
UNIVERSITÉ DE MONTRÉAL

THEORETICAL AND APPLIED FOUNDATIONS FOR INTRUSION DETECTION IN
SINGLE AND FEDERATED CLOUDS

ADEL ABUSITTA
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
DÉCEMBRE 2018

c© Adel Abusitta, 2018.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213622951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

THEORETICAL AND APPLIED FOUNDATIONS FOR INTRUSION DETECTION IN
SINGLE AND FEDERATED CLOUDS

présentée par : ABUSITTA Adel
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. PIERRE Samuel, Ph. D., président
Mme BELLAÏCHE Martine, Ph. D., membre et directrice de recherche
M. DAGENAIS Michel, Ph. D., membre et codirecteur de recherche
M. QUINTERO Alejandro, Doctorat, membre
M. GRÉGOIRE Jean-Charles, Ph. D., membre externe

iii

DEDICATION

To my wife Amira and our sons Ahmed and Saif,
for providing me love, support and inspiration....

iv

ACKNOWLEDGMENTS

I would like to thank my Ph.D. supervisors Dr. Martine Bellaïche and Dr. Michel Dagenais for
their understanding, continuous guidance, great supervision and full support. I was lucky to
be surrounded by such professional, inspirational, and caring advisors. Thanks for believing in
my potential and letting me explore the field of Cloud Computing and cyber-security. Without
your guidance and persistent support, this dissertation would not have been possible.

Moreover, I would like to thank my Ph.D. committee members Professor Samuel Pierre,
Professor Alejandro Quintero, and Professor Jean-Charles Grégoire for sparing their precious
time in order to review and evaluate my thesis.

Furthermore, I would like to thank all my colleagues in the research lab at Polytechnique
Montreal. In particular, I would like to thank my dear colleague and friend Talal Halabi for
having created an inspiring and dynamic research environment.

I would like also to thank my friends in Canada and overseas. In particular, a special thanks
to Omar Abdel Wahab for his help and support during my Ph.D studies in Canada. Your
presence has allowed me to love my stay in Montreal and added lots of fun to my Ph.D.
journey.

I would like also to thank Dr. Adel Serhani for his help and support during my Ph.D studies
in Canada.

In addition, a special thanks to Dr. Naser Taleb for encouraging me to do my Ph.D in Canada.

I would like also to thank my friend Saad Tolba for his help and support during my Ph.D
studies in Canada.

Also, I would like to thank my friend Mohammad Hleihel for his help and support during my
stay in Montreal.

Last but not the least, I want to thank my parents, brothers and sisters for continuously
supporting me throughout my Ph.D and for providing me with the opportunity to follow the
right path for my future. Thank you for believing in me.

And finally, my warmest thanks to my wife Amira and our sons Ahmed and Saif, for dreaming
with me, for being patient when I was busy and not available for them, and for providing me
inspiration, support and love. Thank you for believing in me.

v

RÉSUMÉ

Les systèmes infonuagiques deviennent de plus en plus complexes, plus dynamiques et hétéro-
gènes. Un tel environnement produit souvent des données complexes et bruitées, empêchant
les systèmes de détection d’intrusion (IDS) de détecter des variantes d’attaques connues.
Une seule intrusion ou une attaque dans un tel système hétérogène peut se présenter sous des
formes différentes, logiquement mais non synthétiquement similaires. Les IDS traditionnels
sont incapables d’identifier ces attaques, car ils sont conçus pour des infrastructures spéci-
fiques et limitées. Par conséquent, une détection précise dans le nuage ne sera absolument pas
identifiée. Outre le problème de l’infonuagique, les cyber-attaques sont de plus en plus sophis-
tiquées et difficiles à détecter. Il est donc extrêmement compliqué pour un unique IDS d’un
nuage de détecter toutes les attaques, en raison de leurs implications, et leurs connaissances
limitées et insuffisantes de celles-ci.

Les solutions IDS actuelles de l’infonuagique résident dans le fait qu’elles ne tiennent pas
compte des aspects dynamiques et hétérogènes de l’infonuagique. En outre, elles s’appuient
fondamentalement sur les connaissances et l’expérience locales pour identifier les attaques et
les modèles existants. Cela rend le nuage vulnérable aux attaques «Zero-Day». À cette fin,
nous résolvons dans cette thèse deux défis associés à l’IDS de l’infonuagique : la détection des
cyberattaques dans des environnements complexes, dynamiques et hétérogènes, et la détec-
tion des cyberattaques ayant des informations limitées et / ou incomplètes sur les intrusions
et leurs conséquences. Dans cette thèse, nous sommes intéressés aux IDS génériques de l’info-
nuagique afin d’identifier les intrusions qui sont indépendantes de l’infrastructure utilisée. Par
conséquent, à chaque fois qu’un pressentiment d’attaque est identifié, le système de détection
d’intrusion doit être capable de reconnaître toutes les variantes d’une telle attaque, quelle
que soit l’infrastructure utilisée. De plus, les IDS de l’infonuagique coopèrent et échangent
des informations afin de faire bénéficier chacun des expertises des autres, pour identifier des
modèles d’attaques inconnues.

L’originalité de cette thèse repose sur deux aspects : 1) la conception d’un IDS générique de
l’infonuagique permettant la détection dans des environnements changeants et hétérogènes
et 2) la conception d’un IDS coopératif multi-infonuagique garantissant fiabilité, équité et
durabilité. Par « digne de confiance», nous entendons que l’IDS du nuage sera en mesure de
s’assurer qu’il consultera, coopérera et partagera les connaissances avec des IDS de confiance
d’autres nuages. Par équité, l’IDS de l’infonuagique sera en mesure de garantir que des avan-
tages mutuels seront obtenus en minimisant les chances de coopération avec des IDS égoïstes.

vi

Ceci est important pour motiver les IDS à participer à la communauté. Enfin, par durabilité
on entend qu’un IDS d’un nuage prendra des décisions proactives en cas d’intrusion suspecte,
même en l’absence d’information complète de feedback, ou de connaissances approfondie des
IDS consultés. Ainsi, la solution proposée sera fiable et réalisable dans des environnements en
temps réel, où les décisions relatives aux intrusions doivent être prises rapidement. Le travail
dans cette thèse se déroule en trois phases.

Dans la première phase, nous proposons une structure permettant de surveiller et d’analy-
ser les effets d’environnements hétérogènes et changeants (par exemple, l’adaptation et les
ajustements de ressources) sur les données collectées et inspectées utilisées par les systèmes
de l’infonuagique. La structure proposée filtre ces effets et supprime les données d’exécution
non pertinentes de l’ensemble des données, afin de fournir des fonctionnalités robustes et
génériques à celles-ci, améliorant ainsi la détection au niveau de toutes les infrastructures.
Deux algorithmes sont proposés dans cette phase : l’algorithme d’analyse et l’algorithme de
détection. L’algorithme d’analyse détermine les changements des données collectées et sup-
prime les détails d’exécution non pertinents pour y améliorer la précision de l’algorithme de
détection.

Au cours de la deuxième phase, nous proposons une structure de confiance et d’équité dans
les systèmes de stockage intégrés multi-infonuagique. Pour calculer la confiance, chaque sys-
tème IDS du nuage est doté d’une fonction de confiance permettant de calculer les valeurs de
confiance d’autres systèmes IDS. En particulier, l’inférence bayésienne est utilisée pour cal-
culer les valeurs de confiance des interactions précédentes. Par la suite, un nouvel algorithme
décentralisé est conçu, basé sur la théorie des jeux de coalition, permettant aux IDS de l’in-
fonuagique d’établir leurs coalitions pour maximiser la confiance des fédérations constituées,
et augmenter la précision de détection individuelle en présence de IDS (malveillants ou non).
Le modèle de coopération proposé, basé sur la confiance, converge vers une situation stable
de Nash ; c’est-à-dire qu’aucun IDS de l’infonuagique n’a l’incitation de quitter sa coalition
actuelle et d’en rejoindre une autre. Nous proposons également un algorithme d’agrégation
de feedback basé sur la confiance pour y agréger les feedback reçus d’autres IDS de nuages de
la même coalition. L’algorithme proposé d’agrégation a la propriété d’empêcher les attaques
de collusion, qui se produisent lorsque plusieurs IDS en nuage collaborent pour envoyer des
jugements trompeurs.

D’autre part, pour garantir l’équité, nous formulons un mécanisme de garantie d’équité basé
sur un jeu de Stackelberg entre les IDS en nuage ayant un bon comportement et les égoïstes
qui envoient fréquemment des demandes de consultation et ne répondent pas aux consulta-
tions des autres IDS, dans le but de sauver leurs propres ressources. Le mécanisme proposé

vii

permet aux IDS performants de jouer la stratégie optimale minimisant les chances de co-
opération avec les égoïstes. De plus, nous proposons un problème d’optimisation basé sur
un jeu de Stackelberg qui guide l’IDS d’un nuage pour déterminer la stratégie optimale (le
taux de consultation et le taux de réponse) des activités déloyales. Les résultats théoriques et
expérimentaux montrent que, selon notre modèle, les IDS en nuage n’ont aucune incitation
à se comporter de manière égoïste.

Dans la dernière phase, nous concevons un IDS coopératif multi-infonuagique proactif en
y intégrant des approches d’apprentissage automatique. La solution proposée exploite les
données historiques pour prédire les intrusions suspectes. La prédiction est effectuée proac-
tivement sans qu’il ne soit nécessaire d’appliquer une méthode d’agrégation (par exemple, la
théorie de Dempster-Shafer ou le DST) sur le feedback d’informations des IDS consulté, ni
d’attendre d’avoir reçu tous les commentaires des IDS consultés ; c’est-à-dire qu’un feedback
d’informations partiel ou incomplet peut être utilisé. En particulier, le modèle proposé est
basé sur un Denoising Autoencoder (DA), qui construit d’un réseau de neurones profonds.
Les caractéristiques de DA nous permettent d’apprendre à reconstituer les informations des
IDS à partir des feedback partiels ou incomplets, et d’extraire des fonctionnalités robustes et
utiles pour prendre des décisions efficaces en cas d’intrusion suspecte, même en l’absence de
feedback complet des IDS.

Nous concluons notre thèse en soulignant certaines lacunes de la recherche à approfondir à
l’avenir.

viii

ABSTRACT

Cloud Computing systems are becoming more and more complex, dynamic and heteroge-
neous. Such an environment frequently produces complex and noisy data that make Intru-
sion Detection Systems (IDSs) unable to detect unknown variants of known attacks. A single
intrusion or an attack in such a heterogeneous system could take various forms that are log-
ically but not synthetically similar. This, in turn, makes traditional IDSs unable to identify
these attacks, since they are designed for specific and limited infrastructures. Therefore, the
accuracy of the detection in the cloud will be very negatively affected. In addition to the
problem of the cloud computing environment, cyber attacks are getting more sophisticated
and harder to detect. Thus, it is becoming increasingly difficult for a single cloud-based
IDS to detect all attacks, because of limited and incomplete knowledge about attacks and
implications.

The problem of the existing cloud-based IDS solutions is that they overlook the dynamic
and changing nature of the cloud. Moreover, they are fundamentally based on the local
knowledge and experience to perform the classification of attacks and normal patterns. This
renders the cloud vulnerable to “Zero-Day” attacks.

To this end, we address throughout this thesis two challenges associated with the cloud-based
IDS which are: the detection of cyber attacks under complex, dynamic and heterogeneous en-
vironments; and the detection of cyber attacks under limited and/or incomplete information
about intrusions and implications. We are interested in this thesis in allowing cloud-based
IDSs to be generic, in order to identify intrusions regardless of the infrastructure used. There-
fore, whenever an intrusion has been identified, an IDS should be able to recognize all the
different structures of such an attack, regardless of the infrastructure that is being used.
Moreover, we are interested in allowing cloud-based IDSs to cooperate and share knowledge
with each other, in order to make them benefit from each other’s expertise to cover unknown
attack patterns. The originality of this thesis lies within two aspects: 1) the design of a
generic cloud-based IDS that allows the detection under changing and heterogeneous envi-
ronments and 2) the design of a multi-cloud cooperative IDS that ensures trustworthiness,
fairness and sustainability. By trustworthiness, we mean that the cloud-based IDS should be
able to ensure that it will consult, cooperate and share knowledge with trusted parties (i.e.,
cloud-based IDSs). By fairness, we mean that the cloud-based IDS should be able to guar-
antee that mutual benefits will be achieved through minimising the chance of cooperating
with selfish IDSs. This is useful to give IDSs the motivation to participate in the community.

ix

Finally, by sustainability, we mean enabling a cloud-based IDS to proactively make decisions
about suspicious intrusions, even in the absence of complete feedback and knowledge from
consulted IDSs. Thus, the proposed solution will be reliable and applicable in real-time envi-
ronments, where decisions about intrusions need to be taken quickly. The work in this thesis
is carried out in three phases.

In the first phase, we propose a framework that allows low-overhead monitoring, and analysing
the effects of heterogeneous and changing environments (e.g., scaling and resources adjust-
ments) on the collected and inspected data that are used by cloud-based IDSs. The proposed
framework filters out these effects, and removes irrelevant run-time details from the data,
in order to provide robust and generic features for the data, to enhance the detection for
any possible infrastructure. Two algorithms are proposed in this phase: the analysis and
detection algorithms. The analysis algorithm determines the changes that occur in the col-
lected data, and removes irrelevant run-time details to enhance the accuracy of the detection
algorithm.

In the second phase, we propose a framework for trust and fairness assurance in multi-cloud
cooperative IDSs. To ensure trust, each cloud-based IDS is endowed with a belief function
to compute trust values of other IDSs. In particular, Bayesian inference is used to compute
trust values based on previous interactions. Thereafter, a novel decentralized algorithm is
devised, based on the coalitional game theory, that allows cloud-based IDSs to establish
their coalitions in such a way that maximises the trust of the formed federations, and makes
individual detection accuracy increase, even in the presence of untrusted (malicious or not)
IDSs. The proposed trust-based cooperative model converges to a Nash-stable situation; that
is, no cloud-based IDS has an incentive to leave its current coalition and join another one. We
also propose a trust-based feedback aggregation algorithm to aggregate feedbacks received
from other cloud-based IDSs in the same coalition. The proposed aggregation algorithm
has the property of preventing collusion attacks, which occur when several cloud-based IDSs
collaborate to give misleading judgments.

On the other hand, to ensure fairness, we formulate a fairness-assurance mechanism based
on a Stackelberg game between the well-behaving cloud-based IDSs and the selfish ones that
frequently send consultation requests, and do not answer other IDSs consultations with the
aim of saving their own resources. The proposed mechanism enables the well-behaving IDSs
to play the optimal strategy that minimizes the chances of cooperating with the selfish ones.
Moreover, we devise an optimization problem based on a Stackelberg game that guides the
cloud-based IDS to determine the optimal strategy (the amount of consultation rate and
response rate) as a response to unfair activities. The theoretical and experimental results

x

show that, according to our model, cloud-based IDSs have no incentive to behave selfishly.

In the last phase, we design a proactive multi-cloud cooperative IDS while integrating machine
learning approaches. The proposed solution exploits the historical data to predict the status
of suspicious intrusions. The prediction is done proactively, without the need to apply any
aggregation method (e.g., Dempster-Shafer theory or DST) on consulted IDSs feedback,
neither to wait until receiving all the feedback from the consulted IDSs, i.e., only partial or
incomplete feedback can be used. In particular, the proposed model is based on a Denoising
Autoencoder (DA), which is used as a building block for constructing a deep neural network.
The characteristics of DA enable us to learn how to reconstruct IDSs feedbacks from partial
or incomplete feedbacks and allow us to extract robust and useful features to make efficient
decisions about suspicious intrusions, even in the absence of complete feedback from IDSs.

We conclude the thesis by highlighting some research gaps that require further investigation
in the future.

xi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF SYMBOLS AND ABBREVIATIONS . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Problem definition . 1
1.2 Research objectives . 3
1.3 Main contributions and their originality . 4
1.4 Thesis structure . 6

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 7
2.1 Definitions and basic concepts . 7

2.1.1 Cloud Computing . 7
2.1.2 Cloud Federation . 7
2.1.3 Intrusion Detection System . 7
2.1.4 Cooperative Intrusion Detection System 8

2.2 Cloud-based Intrusion Detection Systems . 8
2.2.1 Signature-based Detection . 8
2.2.2 Anomaly-based Detection . 9
2.2.3 Hybrid detection . 14

2.3 Cloud-based Cooperative Intrusion Detection System 15
2.4 Cloud Federation . 17
2.5 Literature review analysis . 18

xii

CHAPTER 3 RESEARCH METHODOLOGY . 20
3.1 Phase 1 : Intrusion detection under complex and changing environments . . . 20

3.1.1 Monitoring and analysing the effects of changing and heterogeneous
environments . 20

3.1.2 A generic cloud-based IDS . 21
3.1.3 Evaluation . 21

3.2 Phase 2 : Trust and fairness assurance in multi-cloud cooperative IDSs . . . 21
3.2.1 Trust-based multi-cloud cooperative IDSs 22
3.2.2 Trust-based Feedback Aggregation 23
3.2.3 Formation of trustworthy federated clouds 23
3.2.4 Fairness-assurance in multi-cloud cooperative IDSs 24

3.3 Phase 3 : Proactive multi-cloud cooperative IDSs 25

CHAPTER 4 ARTICLE 1 : AN SVM-BASED FRAMEWORK FOR DETECTING
DOS ATTACKS IN VIRTUALIZED CLOUDS UNDER CHANGING ENVIRON-
MENT . 27
4.1 Introduction . 27

4.1.1 Motivating Example . 28
4.1.2 Our Proposed Solution . 29
4.1.3 Paper Outline . 30

4.2 Related Work . 31
4.3 The Proposed Framework . 34

4.3.1 Data Analysis . 35
4.3.2 Detection Component . 42

4.4 Security Analysis of the Proposed Framework 47
4.4.1 Flash Events . 47
4.4.2 DoS Attacks . 47
4.4.3 Robustness against Compromised VMs 48

4.5 Experimental Results and Analysis . 49
4.5.1 Experimental Setup . 49
4.5.2 Training Phase . 50
4.5.3 Testing Phase . 50
4.5.4 Experimental Results . 52

4.6 Conclusion . 58

CHAPTER 5 ARTICLE 2 : A TRUST-BASED GAME THEORETICAL MODEL FOR
COOPERATIVE INTRUSION DETECTION INMULTI-CLOUD ENVIRONMENTS 59

xiii

5.1 Introduction . 59
5.2 Related Work . 61
5.3 The Proposed Trust-based Cooperative IDS 63

5.3.1 Trust Evaluation . 63
5.3.2 A Trust-based Coalition Formation 65
5.3.3 Feedback Aggregation . 67

5.4 Experimental Evaluation . 69
5.4.1 Experimental Setup . 69
5.4.2 Experimental Results . 70

5.5 Conclusion . 73

CHAPTER 6 ARTICLE 3 : ON TRUSTWORTHY FEDERATED CLOUDS : A COA-
LITIONAL GAME APPROACH . 75
6.1 Introduction . 75
6.2 Related Work . 78
6.3 Trust Model and Assumptions . 80

6.3.1 Definition of Trust . 80
6.3.2 Trust Model . 80

6.4 The Proposed Trust-based Federation Formation Framework 83
6.4.1 Objective Trust Evaluation : Direct Observation 83
6.4.2 Subjective Trust Evaluation : Indirect Observation 84
6.4.3 Trust-based Federation Formation Algorithm 89

6.5 Simulation Results and Analysis . 93
6.5.1 Simulation Setup . 94
6.5.2 Simulation Results . 96

6.6 Conclusion . 99

CHAPTER 7 ARTICLE 4 : MULTI-CLOUD COOPERATIVE INTRUSION DETEC-
TION SYSTEM : TRUST AND FAIRNESS ASSURANCE 101
7.1 Introduction . 101
7.2 Background and Related Work . 104
7.3 The Proposed Trust-based Cooperative IDS 107

7.3.1 Trust Evaluation . 107
7.3.2 A Trust-based Community Formation 109
7.3.3 Feedback Aggregation . 113

7.4 Fairness Assurance . 117
7.5 Experimental Evaluation . 120

xiv

7.5.1 Experimental Setup . 121
7.5.2 Experimental Results . 122

7.6 Conclusion . 127

CHAPTER 8 ARTICLE 5 : A DEEP LEARNING APPROACH FOR PROACTIVE
MULTI-CLOUD COOPERATIVE INTRUSION DETECTION SYSTEM 128
8.1 Introduction . 128
8.2 Background and Related Work . 130
8.3 The Proposed Proactive Multi-cloud Cooperative IDS 132

8.3.1 System Model . 132
8.3.2 The Traditional Autoencoders . 133
8.3.3 The proposed IDS-based Denoizing Autoencoders 135
8.3.4 The proposed IDS-based Stacked Denoising Autoencoders 137
8.3.5 The proposed IDS-based Fine-tuning and Detection 138

8.4 Experimental Evaluation . 143
8.4.1 Experimental Setup . 143
8.4.2 Experimental Results . 143

8.5 Conclusion . 149

CHAPTER 9 GENERAL DISCUSSION . 150
9.1 Objectives achievement . 150
9.2 Limitation . 152

CHAPTER 10 CONCLUSION AND RECOMMENDATIONS 154

REFERENCES . 158

xv

LIST OF TABLES

Table 4.1 Attack detection rates when revoking resources (CPU, Memory, I/O
and Network) from VMs. 29

Table 4.2 Attack detection rates when granting resources (CPU, Memory, I/O
and Network) to VMs. 29

Table 4.3 Cloud-based Detection Approaches. 34
Table 4.4 Abstracting Example. 36
Table 4.5 Attack and normal traffic features extracted from CAIDA and FIFA

World Cup’ datasets . 50
Table 4.6 Amount of accuracy preserved by our model when revoking resources

from VMs. 57
Table 4.7 Amount of accuracy preserved by our model when granting resources

to VMs. 57
Table 4.8 Kernel functions comparison using the proposed detection approach. . 57
Table 6.1 Notations . 80
Table 6.2 Clouds judgments on c2 . 87
Table 6.3 Credibility scores of clouds believed by c1 87
Table 6.4 Parameters . 95
Table 6.5 The Characteristics of Available VM Instances 95
Table 7.1 IDSs’ judgments on suspicious intrusion I. 115
Table 7.2 Credibility scores of IDSs believed by IDS1. 115
Table 7.3 Notations . 118
Table 8.1 Experimentation parameters. 143

xvi

LIST OF FIGURES

Figure 4.1 Architecture of the Proposed Framework 35
Figure 4.2 The value of w affects the position of the hyperplane. 37
Figure 4.3 Table used for filtering out the effect of resources adjustments on a VM

system metrics. 41
Figure 4.4 Accuracy with respect to (w.r.t.) amount of revoked resources 52
Figure 4.5 Attack detection rate w.r.t. amount of revoked resources 52
Figure 4.6 False positive percentage w.r.t. amount of revoked resources 53
Figure 4.7 False negative percentage w.r.t. amount of revoked resources 53
Figure 4.8 Accuracy w.r.t. amount of granted resources 55
Figure 4.9 Attack detection rate w.r.t. amount of granted resources 55
Figure 4.10 False positive percentage w.r.t. amount of granted resources 56
Figure 4.11 False negative percentage w.r.t. amount of granted resources 56
Figure 5.1 Proposed Methodology . 63
Figure 5.2 Comparison of three aggregation models (False Negative Rate). . . . 71
Figure 5.3 Comparison of three aggregation models (False Positive Rate). 71
Figure 5.4 False Negative vs. Trust Value t . 72
Figure 5.5 False Positive vs. Trust Value t. 72
Figure 5.6 Comparison of two coalition formation models. 73
Figure 6.1 Proposed Methodology . 82
Figure 6.2 Algorithmic steps of the proposed methodology 82
Figure 6.3 The proposed trust-based model improves the availability, response

time, and throughput, compared to the Grand and QoS-based fede-
rations, in the presence of untrusted non-malicious CPs. 96

Figure 6.4 The proposed trust-based model improves the availability, response
time, and throughput, compared to the Grand and QoS-based fede-
rations, in the presence of malicious CPs. 97

Figure 6.5 The proposed trust-based model improves the availability, response
time, and throughput, compared to the Grand and QoS-based federa-
tions, in the presence of a combination of both untrusted non-malicious
and malicious providers. 98

Figure 6.6 The proposed trust-based model reduces the number of untrusted non-
malicious and malicious CPs. 99

Figure 7.1 Architecture of the proposed cooperative IDS 103

xvii

Figure 7.2 The Trust-based Cooperative IDS (Methodology) 107
Figure 7.3 False Negative Rate : Comparison of three aggregation models. 122
Figure 7.4 False Positive Rate : Comparison of three aggregation models. 123
Figure 7.5 False Negative with the variations of Trust Values. 124
Figure 7.6 False Positive with the variations of Trust Values. 124
Figure 7.7 Comparison of two community formation models. 125
Figure 7.8 Cost with regards to the increase in the percentage of consultation rate.125
Figure 7.9 Benefit with regards to the trust value. 126
Figure 8.1 Architecture of the proposed cooperative IDS 133
Figure 8.2 Example of an autoencoder. 134
Figure 8.3 IDS-based denoising autoencoder architecture. 136
Figure 8.4 Step 1 in Stacked Denoising Autoencoders. 139
Figure 8.5 Step 2 in Stacked Denoising Autoencoders. 139
Figure 8.6 Stacking denoising autoencoders. on the left, the encoding function fθ,

which has been learnt in Fig. 8.2, is used on clean input x. on the right,
The resulting representation is used to train a second block denoising
autoencoder. 140

Figure 8.7 The process is repeated for the third block denoising autoencoder. . . 141
Figure 8.8 The complete architecture of the proposed IDS-based deep neural net-

work after adding the last layer. 142
Figure 8.9 Classification accuracy performance compare to having all the IDSs’

feedback (complete information) - number of hidden layers = 3. . . . 144
Figure 8.10 Classification accuracy performance for SDAE-IDS (left) and SAE-IDS

(right). Error bars show 95% confidence intervals. 144
Figure 8.11 Classification accuracy performance for SDAE-IDS (left) and MLP-

IDS(right). Error bars show 95% confidence intervals. 146
Figure 8.12 Test classification error (%) - 1 hidden layer. 147
Figure 8.13 Test classification error (%) - 2 hidden layers. 147
Figure 8.14 Test classification error (%) - 3 hidden layers. 147
Figure 8.15 SDAE-IDS vs. training with noisy input. Hidden layers have 350 units

each . 148
Figure 8.16 SDAE-IDS vs. training with noisy input. Hidden layers have 350 units

each . 148

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

IT Information Technology
ICT Information and Communications Technology
AWS Amazon Web Service
EC2 Elastic Cloud Compute
VM Virtual Machine
SLA Service Level Agreement
CPU Central Processing Unit
QoS Quality of Service
API Application Programming Interface
DoS Denial of Service
DDoS Distributed Denial of Service
LTTng Linux Trace Toolkit next generation
SDAE Stacked Denoising Autoencoders
CP Cloud Provider
IEEE Institute of Electrical and Electronics Engineers
NDoS Networked Denial of Service
XML Extensible Markup Language
HTTP Hypertext Transfer Protocol
IP Internet Protocol
DA Denoising Autoencoder
CF Cloud Federation
UDP User Datagram Protocol
TCP Transmission Control Protocol
ICMP Internet Control Message Protocol
SOAP Simple Object Access Protocol
SF Sensor Filter
ML Machine Learning
AI Artificial Intelligence
VB Virtual Bridge
TSP Time Spent on a Page
BSS Blind Source Separation
FTA Fault Tree Analysis
DST Dempster-Shafer Theory

xix

OS Operating System
MTF Multilevel Thrust Filtration
REST Representational State Transfer
CBF Confidence-Base Filtering
E-EMD Ensemble Empirical Mode Decomposition
URL Uniform Resource Locator
HC Hierarchical Correlation
SCL Secure Sockets Layer
SVM Support Vector Machine
BPD Beta Probability Density

1

CHAPTER 1 INTRODUCTION

In this chapter, we present the context of our research work, define the problems addressed in
this thesis, indicate the corresponding research questions, and finally identify the objectives
of our research work. The background and related work will be presented in the next chapter
(Chapter 2).

1.1 Problem definition

Several major Information and Communications Technology (ICT) companies are competing
for creating useful cloud computing services that are able to deal with different business
requirements. In fact, many industries, companies, and governments are expected to transfer,
if not already done, all or parts of their Information Technology (IT) solutions to the cloud
[1] [2] [3]. This historical shift is profitable from the economic point of view since it enables
them to streamline the spending on technology infrastructure and capital cost. However, this
has led to growing concerns about the cyber attacks and security vulnerabilities that these
complex systems might present.

With the existing complex, dynamic and heterogeneous architecture of the cloud, the ability
of traditional Intrusion Detection Systems (IDSs) to compensate variant forms of the same
attack was dramatically affected. A cloud system consists of different types of operating sys-
tems such as Linux and Windows machines. Moreover, a cloud computing system is largely
dynamic and heterogeneous, due to the inherent characteristics and changing environments
(e.g., resources restriction, migration and scaling), which are essential to meet the require-
ments of the pay-as-you-go business model [4]. A single intrusion in such an environment
can have variant forms that are semantically but not synthetically similar. These lead cloud-
based IDSs, whether they are signature or anomaly-based approaches, to deal with irrelevant
runtime details and complexity instead of focusing on essential information used to increase
the detection accuracy.

To this end, a generic IDS is required to deal with all variants of attacks. In fact, achieving
a generic IDS, that is able to compensate for different structures of the same attack, is
challenging. This is due to the fact that it requires extra overhead in order to monitor every
change in the cloud and understand to which extent the collected data have been affected by
the new infrastructure. Although one can manually define higher-level features and abstract
data details to come up with a generic IDS, this approach is difficult, since it requires the

2

availability of experts in the knowledge domain, in order to understand many details and
complex information. Such experts cannot easily be found for clouds that are largely public,
dynamic and multi-tenant.

Another problem, as a result of the complex architecture of the cloud, is that cyber attacks
have evolved, getting more sophisticated and harder to detect. Thus, it is becoming very hard
for a single cloud-based IDS to detect all existing attacks, due to limited knowledge about
such attack patterns and implications.

While several approaches have been proposed to model the cooperation among IDSs (e.g. [5]
[6] [7] [8] [9] [10]) to solve the problem of limited information, these approaches, however, work
under the assumption that all cloud-based IDSs are trustable. This makes their collaboration
systems vulnerable to untrusted (malicious or not) insiders. Moreover, the lack of trustworthy
framework in the cooperative setting leads to collusion attacks, which occur when several
malicious cloud-based IDSs collaborate to give misleading judgments.

Although achieving trustworthiness in cloud-based cooperative IDSs could enhance the coa-
lition members detection performance, the motivation of the cloud-based IDSs to participate
in the detection process needs further investigation. An IDS can be trustworthy but selfish
at the same time. A selfish IDS is one that frequently sends consultation requests to other
IDSs and, at the same time, does not answer other IDSs consultation requests, with the aim
of saving its own resources. Therefore, the fairness property of the cooperation model needs
to be incorporated in the framework so as to encourage the cooperation and provide suitable
incentives.

Moreover, there are considerable delays associated with the existing cooperative IDSs. These
delays are mostly due to the computation complexity of using the aggregation algorithms
(e.g., Dempster-Shafer theory), and also due to the large geographic distances that might
separate the cloud-based IDSs. In fact, each IDS, after receiving feedback from consulted
IDSs about a suspicious intrusion, is required to use a suitable feedback algorithm, in order
to make a final decision about the suspicious intrusion. The aggregation technique is usually
costly in terms of computation time, and depends on many factors, such as the number of
consulted IDSs, and the IDSs expertise and trust levels [11] [12]. Also, due to uneven IDSs
connections and Internet speeds, and other unknown factors (e.g, busy IDSs, compromised
IDSs), the feedbacks are not guaranteed to be received at the same time. Thus, decisions on
whether to raise an alarm about suspicious intrusions or not, might be unduly delayed due
to the missing feedback of a single IDS. Hence, the decisions generated by the cooperative
IDS are ineffective in a real-time setting, making them unsustainable.

All of the above problems have led to the rise of the following research questions that we

3

addressed thoroughly throughout the thesis :

— How to design and build a low overhead monitoring and analysis system in order to
understand the effect of cloud heterogeneity and changing environment on the collected
data ?

— How to integrate these effects into the existing or new detection algorithms in order
to enhance the detection accuracy in the cloud ?

— How to enable a cloud-based IDS to evaluate another IDSs trustworthiness, in order
to allow trustworthy IDS communities ?

— How to exploit trust information on clouds and IDSs to establish trust-based federated
clouds and IDSs ?

— How to aggregate IDSs feedback inside cloud-based IDS communities in such a way
as to prevent collusion attacks ?

— How to formulate a fairness assurance mechanism between well-behaving IDSs and
selfish ones in order to enable the well-behaving IDS to play the optimal strategy and
thus reduce the chances of cooperating with selfish IDSs ?

— How to enable proactive multi-cloud cooperative IDSs in real-time environments so
that an IDS can proactively make decisions about suspicious intrusions, even in the
absence of complete feedback from the IDSs ?

1.2 Research objectives

This thesis essentially aims at enabling and enhancing the detection of cyber attacks in
the cloud under complex, dynamic and heterogeneous environments, and under limited or
incomplete information about intrusions. More specifically, the objectives of the thesis are :

— Proposing a detection approach to identify various forms of an intrusion in the cloud
under complex, changing and heterogeneous environments.

— Proposing a low overhead monitoring and analysis framework to understand the effect
of heterogeneous and changing environments on the collected data in the cloud.

— Proposing a trust-based evaluation approach that enables a cloud-based IDS to eva-
luate another IDS trustworthiness, based on its past experiences.

— Modeling and proposing a framework that enables cloud-based IDSs to distributively
form trustworthy cloud-based IDS communities.

— Devising an algorithm for forming coalitions among cloud-based IDS which leads to
stability i.e, the case where none of the coalition members has an incentive to leave
its current coalition and join another one.

— Proposing a new trust-based aggregation approach that enables the aggregation of

4

cloud-based IDSs feedbacks belonging the same community, in such a way as to prevent
collusion attacks.

— Formulating a fairness assurance mechanism between the well-behaving IDSs and the
selfish ones.

— Proposing a proactive multi-cloud cooperative IDS that enables us to make decisions
about suspicious intrusions even with partial IDSs feedback, in order to accelerate the
decision making in real-time environments.

— Designing a proactive multi-cloud cooperative IDS that is able to make decisions about
suspicious intrusions without the need to apply aggregation methods on IDSs feedback.

1.3 Main contributions and their originality

The main originality of this thesis lies in the design of models and algorithms that 1) allow
and enhance the detection in Cloud Computing systems, which are becoming more complex,
dynamic and heterogeneous, and 2) enable trustworthy, fair and proactive multi-cloud coope-
rative IDS. The proposed IDS can be applied and localized at any level in single and federated
clouds including, for examples, it can be localized at the networks, hypervisors, operating
systems, and/or VMs levels. The principal contributions can be described as follows :

— Proposing a generic cloud-based IDS to detect intrusions or attacks under
complex, changing and heterogeneous environments. We design a framework
that enables a low-overhead monitoring and analysis of changes (e.g., resource scaling)
in the cloud in order to understand the effects of these changes on the collected data
used by an IDS. We propose an algorithm that helps us filter out these effects and
remove irrelevant run-time details from the collected data in order to provide robust
and useful features that are then integrated into the proposed detection algorithm. The
proposed solution can take as input any kind of data with respect to the OSI model
[13]. For example, in the data link layer, it can take frames as inputs ; in the network
layer, it can take packets as inputs ; and in the transport layer, it can take segments as
inputs. It is worth mentioned here that the proposed model can reduce the overhead
associated with the monitor and analysis of large data because of the following two
methods that are adopted in our approach. First, we adopt hooks strategy, which
can be used and applied at any given layer. This strategy enables an IDS to monitor
the load of latency and trigger more monitoring and analysing processes only when
a problem is suspected, not when the system is largely idle. Second, since our model
is based on distributed algorithms, this allows the overhead to be distributed among
several nodes instead of having a single point of failure.

5

— Proposing a trust-based multi-cloud cooperative IDS. We introduce a trust
framework that enables a cloud-based IDS to evaluate other cloud-based IDS trust-
worthiness, based on Bayesian inference [14]. Thereafter, a hedonic game theoretical
model [15] combined with the Bayesian inference is proposed, to establish trustworthy
cloud-based IDS communities. The proposed framework ensures Nash stability. The
proposed model also enables a trust-based coalition to be formed among Cloud Pro-
viders (CPs), in order to allow a CP to outsource some of its workload to other CPs.
This serves a dual purpose, reducing the extra overhead (monitoring and detection) in
cloud-based IDSs, and exploiting the power of other IDSs in dealing with sophisticated
and severe attacks.

