and strongly aggregated mode. With location-relaxed storage

aggregation is ignored. As a result, warehouse storage becomes distributed with a

particular SKU appearing in many storage bins rather than just one or two. Holding many
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copies of the same SKU in the same storage bin is a benefit when picking many items of

the same type at the same time. When copies of the same SKU reside in many disparate

locations, picking many copies of the same SKU requires one to visit many different

storage bins instead of just one.

Conversely, storing copies of the same SKU in many different locations provides

opportunities ideal when picking a single copy of an SKU at a time. As the number of

copies of the same SKU picked increases, the benefit of aggregating items of the same

type into the same location increases and the benefit of distributed storage decreases.

Above some picking number, traditional storage techniques will perform better than

location-relaxed storage. Determining the criteria that delineate which storage method

offers the best performance is one of our research goals.

Additionally, the location-relaxed method increases the operational capacity of the

warehouse. Strict organization dedicates a particular shelf of the warehouse to a specific

item type. Once an item occupies a particular shelf, only items of the same type may be

stored there. This restriction, which is necessary under traditional circumstances to

maintain database consistency, wastes space that could be used by other products. With

RF-tag technology, the relaxed storage method removes the restriction and permits items

of different types to reside on the same shelf. This reclaimed space permits more usable

storage space than a traditional warehouse of the same size.

New technology combined with location-relaxed storage has the potential to greatly

reduce warehouse operation labor costs. The greatest impact will likely occur in situations

where the picking lot sizes are small such as in e-Commerce and other direct to consumer

situations. In these situations the warehouse operates with a large 'step-down ratio,' where
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items enter the warehouse in large groups of the same product and exit in much smaller

groups.

Tables 2.2 and 2.3 show the characteristics of strict organization and location-relaxed

storage with and without the benefits of RFID technology. The major problems with

location-relaxed storage without RFID technology are shown in red in Table 2.2. A

complex accounting system for tracking materials in the warehouse, high sensitivity to

inevitable placement errors, and a difficult process for inventory counting make location-

relaxed storage without RFID technology highly undesirable. Table 2.3 lists the operation

characteristics with the benefit of RFID automated monitoring, which ameliorates each of

the major problems with location-relaxed storage.

Table 2.2: Storage methods without RFID technology

Strict Organization Location-relaxed Storage

Simple database Complex database

Location encodes identity Identity independent of location

Specific location for each item Place any item in any location at any time

Misplacement is bad, but visually detectable Misplacement is extremely bad, and not
visually noticeable

Limits free space due to identity restrictions Liberated use of free space

Well ordered No order

Simple physical inventory and cycle-counting Very difficult for physical count

2.6 Complexity

As mentioned in sections 2.3 and 2.4, the traveling salesman problem and the traveling

purchaser problem are NP-Hard. To show how warehouse graph-related optimization

problems compare to other similar optimization problems, Table 2.4 delineates several

graph related combinatorial optimization problems and indicates the complexity of each.
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Table 2.3: Storage methods with RFID technology

Strict Organization Location-relaxed Storage

Automatic simple database Automatic complex database

Location encodes identity Identity independent of Location

Specific location for each item Place any item in any location at any time

Misplacement is bad, but automatically 'Misplacement' has no effect
detected

Limits free space due to identity restrictions Liberated use of free space

Well ordered No Order, Organization enforced by tags

Simple physical count Very difficult physical count

Very simple electronic count Very simple electronic count

Each column corresponds to a different optimization problem on a graph G = (V, E),

where V is a set of vertices, E is a set of edges connecting two vertices, and ci1 is the cost

associated with the edge connecting vertex i to vertex j. The first column, minimum

spanning tree (MST), refers to the optimization problem of building a tree that connects all

vertices V with a subset of the edges E such that the total cost of the edges is minimized.

The second column, Steiner tree, is similar to the minimum spanning tree problem except

the set of vertices to be connected is a subset S of the vertices V The steiner tree may or

may not include vertices that do not belong to S. The third column, traveling salesman,

refers to the optimization problem described in greater detail in Section 2.3.2. The

traveling salesman problem must construct a tour of the vertices such that the sum of the

connecting edges' cost is minimized. Finally the fourth column, traveling purchaser

problem, is described in greater detail in Section 2.4.1.

Each row corresponds to a variation on the optimization problem for each column.

General refers to the most general form of the problems as described in the previous

paragraph. Euclidean restricts the edge cost to the euclidean distance between two

vertices. k or prize collecting refers to the case where k of the vertices must be connected
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but it does not matter which vertices are connected. Rectilinear restricts the edge cost to

the distance between the two vertices along two perpendicular axes. And warehouse refers

to edge costs that are rectilinear and restricted by warehouse barriers so that travel

distance must follow the aisles and cross aisles of a warehouse. k-rectilinear and k-

warehouse combine the attributes of prize collecting with the added constraints of

rectilinear path lengths and warehouse barriers.

Table 2.4: Combinatorial Optimization Problems

Minimum
Spanning

Tree (MST)

Steiner
Tree

Traveling Salesman
Problem (TSP)

Traveling
Purchaser Problem

(TPP)

General Polynomial NP-Hard NP-Hard NP-Hard
Time (Karp 1972)

Euclidean Polynomial NP-Hard NP-Hard NP-Hard
Time (Papadimitriou 1977)

k (prize NP-Hard NP-Hard
collecting) (Ravi 1994) (Balas 1989)

rectilinear Polynomial NP-Hard NP-Hard NP-Hard
Time (Garey 1976) (Garey 1976)

warehouse Polynomial Polynomial Time Location-relaxed
Time (Ratliff 1983) fulfillment problem

k-rectilinear NP-Hard

k-warehouse Location-relaxed
placement problem

For example, the general-MST is solvable by a polynomial time algorithm.

Furthermore, because the general-MST has a polynomial time algorithm, the Euclidean-

MST, rectilinear-MST, and warehouse-MST also have a polynomial time algorithm since

the general-MST solves the restricted cases as well. However, the k-MST problem asks for

1. Kruskal's algorithm and Prim's algorithm solve the MST problem in polynomial time [Cormen
1999].
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the construction of a minimum cost tree that connects any k vertices of V Furthermore, the

k-MST problem is NP-Hard as shown by Ravi et al. [1994].

Under strict organization storage, warehouse fulfillment and item placement relate to

the warehouse-TSP which was shown to have a polynomial time solution by Ratliff and

Rosenthal [1983]. Under Location-relaxed storage, warehouse fulfillment is an instance of

the Warehouse-TPP, and warehouse item placement is an instance of the k-warehouse-

TSP. Chapter 4 discusses location-relaxed storage, the Warehouse-TPP, and the k-

warehouse-TSP in greater detail.

2.7 Comparisons to Disk Drive Fragmentation

The topics of storage and fragmentation naturally bring forth comparisons to disk drive

operations. Since both warehouses and hard disks place, store, then retrieve as their basic

operations, the analogy between warehouses and hard disks would seem quite appropriate.

Furthermore, the fragmentation involved with location-relaxed storage naturally leads to

additional comparisons with hard disk fragmentation. In fact, hard disk data storage is a

type of location-relaxed storage since any data can be stored on any part of the disk.

However as similar as the basic operations are between warehousing and hard disk

operations, similarities between the operations' execution and fragmentation issues are

more tenuous.

2.7.1 Hard Disk Drives

Hard disks store information by writing file data to the hard disk surface. The disk is

divided into blocks and files typically occupy more than one block. In order to write data

to the blocks, a servo must position the write-head above the target block. This process is
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similar to warehouse placement, however the motion of the write head is not constrained

while warehouse motions are constrained to the aisles.

Hard disk fragmentation and warehouse fragmentation are fundamentally different.

Ideally, the hard drive writes a file to the disk along adjacent blocks. When there is no

series of empty blocks large enough to store the file, hard drive fragmentation breaks the

data set (file) into two or more pieces to fit the data into the available, but smaller, spaces

on the hard disk. In a sense, hard disk fragmentation improves the storage space

utilization, which is similar to the result of location-relaxed storage in warehousing. While

these two methods achieve similar results, the circumstances and methodology are

significantly different.

Location-relaxed warehouse fragmentation results from the fact that any item may be

placed in any location, which results in the copies of an SKU residing in disparate storage

bins across the warehouse. This fragmentation of the SKU copies contrasts the non-

fragmented and aggregated result of strict organization storage.

Hard drive fragmentation breaks up the stored data, which is significantly different

from warehouse storage where whole items are stored and breaking an individual SKU is

not permitted. Furthermore, hard drive storage does not encounter multiple copies of the

same data. Even if a file is duplicated, separate copies are treated as unique and no

association between the copies exists.1 Therefore, fragmentation refers to totally different

processes in warehouse operations and hard disk operations.

1. With location-relaxed storage, retrieval of an SKU may be met with any copy of the needed
SKU. With hard disk data, even if a copy of a file exists, the call for one of the copies refers to that
specific copy. Substituting another copy is not permitted.
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Fragmentation achieves the similar goal of opening up more capacity for warehouse

and hard disk operations, but the methods and structure of the problems are so different

that direct comparison of the two is not appropriate. Furthermore, fragmentation in hard

disks is undesirable, while several analyses in Chapters 4 and 7 will show evidence that

warehouse fragmentation can be an asset.

2.7.2 Redundant Arrays of Inexpensive Disks

Another disk storage application also has some similarities to warehouse operations.

Redundant Disk Arrays or Redundant Arrays of Inexpensive Disks (RAID) use several

disks to increase fault tolerance and improve performance for data storage [Gibson 1992].

The aspect of redundant disk arrays that draws comparisons to location-relaxed warehouse

operations includes data striping, which is the process of interleaving data over the many

disks in the array to improve access performance. Data striping, which is also a type of

intentional fragmentation, breaks a file into pieces so that some parts of the file are on

each of the disks in the disk array.

Breaking up data across multiple disks can improve performance of the disk array by

enabling and encouraging parallel access to the data. However, the analogous process in

warehouse operations is not the fragmentation of warehouse SKUs, but implementing

multiple pickers. The key to greater throughput is parallelism. In the case of redundant

arrays, fragmentation is the means of enabling parallel data access. In warehousing,

parallel picking simply requires additional workers.

In warehouse picking, a process similar to load balancing is a concern for planning.

Directing multiple pickers to the same aisle at the same time, while not forbidden, is

undesirable. The congestion of multiple pickers in the same area can slow down
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efficiency. Similarly, in redundant disk arrays, multiple reads from the same disk is not

physically possible. Fragmentation via data striping assists in load balancing.

Furthermore, redundancy in disk arrays is not the same type of redundancy found

when warehouses hold multiple copies of the same SKU. The redundancy comes from a

parity bit among the disk array. Storing redundant SKUs in different locations permits the

picker to choose from several locations to fill the order needs. The redundancy found in

disk arrays does not permit this type of choice. The parity bit enables the reconstruction of

lost data. By reading the corresponding bits on the intact drives and the parity bit, the

system can reconstruct the data on the malfunctioning drive. Therefore, the redundancy is

only useful for protection from disk failure and not to increase productivity.

While similar to physical material storage issues, hard drives are not directly

equivalent. Increased productivity with disk arrays does not come from storing multiple

copies of the same data. Rather, disk arrays exploit the parallelism of multiple drives to

read more data at a time. The analogous warehouse employment would be multiple

workers, where increased rates of picking and placement are achieved by having more

people working. Furthermore, in the case of redundant disk arrays, the increase in data

reading rates from parallel operations comes at a cost of slower writing rates since

redundancy requires multiple writing operations. Despite the similarities in vocabulary,

drawing analogies between material storage and disk drive operations is not appropriate.

2.8 Related Optimization Opportunities

While much research falls into the category of route planning for order-picking, other

issues also influence warehouse fulfillment efficiency as well. This section outlines
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additional optimization problems that affect warehouse performance. The order batching

problem is related to the more common vehicle routing problem and describes the

optimization opportunity of wisely pairing orders together for picking. The bin packing

problem also has relevance to warehouse operations since storage bin capacities and

worker carrying capacities are finite.

2.8.1 Order Batching and Vehicle Routing

The vehicle routing problem (VRP) optimizes the set of routes that collectively visit all

target locations. With the TSP, one traveller must visit each city in a single tour. In the

VRP, several travellers work together to visit all the cities via several separate tours. For

additional information on the vehicle routing problem refer to Toth [2002].

Aspects of the vehicle routing problem arise in warehouse fulfillment when

designating many pick routes to retrieve items for order-fulfillment. Typically the load of

many orders are broken into smaller batches to accommodate the maximum capacity of

the order picker, which is similar to the Capacitated Vehicle Routing Problem (CVRP).

order-picking is similar to vehicle routing since both boil down to a division of labor;

however, the differences between vehicle routing and order-picking can be significant

depending on the order-picking policy.

When the order-picking policy uses a pick and sort technique, where all items are

treated individually regardless of the order to which they belong, the order-picking

process is equivalent to the capacitated vehicle routing problem. The collection of orders

translates to a list of items which corresponds to a list of locations that must be visited by

one of the many pickers. After picking, the system sorts the mass of items into individual

orders.
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When the order-picking policy uses batch picking, where members of an orders must

be picked together and not separated, the optimization problem takes a step away from the

traditional vehicle routing problem. Maintaining whole orders within each batch requires

additional constraints not usually found in vehicle routing. These constraints allow fewer

feasible solutions for batching than with pick and sort.

This thesis does not address order batching optimization. All simulations, whether

using strict organization storage or location-relaxed storage, batch pick by randomly

grouping orders into composite batches. See Chapter 4 for further discussion of order

batching and its role in warehouse fulfillment optimization as well as the significance of

ignoring order batching optimization.

2.8.2 Bin Packing Problem

The bin packing problem is another optimization problem that appears in warehouse

operations: given a set of n objects with sizes ',, 2, 13, ... In where 0<4i<1; find the

minimum number of unit size bins needed to pack all the objects. The bin packing

problem is also NP-Hard, but Martello and Toth [1990] provide effective solutions for

problems with hundreds of items.

Typically the bin packing problem applies to warehouse operations as part of the

capacitated vehicle routing problem and order-picking. With variable sized objects and a

finite capacity for each order picker, designating items to a particular picker depends not

only on the relative locations of the items (TSP or TPP) but also the sizes of the items and

maximum capacity of the order pickers.

The optimal solution to the capacitated vehicle routing problem does not necessarily

use the minimum number of bins (vehicles). The main concern for the CVRP regarding
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bin packing is that the number of vehicles at least equal the minimum necessary for bin

packing in order to maintain a feasible solution. Otherwise, bin packing is not explicitly

addressed in the CVRP.

In the location-relaxed storage case, multiple SKUs in a single storage bin establishes

another instance of the bin packing problem. When all items in a storage bin have the

same SKU, as is the case with strict organization, selection of bins is restricted by type and

no bin packing choices are possible. Furthermore, all the items in a strictly organized

storage bin have the same size. With location-relaxed storage, items may be placed in any

location and a mixing of items makes the bin packing problem relevant. As a result, the

relative sizes of items in a storage bin affects how many items may be placed there. This

thesis avoids the bin packing problem by considering only the case where all SKUs have

equal size.

2.9 Thesis Overview

The advances in RFID technology and growing interest by manufacturers and retailers to

use RFID technology for a variety of applications from supply chain management to

automated checkout to theft detection and avoidance makes the ubiquitous use of RFID

technology a matter of time. RFID technology and the systems developed at the MIT

Auto-ID Center will enable a wide variety of applications to increase productivity and

decrease waste during a product's lifetime. This research focuses on the impact of RFID

technology on warehouse operations; specifically centering on RFID as an enabling

technology for location-relaxed storage. The research makes the case for location-relaxed

storage as a valuable alternative to traditional storage techniques, especially for direct to

consumer warehouse operations as found in eCommerce.
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Chapter 3: Location-relaxed Storage

In the previous discussion of location-relaxed storage, one of the proposed benefits is a

reduction in the route walking distance because of the availability of multiple locations for

satisfying an SKU need. This chapter quantifies the benefit of multiple locations

associated with location-relaxed storage by first analyzing the impact of multiple locations

on the retrieval of a single item from the warehouse. The analysis then extends to routes

that involve the retrieval of more than one item, which necessitates a closer look at the

Warehouse-TPP. The findings for both, single picks and routes with more than one pick,

show that multiple locations reduce the route walking distance. Furthermore, the most

significant reduction occurs between having one location and two locations for filling the

SKU needs.

3.1 Multiple Locations: Single Pick Analysis

A strict organization storage policy tends to minimize the number of storage bins that

possess a particular SKU. Typically in strict organization, all copies of a particular SKU

are found in a single storage bin. Under a location-relaxed storage policy, the freedom to

place any item in any location tends to create multiple sites for a particular SKU.

