10 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud Services in the Presence of Active and Passive Attacks

    Get PDF
    The prominence of cloud computing as a common paradigm for offering Web-based services has led to an unprecedented proliferation in the number of services that are deployed in cloud data centers. In parallel, services' communities and cloud federations have gained an increasing interest in the recent past years due to their ability to facilitate the discovery, composition, and resource scaling issues in large-scale services' markets. The problem is that the existing community and federation formation solutions deal with services as traditional software systems and overlook the fact that these services are often being offered as part of the cloud computing technology, which poses additional challenges at the architectural, business, and security levels. The motivation of this thesis stems from four main observations/research gaps that we have drawn through our literature reviews and/or experiments, which are: (1) leading cloud services such as Google and Amazon do not have incentives to group themselves into communities/federations using the existing community/federation formation solutions; (2) it is quite difficult to find a central entity that can manage the community/federation formation process in a multi-cloud environment; (3) if we allow services to rationally select their communities/federations without considering their trust relationships, these services might have incentives to structure themselves into communities/federations consisting of a large number of malicious services; and (4) the existing intrusion detection solutions in the domain of cloud computing are still ineffective in capturing advanced multi-type distributed attacks initiated by communities/federations of attackers since they overlook the attacker's strategies in their design and ignore the cloud system's resource constraints. This thesis aims to address these gaps by (1) proposing a business-oriented community formation model that accounts for the business potential of the services in the formation process to motivate the participation of services of all business capabilities, (2) introducing an inter-cloud trust framework that allows services deployed in one or disparate cloud centers to build credible trust relationships toward each other, while overcoming the collusion attacks that occur to mislead trust results even in extreme cases wherein attackers form the majority, (3) designing a trust-based game theoretical model that enables services to distributively form trustworthy multi-cloud communities wherein the number of malicious services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud system to build credible trust relationships toward the guest Virtual Machines (VMs) running cloud-based services using objective and subjective trust sources, (5) designing and solving a trust-based maxmin game theoretical model that allows the cloud system to optimally distribute the detection load among VMs within a limited budget of resources, while considering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting forward a resource-aware comprehensive detection and prevention system that is able to capture and prevent advanced simultaneous multi-type attacks within a limited amount of resources. We conclude the thesis by uncovering some persisting research gaps that need further study and investigation in the future

    Theoretical and Applied Foundations for Intrusion Detection in Single and Federated Clouds