— Proposing a trust-based aggregation method for preventing collusion at-
tacks in the federated cloud-based IDS. We elaborate a Dempster-Shafer Theory
(DST)-based model [16] which enables a cloud-based IDS to prevent collusion attacks,
which occur when several malicious IDSs collaborate to give misleading judgments.
The proposed model dramatically decreases the chances of considering these feed-
backs that come from IDSs with low-level trust values during feedback aggregation.
Moreover, it allows us to deal with uncertainty in which a cloud-based IDS has no
information about a suspicious intrusion.

— Proposing a fairness-assurance mechanism in multi-cloud cooperative IDS
environments. We design a fairness-assurance mechanism, which is based on the
Stackelberg game [17] between the well-behaving cloud-based IDSs and the selfish ones,
that frequently send consultation requests and do not answer other IDSs consultations
with the aim of saving their own resources. The proposed model enables a cloud-based
IDS to play the optimal strategy that minimizes the chances of cooperating with selfish
IDSs.

— Designing a proactive multi-cloud cooperative IDS. We propose a machine
learning-based cooperative IDS that efficiently exploits the historical feedback data in
order to provide the ability of proactive decision making. The proposed model is based
on a Denoising Autoencoder [18][19], which is used as a building block for constructing
a deep neural network, which allows us to proactively make decisions about suspicious
intrusions, even in the absence of complete feedback from the IDSs. In proactive multi-
cloud cooperative IDS, it is important to identify the time period for sending and
receiving information among IDSs. When an IDS has explored a suspicious intrusion
and wants to consult other IDSs about that, the IDS should set a time period T so
that it can make a decision proactively only after the time has expired. In fact, the
value of T should be set probably by taking into consideration many factors such as :

6

the communication speed and geographic distances among IDSs. For this purpose, the
proposed approach enables each IDS to set the value of T based on its own experience
with other IDSs and also based on its own communication overhead.

1.4 Thesis structure

Chapter 2 will review the literature related to each element of the research problem that we
described. An analysis of the limitations of existing work and the gaps that must be filled is
addressed. In chapter 3, a detailed description of our research work and published articles is
given, and the relationship between our objectives is emphasized.

Chapter 4 presents the full text of the article titled “An SVM-based Framework for Detecting
DoS Attacks in Virtualized Clouds under Changing Environments”, which was published in
the Journal of Cloud Computing.

Chapter 5 and chapter 6 present the full texts of the article titled “A Trust-based Game
Theoretical Model for Cooperative Intrusion Detection in Multi-cloud Environments” and
the article titled “On Trustworthy Federated Clouds : A Coalitional Game Approach” which
were published in the "Conference on Innovation in Clouds, Internet and Networks" and
"Computer Networks", respectively.

Chapter 7 presents the full text of the article titled “Multi-cloud Cooperative Intrusion
Detection System : Trust and Fairness Assurance” which is submitted in “Annals of Tele-
communications” Journal.

Chapter 8 presents the full text of the article titled “A Deep Learning Approach for Proactive
Multi-Cloud Cooperative Intrusion Detection System” which is submitted to the “Future
Generation Computer Systems”.

Chapter 9 presents a general discussion regarding the thesis strong points and limitations.
Finally, chapter 10 concludes the thesis by presenting a summary of our contributions and a
discussion on some research gaps that require further investigation in the future.

7

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we discuss recent works that have been done in the areas connected to this
thesis. We first introduce some basic definitions about the topic and then discuss the related
works.

2.1 Definitions and basic concepts

This section aims at defining the terminology and concepts that will be used in the rest of
the thesis.

2.1.1 Cloud Computing

Cloud Computing enables Cloud Providers (CPs) to rent out space on their infrastructures,
platforms and services to many consumers. This becomes possible thanks to the virtualization
that enables the easy migration of applications and services from one node to another. Many
companies, organizations and governments are expected to transfer, if they have not already,
all or parts of their IT solutions to the cloud [4]. This transfer is profitable from an economic
point of view since it allows them to streamline technology infrastructure expenses and capital
costs.

2.1.2 Cloud Federation

One of the main issues that must be faced by CPs, due to the huge demands on their
services, is the problem of insufficient resources to fulfill the requested VMs. This motivates
the need for CPs to delegate these requests to other CPs in order to upgrade their resource
scaling capabilities. A Cloud Federation (CF) provides an effective platform to address the
aforementioned challenges [20]. The purpose of the CF consists of grouping CPs to fulfill the
dynamic resource requests of users/applications to support data-intensive workloads [21].
Thus, through the use of CFs, CPs can benefit from each other’s resources to run the VMs
[22], in order to improve individual performance and enhance users satisfaction.

2.1.3 Intrusion Detection System

Intrusion detection is the process of monitoring performance metrics in order to explore
attack symptoms. Such symptoms might be either at an early stage, or advanced enough to

8

cause a significant performance degradation. There are two main types of IDSs : signature-
based and anomaly-based [1]. The former compares suspicious behavior with known attack
patterns. In order to make signature-based systems effective, the signature database should
be updated frequently. On the other hand, anomaly-based IDSs raise alarms when unusual
and/or unexpected activities are detected. Anomaly-based IDSs are effective in detecting
unknown attacks. Moreover, they do not need a database of known attacks. IDSs may adopt
both techniques to have an improved detection accuracy.

2.1.4 Cooperative Intrusion Detection System

It is becoming increasingly difficult for a traditional single intrusion detection system (IDS)
to detect all attacks, due to limited knowledge about attacks. A collaboration among IDSs
has proven its efficiency in terms of the accuracy in detecting new and sophisticated attacks
[12] [11] [23]. Through collaboration, IDSs in different regions, and possibly belonging to
different Cloud Providers (CPs), can cooperate in such a way to utilize the expertise of each
other to cover unknown threat patterns. This can be done by enabling IDSs to consult each
other about suspicious behavior, where the received feedback can then be used to decide
whether to raise an alarm or not.

2.2 Cloud-based Intrusion Detection Systems

In this section, we classify the existing cloud-based attack detection approaches into three
major categories : signature-based, anomaly-based and hybrid detection approaches.

2.2.1 Signature-based Detection

The signature based detection techniques employ a set of predefined rules and signature
attack patterns stored in a certain database to compare them against the incoming and
outgoing traffic patterns. For example, Lonea et al. [24] propose SNORT, a signature-based
technique that is configured with predefined DoS rules in order to detect known DoS attacks
in the cloud environment. They tested their method by simulating ICMP flood, TCP SYN
and UDP flooding attacks using Stacheldraht [25]. Similarly, Bakshi and Yogesh [26] use
SNORT on each VM, where SNORT is deployed at the virtual interface. This allows VMs to
analyse in-bound and out-bound traffic in real-time. Snort-based detection techniques have
the advantage of sniffing attacker packets and detecting Networked DoS (NDoS) attacks.
However, it has a disadvantage that it cannot be used to extract performance at other layers
than the communication layer, such as processes and threads.

9

Gupta and Kumar [27] use an attack pattern detection approach based on VMs profile opti-
mization. They employ a rule-based detection method for matching packets during flooding
attacks (e.g., TCP SYN) by generating, through the initial rule establishment, a threshold for
each rule pattern. In a similar work, Gul and Hussain [28] integrate multi-threading on top of
their approach to improve the detection performance. The main advantage of this approach
is that it is able to detect DoS at the level of VM. However, if the VM is compromised, the
detection accuracy rate might be affected.

In another related work proposed to detect application-based flooding attacks, Karnwal et
al. [29], [30] propose an approach to detect XML-based and HTTP-based DoS attacks, which
occur during the SOAP-based requests for resources. They use Deterministic Packet Marking
(FDPM), an IP traceback system, to find and mark the real source of SOAP messages. Finally,
they use five different filter stages to detect the attacks, which are : Sensor Filter (SF), Hop
count, IP Frequency Divergence, Confirm legitimate user IP and double signature. The first
four components are used to identify the HTTP-based DOS attacks while the fifth one is
used to detect the XML-based DoS attacks. While the different stages of detection increase
the attack detection rate, it is associated with a significant overhead that comes from the
different and multiple stages.

Conclusive remarks. Although signature-based detection approaches provide high accu-
racy in detecting known attack patterns, the weakness of these approaches is that they are
unable to identify unknown attack patterns. Recent attackers are becoming more expert to
launch attacks in such a way that they cannot be detected from predefined patterns. Instead,
sophisticated techniques could be adopted, benefiting from the complex nature of the cloud
environment. Moreover, most of the recent tools used to launch DoS attacks are easy to get
from the Internet and are able to create new types of attacks [31].

2.2.2 Anomaly-based Detection

This approach is more reliable than the signature-based approach in terms of its ability to
detect unknown attack patterns. The goal of this approach is to distinguish the anomalies
behavior from the expected behavior. We classify the state-of-theart anomaly-based detection
techniques into two main categories : Machine Learning (ML) or Artificial Intelligence (AI)
approaches, and Statistical approaches.

10

2.2.2.1 Machine Learning and Artificial Intelligence Approaches

This approach benefits from the advanced AI and ML techniques to improve the accuracy in
detecting the DoS attacks in the cloud. For example, Lonea et al. [24] use the normal traffic
pattern received from the Virtual Bridge (VB) of the VM to validate for consistency against
behavioral patterns of attacks. They use a network intrusion detection system, that analyzes
the normal traffic flow obtained from the VB, to check and test for consistency against
the attack behavioral patterns. Thus, if abnormal traffic has been detected, the anomaly
information will be reported and an alarm generated.

Similarly, Gupta et al. [27] propose a profile based network intrusion detection system. They
combine both fine grained data analysis and Bayesian techniques in order to detect TCP SYN
flooding. The main advantage of these approaches is the ability to identify DoS symptoms
at an early stage, because their approaches are able to collect information at the networking
level, before the DoS causes a significant performance degradation. However, the lack of
application performance information can result in wrongly identifying high traffic, during
the peak time, as a DoS attack.

Ficco et al. [32] propose a strategy, for generating stealthy DoS attacks in the cloud, which
uses low overhead attacks to inflict the maximum financial cost to the cloud clients [32].
Masood et al. [33] propose a web-behavior-based detection, where they identify two client
profiles. The first one is for good clients while the second one is for bad clients. A good client
will follow a pattern that reflects normal activity on the web, while a bad client will show
some abnormal activities. Similarly, Anusha et al. [34] study the behavior of normal users
of Web applications. They assume that an attacker spends a very short time (almost zero)
over a Web page. They use for that a metric called Time Spent on a Page (TSP). They
assume that the attackers TSP is very close to zero. In contrast, the TSP of a normal client
should be high enough to interact with the Web page. The work of Kwon et al. [35] also
uses a behavioral approach for detection. They start from a tested assumption saying that
the behavioral patterns of normal traffic are similar, while the behavior patterns of malicious
traffic are not. The cosine similarity is used to check the similarity of the traffic. If such a
similarity does not exist, an alarm is generated. A main advantage of this approach that it
is able to determine the similarity during run-time. However, there is no guarantee that the
normal traffic will always be similar in a dynamic environment (i.e. cloud). In fact, in some
applications, we could have many forms of normal traffic that are fairly dissimilar.

Palmieri et al. [36] use a two-phase ML-based detection technique. The first phase is called
Blind Source Separation (BSS), while the second phase is called Rule-based Classifier to detect
zero-day attacks that change or alter the traffic volume rate. BSS extracts the features of the

11

cloud nodes traffic, in order to be used by a decision tree classifier to create a normal traffic
profile (baseline). Most recently, Choi et al. [37] propose a data-mining-based approach to
detect application layer HTTP GET DoS attacks. They use a normal behavior pattern to
detect DoS attacks on VMs. The parameters used for analyzing and creating attack patterns
are : CPU usage, packet size and packet header information. They evaluate their approach
by comparing it with a signature-based approach. The result showed that their proposed
method performs better than SNORT in terms of identifying new attack profiles. Similar
to this work, Jeyanthi and Mogankumar [38] and Jeyanthi et al. [39] propose a mechanism
to detect DDoS attacks based on clients request rates. Clients requests will be put in a
black list or white list based on a certain threshold rate. The threshold is determined by
calculating the maximum number of legitimate client requests. The authors have shown
experimentally that the legitimate clients could continue being served during an attack using
their method. However, the main disadvantage of this method is that it is threshold based,
where setting the optimal threshold is always difficult and possibly infeasible in a production
cloud environment.

Chonka and Abawajy [40] and Chonka et al. [41] propose a decision tree classification tech-
nique. The method operates in two phases : training phase (first phase) and testing phase
(second phase). In the training phase, a rule set that has been generated over time by the
decision tree classifier is used to define both known and unknown attributes. In the testing
phase, a decision making module is used to decide the likelihood of a previously classified
packet. This helps decide whether to let a packet enter or not. Similarly, Lonea et al. [24]
also proposed a classification technique based on Intrusion detection system (IDS). The de-
tection module analyses the alerts generated by each VM using the Dempster-Shafer theory
(quantitative solution classifier) in 3-valued logic and fault tree analysis (FTA). Although
Dempster-Shafer is able to produce powerful results, when observations about attacks come
from different sources, it becomes unsuitable when one source produces multiple observations
[42].

Among other approaches, the work of Iyengare et al. [43] proposes a Multilevel Thrust Filtra-
tion (MTF) that contains four detection and prevention modules, which are traffic analysis,
anomaly detection, anomaly classification, and attack prevention. The proposed method fil-
ters the incoming packets and detects four types of traffic congestion, which are spoofing,
ash crowd, DDoS, and aggressive legitimate traffic. A similar approach has been proposed
by Jeyanthi and Iyengar [39]. The main feature of this approach is the ability to increase
the attack detection accuracy because multiple stages of detection are used. However, it is
associated with a significant overhead since multiple algorithms and techniques should be
used.

12

Recent attackers are able to exploit the vulnerability in the Representational State Transfer
(REST) API. The vulnerability of REST results from the fact that REST does not require
authentication. This lets cloud-based services to be overloaded. Michelin et al. [44] propose
a mechanism to detect such attacks. They use two different modes ; monitoring and filtering.
During the monitoring phase, a stress test is performed on the system to check for any
overload. Thereafter, A token from each user is verified. If an invalid token is detected, the
user is considered as a potential attacker by registering him/her in a gray list. When an
overload on the REST API occurs, the mode will be changed from monitoring to filtering
and the gray list will become black. Users in the black list will have their REST access
inactivated. The main advantage of their work is identifying a new vulnerability that could
be exploited by the attackers. However, the stress test that is required in this approach is
time consuming, and therefore is not feasible in production environments.

2.2.2.2 Statistical Approaches

Statistics-based detection is based on calculating statistical features of a normal traffic to
generate a normal traffic pattern. The normal traffic pattern will then be compared with
the incoming traffic to detect malicious packets. For instance, Dou et al. [45] propose a
statistical approach based on Confidence-Base Filtering (CBF). The concept of CBF reflects
how much trust can be put on a correlation characteristic between attributes [46]. The CBF
use a nominal profile during non-attack periods to extract statistical features from the cloud
system resources. The occurrence frequency of these features is used to build a confidence
value. During the attack period (run-time environment), the statistical features of cloud
resources is compared with the nominal profile to identify the abnormal traffic, which will be
considered as an actual attack. Similarly, Negi et al. [47] propose an enhanced CBF packet
filtering method based on [45] to improve the utilization and processing time of the storage
based on correlating patterns. A statistical approach was also used to detect application-
based DoS attacks in the cloud. For example, Shamsolmoali and Zareapoor [48] applied two
levels of filtering to detect DoS attacks in a cloud. The first level removes the IP header
packet and compares the TTL value with the stored value. If these values are dissimilar, the
packet is dropped and marked as spoofed. In the second level, they use the Jensen-Shannon
divergence concept [49] that employs a stored normal profile to compare the incoming packet
header data and check for data divergence. The statistical information used to detect DoS
attacks is reliable because it is based on the CBF, which is the main advantage of this
approach. However, the disadvantage of this approach is that it requires non-attack periods,
which requires disconnecting applications and services, to extract statistical features from
the cloud system resources.

13

Among other statistical approaches, Vissers et al. [50] propose a technique to detect malicious
XML code contained in a SOAP message. To this end, they use the Gaussian distribution
[51] to model the normal profile. To generate a normal distribution, the following two steps
are used. In the first step, the file having all datasets is retrieved and all the entries that
belong to a particular SOAP action are grouped together in smaller datasets. In the second
step, a Gaussian model is generated by determining the means and standard deviations. A
Gaussian distribution is also used recently by Marnerides et al. [52] who propose the Ensemble
Empirical Mode Decomposition (E-EMD), which is an anomaly detection framework. The E-
EMD can be used at the hypervisor level to collect statistical network information from VMs.
An average and standard deviation is calculated for each VM and this information is used to
detect anomalies caused by DoS attacks. The Gaussian based approach has an advantage, it is
able to identify the normal behavior of the system. However, using the Gaussian distribution
is the simplest approach to model the normal behavior. In most cases, other approaches (e.g.,
functional approach) are required along with the statistical approaches in order to understand
the normal behavior of a complex system.

The work of Ismail et al. [53] uses a covariance matrix to detect flooding attacks. They used
an approach that consists of two phases. The first phase is for profiling normal traffic by map-
ping the captured or received normal traffic into a matching covariance matrix. The second
phase is the detection phase, where the obtained covariance matrix is compared with the cur-
rently received traffic. Similarly, Girma et al. [54] recently combined covariance matrices and
entropy-based systems to identify patterns of DoS attacks in VMs. The results have shown
superiority in terms of detection rate compared to other related statistical approaches. Also,
the work of Zakarya [55] enhances the detection rate by using an entropy rate to identify
the DoS attack flow, based on the distribution ratio. Similarly, Bedi and Shiva [56] use an
entropy approach to detect DoS attacks generated from the co-residents. They suggest to mo-
del the behavior of both malicious and legitimate clients. While entropy-based approaches
could achieve high detection rates, the main disadvantage of such approaches is that they
assume that the normal traffic is always higher than the malicious traffic. This assumption
might be possible only if we consider some simple DoS attack scenarios. However, in a cloud
environment, we could have a large number of compromised VMs and the malicious traffic
might be higher than the normal traffic.

Conclusive remarks. The existing anomaly-based detection techniques perform better
than the signature-based detection techniques in terms of detecting unknown attack pat-
terns. However, the anomaly-based detection techniques often require significant computing
resources to identify the normal behavior of VMs (e.g., traffic rate). In addition, the existing

14

detection work lacks support for adaptation, with the dynamic adjustments that characterise
the cloud computing environment which are important to meet the quality of service require-
ments and pay-as-you-go business model. In other words, the performance information that
is used for learning attack patterns is becoming inappropriate for the new adjustments on
the cloud infrastructure.

2.2.3 Hybrid detection

This approach is used to achieve higher detection rate by using some complementary features
from the signature-based detection approaches and other features from the anomaly-based
detection approaches. For example, Modi et al. [57] propose an approach that combines
SNORT and Bayesian classifiers. They use SNORT to store the rules of known patterns of
DoS attacks. The Bayesian classifier is used to predict the probability that system events
belong to either the normal or malicious classes. The work of Cha and Kim [58] proposes a
detection approach consisting of three phases. The first phase is monitoring and uses a rule-
based technique to process DoS attack patterns.The second phase predicts the future load
of each customer using timeseries modeling. They use a Bayesian technique to analyse DoS
attack candidates on the network. The last phase uses an unsupervised learning algorithm
[59] (the authors did not mention which unsupervised learning algorithm they used) to detect
known and also unknown DoS attack patterns. The main advantage of using the Bayesian
approach is that it provides a solid theoretical framework for classifying and detecting DoS
attacks. However, it needs a big dataset in order to make reliable estimations of the probability
for normal or malicious classes.

The work of Ficco [60] proposes a hybrid hierarchical correlated approach. It consists of de-
tecting DoS attacks symptoms by collecting diverse information at several cloud architectural
levels (e.g., application, VM). In order to identify attack patterns, a Hierarchical Correla-
tion (HC) approach is used. HC captures the causal relationships between the alarms, which
were generated through the previous stage (intermediate attacks in a complex attack), by
correlating them on the base of temporal and logical constraints. The correlation capability
is driven by a knowledge-based represented by an ontology. The correlation capability is then
used to capture the causal relationship between the detected intermediate DoS attacks. The
main advantage of this approach is the ability to detect sophisticated DoS attacks in cloud.
The reason for that is because it uses causal relationships between intermediate attacks that
belong to the sophisticated attack. However, the disadvantage of this approach is that it
assumes that the causal relationships are built from true alarms. In fact, these alarms might
be false positives and could decrease the attack detection accuracy.

15

Teng et al. [61] propose an approach that combines two detectors : feature detector and
statistical detector. The feature detector uses SNORT to separate events based on network
protocols (e.g., TCP). The Statistical detector cooperates with the feature detector by using
data packets from it to determine whether an event is an attack or not. If the rate of obtained
packets exceeds the predefined threshold, then this case will be considered as an attack. This
approach can provide a high accuracy in detecting known networking-based DoS attack
patterns. However, the weakness of these approaches is that they are unable to identify
unknown attack patterns. Moreover, setting the optimal threshold is commonly difficult and
infeasible in a changing environment (i.e., cloud).

Conclusive remarks. The existing work that use hybrid techniques have the advantages of
combining signature and anomaly approaches. However, these approaches are unable to meet
the cloud computing inherent characteristics. The reason is that they inherit the shortcomings
of both signature-based and anomaly-based approaches. In addition, the hybrid techniques are
associated with a significant overhead that comes from the different and multiple algorithms
that are being used.

2.3 Cloud-based Cooperative Intrusion Detection System

In this section, we present the state-of-the-art of the cloud-based cooperative IDSs. Coope-
rative IDSs in the context of cloud computing have been proposed in many earlier works.
For example, Lo et al. [62] propose a cooperative detection method in the virtualized cloud
environment. Their method allows alerts to be exchanged among different nodes (i.e., hosts)
whenever an attack gets detected. For this purpose, they adopt a rule-based technique to
identify TCP SYN attacks by fetching the threshold for rule patterns during the initial rule
establishment phase. The advantage of this method is that it is able to balance the detection
overhead among nodes. Also Teng et al. [61] proposed a method that aggregates two types of
detectors : a feature detector and a statistical detector. The former uses SNORT to separate
events based on network protocols (e.g., TCP). The later cooperates with the feature detector
by using data packets from it to decide whether an event is an attack or not. If the rate (i.e.,
the rate of packets) obtained is greater than the predefined threshold, then this situation will
be considered as an attack.

Man and Huh [63] and Singh et al. [64] propose a cooperative IDS between cloud compu-
ting regions. Their approaches enable exchanging alerts from multiple elementary detectors.
In addition, they enable sharing information between interconnected clouds. Also, Ghribi
[65] proposed a middleware IDS. The approach allows a cooperation between three layers :

16

Hybervisor-based IDS, Network-based IDS and VM-based IDS. If an attack is found in a
layer, the attack cannot be executed in the other layers. Chiba et al. [66] propose a coopera-
tive network-based cooperative intrusion detection system to detect network attacks in the
cloud. This can be performed through traffic monitoring while maintaining performance and
service/application quality.

The main shortcoming of the above works is that they consider that all cloud-based IDSs
are trustable, which lets their collaboration systems more vulnerable to untrusted and/or
malicious insiders. The goal of this thesis is to present a systematic approach to establish a
cloud-based cooperative IDS that uses trust assessment mechanisms and enables trustworthy
decisions aggregation. We aim to allow our approach to work in the presence of untrusted
and/or malicious IDSs .

In a multi-cloud environment, Dermott et al. [67] propose a cooperative intrusion detection in
a federated virtualized cloud. They adopt the Dempster-Shafer theory of evidence to gather
the beliefs provided by the watching entities. The gathered beliefs are used to reach the final
decision regarding a possible attack. The main shortcoming of this approach is that it is a
centralized architecture, whereby a trusted third-party should collect and manage feedbacks.

Cooperative IDSs in non-cloud environments where also proposed recently, in [68] [69] [5] [6]
[7] [8] [9] [10]. They have the same shortcoming as the above mentioned works, since they
assume that all IDSs are trustable, which makes their collaboration system vulnerable to
malicious insiders.

A trust-based cooperative IDS has been proposed in a non-cloud environment in [11]. They
propose a trust-based collaborative decision framework. Through collaboration, a native IDS
can identify new attacks that may be known to other IDSs. The work evaluates how to
use different diagnosis coming from different IDSs. They propose a system architecture for a
collaborative IDS where trustworthy feedback aggregation is a key component. Similarly, Zhu
et al. [70] [71] propose an incentive-based communication protocol, which gives IDS nodes
incentives to share their feedback, and thus to prevent untrusted behaviors.

A fairness assurance mechanism in a cooperative IDS also has been proposed in [72] and [73].
They create a rule dissemination protocol based on a decentralized two-level optimization
framework, which determines the information propagation rates to each IDS. For this purpose,
they adopt a Bayesian learning approach for the IDS to find the compatibility ratio of other
IDSs based on the historical interactions gathered by each IDS. The main limitation of their
approach is that it is limited to signature-based cooperative IDSs, where the fairness is
measured in terms of the ability to distribute rules fairly among IDSs.

17

2.4 Cloud Federation

In this section, we present the state-of-the-art of the cloud federation. The concept of fe-
derations among CPs was first introduced by Rochwerger et al. [20]. Although their work
shows the main materials needed to achieve federation, they did not show the architectural
elements that compose multi-cloud computing environments. Buyya et al. [74] introduce the
challenges and architectural elements for federations. Similarly, Celesti et al. [21] and Fazio
et al. [75] present a cloud architecture that allows CPs to build a federation with each other.
They consider two kinds of CPs : home and foreign. The home CPs are those that are unable
to fulfill the consumers tasks and therefore forward these jobs to the foreign CPs. Similarly,
Goiri et al. [76] present a decision-based model that helps a CP decide on forming federations
with public CPs in order to maximize their individual profit.

Toosi et al. [77] present multi-resource provisioning policies, that assist the CPs to increase
their resource utilization and profit. Their model can terminate VMs whenever the profit
of shutting them down exceeds the profit of running such VMs. Also, Van den Bossche
et al. [78] present a binary integer program model that reduces the cost of outsourcing,
using a mix of public and private providers. Chaisiri et al. [79] propose an optimal VM
provisioning algorithm using stochastic programming that considers multi-cloud providers
with the objective of maximizing their profit. Similarly, Bruneo [80] proposes a performance
evaluation approach based on stochastic reward nets for federated CPs. The model predicts
and quantifies the cost-benefit of a strategy portfolio and the corresponding QoS experienced
by clients.

A business-oriented cloud federation model for real-time applications is proposed by Xiaoyu
et al. [81]. The model allows multiple heterogeneous CPs to cooperate and provide a scalable
infrastructure. The advantage is the business layer added to support the federations. The
layer can trigger on-demand resource provisioning across multiple CPs and therefore helps
to maximize the clients satisfaction and business benefits [81].

Salama & Shawish [82] present a QoS-based approach for cloud federation. They use QoS
metrics such as throughput and response time during the federation formation process. By
considering QoS metrics, the federation helps eliminate Service Level Agreement (SLA) vio-
lations and maximise QoS targets. In [83], Mashayekhy et al. propose a hedonic coalitional
game to achieve cooperation among IaaS services. Based on the federation coalition game,
they design a cloud federation formation mechanism that allows CPs to form federations that
maximize their profits.

A game theoretic approach for cloud federation is also proposed by Hassan et al. [84]. The

18

study enables the dynamic resource allocation in a cloud federation. They define a price
function for a CP that gives incentives to other CPs to contribute their resources in order to
form a federation. Similarly, Mihailescu & Teo [85] present a strategy-proof dynamic pricing
scheme for cloud federations. In [86], Li et al. propose profit maximization strategies in
cloud federations. They present a truthful auction-based mechanism for selling VMs within
a federation. This enables cloud federation members to sell or buy resources in a way that
maximises their profit. Also, Samaan [87] proposes an economic model for sharing resources
among CPs in the federation.

Few studies have addressed trust issues in cloud federations. For example, Ngo et al. [88]
present an approach for attribute-based trust establishment to be used in the multi-cloud
environment. They propose an approach for trust evaluation and delegation. Messina et al.
[89] suggest a trust model based on the reputation. The model allows users to properly select
a suitable CP on the basis of reliability and reputation.

Hassan et al. [90] propose a trust-based hedonic game to form a coalition among CPs. They
enable CPs to join a coalition based on maximization of profits and minimization of penalty
costs. The main limitation of their approach is that it is based on a centralized architecture,
and a trusted third-party is required in order to organize the coalition. In [91], Wahab et al.
designed a trust-based hedonic game to the model the community formation problem among
multi-provider services. The main advantages of this approach lie in the (1) trust-based
aggregation technique that can overcome collusion attacks in the presence of dishonest parties
[91], (2) distributed trust-based coalition formation model that does not need a centralized
entity, and (3) bootstrapping mechanism that assigns initial trust values for newly deployed
services. The main limitations of this approach are that it considers functionally-similar
services to create coalitions. Moreover, in this approach, untrusted services are considered
as those that show some malicious behavior, whereas in some cases some untrusted services
might be non-malicious (e.g., lack of experience). Besides, the computations of the trust values
in this approach are limited to recommendations collected from different parties without
considering self-experience.

2.5 Literature review analysis

In this section, we analyzed the limitations of the presented works and discussed the research
gaps that need to be filled. First, although the aforementioned works paved the way to un-
derstand the issues behind improving the detection accuracy in cloud environments, these
works overlook the heterogeneity and changing nature of the cloud. In fact, a single intru-
sion in such a heterogeneous environment can take various forms that are semantically but

19

not synthetically similar. These lead the existing approaches, whether they are signature or
anomaly-based, to be unable to deal with irrelevant run-time details, instead of focusing on
essential information used to increase the accuracy of the detection. In this thesis, we address
these challenges by proposing a generic cloud-based IDS, in order to enable the detection of
intrusions, regardless of the infrastructure being used.

Secondly, in the context of cloud-based cooperative IDS, while there are several cooperative
models proposed to address the problem of limited information, by allowing to share know-
ledge among cloud-based IDS, they work under the assumption that all cloud-based IDSs are
trustable. This, in turn, makes their collaboration systems vulnerable to untrusted (malicious
or not) insiders. We address this point by proposing a trust-based multi-cloud cooperative
IDSs. Moreover, despite the fact that some works (e.g., [11]) propose trust-based cooperative
IDS, the main shortcoming of these works is that they are based on consulting many IDSs in
order to get a feedback. This, in turn, causes extra overhead, through consulting needlessly
some IDSs. This is unlike our approach, where a trust-based coalitional game approach is
proposed, in order to construct a set of the most trusted and efficient IDSs, and thus reduce
the rate of consultation requests, while ensuring a higher detection accuracy. In addition, the
proposed framework has the following two advantages that are not available in the existing
works : fairness assurance and sutainability. In the former, we design a fairness-assurance
mechanism, based on the Stackelberg game [17] between the well-behaving cloud-based IDSs
and the selfish ones that frequently send consultation requests and do not answer other IDSs
consultation requests, with the aim of saving their own resources. In the latter, we devise
a machine learning-based multi-cloud cooperative IDS that efficiently exploits the historical
feedback data in order to provide the ability of proactive decision making. This makes our
model reliable in real-time environments

Third, although some of the proposed approaches use the concept of cloud federation to ex-
ploit the power of other clouds in handling sophisticated and severe attacks, these approaches
often suffer from the hazard of choosing unreliable and untrusted CPs in the federation. As
a result, this leads to performance degradation and loss of CPs’ reputation. We address
this challenge by proposing a trust-based cloud federation. Although there are some works
(e.g., [91]) that propose trust-based approaches to model the community formation problem
among multi-provider services, the limitations of these approaches are that they consider
functionally-similar services to create coalitions. Moreover, in their approaches, untrusted
services are considered as those that show some malicious behavior, whereas in some cases
some untrusted services might be non-malicious (e.g., lack of experience). Besides, the com-
putation of the trust values in this approach are limited to recommendations collected from
different parties, without considering self-experience.

20

CHAPTER 3 RESEARCH METHODOLOGY

The aim of this thesis is to propose a framework for a cloud-based IDS that can efficiently
and effectively 1) detect attacks under complex, dynamic and heterogeneous environments
in order to come up with a generic cloud-based IDS, and 2) detect unknown attacks about
which a cloud-based IDS has no (or limited) information. To this end, several objectives were
envisioned as announced in section 1.2. To attain these objectives, the work was carried out in
three main phases. This chapter aims to explain the different steps that led to the realization
of these objectives and connecting them to the work presented in the subsequent chapters.

3.1 Phase 1 : Intrusion detection under complex and changing environments

In the first phase of the thesis, our efforts were directed towards the achievement of the first
two objectives. This phase consists of : 1) monitoring and analysing the effects of changing
and heterogeneous environments on the collected data, in order to remove irrelevant run-
time details and enhance the accuracy of the detection. ; 2) integrating the output of the
proposed monitoring and analysis algorithm into the proposed detection algorithm, to come
up with a generic cloud-based IDS. It is worth mentioning that we consider Denial of Service
(DoS) attacks as a case study to achieve these objectives, since it is identified to be the most
popular and dangerous attack [1] [2]. The above mentioned objectives were attained in the
article titled “An SVM-based Framework for Detecting DoS Attacks in Virtualized Clouds
under Changing Environment”.

3.1.1 Monitoring and analysing the effects of changing and heterogeneous en-
vironments

We first monitor data used for the detection, in order to measure the effects of the changing
environment on this data. This was achieved by analysing and determining to which extent the
collected data had been affected with respect to the applied changes (e.g., granting/revoking
resources to/from the VMs). The monitoring and collection of data was performed using the
Linux Trace Toolkit next generation (LTTng) [92], which enables a low-overhead monitoring
and provides precise and detailed information on the underlying kernel and userspace exe-
cutions [93]. We designed an algorithm to determine the changes that occurred in the data
with respect to the changes that are applied to the cloud infrastructure. The output of the
algorithm is a filter containing the effects of all possible changes on the data. The filter will

21

then be considered by the proposed detection algorithm, as we will see in the next section,
to enhance the detection under changing and heterogeneous environments. Details are given
in Chapter 4.

3.1.2 A generic cloud-based IDS

We proposed an SVM-based detection algorithm for this purpose. The SVM classifier was
trained to distinguish between the normal and malicious activities. During the prediction per-
iod, the proposed algorithm first monitors and gathers data using LTTng. The filter obtained
is used before applying the prediction using SVM, to get rid of the “noise” that may show
up on the collected data (e.g., due to the new resource adjustments) and that considerably
decreases the accuracy of the detection. The filtering process enables us to remove this noise
and the irrelevant run-time details from the data, in order to provide a robust and generic
dataset that will be used to enhance the detection in dynamic environments. Details about
the proposed generic cloud-based IDS are given in Chapter 4.

3.1.3 Evaluation

To evaluate our model, we chose to create a custom test environment. All machines used
in the experiments were attached directly to a Linksys 1000 Mb/s SOHO switch. Our test
network was completely disconnected from the network of our institution, as well as from
the Internet, to avoid the leakage of the DoS attacks. The proposed detection algorithm was
implemented in Python and the BoNeSi program was used [94] to generate attack-level and
normal traffic. BoNeSi allows us to simulate floods from large-scale bot networks. Moreover,
BoNeSi tries to avoid the generation of packets with easily identifiable patterns, which can
be quickly filtered out [94].

The experiments were done while applying different changing environments, including gran-
ting/revoking resources to/from the VMs. The results show that the proposed framework
enhances the detection accuracy, (false positive and false negative), compared to other de-
tection algorithms. Details about the experiments and results are given in Chapter 4.

3.2 Phase 2 : Trust and fairness assurance in multi-cloud cooperative IDSs

In the second phase, our efforts were directed towards the achievement of objectives 3,4,5 and
6. The work consists of : 1) trust-based multi-cloud cooperative IDSs, 2) trust-based feedback
aggregation, 3) trust-based cloud federation, and 4) fairness-assurance in multi-cloud coope-
rative IDSs. The above mentioned objectives were attained in the following three articles :

22

“A Trust-based Game Theoretical Model for Cooperative Intrusion Detection in Multi-cloud
Environments”, “On Trustworthy Federated Clouds : A Coalitional Game Approach”, and
“Multi-cloud Cooperative Intrusion Detection System : Trust and Fairness Assurance”

3.2.1 Trust-based multi-cloud cooperative IDSs

To achieve trustworthy multi-cloud cooperative IDSs, we propose a framework for forming
and establishing a trust-based coalition among cloud-based IDSs.

3.2.1.1 Proposed solution

We proposed a trust-based framework for cooperative IDS in a multi-cloud environment. The
proposed model enables a cloud-based IDS to evaluate other IDSs trustworthiness, based
on its experience, using Bayesian inference [14]. After obtaining IDSs trust values, a novel
community formation algorithm is used. The proposed community formation algorithm is
based on the coalitional game theory [95], [15]. The algorithm enables cloud-based IDSs to
join or leave a given community so as to enhance their chances of working with trusted IDSs.
The proposed algorithm enables each cloud-based IDS to discover trusted IDSs, and to list
them on its whitelist. Our solation converges to a Nash-stable situation ; that is, no cloud-
based IDS has an incentive to leave its current coalition to move to another coalition. Details
are available in Chapter 5.