Figure 3.1 illustrates an example for a particular SKU under strict organization and

location-relaxed storage. Multiple locations provide more routing choices when picking

items. These additional choices may translate to a more efficient order-picking because

path planning for order-picking can take advantage of the multiple locations in the search

for the shortest route.

With a few assumptions, an analytical comparison of the cost of picking a single item

when found in one location versus two locations reveals the potential for order-picking
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a) Five copies of an item in a single location b) Five copies of an item in five locations

Figure 3.1: Comparison of multiple SKU copy distribution

savings in warehouse operations. In the single pick analysis, the cost associated with a

particular location is the round trip walking distance of the location. Unlike the multiple

pick case,' where the route length depends on other items in the picking list, the cost of

picking a single item is easily computed and is constant for a particular location.

3.1.1 Continuous Approximation

Consider the case where a product appears in a single location of the warehouse and

the distribution of walking distance costs for all locations of the warehouse varies between

some minimum value a and some maximum value b. Furthermore, assume that random

selection of a location will yield a corresponding walking distance that has an equal

likelihood of being any value between a and b. In other words, approximate the

corresponding walking distances as a constant probability distribution between minimum

distance a and maximum distance b. Even though the model uses a continuous distribution

to represent what should be a discrete distribution, the analysis will provide useful

1. Multiple item picking routes are also referred to multi-address picking.
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Figure 3.2: Single location walking distance probability density function

The distribution shown indicates all path lengths are between a and b units long. Furthermore, the
probably of a path length is equal for all values between a and b.

information regarding the effect of multiple locations on expected walking distances.

Figure 3.2 illustrates the probability density function of walking distances for the model

when picking a single item with a single choice of storage location. In this case, the

expected value of the walking distance when choosing one location at random is the

average of the maximum and minimum walking distances:

E= a + b (3.1)

If multiple locations are to be considered for path planning, then the minimum walking

distance of the possible choices fills the need of the single pick and yields the shortest

route. When only one location is available to fulfill the need, the path length is equal to the

round trip distance associated with the location. When multiple locations can fulfill the

need, the path length is the minimum distance of the possible location choices.

When two locations meet the single pick need, the model chooses the location that has

the shorter walking distance. Although the distribution of location distances is the same,

the probability density function when considering the minimum of two randomly selected

locations is not constant. Figure 3.3 shows the probability density function when
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Figure 3.3: Walking distance probability for visiting one of two locations
Choosing the minimum of two randomly selected locations that have the probability density function

shown in Figure 3.2 creates a probability density function that favors lower length paths.

considering the minimum of two locations. In this case the expected value of the walking

distance is

E2 ~ J xP 2 (1 =x)dx = JbXbx( 2 JdX (3.2)
Ua b-a) b-a)

where P 2 (l = x) is the probability that the minimum distance of two randomly selected

locations is equal to 1. The expression in equation 3.2 evaluates to become

E2 = 2a+b (3.3)
3.

Therefore, the expected improvement when choosing from two locations instead of one is

E2 _ 2(2a + b) (34)
Ei 3(a+b)

where by definition, a ; b. Figure 3.4 illustrates the range of improvements depending on

the relative values of a and b. The maximum improvement of 33% shorter expected

distance occurs when a = 0. This best case scenario corresponds to a large difference

between minimum and maximum walking distances. This large difference magnifies the
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Figure 3.4: Expected improvement when considering two locations

The amount of expected improvement when considering two locations instead of just one location
varies depending on the relative values of the path length minimum and path length maximum.

significance of the walking distance cost savings potential when considering two

randomly chosen locations rather than just one.

Minimum improvement occurs when a = b, which shows no improvement because

all locations have the same walking distance and considering a second location does not

offer any potential for walking cost savings. The amount of expected improvement is

directly related to the maximum and minimum walking distance difference.

_b- a
E6 -E2 = 6 (3.5)

In other words, the absolute walking distance savings is 1/6 the difference between

maximum and minimum. Figure 3.5 illustrates the cost savings of two locations.

3.1.2 Discrete Analysis

The single pick analysis extends to cover discrete distributions that are not necessarily

equiprobable. While not as intuitive as the simple continuous example, the expected
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Figure 3.5: One location versus two locations

When considering only one randomly selected location, the expected path length is a b. When

considering the minimum of two locations, the expected path length is 2a+b 2
3

walking distance value for one location and the expected distance value for two locations

can be calculated directly given the probability distribution. Figure 3.6 shows the

probability distribution for the warehouse layout shown in Figure 3.7. The distances for

each warehouse location extend from the start point to the warehouse location to the finish

Path Length Probability for One Location Choice
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4'-0.03
cz
0

0.02
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0
30 40 50 60 70 80 90 100

Path Length (meters)

Figure 3.6: Trip distance probability distribution when visiting one location

point. By calculating the trip distance for each location, the probability of randomly

picking a storage location that has a trip distance of 44.5 meters is the number of locations

that have 44.5 meters as the trip distance divided by the total number of locations. For
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example, the probability distribution of figure 3.6 indicates that randomly choosing one

location has a 0.0389 probability of selecting a round trip path length of 44.5 meters. In

other words, 3.89% of the locations require 44.5 meters to walk from the starting location,

to the selected location, and to the finish location. The fifteen peaks that appear in figure

3.6 correspond to the fifteen row aisles in the warehouse layout. Many storage locations in

the same row aisle will have the same trip distance.

Start . * Finish

Figure 3.7: Warehouse layout

The expected value of the walking distance for this probability distribution is

b
El = P(L = 1) - I = 60 , (3.6)

1= a

where a is the minimum length, b is the maximum length, and P(L = 1) is the probability

that a randomly selected location has a path length of 1.

When two locations are considered, then the walking distance probability distribution

becomes
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P 2 (L=l) = P(L1 =l, L,! L 2)+P(L2 = l, L2 ! L 1)-P(L =l,L2 =l)
,(3.7)

= 2P(L = 1)-P(L>l)-P(LI = 1)-P(L2 = 1)

which indicates that the path length probability distribution for two randomly chosen

locations is two times the probability that one location equals 1 times the probability that

the other location is greater than or equal to 1, minus the probability that both locations

have path lengths equal to 1. Figure 3.8 shows the probabilities when choosing between

two locations. Just as with figure 3.3, the shape of the distribution shifts so that lower trip

distances have greater weight than higher trip distances, which makes sense because the

distribution considers the minimum of two possible trip distances. The expected value of

the two location probability distribution is

b

E2= P 2(L = l) -I = 51.2. (3.8)
= a

The expected value when considering two randomly chosen locations is 14.6% shorter

than when considering only one location (Equation 3.6).

Path Length Probability for Two Location Choices
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Figure 3.8: Trip distance probability distribution for visiting one of two locations
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The single pick analysis shows the potential for walking distance savings when two

locations meet the needs for a single pick. As the number of locations that meet the pick

requirement increases, the expected value for the walking distance will continue to

decrease. In the single pick case, computing the walking distance cost associated with a

particular location over another is simple and choosing the location with the minimum

cost is straightforward. When considering multi-address picking (the retrieval of many

items in a single route through the warehouse), the analysis becomes more complicated

due to the relationship of the minimum walking path distance to NP-hard problems like

the Traveling Salesman Problem (Section 2.3.2) and the Traveling Purchaser Problem

(Section 2.4.1). In the multi-address picking case, the walking distance associated with a

set of storage bins is not easily computed and the minimum walking distance depends

heavily and non-trivially on the other items in the pick list.

3.2 Heuristics for Route Construction

Evaluation of location-relaxed storage and its comparison to strict organization policies in

multi-pick situations require reasonable solutions to the location-relaxed storage picking

problem and the inherent Warehouse-TPP. Section 2.3.4 discussed routing heuristics for

the warehouse traveling salesman problem. The options for building a Warehouse-TPP

heuristic from warehouse-TSP heuristics are not promising. Possible methods for

constructing a derivative heuristic include selecting locations based on a separate selection

heuristic and then applying the warehouse-TSP heuristic. However, this approach merely

shifts the burden to finding an appropriate selection method.

Another possibility is to construct the selection process using the warehouse-TSP

heuristic as a metric for identifying a good selection. For example, a hill climbing search
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would use a warehouse-TSP heuristic to evaluate the routing cost for a particular set of

location choices. After randomly changing the selections for a few of the items, if the new

cost determined by the warehouse-TSP heuristic is less than the previous cost, then the

changes are kept; otherwise the changes are discarded and a new set of changes

considered. Repetition of random changes in this manner constitutes a hill climbing

optimization technique that will find a local optimum, but computation time will tend to

be long.

This section establishes simple heuristics for the Warehouse-TPP appropriate for

further investigation of multiple picking analysis. The heuristics used are greedy

algorithms for selecting storage bins and constructing routes. Section 3.3 establishes the

utility of these heuristics by noting that heuristic results and optimal solution results

respond similarly when given access to multiple locations.

3.2.1 A Greedy Heuristic for Route Construction

A greedy heuristic makes decisions based on what seems best at the time of the decision.

Greedy heuristics for the Warehouse-TPP begin with an empty route that travels from the

starting point to the ending point. Each step of the greedy heuristic selects a new location

to be visited that satisfies one of the SKUs on the pick list. Augmenting the route to

incorporate the additional location completes the step. Repeating the process for each

SKU on the pick list satisfies the Warehouse-TPP.

The first greedy heuristic chooses the next SKU to be satisfied randomly. Then for

each storage bin that contains the chosen item, the heuristic computes the extra walking

path distances for adding the storage bin location to the route in each position of the

existing route. For example, if there were two locations, A and B, already in the route in
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the order AB, then when considering storage bin location C, the added walking path

distances considered include routes CAB, ACB, and ABC. Finally, the heuristic selects

the storage bin and order number in the route that adds minimum length to the route.

Figure 3.9 illustrates the first greedy heuristic.

Randomly choose an item to satisfy

Start Calculate the added distance for

no each candidate location in each

position of the route
Is

the order

filled? Select candidate with minimum
yes added distance

End Add selected location to the route

Figure 3.9: Random greedy heuristic

3.2.2 Greedy Heuristic Variations

The random greedy heuristic discussed in section 3.2.1 randomly chooses the next item to

be added to the route. Variations on this greedy heuristic include using specific criteria to

select the next item to satisfy. For example, instead of randomly choosing an item from the

pick list, an alternate greedy heuristic considers all unsatisfied items and chooses the item,

storage bin, and route order position with the smallest additional walk distance for the

route. Figure 3.10 illustrates this minimum greedy heuristic.

The average performances of these two heuristics are compared by solving a series of

warehouse-TPPs with each method. The problem instances correspond to the warehouse

configuration shown in Figure 3.7 and take the form of 'pick one copy of n different
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yes

End -Add selected location to the route

Figure 3.10: Minimum greedy heuristic

products, each of which is available in 5 different locations.'1 Appendix A provides

additional information on problem construction and heuristic comparison.

Figure 3.11 shows the results of the comparison and reports that on average, the

minimum greedy heuristic performs worse than the random greedy heuristic. This

surprising result illustrates the weakness of greedy heuristics with respect to optimal

solutions for the Warehouse-TPP problem. The minimum greedy heuristic is 'too greedy'

in selecting the absolute shortest possible route addition at each step. These myopic

choices at each step lead to a poor overall result.

Since choosing the shortest addition of all possible items proved to decrease

performance, the third greedy heuristic attempts to do the opposite by selecting the SKU

from the pick list that increases the route length the most. Like the minimum greedy

heuristic, this maximum greedy heuristic considers all storage bins of each unsatisfied

item, and computes the additional travel distance for each storage bin. However, instead of

taking the overall minimum, the heuristic determines the minimum for each item, then

1. In Chapter 3 all problems consider picking one copy of a particular product. Chapter 4 will
expand the discussion to include picking multiple copies of the same product (lot size).

68



160

140

120

100

80

60

40

20

Greedy Heuristic Comparison

-_ - Minimum Selection

- Random Selection

0 2 4 6 8 10 12 14 16
Number of Picks

Figure 3.11: Greedy heuristic comparison (5 locations per item)

selects the item which increases the walking distance the most. Figure 3.12 illustrates the

selection process for the maximum greedy heuristic. While counter-intuitive, the third

greedy heuristic achieves, on average, better results than the random and minimum greedy

heuristics. The 'un-greedy' step of selecting the item with the maximum additional

walking distance assists in determining a short overall route by addressing the hard-to-
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Figure 3.12: Maximum greedy heuristic
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reach items first rather than last as with the minimum greedy heuristic. Selecting the hard-

to-reach item first encourages better decisions for the other items.

Figure 3.13 illustrates these three greedy heuristic solutions to the same Warehouse-

TPP problem along with an optimal solution. This instance of the Warehouse-TPP

requires the collection of eight items found at six locations each. In other words, pick eight

different items, each of which is found in six different locations. Locations carrying the

same SKU bear the same color. The problem was generated by randomly selecting six

locations for each of the eight items as described further in Appendix A. The same

problem was then solved by each technique. For this example, the maximum greedy

heuristic performs closest to the optimal solution of the three heuristics, and the random

greedy heuristic performs the worst.
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Figure 3.13: Heuristic solutions, example one
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Figure 3.14 shows solutions to a second example Warehouse-TPP. In this example, the

best heuristic (maximum) matches the optimal solution. Furthermore, while the minimum

greedy heuristic performs better than the random heuristic in example one, in this

example, the random greedy heuristic performs better than the minimum greedy heuristic.
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Figure 3.14: Heuristic solutions, example two
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Figure 3.15: Heuristic comparison (5 locations per item)
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Figure 3.15 shows the average performance for all three greedy heuristics with five

storage bin locations for each SKU. For a randomly selected problem any of the three

heuristic could have the best solution. However, the maximum greedy heuristic, which

satisfies the farthest item first, typically performs the best.

3.2.3 Greedy Heuristics Versus Optimal Solutions

Figure 3.16 shows the performance of the three greedy heuristics relative to the optimal

solution for the same problem. With only one pick, all four methods select the same

solution. As the number of picks increases, the difference between heuristic solutions and

the optimal solution increases as well. Figure 3.17 estimates the performance of the best

greedy heuristic compared to the optimal solution. The linear trend line implies that

heuristic routes with 20 picks will be approximately 15% longer than optimal routes.

Since the size of Warehouse-TPP grows exponentially with larger numbers of picks, a

linear trend line may be optimistic but illustrates the sub-optimality of the greedy

heuristics and serves as a lower bound for the expected deviation from optimality.
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Figure 3.16: Comparison of greedy heuristics to optimal solution
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Figure 3.17: Linear projection of heuristic deviation from optimality

3.3 Multiple Pick Analysis

Section 3.1 analyzed the effect of multiple storage bins on the walking path length for a

single pick. Multiple picks in a route necessitate more complex analyses because of the

NP-hard nature of the routing problem and the large number of possible routes to consider.

The single pick analysis determined the expected walking path distance by considering all

route possibilities and their probabilities. The very large number of possible routes in the

multi-pick case, however, makes enumeration of routes and probabilities infeasible. To

estimate a solution, the following analysis for multiple picks estimates the expected route

walking distance by randomly generating Warehouse-TPP instances and recording the

solution's route distance through heuristics described in section 3.2.

The picking problems that the analysis experiments upon are generated by randomly

selecting storage bin locations for each SKU needed. For example, if the problem is to

pick eight items and each item is found in three different locations, then the problem is

generated by randomly selecting three storage bin locations and designating those
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locations as containing SKU #1. Then randomly selecting three storage locations for each

remaining SKU in the pick list completes the problem parameters. To obtain a better

estimate of the expected route length for the given problem size, several different picking

problems are generated and solved, and the average route length computed.

Optimal Solution
140+6 

Items
' 120 -- 5 Items

-A 4 Items
E 10 -* 3 Items

c80 -- 2 Items
Co

-+1 Item
5 60

140

20

0
0 2 4 6 8 10

Number of Locations for each SKU

Figure 3.18: Effect of multiple picking locations on optimal routes

Figure 3.18 illustrates the average picking route length for optimal solutions. The

different curves correspond to different numbers of items picked along the route. The red

curve shows how picking routes that collect six items are affected by multiple locations

from which to access the items. The x-axis corresponds to the number of locations in

which each SKU may be found. When the number of locations equals one, the problem

corresponds to the traveling salesman routing problem. When the number of locations is

two or larger, the problem is a travelling purchaser problem. As the number of locations

for each SKU increases, the route length decreases. The most significant decline in route

length occurs between having one location for each SKU and having two locations for

each SKU. These results are consistent with the single pick analysis.
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Figure 3.19 illustrates the average pick-route length for routes obtained with a greedy

heuristic. In this case it is the maximum selection greedy heuristic. The greedy heuristic

results behave similar to optimal routing; as the number of storage bins available to meet a

picking need increase, the overall route length decreases. The decrease is especially strong

Maximum Greedy Heuristic

210 - 15 Items

180 -- *-13 Items
C
CO 150 - -x-11 Items

120 -+-9 Items

9- 7 Items

(D.-5 items

30 -
--- 1 Item

0 ' '_- --
0 2 4 6 8 10

Number of Locations

Figure 3.19: Maximum selection heuristic

between one available location and two locations, just as with the optimal route case.

