1,893 research outputs found

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects

    Full text link
    Nanorobotics offers an emerging frontier in biomedicine, holding the potential to revolutionize diagnostic and therapeutic applications through its unique capabilities in manipulating biological systems at the nanoscale. Following PRISMA guidelines, a comprehensive literature search was conducted using IEEE Xplore and PubMed databases, resulting in the identification and analysis of a total of 414 papers. The studies were filtered to include only those that addressed both nanorobotics and direct medical applications. Our analysis traces the technology's evolution, highlighting its growing prominence in medicine as evidenced by the increasing number of publications over time. Applications ranged from targeted drug delivery and single-cell manipulation to minimally invasive surgery and biosensing. Despite the promise, limitations such as biocompatibility, precise control, and ethical concerns were also identified. This review aims to offer a thorough overview of the state of nanorobotics in medicine, drawing attention to current challenges and opportunities, and providing directions for future research in this rapidly advancing field

    Military mimicry:the art of concealment, deception, and imitation

    Get PDF
    Three dominant thematics emerge from the biological mimicry and camouflage literature, namely, concealment, deception, and imitation. These phenomena are interesting in their own right, but conceptually have similar analogs in the military context that have attracted only minimal intellectual curiosity. Accordingly, the purpose of this paper is to apply biological mimicry and camouflage concepts to the military environment. Concealment in the form of camouflage is traced from its nineteenth century origins to the military's imminent twenty-first century perfection of an “invisibility cloak”. Military deception is the art of duping enemies with fakes and dummies. Finally, imitation is examined from three perspectives: firstly, replacement of military personnel with animals; secondly, exploration of bioengineering, including exploitation of avian aerodynamics, insect biophysical structures, and mammal sonar attributes; and, thirdly, Artificial Intelligence that is driving military mimicry along an evolutionary path towards robots, swarms, and avatars in an emerging and novel military technology revolutio

    Implementation Of Path Planning Methods To Detect And Avoid GPS Signal Degradation In Urban Environments

    Get PDF
    In the modern world, various missions are being carried out under the assistance of autonomous flight vehicles due to their ability to operate in a wide range of flight conditions. Regardless, these autonomous vehicles are prone to GPS signal loss in urban environments due to obstructions that cause scintillation, multi-path, and shadowing. These effects that decrease the GPS functionality can deteriorate the accuracy of GPS positioning causing losses in signal tracking leading to a decrease in navigation performance. These effects are modeled into the simulation environment and are used as part of the path planning algorithm to provide better navigation strategies. This thesis aims to provide an implementation of A* algorithm in combination with RRT* path planning algorithm to detect and avoid areas with degraded GPS signals. The trajectory generation will consider a quadcopter vehicle dynamics when generating paths. A model of the quadcopter is used to illustrate the validation of this approach in a simulation environment with the GPS model integrated

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    • 

    corecore