3.2.1.2 Evaluation

We implemented our framework in a 64-bit Windows 8 environment on a host equipped
with an Intel Core i7-4790 CPU 3.60 GHz Processor and 16 GB RAM. We used Matlab for
implementing our model. The simulation environment used 100 cloud-based IDSs. The results
show that the detection accuracy was enhanced when the trust values of IDSs increased.
Moreover, the results show that the proposed model dramatically reduces the chances of
cooperating with untrusted (malicious or not) cloud-based IDSs. This, in turn, leads to
both enhancing the accuracy and minimizing the cost of the cooperation compared to the
"Grand cooperative approach", where the cooperation is conducted with all cloud-based IDSs.
The reason is that a cloud-based IDS, in our model, is not required to cooperate with all
other IDSs. Only trusted IDSs are considered. Details about the experiments and results are
available in Chapter 5.

23

3.2.2 Trust-based Feedback Aggregation

In the previous section, we designed a trust-based community formation model that enables
a set of cloud-based IDSs to cooperatively set up their coalitions. The output of the proposed
model is a set of coalitions, where each coalition consists of a set of cloud-based IDSs that
prefer to work with each other. In this section, we show how an IDS inside a coalition can
aggregate feedback received from other cloud-based IDSs in the same community, in order
to make a final decision about the suspicious intrusion.

3.2.2.1 Proposed solution

For this purpose, we proposed an aggregation algorithm based on the Dempster-Shafer Theory
(DST) [16]. The advantages of using DST can be summerized as follows : (1 unlike other
aggregation models (e.g. Bayesian aggregation model) that demand complete information of
prior probabilities, DST can handle the lack of complete information (i.e. uncertainty), and
(2 it has the property of preventing collusion attacks, which occur when several malicious
cloud-based IDSs collaborate to give misleading judgments. Details are given in Chapter 5.

3.2.2.2 Evaluation

The proposed model was implemented using Matlab. We compared the proposed aggregation
approach with other known aggregation approaches in the state-of-the-art which are : ma-
jority aggregation model [62] and weighted average aggregation model [96]. In the majority-
based model, the IDS collects feedback from IDSs about suspicious behaviour and the decision
is made (i.e., attack or not) according to the majority. However, in the weighted average ag-
gregation model, weightsW are assigned to feedbacks from different IDSs to distinguish their
detection capability. Highly trusted IDSs are assigned with larger weights compared to low
trusted IDSs. The results show that the proposed aggregation model enhances the accuracy,
false positive, and false negative compared to the majority and weighted aggregation models.
Details about the experiments and results are given in Chapter 5.

3.2.3 Formation of trustworthy federated clouds

We used the concept of cloud federation to enable trust-based coalition at the level of CPs.
Thus, a CP can outsource some of its workloads to other CPs. This serves us in two purposes.
First, reducing the extra overhead during the monitoring and detection process. Secondly,
exploiting the power of other cloud-based IDS in handling sophisticated and severe attacks

24

since other clouds may have better investment (in terms of hardware and software security)
in their intrusion detection solutions.

3.2.3.1 Proposed solution

We designed a trust-based framework for Cloud Federation (CF) formation. Our model en-
ables a CP to evaluate other CPs trustworthiness by considering two approaches : objective
and subjective trust evaluations. In the former, Bayesian inference was used to compute trust
values based on previous interactions. In the latter, the DST integrated with the Bayesian in-
ference was used to compute trust values in the absence of previous interactions. Thereafter,
a novel decentralized algorithm was devised, based on a coalitional game theory, that allows
heterogeneous CPs to establish their coalitions in such a way that maximises the trust of
the formed federations. The proposed algorithm converges to a Nash-stable situation. More
details are given in Chapter 6.

3.2.3.2 Evaluation

To evaluate the performance of the proposed approach, we tested the ability of the proposed
method to enhances CPs performance in terms of availability, response time and throughput
in the presence of untrusted (malicious or not) CPs. We used Cloudsim [97], based on the
java programming language, for implementing our model.

The results show that the proposed trust-based federation model enhances throughout, avai-
lability and response time compared to the state-of-the-art QoS-based federation [82] and
Grand Federation [74]. The results also show that the proposed model reduces the chances
of untrusted (malicious or not) members in the federation and minimizes the chances of
cooperating with unnecessary CPs. This, in turn, minimizes the resource cost compared to
Grand and QoS-based federations. More details about the experiments and results are given
in Chapter 6.

3.2.4 Fairness-assurance in multi-cloud cooperative IDSs

We proposed a fairness assurance mechanism in order to reduce the existence of selfish cloud-
IDSs in the formed communities. This is useful to encourage cloud-based IDSs to participate
in the community and reduce unnecessary consultation requests that can be exploited to
exhaust well-behaving cloud-based IDS resources.

25

3.2.4.1 Proposed solution

The proposed fairness assurance mechanism is modeled as a Stackelberg game [17] in which
each well-behaving IDS plays as the leader of the game and the selfish IDSs act as followers.
The strategy of the selfish IDSs is to maximise their consultation rates and at the same time
minimise their response rates. Knowing this strategy, the strategy of the well-behaving IDSs
is to choose the optimal response rates that are fairly compatible with their consultation
rates. We solved the optimization problem using the backward induction reasoning [98],
through binding at the beginning the best response of the selfish IDS to the well-behaving
IDSs consultation rate strategy, and then merging this information into the well-behaving
IDSs optimization problem. The outcome of the game is the optimal response rate for the
well-behaving IDS. More details are given in Chapter 7.

3.2.4.2 Evaluation

To evaluate the proposed fairness assurance mechanism, we made some IDSs to behave
selfishly by making them not answer other IDSs consultation requests, while at the same
time keeping on sending consultation requests.

The results show that the proposed model reduces the chances of cooperating with selfish
IDSs. Moreover, the results show how the proposed fairness assurance mechanism can be
used to minimize the selfish behavior. Selfish IDSs have no incentive to behave selfishly by
maximising their consultation rates and at the same time minimising their response rates.
More details about the experiments and results are given in Chapter 7.

3.3 Phase 3 : Proactive multi-cloud cooperative IDSs

In the third phase, our efforts were directed towards the achievement of objectives 7 and
8. We proposed a proactive multi-cloud cooperative IDS. The proposed model allows us to
exploit the historical feedback received to produce learned models used for predicting the
status (attack or not) of suspicious intrusions, even in the case of missing feedback. The
above mentioned objectives were attained in the article titled : “A Deep Learning Approach
for Proactive Multi-Cloud Cooperative Intrusion Detection System”

3.3.0.1 Proposed solution

The proposed solution is based on the Stacked Denoising Autoencoders (SDAE) approach,
where a denoinig autoencoder is used as a building block to train a deep network [18][19].

26

Our model exploits the fact that a denoising autoencoder can learn how to reconstruct the
original inputs, given partial data inputs, by allowing deep neural networks to learn (during
the unsupervised pre-training stage) how to extract features that are robust to incomplete
IDSs feedback. Such robust features can be seen as useful representations of data to yield a
better intrusion detection accuracy in such real-time environments. This makes our detection
model to be proactive at two levels : (1 by making decisions about suspicious intrusions
even with missing feedback, and also (2 by making decisions without the need to apply any
aggregation method on consulted IDSs feedback. It is worth mentioned here that the proposed
model reduces the overhead associated with the architecture of multi-cloud cooperative IDS.
The overhead is mainly due to the time taken by monitoring and analysing IDSs’ incoming
feedback. In traditional approaches, an IDS waits until receiving the whole feedback, then
aggregates them in order to make a final decision about a suspicious intrusion. As a result,
the overhead will continue to increase as long as the whole feedbacks have not yet received.
We address this point by enabling an IDS to proactively make decisions about suspicious
intrusions, even in the absence of complete feedback from consulted IDSs. This reduces the
time of monitor and analysis of IDSs’ feedback (i.e., overhead). More details are given in
Chapter 8.

3.3.0.2 Evaluation

Our proposed proactive approach was implemented using TensorFlow. The results show the
effectiveness of the proposed proactive model in making decisions in the presence of incom-
plete feedback. The average accuracy of the proposed model, at different numbers of hidden
units, was slightly degraded. This indicates that the proposed machine leaning-based ap-
proach can effectively make correct decisions about suspicious intrusions, even in the absence
of complete feedback from consulted IDSs. The results also show that the proposed model
enhances the accuracy of the detection under partial inputs, compared to other state-of-the-
art deep learning approaches. Details about the complete experiments and results are given
in Chapter 8.

.

27

CHAPTER 4 ARTICLE 1 : AN SVM-BASED FRAMEWORK FOR
DETECTING DOS ATTACKS IN VIRTUALIZED CLOUDS UNDER

CHANGING ENVIRONMENT

Adel Abusitta, Martine Bellaïche and Michel Dagenais
Journal of Cloud Computing, vol. 33, pp. 55-65, 2017.

Abstract

Cloud Computing enables providers to rent out space on their virtual and physical infrastruc-
tures. Denial of Service (DoS) attacks threaten the ability of the cloud to respond to clients
requests, which results in considerable economic losses. The existing detection approaches are
still not mature enough to satisfy a cloud-based detection systems requirements since they
overlook the changing/dynamic environment, that characterises the cloud as a result of its
inherent characteristics. Indeed, the patterns extracted and used by the existing detection
models to identify attacks, are limited to the current VMs infrastructure but do not necessa-
rily hold after performing new adjustments according to the pay-as-you-go business model.
Therefore, the accuracy of detection will be negatively affected. Motivated by this fact, we
present a new approach for detecting DoS attacks in a virtualized cloud under changing en-
vironment. The proposed model enables monitoring and quantifying the effect of resources
adjustments on the collected data. This helps filter out the effect of adjustments from the
collected data and thus enhance the detection accuracy in dynamic environments. Our solu-
tion correlates as well VMs application metrics with the actual resources load, which enables
the hypervisor to distinguish between benignant high load and DoS attacks. It helps also the
hypervisor identify the compromised VMs that try to needlessly consume more resources.
Experimental results show that our model is able to enhance the detection accuracy under
changing environments.

4.1 Introduction

Several major Information and Communications Technology (ICT) companies are competing
for creating advanced cloud computing services that are able to deal with small, medium-sized
and large-scale enterprise demands. Many companies, organizations and governments are
expected to transfer, if not already done, all or parts of their IT solutions to the cloud [4] [99].
This transfer is profitable from an economic point of view since it allows them to streamline

28

the spending on technology infrastructure and capital cost. However, the security threat in
terms of Denial of Service (DoS) attacks constitutes a major obstacle against the achievement
of this transfer. A DoS attack can be of many types and may be seen in different contexts
(e.g., application, web services, network) [1]. However, in this paper, we consider Virtual
Machine (VM)-based DoS attacks in a virtualized cloud and define a DoS attack as follows.
A DoS attack occurs when one or more VMs drain all the available physical resources such
that the hypervisor would not be able to support more VMs [3]. This attack is mainly caused
by virtualization [2] [3], which is the backbone of the recent cloud computing architecture,
where virtualization allows emulating a particular computer system and sharing physical
resources (e.g., CPU and network bandwidth). In this paper, we shed light on the problem of
detecting cloud-based DoS attacks under a changing environment. Although several advanced
approaches have been proposed to detect DoS attacks in virtualized cloud (e.g., [27] [33] [34]
[35]), these approaches still causes a significant decrease in the detection accuracy when
used in a cloud environment. The reason is that the current approaches do not consider the
changing environment, that characterises the cloud as a result of its inherent characteristics
(resources restriction and scaling). Such characteristics are essential for the VM to meet the
requirements of the pay-as-you-go business model [4].

4.1.1 Motivating Example

Assume that a cloud provider trained an Support Vector Machine (SVM) classifier on some of
the features of the VMs under a certain infrastructure. These features include CPU, network,
memory and I/O load. Assume now that the cloud provider, due to some business factors,
decides to adjust some of the resources of the VMs. This adjustment includes revoking 45%
from some of the resources of the VMs. Such an adjustment will result in a significant decrease
in the DoS detection accuracy rate. The reason is that the features used to train the SVM
classifier were extracted under the original infrastructure (before revoking 45% from VMs
resources). However, these features become unsuitable in the light of the new adjustment in
the VMs resources. In other words, the collected data will be affected by the new adjustment,
which will lead to an inaccurate classification of the collected data. Tables 4.1 and 4.2 show
our results of testing the impact of applying resources adjustments on the basic resources
of the VMs (CPU, Memory, I/O and Network). We used the API of libvirt that employs
cgroups [100] to adjust and limit the resources of the VMs. Using cgroups allows us to
exploit Linux Kernel features which limit and allocate resources to VMs—such as CPU time,
system memory, network bandwidth, or combinations of these resources [101]. The results
show that the detection rate has been decreased as a result of revoking/granting resources
from/to the VMs. The details of this experiment are described in Section 4.5.

29

Indeed, the continuous requests to make adjustments on the infrastructure are necessary as
long as the cloud client (e.g., VM) wants to meet the Quality of Service (QoS) requirements.
The reason is that the ability of performing new adjustments, to cope with the real-time
economic factors, affects the decision of the industries, organizations and governments on
whether to adopt or not cloud computing. In other words, the continuous adjustments are
necessary for the continuous use of the cloud to meet the variations in the demands and the
cost-efficiency, which are considered as the main cloud features.

Table 4.1 Attack detection rates when revoking resources (CPU, Memory, I/O and Network)
from VMs.

Resources revoked from VMs Attack detection rate
0% (baseline) 95.02%

10 % 95.79 %
20 % 90.28 %
40 % 89.08 %
60 % 85.18 %
80 % 83.67 %

Table 4.2 Attack detection rates when granting resources (CPU, Memory, I/O and Network)
to VMs.

Resources granted to VMs Attack detection rate
0% (baseline) 95.02%

10 % 95.79 %
20 % 85.28 %
40 % 84.08 %
60 % 75.18 %
80 % 74.67 %

4.1.2 Our Proposed Solution

To address the aforementioned problems, we propose a flexible detection framework based
on the SVM learning technique. SVM is a classification technique that employs a nonlinear
mapping to convert the original data into higher-dimensional of data, in order to find a hyper-
plane that optimally separates the training tuples based on their classes [46]. Our framework
can be summarized as follows. The hypervisor collects some features to train the SVM clas-
sifier to be able to distinguish between the normal activity and DoS attack on the VM. The
hypervisor then monitors and quantifies the effect of performing resources adjustments (i.e.,
granting/revoking resources to/from the VMs) on the collected VMs performance data. This
information (i.e, effect of performing resources adjustments) is used thereafter to maintain

30

a filter of resources adjustments effect. The filter is used as a preprocessing step, prior to
classification, to get rid of the “noise” that may show up on the collected data (due to the
new adjustments) and that may considerably decrease the accuracy of the detection.

Moreover, the proposed framework enables VMs to regularly declare their current application
metrics, such as number of clients, requests and sales. This is then used by the hypervisor
to correlate these metrics with the actual resources load. This correlation enables the hyper-
visor to distinguish between benignant high load and DoS attacks. In addition, it enables
the hypervisor to identify the compromised VMs that may try to claim and consume more
resources. We propose a correlation technique that the hypervisor uses to calculate the ex-
pected resources load of the current compromised VMs based on the declared metrics. The
calculated resources load is then compared with the actual resources load. If the calculated
resources load is not within a certain range of the actual resources load, the belief that the
VM has been compromised increases. In summary, we propose a comprehensive framework
that consists of the following contributions :

— Proposing a detection approach to identify DoS attacks in a virtualized cloud under
changing environment. To the best of our knowledge, our work is unique in considering
the detection problem under changing environment in virtualized clouds.

— Proposing the monitoring and quantification of the effect of performing resources
adjustments, which enhances the accuracy of identifying DoS attacks under changing
environments.

— Proposing a model to correlate VMs metrics with the actual resources load by the
host, which enables the hypervisor to identify compromised VMs.

— Modeling an incentive technique that enables the hypervisor to give incentives in the
form of resources to the VMs that have truthfully declared their metrics and punish
these VMs that lied about their actual metrics.

4.1.3 Paper Outline

The rest of the paper is organized as follows. In Section 4.2, we discuss the related work.
In Section 4.3, we present the proposed framework. Section 4.4 presents security analysis of
the proposed framework. In Section 4.5, we present our empirical results. Finally, Section 4.6
concludes the paper.

31

4.2 Related Work

Machine learning for detecting DoS attacks in the cloud was used by several researchers. This
work benefits from many advanced machine learning and and artificial intelligence techniques
to predict the status of VMs (i.e, malicious or normal). Lonea et al. [24] uses the normal traffic
pattern received from the Virtual Bridge (VB) of the VM to validate for consistency against
behavioral patterns of attacks. They use a network intrusion detection system, that analyzes
the normal traffic flow obtained from the VB, to check and test for consistency against
the attack behavioral patterns. Thus, if abnormal traffic has been detected, the anomaly
information will be reported and an alarm generated.

Similarly, Gupta et al. [27] propose a profile based network intrusion detection system. They
combine both fine grained data analysis and Bayesian techniques in order to detect TCP SYN
flooding. The main advantage of these approaches is the ability to identify DoS symptoms
at an early stage, because their approaches are able to collect information at the networking
level, before the DoS causes a significant performance degradation. However, the lack of
application performance information can result in wrongly identifying high traffic during the
peak time as a DoS attack.

Ficco et al. [32] propose a strategy for generating stealthy DoS attacks in the cloud, which
uses low overhead attacks to inflict the maximum financial cost to the cloud clients [32].
Masood et al. [33] propose a web-behavior-based detection, where they identify two client’s
profiles. The first one is for good clients while the second one is for bad clients. A good client
will follow a pattern that reflects normal activity on the web, while a bad client will show
some abnormal activities. Similarly, Anusha et al. [34] study the behavior of normal users
of Web applications. They assume that an attacker spends a very short time (almost zero)
over a Web page. They use for that a metric called Time Spent on a Page (TSP). They
assume that the attackers TSP is very close to zero. In contrast, the TSP of a normal client
should be high enough to interact with the Web page. The work of Kwon et al. [35] also
uses a behavioral approach for detection. They start from a tested assumption saying that
the behavioral patterns of normal traffic are similar, while the behavior patterns of malicious
traffic are not. The cosine similarity is used to check the similarity of the traffic. If such a
similarity does not exist, an alarm is generated. A main advantage of this approach that it
is able to determine the similarity during run-time. However, there is no guarantee that the
normal traffic will always be similar in a dynamic environment (i.e. cloud). In fact, in some
applications, we could have many forms of normal traffic that are fairly dissimilar.

Palmieri et al. [36] use a two-phase ML-based detection technique. The first phase is called

32

Blind Source Separation (BSS), while the second phase is called Rule-based Classifier to detect
zero-day attacks that change or alter the traffic volume rate. BSS extracts the features of the
cloud nodes traffic in order to be used by a decision tree classifier to create a normal traffic
profile (baseline). Most recently, Choi et al. [37] propose a data-mining-based approach to
detect application layer HTTP GET DoS attacks. They use a normal behavior pattern to
detect DoS attacks on VMs. The parameters used for analyzing and creating attack patterns
are : CPU usage, packet size and packet header information. They evaluate their approach
by comparing it with a signature-based approach. The result showed that their proposed
method performs better than SNORT in terms of identifying new attack profiles. Similar to
this work, Jeyanthi and Mogankumar [38] and Jeyanthi et al. [39] propose a mechanism to
detect DDoS attacks based on clients request rate. Clients requests will be put in a black list
or white list based on a certain threshold rate. The threshold is determined by calculating
the maximum number of legitimate client requests. The authors have shown experimentally
that the legitimate clients could continue being served during an attack using their method.
However, the main disadvantage of this method is that it is threshold based, where setting
the optimal threshold is always difficult and infeasible in a production cloud environment.

Chonka and Abawajy [40] and Chonka et al. [41] propose a decision tree classification tech-
nique. The method operates in two phases : training phase (first phase) and testing phase
(second phase). In the training phase, a rule set that has been generated over time by the
decision tree classifier is used to define both known and unknown attributes. In the testing
phase, a decision making module is used to decide the likelihood of a previously classified
packet. This helps decide whether to let a packet enter or not. Similar to that, Lonea et al.
[24] also proposed a classification technique based on Intrusion detection system (IDS). The
detection module analyse the alerts generated by each VM using the Dempster-Shaferther
theory (quantitative solution classifier) in 3-valued logic and fault tree analysis (FTA). Al-
though Dempster-Shaferther is able to produce powerful results when observations about
attacks come from different sources, it becomes unsuitable when one source produces mul-
tiple observations [42].

Among other approaches, the work of Iyengare et al. [43] proposes a Multilevel Thrust Filtra-
tion (MTF) that contains four detection and prevention modules, which are traffic analysis,
anomaly detection, anomaly classification, and attack prevention. The proposed method fil-
ters the incoming packets and detects four types of traffic congestion, which are spoofing,
ash crowd, DDoS, and aggressive legitimate traffic. A similar approach has been proposed
by Jeyanthi and Iyengar [39]. The main feature of this approach is the ability to increase
the attack detection accuracy because multiple stages of detection are used. However, it is
associated with a significant overhead since multiple algorithms and techniques should be

33

used.

Cooperative IDSs in cloud have been proposed in several works. For example, Teng et al.
[61] propose an approach that aggregates two different detectors : feature and statistical
detectors. The feature detector adopts SNORT to separate events based on Transmission
Control Protocol (TCP). The statistical detector cooperates with SNORT by using data
packets from it to find whether an event is an attack or not. If the rate of packets obtained
exceeds the predefined threshold, this means that there is an actual attack. Similarly, Man
and Huh [63] and Singh et al. [64] propose a cooperative IDS between different cloud regions.
Their approach enables exchanging alerts from multiple places (detectors). The proposed
approach allows the exchange of security information between interconnected clouds. Ghribi
[65] proposes a middleware IDS. The approach allows a cooperation between three layers :
Hypervisor-based, Network-based, and VM-based IDS. If an attack was found in a layer,
it cannot be executed in the other layers. Chiba et al. [66] also propose a network-based
cooperative IDS to identify network attacks in the cloud environment, which is performed
by monitoring traffic while maintaining performance and service quality. Recently, Wahab et
al. [102] [103] propose a game theoretic-based IDS. The approach that they used enables a
CP to optimally distribute its resources among VMs in such away to maximize the detection
of distributed attacks. The main limitation of the cooperative IDS is that they work in the
assumption that all nodes are trustable, which makes it vulnerable to malicious insiders.

Cloud-based DoS attacks mitigation approaches are also proposed in several works. For
example, Yu et al. [104] propose a dynamic resource allocation feature for VMs. This al-
lows attacked VMs to acquire extra resources during DoS attacks. When a DDoS attack
occurs, the cloud hires the idle resources to clone sufficient attack prevention servers for the
attacked VMs in order to guarantee the quality of service for the users by filtering out attack
packets. This approach is beneficial in an environment where DoS attacks are frequently
generated. However, it can be exploited by selfish VMs to acquire and use much resources
even though there is no attack. Also, Somani et al. [105] propose auto-scaling decisions by
differentiating between legitimate and attack traffic. Attack traffic is detected based on the
workload of human behavior. The advantage of this approach is that it gives more attention
to serve legitimate clients by making accurate and proper autoscaling decisions. However, a
workload of human behavior can be emulated. This makes an attacker able to deplete cloud
resources.

The summary of the existing works is given in Table 4.3. The aforementioned works paved the
way to understand the issues behind improving the detection accuracy in cloud environments.
Our proposed model offers two major features. The first is the aspect of detection under

34

changing environment. To the best of our knowledge, our work is the first to consider the
detection problem under changing environment in virtualized clouds. The second is allowing
VMs to share information about their current application metrics (e.g, number of clients,
requests and sales) to the hypervisor, which in turn allows distinguishing between legitimate
high load and DoS attacks. It also enables the hypervisor to identify the compromised VMs
that try to claim and consume more resources.

Table 4.3 Cloud-based Detection Approaches.

Researchers Approach
Lonea et al. [24] Profile-based detection
Gupta et al. [27] Profile-based network detection
Masood et al. [33] Web-behavior-based detection
Anusha et al. [34] Web-behavior-based detection
Kwon et al. [35] Web-behavior-based detection

Palmieri et al. [36] Machine learning-based detection
Choi et al. [37] Data Mining-based detection

Jeyanthi and Mogankumar [38] Data Mining-based detection
Jeyanthi et al. [39] Data Mining-based detection
Iyengare et al. [43] Multiple Stage detection

Jeyanthi and Iyengar [39] Multiple Stage detection
Teng et al. [61] Cooperative-based detection

Man and Huh [63] Cooperative-based detection
Singh et al. [64] Cooperative-based detection
Chribi et al. [65] Cooperative-based detection

Wahab et al. [102] [103] Game theocratic-based detection

4.3 The Proposed Framework

In this section, we describe the key constituents of our framework. The framework contains
a set of components, each of which exhibits a set of modules. Figure 4.1 illustrates the fra-
mework structure and describes the modules of each component. These components include :
data gathering, data and load analysis, and detection.

We use the Linux Trace Toolkit next generation (LTTng) [92] to gather the VMs performance
metrics. LTTng is a powerful, low impact and lightweight [93] open source Linux tracing
tool. It provides precise and detailed information on the underlying kernel and user-space
executions. LTTng contains different trace points in various modules of the operating system
kernel. Once a predefined trace point is reached, it generates an event containing a time-
stamp, CPU number and other run-time information related to the running processes.

35

Data and Load Analysis

Trace

Abstractor
Training and

create SVM

classifier

Preparing dataset

for normal and

anomaly activities

Detection Component

Trace

Abstractor

Detection and

Verification

attack

Data

Gathering

(LTTng)

VM’s current application parameters

Resources

Adjustment

Analysis

normal

SVM Classifier

Figure 4.1 Architecture of the Proposed Framework

4.3.1 Data Analysis

This component is responsible for analysing data obtained from the data gathering com-
ponent. We divide this component into the four modules : Trace abstractor, preparing da-
taset for normal and anomaly activities, training and create SVM classifier, and resources
adjustment analysis.

4.3.1.1 Trace Abstractor

The trace file size is usually so large that it is difficult to analyze and understand the system
execution. Most of the time, another analysis tool is required to abstract the low-level events
and represent them as higher-level events, thus reducing the data to be analyzed. Trace
abstraction is typically required to compute statistics of complex system metrics that are not
directly computable from the low-level trace events [106]. For instance, to compute synthetic
metrics such as ”number of HTTP connections”, ”CPU usage”, and ”number of different

36

types of system and network attacks”, raw events must be aggregated to generate high-level
events. Then, the desired metrics must be extracted and computed. Table 4.4 gives examples
of a higher-level event generated from low-level events. The details of the trace abstraction
tool used to generate such high-level meaningful events can be found in [93].

Table 4.4 Abstracting Example.

Low-level events higher-level event
socket create HTTP connection
socket call
socket send
socket receive
socket close

4.3.1.2 Preprocessing and Training Modules

In this phase, the SVM [107] classification technique is used to analyse the collected data and
classify the VMs load. SVM is a classification technique that employs a nonlinear mapping
to convert the original data into higher-dimensional data in order to find a hyperplane that
best separates the training tuples based on their classes. The hyperplane is determined using
support vectors and margins in such a way that maximizes the hyperplane’s margins with
the aim of delivering more accurate results when classifying future data tuples [46]. We use
SVM thanks to its ability to generate very accurate classifiers (especially in binary classifi-
cations) [107] and its effectiveness in high dimensional datasets consisting of a large number
of attributes [108]. Moreover, it is robust against outliers and overfitting [109] [110].

The training dataset is generated during the monitoring of the host to determine which me-
trics reflect the malicious behavior and which ones reflect the normal behavior. As shown in
the proposed architecture (Figure 4.1), VMs are allowed to share their application/business
metrics to be considered among the features used to train the SVM. The VM applica-
tion/business metrics are discussed later in this paper.

Each VM can be either under DoS attack or normal. Thus, class label yi ∈ {attack, normal}.
Given the training datasets (xi,yi)...(xn,yn), xi is the VM metrics values used for the training.
n is the number of metrics values, the objective is to find the hyperline that offers a maximum
margin (Figure 4.2) such that :

w ∗ x+ b = 0 (4.1)

Where w is a weight vector and b is a threshold.

37

Thus, the training data should satisfy :

w ∗ xi + b ≥ −1 for all attack data xi (4.2)

w ∗ xi + b ≤ +1 for all normal data xi (4.3)

The problem is converted to finding the optimal hyperplane (Eq. 4.1), which can be turned
into a convex optimization problem [46] :

x1

x2

2/||w||

Normal

Malicious

w

b

Support

Vectors

Support

Vector

Figure 4.2 The value of w affects the position of the hyperplane.

min τ(w) = ‖w‖2
Subject to yi(〈w, xi〉+ b) for all i = 1, ..., n

 (4.4)

The convex optimization can be solved using Lagrange multipliers [46] :
maximize L(α) =

n∑
i=1

αi −
1
2

n∑
j=1

n∑
i=1

αiαjyiyjK(xi, xj)

Subject to
n∑
i=1

yiαi = 0 and 0 ≤ αi ≤ C ∀ 1 ≤ i ≤ n

(4.5)

38

where αi is the Lagrange multipliers [46], K(xi,xj) represents the kernel function (e.g., li-
near, polynomial, etc.) and C is a constant for determining the trade-off between margin
maximization and training error minimization [46].

By solving Eq. 4.5 we get [46] :

w =
n∑
i=1

αiyixi (4.6)

Finally, the decision attack function is given by :

f(x, α, b) = {±1} = sgn(
n∑
i=1

yiαiK(x, xi) + b) (4.7)

4.3.1.3 Resources Adjustment Analysis

The impact of resources adjustment appears on the collected data, which makes the SVM
classifier unsuitable in the light of the new adjustment in the VMs resources. In other words,
the collected data will be affected by the new adjustments, which leads to an inaccurate
classification of that data. To address this issue, we should determine the effect of resources
adjustment on the collected data (we will discuss later in this section how to calculate the
effect of resources adjustments). The effect of resources adjustment reflects to what extent
the modified data (after new resources adjustment) deviates from the original data (the data
that meets the basic infrastructure).

Having the effect of resources adjustment, two approaches to solve the detection problem
under changing environment can be considered. The first approach is to consider this effect
during the training of the SVM classifier. This can be done by generating new sub features
for every feature (features represent system metrics in this context) used in the training. In
fact, the new sub features are the result of applying the effect of resources adjustment on
the basic feature. For example, if the original feature used to train the SVM classifier is 10,
20, 30, 40 for CPU, memory, I/O, and network, respectively, then the SVM classifier is also
trained to classify in the presence of 50% adjustment on the VM resources by adding to the
training set the following new sub feature : (10 + 10 * 50%), (20 + 20 * 50%), (30 + 30
* 50%) and (40 + 40 * 50%) for CPU, memory, I/O, and network respectively. This makes
the SVM classifier be trained not only on the original infrastructure but also on the new
infrastructure after resources adjustment.

The second approach is to account for the resources adjustments effect by a separate filter.
The filter is used as a preprocessing step, prior to classification, to get rid of the effect of

39

resources adjustment on the collected data, in order to normalise the data with respect to
the original infrastructure on which the training was performed, before passing it to the SVM
classifier. We adopt the second approach in the proposed framework for the two following
reasons. On the one hand, the first approach requires generating a huge training dataset,
since we have to generate many sub-features for each single feature. This results in more
overhead during the SVM training. The second approach does not require any change in the
dataset. On the other hand, training an SVM with all possible adjustments (as is the case for
the first approach) may lead to an overfitting. Specifically, the classifier might work correctly
in the presence of the trained adjustment ; However, the classifier accuracy will go down in
the absence of such adjustments.

4.3.1.4 The Effect of Resources Adjustment.

The effect of resources adjustment on VMs is studied during the running of the VMs to find
out to what extent their system metrics are affected by the adjustments. Although such a
process requires changing the resources of the VMs which in turn may affect the performance
of the application running inside these VMs, the impact of an adjusting and monitoring the
effect is acceptable since it is done during a short time period (≈ the time needed to capture
VMs system metrics). Note that resources adjustment process can be done by exploring and
monitoring the effect of all possible resources adjustments performed on the system metrics of
the VMs. More specifically, we maintain a filter of resources adjustments effect (as in Figure
4.3), which is used as a preprocessing step prior to classification (i.e., SVM), to filter out the
effect of resources adjustments from the collected data. In other words, this helps to get rid
of the noise that may show up on the collected data (due to the new adjustments) and may
considerably decrease the accuracy of the detection. Algorithm 1 is used to determine the
effect of all possible resources adjustments on the system metrics of the VMs.

In Algorithm 1, for each VM j (j ∈ VMs) in a certain host, the algorithm monitors and
determines the current system metrics of j to be stored in array U1 [] (line 3). Then, for each
possible resources adjustment adj, the algorithm applies resources adjustment of value adj, to
see the effect of adj on j’s system metrics. The list of all possible resources adjustments, which
is given as an input in Algorithm 1, can be selected manually by the cloud administrator. The
administrator can consider these adjustments that have significant impacts on VMs’ system
metrics and also had been requested in the past by the client according to the pay-as-you
go business model. This, in turn reduces unnecessary study of unneeded adjustments and
thus decreases the processing time of Algorithm 1. Note that we apply adjustments on VMs
resources using control groups (cgroups) [101], which is a Linux Kernel feature that limits

40

Algorithm 1: Determining the effect resources adjustments on VMs system metrics.
Input : List of VMs’ possible resources adjustments adj[]
Output: The effect of resources adjustment on VMs system metrics

{eff1[][],eff2[][], ... , effn[][]}
1 repeat
2 foreach Running VM j do
3 Monitor and store j’ system metrics in array U1 (before adjustments)
4 foreach Adjustment adj ∈ adj [] do
5 Apply an adjustment of amount adj on j’s resources
6 Monitor and store j’ system metrics in array U2
7 Remove the adjustment of amount adj and restore j’s default resources
8 foreach index i of U1 do
9 BeforeAdj = U1[i]

10 AfterAdj = U2[i]
11 if |BeforeAdj − AfterAdj| < ε then
12 effj[adj][i] = 0
13 else if BeforeAdj < AfterAdj then
14 effj[adj][i] = adj∗100

AfterAdj
∗BeforeAdj

15 else
16 effj[adj][i] = - adj∗100

AfterAdj
∗BeforeAdj

17 end
18 end
19 end
20 end
21 until ε elapses;

41

Amount of

adjustment

on a VM’s

resources

The effect of resources adjustment on a VM’s system parameter

CPU

load

Network

load

Memory

load

I/O

load

Requests

serviced

per

second

Average

No. of

system

call/Sec.

…

+5 % …

-5% …

+10% +9% …

-10% …

+20% 12% …

-30% …

+30% …

-40% -3% -10% …

+40% …

-50% …

+50% …

… … … … … … … …

Requests serviced per second will increase by 12% if
the amount of the VM’s resources increases by 20%

Average No. of system call/Sec. will decrease by 10% if the
amount of the VM’s resources decreases by 40%

Figure 4.3 Table used for filtering out the effect of resources adjustments on a VM system
metrics.

and allocates resources to VMs — such as CPU time, system memory, network bandwidth, or
combinations of these resources. The system metrics are re-computed after each adjustment
process (line 6). Then, the algorithm computes the effect of an adjustment adj on VM j’s
system metrics by finding the percentage of change on the j’s system metrics (line 8 - 16). If
the new calculated metric U2 [i]’s value is within a small range of the old value U1[i], the effect
will be considered as 0. This is described in the Algorithm 1 as effj[adj][i] = 0 (line 12), which
means that the effect of an adjustment adj on that i-th metric of VM j is equal to 0. This
indicates that the resources adjustment had no effect on that given metric. However, if the
new calculated metric’s value considerably differs from the old one, the algorithm computes
the percentage of change on the old value such that : effj[adj][i] = adj∗100

AfterAdj
∗BeforeAdj (line

14) for a positive change (i.e., new-value > old-value) and - adj∗100
AfterAdj

∗ BeforeAdj (line 16)
for a negative change (i.e., new-value < old-value). The algorithm is used for each possible
adjustment in order to have a filter of resources adjustments effect for each VM. The filter is
then used during the detection step to filter out the collected data from the effect of resources
adjustment. This adapts the environment of the detection to the original environment (i.e.,

42

the environment in which the SVM classifier was created). Note that the whole process is
repeated periodically after a certain fixed period of time ε (line 17) to capture the new effect
of the given resources adjustment on VMs system metrics.