Furthermore, both optimal routes and greedy heuristic routes show diminishing

advantages as the number of available storage locations increases. Figure 3.20 shows the

same results from Figures 3.18 and 3.19 on the same graph for the specific case where

there are five items to be picked. The data confirm that the greedy solutions, while

consistently higher in value as the optimal solution, behave similarly to an increasing

number of location from which to pick the needed items.

A thorough analysis of warehouse operations in Chapter 4 requires the solution to a

large series of warehouse travelling purchaser problems. For the sake of simplicity and
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Greedy Heurstic compared to Optimal Solution
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Figure 3.20: Greedy heuristic compared to the optimal solution

The number of items picked is five.

computation time, solutions to the Warehouse-TPP are obtained with the best greedy

heuristic, the maximum greedy heuristic. As demonstrated by comparison to the optimal

solutions, this heuristic, while sub-optimal, behaves similarly to changes in the number of

storage bins for each SKU as the optimal solution.
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Chapter 4: Warehouse Picking and Placement

The major factor of warehouse operations effort is order-picking, which makes efficiency

in order-picking a top priority in warehouse management [Frazelle 2002]. The order-

picking with location-relaxed storage is especially well positioned for optimization. The

previous chapter outlines at a qualitative level how we expect location-relaxed storage to

behave compared to traditional methods. This chapter focuses on routing for picking and

placement operations and provides a quantitative comparison between location-relaxed

storage and strict organization storage. The first section of this chapter discusses the

warehouse order-fulfillment problem in greater detail and contrasts the location-relaxed

fulfillment problem with traditional strict organization problems. While opportunities for

optimization are numerous, the complexity of the problem makes optimization difficult.

The second section covers warehouse item placement and discusses how location-relaxed

item placement differs from strict organization placement. The last section outlines a

warehouse simulation of placement and picking operations that quantifies the differences

between location-relaxed storage and strict organization storage and reveals that location-

relaxed storage functions best with small picking lot sizes.

4.1 Location-relaxed Warehouse Order-fulfillment

As mentioned in Section 2.2.4, order-picking has been identified as the major component

of warehouse cost. Reduction in the effort required for order-picking has typically focused

on establishing efficient picking routes. This section explains the warehouse order-

fulfillment problem and details additional areas where optimization may yield better

efficiency. The warehouse order-fulfillment problem as a whole reaches into several

simultaneous optimization problems, which makes a globally optimal solution difficult to
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find and manage.

4.1.1 Interdependence of Simultaneous Problems

Chapter 3 treats the Warehouse-TPP as an independent problem, that is, given needed

items X, Y, and Z, find the shortest route by selecting the storage bins and visitation

sequence that meet the demand with the least cost. The problem as presented is self-

contained and does not consider the influences of other order needs. However, in real

warehouse picking, several concurrent traveling purchaser problems will arise

simultaneously. These simultaneous problems are not independent. The solution of one

problem influences the solution of the others because satisfying one order consumes

resources which are then no longer available for the others.

For example, consider three traveling purchaser problems where TPPI requires items

X, Y, and Z; TPP 2 requires items A, B, and C; and TPP 3 requires items B, X, and Z. TPP

solutions meet the needs of TPP1 without any consideration for TPP 2 or TPP3. In reality,

the overall goal is to minimize the total cost for all three problems. The items used to

satisfy X and Z for TPP1 may provide significantly better solutions for TPP3, however, this

possibility is ignored and the overall solution may suffer higher costs than necessary. A

globally optimal solution must consider all problems simultaneously.

This type of interdependence does not occur with TSPs and strict organization. The

one-to-one correspondence between SKUs and storage bins insulate concurrent

warehouse-TSPs from affecting each other. Since access to a particular SKU is restricted

to a single location in a strict organization warehouse, the solution of one warehouse-TSP

never denies another problem of a resource or opportunity.

1. Resource denial might occur if the item is the last copy of the SKU and meeting one problem's
need necessarily denies the item to another. However, this is an issue of stockout, not optimization.
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4.1.2 Order Batching

In addition to the major complication of interdependent problems, order batching adds

another layer of optimization to the order-fulfillment problem. As discussed in section

2.8.1, order batching aggregates separate orders into a picking list for a single route

through the warehouse.1 After picking, the operator divides the batch into individual

orders. Order batching relates to the vehicle routing problem and is a complex

optimization problem. Table 4.1 shows how the number of possible groupings grows

rapidly with the number of groups (batches) and the number of orders in each group.

Table 4.1: Number of order batching possibilitiesa

Number of Orders in each Group

Number 1 2 3 4
of Groups

1 1 1 1 1 1

2n

2 1 3 10 35
2

3 1 45 840 17,325
2

0 4n)(3n)2n
4 1 1260 184,800 31,531,500 n n n

2

(2k)((k -1)2) .(4) )k4iki
k 1 2 2 _ 2 f) n(n)

2i= i =2 i= 2

2 2 2

a. The total number of orders is k -n

In the location-relaxed case, the difficulties of order batching are compounded by the

interdependence of the subsequent traveling purchaser problems. Each different batching

1. Creating larger picking lists increases efficiency by filling many orders with a single route
through the warehouse. Furthermore, the amount of material picked is limited by the picker
capacity and not by the size of the order.
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possibility leads to a different set of interdependent traveling purchaser problems, which

in turn are not easily evaluated. Furthermore, the number of combinations will be

extremely high even for moderately sized problems. With four groupings and four orders

in each group, the number of combinations is over 31 million. With five groupings and

four orders in each group, the number of combinations is over 150 billion.

Figure 4.1 illustrates the warehouse picking process with order batching. Strict

organization order-picking with batching results in k independent warehouse-TSPs and

individually optimized solutions lead to a globally optimal solution for the entire set.

Location-relaxed storage order-picking with batching results in k interdependent

Warehouse-TPPs, and individual optimization of each Warehouse-TPP will not

necessarily lead to the optimal solution for the entire set of problems. A fully optimal

solution for location-relaxed storage must optimize both the batching process and the

subsequent set of TPPs simultaneously.

BDJ... AFH ...Z CEG...

TSP/TPP TSP/TPP TSP/TPP

Figure 4.1: Location-relaxed warehouse picking

Orders

Batches

Routing
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4.1.3 Impact of Turnover on Optimization

Order batching introduces a potentially large problem for optimization purposes,

especially as the number of batches increases. If warehouse operations filled orders day-

by-day,1 then the opportunity for optimization would be enormous because a large volume

of orders provide ample order pairings to reduce route walking distances. In other words,

there is sufficient time to accumulate orders with favorable matchings. Finding the

optimal would be difficult, but the opportunity for cost savings is high and even sub-

optimal solutions will benefit from a moderate amount of optimization. However,

warehouse operations typically fill orders as soon as possible and cannot wait to collect an

entire day's orders.

Filling orders as soon as possible or hour-by-hour rather than day-by-day keeps the

size of the optimization problem smaller, but also reduces the potential for optimization.

Interdependence will still remain and complicate the problem, but the number of batching

combinations and the number of simultaneous problems are kept small by the need for

rapid turnover.

4.1.4 Changing the Optimization Criterion

Interdependence and the constant flow of new orders into the warehouse reveal a benefit

to considering optimization mindful of future possibilities rather than solely focusing on

current needs. In other words, solving a current problem has an impact on future tasks;

therefore, a wise optimization method would take the effects on the future into account.

Adding this type of foresight to the problem solving process requires a deviation from the

simple and greedy optimization criterion of shortest walking distance.
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For example, consider the likely scenario of two pick route solutions to the same TPP

problem where one is slightly longer than the other. Optimizing purely based on walking

distance would myopically choose the shorter route. Now suppose that the shorter route

uses more favorable locations and the slightly longer route uses more unfavorable

locations. Choosing the slightly longer route leaves items in favorable locations for an

upcoming and as yet unknown pick list. For the relatively small cost of a slightly longer

walking distance, the favorably located items would be available for future picking.

The advantage of this trade-off between current cost of walking distance and future

benefits is not completely clear. The decision would depend on the added walking distance

involved, the difference in favorability of the two locations, and the expectation of

needing the same item in the future. Furthermore, because different picking routes

frequently have the same walking distance this type of decision making is mandatory.

Additional complications to such routing decisions arise when considering the

combined effects of order-picking and inventory placement. Typically, route construction

does not take into account the fact that the items picked leave 'holes' where future

incoming items may be placed. In the strict organization storage case, ignoring placement

effects is appropriate because the one-to-one correspondence between SKU and storage

bin remains fairly static. With location-relaxed storage, every open spot is a viable storage

spot for incoming material. Therefore, opening up favorable locations during the picking

phase of warehouse operations leaves favorable locations for the placement phase, which

is also advantageous. When confronted with a choice between two routes of similar

walking distance, one that uses favorable locations and the other using less favorable

locations, deciding which one to use is a choice between making future placement tasks
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easier or making future picking tasks easier. Using the route with more favorable locations

deprives upcoming picking routes from using the more favorable items but opens up

favorable space for placement. Using the route with less favorably located items leaves the

more favorable items for future picking but also leaves fewer favorable 'holes' for

incoming material.

The best choice will be time dependent. Early in a picking session, when it is known

that many more picking operations will follow before new placement operations, choosing

the less favorable route has a greater chance of being advantageous since there is more

opportunity to use the favorably located items in the upcoming picking routes. Later in the

picking session, when upcoming placement operations are known to be closer, using the

more favorable route makes more sense since there are fewer upcoming picking events to

take advantage of the favorably located items and using the favorably located items opens

advantageous space for upcoming placement operations.

4.1.5 Implications of Interdependence and Order Batching on Analysis

The potential for lower walking distances stems from the larger search space of feasible

solutions available with the TPP over an equal sized TSP. When considering the global

optimization of many warehouse order-picking operations, however, interdependence

found within a set of Warehouse-TPPs limits the set of solutions in a way that is not found

in a set of warehouse-TSPs. The significance of Warehouse-TPP interdependence on

optimization is not fully understood. While concurrent TPPs put some restrictions on the

possible solutions, the feasible solutions for the set of TPP remains considerably large.

Furthermore, when considering global optimization of the entire warehouse

operations, interdependence effects cannot be separated from item placement operations.
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TSP analyses generally do not consider the relationship between picking and placement

since aggregate storage tends to minimize the link and leaves each placement operation

and picking operation independent of the others. With location-relaxed storage, current

decisions have a strong effect on future tasks. With strict organization storage, current

decisions have little effect on future tasks.

The warehouse operations simulation to be discussed in section 4.3 compares location-

relaxed storage with strict organization storage but does not directly address all of the

warehouse optimization issues discussed in this chapter. In our approach, several

optimization decisions are abandoned in favor of a randomized approach to focus on the

potential of location-relaxed storage against traditional strict organization storage. Section

4.3.2 discusses the model simplifications employed and the limitations of the simulation.

4.2 Location-relaxed Warehouse Replenishment (Item Placement)

Item placement in a strict organization warehouse is simply the reverse process of picking

and also relates to the warehouse-TSP. Under location-relaxed storage, however, greater

flexibility in placing items changes the nature of the route optimization problem to a

version of the prize collecting traveling salesman problem. This section explains location-

relaxed item placement and discusses its differences from strict organization.

4.2.1 Prize Collecting Traveling Salesman Problem (k-TSP)

Since all open spaces are available for placement, the problem of replenishment into a

location-relaxed storage warehouse relates to the prize collecting traveling salesman

problem [Balas 1989]. The regular traveling salesman problem requires the visitation of a

1. The prize collecting traveling salesman problem can also be referred to as a k-TSP.
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specific list of cities. In the prize collecting TSP, the route must visit k cities of a list of n

cities provided.' In other words, given n cities construct a minimum cost route that visits

any k cities. Just as with the regular TSP, a list of cities is part of the problem specification,

but with the prize collecting case only some of the cities on the list need to be visited. In

the location-relaxed storage warehouse, a replenishment routing problem has the set of all

open spaces as the list of 'city' options, and the number of 'cities' that must be visited is

determined by the number of items to be stored.

The location-relaxed warehouse replenishment problem is also a special case of the

traveling purchaser problem where there is one commodity needed in great quantity and is

available in many different cities. Location-relaxed warehouse item placement can be

considered as a Warehouse-TPP where storage bins that have free space comprise the set

of available cities and the amount of free space in each corresponds to the amount of the

commodity available. In a sense, the commodity is free space within the warehouse and

the Warehouse-TPP must find the route that acquires enough free space to meet the

storage requirements.

4.2.2 Interdependence

Just as with location-relaxed picking, multiple instances of concurrent placement

problems influence each other and the solution of one affects the solution of the others.

The interdependence effect is even stronger with the item placement process than with

picking because there is only one commodity involved. The links between interdependent

Warehouse-TPPs in picking are limited to repeated SKUs across the series of TPPs. As a

result, the interdependence is not strong because each decision does not necessarily affect

1. The prize collecting TSP described by Balas is more general than the problem statement
provided here.

85



the other route optimization problems. Placement k-TSPs on the other hand, have a very

strong interdependence as every storage task links to the other concurrent k-TSPs since

the commodity involved is generic 'free space.' In placement, every decision affects all

other placement problems.

4.3 Warehouse Placement and Picking Simulation

This section introduces a simulation of warehouse operations that compares the efficiency

of location-relaxed storage against traditional strict organization and evaluates the

potential of location-relaxed storage for warehouse operations. By running the simulation

with a variety of input characteristics, the results reveal how these input characteristics

affect the relative merits of location-relaxed storage and strict organization storage under

different loading conditions. This simulation analysis focuses on the effect placement lot

size and picking lot size have on each warehouse system. Chapter 2 speculated that

location-relaxed storage is especially suited for warehouse characteristics with small

picking lot sizes. The simulation results reported later in this chapter support this

hypothesis.

4.3.1 Lot Size

The order size is the number of units in a group that are collated together at the warehouse

and then shipped out of the warehouse to a single destination. Order size makes no

reference to the identity of the items involved; the order could be 12 units of the same

SKU or one copy each of 12 different SKUs and the order size would be 12 in both cases.

The lot size is the number of units with the same SKU in a group or order. An order

with three copies of a SKU, has a lot size of 3. An order comprised of several different

SKU has a different lot size for each one. Placement lot size refers to the lot size of
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products brought into the warehouse. In other words, SKUs arriving in groups of four

have an placement lot size of 4. Similarly, picking lot size refers to the lot size of SKUs in

orders leaving the warehouse.

Location-relaxed storage should have its strongest advantages over traditional strict

organization storage when the picking lot size is small. Small lot sizes are better capable

of taking advantage of location-relaxed storage's distributed placement of SKU items

because only a small number of bins need to be visited and the relevant bins are numerous

and widespread. Larger lot sizes are better able to take advantage of aggregated storage

found in strict organization storage because obtaining several copies of an SKU at the

same time is easier with aggregation since a single bin visit yields several copies of the

needed SKU.

4.3.2 Model Simplification

The best method to compare the relative merits of location-relaxed storage to traditional

storage techniques would calculate the optimal policies for location-relaxed storage and

the optimal policies for strict organization storage and compare the warehouse operations

work effort for each. Unfortunately, such optimal policies are not computationally

feasible. As described in sections 4.1 and 4.2, the full warehouse order-fulfillment

problem and warehouse placement problem for location-relaxed storage contain many

complications and interdependent subproblems. Even with strict organization, where prior

research is significantly more abundant, optimal techniques are not well understood.

Furthermore, any optimal policy is likely to depend on a variety of warehouse

characteristics, and the optimal policy itself will be problem dependent. In other words,

different techniques may be necessary for different warehouse sizes and input
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characteristics to reach an optimal solution. For the purpose of evaluating location-relaxed

storage, many simplifications are employed in the following simulation to make

comparisons feasible.

4.3.2.1 Equal Sized SKUs

Setting all SKUs to the same size simplifies the analysis of warehouse operations by

removing the significance of the bin packing problem. Capacity is still an issue, both for

storage bins and worker carrying capacity; however, since all SKUs are the same size,

size-based decisions to maximize bin storage utilization are not an issue. Each bin will be

able to fit a fixed number of items, regardless of the identity of those items.