    Get PDF
    Les systèmes infonuagiques deviennent de plus en plus complexes, plus dynamiques et hétérogènes. Un tel environnement produit souvent des données complexes et bruitées, empêchant les systèmes de détection d’intrusion (IDS) de détecter des variantes d’attaques connues. Une seule intrusion ou une attaque dans un tel système hétérogène peut se présenter sous des formes différentes, logiquement mais non synthétiquement similaires. Les IDS traditionnels sont incapables d’identifier ces attaques, car ils sont conçus pour des infrastructures spécifiques et limitées. Par conséquent, une détection précise dans le nuage ne sera absolument pas identifiée. Outre le problème de l’infonuagique, les cyber-attaques sont de plus en plus sophistiquées et difficiles à détecter. Il est donc extrêmement compliqué pour un unique IDS d’un nuage de détecter toutes les attaques, en raison de leurs implications, et leurs connaissances limitées et insuffisantes de celles-ci. Les solutions IDS actuelles de l’infonuagique résident dans le fait qu’elles ne tiennent pas compte des aspects dynamiques et hétérogènes de l’infonuagique. En outre, elles s’appuient fondamentalement sur les connaissances et l’expérience locales pour identifier les attaques et les modèles existants. Cela rend le nuage vulnérable aux attaques «Zero-Day». À cette fin, nous résolvons dans cette thèse deux défis associés à l’IDS de l’infonuagique : la détection des cyberattaques dans des environnements complexes, dynamiques et hétérogènes, et la détection des cyberattaques ayant des informations limitées et/ou incomplètes sur les intrusions et leurs conséquences. Dans cette thèse, nous sommes intéressés aux IDS génériques de l’infonuagique afin d’identifier les intrusions qui sont indépendantes de l’infrastructure utilisée. Par conséquent, à chaque fois qu’un pressentiment d’attaque est identifié, le système de détection d’intrusion doit être capable de reconnaître toutes les variantes d’une telle attaque, quelle que soit l’infrastructure utilisée. De plus, les IDS de l’infonuagique coopèrent et échangent des informations afin de faire bénéficier chacun des expertises des autres, pour identifier des modèles d’attaques inconnues.----------ABSTRACT: Cloud Computing systems are becoming more and more complex, dynamic and heterogeneous. Such an environment frequently produces complex and noisy data that make Intrusion Detection Systems (IDSs) unable to detect unknown variants of known attacks. A single intrusion or an attack in such a heterogeneous system could take various forms that are logically but not synthetically similar. This, in turn, makes traditional IDSs unable to identify these attacks, since they are designed for specific and limited infrastructures. Therefore, the accuracy of the detection in the cloud will be very negatively affected. In addition to the problem of the cloud computing environment, cyber attacks are getting more sophisticated and harder to detect. Thus, it is becoming increasingly difficult for a single cloud-based IDS to detect all attacks, because of limited and incomplete knowledge about attacks and implications. The problem of the existing cloud-based IDS solutions is that they overlook the dynamic and changing nature of the cloud. Moreover, they are fundamentally based on the local knowledge and experience to perform the classification of attacks and normal patterns. This renders the cloud vulnerable to “Zero-Day” attacks. To this end, we address throughout this thesis two challenges associated with the cloud-based IDS which are: the detection of cyber attacks under complex, dynamic and heterogeneous environments; and the detection of cyber attacks under limited and/or incomplete information about intrusions and implications. We are interested in this thesis in allowing cloud-based IDSs to be generic, in order to identify intrusions regardless of the infrastructure used. Therefore, whenever an intrusion has been identified, an IDS should be able to recognize all the different structures of such an attack, regardless of the infrastructure that is being used. Moreover, we are interested in allowing cloud-based IDSs to cooperate and share knowledge with each other, in order to make them benefit from each other’s expertise to cover unknown attack patterns. The originality of this thesis lies within two aspects: 1) the design of a generic cloud-based IDS that allows the detection under changing and heterogeneous environments and 2) the design of a multi-cloud cooperative IDS that ensures trustworthiness, fairness and sustainability. By trustworthiness, we mean that the cloud-based IDS should be able to ensure that it will consult, cooperate and share knowledge with trusted parties (i.e., cloud-based IDSs). By fairness, we mean that the cloud-based IDS should be able to guarantee that mutual benefits will be achieved through minimising the chance of cooperating with selfish IDSs. This is useful to give IDSs the motivation to participate in the community

    Group-based secure communication for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a newly developed networking technology consisting of multifunctional sensor nodes that are small in size and communicate over short distances. Continuous growth in the use of Wireless Sensor Networks (WSN) in sensitive applications such as military or hostile environments and also generally has resulted m a requirement for effective security mechanisms in the system design In order to protect the sensitive data and the sensor readings, shared keys should be used to encrypt the exchanged messages between communicating nodes. Many key management schemes have been developed recently and a serious threat highlighted in all of these schemes is that of node capture attacks, where an adversary gains full control over a sensor node through direct physical access. This can lead an adversary to compromise the communication of an entire WSN. Additionally ignoring security issues related to data aggregation can also bring large damage to WSNs. Furthermore, in case an aggregator node, group leader or cluster head node fails there should be a secure and efficient way of electing or selecting a new aggregator or group leader node in order to avoid adversary node to be selected as a new group leader. A key management protocol for mobile sensor nodes is needed to enable them to securely communicate and authenticate with the rest of the WSN