It should also be noticed that some resources adjustment may have no impact on the system
metrics of the VMs. In fact, it can depend on resources and the underlying usage model.
For example, for a given load, if we consume 60% of the CPU (100% available with no
restriction), when a restriction of 70% is imposed, we will consume 60% / 70% = 85% of
the available CPU. The number of CPU seconds will remain the same though. For this
purpose, we have considered in the resource adjustment algorithm the following condition :
If (|BeforeAdj−AfterAdj| < ε) (line 11), which means that the collected data are the same
before and after adjustments. The effect of resources adjustment in this case is equals to 0,
as given in Algorithm 1 (effj[adj][i] = 0).

4.3.2 Detection Component

This component is used for identifying DoS attacks. It monitors the system and performs
tracing abstraction, similar to the steps used above. Along with these steps, the module
performs the detection algorithm described in Algorithm 2. The following section presents
the details of this component.

4.3.2.1 VM’s Declared Application/Businesss Metrics

As shown in the proposed architecture (Fig. 4.1), the proposed detection component enables
VMs to declare their current application and/or business metrics, such as number of clients,
requests and sales, to the hypervisor. These metrics are used during the generation of the
training dataset due to train the SVM classifier. In addition, it can be used by the hypervisor
to correlate these metrics with the actual resources’ load (network, CPU, disk, I/O) and
decide whether it is coherent or not (compromised VM trying to needlessly claim and consume
more resources).

We use the concept of simple linear regression to model the correlation between the VM’s
declared metrics and the actual resources’ load. A simple linear regression can be used for
better and more efficient fitting in modeling the relationship between the application metrics
and the resources’ load in cloud-based applications [111] [112] [113].

Suppose that there are n information about VM’s declared application metrics and its cor-
responding resources’ load {(VMT, load), i = 1, ..., n}, where VMT represents the former
and load represents the later. The function that describes VMT and load is :

43

loadi = α + β ∗ VMTi + εi (4.8)

Our goal is to find the equation of the straight line such that :

load = α + β ∗ VMT (4.9)

We calculate β and α using the least-squares approach by looking at a line that minimizes
the sum of squared residuals ε of the linear regression model such that :

min
n∑
i=1

ε2
i =

n∑
i=1

(loadi − α− β ∗ VMTi)2 (4.10)

The objective can be solved using inner product spaces [114] to find the value of α and β.

β =
∑n
i=1(loadi − load)(VMTi − VMT)∑n

i=1(loadi − load)2 (4.11)

α = VMT − β ∗ load (4.12)

Where VMT is the mean of the dataset’s of the VM’s declared metrics and load is the mean
of the resources’ load.

When the hypervisor wants to decide whether there is a coherence between the declared
metrics and the actual resources’ load, it uses Eq. (4.9) by substituting α and β with Eq.
(4.11) and Eq. (4.12), respectively. The calculated resources’ load is compared with the actual
resources’ load to find if the calculated resources’ load is within a small distance of the actual
load or not.

Using such a model has two important advantages for the hypervisor. First, it allows the
hypervisor to distinguish between high benignant load and DoS attacks. When the hypervisor
receives metrics from the VM about receiving unusual high load, the hypervisor can calculate
the resources’ load based on the VM’s high load declared metrics using Eq. (4.9). If the
calculated resources’ load is close to the actual resources’ load, the hypervisor identifies the
high load as a peak load. The second advantage of the model is that it allows us to identify
the compromised-VMs that try to pretend receiving a large number of requests to be allowed
to claim and consume more resources. This can be done also by calculating the resources’ load
of the current declared metrics using the model and compare it within the actual resources’
load. If the VM has been compromised, the calculated resources’ load, in most cases, will

44

be different from the actual resources’ load as long as the compromised-VM has no detailed
information about the model used to calculate the resources’ load.

4.3.2.2 Detection Algorithm

Algorithm 2 that is used for detecting DoS attacks works as follows. For each VM j (j ∈ VMs)
in a certain host, the algorithm uses the model obtained in the previous section to calculate
the VMs resources load (calculated load) with respect to the declared metrics of the VMs
(line 4). This step is important to minimise unnecessary false positive alarms during flash
events. The calculated resources load is compared with the actual resources load to determine
if the calculated resources load is within a small range of the actual resources load (line 5).
If this is not the case, the detection process starts by filtering out the effect of resources
adjustment on j’s system metrics using the resources adjustment effect of j (given as input
in Algorithm 2) (i.e., newU [i] = U [i] ± (U [i] * effj[VMAj][i]) (line 6-10) from the collected
data. The objective is to adjust the data for the original infrastructure on which the training
was performed before passing it to the SVM classifier. The Algorithm passes then the modified
collected data to SVM to predict the result (line 11). If the result r = "attack", the algorithm
identifies a DoS attack (line 12-13). If the calculated resources load is within a short distance
of the actual load, the algorithm identifies the resources load as normal (line 16-17).

The main complexity of the proposed approach lies in the SVM training, which is commonly
known to be O(n3) [110], where n represents the training set size. Although this might
be infeasible for very large datasets, the training process is performed only once, and its
overhead can then be neglected [115] [116]. Moreover, recently, more and more techniques
are being proposed for efficient SVM training [117] [118] [119]. As for the prediction process
in Algorithm 2, the complexity lies in three parts. In the first part, the algorithm filters
out the effect of resources adjustment from the collected data (line 6-10). The computation
complexity for this part is O(n), where n is the number of the input metrics of SVM. The
second part is to find if the predicted and calculated VM resources load are similar (line 5),
which is of constant time complexity O(1). The last part of the algorithm is to predict the
modified collected data using SVM (line 11). The computational complexity of SVM-based
prediction is O(n), where n is also the number of the input metrics of SVM. Therefore, the
overall computation complexity of the proposed detection Algorithm is O(n) +O(n) +O(1)
≈ O(n).

45

Algorithm 2: Detection Algorithm
Input : VMs’ alpha values {α1, α2, ..., αn}
Input : VMs’ beta values {β1, β2, ..., βn}
Input : VMs’ declared application metrics VMT j ∀ j ∈ VMs
Input : VMs’ effect of resources adjustment on their system metrics {eff1[][],

eff2[][], ..., effn[][]}
1 Input :Amount of adjustment applied to VMs resources VMAj ∀ j ∈ VMs

Output :Attack Boolean Dec
2 foreach VM j do
3 Determine j’s current resources load crt_load.
4 Monitor and store j’s system metrics in array U .
5 calc_load= αj + βj * VMT j.
6 if |calc_load− crt_load| > ε then
7 foreach index i of U do
8 if effj[VMAj][i] ≥ 0 then
9 newU [i] = U [i] - (U [i] * effj[VMAj][i])

10 else
11 newU [i] = U [i] + (U [i] * effj[VMAj][i])
12 end
13 end

/* classifying data (i.e., newU using the SVM */
14 r = predict(newU, SVM)
15 if r=="attack" then
16 Dec = True
17 end
18 else
19 Dec = False
20 end
21 end
22 end
23 else
24 Dec = False
25 end

46

4.3.2.3 Verification and Resources Allocation

The proposed detection framework allows a VM to regularly declare its current application
metrics, which enables the hypervisor to correlate these metrics with the actual resources
load and decide if it is coherent or not (compromised VM trying to claim and consume more
resources). In fact, the VM may have no incentive to declare its metrics. Moreover, the VM
may lie about its current metrics either because of its selfish strategy (in order to obtain
more resources) or because the VM has been compromised.

Algorithm 3: Verification and Resources Allocation Algorithm
Initialisation:
Input : VMs’ alpha values {α1, α2, ..., αn}
Input : VMs’ beta values {β1, β2, ..., βn}
Input : VMs’ declared application metrics VMT j ∀ j ∈ VMs
Output: Amount of resources granted/revoked to/from each VM

1 foreach VM j do
2 Determine j’s current resources load crt_load
3 calc_load= αj + βj * VMT j

4 if |calc_load− crt_load| < ε then
5 Grant resources to j
6 end
7 else
8 Revoke resources from j
9 end

10 end

To address the aforementioned problems, we propose a verification algorithm (Algorithm
3). Our solution motivates the VM to declare its current application metrics by granting
resources to the VM whose calculated resources load (obtained from the VM’s declared me-
trics) falls within a close range of the VM’s actual resources load (line 4-5). On the other
hand, the hypervisor revokes resources from the VM whose calculated resources load and
actual resources load do not match (line 6-7). This dissimilarity, in most cases, is either be-
cause the VM has lied about its declared metrics, or because the VM has been compromised.
The amount of resources revoked from the VM can be decided by the system administrator,
who clearly knows the real impact of adjusting the VM’s resources on their performance.
However, we suggest that the amount be proportional to the magnitude of the difference
between the calculated resources load and the current resources load. In other words, the
larger the difference between the calculated resources load and current resources load is, the
more resources should be revoked from the VM. This encourages VMs to truthfully declare
their metrics used to calculate the resources load.

47

4.4 Security Analysis of the Proposed Framework

The main objective of the proposed framework is to enhance the detection of DoS attacks
under changing environment. In this section, we analyse the effectiveness of our framework
in the presence of flash events, DoS attacks and compromised VMs.

4.4.1 Flash Events

A flash event occurs when there is an unusual surge of legitimate traffic. Our model is able
to distinguish between a flash event and DoS attacks since our framework allows VMs to
declare their current application metrics (e.g., number of clients) and motivates them to do
that by granting them extra resources (Algorithm 3). The declared metrics can represent flash
events. The declared metrics are then used to calculate the resources load according to the
model in Section 4.3.2.1. The calculated and actual resources load are then compared to see
if they approximately match. If so, the hypervisor will know and understand that the VM is
under an unusual surge of legitimate requests and will grant the VM more resources to serve
better during this period. Otherwise, if the calculated and actual resources load are largely
different, the hypervisor revokes some resources from the VM. This strategy motivates the
VM to truthfully declare its peak load and limit the illegal use of resources by the attacker,
in case the VM has been compromised.

4.4.2 DoS Attacks

The main purpose of the proposed framework is to detect DoS attacks. Our model achieves
this by using SVM. The framework trains SVM classifiers on the normal and malicious
features to achieve the learning of the classifier. Our framework then monitors the incoming
features and predicts the system status. Moreover, the proposed detection algorithm supports
the detection under a changing infrastructure. The algorithm checks if no modification in the
VM’s resources (i.e., granting or revoking resources) has occurred. If so, the algorithm passes
the collected data directly to the SVM classifier, without applying any filtering strategy.
Otherwise, the algorithm filters the effect of resources adjustments in order to adjust the
collected data to the original infrastructure (on which the training was performed), before
passing it to the SVM classifier. This is done by removing the effect of noise caused by
resources adjustments.

Theorem 1. The accuracy of the detection will not be affected after filtering out the effect
of resources adjustment.

48

Démonstration. Consider that the collected data U has been affected by resources adjustment
in such a way that makes U change by percentage %eff . The %eff can be a positive
(e.g., +5%), negative (e.g., -5%) or 0 (as the example given in Section 4.3.1.3, where some
adjustments (e.g., CPU) do not result in any change in the collected data). If %eff is positive,
the value of U changes to U + (%eff ∗U). In this case, our detection algorithm removes the
adjustment (Algorithm 2 line 5-9) as follows :

U + (%eff ∗ U)− (%eff ∗ U) = U (4.13)

On the other hand, if %eff is negative, the value of U changes to U - (%eff*U). In this case,
the detection algorithm removes the adjustment (As in Algorithm 2) as follows :

U − (%eff ∗ U) + (%eff ∗ U) = U (4.14)

Also, if %eff = 0, the value of U changes to U - (0 * U) = U . In this case, the detection
algorithm removes the adjustment as follows :

U − (0 ∗ U) + (0 ∗ U) = U (4.15)

In the aforementioned three situations, the collected data U can be recovered, which means
that the detection will be performed as if no adjustment had been applied.

4.4.3 Robustness against Compromised VMs

The proposed framework is able to detect the compromised VMs that try to claim receiving
an unusual load of client requests, to be allowed to consume more resources. The compromised
VM can hide that its compromised by mimicking normal load and/or flash crowds [120]. The
hypervisor calculates the VM load (resources load) based on the compromised VM’s current
declared application metrics and compares it with the actual resources load. If the calculated
resources load is not within a short range of the actual resources load, there will be a high
probability that the VM has been compromised. A possible strategy that a compromised VM
may use, is trying to find α and β in order to obtain the model for calculating the resources
load load = α + β ∗ VM_par. This can be done by using different values of α and β. For
every α and β, the compromised VM sees the response from the hypervisor (the response
is the resources given for the unusual declared metrics). If the compromised VM did not
receive a response, the compromised VM tries other values of α and β, until the correct α

49

and β values are obtained (receiving a response from the hypervisor). Although this can be
possible, the number of trials will be very high, which makes it infeasible for the attacker,
since α and β can be any real number from a large interval. In addition, the attacker will
typically not have the opportunity to do a large number of attempts in trying to guess α and
β. After several wrong guesses (e.g., 10 wrong attempts), the hypervisor would consider the
VM as a compromised and prevent it from using resources.

4.5 Experimental Results and Analysis

In this section, we first explain the experimental setup used to perform our experimentation
and then study the performance of the proposed detection approach.

4.5.1 Experimental Setup

To evaluate our model, we chose to create our custom test environment. We prefered to use
our own materials (e.g., resources) instead of using rented resources from existing CPs (e.g.,
Amazon EC2) for the following three reasons : 1) Most of the CPs including Amazon EC2
have restriction rules regarding any security testing and evaluating on their resources and
systems [2]. 2) All large CPs list DoS attacks’ testing and evaluating as a non-permissible
action [2]. 3) No CP allows its users with direct access to the host. Therefore, gathering
information (i.e. performance information) is a quite difficult task. Our testbed consists of
three machines. One machine is used as a virtual machine host and the other machines are
used as client and attack emulator. All machines are attached directly to a Linksys 1000
Mb/s SOHO switch. Our test network is completely disconnected from the network of our
institution as well as from the Internet to avoid the leakage of the DoS attacks. The detection
algorithm (Algorithm 2) is implemented in Python and the BoNeSi program is used [94] to
generate attack-level and normal traffic. We used BoNeSi as a traffic generation tool because
it allows us to simulate floods from large-scale bot networks. Moreover, BoNeSi tries to avoid
the generation of packets with easily identifiable patterns, which can be quickly filtered out
[94]. The virtual machine host used in the experiment is an Intel Core i7-4790 CPU 3.60
GHz Processor with 16 GB RAM. We installed the Apache 2.2 Web Server on the targeted
VMs. The network interface is at 1000 Mb/s. We chose KVM [121] as our hypervisor-based
virtualization. Indeed, KVM runs on the unmodified Linux kernel and is thus compatible
with the standard performance tracing tools (e.g., LTTng), unlike Xen.

In order to simulate a real-world DoS attack, the CAIDA “DDoS Attack 2007” dataset [122]
has been used as a baseline for extracting the features required to simulate attack traffic.

50

Since it is not possible to mine normal traffic data from CAIDA’s dataset because it is
collected at Darknet and has no normal traffic, we used another dataset to capture normal
traffic. For this purpose, we used a traffic trace of a 5-minute non-flash-event activity before
the first semi-final match of the 1998 FIFA World Cup’ dataset [123]. Table 4.5 shows the
traffic features and characteristics extracted from the CAIDA and 1998 FIFA World Cup’
datasets (the same features used in [124]). We used then BoNeSi as a traffic generator to be
run based on information given in Table 4.5.

Table 4.5 Attack and normal traffic features extracted from CAIDA and FIFA World Cup’
datasets

Characteristic DoS Attacks Normal Traffic
Packet Size 64k 64k

No. of Sources 859 73
packet rate 125,705 385

4.5.2 Training Phase

During the generation of the attack and normal traffic using BoNeSi, we monitored the
following metrics : CPU, memory, I/O and network load at different time intervals. We
can also monitor and use high-level metrics, as illustrated in the trace abstractor section.
However, we prefer to use these relatively basic metrics as they are widely used to describe
the anomaly caused by a DoS attack [1]. The length of each interval is 30 seconds. For each
interval, we used LTTng to generate the trace data. To extract CPU, memory, I/O and
network loads from the trace data, we used the LTTng-analyses packages [125], which are a
set of executable analyses to extract and visualise monitoring data and metrics from LTTng
kernel traces. We created a training dataset that contains these performance metrics. The
dataset is used then to train the SVM classifier to be able to distinguish between normal
behavior and DoS attacks of the VM. We train an SVM classifier on our dataset using the 10-
fold cross-validation model. We used a linear kernel function as it is considered more efficient
for real-time applications [126]. It enjoys as well faster training and classification. Moreover,
with the linear function, less memory is required as compared to the non-linear kernels [126].

4.5.3 Testing Phase

In order to test the proposed model in the presence of resources adjustments, we created a
testing dataset that is suitable for each type of adjustments. To do this, we monitored the
metrics (CPU, memory, I/O and network load) in the same way used to generate the training

51

dataset. However, in this phase, we performed some resources adjustments on the VMs during
data collection, in order to study the effectiveness of our proposed model in such a case. We
used the API of libvirt that employs cgroups [100] to adjust and limit VMs resources. Using
cgroups allows exploiting Linux Kernel features that limit and allocate resources to VMs —
such as CPU time, system memory, network bandwidth, or combinations of these resources
[101]. This is performed on the two types of traffic datasets : attack and normal traffic. Our
detection algorithm (Algorithm 2) is then executed on these datasets. The detection algorithm
applies the filter of resources adjustment effect (obtained from executing Algorithm 1) on the
testing dataset before passing it to the SVM classifier. The length of time used to determine
the effect of resources adjustment in Algorithm 1 is 30 seconds.

We used to evaluate the accuracy of the proposed model the false positive, false negative,
attack detection and accuracy rate.

Accuracy Rate =

100%× Total # of correctly classified tuples

Total # of tuples
(4.16)

Attack Detection Rate =

100%× Total # of attacks

Total # of detected attacks
(4.17)

False Positive Rate =
100%× Total # of misclassified tuples

Total # of normal tuples
(4.18)

False Negative Rate =

100%× Total # of misclassified tuples

Total # of attack tuples
(4.19)

The next section contains the results, compared to the traditional SVM and Decision-Tree
detection [127] techniques. The traditional-SVM uses the SVM classifier directly, without
applying any filtering strategy that can cope with the effect of the resources adjustment
on the detection performance. Similarly, the Decision-Tree detection technique employs the
Decision-Tree classification technique, without applying any filtering process. We train the
traditional-SVM and Decision-Tree classifier on our dataset using the 10 fold cross-validation
model.

52

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Our Model
SVM
Decision-Tree

Figure 4.4 Accuracy with respect to (w.r.t.) amount of revoked resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

70

75

80

85

90

95

100

A
tta

ck
 D

et
ec

tio
n

R
at

e
(%

)

Our Model
SVM
Decision-Tree

Figure 4.5 Attack detection rate w.r.t. amount of revoked resources

4.5.4 Experimental Results

We study in Figures 4.4, 4.5, 4.6, and 4.7 the performance of our framework with respect to
the amount of resources revoked from VMs. The results reveal that our framework is resilient
to the decrease in the VMs resources. More specifically, Figures 4.4 and 4.5 show respectively
that the average accuracy and attack detection rates obtained by the proposed model at
different percentages of revoked resources (from 10% to 80%) are 97.02% and 97.4%. These

53

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

0

5

10

15

20

25

30

F
al

se
 P

os
iti

ve
s

(%
)

Our Model
SVM
Decision-Tree

Figure 4.6 False positive percentage w.r.t. amount of revoked resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 N

eg
at

iv
es

 (
%

)

Our Model
SVM
Decision-Tree

Figure 4.7 False negative percentage w.r.t. amount of revoked resources

results are better than the results obtained using the traditional-SVM (87.14% for accuracy
and 89.54% for attack detection rate) and Decision-Tree (75.44% for the accuracy and 79.04%
for attack detection rate). As for the false alarms, Figures 4.6 and 4.7 show respectively that
the false positive and false negative rates obtained using our model at different percentages
of revoked resources (from 10% to 80%) are 2.6% and 2.34%. These results are also better
than the results obtained using traditional-SVM (10.46 % for the false positive and 23.5 %
for the false negative) and Decision-Tree (17.28% for the false positive and 26.68% for the

54

false negative).

Moreover, Figures. 4.8, 4.9, 4.10, and 4.11 study the performance of our framework with
respect to the amount of resources granted to VMs. These results reveal that our framework
is also resilient to the increase in VMs resources. Figures 4.8 and 4.9 show respectively that
the average accuracy and attack detection rate obtained by the proposed model at different
percentages of granted resources (from 10 % to 80%) are 97.36% and 97.62%. These results
are better than the results obtained using the traditional-SVM (80.66% for accuracy and
82.36% for attack detection rate) and Decision-Tree (75.84% for the accuracy and 77.56%
for attack detection rate). As for the false alarms, Figures 4.10 and 4.11 show respectively
that the false positive and false negative rates achieved by the proposed model at different
percentages of revoked resources (from 10% to 80%) are 2.38% and 2.66%. These results
are also better than the results obtained using the traditional-SVM (17.64 % for the false
positive and 11.68 % for the false negative) and Decision-Tree (22.44 % for the false positive
and 28.26% for the false negative).

The reason why our model performs better than the traditional-SVM and Decision-Tree
approaches is that the proposed model takes into account the resources adjustments that
occur in the VMs infrastructure. The detection algorithm (Algorithm 2) filters (using the
filter obtained from Algorithm 1) the effect of resources adjustments in order to make the
collected data (testing dataset) cope with the original infrastructure (on which the training
was performed) before passing it to the SVM classifier. This is done by removing the effect
of resources adjustments (Algorithm 2, line 5-9). This is unlike the traditional-SVM and
Decision-Tree techniques, where the effect of the resources adjustments is totally ignored.
Therefore, their accuracy for detecting DoS attacks is affected.

We calculate the percentage of accuracy that can be preserved using our model under chan-
ging infrastructure. To do so, we run our model without adjustments applied to the VMs
resources. The accuracy of the detection obtained without adjustment was 99.40%. This re-
sult is used as a baseline to calculate the percentage of accuracy that our model can preserve
under adjustments. For this purpose, we determine the amount of accuracy preserved under
different amounts of adjustments and calculate the average, as in Table 4.6 for revoking-
based adjustments and Table 4.7 for granting-based adjustments. The results show that the
percentage of accuracy that can be preserved is 97.60 % for the revoking adjustments and
97.96% for the granting adjustments. This means that, by using our model, the accuracy got
decreased under the effect of resources adjustments by only 1.79 % for the revoking adjust-
ments and 1.43 % for the granting adjustments, which has no significant impact and can be
neglected.

55

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Our Model
SVM
Decision-Tree

Figure 4.8 Accuracy w.r.t. amount of granted resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

60

65

70

75

80

85

90

95

100

A
tta

ck
 D

et
ec

tio
n

R
at

e
(%

)

Our Model
SVM
Decision-Tree

Figure 4.9 Attack detection rate w.r.t. amount of granted resources

It should be noticed also that the SVM kernel used in the experiments is the linear kernel.
However, our results will not significantly change if we use another non-linear kernel (e.g.,
Quadratic kernel). In fact, we tested our detection model using different kernels and by
considering different values of resources adjustment (granting and revoking adjustments from
10% to 80%). Table 4.8 shows the performance metrics obtained (the average result has been
selected) for the different non-linear kernels. It presents the comparisons between different
non-linear kernels using the proposed detection model. The results show that there is no

56

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 P

os
iti

ve
s

(%
)

Our Model
SVM
Decision-Tree

Figure 4.10 False positive percentage w.r.t. amount of granted resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 N

eg
at

iv
es

 (
%

)

Our Model
SVM
Decision-Tree

Figure 4.11 False negative percentage w.r.t. amount of granted resources

significant difference in the false positive, false negative, attack detection and accuracy rates
between the different kernel functions.

57

Table 4.6 Amount of accuracy preserved by our model when revoking resources from VMs.

Resources revoked from VMs Accuracy preserved
10 % 98.79 %
20 % 98.28 %
40 % 98.08 %
60 % 97.18 %
80 % 95.67 %

Average 97.60 %

Table 4.7 Amount of accuracy preserved by our model when granting resources to VMs.

Resources granted to VMs Accuracy preserved
10 % 99.69 %
20 % 99.29 %
40 % 98.08 %
60 % 96.98 %
80 % 95.77 %

Average 97.96 %

Table 4.8 Kernel functions comparison using the proposed detection approach.

Kernel function Performance metric
Accuracy (%) Attack det. rate (%) FPR (%) FNR (%)

Linear kernel 97.19 97.51 2.49 2.50
Multilayer percepton kernel 97.03 97.09 2.90 2.92

Quadratic kernel 97.54 97.30 2.69 2.71
Polynomial kernel 97.51 98.23 1.99 2.11
Gaussian kernel 96.98 98.05 1.94 2.09

58

4.6 Conclusion

We present an SVM-based framework for detecting DoS attacks in a virtualized cloud under
changing infrastructure. Our solution collects some system metrics to train the SVM classifier
to be able to distinguish between normal and malicious (i.e., a DoS attack) activities of
the VM. The hypervisor then monitors and quantifies the effect of performing resources
adjustments on the collected data. This information is then used to maintain a filter of
resources adjustments effect. The filter is used as a preprocessing step prior to classification
to get rid of the noise that may show up on the collected data, and that may considerably
decrease the accuracy of the detection. Moreover, our solution motivates VMs to declare their
current business metrics to the hypervisor, to enable the hypervisor to correlate these metrics
with the actual resources load and decide if it is coherent or not. This increases the possibility
of identifying compromised VMs, trying to claim and consume more resources. Experimental
results show that our model performs better than the traditional-SVM and Decision-Tree
approaches in the presence of infrastructure adjustments, in terms of false positive, false
negative, attack detection and accuracy rate. The results also show that the percentage of
accuracy that can be preserved under resources adjustments using our model is 97.60 % for
the revoking adjustments and 97.96 % for the granting adjustments. Our results also show
that the accuracy got decreased under the effect of resources adjustments by only 1.79 % for
the revoking adjustments and 1.43 % for the granting adjustments, which has no significant
impact and can then be neglected.

59

CHAPTER 5 ARTICLE 2 : A TRUST-BASED GAME THEORETICAL
MODEL FOR COOPERATIVE INTRUSION DETECTION IN

MULTI-CLOUD ENVIRONMENTS

Adel Abusitta, Martine Bellaïche and Michel Dagenais
21st Conference on Innovation in Clouds, Internet and Networks (ICIN), IEEE, 2018.

Abstract

Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are
also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult
for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of
limited and incomplete knowledge about attacks. The recent researches in cyber-security have
shown that a cooperation among IDSs can bring higher detection accuracy in such complex
computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about
suspicious intrusions and increase the decision accuracy. The problem of existing cooperative
IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may
negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a
centralized architecture in which a central agent regulates the cooperation, which contradicts
the distributed nature of the cloud. In this paper, we propose a framework that enables
IDSs to distributively form trustworthy IDSs communities. We devise an algorithm, based
on cooperative game theory, that allows a set of cloud-based IDSs to cooperatively set up
their coalition in such a way to make their individual detection accuracy increase, even in
the presence of untrusted IDSs.

5.1 Introduction

Cloud-based cyber-attacks are known to be more complex and harder to detect. It became
significantly more difficult for a traditional single intrusion detection system, whether it is
network-based, hypervisor-based, or VM-based, to detect all attacks, due to limited know-
ledge about attacks. Collaboration among intrusion detection systems (IDSs) can be used
to gain higher detection accuracy as compared to traditional single IDS. Through collabo-
ration, IDSs in different regions, and possibly, belonging to different Cloud Providers (CPs)
can cooperate in such a way that makes them utilize the expertise of each other to cover and
identify unknown attack patterns.

60

A cloud-based IDS can be classified into two types ; signature-based and anomaly-based [1].
The former compares suspicious behavior with known attack patterns. In order to make
signature-based effective, the signature database should be updated frequently. On the other
hand, anomaly-based IDS raises alarms when unusual and/or unexpected observations are
detected. Anomaly-based IDSs are effective to detect unknown attacks. Moreover, they do
not need a database of known attacks. However, the shortcoming of using anomaly-based
detection is the relative high false positive rate compared to the signature-based technique
[11]. IDSs may adopt both techniques to have improved detection accuracy. However, the
detection accuracy is limited by the amount of knowledge they have (e.g., their security
vendors have). Recent research [11] [23] shows that the collaborative detection can enhance
the detection rate up to 60%. Through collaboration, an IDS can benefit from other IDSs
expertise by consulting them about suspicious behavior. The feedback received can be then
used to decide whether to rise an alarm or not.

The main limitation of existing cloud-based cooperative IDS (e.g. [63] [64] [65] [66] [128]
[129]) is that they work under the assumption that all IDSs are trustable, which lets their
collaboration systems vulnerable to untrusted (malicious or not) insiders.

To address the aforementioned problems, we propose a trust-based framework for cooperative
IDS in a multi-cloud environment. The framework can be summarized as follows. We enable
an IDS to evaluate other IDSs’ trustworthiness. This is done by considering its personal
experience using bayesian inference. After obtaining IDSs’ trust values, a coalition formation
algorithm is used, that is based on the coalitional game theory [130]. The algorithm enables
IDSs to leave or join a given coalition in such a way that enhances its chance to work with
trusted IDSs. Thereafter, we propose a feedback aggregation algorithm, that is based on
the Dempster-Shafer Theory (DST) [16], to enable an IDS inside a coalition to aggregate
feedbacks from different IDSs about suspicious intruders, which helps make the optimal
decision in terms of detection accuracy.

Unlike similar proposals (e.g. [67]), we adopt a distributed approach in which each IDS
autonomously makes its own decisions. This, in turn, avoids the difficulty of finding a third
party that is trusted by all the IDSs. Also, it reduces the instability inside the coalition due
to a single point of failure. In summary, our work consists of the following contributions :

— Modeling and proposing a framework that enables cloud-based IDSs to distributively
form trustworthy IDS communities. More specifically, we present a systematic ap-
proach that considers the trustworthiness of IDSs through creating cooperative IDS.

— Proposing a new trust evaluation approach, based on Bayesian inference, that enables
a cloud-based IDS to evaluate another IDS’s trustworthiness based on its personal

61

experiences.
— Devising an algorithm, based on cooperative game theory, that allows a set of cloud-

based IDSs to cooperatively set up their coalition in such a way to increase their
individual detection accuracy in the presence of untrusted IDSs. The proposed algo-
rithm converges to a Nash-stable situation ; that is, no IDS has an incentive to leave
its current coalition to move to another coalition.

The rest of this paper is organized as follows. In Section 5.2, we discuss the related work. We
present the trust-based cooperative intrusion detection system in Section 5.3. In Section 5.4,
we present our empirical results to show the effectiveness of the proposed approach. Finally,
Section 5.5 concludes the paper.

5.2 Related Work

Cloud-based cooperative IDSs have been proposed in many works in the past. For example, Lo
et al. [62] propose a cooperative detection approach within the cloud computing environment.
Alerts are exchanged between the cloud environment nodes (i.e., hosts) whenever an attack
gets detected. They use a rule-based technique to detect TCP SYN attacks by fetching the
threshold for rule patterns through the initial rule establishment phase. The main advantage
of this approach is that it is able to distribute the detection overhead between the cloud
nodes. Recently, Teng et al. [61] proposed an approach that combines two detectors : a
feature detector and a statistical detector. The feature detector uses SNORT to separate
events based on network protocols (e.g., TCP). The statistical detector cooperates with the
feature detector by using data packets from it to determine whether an event is an attack
or not. If the rate of packets obtained exceeds the predefine threshold, then this case will be
considered as an attack.

Man and Huh [63] and Singh et al. [64] proposed a cooperative IDS between cloud compu-
ting regions. Their method allows exchanging alerts from multiple elementary detectors. In
addition, they enable the exchange of knowledge between interconnected clouds. Ghribi [65]
proposed a middleware IDS. The approach enables a cooperation between cloud IDS layers :
Hybervisor-based IDS, Network-based IDS and VM-based IDS. If an attack is detected in a
layer, the attack cannot be executed in the other layers. Chiba et al. [66] introduced a co-
operative network-based cooperative intrusion detection system to identify network attacks
in the cloud environment. This can be done by monitoring network traffic while maintaining
performance and service quality.

The main limitation of the above mentioned approaches is that they work in the assumption

62

that all IDSs are trustable, which makes their collaboration systems vulnerable to malicious
insiders. The aim of this paper is to present a systematic approach to build a cloud-based
cooperative IDS that adopts trust assessment mechanisms and supports trustworthy aggrega-
tion decisions. The proposed approach should work in the presence of untrusted cloud-based
IDSs .

In a multi-cloud environment, Dermott et al. [67] proposed a cooperative intrusion detection
in federated cloud environments. They use the Dempster-Shafer theory of evidence to collect
the beliefs provided by the watching entities. The collected beliefs are used to make the final
decision regarding a possible attack. The main limitation of this approach is that it is based
on a centralized architecture, whereby a trusted third-party called broker is responsible for
collecting feedback and managing intrusion detection.

In a non-cloud environment, a cooperative IDS has also been recently proposed in [68] [69]
[5] [6] [7] [8] [9] [10]. However, these works also have the limitation of the above mentioned
approaches, since they rely on the assumption that all IDSs are trustable, which makes their
collaboration system vulnerable to malicious insiders.

A trust-based cooperative IDS has been proposed in a non-cloud environment. For example,
Fung and Zhu [11] present a trust-based collaborative decision framework. Through coope-
ration, a local intrusion detection system (IDS) can detect new attacks that may be known
to other IDSs, which may be from different security vendors. They study how to utilize the
diagnosis from different IDSs to perform intrusion detection. They present a system architec-
ture of a collaborative IDS in which trustworthy feedback aggregation is a key component.
Similarly, Zhu et al. [70] [71] proposed an incentive-based communication protocol, which
provides IDS nodes incentives to send feedbacks to their peers, and thus to prevent malicious
behaviors. The main limitation of the existing trust-based cooperative IDS is that it considers
a consultation request to be sent to many IDSs in order to get a feedback. This in turn causes
extra overhead, through consulting needlessly some IDSs (i.e., untrusted IDSs). This is unlike
our approach, where we use a coalitional game, in order to construct a set of trusted IDSs
and thus minimise the number of consultation requests while guaranteeing higher detection
accuracy.

In general, for a multi-cloud environment, a decentralized framework that considers trust-
worthiness of IDSs during the cooperation had yet to be addressed. Thus, in this paper, we
present a trust-based cooperative IDS in a multi cloud environment. This in turn, enhances
the detection accuracy compared to the existing cooperative and non-cooperative IDSs.

63

5.3 The Proposed Trust-based Cooperative IDS

In this section, we present a trust-based cooperative IDS in a multi-cloud environment.
The section is divided into the following subsections : trust evaluation, trust-based coalition
formation algorithm and feedback aggregation (Fig. 5.1).

Figure 5.1 Proposed Methodology

5.3.1 Trust Evaluation

A cloud-based IDS can evaluate the trust value of another IDS based on its personal expe-
rience with that IDS. We adopt a Bayesian inference approach to compute the trust value
of an IDS [14]. The Bayesian inference was chosen because it is well-founded to derive trust
values [131]. When the cloud-based IDS consults another IDS regarding a suspicious intruder,
the received feedback and the revealed result (i.e., attack or not) are used to update the trust
value of the consulted IDS. The trust value can be promoted if the IDS successfully diagnosed
the consultation request about a suspicious intruder and it can be demoted otherwise. The
trust value here represents and shows the accuracy of the IDS diagnosing suspicious attacks.
An IDS i ∈ N , where N is a set of IDSs, is endowed with a belief function, which computes
the trust level of another IDS j ∈ N . The new trust value t′j is derived from the old trust
value tj as follows :

t′j = F (tj;αj, βj) (5.1)

where F is the regularized incomplete beta function [14], which is also the cumulative beta

64

distribution function of the following beta probability density function :

f(x;αj, βj) = xαj−1(1− x)βj−1

B(αj, βj)
(5.2)

B represents the complete beta function. The value of αj and βj are updated after recei-
ving the feedback from an IDS j. βj is increased when the IDS j successfully diagnoses the
consultation request. Eq. (5.4) describes the update of βj.

βj = βj × (1 + ρj) (5.3)

where ρj represents the weight of the diagnosed consultation request if it is successful and 0
if not.

Eq. (5.4) describes the update of αj.

αj = αj × (1 + γj) (5.4)

where γj denotes the weight of the diagnosed consultation request if it is unsuccessful and 0
if not.

The values of ρj and γj should be carefully set by an IDS i who is requesting feedback about
a suspicious attack from other IDSs. These values reflect the detection difficulty degree of the
suspicious intruder. The higher value of βj will increase the trust of an IDS j while a higher
value of αj will decrease it.

The initial trust value tj is obtained at the beginning during the testing period. The total
reported diagnosis data from peer IDS j is denoted by the set Mj. The initial trust value
represents the total number of consultation requests that have been successfully diagnosed
over the total number of consultation requests :

tj =
∑
k∈Mj

rj,k

|Mj|
(5.5)

Where the parameter rj,k is the revealed result of the k-th diagnosis request : rj,k =1 indicates
successful diagnosis of the k-th request. rj,k =0 indicates otherwise.