4.3.2.2 Interdependence

Interdependence is a complicating factor that cannot be simplified or removed from the

warehouse problem. The simulation deals with interdependence by myopically solving

each problem one-by-one. After a problem is solved, the resources used by that problem

are no longer available for the remaining problems. This technique makes no attempt to

optimize the order of solving the set of problems, but the constraints of interdependence

are always met. As a result, the solutions are valid, but make no attempt to be efficient.

Interdependence is a larger issue for location-relaxed storage than with strict

organization storage. For the most part, strict organization storage routing problems (both

placement and picking) are independent of other routing problems. The consistent

correlation between SKU and storage bin makes strict organization routing insensitive to

previous problem decisions. Therefore, the decision to treat problems one-by-one has little

effect on optimization in the strict organization case. This simplification ignores an

opportunity for added optimization that is available in the location-relaxed storage case,

and this cost savings opportunity is not available with strict organization storage. In other

88



words, this simplification is more of a detriment to location-relaxed warehouses than strict

organization warehouses.

4.3.2.3 Order Batching

Many options for order-picking technique are available including, pick by order, zone

picking, and batch picking. The warehouse simulation arbitrarily selects batch picking for

order-fulfillment. Order batching, as described in section 4.1.2, offers a rich opportunity

for optimization through a large number of possible combinations of organizing orders

into pick batches. Similar to interdependence, the simplification for this difficult

optimization problem ignores this opportunity for cost savings in favor of a

straightforward solution. The simulation randomly creates batches from a set of orders

without regard to SKU identity or routing possibilities. This lack of vision applies to both

location-relaxed storage routing and strict organization routing; however, the relative

impact that random assignment has in each case is not simple to evaluate. In other words,

how order batching optimization will affect location-relaxed storage operations relative to

optimized strict organization order batching is not known.

4.3.2.4 Greedy Routing Heuristic

As shown in section 3.2, greedy heuristics for the TPP and TSP behave similarly to

optimal routes. For computational simplicity, greedy solutions are used for route

construction for both TPP (location-relaxed) and TSP (strict organization). Using the

optimal solution is not possible for the simulation because of computation time

constraints; however, comparisons of a few optimal solutions and greedy heuristic

solutions show that although greedy heuristic solutions have an overall longer path length,

both behave similarly to changes in the number of SKU locations.
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4.3.2.5 Demand Characteristics

All SKUs have an equal demand rate in the warehouse simulation. Assigning equal

demand rates to all the SKUs involved in the -warehouse operations simulation nullifies

the role of demand-based placement policies on warehouse performance. Chapter 7

discusses demand-based placement strategies further and its relative merits in location-

relaxed and strict organization storage warehousing. By setting all SKUs to the same

demand rate all items would be treated equally by a demand based storage policy. 1

Furthermore, the equivalence of the SKUs' size and demand rate simplifies the analysis of

warehouse results since changes in behavior can be attributed more easily to changes in

other warehouse characteristics rather than to the demand or size distribution.

4.3.2.6 No Stockout

For the warehouse simulation, the data set that governs which items are to be placed and

removed each cycle is constructed such that no stockout occurs at any point in the

simulation. Incoming and outgoing items are selected randomly from the equiprobable

demand distribution for the SKUs. However, if an outgoing item selected is not in stock,

then that selection is discarded and a new one selected. Stockout is an issue for inventory

control, which governs how much of an item should be stored in the warehouse. The

comparison of location-relaxed storage and strict organization storage is not concerned

with how much of an item is stored, but where it is stored. Furthermore, the data used in

the simulations are the same for both warehouses so even if stockout were to occur, it

would occur equally in both warehouses. Therefore, this simplification will have no effect

on the results.

1. Item size is sometimes a factor in demand based placement policies, but in the warehouse
simulation all SKUs have the same size as well.
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4.3.2.7 Warehouse Dimensions

As stated before, a high number of factors influence warehouse operations and efficiency

including the size and shape of the warehouse. Due to computation time constraints the

research focuses on the effect of lot size on warehouse operations but leaves other

potential factors, such as warehouse size and shape, for future investigation. The

simulation analysis arbitrarily sets the warehouse dimensions to 4 columns and 30 rows

(15 aisles, 5 cross aisles), 12 units per section, 8 bins per unit, and a capacity of 18 items in

each bin. Whether this arbitrary selection favors one method over the other is unknown

and left for future exploration.

4.3.2.8 Constant Order Size, Constant Lot Size

The simulation varies the placement and picking lot sizes during different runs of the

simulation to determine the effect of lot size on warehouse operations. For simplicity, the

order sizes are held constant throughout all simulations and the lot size is constant within a

single simulation. Keeping order size and lot size fixed simplifies the analysis and helps

keep the focus on the varying input parameters.

Since both order size and lot size are constant in each simulation, occasionally an

order must have an off-lot size of an SKU to complete the order in the correct size. In

other words, when order size is not a multiple of lot size one SKU in the order will have a

lot size smaller than the designated lot size for the simulation. For example, when the

order size is 20 and the desired lot size is 3, the order will have 6 SKUs with three copies

(lot size 3) and one SKU with two copies (lot size 2). This consequence is unavoidable

when maintaining a constant order size across all simulations.

4.3.3 Picking and Placement Simulation Procedures

The warehouse operations simulation begins with an empty warehouse. As mentioned in

91



section 4.3.2.7, the warehouse consists of 4 columns and 30 rows; each section has 12

units with 8 storage bins in each unit. The size of the storage bins are all equal, and hold

no more than 18 items. The maximum capacity of the warehouse is 207,360 items. These

dimensions are held constant throughout the analysis.

The simulation initializes the warehouse by generating an initial inventory for the

warehouse and placing the initial inventory into the warehouse. The simulation then

cycles through picking phases and replenishment phases while keeping track of the route

walking distances for each operation. The initial inventory and subsequent cycles are

generated once and the same data is used for both location-relaxed and strict organization

simulations.

Simulation Procedure
1. Begin with an empty warehouse
2. Generate the initial inventory and place items into the warehouse based on the placement lot size and

placement policy
3. Generate orders for picking according to the picking lot size
4. Pick items to meet the needs of the orders and track the walking distance
5. Generate incoming stock for warehouse inventory replenishment according to placement lot size
6. Place items and track the walking distance
7. Repeat steps 2 through 6, 30 times.

The test warehouse has 11520 storage bins, and each storage bin has the capacity to

contain 18 items, and the warehouse services 2000 unique SKUs. The operating inventory

for the simulations is 160,000 items, which is 77.2% of the maximum capacity. For the

entire analysis order size is 20 units, both for incoming products and outgoing orders.

Each cycle has 100 orders of 20 units leaving the warehouse and 100 boxes of 20 units

entering the warehouse for a total of 2,000 units each cycle. Placement and picking lot

sizes vary from one SKU to 20 SKUs with each run of the simulation to gather

information about the influence of lot size on performance. For a more detailed

explanation of the warehouse picking and placement simulation, refer to Appendix B.
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4.3.4 Strict Organization Simulation Resultsi

Figure 4.2 shows the effect of lot size on the total walking distance for both picking and

placement in a strict organization warehouse. The graph shows strict organization

warehousing is very sensitive to placement lot size. This result is not surprising because

strict organization must aggregate matching SKUs into the same storage bin. Strictly

organized warehouses expend less effort with larger placement lot sizes because each lot

is already aggregated. Smaller lot sizes need additional aggregation to fill a storage bin

while larger lot sizes will fill the storage bin outright. The data show significantly less

walking with a large placement lot size than with small placement lot size. The graph also

reveals the total walking distance decreases as the picking lot size increases. Larger

picking lot sizes take better advantage of the aggregation that occurs with strict

organization. Regardless of placement lot size, after item placement the SKU items are

highly aggregated. This aggregation favors larger picking lot sizes since fewer location

visits are necessary when the picking lot size is large.

4.3.5 Location-relaxed Storage Simulation Results

Figure 4.3 shows the results for the location-relaxed storage. Unlike the strict organization

case, where a placement lot size of 18 always outperforms a placement lot size of one;

with location-relaxed storage the small placement lot sizes outperform large placement lot

sizes when the picking lot size is also small. When the picking lot size is large, then larger

placement lot sizes outperform smaller placement lot sizes. For the specific example

shown where the storage capacity of each bin is 18, picking lot sizes of nine or less prefer

a unit sized placement lot rather than a placement lot size of 18. Picking lot sizes of ten or

larger prefer a placement lot size of 18 rather than the unit sized lot. This result is not

1. For the discussion of lot size effects on warehouse picking and placement route lengths, solid
points represent strict organization data and hollow points represent location-relaxed data.
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Figure 4.2: Lot size effect on strict organization route walking distance
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Figure 4.3: Lot size effect on location-relaxed route walking distance

surprising since no additional aggregation occurs in location-relaxed placement. Items

arriving pre-aggregated stay semi-aggregated during location-relaxed placement. As a

result, items arriving together tend to be placed in adjacent storage bins or bins within the

same sub-aisle. This pre-aggregation has stronger benefits with large picking lot sizes.

Small picking lot sizes benefit little from aggregation. Furthermore, small placement lot
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sizes tend to distribute the products across more storage bins in the warehouse. The graph

indicates that this type of distributed storage provides advantages that outweigh the

benefits of aggregation. The advantage stems from the proliferation of many disparate

storage bins holding the same SKU. In other words, smaller placement lot sizes tend to

create more choices for the Warehouse-TPP routing problem. The advantage of these

multiple locations is not limited to when the picking lot size is one or two, but applies to

picking lot sizes as large as eight or nine. This indicates that having to visit eight locations

to obtain eight copies of the same SKU does not impose a heavy burden on routing.

Location-relaxed
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2000-

COCA A
U) 1500 -~AAA

:1000 -

500 -o- - Placement Lot Size = 1

Placement Lot Size = Picking Lot Size

0
0 5 10 15 20

Picking Lot Size

Figure 4.4: Effect of lot size on location-relaxed route walking distance

The benefits of highly distributed storage are further demonstrated by the data in

Figure 4.4. Common sense would indicate that if the picking lot size matched the

placement lot size, then the amount of pre-aggregation would be sufficient to obtain the

benefits of aggregation while still providing for some distribution of the materials across

the warehouse. The results show that this intuition is only true when the picking lot size is

large. Figure 4.3 already demonstrated that large picking lot sizes prefer large placement
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lot sizes. The counter-intuitive result is small picking lot sizes prefer the unit lot size for

placement, even compared to an equal sized placement lot size. In other words, placing

items as singles is better than placing items in threes even when items are known to be

picked in lots of three. This surprising result illustrates the strength of multiple locations

for storage over aggregation.

For example, Figure 4.5 shows the choice between having four locations that have

three copies of the needed SKU and 12 locations with one copy of the SKU. Because the

12 singletons are randomly distributed in the warehouse, almost any path though the

warehouse with 12 singletons are likely to pass by three copies of the needed SKU.

Furthermore, warehouse picking address multiple SKUs at a time, creating a situation

where the set of items benefits from being next to as many other SKUs as possible. In

other words, many singleton locations are likely to be next to other relevant locations for

the pick route than a few locations with many copies in each. Visiting three separate

locations but having more locations from which to choose is easier than visiting one

location but having few choices.
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Figure 4.5: Aggregation versus distribution
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4.3.6 Location-relaxed vs. Strict Organization

Section 4.3.4 and Figure 4.2 show the very poor performance of strict organization when

the placement lot size is small. Clearly, strict organization with small placement lot size is

not a viable option. Fortunately for traditional warehouse operations, material arriving for

storage in the warehouse typically arrive in large lots. Warehouses serve as a "step-down

buffer" for materials as items arrives in large lots and depart in smaller lots. The step-

down ratio, which describes the relative value of incoming lot size and outgoing lot size,

should have a significant impact on warehouse performance. For example, a warehouse

with products arriving in groups of 100 and departing in groups of 10 will operate very

differently than a warehouse with products arriving in groups of 100 and departing in

groups of one. Figure 4.6 compares location-relaxed storage and strict organization

storage route walking distances for picking and placement when the placement lot size is

18. The graph shows that strict organization yields lower walking distances in every case.

Strict Organization versus Location-relaxed

3000 (Placement Lot Size = 18)

2500 -

C 2000 - 0

C1500 -

1000 -

--0- Location Relaxed
500-

+ Strict Organization

0 1

0 5 10 15 20
Picking Lot Size

Figure 4.6: Lot size comparison between strict and location-relaxed

While at first, this seems to imply that strict organization is always better than location

relaxed storage, location-relaxed storage offers an additional option that strict organization
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does not. While the data in Figure 4.2 show the inappropriateness of small placement lot

sizes for strict organization, Figure 4.3 shows that small lot sizes are not only appropriate

with location-relaxed storage, but often the better choice.

Figure 4.7 compares strict organization with a placement lot size of 18 against

location-relaxed storage with a placement lot size of one. This seemingly incongruent

comparison is valid since material arriving pre-aggregated does not have to be placed into

the warehouse in large lots. Aggregation requires significant effort, but mixing requires

little to none. Through forced randomization, the location-relaxed warehouse can easily

create small placement lot sizes even when material arrives in large lots. The result is

significantly shorter route walking distances when the picking lot size is also small. The

results show that when the picking lot size is five or less, forcing unit sized placement lots

with location-relaxed storage has shorter routes than strict organization with placement lot

sizes of 18.

Location-relaxed versus Strict Organization
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Figure 4.7: Comparison between Strict Organization and Location-relaxed
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4.3.7 Discussion

As speculated, location-relaxed storage is most appropriate with small picking lot sizes.

Furthermore, location-relaxed storage with small picking lot sizes operates best when the

placement lot size is one. Picking lot size is a function of the demand characteristics

placed on the warehouse and cannot be changed easily. However, regardless of the

characteristics of incoming materials, warehouse operations can enforce unit sized

placement lots by mixing the materials before placement. Therefore the critical

characteristic for choosing between location-relaxed storage and strict organization is

picking lot size.

Warehouses that fill orders directly to consumers are more likely to have unit lot sizes

or very close to unit sized lots. One copy of consumer products is usually sufficient for a

consumer. This fact makes location-relaxed storage a strong candidate for mail order

catalog, electronic commerce, and other direct-to-consumer warehouse applications.

While typical supply chain warehouses that distribute products to retail outlets are not

likely to use unit sized picking lots with great frequency, small picking lot sizes around

three for average volume items are common in retail stores; therefore, location-relaxed

storage cannot be discounted as a possible means for operations improvement. However,

many items in retail stores will require high picking lot sizes as well. Mixed lot sizes are

not addressed in the current analysis. The applicability of location-relaxed storage to more

complex warehouse situations such as mixed lot sizes will be problem dependent and no

simple generalization is appropriate. However, the benefits of location-relaxed storage

with picking lot sizes as high as five for the small case simulation demonstrates a

worthwhile opportunity for further investigation in any warehouse configuration.

The key insights provided by the analyses include:
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- Location-relaxed storage offers the more benefits when the picking lot size is small.
- Location-relaxed storage functions best when the placement lot size is one.
- Intentional mixing of products during placement can improve performance of

location-relaxed storage
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Chapter 5: Efficiency of Strict Warehouses

This chapter quantifies the storage capabilities of a strict storage warehouse under special

conditions to estimate the effect of strict organization on the effective storage space

capacity of the warehouse. Due to strict constraints on where particular items may be

placed, the warehouse may meet the situation where an incoming item has no viable

storage bin in which to be stored. This type of overflow may even occur when the

warehouse is not completely full because all storage bins with additional space may be

assigned to non-matching SKUs.

Under location-relaxed storage, every location is available for use regardless of the

identity of an incoming item. Therefore, 100% of the storage space capacity may be used

in the location-relaxed case. The analyses described in this chapter quantify strict

organization storage space utilization, which unlike location-relaxed storage will vary

depending on the number of unique SKUs serviced by the warehouse. For the analyses, all

items are assumed to have the same size, and all storage bins have the same capacity. The

first analysis (section 5.1) is a worst case scenario for strict organization storage which

demonstrates how many items the warehouse may safely contain with no possibility of

overflow. The second analysis (section 5.2) generates the most probable distribution of

items and determines the maximum number of items whose most probable distribution fits

into the warehouse. The third analysis (section 5.3) uses a probabilistic approach to

determine how many randomly selected items may fit into the warehouse with probability

p of no overflow. Section 5.4 extends the discussion by changing the size of the storage

bin capacities to see how bin capacity affects the effective storage space capacity.
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5.1 Worst Case Analysis

The worst case scenario finds the minimum number of items such that all the items cannot

be placed in the warehouse and maintain strict organization. For example, if there is only

one SKU stored in the warehouse, then all locations must be filled before the arrival of

another item causes a problem. In this case, the worst case maximum utilization equals

100%. When the warehouse services more than one SKU, the worst case maximum

utilization will decrease. Consider a warehouse where:

U equals the number of SKUs
S equals the number of storage bins
M equals the maximum number of items stored in each bin

Since the number of storage bins is S, and the maximum number of items that can be

stored in a bin is M, the maximum number of items that may be stored is M. S. If the

warehouse services two SKUs, A and B; s-i bins are completely full (M items); and the

last storage bin has one A item, then any attempt to add a B item to the warehouse will fail

since there is no place to store an additional B item without violating strict organization.