    Cooperative Data Backup for Mobile Devices

    Get PDF
    Les dispositifs informatiques mobiles tels que les ordinateurs portables, assistants personnels et téléphones portables sont de plus en plus utilisés. Cependant, bien qu'ils soient utilisés dans des contextes où ils sont sujets à des endommagements, à la perte, voire au vol, peu de mécanismes permettent d'éviter la perte des données qui y sont stockées. Dans cette thèse, nous proposons un service de sauvegarde de données coopératif pour répondre à ce problème. Cette approche tire parti de communications spontanées entre de tels dispositifs, chaque dispositif stockant une partie des données des dispositifs rencontrés. Une étude analytique des gains de cette approche en termes de sûreté de fonctionnement est proposée. Nous étudions également des mécanismes de stockage réparti adaptés. Les problèmes de coopération entre individus mutuellement suspicieux sont également abordés. Enfin, nous décrivons notre mise en oeuvre du service de sauvegarde coopérative. ABSTRACT : Mobile devices such as laptops, PDAs and cell phones are increasingly relied on but are used in contexts that put them at risk of physical damage, loss or theft. However, few mechanisms are available to reduce the risk of losing the data stored on these devices. In this dissertation, we try to address this concern by designing a cooperative backup service for mobile devices. The service leverages encounters and spontaneous interactions among participating devices, such that each device stores data on behalf of other devices. We first provide an analytical evaluation of the dependability gains of the proposed service. Distributed storage mechanisms are explored and evaluated. Security concerns arising from thecooperation among mutually suspicious principals are identified, and core mechanisms are proposed to allow them to be addressed. Finally, we present our prototype implementation of the cooperative backup servic

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Use of Inferential Statistics to Design Effective Communication Protocols for Wireless Sensor Networks

    Get PDF
    This thesis explores the issues and techniques associated with employing the principles of inferential statistics to design effective Medium Access Control (MAC), routing and duty cycle management strategies for multihop Wireless Sensor Networks (WSNs). The main objective of these protocols are to maximise the throughput of the network, to prolong the lifetime of nodes and to reduce the end-to-end delay of packets over a general network scenario without particular considerations for specific topology configurations, traffic patterns or routing policies. WSNs represent one of the leading-edge technologies that have received substantial research efforts due to their prominent roles in many applications. However, to design effective communication protocols for WSNs is particularly challenging due to the scarce resources of these networks and the requirement for large-scale deployment. The MAC, routing and duty cycle management protocols are amongst the important strategies that are required to ensure correct operations of WSNs. This thesis makes use of the inferential statistics field to design these protocols; inferential statistics was selected as it provides a rich design space with powerful approaches and methods. The MAC protocol proposed in this thesis exploits the statistical characteristics of the Gamma distribution to enable each node to adjust its contention parameters dynamically based on its inference for the channel occupancy. This technique reduces the service time of packets and leverages the throughput by improving the channel utilisation. Reducing the service time minimises the energy consumed in contention to access the channel which in turn prolongs the lifetime of nodes. The proposed duty cycle management scheme uses non-parametric Bayesian inference to enable each node to determine the best times and durations for its sleeping durations without posing overheads on the network. Hence the lifetime of node is prolonged by mitigating the amount of energy wasted in overhearing and idle listening. Prolonging the lifetime of nodes increases the throughput of the network and reduces the end-to-end delay as it allows nodes to route their packets over optimal paths for longer periods. The proposed routing protocol uses one of the state-of-the-art inference techniques dubbed spatial reasoning that enables each node to figure out the spatial relationships between nodes without overwhelming the network with control packets. As a result, the end-to-end delay is reduced while the throughput and lifetime are increased. Besides the proposed protocols, this thesis utilises the analytical aspects of statistics to develop rigorous analytical models that can accurately predict the queuing and medium access delay and energy consumption over multihop networks. Moreover, this thesis provides a broader perspective for design of communication protocols for WSNs by casting the operations of these networks in the domains of the artificial chemistry discipline and the harmony search optimisation algorithm
    corecore