The initial value of α and β can be obtained as follows :

αj =
∑
k∈Mj

(1− rj,k) (5.6)

65

βj =
∑
k∈Mj

(rj,k) (5.7)

5.3.2 A Trust-based Coalition Formation

In this section, we model the problem of coperative IDS as a coalition formation cooperative
game with non-transferable utility [95].

5.3.2.1 Characterization

The proposed coalition formation algorithm is a hedonic coalitional game [95], [15] [132] [103],
a category of coalition formation games [130], [15], [133] in which each agent (i.e. IDS) acts
selfishly, and its preferences for a coalition depend only on the members of that coalition. A
hedonic game is used due to the fact that finding the optimal coalition structure, in coalition
formation, is NP-complete [134]. Therefore, a hedonic game, which satisfies stability features
was used. Stability indicates that none of the coalition members (i.e. IDSs) finds an incentive
to leave its current coalition and join another one.

To establish the model, we need to define a preference relation so that each IDS can order
and compare all the possible coalitions it belongs to and build preferences over them. For
any IDS i ∈ N , where N is a set of IDSs, a preference relation �i is defined as a transitive
binary relation over the set of all coalitions that IDS i can form [95]. Specifically, for any
IDS i ∈ N , and given two coalitions C1, C2, the notation C1 �i C2 means that IDS i prefers
being a member of C1 rather than C2.

In our coalition formation game, the preference function of the IDSs can be defined as follows :

C1 �i C2 ⇐⇒ fi(C1) ≥ fi(C2) (5.8)

where C1, C2 ⊆ N are two coalitions containing IDS i, and fi(.) is a preference function
defined as follows :

fi(Ck) = Ui(Ck) =
∏
j∈Ck

T ji (5.9)

66

∏
j∈Ck

T ji is denoted as the coalition trust criterion. T ji is denoted as IDS i beliefs in IDS j
∈ N .IDS i’s beliefs in Ck’s members is obtained using Bayesian inference as in Eq. (5.1).
We use the product of IDSs trust values instead of their summation in the definition of the
coalition trust criterion in order to conserve the effect of small trust values on the global
coalitions trust value. That way, the impact of a small trust value will not be mitigated by
a higher one.

5.3.2.2 The Proposed Coalition Formation Algorithm

The algorithm (Algorithm 4) that we propose is based on the hedonic shift rule [95] : let
Π = {C1, ..., Cl} represent the set of coalition partitions. That is, for k = {1, 2, . . . , l}, each
Ck ⊆ N is a disjoint coalition. Each IDS i ∈ N decides to leave its current coalition CΠ(i) to
join another one Ck ∈ Π∪φ if and only if its coalition trust criterion (i.e., Ui(Ck) = ∏

j∈Ck
T ji)

in the new coalition exceeds the one it obtains in its current coalition. Leaving and joining
decisions are considered selfish decisions. This means that they are made without considering
their effect on the other IDSs. In Algorithm 4, an IDS i evaluates all of the possible coalitions

Algorithm 4: Trust-based Coalition Formation Algorithm
Given the current coalition partition Πc = {C1, ..., Cl}, each IDS i evaluates possible
shift from its current coalition as follows :
repeat

foreach Ck ∈ Πc ∪ φ do
foreach IDS j ∈ Ck do

— calculate the trust value
of IDS j.

end
end
calculate Ui(Ck ∪ {i}) and Ui(CΠc(i))
if Ui(Ck ∪ {i}) > Ui(CΠc(i)) then

— IDS i leaves its current
coalition CΠc(i) and
joins the new coalition.

— Πc is updated :
Πc+1 =(Πc \ {CΠc(i), Ck})
∪{CΠc(i) \ {i}, Ck ∪ {i}}.

else
— IDS i remains in the

same coalition so that :
Πc+1 = Πc

end
until ε elapses;

67

it can join or form, beginning by leaving its current coalition CΠ(i) to join another already
existing coalition Ck. The algorithm computes the trust value for each IDS j ∈ Ck as in (1).
Then, the algorithm determines the coalition trust criterion Ui(CΠ(i)) of its current coalition
CΠ(i) as in (9) and compares it with the coalition trust criterion Ui(Ck) of the coalition Ck.
If the coalition trust criterion of the current coalition is greater than that of the coalition Ck,
then the IDS i leaves its current coalition to join Ck. Otherwise, IDS i remains in its current
coalition. One should note that, after a certain fixed period of time ε, the whole process is
repeated, in order to obtain the changes that may happen in the current coalition partition
Πc. These changes include changes in the IDSs trust values, the departure of existing IDSs
and the arrival of new IDSs.

The main complexity of Algorithm 5 lies in the shifting operations, i.e. the process of finding
a new coalition to join, which equals O(|Πc|), where |Πc| is the number of coalitions in the
current coalition partition.

The algorithm can be implemented in a distributed manner, given that each IDS can act
autonomously and independently from any other IDSs in the system. However, it is important
to provide appropriate actions based on [22] for :

— State recovery : the algorithm assumes that each IDS is able to retrieve the current
coalition partition Πc. Any state retrieval algorithm available in the state-of-the-art
(e.g. [135], [136]) can be used for this purpose ;

— Atomic state update : to guarantee correctness, Πc must not change while IDS i moves
from its current coalition CΠ(i) and joins another one. Distributed mutual exclusion
algorithms (e.g. [137]) can be used for this purpose.

5.3.3 Feedback Aggregation

In the previous section, we presented a trust-based coalition formation model that enables a
set of cloud-based IDSs to cooperatively set up their coalitions. The output of the coalition
formation algorithm (Algorithm 4) is a set of coalitions, where each coalition consists of
a set of IDSs that prefer to work with each other. In this section, we show how an IDS
inside a coalition can aggregate feedbacks received from other IDSs in the same coalition. For
this purpose, we use the Dempster-Shafer Theory (DST) for feedback aggregation. DST was
selected for the following main reasons : (1) unlike other aggregation models (e.g. Bayesian
aggregation model) that demand complete information of prior probabilities, DST can handle
a lack of complete information (i.e. uncertainty), and (2) it has a property to prevent collusion
attacks, which occur when several malicious IDSs collaborate to give misleading judgments.

68

In our model, the frame of discernment, which describes the status of a suspicious intruder
is Ω= {1, 0, U} denotes a set consisting of three hypotheses. 1 means that IDS j decides and
reports to IDS i that there is an intrusion, 0 means that IDS j decides and reports to IDS i
that there is no intrusion, and U shows that IDS j is uncertain whether there is an intrusion
or not.

DST combines multiple IDSs beliefs under the condition that evidences from different IDSs
are independent. For example, if IDS i wants to combine the belief of two IDSs IDS1 and
IDS2 over the same frame of discernment Ω, the combined belief of IDS1 and IDS2 is
calculated as follows [138] :

mIDS1(1)⊕mIDS2(1) = 1
K

[mIDS1(1)mIDS2(1)+

mIDS1(1)mIDS2(U) +mIDS1(U)mIDS2(1)]
(5.10)

mIDS1(0)⊕mIDS2(0) =
1
K

[mIDS1(0)mIDS2(0)

+mIDS1(0)mIDS2(U) +mIDS1(U)mIDS2(0)]

(5.11)

mIDS1(U)⊕mIDS2(U) = 1
K

[mIDS1(U)mIDS2(U)] (5.12)

where,

K = mIDS1(1) +mIDS2(1) +mIDS1(1) +mIDS2(U)

+mIDS1(U) +mIDS2(U) +mIDS1(U) +mIDS2(1)

+mIDS1(U) +mIDS2(0) +mIDS1(0) +mIDS2(0)

+mIDS1(0) +mIDS2(U)

(5.13)

Here is an example. Assume the following :
mIDS1(1) = 0.75 mIDS1(0) = 0 mIDS1(U) = 0.25
mIDS2(1) = 0.6 mIDS2(0) = 0 mIDS2(U) = 0.4

by combining the above two belief functions, we can obtain the result as follows :
belief(1) = (0.75 ∗ 0.6) + (0.75 ∗ 0.4) + (0.6 ∗ 0.25) = 0.9
belief(0) = (0 ∗ 0) + (0 ∗ 0.4) + (0 ∗ 0.25) = 0
belief(U) = (0.25 ∗ 0.4) = 0.1

69

Since belief(1) > belief(0) > belief(U), IDS i will decide that an attack exists.

5.4 Experimental Evaluation

In this section, we first explain the experimental setup used to perform our experimentation
and then study the performance of the proposed cooperative intrusion detection approach.

5.4.1 Experimental Setup

We implemented our framework in a 64-bit Windows 8 environment on a host equipped
with an Intel Core i7-4790 CPU 3.60 GHz Processor and 16 GB RAM. We used Matlab for
implementing our model.

The simulation environment uses 100 cloud-based IDSs. Each IDS is represented by two
parameters, trust value t and decision threshold τ . The trust value represents the expertise
level of the IDS, which in turn represents the ability of the IDS to catch suspicious traces
from a given observation. The threshold τ represents the sensitivity of the IDS. Lower values
of τ indicate a more sensitive IDS.

We use a Beta density function to reflect the intrusion detection capability of each IDS. A
Beta density function is given by :

f(z|α, β) = 1
B(α, β)zα−1(1− z)β−1

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx

(5.14)

α = 1 + t(1− d)
d(1− t)r

β = 1 + t(1− d)
d(1− t)(1− r)

(5.15)

where z ∈ [0, 1] is the assessment result from the IDS about the likelihood of intrusion, and
f (z|α,β) is the distribution of assessment z from an IDS with trust level t to an intrusion
with difficulty level d ∈ [0, 1]. The trust level in the distribution can represent the expertise
level of the IDS. Higher values of d represent these attacks that are difficult to detect. Higher
values of t indicate a higher probability of generating correct intrusion assessments. r ∈ {0,
1} is the expected result of detection. r = 1 means that there is an intrusion and r = 0 means
otherwise.

In order to evaluate the ability of the proposed model in the presence of an untrusted en-

70

vironment, We made the percentage of untrusted IDSs 70% (trust level t ≤ 0.2). We argue,
based on the recent literature [139], that the percentage of untrusted nodes tends to form the
majority compared to that of trusted nodes. We applied the proposed coalition formation
algorithm (Algorithm 4) on the considered IDSs. We compared the proposed aggregation
approach with other known aggregation approaches in the state-of-the-art : Majority aggre-
gation model [62] and the weighted average aggregation model [96]. In the majority model,
the IDS collects feedback from IDSs about suspicious behaviour and the decision is made
(i.e., attack or not) according to the majority. However, in the weighted average aggrega-
tion model, weights W are assigned to feedbacks from different IDSs to distinguish their
detection capability. Highly trusted IDSs are assigned with larger weights compared to low
trusted IDSs. The decision is made according to the following equation. If (Σn

k=1 Wkyk) /
(Σn

k=1 Wk) ≥ τ , the decision is the existence of an attack. Otherwise, the decision is that
there is no attack, where Wk is the weight of the k-th IDS and yk is the feedback from the
k-th IDS.

5.4.2 Experimental Results

In Fig. 5.2, we observe that the proposed aggregation model (i.e., Dempster-Shafer aggrega-
tion approach) shows significant improvement for the false negative rate, compared to the
weighted and majority aggregation model at different threshold values τ . Similarly, in Fig.
5.3, our model yields significant improvement for the false positive rate, compared to the
other two models. This is justified by the fact that Dempster-Shafer disregards the untrust-
worthy feedbacks upon building the final decisions. Moreover, Dempster-Shafer gives a weight
for each feedback according to the trustworthiness level of the IDS giving this feedback.

In Fig. 5.4 and Fig. 5.5, we also study the effect of the trust value (i.e., expertise level)
on the accuracy of the detection. To this end, we run our Algorithm (Algorithm 4) many
times. Each time, we let IDSs have different values of t. The study is conducted at different
threshold values τ . Fig. 5.4 shows that the false negative decreases when the trustworthiness
level of an IDS increases. Similarly, Fig. 5.5 shows that the false positive decreases when the
trustworthiness level of an IDS increases. This is justified by the fact that whenever an IDS
becomes more trusted, it will be able to give a right feedback about suspicious attacks.

Fig. 5.6 gives a comparison between the proposed trust-based coalitional game approach and
the trust-based grand coalition approach. The latter considers all existing IDSs during the
cooperation. In other words, the coalition is done among all IDSs. Thus, the feedback is
received from all IDSs and the final decisions are made using the same proposed aggregation
model (i.e., Dempster-Shafer). This is unlike our approach where we first run a coalition

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 N

eg
at

iv
e

R
at

e

Majority
Weighted
Our model

Figure 5.2 Comparison of three aggregation models (False Negative Rate).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 P

os
iti

ve
 R

at
e

Majority
Weighted
Our model

Figure 5.3 Comparison of three aggregation models (False Positive Rate).

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Value (Expertise)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
al

se
 N

eg
at

iv
e

R
at

e

Threshold = 0.2
Threshold = 0.5
Threshold = 0.8

Figure 5.4 False Negative vs. Trust Value t .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Value (Expertise)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
al

se
 P

os
iti

ve
 R

at
e

Threshold = 0.2
Threshold = 0.5
Threshold = 0.8

Figure 5.5 False Positive vs. Trust Value t.

73

formation Algorithm (Algorithm 4) and minimise the number of IDSs inside the coalition.
The figure shows the superiority of the proposed model for both the false positive and false
negative rates. This is due to the fact that the proposed coalition approach minimises the
number of untrusted IDSs inside each generated coalition. Thus, the received feedback is more
likely to reflect the real status of any suspicious behaviour, whether it is a real attack or not.
However, for the grand coalition approach, the feedback is received from every existing IDS.
Therefore, there will be a chance of receiving incorrect feedback from untrusted IDSs. Fig. 5.6
also studies the cost associated with using each approach. The cost represents the time needed
to make a judgment about a suspicious attack. The result is projected in a range between
0 and 1. Our model yields a minimum overhead compared to the grand coalition approach.
The reason is that our model minimises unnecessary consultation requests by consulting only
those trusted IDSs in the final coalition. This is unlike the grand coalition approach where a
consultation request is sent to all existing IDSs.

Cost False Negative False Positive
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
at

e|
C

os
t

Trust-based Coalitional Game (Our model)
Trust-based Grand Coalition

Figure 5.6 Comparison of two coalition formation models.

5.5 Conclusion

This paper investigates a novel trust-based cooperative IDS in a multi-cloud environment.
To this end, we propose a cooperative game-theoretic framework. The framework enables an
IDS to evaluate the trust value of other IDSs using bayesian inference. We devise a coalition
formation algorithm, that is based on the coalitional game theory. The algorithm enables
IDSs to leave or join a given coalition in such a way that enhances their ability to work with

74

trusted IDSs. The proposed algorithm converges to a Nash-stable situation ; that is, no IDS
has an incentive to leave its current coalition to move to another coalition. Furthermore, we
propose a feedback aggregation algorithm, that is based on Dempster-Shafer Theory (DST),
to enable an IDS inside a coalition to aggregate feedbacks about suspicious attacks in order
to make the optimal decision in terms of detection accuracy. Numerical results show the
effectiveness of the proposed approach in terms of false positive and false negative rates, and
cost.

75

CHAPTER 6 ARTICLE 3 : ON TRUSTWORTHY FEDERATED CLOUDS :
A COALITIONAL GAME APPROACH

Adel Abusitta, Martine Bellaïche and Michel Dagenais
Computer Networks, vol. 145, pp. 52-63, 2018.

Abstract

The demands for cloud-based applications are expected to increase in such a way that cur-
rent Cloud Providers’ (CPs) resources may become insufficient. This promotes the need to
outsource some of the requested Virtual Machines (VMs) to other CPs. A Cloud Federation
(CF) provides an effective platform that enables CPs to upgrade their resource scaling strate-
gies. Several CF approaches have been proposed, but they suffer from the hazard of working
with untrusted (malicious or not) CPs, resulting in performance degradation. To address this
problem, we introduce a trust-based framework for CF formation. Our model enables a CP to
evaluate other CPs’ trustworthiness by considering two approaches : objective and subjective
trust evaluations. In the former, Bayesian inference is used to compute trust values based on
previous interactions. In the latter, the Dempster-Shafer Theory (DST) integrated with the
Bayasian inference is used to compute trust values in the absence of previous interactions.
Thereafter, a novel decentralized algorithm is devised, based on coalitional game theory, that
allows heterogenous CPs to establish their coalitions in such a way that maximises the trust
of the formed federations. Experimental results show that our proposed algorithm enhances
throughput, response time and availability of federated CPs compared to the QoS-based and
Grand formation models.

6.1 Introduction

Cloud Computing enables Cloud Providers (CPs) to rent out space on their infrastructures,
platforms and services to many consumers. This becomes possible thanks to virtualization
that enables the easy migration of applications and services from one node to another. Many
companies, organizations and governments are expected to transfer, if they have not already,
all or parts of their IT solutions to the cloud [99] [140]. This transfer is profitable from an
economic point of view since it allows them to streamline technology infrastructure expenses
and capital costs.

76

One of the main issues that must be faced by CPs, due to the huge demands on their
services, is the problem of insufficient resources to fulfill the requested VMs. This promotes
the need for CPs to delegate these requests to other CPs in order to upgrade their resource
scaling capabilities. A Cloud Federation (CF) provides an effective platform to address the
aforementioned challenges [20]. The purpose of the CF consists of grouping CPs to fulfill the
dynamic resource requests of users/applications to support data-intensive workloads [21].
Thus, through the use of CFs, CPs can benefit from each other’s resources to run the VMs
[22] [20] [21], in order to improve individual performance and enhance users’ satisfaction.

Existing works in CF (e.g. [74] [21] [75] [76] [83]) significantly focus on forming the federation
among CPs by considering those that provide high availability, profits and QoS. Although
the orientation of these approaches is promising and may contribute to enhance CPs’ per-
formance, these approaches often suffer from the hazard of choosing unreliable CPs in the
federation, resulting in performance degradation and loss of CPs’ reputation due to Service
Level Agreement (SLA) violations between the users and the federation.

Motivation. The demands for data-intensive applications and big data solutions are expected
to increase in such a way that makes current Cloud Providers resources become insufficient.
This promotes the need to have a platform and/or infrastructure that enable automatic
scaling and reliability of recent services/applications. A Cloud Federation (CF) provides
an effective platform for that by enabling CPs to upgrade their resource scaling strategies.
Although several federation approaches have been proposed, they suffer from the hazard of
working with untrusted providers, which results in performance degradation. Consider a CP
that does not have sufficient resources to fulfill the requested VMs, and needs to outsource
some of the requested VMs to other providers within the federation. If the trust issue is not
considered during the federation formation, there will be several reasons that make delegated
CPs unable to achieve requests as expected. These reasons include the following : inadequate
maintenance causing frequent breakdowns, poor security causing compromised nodes or nodes
slowed down by a DDoS (Distributed Denial-of-Service Attack) and lack of capacity for the
load accepted. Also, the delegated CP might be selfish and/or malicious and refuse to share
enough resources. Worse, it may even drop the requests. Such unreliable delegated CPs result
in performance degradation, decreased revenues and poor users satisfaction as well as Service
Level Agreement (SLA) violations.

Indeed, ‘’trust” has different meanings in various disciplines (e.g. psychology, politics, eco-
nomy). In this paper, trust is interpreted as the degree of the belief that a delegated CP in
a given federation will achieve its tasks as it should [141] [90].

To address the aforementioned problems, we propose a flexible trust-based framework for

77

federation formation. Our framework can be summarized as follows. We let CPs evaluate
a trust value for each other by adopting two approaches : objective and subjective trust
evaluations. In the former, the trust value is computed from direct observation. The CP’s
trust value is evaluated based on its previous interactions (i.e. experience) using Bayesian
inference. In the latter, the Dempster-Shafer Theory (DST) integrated with the Bayesian
approach is used when there is no previous interactions among CPs. Thereafter, we propose
a federation formation algorithm that is based on the coalitional game theory [130]. The
algorithm enables CPs to leave or join a given federation in such a way that enhances their
trust among CPs.

Unlike similar works (e.g. [90]), we adopt a distributed mechanism in which each CP auto-
nomously makes its own decisions. This, in turn, avoids the difficulty of finding a trusted
third party. Also, it reduces instability inside the federation due to single point of failure. In
summary, our work consists of the following contributions :

— Modeling and proposing a decentralized framework that considers the trustworthiness
of heterogeneous CPs during the formation of cloud computing federations. More
specifically, we present a systematic approach that associates the trustworthiness of
CPs through the formation procedure.

— Proposing a new trust evaluation approach, based on Bayesian inference, that enables
a CP to evaluate another CP’s trustworthiness based on their previous interactions
and experiences.

— Proposing a trust aggregation technique, based on the Dempster-Shafer Theory (DST)
[16] integrated with the Bayesian approach , that enables a CP to derive a trust value
in cases where there were no previous interactions and experiences.

— Devising a federation formation algorithm, based on a coalitional game theory, that
allows a set of heterogenous CPs to build their federations in order to maximise their
individual trust value. The proposed algorithm converges to a Nash-stable situation ;
that is, no CP has a motivation to go out from its current federation and move to
another federation.

The remainder of the paper is organized as follows. In Section 6.2, we discuss the related work.
We present the trust model and assumptions in Section 6.3. In Section 6.4, we present the
proposed federation formation framework. In Section 6.5, we present our empirical results.
Finally, Section 6.6 concludes the paper.

78

6.2 Related Work

The concept of federations among CPs was first introduced by Rochwerger et al. [20]. Al-
though their work shows the main materials needed to achieve federation, they did not show
the architectural elements that compose multi-cloud computing environments. Buyya et al.
[74] introduce the challenges and architectural elements for federations. Similarly, Celesti et
al. [21] and Fazio et al. [75] present a cloud architecture that allows CPs to build a federation
with each other. They consider two kinds of CPs : home and foreign. The home CPs are
those that are unable to fulfill the consumers’ tasks and therefore forward these jobs to the
foreign CPs. Similarly, Goiri et al. [76] present a decision-based model that helps a CP decide
on forming federations with public CPs in order to maximize their individual profit.

Toosi et al. [77] present multi-resource provisioning policies, that assist the CPs to increase
their resource utilization and profit. Their model can terminate VMs whenever the profit
of shutting them down exceeds the profit of running such VMs. Also, Van den Bossche
et al. [78] present a binary integer program model that reduces the cost of outsourcing,
using a mix of public and private providers. Chaisiri et al. [79] propose an optimal VM
provisioning algorithm using stochastic programming that considers multi-cloud providers
with the objective of maximizing their profit. Similarly, Bruneo [80] proposes a performance
evaluation approach based on stochastic reward nets for federated CP. The model predicts
and quantifies the cost-benefit of a strategy portfolio and the corresponding QoS experienced
by clients.

A business-oriented cloud federation model for real-time applications is proposed by Xiaoyu
et al. [81]. The model allows multiple heterogeneous CPs to cooperate and provide scalable
infrastructure. The advantage is the business layer added to support the federations. The
layer can trigger on-demand resource provisioning across multiple CPs and therefore helps
maximize the clients satisfaction and business benefits [81].

Salama & Shawish [82] present a QoS-based approach for cloud federation. They use QoS
metrics such as throughput and response time during the federation formation process. By
considering QoS metrics, the federation helps eliminate Service Level Agreement (SLA) vio-
lations and maximise QoS targets. In [83], Mashayekhy et al. propose a hedonic coalitional
game to achieve cooperation among IaaS services. Based on the federation coalition game,
they design a cloud federation formation mechanism that allows CPs to form federations that
maximize their profits.

A game theoretic approach for cloud federation is also proposed by Hassan et al. [84]. The
study enables the dynamic resource allocation in a cloud federation. They define a price

79

function for a CP that gives incentives to other CPs to contribute their resources in order to
form a federation. Similarly, Mihailescu & Teo [85] present a strategy-proof dynamic pricing
scheme for cloud federations. In [86], Li et al. propose profit maximization strategies in
cloud federations. They present a truthful auction-based mechanism for selling VMs within
a federation. This enables cloud federation members to sell or buy resources in a way that
maximises their profit. Also, Samaan [87] proposes an economic model for sharing resources
among CPs in the federation.

Few studies have addressed trust issues in cloud federations. For example, Ngo et al. [88]
present an approach for attribute-based trust establishment to be used in the multi-cloud
environment. They propose an approach for trust evaluation and delegation. Messina et al.
[89] suggest a trust model based on the reputation. The model allows users to properly select
a suitable CP on the basis of reliability and reputation.

Hassan et al. [90] propose a trust-based hedonic game to form coalition among CPs. They
enable CPs to join a coalition based on maximization of profits and minimization of penalty
costs. The main limitation of their approach is that it is based on a centralized architecture
and a trusted third-party is required in order to organize the coalition. In [91], Wahab et
al. designed a trust-based hedonic game to the model community formation problem among
multi-provider services. The main advantages of this approach lie in the (1) trust-based ag-
gregation technique that can overcome collusion attacks in the presence of dishonest parties
[91], (2) distributed trust-based coalition formation model that does not need a centralized
entity, and (3) bootstrapping mechanism that assigns initial trust values for newly deployed
services. The main limitations of this approach are that it considers functionally-similar ser-
vices to create coalitions. Moreover, in this approach, untrusted services are considered as
those that show some malicious behavior, whereas in some cases some untrusted services
might be non-malicious (e.g., lack of experience). Besides, the computation of the trust va-
lues in this approach are limited to recommendations collected from different parties without
considering self-experience. The trust-based cloud federation approach proposed in this paper
follows the same methodology proposed in the aforementioned approach [91], while addres-
sing the above-mentioned limitations by (1) enabling the formation of federations under a
heterogeneous environment, (2) generalizing the concept untrusted agents (i.e, CPs) to cover
both malicious and non-malicious CPs, and (3) calculating the trust values of CPs based on
self-experience, while using a Bayesian method for this purpose.

Overall, for a multi-cloud environment, a decentralized framework that considers trustworthi-
ness of heterogeneous CPs during the forming of federations has yet to be addressed. Thus,
in this paper, we present a systematic schema that considers the trustworthiness of CPs

80

through the cloud federation formation process. This enhances CP’s performance, revenues
and clients’ satisfaction.

6.3 Trust Model and Assumptions

In this section, the definition and properties of trust in the context of cloud federations
are explained. Based on the definition, the trust model used to formulate trust among CPs
in the federation is described. Furthermore, our methodology is also introduced. Table 6.1
summarizes the different notations that are used in this section.

Table 6.1 Notations

Symbol Significance
F Federation
Fk Federation k
N Set of CPs
N Number of CPs
Π Set of federation partitions
T ji The trust value of CP j with respect to the CP i.

Ui(Fk) CP i’s federation trust criterion of a given federation k

6.3.1 Definition of Trust

Trust can take on different meanings in different disciplines (e.g. psychology, politics, eco-
nomy). In this paper, we define trust as a degree of belief that a CP, in a given federation, will
achieve its tasks as expected. Based on this definition, untrusted CP are not necessary ma-
licious. A malicious CP may accept to share other CPs with the intention of dropping other
CPs’ jobs and refuse to share its resources within the federation. Moreover, the CP may
not be malicious yet still deficient. For example, inadequate maintenance causing frequent
breakdowns, poor security causing compromised nodes or nodes slowed down by DDoS and
lack of capacity for the load accepted. All of these scenarios may affect achieving tasks as
expected.

6.3.2 Trust Model

The aforementioned definition is used to establish our trust model. We evaluate trust in
the proposed scheme using a real number T with a continuous value between 0 and 1. In
our model, trust is made up of two components : direct and indirect observations. In direct
observation trust, an observer estimates the trust of a CP based on its own experience. Thus,

81

the trust value consists of the anticipation of a objective probability used by a CP to decide
whether another CP is reliable or not. A trust value from direct observation is computed
using Bayesian inference. This process is explained in detail in Section 6.4.1.

The use of direct observations requires that a trustor has had previous interactions with a CP
in order to give its judgement and derive a trust value. If we only consider direct observations,
evaluating the trust value of a new CP (i.e. a cloud without any previous interactions)
becomes impossible. We tackle this problem by considering another way of obtaining trust.
This is done by collecting judgments on this CP from other CPs that previously interacted
with that CP. Therefore, the trust value becomes the anticipation of a subjective probability
used by a CP to decide whether another CP is reliable or not. The Dempster-Shafer Theory
(DST) [16] [138] is an adequate candidate to support this situation, in which evidences are
collected from CPs that may be unreliable. A detailed explanation of this process is included
in Section 6.4.2.

Based on the obtained trust values, a trust-based federation formation algorithm is presented.
The algorithm is based on the coalitional game theory [130], [15], [133], where each coalition
represents a given federation F .

Given the set N = {1, 2, . . .,N } of CPs, a federation F ⊆ N represents an agreement among
the CPs in F to delegate tasks among each other. Let Π = {F1, ..., Fl} represent the set of
federation partitions. That is, for k = {1, 2, . . . , l}, each Fk ⊆ N is a disjoint federation.
The algorithm enables each CP i ∈ N to decide whether to join a given federation Fk ∈ Π
or not based on the federation trust criterion calculated by CP i. Each CP i determines the
federation trust criterion Ui(Fk) of any given federation Fk ∈ Π by calculating the product
of the trust values of all the CPs in that federation :

Ui(Fk) =
∏
j∈Fk

T ji (6.1)

where T ji denotes the trust value of CP j with respect to the CP i.

The use of the product in the definition of the federation trust criterion instead of summation,
is due to the fact that the former enables a very small CP trust value to have a significant
impact on the result. Therefore, its impact will not be mitigated by a higher value as in the
case of summation. A detailed explanation is included in Section 6.4.3.

Based on the above discussion, the methodology of the proposed scheme is shown in Figure
6.1. In Figure 6.2, we present algorithmic steps of the proposed methodology.

82

Trust Evaluation

Objective Trust Evaluation

Subjective Trust Evaluation

Trust-based Federation Algorithm

Figure 6.1 Proposed Methodology

Figure 6.2 Algorithmic steps of the proposed methodology

83

6.4 The Proposed Trust-based Federation Formation Framework

In this section, a trust-based federation formation framework is presented. The section is
divided into the following subsections : objective trust evaluation, subjective trust evaluation
and trust-based federation formation algorithm.

6.4.1 Objective Trust Evaluation : Direct Observation

In this section, the proposed objective trust evaluation approach is introduced. In this model,
each CP calculates the trust value of another CP based on its experience with that provider
(i.e. direct observation).

6.4.1.1 Trust computation

Based on what we presented earlier, a CP can directly evaluate the trust value of another
CP based on their experience with that CP. We adopt a Bayesian inference approach to
compute the trust value of a CP [14]. The Bayesian inference was chosen because it is strong
approach to derive objective trust values [131]. The trust value can be enhanced if the cloud
successfully performs a job as expected and it can be reduced otherwise. A CP i ∈ N , uses
a belief function, which computes the trust level of another CP j ∈ N , that previously
collaborated with CP i. Every trust value t′j is derived from the previous or initial trust value
tj (we discuss later how to obtain the initial trust value) as follows :

t′j = F (tj;αj, βj) (6.2)

The above equation is the cumulative beta distribution function of the Beta Probability
Density (BPD) function, which is defined as follows :

f(x;αj, βj) = xαj−1(1− x)βj−1

Beta(αj, βj)
(6.3)

The value of αj and βj are modified after the performing of each job by the CP j. βj is
increased when a CP j performs a given job as desired. Eq. (6.4) describes the modification
of βj.

βj = βj × (1 + µj) (6.4)

where µj represents the weight of doing the job by CP j if it is done as desired and 0 if not.

84

Eq. (6.5) describes the modification of αj.

αj = αj × (1 + νj) (6.5)

where νj denotes the weight of doing the job by the cloud if it is done as desired and 0 if not.

The amounts of µj and νj should be carefully set by a CP i who is allocating the jobs. These
values reflect the importance of the jobs assigned to the delegated CP. Note that a large
amount of βj will enhance the trust of a CP j while a small amount of αj will reduce it.

The initial trust value tj is calculated at the beginning through the testing period. The total
number of reported jobs requests from CP j is denoted by the setMj. The initial trust value
represents the total number of successfully performed jobs over the total number of jobs :

tj =
∑
k∈Mj

rj,k

|Mj|
(6.6)

Where the parameter rj,k is the revealed result of the k-th job request : rj,k =1 indicates suc-
cessful accomplishment of the k-th request. rj,k = 0 indicates non-successful accomplishment
of the k-th request.

The initial value of α and β can be obtained as follows :

αj =
∑
k∈Mj

(1− rj,k) (6.7)

βj =
∑
k∈Mj

(rj,k) (6.8)

6.4.2 Subjective Trust Evaluation : Indirect Observation

Computing the objective trust value of a CP requires some interactions to be established
between CPs. In other words, an experience with a certain CP is required in order to evaluate
its performance in achieving jobs. In some situations, evaluating the trust value of a CP
using that method cannot be achieved without interactions between CPs. To address this
problem, an DST-based aggregation technique is used [16]. DST is a mathematical theory that
aggregates evidences from independent sources to come up with a degree of belief regarding
a certain hypothesis [16]. DST was selected for the following main reasons : (1) unlike other
aggregation approaches (e.g. Bayesian approach) that demand complete knowledge of prior
probabilities, DST can handle a lack of complete knowledge (i.e. uncertainty), and (2) it has a

85

property to prevent collusion attacks, which occur when several malicious CPs collaborate to
give misleading judgments [91]. This attack can be performed either to increase the trust value
of some CPs or to decrease the trust value of other CPs. It is worth noting that a trust-based
hedonic game that employs DST for feedback aggregation was first proposed in [91]. Our
work uses a similar methodology for building trust. However, the main differences between
our work and the aforementioned work is that our model is able to deal with both untrusted
non-malicious CPs and malicious CPs. In addition, the Bayesian approach is integrated with
DST in order to compute the credibility score (described bellow). It is worth also noting that
DST is regarded as a useful approach in uncertain reasoning and is widely used in trust-based
distributed multi-agent systems and applications (e.g., [142] [91] [143] [144] [141]).

The proposed aggregation function is defined as follows. Let Ω= {T, T̄ , U} denotes a set
consisting of three hypotheses. T indicates that a certain CP j is trustworthy, T̄ depicts
that CP j is untrustworthy and U shows that j is either trustworthy or untrustworthy. A
CP a ∈ N evaluates the trust value of a CP b ∈ N through combining the belief of CPs
who have direct interactions with b. Each neighbor gives evidences from its own observations
(i.e., direct observations) by assigning its beliefs over Ω. Each hypothesis is assigned a basic
probability value (bpv) between 0 and 1, which is equal to the credibility score believed by
the CP giving the judgement. We follow the work in [143] and allow bpv to be obtained
from direct observations. For example, Assume that CP c believes and reports that CP b is
trustworthy, then the bpv for c would be : mc(T) = Ta,c, mc(T̄) = 0 and mc(U) = 1-Ta,c,
where Ta,c is the trust value of a CP c ∈ N , which is obtained from direct observations of
CP a to CP c as illustrated in Section 6.4.1. On the other hand, if CP c claims that CP b

is untrustworthy, then the bpv for CP c would be : mc(T) = 0,mc(T̄) = Ta,c, and mc(U) =
1-Ta,c.

The bpv for CP c can be used to define the belief function of the three hypotheses Ω=
{T, T̄ , U} [16] : belief(T) = mc(T), belief(T̄) = mc(T̄), and belief(U) = mc(T) + mc(T̄) +
mc(U). Thus, CP a can decide whether CP b is trustworthy or not based on the bpv of CP
c, who has reported its judgement to CP a. To clarify these points, we will present detailed
example in Section 6.4.2.1. To aggregate the different judgements from different CPs, a belief
function is used. The belief function represents the total bpvs supporting a given hypothesis
that belongs to the set Ω= {T, T̄ , U}. For example, if we want to aggregate the belief or
judgement of two CPs : c1 and c2 on c3, the combined belief of c1 and c2 is calculated over
the same frame of discernment Ω= {T, T̄ , U} as follows [143] :

86

mc1(T)⊕mc2(T) = 1
K

[mc1(T)mc2(T)+

mc1(T)mc2(U) +mc1(U)mc2(T)]
(6.9)

mc1(T̄)⊕mc2(T̄) =
1
K

[mc1(T̄)mc2(T̄)

+mc1(T̄)mc2(U) +mc1(U)mc2(T̄)]

(6.10)

mc1(U)⊕mc2(U) = 1
K

[mc1(U)mc2(U)] (6.11)

where,

K = mc1(T) +mc2(T) +mc1(T) +mc2(U)

+mc1(U) +mc2(U) +mc1(U) +mc2(T)

+mc1(U) +mc2(T̄) +mc1(T̄) +mc2(T̄)

+mc1(T̄) +mc2(U)

(6.12)

Here is an example. Assume the following :

mc1(T) = 0.75 mc1(T̄) = 0 mc1(U) = 0.25

mc2(T) = 0.6 mc2(T̄) = 0 mc2(U) = 0.4

by combining the above belief functions, we can obtain the result as follows :

belief(T) = (0.75 *0.6)+(0.75 * 0.4)+(0.6 * 0.25) = 0.9

belief(T̄) = (0 * 0)+(0 * 0.4)+(0 * 0.25) = 0

belief(U) = (0.25 * 0.4) = 0.1

This means that the trust belief(T) of c3, which is obtained from indirect observation would
be 0.9.