The total number of items in such a warehouse is M(s - 1) + 1 which is equivalent to

MS- (M- 1). MS- (M- 1) represents the number of items guaranteed to fit into the

warehouse when the number of unique SKUs is two. Table 5.1 extends the guaranteed fit

number to a general number of SKUs.

Between two SKUs and (s + 1) SKUs, the guaranteed fit decreases by (M- 1) for each

additional SKU. For i SKUs, generate a worst case scenario by filling S- (i - 1) storage

bins to capacity, then choose one copy of each of the first (i - 1) SKU items and put one in

each of the remaining (i - 1) bins. Any attempt to place the ith SKU into the warehouse

will fail. The maximum number of items for this worst case is M(S- (i- 1)) + (i- 1), which

equals MS- (i - 1)(M- 1).
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Table 5.1: Worst case scenario, guaranteed fit

# SKU Guaranteed Fit

2 M. S--(M- 1)

3 M. S-2(M- 1)

4 M. S-3(M- 1)

i M. S- (i - 1)(M- 1)

S S+M-1

S+1 S

>S+l S

When the number of SKUs is greater than or equal to (s + 1), the guaranteed fit is a

constant S, which is the total number of storage bins. This worst case scenario corresponds

with the situation where each storage bin contains one SKU that is unique in the

warehouse. An additional SKU of a different type can not fit into the warehouse. When the

number of SKUs exceeds the number of locations, the worst case capacity is equal to the

number of locations. Figure 5.1 shows the guaranteed fit. Utilization at or below the

guaranteed fit will always fit into the warehouse regardless of the distribution.

5.2 Expected Distribution Analysis

The expected distribution analysis assumes equal probability for all SKUs. In other

words, the probability that one SKU should be added to the distribution is equal to all

other SKUs. This does not imply that the expected distribution has an equal number of all

SKUs. With equal probabilities for all SKUs, the expected distribution becomes

binomially distributed.

103



Normalized Guaranteed Fit Capacities when locations hold 10 items
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Figure 5.1: Worst case limitation on utilization

For a given warehouse size, the number of unique SKUs serviced by the warehouse,

and a target number of items, N, the analysis determines whether or not the expected

distribution of size N will fit into the warehouse. Repeating the procedure for several

values of N determines the largest number of items whose expected distribution will fit

into the warehouse.

5.2.1 Number of Copies Distribution

The analysis begins by determining the probability distribution for how many copies of a

particular SKU are in a randomly created distribution. If there are N items in the

distribution, then the SKU could have any number of copies from zero to N; however, the

probability of all N items being the same SKU becomes extremely small as N gets larger.

The probability distribution of numbers of copies of a particular title is a binomial

distribution.

Let U equal the number of unique SKUs serviced by the warehouse.
Let N equal the number of items in the warehouse.
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Then the probability that there are n copies of a particular SKU in the warehouse is:

P(n,N) = (5.1)

which is binomially distributed with a 1 probability of success and N trials.

Figure 5.2 illustrates the binomial probability distribution corresponding to 2,000

unique SKUs and a total item population of 12,000. While the average number of copies is

6, the probability of any one SKU having exactly 6 copies is approximately 0.16.

Probability that a SKU has x copies (unique SKUs = 2000, Total Number of Items = 12000)

0.16
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0 2 4 6 8 10 12 14 16 18 20
x: Num ber of Copies

Figure 5.2: Binomial distribution

The binomial distribution for 12,000 trials with a probability of success of 1 in 2000 corresponds to the

probability distribution that a particular SKU has x copies in a 12,000 item warehouse of 2000 unique SKUs.

5.2.2 Expected SKU Distribution

Having determined the probability distribution for the number of copies of a particular

SKU, the next step establishes the expected SKU distribution for all N items. P(i, N) equals

the probability that an SKU had i copies in the distribution with N total items. U -P(i, N)
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equals the expected number of SKUs that have i copies in a randomly generated

distribution containing N total items. Furthermore,I

i . U. P(i, N) = N (5.2)
i=0

In other words, the expected distribution has U -P(O, N) SKUs with zero copies in the

distribution; u -P(1, N) SKUs with one copy in the distribution; U -P(2, N) SKUs with two

copies in the distribution; etc. This expected distribution is illustrated in Figure 5.3, which

shows the expected distribution of 12000 items, pulled with equal probability from 2000

SKUs. The graph shows that the expected distribution has 4.95 SKUs with zero copies,

and 29.7 SKUs with one copy. Although a real distribution must have a non-negative

integer number of SKUs corresponding to each number of copies, the expected

distribution has fractional numbers representing the number of SKUs with a particular

number of copies in the distribution. The expected distribution is not an actual distribution

but the average of all possible distributions.

Expected number of SKUs that have x copies (unique SKUs = 2000, Total Number of Items = 12000)
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Figure 5.3: Expected number of copies

1. See Appendix C for a proof of equation 5.2.
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5.2.3 Storage Limitation

Using this expected distribution of SKUs and the number of items that fit into each

location, determining the number of storage bins needed to house the distribution is a

matter of simple accounting. The analysis assumes all SKUs are the same size and all

storage bins have the same capacity. In other words, given the number of SKUs that fit in

a particular location, M, and the total number of storage locations, S, determine the

maximum expected distribution that will fit in the space limitation, and the total number of

SKUs corresponding to that distribution.

Given:
U equals the number of unique SKUs
S equals the number of storage locations
M equals the capacity of each storage location

Find:
N*, the maximum number of items corresponding to the expected distribution that fits into a ware-

house with S storage locations with a maximum of M items in each location.

Since the expected distribution assigns a rational number of SKUs for each quantity of

items, a method of dealing with a fractional expected number of SKUs must be employed

in the accounting. Counting the number of storage bins needed for the expected

distribution takes a conservative approach by shifting the fractional portion of a quantity

and re-assigning that fraction to the next higher quantity. For example, if the expected

number of SKUs with zero copies is 4.9 and the expected number of SKUs with one copy

is 7.3, the analysis uses an adjusted distribution with 4 SKUs having zero copies. The

adjusted distribution would then take the remaining 0.9 SKU and add it to the number of

SKUs expected to have one copy, which yields 8.1 SKUs. Truncating the result leaves the

adjusted distribution with 8 SKUs having one copy and 0.1 SKU to be added to the next

quantity. Because the adjusted distribution assigns a higher number of copies to a portion

of the SKUs, the resulting total number of items represented by the adjusted distribution is
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larger than the original expected distribution. Therefore, if the adjusted distribution fits

into the warehouse under strict conditions, then stating that the expected distribution 'fits'

into the warehouse is justified.

Figure 5.4 illustrates how the number of unique SKUs serviced by a warehouse affects

the effective storage capacity. For this example, the number of storage bins is 1,000 and

each storage bin holds 10 items. As the number of unique SKUs increases the expected

number of items that fit into the warehouse decreases. As should be the case, the expected

distribution results are always greater than the worst case scenario. With the exception of a

very small number of SKUs (near zero) and very many SKUs (many multiples of the

number of storage bins), the expected distribution analysis shows that the worst case

scenario is not likely to occur. Therefore, the utilization found for the expected

distribution can be much larger than the worst case result. For example, with 801 SKUs in

a warehouse with 1,000 storage bins with the capacity for 10 items, the worst case analysis

yields a utilization of 0.28. However, the expected distribution analysis predicts a much

larger utilization of 0.7.

The utilization drops sharply when the number of unique SKUs equals the number of

locations. As the number of SKUs increases above the total number of storage locations,

the expected distribution analysis approaches the worst case result. In other words, as the

number of unique SKUs becomes very large, the possibility of randomly selecting 1,000

different SKUs for storage in the warehouse becomes more and more probable.
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Figure 5.4: Utilization versus normalized number of unique SKUs

5.3 Probabilistic Analysis

The expected distribution illustrates how the number of unique SKUs serviced by the

warehouse affects its ability to use all of its warehouse space with the most likely item

distribution. Unfortunately, the expected distribution fails to illustrate a metric of

reliability. Under the worst case scenario, the guaranteed fit shows the maximum number

of items that can occupy the warehouse under strict conditions and never cause an

overflow. In other words, the worst case analysis shows the storage capacity utilization for

100% reliability.

The expected distribution analysis qualitatively reveals how the storage capacity

utilization will react to an increase in number of SKUs serviced; however, the expected

distribution analysis gives no indication of the reliability of the result. In other words, we

would like to know how often the warehouse would encounter an overflow state when

using the storage capacity utilization dictated by the expected distribution analysis.
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Norm alized Probabilistic A nalysis (p 0.5)
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Figure 5.5: Probability analysis for 50% success

The final strict organization warehouse storage capacity analysis quantifies the

probability of successful placement for a particular number of items by randomly

generating a distribution of items, and calculating whether or not this distribution fits

under strict organization. Repeating the procedure several times and tracking the ratio of

successful placements to number of attempts yields the probability of success for the

given number of items. Furthermore, such a probabilistic analysis can determine the

number of items that correspond to a particular probability of success. Figure 5.5 shows

the utilization levels that correspond to a 50% probability of successful placement. The

solid curve represents the fraction of the warehouse space that can be filled with items and

have a 50% chance of successful placement under strict organization. In other words, 50%

of randomly generated distributions will successfully fit into the warehouse, and 50% will

not fit.

Figure 5.6 compares the results of the probabilistic analysis with the expected

distribution analysis. Warehouse utilization corresponding to a 50% success rate in
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Probabilistic Analysis and Expected Distribution Analysis
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Figure 5.6: Expected distribution and 50% success rate

placing all items while maintaining strict organization closely follows the warehouse

utilization for success with the expected distribution. The close correlation between the

expected distribution analysis and the 50% success rate analysis seems to imply that the

expected distribution corresponds to a 50% success rate. Closer inspection shows that

small changes in utilization change the success rate rapidly near the 50% success rate.

Probability of Success: unique SKUs = 800, number of storage bins = 1000, bin capacity = 10
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Figure 5.7: Rapid success rate change
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Figure 5.7 shows the rapid change from a very high success rate to a very low success

rate over a span of less than 5% of the warehouse space. Furthermore, Figure 5.8 shows

the boundaries for 1% and 99% success rates. The very narrow band between 1% and 99%

success rates further illustrate the rapid switch from low to high success rates. The

expected distribution curve, which falls within this narrow band, is a very good indicator

of this region of rapid success rate change. Therefore, as long as the warehouse utilization

is slightly below the amount described by the expected distribution, the success rate will

be very near 100%.

Effect of Reliability on W arehouse Space Utilization
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Figure 5.8: Warehouse utilizations for different success rates

5.4 Effect of Location Size

For the previous space utilization analyses, all storage bins were considered to have a

maximum capacity of ten items each. This section explores the effect of different storage

bin sizes on the strict organization warehouse space utilization curves. The following

results consider bin storage capacities of two and 20.
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5.4.1 Small Capacity

Figure 5.9 shows the result of the storage capacity utilization analysis with a smaller

storage bin size. With only the capacity to house two items, the shape of the curve is

dramatically different, but the overall result is very similar. As with the previous analysis,

the difference between a 1% success rate, and 99% success rate is very small. The major

difference is the greater smoothness of the utilization curve with the smaller capacity

storage bins. While the storage capacity utilization curve decreases at a fluctuating rate

when there are 10 units in each storage bin, the curve decreases at a fairly constant and

well behaved rate when the storage size is reduced to 2. The smoothness is attributable to

the fact that unused storage space is limited to no more than one unit per storage bin.

Reliability when Location Size is 2

0.8 -

0.7

0.6 -

0.5

o 0.4 -
-- 1% Success Rate

e 0.3 _ -99% Success Rate
-- W orat Case (p=1 .0)

0.2 -

0.1 -

Figure 5.9: Smaller capacity results

5.4.2 Large Capacity

Figure 5.10 shows the effect of a larger storage bin on the utilization curve. Again, the

small difference between 1% and 99% success rate is similar to smaller storage bin

capacity results. While smaller storage bin capacities increase the smoothness of the
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utilization curve, increasing the storage bin capacity continues the trend by decreasing the

smoothness. Fluctuations in the curve are much more pronounced in the 20 units per

storage bin utilization curves to the point that the curves are no longer monotonically

decreasing with increasing SKU service level.

Reliability when Location Size is 20 Units
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-99% Success Rate

0.8 - - W orst Case (p=1.0)

0.7 -

0.6

u 0.5

0.4

cz 0.3

0.2 ,

0.1 -

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Norm alized Num ber of SK Us (Num ber of SKUs / Num ber of Locations)

Figure 5.10: Larger capacity results

Over the span of normalized number of SKUs between 0.6 and 0.8, the warehouse

space utilization increases. Over all other spans, the warehouse space utilization decreases

with increasing number of SKUs serviced. Strict organization, and the fixed size of each

storage location explains the region that runs counter to the normal trend of decreased

utilization with increasing number of unique SKUs. The region of increased utilization is

due to the fact that when the storage capacity is 20, SKUs that have 20 copies fit into a

single storage bin, but increasing the number of copies by a only one unit to 21 requires

two storage bins.

Figure 5.11 illustrates the average number of copies for all SKUs. The average number

of copies is determined by dividing the total number of items by the total number of SKUs
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serviced. The average number of copies crosses 20 units when the normalized number of

SKUs is approximately 0.65, which falls within the region of increasing utilization. In

other words, when the average number of copies starts to fall below the storage space size,

warehouse space utilization increases slightly. The average number of copies corresponds

to the most frequent number of copies found amongst the SKUs. Figure 5.3 in Section

5.2.2 illustrates the relationship between average number of copies and the expected

distribution. When many SKUs have slightly more than 20 copies, each of those SKUs

must occupy two locations under strict organization rules. As the number of unique SKUs

increases, the average number of copies decreases and more SKUs have 20 copies or less,

which only require one location.

Average Number of Copies (Location Size = 20 Units)
60

50

0

10

0
E
:3 30
z
M

~20

10

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized Number of SKUs (Num ber of SKUs / Number of Locations)

Figure 5.11: Average number of copies

The average number of copies graph shows a correlation between portions of the graph where the aver-

age number of copies is close to a multiple of the location size and portions of Figure 5.10 where the utiliza-

tion opposes the trend of decreasing with increasing number of unique SKUs.

Furthermore, the normalized number of SKUs corresponding to an average of 40

copies is approximately 0.4. In Figure 5.10, 0.4 normalized SKUs corresponds to a region
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on the graph where the rate of utilization decline changes suddenly and decreases at a

slower rate. While less pronounced, the reason for this change in slope is the same as for

the increase in utilization around 0.65 normalized SKUs. When filling the warehouse,

SKUs with slightly more than 40 copies require three locations, whereas SKUs with 40

copies or less need only two locations. This effect explains both why the curves are less

smooth with larger storage bin sizes and why the curves sometimes have regions increased

storage capacity utilization with increasing number of SKUs.

5.5 Discussion

The various analyses of strict organization warehouse space utilization show that the worst

case scenario yields very poor space utilization levels but is very unlikely to occur. By

accepting a very slight chance of overflow, the acceptable utilization level increases

dramatically. Up to a certain point, increases in space utilization levels result in miniscule

decreases in success rates. However beyond that point, increases in space utilization levels

lead to a very large and rapid drop in success rate. Finding this drop-off point for the given

warehouse capacities and number of SKUs is the key to determining the best space

utilization level for strict organization. However, this operation point will always be less

than the potential utilization level for location-relaxed storage because full utilization of

the warehouse space is always possible with location-relaxed storage.
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Chapter 6: Effect of Errors on Warehouse Operations

Idealized views of warehouse operations do not address the real issue of errors in day-to-

day operations. This chapter looks at the role of unintended errors on location-relaxed and

strict organization operations by modeling warehouse operations as a series of error

probabilities and operation costs.

