19 research outputs found

    ROS-based 2-D Mapping Using Non-holonomic Differential Mobile Robot

    Get PDF
    This research proposes a 2-D mapping method by a mobile robot using LIDAR sensor. The mobile robot used is a non-holonomic type with a differential driver designed to operate in an indoor area. The robot applies an occupancy grid map method that uses a probability rule to handle the uncertainties of the sensor. The quality of 2-D occupied map relies on the accuracy of distance measurements by the LIDAR sensor and the accuracy of position estimation. Position estimation is obtained by using the 2-D LIDAR odometry which is based on the laser scan matching technique. This research uses simulation model which has characteristics like real nature. All the robotic software operations are managed by the Robot Operating System (ROS) as one of the most popular software frameworks currently used by robot researchers. The experimental results show that the robot can arrange a 2-D map well which is indicated by the similarity between the reference ground truth and the resulting 2-D map

    CES-515 Towards Localization and Mapping of Autonomous Underwater Vehicles: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have been used for a huge number of tasks ranging from commercial, military and research areas etc, while the fundamental function of a successful AUV is its localization and mapping ability. This report aims to review the relevant elements of localization and mapping for AUVs. First, a brief introduction of the concept and the historical development of AUVs is given; then a relatively detailed description of the sensor system used for AUV navigation is provided. As the main part of the report, a comprehensive investigation of the simultaneous localization and mapping (SLAM) for AUVs are conducted, including its application examples. Finally a brief conclusion is summarized

    Robot Mapping with Real-Time Incremental Localization Using Expectation Maximization

    Get PDF
    This research effort explores and develops a real-time sonar-based robot mapping and localization algorithm that provides pose correction within the context of a single room, to be combined with pre-existing global localization techniques, and thus produce a single, well-formed map of an unknown environment. Our algorithm implements an expectation maximization algorithm that is based on the notion of the alpha-beta functions of a Hidden Markov Model. It performs a forward alpha calculation as an integral component of the occupancy grid mapping procedure using local maps in place of a single global map, and a backward beta calculation that considers the prior local map, a limited step that enables real-time processing. Real-time localization is an extremely difficult task that continues to be the focus of much research in the field, and most advances in localization have been achieved in an off-line context. The results of our research into and implementation of realtime localization showed limited success, generating improved maps in a number of cases, but not all-a trade-off between real-time and off-line processing. However, we believe there is ample room for extension to our approach that promises a more consistently successful real-time localization algorithm

    Neural Networks and Q-Learning for Robotics

    No full text
    International audienceIntroductionBehavior-Based ApproachSupervised Learning of a BehaviorMiniature Mobile Robot KheperaIllustration: Reward-Penalty LearningReinforcement LearningGenetic AlgorithmsLearning Classifier SystemsGA & ANNQ-learningEvaluation FunctionAlgorithmReinforcement FunctionUpdate FunctionConvergenceLimitationsGeneralizationNeural Implementations of the Q-learningMultilayer Perceptron Implementation (ideal & Q-CON)Q-KOHONComparisonKnowledge IncorporationReinforcement Function DesignBuilding of a non-explicit ModelLearning in Cooperative RoboticsReference

    Cooperative Material Handling by Human and Robotic Agents:Module Development and System Synthesis

    Get PDF
    In this paper we present the results of a collaborative effort to design and implement a system for cooperative material handling by a small team of human and robotic agents in an unstructured indoor environment. Our approach makes fundamental use of human agents\u27 expertise for aspects of task planning, task monitoring, and error recovery. Our system is neither fully autonomous nor fully teleoperated. It is designed to make effective use of human abilities within the present state of the art of autonomous systems. It is designed to allow for and promote cooperative interaction between distributed agents with various capabilities and resources. Our robotic agents refer to systems which are each equipped with at least one sensing modality and which possess some capability for self-orientation and/or mobility. Our robotic agents are not required to be homogeneous with respect to either capabilities or function. Our research stresses both paradigms and testbed experimentation. Theory issues include the requisite coordination principles and techniques which are fundamental to the basic functioning of such a cooperative multi-agent system. We have constructed a testbed facility for experimenting with distributed multi-agent architectures. The required modular components of this testbed are currently operational and have been tested individually. Our current research focuses on the integration of agents in a scenario for cooperative material handling