87

6.4.2.1 Illustrative Example

This section presents an example that shows how DST allows CP c1 to decide whether a
given CP is trustworthy or not. This example is based on all of the information shown on
Tables 6.2 and 6.3, which indicate the CPs’ judgments on CP c2 and the credibility scores
(bpv) of each cloud believed by c1, respectively.

Table 6.2 Clouds judgments on c2

CLOUD Cloud’s Judgement on c2
c3 Untrusted
c4 Untrusted
c5 Trusted

Table 6.3 Credibility scores of clouds believed by c1

CLOUD Credibility (bpv)
c3 0.35
c4 0.24
c5 0.96

According to the proposed model, c1 decides, for each given CP, whether it is trustworthy or
not. For this purpose, c1 aggregates all CPs judgements (or beliefs) on the given CP c2 as
follows :

First, let’s combine the beliefs of the CPs c3 and c4. We find the bpv for c3 and c4 as follows :

mc3(T) = 0, mc3(T̄)=0.35, mc3(U) = 1-0.35 = 0.65

mc4(T) = 0, mc4(T̄)=0.24, mc4(U) = 1-0.24 = 0.76

Aggregate c3 and c4 judgements :

— mc3(T)⊕mc4(T) = 1
k
[mc3(T)mc4(T) +mc3(T)mc4(U) +mc3(U)mc4(T)]

Where,
K =mc3(T)mc4(T) + mc3(T)mc4(U) +
mc3(U)mc4(T) + mc3(T̄)mc4(T̄) + mc3(T̄)mc4(U) +
mc3(U)mc4(T̄)+mc3(U)mc4(U)

88

K =0 * 0 + 0 * 0.76 + 0.65 * 0 + 0.35 * 0.24 +
0.35*0.76+ 0.76*0.24+0.65*0.76 = 1.02
mc3(T)⊕mc4(T) = 0

1.02=0

— mc3(T̄)⊕mc4(T̄) = 1
K

[mc3(T̄)mc4(T̄) +
mc3(T̄)mc4(U) +mc3(U)mc4(T̄)]
K= 1.02
mc3(T̄)⊕mc4(T̄) = 0.49

0.84 = 0.51

— mc3(U)⊕mc4(U) = 1
K

[mc3(U)⊕mc4(U)]
K = 1.02

mc3(U) ⊕ mc4(U) = (0.65∗0.76)
0.84 = 0.59

Then, we combine the aggregated beliefs of c3 and c4’s with the beliefs of c5 as follows :

mc34(T) = 0, mc34(T̄) = 0.51, mc34(U)= 0.59

mc5(T) = 0.96, mc5(T̄)=0, mc5(U) =0.05

— K = mc34(T)mc5(T) + mc34(T)mc5(U) +
mc34(U)mc5(T) + mc34(T)mc5(T̄) +
mc34(T̄)mc5(U)+
mc34(U)mc5(T̄) + mc34(U)mc5(U)

= 0∗0.96+0∗0.05+0.59∗0.96+0.51∗0+
0.51∗0.05+0.59∗0.05+0.59∗0.05 = 0.65

— belief(T)= mc34(T) ⊕ mc5(T) = 0.56
0.65=0.86

— belief(T̄)= mc34(T̄) ⊕ mc5(T̄) = 0.05
0.65= 0.07

— belief(U)= mc34(U) ⊕ mc5(U) = 0.02
0.65= 0.03

Although both c3 and c4 judge that c2 is untrustworthy, c1’s belief in c2’s trustworthiness

89

is still high after combining c3 and c4’s belief with c5. The reason is that the credibility of
c5 is higher than c3 and c4. This is considered a strong advantage of using the Dempester-
Shafer Theory (DST).

6.4.3 Trust-based Federation Formation Algorithm

In this section, we model the problem of federation formation as a coalition formation co-
operative game with non-transferable utility [95].

6.4.3.1 Description

Our federation algorithm is based on a hedonic game [95], [15], which is considered as a
category of cooperative games [130], [15], [133]. The game assumes that each player (i.e. CP)
is selfish and has its own preferences over the existing federations. The preference depends
only on the federation members.

Coalitional models are usually analysed using the cooperative game theory, which tries to
predict which coalitions or federations will form and the joint actions that coalitions take
[130]. The services of a cooperative game will depend on which group of agents (i.e., a
coalition) forms and the group of actions that the coalition takes [130] [145]. While Non-
coalitional models are generally analysed using the non-cooperative game theory, which aims
to predict individual agents strategies and utilities, and to find pure or mixed strategy Nash
equilibrium [146].

A hedonic game was used due to the fact that finding the optimal federation structure in
federation formation is NP-complete [134]. Thus, a hedonic game, which satisfies stability
properties was used. By stability, we mean that none of the federation members (i.e. CPs)
finds a motivation to go out from its current federation and join to another one.

To establish the model, a preference function is used. The function allows each CP to eva-
luate all the possible and existing federations it belongs to in order to make preferences. For
any CP i ∈ N , where N is a set of CPs, a preference relation �i is defined as a transitive
relation, which is used over those federations that CP i can join with [95]. For any CP i ∈
N , and given two federations F1, F2, the notation F1 �i F2 indicates that CP i would like
to be a member of F1 rather than F2.

Definition 1 (Hedonic Game). A federation formation game is hedonic if the following
two conditions are met. First, the utility of any player (e.g. CP) in a given federation depends
only on the members of that federation. Second, if there is a preference over the set of possible

90

federations, it is defined by a preference function.

Property. The proposed federation game is hedonic.

The utility of the CPs in a given federation is computed by multiplying the CP’s beliefs in
trustworthiness in each of the federation’s members (Eq. (6.1)). Thus, the utility of CPs in a
given federation is only dependent on the members of that federation. This satisfies the first
condition. As for the second condition, we will define the preference function that enables
CPs to have preferences over federations.

In our federation formation game, the preference function of the CPs can be defined as
follows :

F1 �i F2 ⇐⇒ fi(F1) ≥ fi(F2) (6.13)

where F1, F2 ⊆ N are two federations containing CP i, and fi(.) . There is a preference
function defined as follows :

fi(Fk) = Ui(Fk) =
∏
j∈Fk

T ji (6.14)

∏
j∈Fk

T ji is given in Eq. (6.1) and denoted as the federation trust criterion. T ji is denoted
as CP i beliefs in CP j ∈ N . The CP i’s beliefs in Fk’s members is obtained either using
Bayesian inference (i.e. objective trust value) if there is previous interactions from CP i and
CP j as in Eq. (6.2) or by using the Dempster-Shafer Theory (i.e. subjective trust value)
as in section 6.4.2. As mentioned earlier, we use the product of trust values instead of their
summation (e.g., [91]) in the definition of the federation trust criterion in order to preserve
the effect of small trust values on the global federations trust value. That way, the impact of
a small trust value will not be mitigated by a higher one.

6.4.3.2 The Proposed Federation Formation Algorithm

The algorithm (Algorithm 5) that we propose is based on the following hedonic shift rule
[95] : let Π = {F1, ..., Fl} represent the set of federation partitions. That is, for k = {1, 2,
. . . , l}, each Fk ⊆ N is a disjoint federation. Each CP i ∈ N decides to leave its current
federation FΠ(i) to join another one Fk ∈ Π∪φ if and only if its federation trust criterion (i.e.,

91

Ui(Fk) = ∏
j∈Fk

T ji) in the new federation exceeds the one it obtains in its current federation.
Leaving and joining decisions are considered selfish decisions, which means that they are
made without considering their impact on the other CPs.

Algorithm 5: Trust-based Federation Formation Algorithm
Given the current federation partition Πc = {F1, ..., Fl}, each CP i evaluates possible
shift from its current federation as follows :
repeat

foreach Fk ∈ Πc ∪ φ do
foreach CP j ∈ Fk do

if CP i has previous experience with CP j then
— calculate direct observation-based

trust value
of CP j.

else
— calculate indirect

observation-based
trust value of CP j.

end
end
calculate Ui(Fk ∪ {i}) and Ui(FΠc(i))
if Ui(Fk ∪ {i}) > Ui(FΠc(i)) then

— CP i leaves its current
federation FΠc(i) and
joins the new federation.

— Πc is updated :
Πc+1 =(Πc \ {FΠc(i), Fk})
∪{FΠc(i) \ {i}, Fk ∪ {i}}.

else
— CP i remains in the

same federation so that :
Πc+1 = Πc

end
end

until ε elapses;

In Algorithm 5, a CP i assesses all of the possible federations that it can work with. The
algorithm calculates the trust value for each CP j ∈ Fk. If CP i has previous experiences with
CP j, the algorithm calculates the objective trust value (i.e. direct observation trust value)
as in Eq. (6.2). However, if CP i has no previous experience with CP j, an objective trust
value (indirect observation trust value) is calculated as detailed in section 6.4.2. Then, the
algorithm computes the federation trust criterion Ui(FΠ(i)) of its current federation FΠ(i) as
in Eq. (6.13) and compares it with the federation trust criterion Ui(Fk) of the federation Fk.

92

If the federation trust criterion of the current federation is greater than that of the federation
Fk, then the CP i leaves its current federation to join Fk. Otherwise, CP i stays in its current
federation. Note that after a certain fixed period of time denoted by ε, the whole steps are
repeated, in order to capture the changes that may occur in the current federation partition
Πc. These modifications include changing of the CPs’ trust values, the departure of existing
CPs and the arrival of new CPs.

As for the computational complexity of Algorithm 5, the main complexity lies in the shifting
operations, i.e. the process of finding a new federation to join, which equals O(|Πc|), where
|Πc| is the number of federations in the current federation partition.

Algorithm 5 can be executed distributively. Each CP can behave independently from any
other CP. We adopt the following actions based on [22] for this purpose : state recovery
and atomic state update. In the former, the proposed federation algorithm assumes that
each provider is able to obtain the current federation partition. We can use a state retrieval
algorithm for this purpose (e.g., [135], [136]. In the later, in order to achieve correctness, the
proposed federation formation algorithm assumes that the CPs current federation structure
is not changed while CPs move from their current federation and join another one. For this
purpose, we adopt a distributed mutual exclusion algorithm (e.g. [137]).

6.4.3.3 Analysis of the proposed Federation Algorithm

Here, the specifications of the proposed federation algorithm (Algorithm 5) are analyzed.
More specifically, the three properties achieved by the proposed federation algorithm are
highlighted. These properties are Nash-stability, individual-stability and convergence. It is
worth noting that the methodology and the analyses below are inspired by those given in
[147] [91] [22].

Theorem 2. Algorithm 5 always converges to a final federation partition Πf .

Démonstration. According to the moving action from CP’s current federation to any given
federation as given in Algorithm 5, every move creates two distinct situations : moving to
the new federation partition and to the previously visited federation partition. In the first
situation, the number of moves done is finite. It is equivalent to the number of federation
partitions at most cases. In the second situation, beginning from the previously visited fede-
ration partition, at certain time, the CP must either move to a new federation, and therefore
leads a new partition, or it may prefer to stay in the current federation. Thus, the number
of those partitions that are visited more than one time will be minimised and restricted.
According to that, in all situations, Algorithm 5 will converge to a final federation structure.

93

Definition 2 (Nash-Stability). A federation structure Π is Nash-stable if no CP in Π has
a motivation to go out from its current federation and join to another federation.

Theorem 3. Any final partition Πf resulting from Algorithm 5 is Nash-stable.

Démonstration. This can be proven with a contradiction. If we Assume that the final federa-
tion partition is not Nash-stable. Thus, there exists a CP i ∈ N and a federation Fk ∈ Πf ∪φ
such that Fk ∪ i �i FΠf

(i) Then, CP i will move from its current federation to the new one,
which makes Algorithm 5 unable to converge to a final federation partition, which contradicts
with Theorem 2.

Definition 3 (Individual-Stability). A partition Π is individually stable if no CP in Π can
benefit from shifting from its current federation to another one without making the members
of the latter federation worse off.

Theorem 4. Any final partition Πf resulting from Algorithm 5 is individual-stable.

Démonstration. It has been already proven that any Nash-stable situation implies individual-
stability [95]. Thus, we can conclude that Algorithm 5 converges to individual-stability.

Proposition 1. Algorithm 5 confirms that for any CP i ∈ N that leaves its current federation
FΠ(i) and joins another federation Fk, the federation trust criterion of FΠ(i) must be greater
than the federation trust criterion of Fk.

Démonstration. This can be proven by looking at the condition that makes a CP i moves
from its current federation FΠ(i) and the federation Fk. The condition is Ui(Fk) �i Ui(FΠc(i)),
which ensures that CP i has a preference over the federations Fk and the current federation
FΠ(i) based on the federation trust criterion.

6.5 Simulation Results and Analysis

To evaluate the trustworthy of the proposed approach, we test the ability the proposed
method is able to enhance CPs’ performance in terms of availability, response time and
throughput (Same metrics used in [91]) in the presence of untrusted (malicious or not) CPs.
In this section, we first explain the simulation setup used to perform our simulation and then
study the performance of the proposed trust-based federation formation approach.

94

6.5.1 Simulation Setup

We implement our framework in a 64-bit Windows 8 environment on a host (Intel Core i7,
CPU 3.60 GHz Processor and 16 GB RAM). We use Cloudsim [97] that is based on java
programming language for implementing our model.

While it may be desirable to implement the proposed model using an open source cloud
management system such as OpenStack, CloudStack or OpenNebula, we preferred to use
Cloudsim due to the setup needed to validate the model on a large scale, with 100 CPs (see
Table 6.4). Each CP is supposed to provide a computing power similar to a public cloud (e.g.,
Amazon). This large scale cannot be easily achieved in a local setup. Moreover, it cannot be
achieved using public clouds either, because of some restrictions and regulations regarding
large-scale testing [2]. This is why many research groups (e.g., [148], [149] [150]) use Cloudsim
in their setup. Cloudsim allows the simulation of realistic large-scale CPs and the study of
federations and their corresponding policies in terms of jobs migration, automatic scaling
and reliability of services/applications [148], [149] [150].

As a simulation setup, we consider 100 CPs. We also consider 1,024 cores, 1,740 GB of memory
and 225 TB of storage as the average of capacity per CP, which are the same parameters as
those used in [83]. Table 4 shows the parameters used in our simulations. We set the types
of VMs offered by each of the CPs to be similar to the VMs offered by Amazon EC2 [151].
The CPs offer four types of VM instances : small, medium, large and extra-large VMs as
illustrated in Table 6.5.

While it is desirable to use realistic trust values for our implementation, we were unable to find
a dataset that contains CPs’ trust values. For this purpose, we experimentally derived trust
values. The generated CPs’ trust values are used through running the federation formation
algorithm (Algorithm 5). We distributed the aforementioned 100 CPs into different initial
federations that were built in a random fashion. We randomly set the state of each CP to be
normal, untrusted non-malicious or malicious. Untrusted non-malicious CPs are those which
are unable to accomplish other tasks within a certain time. On the other hand, malicious
CPs are those that refuse to share their needed resources upon request. These behaviors for
describing untrusted non-malicious and malicious CPs are widely used in the context of cloud
computing [152] [153] [154].

To simulate an untrusted non-malicious CPs, we made the CP accept more tasks (i.e. referred
as Cloudlets in Cloudsim) in such a way to largely exceed its capacity. Thus, the CP becomes
unable to achieve other CPs’ Cloudlets within the expected time. On the other hand, in order
to simulate a malicious CP, we made the CP intentionally remove resources (i.e. VMs) given

95

to other CPs.

We followed the Bayesian inference explained in Section 6.4.1 to derive trust values. For each
CP, a default trust value was set at 0.5 (this value is fair and indicates that the cloud status
is not known yet). For each Cloudlet it receives, the new trust value is computed from the old
one according to regularized incomplete beta function (Eq. 6.2). The trust value is promoted
if the cloud achieves the task successfully (i.e. the task is accepted and achieved within the
expected time) and it is demoted otherwise. The trust value for each cloud is calculated after
performing 100 Cloudlets.

After obtaining trust values, we applied the proposed federation formation algorithm (Al-
gorithm 5) on the considered providers. We compared our model with two state-of-the-art
benchmarks : (1) Grand federation [74] and (2) QoS-based cloud federation [82]. In the for-
mer, the federation is formed among all CPs in order to enhance the utility. In the latter,
the federation formation considers QoS metrics such as throughput and response time during
the federation formation process. Thus, only CPs that have QoS metrics within the average
and standard deviation are considered in the federation. We chose to compare our work with
these two approaches as they are very similar to our model in their objective, which enhances
the performance of individual CPs. Thus, other business-oriented federation approaches (e.g.
[90] [83] [86] [81]), whose objective is to increase CPs’ profit will not be considered in our
comparisons.

Table 6.4 Parameters

Parameters Value(s)
Number of Cloud Providers 100

Number of VM types 4
Number of cores [512, 1536]
Memory (GB) [870, 2610]
Storage (TB) [112, 338]

Table 6.5 The Characteristics of Available VM Instances

Small VM Med. VM L VM XL VM
1.6 GHZ CPU 1 2 4 8
GB Mem. 1.7 3.75 7.5 15
TB storage 0.22 0.48 0.98 1.99

96

6.5.2 Simulation Results

In this section, the performance of the generated federations is tested. A total of 10 000
requests (i.e., Cloudlets) is assigned for every federation, which is realistic to a large degree.

Figures 6.3a, 6.3b, and 6.3c illustrate the performance of our framework with respect to
only the number of untrusted non-malicious CPs at this stage. We investigate how effective
are the formed federations in terms of availability. More specifically, Figure 6.3a shows the
efficiency of the formed federation in terms of availability. Availability depicts the time period
in which a federation of CPs is ready for use and is obtained by dividing the number of
performed requests by the total number of received requests. The figure reveals that our
model outperforms both the Grand and QoS-based federation formation approaches, whose
performance begins to decrease drastically. This is due to the fact that the proposed trust-
based federation formation algorithm (Algorithm 5) compares all of the possible federations
and builds preferences among them based on the federation trust criterion (Eq. (6.13)), which,
in turn, reduces the percentage of untrusted non-malicious CPs in the federated cloud. In
other words, it reduces the number of CPs that keep receiving requests that largely exceed
their capacity. Figure 6.3b depicts the performance of the produced federations in terms of

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Non-malicious Cloud Providers (%)

10

20

30

40

50

60

70

80

90

100

A
va

ila
bi

lit
y

(%
)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(a)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Non-malicious Cloud Providers (%)

1500

2000

2500

3000

3500

4000

4500

5000

5500

R
es

po
ns

e
T

im
e

(m
s)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(b)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Non-malicious Cloud Providers (%)

0

50

100

150

200

250

300

350

400

450

500

T
hr

ou
gh

pu
t (

se
c)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(c)

Figure 6.3 The proposed trust-based model improves the availability, response time, and
throughput, compared to the Grand and QoS-based federations, in the presence of untrusted
non-malicious CPs.

response time. The response time represents the time span between the submission and the
response of the request, which includes both the execution and the waiting times. Figure 6.3b
reveals that our model yields much less response time compared to the Grand and QoS-based
models in the presence of untrusted non-malicious CPs. This is also due to the fact that our
trust-based model reduces the percentage of untrusted non-malicious CPs in the federation.

Figure 6.3c, illustrates how effective are the formed federations in terms of throughput.

97

Throughput describes the number of requests that a federation can handle in a given time.
In our simulations, throughput was measured per second. Figure 6.3c reveals that our trust-
based model yields much higher throughput compared to the other two models in the presence
of untrusted non-malicious CPs for the aforementioned reasons.

Next, Figures 6.4a, 6.4b, and 6.4c indicate the performance of our framework with respect
to the number of malicious CPs. We analyse how effective are the formed federations in
terms of availability, response time and throughput. More specifically, Figure 6.4a shows the
efficiency of the formed federation in terms of availability. The figure reveals that our model
outperforms both the Grand and QoS-based models whose performance begins to decrease
largely. This is due to the fact that the proposed trust-based federation formation algorithm
(Algorithm 5) compares all the possible federations and builds preferences over them based on
the federation trust criterion (Eq. (6.13)), which in turn reduces the percentage of malicious
CPs in the federated CPs. In other words, it reduces the number of CPs that refuse to share
their requested resources. Figure 6.4b displays the performance of the produced federations

10 15 20 25 30 35 40 45 50 55 60

Percentage of Malicious Cloud Providers (%)

10

20

30

40

50

60

70

80

90

100

A
va

ila
bi

lit
y

(%
)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(a)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Malicious Cloud Providers (%)

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

R
es

po
ns

e
T

im
e

(m
s)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(b)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Malicious Cloud Providers (%)

0

50

100

150

200

250

300

350

400

450

500

T
hr

ou
gh

pu
t (

se
c)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(c)

Figure 6.4 The proposed trust-based model improves the availability, response time, and
throughput, compared to the Grand and QoS-based federations, in the presence of malicious
CPs.

in terms of response time. The figure reveals that our model yields lower response time
compared to the Grand and QoS-based models in the presence of malicious CPs. This is
also due to the fact that our trust-based model reduces the percentage of malicious CPs in
the federation according to the preference function in Algorithm 5. Also in Figure 6.4c, we
see the efficiency of the formed federations in terms of throughput, which reveals that our
trust-based model yields much higher throughput compared to the other two models in the
presence of malicious CPs.

Also, in Figures 6.5a, 6.5b, and 6.5c we study the performance of our framework with res-
pect to the combination of both untrusted non-malicious and malicious CPs. We analyse

98

how effective are the formed federations in terms of three performance metrics : availability,
response time and throughput. Figure 6.5a shows the efficiency of the formed federation in
terms of availability. It reveals that our approach outperforms both the Grand and QoS-based
models whose performance begins to decrease largely. This is also due to the fact that our
model (through Algorithm 5) compares all the federations in the federation partition and
builds preferences over them based on the federation trust criterion, which in turn reduces
the percentage of both untrusted non-malicious CPs and malicious CPs in the federated CPs.
In other words, it reduces the number of CPs that 1) keep receiving requests that extremely
exceed their capacity (untrusted non-malicious CPs) and 2) refuse to share their requested
resources (malicious CPs). Figure 6.5b shows the performance of the produced federations in

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Cloud Providers (%)

10

20

30

40

50

60

70

80

90

100

A
va

ila
bi

lit
y

(%
)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(a)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Cloud Providers (%)

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

R
es

po
ns

e
T

im
e

(m
s)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(b)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Cloud Providers (%)

0

50

100

150

200

250

300

350

400

450

500

T
hr

ou
gh

pu
t (

se
c)

Trust-based Federation (proposed model)
QoS-based Federation
Grand Federation

(c)

Figure 6.5 The proposed trust-based model improves the availability, response time, and
throughput, compared to the Grand and QoS-based federations, in the presence of a combi-
nation of both untrusted non-malicious and malicious providers.

terms of response time. It reveals that our model yields lower response time compared to both
Grand and QoS-based models in the presence of both untrusted non-malicious and malicious
CPs. This is also due to the fact that our model reduces the percentage of both untrusted
non-malicious and malicious CPs in the federation (Algorithm 5). Also in Figure 6.5c, we
can see the efficiency of the formed federations in terms of throughput, which reveals that
our trust-based model yields much higher throughput compared to Grand and QoS-based
models in the presence of both untrusted non-malicious CPs and malicious CPs.

We now carefully investigate the reasons why our model outperforms the other studied mo-
dels. More specifically, we study the percentage of malicious and untrusted non-malicious
CPs that exist in the final federations. Figure 6.6b shows the percentage of malicious CPs
that exist in the final federations structure with respect to the percentage of malicious CPs
that existed in the initial federation. In other words, our goal is to study how effective is each
of the compared models in avoiding the malicious CPs during federation’s formation. We

99

exclude the Grand federation approach in this study as we will end up with a single Grand
federation in which all CPs are members. Figure 6.6b shows that the percentage of malicious

10 15 20 25 30 35 40 45 50 55 60

Percentage of Malicious Cloud Providers (%)

10

15

20

25

30

35

40

45

50

55

60
%

 o
f M

al
ic

io
us

 C
P

s
in

 th
e

fe
de

ra
tio

n

Trust-based Federation (proposed model)
QoS-based Federation

(a)

10 15 20 25 30 35 40 45 50 55 60

Percentage of Untrusted Non-malicious Cloud Providers (%)

5

10

15

20

25

30

35

40

45

50

55

%
 o

f U
nt

ru
st

ed
 N

on
-m

al
ic

io
us

 C
P

s
in

 th
e

fe
de

ra
tio

n

Trust-based Federation (proposed model)
QoS-based Federation

(b)

Figure 6.6 The proposed trust-based model reduces the number of untrusted non-malicious
and malicious CPs.

CPs in the final federations keeps increasing in the QoS-based, and our trust-based federation
formation models (i.e. our model) with the increase in their percentage in the initial partition.
However, our model is more resilient to that increase and is able to minimise the percentage
of untrusted non-malicious CPs up to 35% compared to the QoS-based federation approach.
The reason is that our model takes into consideration the trust relationships among CPs
and excludes malicious CPs during federation formation. Figure 6.6a depicts the efficiency of
each of the compared models in avoiding the untrusted non-malicious CPs during federation’s
formation. Figure 6.6a shows that the percentage of untrusted non-malicious CPs in the final
federations also keeps increasing in the QoS-based, and our trust-based federation formation
models (i.e. our model) with the increase in their percentage in the initial partition. However,
our model is more resilient to that increase and is able to reduce the percentage of malicious
CPs up to 27% compared to the other models.

6.6 Conclusion

In this paper, we proposed a decentralised framework that considers trustworthiness of he-
terogeneous CPs during the formation of cloud computing federations. We proposed two
approaches for evaluating the CPs’ trust values : objective and subjective trust evaluations.
In the former, the trust value is evaluated based on the history of interactions (i.e. expe-
rience) using Bayesian inference. In the latter, we used the Dempster-Shafer Theory (DST)
of evidence integrated with the Bayesian inference to evaluate the trust value in the absence

100

of previous interactions. Thereafter, we devised a federation formation algorithm, based on
the coalitional game theory, that allows a set of CPs to cooperatively set up their federations
in order to maximise the trust of the formed federations. We have shown that the propo-
sed federation formation algorithm converges to a Nash-stable situation, i.e. no CP has a
motivation to go out from its current federation and move to another federation. Our experi-
mental results show that the proposed federation formation algorithm minimizes the number
of malicious and untrusted CPs in the federation up to 35% compared to two state-of-the-
art federation approaches. Moreover, the performance of the formed federations in terms of
availability, response time and throughput is improved.

101

CHAPTER 7 ARTICLE 4 : MULTI-CLOUD COOPERATIVE INTRUSION
DETECTION SYSTEM : TRUST AND FAIRNESS ASSURANCE

Adel Abusitta, Martine Bellaïche and Michel Dagenais
Annals of Telecommunications (Submitted).

Abstract

The sophistication of the recent cloud computing systems has made them more vulnerable
to intelligent cyber attacks. Moreover, it is becoming very difficult for a single intrusion de-
tection system (IDS) to detect all existing attacks, due to limited knowledge about such
attacks’ patterns and implications. Recent works in cloud security have shown that a co-
operation among cloud-based IDSs can bring higher detection accuracy compared to one
traditional IDS. Such a cooperation allows a cloud-based IDS to consult other IDSs about
suspicious intrusions and to hence increase the decision accuracy. However, there are two
main challenges associated with the existing cooperative IDSs, which are related to trust
and fairness assurance. To tackle these challenges, we propose in this paper a cooperative
cloud-based IDS framework that 1) enables IDSs to distributively form trustworthy IDSs
communities by advancing a trust-based hedonic coalitional game, which allows IDSs to in-
crease their individual detection accuracy in the presence of untrusted IDSs and 2) formulates
a fairness assurance mechanism as a Stackelberg game between the well-behaving IDSs and
the selfish ones that frequently send consultation requests to other IDSs, and at the same
do not answer other IDSs’ consultation requests. Experimental results show the effectiveness
of the proposed approach in terms of enhancing the accuracy of detection and achieving the
fairness among IDSs in terms of benefits obtained through cooperation.

7.1 Introduction

The virtualization layer added to cloud computing systems has made them more vulnerable to
security threats compared to traditional computing systems. Cyber attacks are also becoming
more sophisticated and harder to detect. Therefore, it is becoming increasingly difficult for
a traditional single intrusion detection system (IDS) to detect all attacks, due to limited
knowledge about attacks. A collaboration among IDSs has proven its efficiently in terms of
the accuracy in detecting new and sophisticated attacks [63] [64] [65]. Through collaboration,
IDSs in different regions, and possibly, belonging to different Cloud Providers (CPs) can

102

cooperate in such a way to utilize the expertise of each other to cover unknown threat
patterns. This can be done by enabling IDSs to consult each other about suspicious behavior,
where the received feedback can be then used to decide whether to raise an alarm or not.
Recent works [11] [23] show that by collecting feedback from other IDSs, the detection rate
can be enhanced up to 60%.

Several approaches have been proposed to model the cooperation among cloud-based IDSs
(e.g. [63] [64] [65] [66] [128] [129]). However, these approaches work under the assumption
that all IDSs are trustable, which makes their collaboration systems vulnerable to untrusted
(malicious or not) insiders. In this paper, we propose a trust-based framework for cooperative
IDS in a multi-cloud environment. The proposed model enables an IDS to evaluate other IDSs’
trustworthiness by modeling its personal experience using Bayesian inference. After obtaining
IDSs’ trust values, a community formation algorithm is proposed. This algorithm is based
on the coalitional game theory [130]. The algorithm enables IDSs to join and/or leave a
given community so as to enhance their chances of working with trusted IDSs. The proposed
algorithm enables each CP to discover those CPs that have trusted IDSs, and list them on its
whitelist. Figure 7.1 shows the architecture of the proposed cooperative IDS. In Figure 7.1,
we can see that CP4 has a whitelist of several CPs that employ trusted IDSs. As shown in
Figure 7.1, CP4 sends a consultation request to its whitelist for intrusion diagnosis. The IDSs
in the whitelist send their feedback to the CP4’IDS, which then uses the Dempster-Shafer
Theory (DST) [16] for feedback aggregation. DST allows us to handle the lack of complete
information, and to also prevent collusion attacks, which occur when several IDSs collaborate
to give misleading judgments.

Although achieving the trustworthiness of the cooperative detection process can enhance the
community’s members performance, the motivation of the cloud-based IDSs to participate in
the detection process needs further investigation. An IDS can be trustworthy but selfish at the
same time. The selfish property means that the IDS frequently sends consultation requests
to other IDSs and at the same time does not answer other IDSs’ consultation requests with
the aim of saving its own resources. Therefore, the fairness property of the cooperation
model needs to be incorporated in the framework so as to achieve an incentive compatible
cooperation model. We propose a fairness assurance mechanism in order to prevent the
community from selfish IDSs. This is important to encourage IDSs to participate in the
cooperation process. The proposed fairness assurance mechanism is modeled as a Stackelberg
game [17] in which each well-behaving IDS plays as the leader of the game and the selfish
IDS is the follower. The strategy of the selfish IDSs is to maximise their consultation rates
and at the same time minimise their response rates. Knowing this strategy, the strategy of
the well-behaving IDSs is to choose the optimal response rates that is fairly compatible with

103

Figure 7.1 Architecture of the proposed cooperative IDS

their consultation rates. We solved the optimization problem using the backward induction
reasoning [98] through finding at the beginning the best response of the selfish IDS to the
well-behaving IDS’s consultation rate strategy and then merging this information into the
well-behaving IDS’s optimization problem. The outcome of the game is the optimal response
rate for the well-behaving IDS.

The major contributions of this paper are as follows : 1) Modeling and proposing a framework
that enables cloud-based IDSs to distributively form trustworthy IDS communities. 2) Propo-
sing a new trust evaluation technique, based on Bayesian inference, that allows a cloud-based
IDS to evaluate another IDS’s trustworthiness based on its personal experiences. 3) Devising
an algorithm, based on the cooperative game theory, that allows a set of cloud-based IDSs
to cooperatively set up their community in such a way to increase their individual detection
accuracy in the presence of untrusted IDSs. The proposed algorithm converges to a Nash-
stable situation ; that is, no IDS has a motivation to leave its current community and move
to another one. 4) Proposing a fairness assurance mechanism that prevents selfish IDSs in
the communities.

This work is an extension of the previous work proposed in [12], where we present a trust-
based game theoretical approach in cloud-based IDSs. This paper extends our previous work
by (1) presenting more analysis and a mathematical description about the proposed turst-
based community formation model ; (2) formulating a fairness assurance mechanism between
the well-behaving IDSs and the selfish ones that frequently send consultation requests to

104

other IDSs, and at the same do not answer other IDSs’ consultation requests ; and (3) pre-
senting more information with a concrete example about the proposed feedback aggregation
approach, which is used inside the formed communities in order to make decisions about
suspicious intrusions. Moreover, we add more results and discussion about the proposed ap-
proach.

The rest of this paper is organized as follows. In Section 7.2, we discuss the related work. We
present the trust-based cooperative intrusion detection system in Section 7.3. In Section 7.4,
we present the fairness assurance mechanism. In section 7.5, we present our empirical results
to show the effectiveness of the proposed approach. Finally, Section 7.6 concludes the paper.

7.2 Background and Related Work

Cloud-based IDSs can be classified into two types ; signature-based and anomaly-based [1].
The former compares suspicious behavior with known attack patterns. In order to make
signature-based systems effective, the signature database should be updated frequently. On
the other hand, anomaly-based IDSs raise alarms when unusual and/or unexpected activities
are detected. Anomaly-based IDSs are effective in detecting unknown attacks. Moreover,
they do not need a database of known attacks. However, the shortcoming of using anomaly-
based detection lies in the relative high false positive rate compared to the signature-based
technique [11]. IDSs may adopt both techniques to have an improved detection accuracy.
However, the detection accuracy is limited by the amount of knowledge IDSs’ have (e.g.,
their security vendors have). Recent research has shown that the collaborative detection can
enhance the detection rate up to 60% [11] [23]. In this section, we present the state-of-the-art
of the cloud-based cooperative IDSs.

Cooperative IDSs in the context of cloud computing have been proposed in many earlier
works . For instance, Lo et al. [62] propose a cooperative detection method in the virtualized
cloud environment. Their method allow alerts to be exchanged among different nodes (i.e.,
hosts) whenever an attack gets detected. For this purpose, they adopt a rule-based technique
to identify TCP SYN attacks by fetching the threshold for rule patterns during the initial
rule establishment phase. The advantage of this method is that it is able to balance the
detection overhead among nodes. Also Teng et al. [61] proposed a method that aggregates
two types of detectors : a feature detector and a statistical detector. The former uses SNORT
to separate events based on network protocols (e.g., TCP). The later cooperates with the
feature detector by using data packets from it to decide whether an event is an attack or not.
If the rate (i.e., the rate of packets) obtained is grater than the predefined threshold, then
this situation will be considered as an attack.

105

Man and Huh [63] and Singh et al. [64] propose a cooperative IDS between cloud computing
regions. Their approaches enable exchanging alerts from multiple elementary detectors. In
addition, they enable the share of information between interconnected clouds. Also, Ghribi
[65] proposed a middleware IDS. The approach allows a cooperation between three layers :
Hybervisor-based IDS, Network-based IDS and VM-based IDS. If an attack is found in a
layer, the attack cannot be executed in the other layers. Chiba et al. [66] propose a coopera-
tive network-based cooperative intrusion detection system to detect network attacks in the
cloud. This can be performed through traffic monitoring while maintaining performance and
service/application quality.

The main shortcoming of the above works is that they consider that all cloud-based IDSs
are trustable, which lets their collaboration systems more vulnerable to untrusted and/or
malicious insiders. The goal of this article is to present a systematic approach to establish a
cloud-based cooperative IDS that uses trust assessment mechanisms and enables trustworthy
decisions aggregation . We aim to allow our approach to work in the presence of untrusted
and/or malicious IDSs .

In a multi-cloud environment, Dermott et al. [67] propose a cooperative intrusion detection in
a federated virtualized cloud. They adopt the Dempster-Shafer theory of evidence to gather
the beliefs given by the watching entities. The gathered beliefs are used to let the final
decision regarding a possible attack. The main shortcoming of this approach is that it is
a centralized-based architecture, whereby a trusted third-party should collect and manage
feedbacks.

Cooperative IDSs in non-cloud environments where also proposed recently, in [68] [69] [5] [6]
[7] [8] [9] [10]. They have the shortcoming as the above mentioned works, since they assume
that all IDSs are trustable, which makes their collaboration system vulnerable to malicious
insiders.