During operations the item confronts four action stages within the warehouse. Upon

arrival, the item is placed within a storage location (stock); when filling an order, the item

is picked (pick); the picked items are then sorted into individual orders (sort); and finally

the order is packaged into the outgoing order (pack). At any of these stages an error can

occur. The ramifications of these errors depends on the type of storage system

implemented.

6.1 Action Costs

The analysis of errors depends directly on the relative effort costs for each step and the

effort cost of corrective measures. The variable cstock is the cost associated with taking an

incoming item and placing it into the warehouse. The variable cpick is the cost associated

with locating and picking an item. The cost associated with dividing the picked items into

groups that fill orders is represented by csort. Finally, cpack is the cost associated with

placing the sorted groups into bundles for shipment. The effort for each stage will be

different between the strict organization method and the location-relaxed storage method.

For this error analysis, the effort associated with walking distances is included in the

cost to stock and cost to pick values. While each item will encounter a different walking
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distance cost, this error analysis considers the average walking cost. In other words, cstock

is the average cost to stock, and Cpick is the average cost to pick.

6.2 Probability of Errors

Under ideal conditions where no errors occur, each item goes through each stage of the

warehouse exactly once for a total cost:

ideal cost = csock + Cpick + Csort + Cpack (6.1)

Cwstock lo Cpick OPCsort Cpack Do

Figure 6.1: Ideal operations

At each stage of the warehousing process, the possibility of error will increase the

overall effort above the ideal. The variable Pstock is the probability of placing an item in

the incorrect location. The probability of picking the incorrect item is Ppick. The variable

Psort is the probability of sorting the item into the incorrect group, and Ppack is the

probability of incorrectly packing an item. Figure 6.1 shows the ideal operation steps. The

probability of error at each stage will be different between the strict organization method

and the location-relaxed storage method.

The error model begins with the ideal operations and then investigates how the ideal

total cost changes when we introduce the possibility of errors to the warehousing process.

Furthermore, by assigning appropriate values for costs for each method we can compare

the effect of errors between the strict organization and location-relaxed methods.
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6.2.1 Strict Organization

In a strict organization warehouse, the misplacement of an incoming item must be

revisited (extra pick operation needed) and restocked (extra stock operation needed).

Incorrectly picked items must be restocked, then the correct item picked. A mistake in

sorting the picked items requires the operation to be repeated. And a mis-packed item will

need to be repacked.

Table 6.1: Strict organization storage action list

Action Cost Probability of Remedy
Error

Stock cstock Pstock Pick the mis-stocked item, then stock the item again

Pick Cpick Ppick Restock the mis-picked item, then pick the correct item

Sort Csort Psort Re-sort the item

Pack Cpack Ppack Repack the item

An accurate account for the impact of errors on the warehouse must also consider the

possibility of error during the remedy. The remedy for a picking error, sorting error, and

packing error merely require repeating steps. For example, Figure 6.2 shows the result of a

sorting error returning the item to the sort process for re-sorting, then continuing again as

usual. The cost of the sorting operation is csort, and the probability of a sorting error is

Psort- The arrow labeled with Psort represents a sorting error and the arrow labeled 1 -Psort

represents a successful sorting action. Analyzing the flow diagram in Figure 6.2 requires

a -------- r Csort-b

Psort

Figure 6.2: Sorting error remedy
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calculating the cost associated with moving from state a to state b. The cost of going from

state a to state b is the cost of a sorting operation plus the probability of a stocking error

times the cost of going from state a to state b (Equation 6.2). In other words, the effective

cost of a stocking operation is the idealized cost of a stocking operation plus the added

cost associated with stocking errors.

(Cost from state a to state b) = ctock +pstock(Cost from state a to state b)
tck (6.2)

(Cost from state a to state b) = 1't'k6
1 - Pslock

The remedy for a stocking error is slightly more complicated since it requires an

intermediate step before returning to the normal flow of operations. The possibility of

error during the intermediate step complicates the analysis. Figure 6.3, shows that the

remedy for a stocking error requires an intermediate step, an additional pick step, before

returning the item for re-stocking; however, the diagram in Figure 6.3 does not consider

the possibility of errors during the intermediate picking step. Figure 6.4 shows the remedy

for a stocking error that does account for intermediate errors. The stacking of errors are

increasingly unlikely to occur deeper in the model shown in Figure 6.4. Furthermore, the

model greatly complicates the error model for what is an unlikely event. For simplicity,

the truncated model shown in Figure 6.3 represents a stocking error for the error analysis.

CstockI error reed

pstock

Cpick

Figure 6.3: Stocking error remedy
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Psto -sok

1-ppick Cpick Ppick _C stock Pstocky Cpk - - -

1-pick

Figure 6.4: Stocking error remedy with intermediate errors

Comparing the location-relaxed storage error model to the strict organization error

model without intermediate errors is a conservative comparison. The actual strict

organization result with intermediate errors is slightly larger than the simplified analysis

shown here with the model illustrated in Figure 6.5.

C I -Pstock C 1-Ppick C -Psort Cpc I -Ppack
- > stock ---. pick AL- sort > pack

Pstoc Ppick Psor Ppac

Figure 6.5: Effect of errors on strict organization

Neglecting the possibility of error during the corrective step for a stocking error yields

a total cost for strict organization operations with errors:

Strict Organization Cost= Cstock +Cpick + Csort + Cpack (6.3)
(1 Pstock)( 1 ~ pick) 1 Psort Ppack
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The cost difference between ideal operations and an error prone strict organization

warehouse is:

Cost with errors - Ideal= -P",,k)(1 
-Pp'k) (cstok + ck) + Psort , + Ppack cpack (6.4)

( 1 -PPak)( 1 -Ppici) 1 - s or ppack

6.2.2 Location-Relaxed Storage

The process for location-relaxed storage with errors is very similar to the strict

organization model. The only difference in error analysis format is the remedy for a

stocking error. However, the actual values for each step's effort and each step's probability

for error are potentially different. The action, update, which indicates the corrective step

of updating the computer database to reflect the change in position, is shown mainly for

illustration. Furthermore, the update action is considered error-free because mistakes in

the database are not considered in either the strict organization or location-relaxed error

analyses. In practice, the update action would require very little effort, and would be

performed continuously after every action for constant verification. RFID technology

makes this kind of management very easy and is one of the main benefits of RFID

technology for material handling. The update action is included for a stocking error in the

location-relaxed storage error model and can be removed by setting the update cost to

zero.

Table 6.2: Location-relaxed Storage Action List

Action Cost Probability of Error Remedy

Stock Cstock Pstock Update the database to reflect the error

Update cupdate 0 --

Pick Cpick Ppick Stock the item, then pick the correct item

Sort Csort Psort Re-sort the item

Pack Cpack Ppack Repack the item
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Both strict organization and location-relaxed storage treat picking, sorting and packing

errors the same. Stocking errors, however, require picking of the mis-stocked item, and

restocking in strict organization operations; but only an update of the database in location-

relaxed storage and no physical intervention. Figure 6.6 illustrates the location-relaxed

storage error model.

_ _Cstc --pstock J. Cpick +k Csort -sor- CpackI p2c-
_PM Pstoc ppic k

S i tPp~ckPsort Ppack

Cupdate

Figure 6.6: Effect of errors on location-relaxed storage

The location-relaxed operation cost with errors is:

Location-relaxed Cost = Cstock + Cpick + PstockCupdate + Csort + pack 6.5)
( 1 -pik) 1 -Psort 1 -Ppack

The cost difference between ideal operations and an error prone location-relaxed

warehouse is:

with Errors - Ideal Ppzk (cstock + Cpick)+ PstokCupdate + Port co,,+ Ppack Cpack (6.6)
( -p~ik) 1 -Ppici 1 -Psort 1 -Ppack

6.3 Comparison of Strict Organization to Location-relaxed Errors

Two error comparisons show how location-relaxed storage tends to be less sensitive to

operation errors than strict organization. In the first comparison, all costs and probabilities

are considered equal between the strict organization and location-relaxed methods. The
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second comparison method takes into account the expected differences between the two

models and treats the costs and error probabilities accordingly.

6.3.1 Equal Costs, Equal Probabilities

When the costs for each action are the same between corresponding actions of the

strict organization warehouse and the location-relaxed warehouse, the difference in total

cost is:

Strict Organization Cost - Location-relaxed Cost = Pstock(cs + cC) PstockCupdate (6.7)
( 1 - pS,,ck) 1 -p~ik) 1 -Ppick

As stated before, the update action shown in the location-relaxed method emphasizes

the difference between the strict organization and location-relaxed cases. In reality an

update occurs after every action, whether in strict warehousing or location-relaxed

warehousing. For this reason, the value of cupdate is neglected. Therefore,

Strict Organization Cost - Location-relaxed Cost Pstock(cstck + Cpick) (6.8)
( 1 Pstok)( 1 Ppick)

Since probabilities Pstock and Ppick must have values between zero and one, and all

costs are positive, the expression in Equation 6.8 must be positive. Therefore, in the case

where the probabilities and action costs are the same between the two error models, the

location-relaxed method will always have a lower total cost.

6.3.2 Unequal Costs, Unequal Probabilities

Different costs and probabilities between the two models complicate the relationship

between the total cost of the strict warehouse relative to the location-relaxed warehouse.

124



Designating difference values for cost and probabilities makes the difference in total cost

equal:

Cso, stock + Cso, pick Cir, stock + Cir, pick + Cso, sort Cir, sort + Cso,pick Cir,pick

(1 -Psostock)( 1 
-Pso,pick) 1 -PI r,pick -Pso,sort 1 -Pr,sort 1- Pso, pick ~PIr,pick

6.3.2.1 Probability of Stocking Error

Due to the aggregation of items in the strict organization warehouse, the occurrence of

errors during a manual stocking action is likely to be less frequent in a strict organization

warehouse than in a location-relaxed warehouse. Under strict organization, items of the

same type reside in the same location. When a new item is added to the warehouse, the

item will either be placed in an empty location or a location in which matching items have

already been placed. This visual clue assists in stocking and prevents errors.

If all values of cost and probability are the same between the two models except for

the probability of stocking error, the total cost difference (strict - location-relaxed)

becomes

Pso, stock(Cstock + Cpick)

(1 Po,stock)(1 Ppick)

According to Equation 6.10, no matter what the relative values of stocking error

probabilities, the cost for strict organization will always be greater than or equal to the cost

of the location-relaxed warehouse. The two costs are equal only when strict organization

stocking actions operate error free (Pso stock = o).

Since the aggregation of same type items under strict organization provides visual

clues for proper placement procedures, the probability of stocking error is expected to be

less for strict organization operations than in location-relaxed warehousing. Despite this

disparity in favor of strict organization, the error model shows that the influence of
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stocking error will tend to favor location-relaxed storage, regardless of the fact that strict

organization stocking errors are less likely.

6.3.2.2 Stocking Cost

If all values of cost and probability are the same between the two models except for

the cost of stocking, the total cost difference (strict - location-relaxed) becomes

Cso, stock Pstock)Cr, stock +Pstockcpick

(1 Pstock 1 - Ppick)

The location-relaxed warehouse operation cost is less than the strict organization

warehouse operation cost when

Cso, stock> 1 -Pstock)CIr, stock -PstockCpick (6.12)

When Pstok = o, Equation 6.12 reduces to c 50 stock> Ci, stock' which indicates that the

location-relaxed warehouse has lower overall costs when the cost of a stocking operation

in a strict organization warehouse exceeds that of a location-relaxed warehouse.

When Ptock is non-zero, for a strict organization warehouse to have lower cost than the

location-relaxed warehouse, the cost of a stocking action for the strict warehouse must be

less than the cost of a stocking action in the location-relaxed method. If Cpik = 0 , the

location-relaxed stocking cost must exceed the strict stocking cost by a factor of 1
1 - Pstock

for the strict organization total cost to be less than location-relaxed total cost. If Cpick is

non-zero, then the location-relaxed stocking cost must be even larger for the strict

organization total cost to be less than location-relaxed total cost. Again, the influence of

the stocking error on strict organization storage drives the difference between the two

models.
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6.3.2.3 Picking Cost

When all values of cost and probability are the same between the two models except

for the cost of picking, the total cost difference (strict - location-relaxed) becomes

PstockCstock + Cso, pick - ( - Pstock)CIr, pick

( 1 -Pstock)(1 -Ppick) 
(.3

The strict organization total cost is greater than the location-relaxed total cost when

Cso, pick>(1 -Ps to ck)CIr,pick PstockCstock ' (6.14)

When PSock = o, the strict organization total cost is greater than the location-relaxed

total cost when the cost to pick in the strict warehouse is greater than the cost to pick in the

location-relaxed warehouse.

WhenPstock is non-zero and Cstock = o, the location-relaxed picking cost, Cr,,ick, must

be larger than the strict organization picking cost, Cso ,pick by a factor of , in order
1 Estock

for the strict organization cost to be less than the location-relaxed total cost. When Pstock is

non-zero and Cstock is non-zero, then the difference in picking costs must be even wider for

the strict total cost to be less than the location-relaxed total cost.

Again, the error model shows a greater sensitivity in the strict organization case since

CIr,pick must exceed Cso, pick by at least 1 for the total costs to be equal, and the
1 Pstock

greater sensitivity can be attributed to the probability of stocking error.

6.3.2.4 Probability of Picking Error

When all values of cost and probability are the same between the two models except

for the probability of picking errors, the total cost difference (strict - location-relaxed)

becomes

(Pstock + Pso, pick - PIr, pick PstockPso, pick) (Cslock + Cpick) (6.15)
( Pstock)(1 _PIr,pick)(1 -Pso,pick)
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The strict organization total cost is greater than the location-relaxed total cost when

Pir,pick Pstock
Pso, pck 1 ~Pstock

When Psock = o, the strict organization total cost is greater than the location-relaxed total

cost when the probability of a picking error in the strict warehouse is greater than the

probability of a picking error in the location-relaxed warehouse.

Effect of Picking Error Probability on Relative Total Costs (Location-relaxed error = 0.2)
0.25
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Figure 6.7: Effect of picking errors on relative costs

When Ptock is non-zero, the relative values of picking costs determine whether the

strict total cost is larger than the location-relaxed total cost. Figure 6.7 shows the effect of

various error probabilities on the relative values of strict and location-relaxed total cost. In

this example, the probability of a location-relaxed picking error is fixed at 0.2. The x-axis

shows varying probabilities of a stocking error, which is equal for both location-relaxed

storage and strict organization storage. The y-axis shows varying error probabilities for

strict organization picking. The region in the upper right corresponds to values that yield a

strict total cost that is greater than the location-relaxed total cost. The region in the lower
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left corresponds to values that yield a strict organization total cost that is less than the

location-relaxed total cost. In all instances, the probability of a strict picking error must be

less than the probability of a location-relaxed picking error for the strict total cost to be

less than the location-relaxed total cost. Aggregation in the strict organization warehouse

will tend to make the probability of a picking error less likely in the strict case. Therefore,

lower total cost for the strict organization warehouse is possible. However, the relative

values of the total costs according to the error model will also depend on the probability of

a stocking error. In order for strict organization to have a lower total cost than location-

relaxed total cost, the stocking error probability must be significantly lower than the

picking error probability. Stocking error again drives the difference between the two

models.

6.4 Discussion

Without an automatic monitoring system, such as the RFID tag based Auto-ID system,

warehouses are very sensitive to operation errors, especially location-relaxed storage

warehousing. With an effective monitoring system, errors are not eliminated, but the

impact of these errors are greatly reduced. The most prominent example of this error

insensitivity is with location-relaxed storage and storage errors. Location-relaxed storage

with automated monitoring 'virtually' removes storage errors. The errors still occur;

however, the actions required to rectify the error are reduced to an automated and

effortless computer database update. This insensitivity to stocking mistakes drives all

other error comparisons between location-relaxed storage and strict organization storage.
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Chapter 7: Demand-based Storage Policies

Traditional warehouse operations often use demand information about each SKU to

make placement decisions. These choices attempt to increase picking efficiency by

placing higher demand items in favorable warehouse locations. The cube-per-order index

(COI) proposed by Heskett [1963] is a strict organization placement policy for dedicated

storage that assigns high turnover SKUs closer to the dock. This type of assignment

increases efficiency by increasing the utilization of easy to access storage bins. High

demand SKUs will need to be picked more often; therefore, visiting the corresponding

storage bin more often and increasing the use of favorable storage locations.

Under ideal strict organization conditions, there is a one-to-one correspondence

between each SKU and storage location. Strict organization demands that each SKU be

assigned to at least one storage bin; which storage bin is not a concern for satisfying the

requirements of strict organization. Demand-based policies, however, give guidance in

making good choices in assigning SKUs to storage bins.