    Multi Robot Intruder Search

    Get PDF
    The aim of this work is the development and analysis of methods and algorithms to allow a multi robot system to cooperatively search a closed, 2-dimensional environment for a human intruder. The underlying problem corresponds to the game-theoretic concept of a classical pursuit evasion game, whereas the focus is set to the generation of plans for the group of pursuers. While the main aspect of of this work lies in the field of probabilistic robotics, concepts and ideas are incorporated from differential game theory, algorithmic geometry and graph theory. The probabilistic basis allows the integration of sensor error as well as nondeterministic robot motion. The main contributions of this work can be divided into three major parts: The first part deals with the development and implementation of probabilistic human models. Depending on the specific behavior of an intruder, ranging from uncooperative to unaware, different classes of intruders are identified. Models are proposed for two of these classes. For the case of a clever and uncooperative intruder who actively evades detection, we propose a model based on the concept of contamination. The second class corresponds to a person who is unaware of the pursuit. We show that simple Markov models, which are often proposed in literature, are not suited for modeling realistic human motion and develop advanced Markov models, which conform to random waypoint motion models. The second part, which is also the most extensive part of this work, deals with the problem of finding an uncooperative and clever intruder. A solution is presented, which projects the problem on a graph structure, which is then searched by a highly optimized A* planner. The solution for the corresponding graph problem is afterwards projected back to the original search space and can be executed by the robotic pursuers. By means of the models proposed in the first part, the performance and correctness of the method is shown. We present experiments in simulation as on real robots to show the practicability and efficiency of the method. The third part deals with the problem of finding an intruder who is unaware of the search. Based on the advanced Markov model previously discussed, a greedy algorithm is proposed, which aims at maximizing the probability to find the intruder in the near future. Experimental results for this method are shown and comparisons to simpler methods are given.Mehrroboter-Eindringlings-Suche Ziel dieser Arbeit ist die Entwicklung und Analyse von Methoden und Algorithmen, die einem kooperativen Mehrrobotersystem erlauben nach einem Eindringling in einer zweidimensionalen, geschlossenen Umgebung zu suchen. Das dem zugrunde liegende Problem entspricht dem spieltheoretischen Konzept eines Suche und Ausweichen Spieles (pursuit evasion game), wobei der Fokus auf der Generierung von Plänen für die Verfolger liegt. Der Hauptaspekt dieser Arbeit liegt dabei im Feld der probabilistischen Robotik, wobei Konzepte und Ideen aus dem Gebiet der differentiellen Spieltheorie, der algorithmischen Geometrie und der Graph Theorie verwendet werden. Die probabilistische Modellierung erlaubt dabei die Integration von Sensorfehlern wie auch nichtdeterministische Roboter-Bewegung. Die Arbeit gliedert sich in drei Hauptteile: Der erste Teil beschäftigt sich mit dem Entwurf und der Implementierung von probabilistischen Modellen für menschliche Bewegung. Abhängig vom angenommenen Verhalten eines Eindringlings, von aktiv ausweichend bis zu ignorant, werden verschiedene Klassen von menschlichem Verhalten unterschieden. Für zwei dieser Klassen stellen wir Modelle auf: Für den Fall einer intelligenten und aktiv ausweichenden Person, generieren wir ein Modell basierend auf dem Konzept von Kontamination. Das zweite Modell entspricht einem Eindringling, der sich der Suche nach ihm nicht bewusst ist. Wir zeigen, dass einfache Markov-Modelle, wie sie in der Vergangenheit oft vorgeschlagen worden sind, ungeeignet sind, um realistische Bewegung zu abzubilden und entwickeln entsprechend erweiterte Markov-Modelle für eine realistischere Modellierung. Der zweite Teil der Arbeit beschäftigt sich mit der Frage, wie man einen intelligente und aktiv ausweichenden Eindringling aufspüren kann. Die vorgestellte Lösung basiert auf der Projektion des Problems auf einen Graphen, der anschließend von einem hoch optimierten A*-Planungsalgorithmus durchsucht werden kann. Diese Lösung kann anschließend auf den ursprünglichen Raum rückprojeziert werden und kann als direkter Plan von den verfolgenden Robotern ausgeführt werden. Mittels der Modelle aus dem ersten Teil wird die Korrektheit und Effizienz der Lösung gezeigt. Der letzte Teil befasst sich mit der Frage, wie ein Eindringling gefunden werden kann, der sich neutral zur Suche verhält. Basierend auf den erweiterten Markov-Modellen aus dem ersten Teil, wird eine Lösung durch gierige Suche präsentiert, die die Wahrscheinlichkeit eine Person im nächsten Zeitschritt aufzuspüren, maximiert. Wie im zweiten Teil werden Experimente diskutiert und diese mit der Proformanz simplerer Methoden verglichen

    Plataforma de medida com suporte de mobilidade

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesA mobilidade foi sempre um fator-chave a ser suportado nas redes de testes sem fios (também conhecidas por testbeds) já existentes. Estas redes permitem a recriação de cenários reais e emulados, encontrando-se uma destas instalada no terraço do Instituto de Telecomunicações (IT) de Aveiro, de nome AMazING. Um carril metálico apoiado num total de 40 pilares, também eles metálicos, foi implementado no terraço do IT. Sobre este carril é colocado um protótipo derivado a partir de um motor de uma bicicleta elétrica capaz de se deslocar ao longo deste carril a velocidades variáveis, permitindo assim que se recriem ou testem cenários de mobilidade nesta rede. Ao longo deste documento diferentes estratégias e técnicas foram estudadas de acordo com o estado de arte, e é apresentada uma proposta de um sistema de localização de modo a estimar a posição deste protótipo, conforme o seu movimento ao longo do carril.Mobility has always been a key-factor to be inserted on already existent wireless networks designed for testing (also named testbeds). These networks allow the recreation of real and emulated scenarios and one of these is currently installed on the rooftop of the Institute of Telecommunications (IT) of Aveiro, named AMazING. A metallic rail supported by a total of 40 pillars, also metallic, has been deployed on the rooftop of IT. Over this rail is placed a prototype, based on the motor of an electrical bicycle, which is able of moving along the full length of the rail at variable values of velocity. This allows the recreation or testing of mobility scenarios on the testbeds. Throughout this document different strategies and techniques were studied accordingly to the state of the art and a proposal is presented of a localization system allowing this way to evaluate the position of the prototype, while it is travelling the metallic rail

    A Generalized Neural Network Approach to Mobile Robot Navigation and Obstacle Avoidance

    Get PDF
    In this thesis, we tackle the problem of extending neural network navigation algorithms for various types of mobile robots and 2-dimensional range sensors. We propose a general method to interpret the data from various types of 2-dimensional range sensors and a neural network algorithm to perform the navigation task. Our approach can yield a global navigation algorithm which can be applied to various types of range sensors and mobile robot platforms. Moreover, this method allows the neural networks to be trained using only one type of 2-dimensional range sensor, which contributes positively to reducing the time required for training the networks. Experimental results carried out in simulation environments demonstrate the effectiveness of our approach in mobile robot navigation for different kinds of robots and sensors. Therefore, the successful implementation of our method provides a solution to apply mobile robot navigation algorithms to various robot platforms
    corecore