A trust-based cooperative IDS has been proposed in a non-cloud environment in [11]. They
propose a trust-based collaborative decision framework. Through collaboration, a native IDS
can identify new attacks that may be known to other IDSs. The work evaluate how to utilize
different diagnosis coming from different IDSs. They propose a system architecture for a
collaborative IDS where trustworthy feedback aggregation is a key component. Similarly,
Zhu et al. [70] [71] propose an incentive-based communication protocol, which gives IDS
nodes incentives to share their feedback, and thus to prevent untrusted behaviors. The main
shortcoming of these works is that they consult many IDSs in order to get a feedback. This, in
turn, causes extra overhead, through consulting needlessly some IDSs (i.e., untrusted IDSs).
This is unlike our approach, where we adopt a trust-based coalitional game approach, in

106

order to construct a set of trusted IDSs and thus reduce the rate of consultation requests
while ensuring a higher detection accuracy.

A fairness assurance mechanism in a cooperative IDS also has been proposed in [72] and [73].
They create a rule dissemination protocol based on a decentralized two-level optimization
framework, which determines the information propagation rates to each IDS. For this purpose,
they adopt a Bayesian learning approach for the IDS to find the compatibility ratio of other
IDSs based on the historical interactions gathered by each IDS. The main limitation of their
approach is that it is limited to signature-based cooperative IDSs, where the fairness is
measured in terms of the ability to distribute rules fairly among IDSs.

A trust-based hedonic game to form a community among CPs is presented in [90]. The ap-
proach allows CPs to dynamically join a community based on the maximization of profits
and minimization of penalty costs. The main limitation of this work is that it is based on a
centralized architecture, whereby a trusted third-party called broker [155] is responsible for
formatting the community. A decentralized trust-based hedonic game has also been propo-
sed by Abdel Wahab et. al. [91] in order to model communities among functionally-similar
Multi-cloud services. To create a community, the services have to work as one entity, called
community. The main advantages of this approach are 1) proposing a trust-based aggrega-
tion technique that is resilient to collusion attacks [91], 2) proposing a trust-based community
formation model that does not rely on a centralized architecture, and 3) proposing a boots-
trapping algorithm in order to give new trust values for new services. However, the main
limitation of this approach is that it works only under homogeneous environment for forming
communities. Also, untrusted parties are those considered to have a malicious behavior, where
in some cases untrusted agents can also be non-malicious (e.g., lack of experience). Another
limitation of that approach is that they let a trust value to be computed based on recommen-
dations received from other agents, where a Dempster-Shafer approach has been proposed
for feedback aggregation. This prevent trust values to be computed based on an agent’s self
experience. In this paper, the proposed trust-based community formation for cooperative
multi-cloud IDSs uses the same methodology proposed in the aforementioned approach [91].
However, we have addressed the above mentioned limitation by 1) allowing the community
to be established under a heterogeneous environment, 2) generalizing the concept untrusted
agents (i.e, IDSs) in order to represent both malicious and non malicious IDSs and 3) allo-
wing trust values of an agent to be computed based on self-experience, where we propose a
Bayesian approach for this purpose.

Overall, for a multi-cloud environment, a decentralized framework that considers trustwor-
thiness of IDSs, and guarantees the fairness among them during the cooperation, is yet to be

107

addressed. Therefore, in this paper, we present a trust-based cooperative IDS in a multi cloud
environment in order to enhance the detection accuracy compared to the existing cooperative
and non-cooperative IDSs. Moreover, the proposed solution makes the collaboration solution
to be fair, incentive compatible, and efficient.

7.3 The Proposed Trust-based Cooperative IDS

In this section, we present a framework for the proposed trust-based cooperative IDS in a
multi-cloud environment. The framework is divided into the following components as shown
in Figure 7.2 : trust evaluation, trust-based community formation algorithm and trust aggre-
gation.

Figure 7.2 The Trust-based Cooperative IDS (Methodology)

7.3.1 Trust Evaluation

A cloud-based IDS can estimate the trust value of another IDS based on its experience with
that IDS. We use a Bayesian inference approach to compute the trust value of an IDS [14],
which is a well-known approach to derive and evaluate trust values [131]. When the cloud-
based IDS asks another IDS aboud a suspicious intrusion, the received feedback and the
revealed result (i.e., attack or not) are used to calculate the trust value of the consulted IDS.
The trust value can be enhanced if the IDS successfully diagnosed the consultation request
about a suspicious intrusion and it can be reduced otherwise. The trust value here represents

108

the accuracy of the IDS diagnosing suspicious intrusions. An IDS i ∈ N , where N is a set of
IDSs, is supported with a belief function, which computes the trust level of another IDS j ∈
N . Every trust value t′j is calculated from the previous initial or default trust value tj (we
discuss later how to find the initial trust value) as follows :

t′j = F (tj;αj, βj) (7.1)

The above equation is the cumulative beta distribution function of the Beta Probability
Density (BPD) function, which is defined as follows :

f(x;αj, βj) = xαj−1(1− x)βj−1

Beta(αj, βj)
(7.2)

The value of αj and βj are modified after receiving the feedback from an IDS j. βj is increa-
sed when the IDS j successfully diagnoses the consultation request. The following function
describes the update of βj.

βj = βj × (1 + µj) (7.3)

where µj represents the weight of the diagnosed consultation request if it is successful and 0
if not.

The equation below describes the update of αj.

αj = αj × (1 + νj) (7.4)

where νj denotes the weight of the diagnosed consultation request if it is unsuccessful and 0
if not.

The values for µj and νj should be selected carefully by an IDS i who is receiving feedback
about a suspicious intrusion from peers. These values reflect the detection difficulty degree
of the suspicious intrusion. A higher amount of βj will enhance the trust of an IDS j while
a higher value of αj will reduce it.

The initial trust value tj is calculated at the beginning through the testing period. Let the
total reported diagnosis data from peer IDS j be denoted by the setMj. The initial value of
the trust is the total number of consultation requests that have been successfully diagnosed
divided by the total number of consultation requests :

109

tj =
∑
k∈Mj

rj,k

|Mj|
(7.5)

Where the parameter rj,k is the revealed result of the k-th diagnosis request : rj,k = 1 indicates
successful diagnosis of the k-th request. Conversely, rj,k = 0 indicates non-successful diagnosis
of the k-th request.

The initial value of α and β can be obtained as follows :

αj =
∑
k∈Mj

(1− rj,k) (7.6)

βj =
∑
k∈Mj

(rj,k) (7.7)

7.3.2 A Trust-based Community Formation

In this section, we model the problem of cloud-based cooperative IDS as a coalitional game
[95].

7.3.2.1 Description

The proposed community formation algorithm is based on a hedonic game [95], [15] [91] [103],
which is considered as a category of coalition formation games [130], [15], [133]. The game
assumes that each player (i.e. IDS) is selfish and has its own preferences over the existing
communities. A hedonic game is selected due to the fact that finding the optimal community
structure, in community formations, is NP-complete [134]. Therefore, a hedonic game, which
satisfies the stability features is used. Stability indicates that none of the community members
(i.e. IDSs) finds a motivation to leave its current community and join another one.

In order to construct the model, we need to define a preference function. The function allows
each IDS to evaluate all the possible and existing communities it belongs to in order to define
preferences. For any IDS i ∈ N , where N is a set of IDSs, a preference relation �i is defined
over the set of all communities that IDS i can form [95]. For any IDS i ∈ N , and given two
communities C1, C2, the notation C1 �i C2 indicates that IDS i prefers being a member of
C1 rather than C2.

In our community formation game, the preference function of the IDSs is defined as follows :

110

C1 �i C2 ⇐⇒ fi(C1) ≥ fi(C2) (7.8)

where C1, C2 ⊆ N are two communities containing IDS i, and fi(.) is a preference function
defined as follows :

fi(Ck) = Ui(Ck) =
∏
j∈Ck

T ji (7.9)

∏
j∈Ck

T ji is denoted as the community trust criterion. T ji is denoted as IDS i beliefs in IDS j ∈
N . IDS i’s beliefs in Ck’s members is obtained using Bayesian inference as in (1). We use the
product of IDSs trust values instead of their summation in the definition of the community
trust criterion in order to conserve the effect of small trust values on the global communities
trust value. That way, the impact of a small trust value will not be mitigated by a higher
one.

7.3.2.2 The Proposed Community Formation Algorithm

The proposed community formation algorithm (Algorithm 6) is based on the hedonic shift
rule [95] : let Π = {C1, ..., Cl} represent the set of community partitions. That is, for k =
{1, 2, . . . , l}, each Ck ⊆ N is a disjoint community. Each IDS i ∈ N decides to leave its
current community CΠ(i) to join another one Ck ∈ Π ∪ φ if and only if its community trust
criterion (i.e., Ui(Ck) = ∏

j∈Ck
T ji) in the new community is greater than the one it obtains

in its current community. Leaving and joining decisions are considered selfish decisions. This
means that they are made without considering their impact on the other IDSs.

In the trust-based community formation algorithm (Algorithm 6), an IDS i evaluates all of the
possible communities it can join or form, beginning by leaving its current community CΠ(i) to
join another already existing community Ck. The algorithm computes the trust value for each
IDS j ∈ Ck as in (1). Then, the algorithm determines the community trust criterion Ui(CΠ(i))
of its current community CΠ(i) as in (9) and compares it with the community trust criterion
Ui(Ck) of the community Ck. If the community trust criterion of the current community is
greater than that of the community Ck, then the IDS i leaves its current community to join
Ck. Otherwise, IDS i remains in its current community. One should note that, after a certain
fixed period of time ε, the whole sequence is repeated, in order to capture the changes that
may happen in the current community partition Πc. These changes include changes in the

111

Algorithm 6: Trust-based Community Formation Algorithm
Given the current community partition Πc = {C1, ..., Cl}, each IDS i estimates
possible shift from its current community as follows :
repeat

foreach Ck ∈ Πc ∪ φ do
foreach IDS j ∈ Ck do

— determine the trust value
of IDS j.

end
end
determine Ui(Ck ∪ {i}) and Ui(CΠc(i))
if Ui(Ck ∪ {i}) is grater than Ui(CΠc(i)) then

— IDS i leaves its current
community CΠc(i) and
joins the new community.

— Community partition Πc is updated :
Πc+1 =(Πc \ {CΠc(i), Ck})
∪{CΠc(i) \ {i}, Ck ∪ {i}}.

else
— IDS i stays in the

same community :
Πc+1 = Πc

end
until ε elapses;

trust values of the IDSs, and the departure/arrival of existing/new IDSs.

The main complexity of Algorithm 6 lies in the shifting steps, i.e. the process of finding a
new community to join, which equals O(|Πc|), where |Πc| is the number of communities in
the current community partition.

Algorithm 6 can be executed distributively. Each IDS can behave independently from any
other IDS. We adopt the following actions based on [22] for this purpose : state recovery
and atomic state update. In the former, the proposed community algorithm assumes that
each provider is able to obtain the current community partition. We can use state retrieval
algorithm for this purpose (e.g., [135], [136]. In the later, in order to achieve correctness, the
proposed community formation algorithm assumes that the CPs current community structure
is not changed while IDSs move from their current community and join another one. For this
purpose, we adopt a distributed mutual exclusion algorithm (e.g. [137]).

112

7.3.2.3 Analysis of the proposed Trust-based community formation Algorithm

We analyse here the specifications of the proposed trust-based community formation algo-
rithm (Algorithm 6). More specifically, the three properties achieved by the proposed coalition
formation algorithm are highlighted. These properties are Nash-stability, individual-stability
and convergence. It is worth noting that the methodology and the analyses presented here
are inspired by those given in [147] [91] [22].

Theorem 5. Algorithm 6 always converges to a final partition Πf .

Démonstration. According to the movement action from the IDS’s current community to any
given federation as given in Algorithm 6, every move creates two distinct situations : moving
to the new federation partition and to the previously visited community partition. In the first
situation, the number of moves is finite. It is equivalent to the number of community partitions
in most cases. In the second situation, beginning from the previously visited community
partition, at certain time, the IDS must either move to a new community, and therefore leads
a new partition, or it may prefer to stay in the current community. Thus, the number of those
partitions that are visited more than one time will be minimised and restricted. According
to that, in all situations, Algorithm 6 will converge to a final community structure.

Definition 4 (Nash-Stability). A community structure Π is Nash-stable if no IDS in Π
has a motivation to leave its current community to join another community.

Theorem 6. Any final partition Πf resulting from Algorithm 6 is Nash-stable.

Démonstration. This can be proven with a contradiction. If we assume that the final partition
Πf is not Nash-stable. Thus, there exists an IDS i ∈ N and a community Ck ∈ Πf ∪ φ such
that Ck∪ i �i CΠf

(i) Then, IDS i will move from its current federation to the new one, which
makes Algorithm 6 unable to converge to a final community partition, which contradicts
Theorem 5.

Definition 5 (Individual-Stability). A partition Π is individually stable if no IDS in Π
can benefit from shifting from its current community to another one without making the
members of the latter community worse off.

Theorem 7. Any final partition Πf resulting from Algorithm 6 is individual-stable.

113

Démonstration. It has already been proven that any Nash-stable case implies individual-
stability [95]. Thus, we can conclude that Algorithm 6 converges to individual-stability.

Theorem 8. Algorithm 6 confirms that for any IDS i ∈ N that leaves its current community
CΠ(i) and joins another community Ck, the community trust criterion of CΠ(i) must be
greater than the community trust criterion of Fk.

Démonstration. This can be proven by looking at the condition that makes an IDS i move
from its current community CΠ(i) and the community Ck. The condition is Ui(Ck) �i
Ui(CΠc(i)), which ensures that IDS i has a preference over the communities Ck and the
current community CΠ(i) based on the community trust criterion.

7.3.3 Feedback Aggregation

In the previous section, we presented a trust-based community formation model that enables
a set of cloud-based IDSs to cooperatively set up their communities. The output of the com-
munity formation algorithm (Algorithm 6) is a set of communities, where each community
consists of a set of IDSs that prefer to work with each other. In this section, we show how
an IDS inside a community can aggregate feedbacks received from other IDSs in the same
community. For this purpose, we use the Dempster-Shafer Theory (DST) for feedback aggre-
gation. DST was selected for the following two reasons : (1) unlike other aggregation models
(e.g. Bayesian aggregation model) that demand complete information of prior probabilities,
DST can handle a lack of complete information (i.e. uncertainty), and (2) it has the property
of preventing collusion attacks, which occur when several malicious IDSs collaborate to give
misleading judgments [91]. It is worth noting that a trust-based hedonic game which uses
DST was first proposed in [91]. Our work uses a similar methodology for aggregating trust.
However, the main differences between our work and the aforementioned work is that we
never use feedback aggregation to create a community, instead, feedback aggregation is used
after a community has been created in order to aggregate feedback received from IDSs. It is
also worth noting that DST is regarded as a useful approach in uncertain reasoning and is
widely used in trust-based multi-agent applications (e.g., [142] [91] [143] [144] [141]).

In our model, the frame of discernment, which describes the status of a suspicious intrusion
(hypothesis) is Ω= {1, 0, U}. In this set, 1 means that IDS j decides and reports to IDS i

that there is an intrusion, 0 means that IDS j decides and reports to IDS i that there is no
intrusion, and U shows that IDS j is uncertain whether there is an intrusion or not. Each

114

hypothesis is assigned a basic probability value (bpv) between 0 and 1, which is equal to the
credibility score believed by the IDS giving the judgement. For example, assume that IDS c
believes and reports to IDS a that a suspicious intrusion I is an actual attack, then the bpv
for c would be : mc(1) = Ta,c, mc(0) = 0 and mc(U) = 1-Ta,c, where Ta,c is the trust value of
IDS c ∈ N , which is obtained from previous experiences of IDS a with IDS c, as illustrated
in Section 7.3. On the other hand, if IDS c claims that the suspicious intrusion I is not an
actual attack, then the bpv for IDS c would be : mc(1) = 0, mc(0) = Ta,c, and mc(U) =
1-Ta,c.

DST combines multiple IDSs beliefs under the condition that evidences from different IDSs
are independent. For example, if IDSi wants to combine the belief of two IDSs IDS1 and
IDS2 over the same frame of discernment Ω, the combined belief of IDS1 and IDS2 is
calculated as follows [138] :

mIDS1(1)⊕mIDS2(1) = 1
K

[mIDS1(1)mIDS2(1)+

mIDS1(1)mIDS2(U) +mIDS1(U)mIDS2(1)]
(7.10)

mIDS1(0)⊕mIDS2(0) =
1
K

[mIDS1(0)mIDS2(0)

+mIDS1(0)mIDS2(U) +mIDS1(U)mIDS2(0)]

(7.11)

mIDS1(U)⊕mIDS2(U) = 1
K

[mIDS1(U)mIDS2(U)] (7.12)

where,

K = mIDS1(1) +mIDS2(1) +mIDS1(1) +mIDS2(U)

+mIDS1(U) +mIDS2(U) +mIDS1(U) +mIDS2(1)

+mIDS1(U) +mIDS2(0) +mIDS1(0) +mIDS2(0)

+mIDS1(0) +mIDS2(U)

(7.13)

Here is an example. Assume the following :
mIDS1(1) = 0.75 mIDS1(0) = 0 mIDS1(U) = 0.25
mIDS2(1) = 0.6 mIDS2(0) = 0 mIDS2(U) = 0.4

by combining the above two belief functions, we can obtain the result as follows :

115

belief(1) = (0.75 ∗ 0.6) + (0.75 ∗ 0.4) + (0.6 ∗ 0.25) = 0.9
belief(0) = (0 ∗ 0) + (0 ∗ 0.4) + (0 ∗ 0.25) = 0
belief(U) = (0.25 ∗ 0.4) = 0.1
Since belief(1) > belief(0) > belief(U), IDS i will decide that an attack exists.

7.3.3.1 Illustrative Example of Trust Aggregation

This section presents an example that shows how the proposed DST approach allows IDS1

to decide whether a given IDS is trustworthy or not. This example is based on all of the
information shown on Tables 7.1 and 7.2, which indicate the IDSs’ judgments on suspicious
intrusion I and the credibility scores (bpv) of each IDS believed by IDS1, respectively.

Table 7.1 IDSs’ judgments on suspicious intrusion I.

IDS IDS’s Judgement on I
IDS3 Not-attack
IDS4 Not-attack
IDS5 Attack

Table 7.2 Credibility scores of IDSs believed by IDS1.

IDS Credibility (bpv)
IDS3 0.34
IDS4 0.23
IDS5 0.95

IDS1 aggregates all IDSs judgements (or beliefs) on the suspicious intrusion I as follows :

First, let’s combine the beliefs of the IDSs IDS3 and IDS4. We find the bpv for IDS3 and
IDS4 as follows :

mIDS3(1) = 0, mIDS3(0)=0.34, mIDS3(U) = 1-0.34 = 0.66

mIDS4(0) = 0, mIDS4(0)=0.23, mIDS4(U) = 1-0.34 = 0.77

Aggregate IDS3 and IDS4 judgements :

— mIDS3(1)⊕mIDS4(1) = 1
k
[mIDS3(1)mIDS4(1)+mIDS3(1)mIDS4(U)+mIDS3(U)mIDS4(1)]

Where,
K =mIDS3(1)mIDS4(1) + mIDS3(1)mIDS4(U) +

116

mIDS3(U)mIDS4(1) + mIDS3(0)mIDS4(0) + mIDS3(0)mIDS4(U) +
mIDS3(U)mIDS4(0)+mIDS3(U)mIDS4(U)

K =0 * 0 + 0 * 0.77 + 0.66 * 0 + 0.34 * 0.23 +
0.34*0.77+ 0.77*0.23+0.66*0.77 = 1.0253
mc3(1)⊕mc4(1) = 0

1.0253=0

— mIDS3(0)⊕mIDS4(0) = 1
K

[mIDS3(0)mIDS4(0) +
mIDS3(0)mIDS4(U) +mIDS3(U)mIDS4(0)]
K= 1.0253
mIDS3(0)⊕mIDS4(0) = 0.4918

0.8482 = 0.5171

— mIDS3(U)⊕mIDS4(U) = 1
K

[mIDS3(U)⊕mIDS4(U)]
K = 1.0253

mIDS3(U) ⊕ mIDS4(U) = (0.66∗0.77)
0.8482 = 0.5991

Then, we combine the aggregated beliefs of IDS3 and IDS4’s with the beliefs of IDS5 as
follows :

mIDS3,4(1) = 0, mIDS3,4(1) = 0.5171, mIDS3,4(U)= 0.5991

mIDS5(1) = 0.95, mIDS5(1)=0, mIDS5(U) =0.05

— K = mIDS3,4(1)mIDS5(1) + mIDS3,4(1)mIDS5(U) +
mIDS3,4(U)mIDS5(1) + mIDS3,4(1)mIDS5(0) +
mIDS3,4(0)mIDS5(U)+
mIDS3,4(U)mIDS5(0) + mIDS3,4(U)mIDS5(U)

= 0∗0.95+0∗0.05+0.5991∗0.95+0.5171∗0+
0.5171∗0.05+0.5991∗0.05+0.5991∗0.05 = 0.658045

— belief(1)= mIDS3,4(1) ⊕ mIDS5(1) = 0.569
0.658=0.864

— belief(0)= mIDS3,4(0) ⊕ mIDS5(0) = 0.055
0.658= 0.084

— belief(U)= mIDS3,4(U) ⊕ mIDS5(U) = 0.029
0.658= 0.045

117

Although both IDS3 and IDS4 judge that the suspicious intrusion I is "not attack", IDS1’s
belief that I is "attack" is still high after combining IDS3 and IDS4’s belief with IDS5. The
reason is that the credibility of IDS5 is higher than IDS3 and IDS4. This is considered a
strong advantage of using the Dempester-Shafer Theory (DST) for trust aggregation.

7.4 Fairness Assurance

In the previous section, we proposed a framework for forming a trust-based cooperative
cloud-based IDS. In this section, we show how to achieve the fairness among IDSs inside the
community. The purpose of having a fairness assurance mechanism is to prevent the selfish
behavior inside the communities. Such selfish IDSs frequently send consultation requests to
other IDSs and at the same time do not answer other IDSs’ consultation requests with the
aim of saving their own resources. Thus, for the benefit of the community members, there
should be a suitable mechanism that guarantees fairness among the community members.
In fact, fairness assurance can also bring the following two advantages. First, it encourages
IDSs to participate in the community. Secondly, fairness assurance mechanisms can minimise
unnecessary consultation requests, which can be exploited to launch DoS attacks. It is worth
mentioning that the methodology used here is inspired by that used in resource allocation
[156] ; however, different parameters, constraints and formulas are used in order to make it
adequate for trust-based multi-cloud environment and also adequate to model selfish and
well-behaving IDSs.

We formulate in this section the fairness assurance problem as a Stackelberg game [17] bet-
ween the well-behaving IDSs and the selfish ones. We denote a well-behaving IDS by i and a
selfish IDS by j. i plays the leader of the game and starts the game by selecting its consul-
tation rate cij, where cij represents i’s consultation request rate, and it depends on the trust
value of j with respect to i. The selfish IDS j is the follower that observes the leader’s stra-
tegy and chooses its best response to it in terms of response rate denoted by rji. Table 7.3
summarizes the different notations that are used in this section.

The game is modeled as an optimization problem and the backward induction reasoning is
used to find the optimal actions of both the well-behaving and selfish IDSs. This is achieved
by extracting first the best response of j to the observed action of i and then merging this
best response to i’s optimization problem to help it chose the optimal response rate. This
means that the well-behaving IDS i expects that the selfish IDS will play his best responses
to i’s consultation rate strategy and adds this information into its optimization problem to
chose the optimal response rate strategy.

118

Table 7.3 Notations

Symbol Significance
i Normal IDS
j Selfish IDS
cij Consultation request rate of IDS i to j
rij Response rate of IDS i to j’ consultation request rate
rji Response rate of IDS j to i’ consultation request rate
Mi Total out-bound communication rate of i
Mj Total out-bound communication rate of j
Nj A set of IDSs in the same community as j
Ni A set of IDSs in the same community as i
Tij the trust value of the selfish IDS j with respect to i

Sati(rji) the satisfaction of the well-behaving IDS i to j’s response rate rji

Let us first fix the well-behaving IDS i’s policy to a certain policy cij. cij represents the
consultation rate of i. After observing cij, j needs to solve the following optimization problem
in order to determine its optimal response to cij :

argmax
∑
i∈Nj

Tij Sati(rji)

Subject to :
∑
i∈Nj

rji ≤Mj

rji ≤ cij

rji ≥ 0

(7.14)

The above optimization problem aims to find the optimal response rate rji (output) of the
selfish IDS j to i’ consultation request rate. The optimization problem uses the satisfaction
of the well − behaving IDS i to j’s response rate (Sati) and the trust value of the selfish
IDS j with respect to i (Tij) as input. Nj is the set of well-behaving IDSs that belong to the
same community as j and Mj denotes the maximum communication rate of the selfish IDS
j. The satisfaction function Sati(rji) is defined as follows :

Sati(rji) = log2(1 + rji
cij

) (7.15)

The logarithmic function indicates that the well-behaving IDS i becomes more satisfied when
j increases its response rate to i’s consultation requests. Since the utility function given in
(Eq. (7.15)) is strictly convex in ~rj and the feasible set is convex, the optimization problem
can be considered as a convex optimization problem and hence accepts a unique solution.

119

We can see that when the first constraint (∑i∈Nj
rji ≤Mj) of the optimization problem (Eq.

(7.14)) is an inactive constraint, which happens when Mj is very large, the solution will be
equal to rji = cij. However, when

∑
i∈Nj

rji ≤Mj is an active constraint, the solution can be
achieved by forming a Lagrangian function as follows :

Lj(~rj, λj, φji, µji) =
∑
i∈Nj

Tij(1 + log
rji
cij

)−

λj(
∑
i∈N|

(rji −Mj) −
∑
i∈N|

(φji(rji − cij))

+
∑
i∈N|

µjirji)

(7.16)

where λj, φji, µji ∈ R+ satisfy the complementarity conditions λj(
∑(rji−Mj)) = 0, φji(rji−

cij) = 0 and µjirji =0, for all i ∈ Nj.

The optimization problem in (14) with its constraints is equivalent to finding solutions for
the following set of equations :

arg m
~rj

aximize Lj(~rj, λj, φji, µji)

Subject to : λj(
∑
i∈Nj

(rji −Mj)) = 0

φji(rji − cij) = 0, ∀i ∈ Nj
µjirji = 0, ∀i ∈ Nj

(7.17)

We maximize the above Lagrangian optimization problem and get the first-order Kuhn-
Tucker condition :

Tij
rji + cij

= λj + φji − µji (7.18)

When the first constraint (∑i∈Nj
rji ≤Mj) of problem (14) is active and the second constraint

(rji ≤ cij) of the same problem is not, the closed-form solution is supported with the equality
condition :

∑
i∈Nj

(rji −Mj) = 0 (7.19)

and hence, we get the optimal solation

120

r∗ji := Tij∑
v∈Nj

(Tvj)
(Mj +

∑
u∈Nj

cuj)− cij (7.20)

Let’s move now to the well-behaving IDS’s side (IDS i). IDS i knows that j will play its best
response r∗ji to the i’s strategy (consultation request rate) cij and incorporates this knowledge
into its optimization problem to determine the solution rij that maximizes its own payoff.
Thus, the IDS i has to solve the following problem :

m
~ri

aximise
∑
j∈Ni

rij

Subject to : rij ≤ max(r∗ji, cij)∑
j∈Ni

rij ≤Mi

rij ≥ 0

(7.21)

The above optimization problem guarantees that i’s response rate rij to j’s consultation
requests never exceeds the j’s response rate r∗ji unless i has more consultation requests to
be sent to j. This can clearly be shown using the constraint rij ≤ max(r∗ji, cij). We conclude
that i can control its response rate to j’s consultation requests.

Proposition 2. The proposed fairness assurance mechanism can achieve the fairness among
IDSs

Démonstration. In order to behave selfishly, an IDS should frequently send consultation
requests and at the same time do not answer other IDSs’ consultation requests. In other
words, maximizing consultation requests rate and minimizing response rate. The selfish IDS’s
maximization strategy can be undermined by controlling recipient IDS’s response rate using
the constraint rij ≤ max(r∗ji, cij) in the optimization problem (21). On the other hand, the
selfish IDS’s minimization strategy can also be undermined in the optimization problem (14)
using the constraint rji ≤ cij. Thus, the selfish IDS’s consultation request rates and response
rates are controlled by other IDSs (recipient IDSs).

7.5 Experimental Evaluation

In this section, we first explain the setup used to do our experimentation and then study the
performance of the proposed trust-based cooperative intrusion detection approach.

121

7.5.1 Experimental Setup

Our model is implemented in a 64-bit Windows 8 environment on a host equipped with
an Intel Core i7-4790 CPU 3.60 GHz Processor and 16 GB RAM. We used Matlab for
implementing our approach.

In our simulations, we use 100 IDSs. Each IDS is described by two parameters, trust value
t and decision threshold τ . The trust value represents the level of the expertise of the IDS,
which denotes the ability of the IDS to catch suspicious traces from a given observation. The
threshold τ represents the sensitivity of the IDS. Lower values of τ indicate a more sensitive
IDS.

We use a Beta density function to reflect the intrusion detection capability of each IDS (same
used in [11]). A Beta density function is given by :

f(z|α, β) = 1
B(α, β)zα−1(1− z)β−1

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx

(7.22)

α = 1 + t(1− d)
d(1− t)r

β = 1 + t(1− d)
d(1− t)(1− r)

(7.23)

where z ∈ [0, 1] is the assessment result from the IDS about the likelihood of intrusion, and
f (z|α,β) is the distribution of assessment z from an IDS with trust level t to an intrusion
with difficulty level d ∈ [0, 1]. The trust level in the distribution can represent the expertise
level of the IDS. Higher values of d represent these attacks that are difficult to detect. Higher
values of t indicate a higher probability of generating correct intrusion assessments. r ∈ {0,
1} is the expected result of detection. r = 1 means that there is an intrusion and r = 0 means
otherwise.

In order to evaluate the ability of the proposed model in the presence of an untrusted environ-
ment, we made the percentage of untrusted IDSs 70% (trust level t ≤ 0.2). We argue, based on
the recent literature [139], that the percentage of untrusted nodes tends to form the majority
compared to that of trusted nodes. We applied the proposed community formation algorithm
(Algorithm 6) on the considered IDSs. We compared the proposed aggregation approach with
other known aggregation approaches in the state-of-the-art : Majority aggregation model [62]
and the weighted average aggregation model [96]. In the majority model, the IDS collects
feedback from IDSs about suspicious behaviour and the decision is made (i.e., attack or not)

122

according to the majority. However, in the weighted average aggregation model, weights W
are assigned to feedbacks from different IDSs to distinguish their detection capability. Highly
trusted IDSs are assigned with larger weights compared to low trusted IDSs. The decision is
made according to the following equation. If (Σn

k=1 Wkyk) / (Σn
k=1 Wk) ≥ τ , the decision is

the existence of an attack. Otherwise, the decision is that there is no attack, where Wk is the
weight of the k-th IDS and yk is the feedback from the k-th IDS.

7.5.2 Experimental Results

In Figure 7.3, we observe that the proposed Dempster-Shafer aggregation approach shows a
significant enhancement for the false negative rate, compared to the majority and weighted
feedback aggregation models. The results are given for different threshold values τ . Also, in
Figure 7.4, our model yields a significant enhancement for the false positive rate, compared
to the majority and weighted feedback aggregation models. This is due to the fact that the
proposed feedback aggregation (i.e., Dempster-Shafer) ignores the untrustworthy feedbacks
while building the final decisions. Moreover, Dempster-Shafer puts a weight for each feedback
according to the level of the trustworthiness of the IDS giving this feedback.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 N

eg
at

iv
e

R
at

e

Majority
Weighted
Our model

Figure 7.3 False Negative Rate : Comparison of three aggregation models.

In Figure 7.5 and Figure 7.6, we also study the impact of the expertise level (i.e, trust value)
on the detection accuracy. To achieve that, we execute the proposed trust-based community
formation algorithm (Algorithm 6) many times. Each time, we allow IDSs to have different
values of t. This experiment is performed with different threshold values τ . Figure 7.5 shows

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 P

os
iti

ve
 R

at
e

Majority
Weighted
Our model

Figure 7.4 False Positive Rate : Comparison of three aggregation models.

that the false negative rate decreases when the level of the trustworthiness of an IDS in-
creases. Also, Figure 7.6 shows that the false negative rate decreases when the level of the
trustworthiness of an IDS increases. This is due to the fact that whenever an IDS becomes
more trusted, the probability to give the right feedback about suspicious intrusions increases.

Figure 7.7 provides comparison between the proposed coalitional game model and the trust-
based Grand community approach. The latter considers all existing IDSs during the coope-
ration. In other words, the community contains all IDSs. Therefore, the feedback is received
from all IDSs and the final decisions are made using the Dempster–Shafer aggregation ap-
proach. This is unlike our model where we first run a trust-based community formation
Algorithm (Algorithm 6) and reduce the number of IDSs inside the community. The result
shows that the proposed model yields an improvement for both the false positive and false
negative rates compared to the trust-based Grand community approach. This is due to the
fact that the proposed approach reduces the rate of untrusted IDSs inside the community.
Therefore, the received feedback is more likely to reflect the real status of any suspicious
intrusion, whether it is a real attack or not. However, for the Grand community approach,
the feedback is received from all IDSs. Thus, the chance of receiving incorrect feedback in-
creases. We also study the cost associated with using each approach in Figure 7.7. The cost
here means the time needed to make a judgment about a suspicious intrusion. The result is
projected in a range between 0 and 1. The proposed approach gives a low overhead compared
to the Grand community approach. The is justified by the fact that our approach reduces un-
necessary consultation requests. Only those trusted IDSs are consulted. Unlike in the Grand

124

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
al

se
 N

eg
at

iv
e

R
at

e

Threshold = 0.3
Threshold = 0.6
Threshold = 0.9

Figure 7.5 False Negative with the variations of Trust Values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
al

se
 P

os
iti

ve
 R

at
e

Threshold = 0.3
Threshold = 0.6
Threshold = 0.9

Figure 7.6 False Positive with the variations of Trust Values.

125

Cost False Negative False Positive
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
at

e|
C

os
t

Trust-based Coalitional Game (Our model)
Trust-based Grand Coalition

Figure 7.7 Comparison of two community formation models.

5 10 15 20 25 30 35 40

Increase percentage of consultation rate

40

50

60

70

80

90

100

110

C
os

t

Response rate = 30%
Response rate = 40%
Respose rate = 50%

Figure 7.8 Cost with regards to the increase in the percentage of consultation rate.

126

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trust value

5

10

15

20

25

30

B
en

ef
it

Our model
Non-incentive based approach
Rondom-based approach

Figure 7.9 Benefit with regards to the trust value.

community approach where a consultation about suspicious intrusion is sent to all available
IDSs.

To evaluate the proposed fairness assurance mechanism, we made some IDSs to behave
selfishly by assuming that they will not answer other IDSs’ consultation requests, while
at the same time they keep sending consultation requests. In Figure 7.8, we show how the
proposed fairness assurance mechanism can be used to minimize the selfish behavior. Figure
7.8 shows the cost (i.e., time) incurred by increasing the selfish IDSs’ consultation rates.
The cost here represents the average amount of consultation requests that have never been
answered by the receiving IDSs. The results show that the selfish IDSs have no incentive
to increase the percentage of consultation requests in such a way that exceeds the amount
specified by well-behaving IDSs (according to equations 14 and 21). The study is presented
to different normal IDSs’ response rates. We can see from the figure that this cost increases
as the selfish IDSs’ consultation rates increase from 5% to 40%. The linear relationships
indicates that any given change in the selfish IDSs’ consultation rate will always produce a
corresponding change in the cost.

In Figure 7.9, we compare the proposed Stackelberg fairness assurance model with two other
approaches, namely random and non-incentive ones. The random-based approach enables
IDSs to set the response rates given to other IDSs randomly, regardless of the latter’s trust
values. However, in a non-incentive approach, the response rates are equally assigned to each
IDS regardless of their trust values as well. Our approach performs differently by assigning
response rates to other IDSs based on their trust values. Obviously, Figure 7.9 shows that our

127

model enables IDSs having higher trust values to gain a better chance to get more benefits.
The benefit here describes the percentage of consultation requests answered by the consulted
IDSs. This indicates that the proposed model is incentive-compatible, since it gives privileges
to those IDSs that have high trust values to obtain more benefits, which encourages them to
participate in the community formation process. The results show also that the random-based
approach is neither fair nor incentive-compatible since it allows IDSs with low trust values to
receive more benefits than those IDSs having high trust values. For example, the IDS with
a trust value 0.2 received benefits of 18, which is higher than those having trust values of
0.6 (that have yielded benefits amounting to 10). Also, the non-incentive based approach
is not incentive-compatible since the benefit distribution to IDSs is uniform without giving
privileges based on IDSs’ trust values.