With location-relaxed storage, the role of demand-based storage policies is not as

straight-forward as with strict organization. Many different SKUs may occupy the same

storage bin at the same time and a priori assignment of SKUs to storage bins makes little

sense. Demand-based policies are more compatible with strict organization because they

supplement the already existing need to assign SKUs (or more precisely, the

corresponding storage bin) to a particular location. In location-relaxed storage this

assignment does not exist. Furthermore, one of the main advantages of location-relaxed
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storage is the laissez-faire approach to item placement, and demand-based storage runs

counter to the undirected, easy location-relaxed storage scheme.

This chapter investigates the effect of demand-based placement policies on location-

relaxed storage. Section 7.1 discusses the structure of a rectangular warehouse and three

metrics that may be used to evaluate the attractiveness of a particular storage location.

Section 7.2 describes the results of a simplified simulation that compares demand-based

placement to random placement. Section 7.3 explains the effect of configuration on

warehouse performance and how these effects apply to demand-based storage.

7.1 Favorable Locations

The basic premise of demand-based storage hinges on the idea that certain storage

locations are more easily accessed than others. Typically, favorable locations include

storage bins close to the pickup/drop off location or close to the cross aisles. This section

investigates several metrics for quantifying favorable conditions for warehouse picking

operations. The three qualities considered include the distance of the storage bin to the

pickup/drop-off location, the cost to add the storage location to a pre-existing picking

path, and the cost to add some other location to a picking route containing the storage bin.

7.1.1 Base Distance

The most direct and simple metric for measuring the favorability of a storage bin is the

walking distance between the pickup/drop-off location and the storage location. This

simple-to-calculate base metric provides a loose lower bound on all walking routes that

access the storage location. Figure 7.1 illustrates the base distance metric measured as

distance from a pickup/drop-off location. Locations that are closer to the pickup/drop-off
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location are considered more favorable because accessing these locations require less

walking from the starting point.

p-

H 4 1 III I I I 

S I I I

I I I I I I I I I I I I I I I F 1

I I I I I I I I I I I I I I I

Figure 7.1: Base metric from pickup location to storage location

Figure 7.2 compares base distances for all storage locations in a rectangular

warehouse. The distribution of favorable base distances is intuitively obvious, as distance

to the starting location is visually identifiable.

Start e 9 Finish

Low Medium High

Figure 7.2: Relative base distances for a rectangular warehouse
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The simplicity of the base metric makes for easy calculation; however, the base metric

overlooks the interdependent aspects of multi-address picking routes. Under single-

address picking, warehouse operations satisfy all orders by traveling from the start point to

one storage bin and then to the finish point. However, multi-address picking begins at the

start point, then visits many storage locations before traveling to the finish point, and the

overall picking route depends on many storage locations. The base metric does not fully

describe the favorability of the storage bin locations in this case.

7.1.2 Cover Metric

To better address the interdependence of storage locations when visiting more than one

location, the cover metric considers the relationship between disparate storage locations

and path building for multi-address pick routes. The cover metric quantifies the expected

additional walking distance when adding another location to a pick route. If we construct

the picking route for visiting the location marked black in Figure 7.3, then the cover

p

I I I1 I I II II 1 1 I I I II II III I I I I:

Figure 7.3: Cover metric

metric for the black location is the expected additional walking path distance for visiting
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another randomly selected storage bin. For example, if we add the grey location in

Figure 7.3, then the picking route increases by the path indicated in grey. The summation

(7.1)cover metric = I. cost to add location j,
N S

calculates the cover metric by considering the additional path length for every storage

location and the probability of picking each storage location, where N is the number of

storage locations in the warehouse and S is the set of all storage locations.

Figure 7.4 shows the relative values of the cover metric for the same rectangular

warehouse. Unlike the base metric, locations far from the starting location have lower

Start e e Finish

Low Medium High

Figure 7.4: Relative values for the cover metric

cover values than locations close to the starting location. This reversal is due to the fact

that more locations lie along the path to far away locations (high base metric). When

considering the cover metric, locations that lie along the original base path can be added to

the picking route without much additional walking.

135

H-++-H-H-t++-

HHH+++++H

AA

EE!~m!!99EEEI

9+++H-+I 

HI - + ++H -fI ,14LII =

H+++++++-H
H+++++-H+++i

H++-H+++++H F



7.1.3 Add Metric

The cover metric quantifies how easily other locations might be added to the picking path

containing the described storage location. The add metric considers similar properties but

describes how easily a particular location might be added to a pre-existing picking route.

In other words, the cover metric addresses how easily other locations might be added, and

the add metric describes how easily a bin might be added to other routes.

Like the cover metric, the add metric is an expected value: the expected increase in

walking path distance if the location is added to a picking route containing some other

randomly selected location. Figure 7.5 shows the relative values of the add metric for the

rectangular warehouse.

Start e e Finish

Low Medium High

Figure 7.5: Relative values for the add metric

Both the add metric and cover metric are somewhat limited in their description. While

both consider the effects of adding a location to a picking route, they limited the initial

pick route to contain exactly one location. Considering longer picking routes is not
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feasible because the number of location combinations increases quickly and the

calculation needs to solve larger traveling salesman problems. However, the simple add

metric and cover metric reveal the trend that locations that appear to be unfavorable due to

a high base metric may have other merits due to low cover and add metrics.

7.2 Simplified Analysis of Demand-based, Location-relaxed Storage

Understanding the differences between storage locations is significant when considering

targeted placement schemes that try to maximize the use of favorable locations. Typically,

such placement schemes rely on the expected demand for each SKU to determine to which

storage location the SKU should be assigned and how favorable that location should be.

Demand-based placement runs against the general simplicity found in location-relaxed

storage. Location-relaxed storage operates by delaying the expenditure of effort until it is

clearly needed by placing items in any location (the most convenient) during the storage

phase of warehouse operations. However, demand-based placement necessitates planning

and targeted placement during storage,1 which requires additional effort costs.

7.2.1 Demand-based Simulation

A simplified simulation of warehouse operations considers the possible benefits of

instituting a demand-based placement policy with location-relaxed storage. To simplify

the analysis and remove the complicating factors of interdependence as well as the

influence of add and cover metrics, the simplified simulation considers cost of retrieval as

a function of the storage location only, and not dependent on the other storage locations in

the pick route. In other words, a single location will have some constant cost associated

1. Under strict organization storage, planning and targeted placement are already the status quo and
a necessary part of storage operations. The addition of demand-based placement does not require
additional effort on the part of a strict organization warehouse.
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with it that is the cost of using that location to store and retrieve an item, regardless of

what other locations are used and/or accessed.

The abstract warehouse model is of fixed size with all SKUs considered equal in size

as well. The number of storage bins and the number of items that fit in each storage bin

characterize the warehouse size. Warehouse shape is not an issue with this abstract

warehouse model, as access costs are assigned to each storage bin without regard to

physical location or physical constraints.

The analysis compares demand-based placement to random placement, by filling the

warehouse in one of two methods. For demand-based placement, incoming items are

paired with storage bins based on SKU demand such that higher demand items are placed

in storage bins with the lowest cost. Under random placement, incoming items are

randomly paired with storage bins.

The number of storage bins and the number of items that fit into each storage bin are

held constant throughout the analyses. The costs associated with using a particular storage

bin follow a linear progression with the lowest cost storage bin having a cost of 1 and the

highest cost storage bin having a cost equal to the number of storage bins. The analyses

vary the number of SKUs serviced by the warehouse, the percent of total capacity

removed each cycle, and the relative SKU demand distribution.

The simulation is based on the following steps:
1. Fill the warehouse to full capacity using the demand distribution to determine the identity of the items

placed into the warehouse and using the placement policy (demand-based or random) to determine
the placement location.

2. Based on the percent removed each cycle and the current inventory, identify a subset of the ware-
house contents for removal then select the proper copies of each SKU to meet the removal needs
while minimizing access cost.

3. Generate a random replacement population for the items removed in the previous step based on the
demand distribution.

4. Place the items into the warehouse based on the placement policy.
5. Repeat steps 2 through 4 while collecting the total access cost.
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After repeating the removal and replacement of items many times, the access cost for

demand-based placement can be compared to the access cost for random placement

7.2.2 Results

Repeating the simulation with different running conditions indicates when demand-based

placement policies have a positive effect on location-relaxed storage. For the following

simulations, the warehouse capacity was 1,000 units from 100 storage bins with a 10 unit

capacity each.

Figure 7.6 shows the results of a simulation with 250 SKUs serviced by the warehouse

and a demand distribution with half of the SKUs having twice the demand of the other

half. The average cost is calculated by determining the expected access cost if storage bins

were visited randomly. With 100 storage bins, the average cost per pick is 50.5. The

Normalized Cost versus number of items moved per cycle (250 SKUs)
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Figure 7.6: Random versus demand-based, 2:1 high-low demand distribution

normalized cost is equal to the access cost divided by the average cost. The simulation

varies the number of items removed each cycle to show the effect of volume removal on
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the policies. The result shows that random placement always performs as well or better

than a demand-based placement policy.

Figure 7.7 shows the results for the same operating conditions, but varying number of

SKUs serviced by the warehouse and fixing the number of items removed each cycle to

100 (10% of total capacity). Again, random placement outperforms demand-based

Normalized Cost versus number of SKUs (100 items moved per cycle)
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Figure 7.7: Random versus demand-based, 2:1 high-low demand distribution

placement in all cases presented; however, when the number of SKUs becomes large the

cost difference diminishes.

Figures 7.8 and 7.9 show the same simulation with a demand distribution such that

half of the SKUs have ten times the demand as the other half. All curves follow the same

general upward trend with increasing numbers of SKUs and with increased removal

percentage. However, with the demand of half the SKUs significantly higher (ten times

higher) than the other items, the demand-based placement policy competes more closely

with random placement than in the 2:1 case. The number of items moved each cycle has
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Normalized Cost versus number of items moved per cycle (250 SKUs)
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Figure 7.8: Random versus demand based, 10:1 high-low demand distribution

little effect on the relative values between demand-based placement and random

placement. However, the number of SKUs serviced by the warehouse has a significant

effect on relative access costs. With a higher number of SKUs serviced by the warehouse,

demand-based placement outperforms random placement. In this case, when the number

of SKUs serviced by the warehouse exceeds 30% of the total warehouse capacity,

Normalized Cost versus number of SKUs (100 items moved per cycle)
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Figure 7.9: Random versus demand-based, 10:1 high-low demand distribution
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demand-based placement performs better than random placement. However when the

number of SKUs is smaller, random placement performs better than demand-based

storage.

Figure 7.10 show the results when the demand distribution is linearly spaced. The

SKU with the highest demand has two times the demand of the SKU with the lowest

demand. The remaining SKUs fall evenly spaced between the highest and lowest demand.

The result is very similar to the High-Low demand distribution and random placement

always performs better than demand-based placement.
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Figure 7.10: 2:1, Linear demand distribution

Figure 7.11 shows the results for a linearly spaced demand distribution with the

highest demand SKU having ten times the demand of the lowest demand SKU. The

stronger separation between the high demand items and low demand items diminishes the

clear advantage of random placement over demand-based placement. Furthermore, when

the number of SKUs serviced by the warehouse exceeds 58% of the warehouse total

capacity, demand-based placement performs better than random placement.

Figure 7.12 illustrates the continued trend of an increased disparity between high and

low demand items, in this case showing the same simulation with a linear demand
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Figure 7.11: Random versus demand-based, 10:1 linear demand distribution

distribution with the highest demand SKU having twenty times the demand of the lowest

SKU. Again, a stronger disparity in demand rates diminishes the superiority of random

placement over demand-based placement. In this scenario, demand-based placement out-

performs random placement when the number of SKUs serviced by the warehouse

exceeds 48% of the warehouse total capacity.
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Figure 7.12: Random versus demand-based, 20:1 linear demand distribution

7.2.3 Discussion of Location-relaxed Demand Based Placement

The simulation results show that demand-based placement performs better when the

number of SKUs serviced by the warehouse is very large. Demand-based placement

works better with more SKUs because the number of copies of each item decrease as the
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number of unique SKUs increases. The number of copies of each SKU will vary

depending on the demand distribution, however in general, a greater number of SKUs

corresponds to a smaller number of copies for all SKUs serviced by the warehouse. With a

smaller number of copies, the redundancy of storing multiple copies of the same SKU in

the same storage bin, or very close to the same storage bin, is more likely to be

advantageous and less likely to be troublesome. For example, if there are many copies of a

particular SKU in the warehouse, then placing all of them in favorable locations is

redundant since only a fraction of them will likely be needed during the next cycle.

Smaller number of copies of each SKU reduces the chance of redundancy. In the extreme

case where the number of SKUs serviced is very high such that most SKUs have a single

copy in the warehouse and there is no chance of redundancy, demand-based placement is

clearly superior.

Demand-based placement operates on the balance between greater utilization of

favorable storage bins and the risk of redundant use of these favorable storage bins.

Localized redundancy tends to undo the beneficial factors developed by location-relaxed

storage. In the strict organization case, where storage bins are assigned exclusively to

specific SKUs, localized redundancy is unavoidable as it is a fundamental part of strict

organization. In location-relaxed storage, the de-aggregation and distribution of storage is

part of what contributes to its success. Demand-based placement in a location-relaxed

storage environment tends to over use favorable locations for high demand items.

The results also show that demand-based placement performs better when the

differences in demand rates are very large, which should not be surprising since demand-

based placement is driven by differences in demand rates from one SKU to another. If the
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differences in demand rates are small, then there is little reason to enforce a demand-based

placement policy since SKUs with similar demand rates should not be treated differently.

The results also indicate that the high-low distribution is more sensitive to differences

in relative demand values than linear distribution. This sensitivity is due to the

intermediate demand SKUs between the extreme low and extreme high that make

differences in demand rates less sharp in the linear distribution case. In other words, a

high-low distribution tends to have greater differences between demand rates than the

linear distribution.

Demand-based placement tends to group similar SKUs together. While not

specifically aggregating items into the same storage bin as with strict organization storage,

demand-based placement favors certain storage bins over others thereby influencing

placement such that like SKUs end up in the same region (i.e. local redundancy).

Furthermore, demand-based placement requires additional effort in the storage phase

of warehouse operations to direct items to specific storage bins and locations based on

demand rates. These added efforts further diminish any benefit gleaned from demand-

based placement.

7.2.4 Model Simplification Revisited

The demand-based analysis for location-relaxed storage makes a significant simplifying

assumption that access costs are independent. In real warehouse picking operations multi-

address picking is generally the mode of operation and access costs are dependent not only

on which storage bin a particular SKUs resides, but the storage bins of all the SKUs on the

pick list. The simplifying assumption makes the base metric, discussed in section 7.1.1,

the most important characteristic of a storage location. The add metric and cover metric
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have no weight in this analysis because the access costs are assumed to be independent of

other locations.

This simplifying assumption offers several benefits to the simulation and analysis.

Because access costs are constant and independent of pick list or pick order, favorable

storage bins are easily identifiable for the simulation. With constant and independent

access costs, comparing the access costs of different locations directly indicates whether

one location is more favorable than another. Without the simplifying assumption, one

location may have a lower base metric while another has more favorable add and cover

metrics. Evaluating which location is more favorable than the other in this case is not

straight forward. The simplified model ignores the benefits measured by the add and cover

metrics. In other words, the real-world benefit of picking two items that are close to each

other does not appear in the simplified model, thereby allowing the formulation of a

simple and clear demand-based strategy.

Removing the simplification from the analysis creates a more complicated interaction

between storage bin and picking cost (access cost). It is likely that the benefits of picking

items from storage locations that are close to each other, rather than focusing on picking

from storage locations that are merely close to the pickup/drop-off location, will reduce

the benefit of demand-based placement since locations that have favorable base metrics

tend to have less favorable add and cover metrics.

7.2.5 Alternative Placement Strategy

Even though the simplified model emphasizes the benefits associated with demand-based

placement, the analysis does not demonstrate a clear advantage over random placement.

The pitfall that weakens demand-based placement is the overuse of favorable locations for
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high demand items. For example, if the warehouse capacity was 1,000 units and on-

average product Z accounts for 10% of all demand, then on average, the warehouse would

have 100 units of product Z stored in the warehouse. If 50% of the warehouse were

removed each cycle, then on average 50 units of product Z would be needed each cycle.

Placing all 100 units of product Z in favorable locations is inefficient since we only expect

about 50 units to be needed each cycle. The extra 50 units occupy favorable space that

could better be used servicing some other product.

Demand-based placement does not offer the same cost savings potential as with the

strict organization storage case. However, the notion that placing a sufficient number of

items in favorable locations while leaving the rest in less favorable locations leads to other

possible placement strategies specifically designed for location-relaxed storage.

7.3 Configuration Analysis

Consider the case where there are three types of items (three SKUs) with a demand ratio

of 3:2:1. Let the cost of using a particular storage location be independent of the other

locations used just as with the simulation of section 7.2. Also, assign a constant cost of

using a location equal to the location numbers 1 to n. Section 7.2, simulated the placement

and removal of items according to demand-based placement and random placement

schemes. This configuration analysis considers a fixed placement pattern rather than a

replenishment policy.

The configuration pattern that corresponds to pure demand-based placement has the

highest demand SKU occupying the most favorable storage bins, followed by the next

highest demand SKU. For example, three SKUs with a 3:2:1 demand rate ratio would be

arranged AAAAAAAAAAAAAAABBBBBBBBBBCCCCC. This configuration has no
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mixing of the SKUs and would not perform well since the first 15 locations contain all the

same SKU. Strong demand-based placement aggregates SKUs in a way that is similar to

strict organization, which is why demand-based placement works well with strict

organization storage and less well with location-relaxed storage.

When removing m items from the configuration, the minimum access cost occurs

when all m items appear in the most favorable locations. With no mixing in the

configuration, it is highly unlikely that all copies of the highest demand SKU will be

needed before any other SKU. In fact, the best configuration should have a 3:2:1

distribution in the first m locations.

Consider the case where product Z occupies 10% of all demand. With a 50% removal

of the warehouse capacity, the smallest possible cost occurs when all picked items lie in

the first half of the warehouse. An optimal configuration would have 10% of the first half

of the warehouse containing product Z. If all of product Z had been placed in the first of

the warehouse, then the first half of the warehouse would have product Z as 20% of the

items. Half of which would be useful during the picking process, and the other half would

be an obstruction. Furthermore, if 10% of the items were removed, then the optimal

configuration would have product Z make up 10% of the first one-tenth of the warehouse.

If the amount of product removed were unknown and random, then the best configuration

would have product Z evenly distributed throughout the warehouse storage bins so that no

matter what fraction of the warehouse was to be removed, the fraction would contain as

close to 10% of product Z as possible.

A better configuration is AAABBCAAABBCAAABBCAAABBCAAABBC, which

has a moderate amount of mixing and distributes the SKU's more evenly such that

148



choosing m = 6, m = 12, m = 18, m = 24, or m = 30 results in the first m locations having a

distribution matching 3:2:1. An even better assignment is

ABACABABACABABACABABACABABACAB, which has a high amount of mixing

and spreads repeated SKUs most evenly throughout the configuration.

Figure 7.13 compares various configurations' performance when removing 30% of the

warehouse contents based on a linear demand distribution. The upper bound describes the

worst case scenario where every pick comes from the least favorable storage locations.

The lower bound describes the minimum cost possible for picking the items and

corresponds to all picked items residing in the most favorable storage locations. The curve

labelled "No Mixing" corresponds to the configuration where all copies of the highest

demand reside in the most favorable storage bins (e.g.

AAAAAAAAAAAAAAABBBBBBBBBBCCCCC). The curve labelled "Strong Mixing"

corresponds to a configuration that maximizes the separation between identical SKUs

(e.g. ABACABABACABABACABABACABABACAB). The curve labelled "Moderate

Mixing" has some characteristics of both aggregation and distribution (e.g.

AAABBCAAABBCAAABBCAAABBCAAABBC). Finally, the curve labelled random,

corresponds to a randomly generated configuration. All four configurations contain the

same inventory; the only difference is the location of the inventory.

Figure 7.13 shows the strength of mixing for obtaining a configuration that minimizes

the cost to retrieve items. When the demand rates of the SKUs are known, evenly

distributing each SKU across the warehouse performs better than placing higher demand

SKUs in more favorable storage bins. This analysis confirms that demand-based storage,

while helpful in strict organization storage, is counter-productive to location-relaxed
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Figure 7.13: Configuration performance

storage operations. Furthermore, the configuration analysis confirms the positive benefits

of distributed storage for order-picking and emphasizes the importance of evenly

distributed storage in location-relaxed environments.

Demand-based placement policies only have a place in location-relaxed storage when

the demand differences are extremely large between SKUs. In other words, demand-based

placement is appropriate only for outliers far beyond the demand rates of typical items.

While demand-based placement policies do not offer any contributions to location-relaxed

storage, another placement policy based on the strong mixing configuration may offer cost

savings benefits. For example, a simple placement policy emulating the results of strong

mixing could choose a storage location for an incoming item based on the current

locations of all other matching items already stored. The policy would maximize the

distribution of the item's population by selecting a location that is as far away from the

other items as possible. Such a placement policy may succeed in providing cost savings

where demand-based placement fails.
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The configuration analysis results also indicate a very good performance by a

randomly generated configuration. Random placement of items is easier than specifying a

location that maximizes distribution. The cost savings of a configuration based placement

policy would have to obtain sufficient picking cost savings to justify the additional effort

required to specify the target locations for placement.
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Chapter 8: Conclusions

Location-relaxed storage holds great potential for revolutionizing warehouse operations.

The initial analyses in this thesis have demonstrated the benefits of location-relaxed

storage in reducing routing walk distances by distributing products across the warehouse.

Furthermore, location-relaxed storage offers superior efficiency in storage space

utilization. The research has also uncovered many aspects of location-relaxed warehouse

operations where further optimization and research are warranted. Full optimization of

location-relaxed warehouse fulfillment takes an already complex optimization problem

with strict organization and superimposes additional layers of complexity. This added

complexity also offers additional opportunity for optimization.

In the future, depending on the characteristics of a particular warehouse operation,

some systems will find that strict organization is still the best option, others will determine

that location-relaxed storage offers significant benefits over the old methods.

Amazon.com already benefits from this new approach to warehousing. As our

understanding of this tantalizing and complex warehouse problem improves, its benefits

and application to warehouse operations will change the fundamentals of warehouse

storage. Rather than settling for a configuration based on the perceived need for

organization, the more worthwhile criterion of less costly operations will become the

driving force in warehouse design.

8.1 Review

Analysis of the traveling purchaser problem demonstrates the benefits of having a choice

of many storage locations for order-picking. Simulation of warehouse operations confirm
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the hypothesis that location-relaxed storage is especially beneficial with small outgoing

order lot sizes. The surprising result from the warehouse simulation analysis indicates that

there is not only compelling reason to use location-relaxed storage when the outgoing lot

size is small, but deliberate mixing of incoming materials yields benefits as well. Even

though incoming product may be pre-aggregated from the manufacturer, maintaining this

aggregation is not only unnecessary in some cases, it is undesirable.

Location-relaxed storage allows all of the warehouse capacity to be available for use.

Several analyses demonstrate that strict organization storage can not devote 100% of

space to storage without risk of blocking; some space must always be left idle.

Furthermore, strict organization storage capacity generally decreases as the number of

SKUs serviced by the warehouse increases. For warehouses addressing a very large

number of unique SKUs, location-relaxed storage becomes more desirable. In fact above a

certain level, approximately equal to the number of storage bins, location-relaxed storage

is the only viable storage method.

Without technological improvements location-relaxed storage suffers a very high

sensitivity to operation errors. Traditional strict organization techniques also suffer from

operational mistakes, but the impact of these mistakes are less severe than with location-

relaxed storage. In fact, the order enforced with strict organization is the main point of

recourse in response to operation errors and is the one of the main reasons strict

organization methods dominate warehouse operations today.

With new technologies such as Radio Frequency Identification (RFID) tagging and

automatic identification systems (Auto-ID), the sensitivity of location-relaxed storage

techniques to operation errors is greatly reduced. Furthermore, the analysis of the
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expected effect of operation errors on location-relaxed storage with Auto-ID technology

shows location-relaxed storage is less sensitive to errors than similarly equipped strict

organization storage.

Demand-based placement policy analysis uncovers the surprising result that demand-

based storage, a staple in traditional warehousing operations, offers little benefit to

location-relaxed storage methods. In fact, the evidence shows demand-based placement

policies to be counter-productive. Additional investigation indicates an alternative

placement policy based on establishing a widespread distribution of each SKU across the

warehouse storage bins might offer cost savings in lieu of demand-based placement.

Deliberately placing copies of the same SKU far apart maximizes the benefits of multiple

locations.

8.2 Discussion

Location-relaxed storage is an example of using entropy within a system as an advantage

rather than a disadvantage. Strict organization approaches entropy in an adversarial

manner as the design and operation of the warehouse focuses on maintaining order and

fights inevitable disorder with high aggregation and periodic checks for discrepancies

from the ordered ideal. On the other hand, location-relaxed storage accepts entropy and

uses randomness as an asset. This novel approach to disorder illustrates that deriving order

from randomness can be easier than maintaining order in a system that tends to be

disordered.

Location-relaxed storage shows strong potential as a replacement to traditional storage

techniques. The introduction of new technologies to automatically track and monitor

materials within a warehouse address the major problems with location-relaxed storage
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that had previously made such an approach unfeasible. RFID technology removes the

serious difficulty location-relaxed storage has with placement errors.

The case for location-relaxed storage is especially compelling when the warehouse

operations characteristics include small outgoing order lot sizes and a high number of

SKUs to be serviced by the warehouse. The proliferation of product lines tends to increase

the number of SKUs served by a warehouse, and the emergence of direct-to-consumer

warehouse operations tend to decrease the order size and lot size of outgoing product.

These characteristics are consistent with the strengths of location-relaxed storage.

Unlike the traditional product distribution paradigm where the warehouse services

several retail outlets, website-based stores tend to serve the individual customers directly.

This direct-to-consumer model reduces the lot size of outgoing product from dozens in the

'to retail store' case down to singles for the direct-to-consumer case. Furthermore, website

based stores tend to offer as much product variety as possible which leads to a high

number of SKUs involved in the warehouse operations. Hence, location-relaxed storage is

especially suited for eCommerce ventures that cater directly to the consumer.

8.3 Further Study

Location-relaxed warehouse storage offers a wide variety of optimization opportunities

for maximum cost savings. The analyses included in this research focused on proving the

strengths and potential of location-relaxed storage. Fully optimal techniques for location-

relaxed warehouse storage are discussed but not pursued.

The analyses included in this thesis cover only a few of the many warehouse

characteristics important to evaluating a warehouse policy. The warehouse simulation of
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placement and picking operations focuses on incoming and outgoing lot size to

demonstrate the areas of strength location-relaxed storage has over traditional methods.

Additional parameters of relevance that were not pursued include warehouse size, number

of SKUs serviced by the warehouse, warehouse dimensions, and other picking policies

such as zone picking. The areas of investigation for further insight and understanding of

location-relaxed storage warehouse operations are numerous.

Beyond testing how different sizes, dimensions, and policies effect location-relaxed

warehouse storage, optimization opportunities emerge in the location-relaxed warehouse

operations. The warehouse traveling purchaser problem presents research opportunities in

Warehouse-TPP optimal solutions, and warehouse specific heuristics. Adaptations of the

warehouse-TSP heuristics discussed by Petersen, Roodbergen and DeKoster would be of

great benefit for understanding the Warehouse-TPP problem better.

Optimality in order-picking offers a rich and complicated combinatorial optimization

problem. Not only is the order batching problem itself difficult, it is intimately linked to

the Warehouse-TPP problems which are interdependent.

Finally, the emergence of configuration-based placement policies for location-relaxed

storage deserves a closer investigation and cost-benefit analysis. Demand-based

placement strategies have been a staple for traditional warehousing, but do not offer much

benefit to location-relaxed storage. Whether configuration-based placement offers the

same level of benefit to location-relaxed storage as demand-based placement does with

strict organization storage remains to be seen.

Although fully understanding the role of RFID technologies and location-relaxed

storage on warehouse operations will require much additional investigation, the analyses
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presented showcase the potential of this new storage method. Furthermore, the

investigation offers a strong motivation for undertaking additional research into location-

relaxed storage and its associated optimization opportunities.
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Appendix A : Warehouse Traveling Purchaser Problem

This appendix describes how examples of the warehouse traveling purchaser problem are

generated for evaluation in Chapter 3 including the warehouse layout and dimensions and

the step-by-step procedure for generating the problem instance.

A.1 Warehouse layout

Figure A. 1 shows the warehouse layout used throughout Chapters 3 and 4 as well as parts

of Chapter 7 (Section 7.1: Favorable Locations). The warehouse consists of 30 rows and 4

columns of storage locations. Within each column there are 12 stacks of storage locations.

Each stack has 8 storage locations within it (not shown in the diagram) for a total of

11,520 locations. The diagram also shows the key dimensions. Each storage bin has a

width of 1 meter and depth of half a meter. Row aisles are 0.5 meters, and column cross-

aisles are 1 meter wide.

rt 0 Finish

F++++ + 11E mF1 1 m
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Figure A Warehoue0.5 m

Figure A.1: Warehouse layout
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A.2 Generating a traveling purchaser problem example
Chapter 3 evaluates warehouse-TPPs with varying number of items in the pick list and a

varying number of locations in which each item resides. To generate these problems to be

solved by the greedy heuristics (or optimal search), for each of the n items in the pick list,

k locations are randomly selected from all locations with equal probability (repeated

locations are permitted). The result is a list of n unique items each found in k locations. In

other words, the generated problem is specifically for picking n different products. For

evaluating optimal and heuristic solutions, a list of unique items is sufficient. Further

investigation into the effect of picking lists with multiple copies of the same product (and

therefore identical locations for matching products) is discussed in Section 4.3 and

Appendix B.
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Appendix B : Warehouse Picking and Placement

This appendix covers the process of generating sets of incoming products and sets of

outgoing orders for the warehouse picking and placement simulation and the process by

which the sets of products are placed into the warehouse. The warehouse layout and

dimensions are the same as explained in Appendix A. The warehouse picking and

placement simulation operates in alternating intervals of placing newly acquired items

into the warehouse and removing items from the warehouse to fill orders.

B.1 Incoming products

Products entering the warehouse arrive in boxes of size N. The box size is fixed at 20 units

per box for all simulations in Chapter 4. The product distribution within a box depends on

the placement lot size, which varies between simulations but is constant within a particular

simulation run. Demand is equal for all products; therefore each product has an equal

chance of being in a particular incoming box.

Having set the box size to 20 and selected a placement lot size for the simulation run,

incoming boxes of products are created by randomly selecting a product from the list of

products served by the warehouse. Copies of this selected product are added to the box

until either the box contains copies of the product equal to the placement lot size for the

simulation run, or the box is full (20 items). After generating the box or boxes, the items

are placed into the warehouse according to the placement policy. For the simulations

described in Chapter 4, strict organization warehouses use a zone placement policy where

items within incoming boxes are aggregated based on their assigned location within the

warehouse. These zone-based, aggregated groups are limited in size and for the

simulations in Chapter 4, the number of items in a single group cannot exceed 100 items.
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Placement under location-relaxed storage follows a box-by-box methodology (i.e. no

mixing from one box to another and no aggregation).

Permitting a grouping operation with strict organization storage but not location-

relaxed storage gives a slight advantage to strict organization storage which indicates an

even stronger superiority for cases where location-relaxed storage performs better than

strict organization storage. Furthermore, the cost associated with the grouping process is

not counted against strict organization storage in the simulation tabulation of operation

costs.

B.2 Outgoing products
For the picking and placement simulations of Chapter 4, both strict organization and

location-relaxed storage warehouses use batch picking to retrieve items from the

warehouse to fill order demand. Orders are generated in a method similar to incoming

product generation. The only difference is items are checked against the warehouse

inventory to before being put into in order to eliminate the possibility of stockout. Order

sizes are 20 for all simulations in Chapter 4; picking lot sizes very with each simulation.

Orders are then combined into picking batches to reduce the number of passes through the

warehouse necessary to retrieve the needed products. The maximum batch size is the same

for both versions of the warehouse and is set to 150 items.

B.3 Simulation procedure
Simulations begin with an empty warehouse that is filled with a standard incoming

product phase to initialize the warehouse. For all simulations of Chapter 4, the number of

unique products is 2000 and the number of items in the warehouse after initialization is

160,000. Each simulation run consists of adding and removing 60,000 items divided into

30 alternating picking and placement phases.
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Appendix C : Storage Efficiency Derivation

This appendix provides a proof for equation 5.2:

i. U.P(i,N) = N
i = 0

Replacing P(i, N) with equation 5.1 yields
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The quantity (1 -p)M-j is the summation of a binomial distribution with M trials

and ± rate of success. The summation of any probability distribution is unity. Therefore,U

N = N (C.13)

And equation 5.2 is shown to be valid.
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