7.6 Conclusion

This paper investigates a novel trust-based cooperative IDS in a multi-cloud environment.
To this end, we propose a cooperative game-theoretical framework. The framework enables
an IDS to evaluate the trust values of other IDSs using bayesian inference. We devise also a
community formation algorithm, based on the coalitional game theory. The algorithm enables
IDSs to join and/or leave a given community in such a way that enhances their ability to work
with trusted IDSs. The proposed algorithm converges to a Nash-stable situation ; that is, no
IDS has an incentive to leave its current community and move to another one. Furthermore,
we propose a trust aggregation algorithm, based on the Dempster-Shafer Theory (DST), to
enable an IDS inside a community to aggregate feedbacks about suspicious attacks in order
to make the optimal decision in terms of detection accuracy. In addition, we formulate a
fairness assurance mechanism as a Stackelberg game between the well-behaving IDSs and
the selfish ones (that frequently send consultation requests to other IDSs and at the same
time do not answer other IDSs’ consultation requests). Experimental results show that the
proposed fairness assurance mechanism can encourage IDSs to participate in the community
and reduce unnecessary consultation requests that can be exploited to launch DoS attacks.
Moreover, the results show the effectiveness of the proposed approach in terms of minimizing
false positive and false negative rates, and minimizing the time needed to judge suspicious
attacks. Finally, the results reveal the effectiveness of the proposed fairness mechanism in
terms of achieving fairness among IDSs in terms of benefits obtained through cooperation.

128

CHAPTER 8 ARTICLE 5 : A DEEP LEARNING APPROACH FOR
PROACTIVE MULTI-CLOUD COOPERATIVE INTRUSION DETECTION

SYSTEM

Adel Abusitta, Martine Bellaïche, Michel Dagenais, and Talal Halabi
Future Generation Computer Systems (Submitted).

Abstract

The last few years have witnessed the ability of cooperative cloud-based Intrusion Detection
Systems (IDS) in detecting sophisticated and unknown attacks associated with the complex
architecture of the Cloud. In a cooperative setting, an IDS can consult other IDSs about
suspicious intrusions and make a decision using an aggregation algorithm. However, undesired
delays arise from applying aggregation algorithms and also from waiting to receive feedback
from consulted IDSs. These limitations render the decisions generated by existing cooperative
IDS approaches ineffective in real-time, hence making them unsustainable. To face these
challenges, we propose a machine learning-based cooperative IDS that efficiently exploits
the historical feedback data to provide the ability of proactive decision making. Specifically,
the proposed model is based on a Denoising Autoencoder (DA), which is used as a building
block to construct a deep neural network. The power of DA lies in its ability to learn how to
reconstruct IDSs’ feedback from partial feedback. This allows us to proactively make decisions
about suspicious intrusions even in the absence of complete feedback from the IDSs. The
proposed model was implemented in GPU-enabled TensorFlow and evaluated using a real-
life dataset. Experimental results show that our model can achieve detection accuracy up to
95%.

8.1 Introduction

The complex architecture of cloud computing systems make them vulnerable to many kinds
of attacks. Recently, promising results have shown that the use of cooperative Intrusion
Detection Systems (IDSs) can improve the detection accuracy compared with the traditional
single IDSs [67] [11] [12]. This is due to the fact that it is becoming largely difficult for a single
IDS to detect all existing attacks [11] [12], due to its limited knowledge of such attack patterns
and implications. The cooperation among IDSs that belong to different Cloud Providers (CPs)
can be achieved by allowing them to exchange their intrusion analysis feedback and exploit

129

each other’s expertise to cover unknown threat patterns, thus achieving mutual benefits.

Unfortunately, there are considerable delays associated with the use of existing cooperative
IDSs. These delays are mostly due to the computation complexity of using the aggregation
algorithms such as Dempster-Shafer Theory (DST), and also the large geographic distances
that might separate the IDSs. In fact, each IDS, after receiving feedback from consulted IDSs
about a suspicious intrusion, is required to use a suitable feedback algorithm, in order to
make a final decision about the suspicious intrusion. The aggregation technique is usually
costly in terms of computation time and depends on many factors such as the number of
consulted IDSs, the IDSs’ expertise and trust levels [11] [12]. Moreover, due to uneven IDSs’
connections and Internet speeds and other unknown factors (e.g., busy IDSs, compromised
IDSs), there is no guarantee that feedback will be received simultaneously. Thus, decisions on
whether or not to rise an alarm about suspicious intrusions might be excessively delayed due
to the missing feedback of a single IDS. Hence, the decisions generated by the cooperative
IDS are ineffective in a real-time setting, making it unsustainable.

To overcome these limitations, we design a proactive multi-cloud cooperative IDS that inte-
grates a machine learning-based approach. The proposed model exploits the historical feed-
back to predict the status of suspicious intrusions. This can be done proactively without
having to apply any aggregation method on consulted IDSs’ feedback, nor having to wait
until receiving all the feedbacks from the consulted IDSs, i.e., only partial or incomplete
feedback can be used to predict the status of suspicions intrusions. This, in turn, makes
our solution reliable and feasible in real-time environments, where decisions about intrusions
must be taken rapidly in order to effectively apply the required action measures at the right
time. However, due to the structure of used data, which are collected from many IDSs with
different expertise and trust levels, and due to the fact that decisions regarding suspicious
intrusions must be taken despite the existence of missing feedback, the use of traditional
machine learning techniques (e.g., SVM) for such a problem produces inaccurate results in
terms of prediction accuracy [157][158]. For this purpose, we propose a deep learning ap-
proach that consists of multiple layers to learn the representation of the data with multiple
levels of abstraction [157][158]. This allows us to learn how to obtain a “good” representation
of the data to be used later as inputs to supervised machine learning techniques in order to
achieve better detection accuracy [159] [160] [161] [18][19].

More particularly, our model is based on Stacked Denoising Autoencoders (SDAE), where a
denoising autoencoder is used as a building block to train a deep network [18][19]. Our model
exploits the fact that a denoising autoencoder can learn how to reconstruct original inputs
giving partial data inputs, by allowing deep neural networks to learn (during unsupervised

130

pre-training stage) how to extract features that are robust to incomplete IDSs’ feedback.
Such robust features can be seen as useful representations of data to yield a better intrusion
detection accuracy in such real-time environments. This makes our detection model proac-
tive on two levels : (1) by making decisions about suspicious intrusions even with missing
feedback, and also (2) by making decisions without having to apply any aggregation method
on consulted IDSs’ feedback. Our contributions are summarized as follows :

— Proposing a cooperative intrusion detection model (based on stacked denoising autoen-
coders) that enables making decisions about suspicious intrusions even with partial
IDS’s feedback. This, in turn, accelerates the decision making in real-time environ-
ments.

— Designing a proactive multi-cloud cooperative IDS, which allows us to make decisions
about suspicious intrusions proactively, i.e., without the need to apply aggregation
methods on IDSs’ feedback.

— Proposing an approach to extract robust features that yield a better performance in
cooperative intrusion detection.

— Evaluating the effectiveness of the proposed solution using a real-life dataset, and
comparing our results with those generated with other approaches.

Our model has been implemented in GPU-enabled TensorFlow and evaluated using a real-life
dataset. The results show the effectiveness of the proposed approach in terms of enhancing the
accuracy of the detection compared to the state-of-the-art deep architectures : Multi-Layer
Perceptron (MLP) and Stacked Auto Encoders (SAE).

The remainder of this paper is organized as follows. In Section 8.2, the related work is
introduced. The proposed cloud-based cooperative intrusion detection system is presented in
Section 8.3. Experimental results show the effectiveness of the proposed approach in Section
8.4. Finally, Section 8.5 concludes the paper.

8.2 Background and Related Work

Cloud-based IDSs can be divided into two categories : signature-based and anomaly-based
[1]. The former compares suspicious activity with known attack patterns. To make signature-
based IDSs effective, the database of signatures should be updated repeatedly. On the other
hand, anomaly-based IDSs raise alarms when unexpected behaviours have been detected.
Anomaly-based IDSs are efficient in detecting unknown attacks. A database of known attacks
is not required for this approach. However, the shortcoming of this ssolution lies in the relative
high false positive rate compared with the signature-based technique [11]. In fact, IDSs may

131

use both techniques to enhance their detection accuracy. However, the detection accuracy
is limited by the amount of information held by the IDSs. Recent research has shown that
the collaborative detection can enhance the detection rate up to 60% [11] [23]. This section
presents the state-of-the-art of the cloud-based cooperative IDSs.

In multi-cloud cooperative IDSs, Lo et al. [62] propose a detection approach that exchanges
alerts among different nodes (i.e., hosts) whenever an attack is detected. They adopt a rule-
based technique to detect SYN attacks by fetching the threshold for rule patterns through
the initial rule establishment phase. The advantage of this approach is that it is can be used
to distribute the detection overhead between the nodes. Also, Teng et al. [61] proposed an
approach that aggregates two detectors : a feature detector and a statistical detector. The
former uses SNORT to separate events based on transmission control protocols such as TCP.
The later cooperates with the former by using packets from it to decide whether an event is
an attack or not. A predefined threshold is set for this purpose. An attack is considered in
cases where the rate of packets obtained exceeds the threshold.

Deep learning approaches for intrusion detection system were recently proposed in several
works [162] [163] [164] [165] [166][167] [168]. However, these approaches have the same problem
of single IDS, as they cannot detect all existing attacks [11] [12] due to their limited knowledge
about all attack patterns and implications.

Man and Huh [63] and Singh et al. [64] designed a cloud-based cooperative IDS between
different regions. The model allows alerts to be exchanged from multiple detectors. Also,
knowledge are allowed to be exchanged between interconnected clouds. Ghribi [65] proposed
a middle-ware IDS that allows a cooperation between different layers : Hybervisor-based,
Network-based and VM-based IDS. If an intrusion is found in a layer, the propagation of
such intrusion to the other layers could be prevented. Moreover, Chiba et al. [66] designed
a network-based cooperative IDS, which is used to identify network intrusions in the cloud
environment. This can be achieved through monitoring network traffic while maintaining
and/or guaranteeing Quality of Services (QoS) and performance [66].

In a multi-cloud environment, Dermott et al. [67] proposed a cooperative intrusion detection
in multi-cloud environments. The Dempster-Shafer theory of evidence is used to collect and
aggregate the beliefs received by the monitoring entities. The received beliefs are used to
make the final decision regarding a possible intrusion. This approach has a limitation : its
centralized-based architecture, whereby a trusted third-party is responsible for aggregating
feedback and managing cloud-based intrusion detection system.

A trust-based cooperative IDS was proposed for a non-cloud environment. For example, Fung
and Zhu [11] designed trust-based cooperative IDS. Through cooperation, a local Intrusion

132

Detection System (IDS) can detect new attacks that may be unknown to other IDSs. They use
the diagnosis from different IDSs to perform intrusion detection. They present a system archi-
tecture of a collaborative IDS in which trustworthy feedback aggregation is a key component
[11]. Also, Zhu et al. [70] [71] designed an incentive-based communication protocol, which
provides IDS nodes incentives to send feedbacks to their peers thus preventing malicious
behaviors. The limitation of the existing trust-based cooperative IDS is that they consider a
consultation request to be sent to a large number of IDSs in order to get a feedback. However,
this approach causes extra overhead as some IDSs are needlessly consulted. We address this
point by allowing an IDS to make a decision regarding suspicious intrusions without having
to wait until receiving all the feedbacks from the consulted IDSs. Also, Abusitta et al.[12]
propose a framework that allows cloud-based IDSs to distributively form trustworthy IDSs
communities. For this purpose, they propose an algorithm based on the cooperative game
theory : it allows a set of IDSs to cooperatively set up their coalition in such a way to allow
their individual detection accuracy increase, despite the presence of untrusted IDSs.

Overall, for a multi-cloud environment, a proactive cooperative IDS has yet to be designed.
This proactive approach is useful in real-time environments, where fast decisions must be
taken. In this work, the proactive aspect was achieved in two ways : 1) making decisions
about suspicious intrusions proactively without having to apply aggregation methods on IDSs’
feedback ; and 2) making decisions about suspicious intrusions in the absence of complete IDS
feedback.

8.3 The Proposed Proactive Multi-cloud Cooperative IDS

8.3.1 System Model

In multi-cloud cooperative IDS, a cloud-based IDS can consult other cloud-based IDSs about
suspicious intrusions and aggregate the received feedback to make a decision using an ag-
gregation algorithm. Fig. 8.1 shows the high level architecture of the proposed cooperative
IDS. As illustrated, CP4 has a list of several CPs which are open to cooperation. CP4 sends
a consultation request to its whitelist for intrusion diagnosis. The recipient IDSs send their
feedback (attack or not) to the CP4’s IDS, which then uses an aggregation method such as
the Dempster-Shafer Theory (DST) [16] for feedback aggregation.

In this paper, we are looking for a proactive approach in order to reduce delays associated with
the architecture of multi-cloud cooperative IDS. These delays mostly come from the large
geographic distances that might separate cloud-based IDSs and the computation complexity
of using the aggregation algorithms, especially when the number of consulted IDSs is large

133

Figure 8.1 Architecture of the proposed cooperative IDS

[11] [12]. To this end, we propose a proactive multi-cloud cooperative IDS that is based on
machine learning approach. The proposed model exploits the historical feedback to predict
the status of suspicious intrusions. In this solution, decisions can be taken proactively without
having to apply an aggregation method on the received feedback an it eliminates waiting time
to obtain all the feedbacks from the IDSs.

The subsequent subsections will present the proposed model. We first present the concept of
traditional autoencoders followed by the proposed feedback-based denoising autoencoders,
where we will show how to train an autoencoder using unsupervised data to enable the
extraction of the features that are robust to incomplete feedback. Then, we will introduce
the stacked denoising autoencoders and fine-tuning process and show how to stack denoising
autoencoders in order to build deep neural networks to be used to proactively make decisions
about suspicious intrusions.

8.3.2 The Traditional Autoencoders

An autoencoder is an unsupervised learning approach that is used to learn efficient and re-
liable data codings [169]. It is used to pre-train each layer in a deep neural network in order
to obtain better initial weights that lead to a better performing classification [161]. Resear-
chers have seen that weights initialization using autoencoders can improves the performance
of deep neural networks compared to random initialization [161].

The structure of an autoencoder is shown in Fig. 8.2. The dimensions for both input (IDSs’

134

Figure 8.2 Example of an autoencoder.

feedback) and output (reconstruction of IDSs’ feedback) are the same as shown in the figure.
An autoencoder is used as a building block for deep networks [161]. In particular, it takes
input vector (IDSs’ feedback) x ∈ [0, 1]d , where d is the vector dimension, and maps it to a
hidden representation h ∈ [0, 1]d′ using the following equation :

h = fθ(x) = Sigmoid(W ∗ x+ b) (8.1)

θ = {W, b}, W is a weight matrix and b is a bias vector. After that, the resulting hidden
layer representation h will be reconstructed to the output layer x′ using a decoding function
as follows :

x′ = gθ′(h) = Sigmoid(W ′ ∗ h+ b′) (8.2)

θ′ = {W ′, b′}, W ′ and b′ are a weight matrix and a bias vector of the reverse mapping,
respectively. The weight matrix W ′ of the reverse mapping may optionally be constrained
by W ′ = W T , in which case the autoencoder is said to have tied weights [161] [19]. Each
training x is thus mapped to a corresponding h and a reconstruction x′ .

135

The purpose of the model is to optimize the parameters (θ and θ′) of the model, so that the
reconstruction error between input and output can be minimized. The following optimization
problem is used for this purpose :

θ∗, θ′∗ = arg minθ,θ′
1
n

n∑
i=1

L(x(i), x′(i))

= 1
n

n∑
i=1

L(x(i), gθ′(fθ(x(i))))
(8.3)

where L is a loss function. Since the input vector x is a binary vector (an IDS’s feedback is
either 0 or 1), a reconstruction cross-entropy is used as a loss function [170]. Thus, the loss
function will be described as follows :

L(x, x′) = −
d∑
i=1

[xilogx′i + (1− xi)log(1− x′i)] (8.4)

8.3.3 The proposed IDS-based Denoizing Autoencoders

In order to make an autoencoder robust to the incomplete input (IDSs’ feedback) and also to
prevent it from just learning the identity of the input, the autoencoder should be trained to
reconstruct its IDS’s feedback even if the feedback does not represent the whole IDSs’ feedback
(some feedback are not available). The autoencoder that deals with corrupted version of input
is called a denoising autoencoder [19]. This can be achieved by adding noise to the initial
input x before passing it to the hidden layer in order to reconstruct x, where x are IDSs’
feedback. Thus, a partially corrupted version z will be obtained from x as follows :

z = qD(x) (8.5)

Where qD is a corruption process [19]. In our model, we use Masking Noise (MN) for the
corruption process as it is considered a useful method to represent incomplete IDS’s feedback
[18]. In MN noise, a fraction v (selected at random) of each input x is forced to 0, while
the others remain untouched. In fact, other noise can also be used (e.g., Gaussian noise).
However, MN is more useful to simulate incomplete IDSs’ feedback [18] since the noise will
change only partial feedback.

The traditional autoencoder is then used to take corrupted data z and try to learn how to
reconstract x. This is done by allowing the input z to be mapped to a hidden representation
as :

136

Figure 8.3 IDS-based denoising autoencoder architecture.

h = fθ(z) = Sigmoid(W ′ ∗ z + b′) (8.6)

Note that we selected z as input instead of x as a traditional autoencoder was used. The
result of the above equation h is then used to reconstruct x′ as follows :

x′ = gθ′(h) = Sigmoid(W ∗ h+ b) (8.7)

The denoising autoencoder architecture is described in Fig. 8.3. As given in the traditional
autoencoder, the parameters are trained to minimize the average reconstruction error :

θ∗, θ′∗ = arg minθ,θ′
1
n

n∑
i=1

L(z(i), x′(i))

= 1
n

n∑
i=1

L(z(i), gθ′(fθ(z(i))))
(8.8)

The above equation is then re-written by considering cross-entropy as loss function :

L(z, x′) = −
d∑
i=1

[zilogx′i + (1− zi)log(1− x′i)] (8.9)

The training algorithm of the proposed IDS-based denoising autoencoder is presented in
Algorithm 7. As we can see in the algorithm, for the raw inputs x, randomly selected parts
of them will be set to 0 as corrupted inputs z. The corrupted input z will be then encoded
to the hidden code and then reconstructed to the output. However, at this point, x′ is a

137

deterministic function of z rather than x. The reconstruction is computed between z and
x is denoted by L(x, x′) (Same as with the autoencoder). The parameters of the model are
initialized randomly and then optimized by stochastic gradient descent algorithms.

Algorithm 7: IDS-based Training Denoising Autoencoder
procedure Training-DA(x, l, e, b, θ)
— x= [x1, x2, ...xn] : Input IDSs’ feedback
— l : learning rate
— e : Amount of epoches to be iterated
— b : Amount of batches
— θ={W, b, bh}
for i from 0 to e do

for j from 0 to b do
— z = CorruptInput(x, c) : c is corruption level
— h = s(z ∗W + b)
— x′ = s(h ∗WT + bh)
— L(x, x′)= −

∑d
i=1[xilogx

′
i + (1− xi)log(1− x′i)]

— cost = mean(L(x, x′))
— g=compute the gradients of the cost w.r.t θ

for θi,gi ∈ (θ,g) do
— θi = θi - l ∗ gi

end
end
end

end procedure

8.3.4 The proposed IDS-based Stacked Denoising Autoencoders

An autoencoder is used as a building block for unsupervised training of deep networks [161].
Such an architecture is called as Stacked AutoEncoder (SAE) [161]. The purpose of having
an autoencoder as a building block to the deep network is to support the pre-training process
[161], which is used to initialize the parameters of the deep network before applying supervised
learning algorithms. Although Restricted Boltzmann Machine (RBM) (RBM)[171] can also
be used as a building block for deep networks, SAE is considered much simpler and easier
than RBM [161].

The initialization of deep networks parameters using SAE leads to a better classification ac-
curacy compared to Multi-Layer Perceptron (MLP) [172], which does not use a pre-training
process (all of the parameters are initialized randomly). In SAE, each layer’s input is obtained
from the previous layer’s output. Fig. 8.4 shows the first step of a SAE. It trains an autoen-
coder on raw input x to learn h1 by minimizing the reconstruction error L(x, x′). Once the
parameters W1 and W ′

1 of the autoencoder are obtained using the gradient descent algorithm
[173], a new layer can be added, as shown in Fig. 8.5. In Fig. 8.5, the hidden representation

138

h1 will be an input to train the second autoencoder by minimizing the reconstruction error
L(h1, h

′
1). This figure clearly shows that the error is calculated between the output h′1 and

the previous latent feature representation h1.

Once the parameters W2 and W ′
2 of the second autoencoder are obtained using the gradient

descent algorithm, the new hidden representation h2 will become the raw input for the next
autoencoder. These steps can be repeated until the last hidden layer (the output of the last
autoencoder) is reached. To determine the number of layers required to build a IDS-based
deep neural network, we keep adding layers until no improvement has been achieved in the
test error [18] [19] [161]. The last hidden layer represents a “good” representation of data
that can be used as input for any supervised learning algorithm [161] [174].

The procedure to train a deep network using the proposed IDS-based denoising autoencoders
as a building block (Fig. 8.6) is similar [18] [19]. Its only difference resides in the fact that
each layer is trained, i.e., to minimize the criterion in Eq. (8.8) instead of Eq. (8.3). Note that
the corruption process qD is used only during training, but not to propagate representations
from the raw input to higher-level representations. Note also that when the layer k is trained,
it receives as input the uncorrupted output from the previous layers. In Fig. 8.6, after training
the first block of denoising autoencoder as shown in Fig. 8.3, the learned encoding function
fθ is used on clean input x as shown in Fig. 8.6 (left). The resulting representation is used
to train the second block of denoising autoencoder as shown in Fig. 8.6 (right), to learn the
second layer encoding function f

(2)
θ . The process can be repeated for the next layers (Fig.

8.7).

The pre-training process is shown in Algorithm 8 : once the mapping function fθ is learnt
using Algorithm 7, the function will be used on IDSs’ (complete) feedback to generate the
values of the second layer (first hidden layer). These values will then be used as inputs to
train the next layer (using Algorithm 7) to generate the second mapping function f (2)

θ . This
function will be used to generate the values of the third layer (second hidden layer). These
values will also be used as inputs to train the next layer (using Algorithm 7) to generate
the third mapping function f (3)

θ . The same steps can be applied for the whole set of hidden
layers.

8.3.5 The proposed IDS-based Fine-tuning and Detection

Once the last hidden layer is trained as shown in the previous section, the parameters (ge-
nerated from Algorithm 8) are used to initialize deep networks. The deep network is now
ready to apply supervised machine learning such as SVM or a logistic regression. This can
be done by adding a predictor to the last layer. In this work, we use a logistic regression

139

Figure 8.4 Step 1 in Stacked Denoising Autoencoders.

Figure 8.5 Step 2 in Stacked Denoising Autoencoders.

solution as it can lead to better results in binary classifications [175]). To this end, a layer
of logistic regression should be added, as shown in Fig. 8, to generate a deep neural network.
The parameters of the all layers will then be fine-tuned to minimize the error to predict
the supervised status (i.e., attack or not) using back-propagation algorithm. The fine-tuning
algorithm is depicted in Algorithm 9.

140

Figure 8.6 Stacking denoising autoencoders. on the left, the encoding function fθ, which has
been learnt in Fig. 8.2, is used on clean input x. on the right, The resulting representation is
used to train a second block denoising autoencoder.

Algorithm 8: IDS-based Unsupervised Pre-Training Algorithm
procedure Pre-Training(x,l,e,b,h,Θ)
— x= [x1, x2, ...xn] : Input IDSs’ feedback
— h=[h1, h2, ...hz] ∈ Zl

— Θ = [θ1, θ2, ...θz],
— Where θi = {Wi, bi, bhi}
— O=[O1, O2, ...Ol] is the output of each hidden layer, where Oi=[oi,1,oi,2, ... oi,n]
— θ1 = Training-DA (x, l, e, b, θ1)
for i from 1 to n do

— o1,i=Sigmoid(xi*W1+bi)
for j from 2 to l do

— θj = Training-DA(Oj−1,l,e,b,θj)
for i from 0 to n do

— oj,i=σ(oj−1*Wj+bj)
end

end
end

end procedure

141

Figure 8.7 The process is repeated for the third block denoising autoencoder.

Algorithm 9: IDS-based Fine Tuning Algorithm
procedure FineTuning(x,l,e,b,h,Θ)
— x= [x1, x2, ...xn]
— h=[h1, h2, ...hz] ∈ Zl

— Θ = [θ1, θ2, ...θz], Where θi = {Wi, bi, bhi}
— O=[O1, O2, ...Ol] : output of each hidden layer, where Oi=[oi,1,oi,2, ... oi,n]
— θ1 = Training-DA (x, l, e, b, θ1)
for epoch from 0 to e do

— cost = 1
|D| = L(θ = W, b,D)

— g = compute the gradient of cost w.r.t θ
for θi,gi ∈ (θ,g) do

— θi = θi - l ∗ gi

end
if validationLoss < bestvalidationLoss then
— bestEpoch=epoch
— bestParameters=θ
— bestvalidationLoss=validationLoss

end
end
return bestParameters

end procedure

142

Figure 8.8 The complete architecture of the proposed IDS-based deep neural network after
adding the last layer.

143

8.4 Experimental Evaluation

This section first describes the setup used to perform the evaluation. Then, the performance
of the proposed proactive multi-cloud cooperative intrusion detection system is examined.

8.4.1 Experimental Setup

The proposed detection model was implemented using TensorFlow. The evaluation was per-
formed using GPU-enabled TensorFlow running on a 64-bit Windows 8 with an Intel Xeon
3.60 GHz processor, 16 GB RAM. To evaluate this model, a dataset containing IDSs’ feed-
back about suspicious intrusions was required. An IDS feedback about a given suspicious
intrusion will be either 1 (if considered as an attack) or 0 (if not). This dataset was created
based on the KDD Cup 99 dataset, where each 1 or 0 in the new dataset corresponds to the
answer of an ID to a given row of the KDD Cup 99 dataset [176].

Once the dataset was created, it was used to train the model. Then, the ability of the proposed
model in making decisions about suspicious intrusions was tested, even in the presence of
partial/incomplete feedback. To represent partial/incomplete IDSs’ feedback, some of the
IDSs’ feedbacks (selected randomly) were left blank. In this case, blanks indicate that some
of IDSs’ feedbacks have yet to be received, due to unexpected delays (busy IDSs, compromised
IDSs, etc.).

The model (SDAE-IDS) was trained to create dataset using the 10-fold cross-validation mo-
del. Table 8.1 shows the parameters used for the experiment.

Table 8.1 Experimentation parameters.

parameter considered values
number of cloud-based IDSs N 70

number of hidden layers h {1, 2, 3}
number of units per hidden layer {70, 140, 210, 280, 350}

corrupting noise level v 30%
learning rate 0.05
output layer binary logistic regression

8.4.2 Experimental Results

The accuracy of the proposed model was first examined and compared with having all the
IDSs’ feedback (complete information). This is important to evaluate the effectiveness of
the proposed model in making decisions given partial or incomplete feedback. Figure 8.9

144

shows that the average accuracy of the proposed model, with a variety of hidden units
(ranging from 70 to 350), was slightly degraded (less than 1.5%). These results suggest that
the proposed machine leaning-based approach can effectively make the right decisions about
suspicious intrusions even in the absence of complete feedback from consulted IDSs. Next,

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

SDAE-IDS (our model)

SDAE-IDS(incomplte information)
SDAE-IDS(complete information)

Figure 8.9 Classification accuracy performance compare to having all the IDSs’ feedback
(complete information) - number of hidden layers = 3.

in Fig. 8.10, this model (i.e., SDAE-IDS) was compared with another approach, namely
Stacked Auto Encoder-IDS (SAE-IDS). SAE-IDS uses traditional autoencoders (illustrated
in Section 8.3.2) as a building block for the deep neural networks. As illustrated in Section 8.3,
in our model (SDAE-IDS), denoising autoencoders are used as building blocks for the deep
neural network. This figure illustrates the classification accuracy to make decisions regarding
suspicious intrusions in the absence of complete feedback from the IDSs. The study was

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

SDAE-IDS (our model)

1 hidden layer
2 hidden layers
3 hidden layers

(a)

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

SAE-IDS

1 hidden layer
2 hidden layers
3 hidden layers

(b)

Figure 8.10 Classification accuracy performance for SDAE-IDS (left) and SAE-IDS (right).
Error bars show 95% confidence intervals.

145

conducted with different numbers of layers and hidden nodes. As shown in Fig. 8.10, our
model yields increased accuracy compared to SAE-IDS. The study was done by considering
three layers (the same number of layers is considered to study the deep neural network in
[18]). More specifically, as for 1-hidden layer, Fig. 8.10a shows that the average accuracy
obtained by the proposed model at different numbers of hidden units (ranging from 70 to
350) is 87.5%. This result is better than the results obtained using 1-hidden layer in SAE-
IDS (72.50%) as shown in Fig. 8.10b. Also, our model yields a improved accuracy compared
to SAE-IDS using 2-hidden layers and 3-hidden layers. More particularly, Fig. 8.10a shows
respectively that the 2-hidden layers’ average accuracy and 3-hidden layers’ average accuracy
obtained by the proposed model at different numbers of hidden units (ranging from 70 to
350) are 91.5% and 92.5%. This result is better than the results obtained using SAE-IDS
(75.50% for 2-hidden layers and 76.5% for 3-hidden layers) as shown in Fig. 8.10b.

Clearly, for both approaches, SDAE-IDS and SAE-IDS, accuracy and the number of layers
increase proportionally : this can be interpreted by the fact that each added layer allows
for more representative data to be used during classification. Moreover, as the number of
hidden units increases, the classification accuracy is enhanced. This is due to the fact that
more hidden units allow more features to be captured from the data, hence enhancing the
accuracy of the detection.

The reason why SDAE-IDS (our model) yields a better accuracy than SAE-IDS is that it uses
denoising autoencoders as a building block for deep neural networks. Denoising autoencoders
allow the deep neural network to extract robust features that lead to a better classification
despite the incomplete feedback given as inputs to the deep neural network [19]. The denoising
autoencoder learned how to reconstruct the feedback from corrupted input. This enables it
to generate a “good” and useful representation despite corrupted input (missing feedback)
thus enhancing the classification. This is not the case with SAE-IDS, as a basic autoencoder
is used as a building block, which is unable to generate useful data from corrupted input.

Figure 8.11 denotes the detection accuracy, comparing our model (i.e., SDAE-IDS) with
multi-layers perceptron (MLP)-IDS. MLP-IDS uses a deep neural network without pre-
training process. Furthermore, the study was conducted with different layers and hidden
nodes. As for 1-hidden layer, Fig. 8.11a shows that the average accuracy obtained by the
proposed model at different numbers of hidden units (ranging from 70 to 350) is 87.5%. This
result is better than the results obtained using 1-hidden layer in MLP-IDS (52.20%) as shown
in Fig. 8.11b. Also our model yields improved accuracy compared to MLP-IDS using 2-hidden
layers and 3-hidden layers. More particularly, Fig. 8.11a shows respectively that the 2- and
3-hidden layers’ average accuracy obtained by the proposed model with different numbers

146

of hidden units (ranging from 70 to 350) are 91.5%. and 92.5%. This result is superior to
those obtained using MLP-IDS (53.20% for 2-hidden layers and 53.50% for 3-hidden layers)
as shown in Fig. 8.11b. The reason is that our model uses pre-training process which allows
the deep network to have better initialization of parameters to be used then during backpro-
bagation and fine tuning. Figures 8.12, 8.13, and 8.14 denote the test classification error with

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

SDAE-IDS (our model)

1 hidden layer
2 hidden layers
3 hidden layers

(a)

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

MLP-IDS

1 hidden layer
2 hidden layers
3 hidden layers

(b)

Figure 8.11 Classification accuracy performance for SDAE-IDS (left) and MLP-IDS(right).
Error bars show 95% confidence intervals.

different numbers of layers. As for 1-hidden layer, Fig. 8.12 shows that the average classifica-
tion error obtained by the proposed model at different numbers of hidden units (ranging from
70 to 350) is 10.40%. This result is better than the results obtained using 1-hidden layer in
SAE-IDS (24.80%) and MLP-IDS (46.50%). Also, our model yields enhanced accuracy com-
pared to SAE-IDS and MLP-IDS using 2-hidden layers and 3-hidden layers. In particular,
Figs. 8.13 and 8.14 respectively show that the 2- and 3-hidden layers’ average accuracy obtai-
ned by the proposed model with different numbers of hidden units (ranging from 70 to 350)
are 9.8%. and 7.20%. This result is superior to those obtained using SAE-IDS (24.70% for
2-hidden layers and 23.5% for 3-hidden layers) and MLP-IDS (46.10% for 2-hidden layers and
45.5% for 3-hidden layers). Moreover, Figures 8.12, 8.13, and 8.14 indicate that the test clas-
sification error decreases as the number of hidden units increases. This is due to the fact that
more hidden units allow for more features to be captured from the data, thus enhancing the
accuracy of detection. Figures 8.15 and 8.16 compare SDAE-IDS (our model) with 3-hidden
layers and two other denoising approaches [177] based on training with noisy input, namely
SAE(1)-IDS and SAE(2)-IDS. SAE(1)-IDS is a 3-hidden-layers SAE-IDS where noisy inputs
were only used for the pretraining [18]. SAE(2)-IDS is also 3-hidden-layers SAE-IDS where
noisy inputs were used for both pretraining and fine-tuning [18]. These results demonstrate
that our framework is also resilient to the increase in the percentage of noises. Figures 8.15

147

100 150 200 250 300 350

Number of hidden units per layer

5

10

15

20

25

30

35

40

45

50

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
) SDAE-IDS (our model)

SAE-IDS
MLP-IDS

Figure 8.12 Test classification error (%) - 1 hidden layer.

100 150 200 250 300 350

Number of hidden units per layer

5

10

15

20

25

30

35

40

45

50

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
) SDAE-IDS (our model)

SAE-IDS
MLP-IDS

Figure 8.13 Test classification error (%) - 2 hidden layers.

100 150 200 250 300 350

Number of hidden units per layer

5

10

15

20

25

30

35

40

45

50

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
) SDAE-IDS (our model)

SAE-IDS
MLP-IDS

Figure 8.14 Test classification error (%) - 3 hidden layers.

148

and 8.16 respectively show that the accuracy and test classification error obtained by the
proposed model at different percentages of corruption (from 0 % to 40%) are 89.2% and
9.8%. These results are better than those obtained using SAE(1)-IDS (69.7% for accuracy
and 30.3% for classification accuracy) and SAE(2)-IDS (65.4% for the accuracy and 34.6%
for test classification error). Note that when the percentage of corrupted inputs equals 0%,
the three models (SAE(1)-IDS, SAE(2)-IDS and SDAE-IDS) yield the same results in terms
of accuracy and error rate due to the fact that when 0% is applied, the three stacked models
will be the same as SAE [18].

0 5 10 15 20 25 30 35 40

Fraction of corrupted input (%)

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

SDAE-IDS (our model)
SAE(1)-IDS
SAE(2)-IDS

Figure 8.15 SDAE-IDS vs. training with noisy input. Hidden layers have 350 units each

0 5 10 15 20 25 30 35 40

Fraction of corrupted input (%)

5

10

15

20

25

30

35

40

45

50

55

60

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

SDAE-IDS (our model)
SAE(1)-IDS
SAE(2)-IDS

Figure 8.16 SDAE-IDS vs. training with noisy input. Hidden layers have 350 units each

149

8.5 Conclusion

In this paper, we proposed a proactive multi-cloud cooperative IDS. The proposed model
allows us to exploit the historical received feedback to produce learned models used for pre-
dicting the status (attack or not) of suspicious intrusions. The proposed model is based on
stacked denoising autoencoders, where we use a denoising autoencoder as a building block
for deep learning. The proposed IDS-based denoising autoencoder is used to learn how to
reconstruct original IDSs’ feedback given incomplete IDSs’ feedback. This, in turn, allows us
to learn how to extract features that are robust to incomplete feedback. Such robust features
enables a useful representation of data, enabling a better performing cooperative intrusion
detection. The proposed model allows making decisions regarding suspicious intrusions des-
pite the existence of partial or incomplete IDSs’ feedback. Also, the proposed model can make
decisions regarding suspicious intrusions without having to apply an aggregation method on
the consulted IDSs’ feedback. Our model was implemented in GPU-enabled Tensor-Flow and
evaluated using a real-life dataset. The results show the efficiency of the proposed approach in
terms of enhancing the cooperative intrusion detection accuracy compared with the existing
state-of-the-art deep architectures.

150

CHAPTER 9 GENERAL DISCUSSION

In this chapter, we first recall the research objectives that we declared at the beginning of
the thesis and then illustrate to which extent these objectives were achieved. Thereafter, we
discuss the limitations of our work.

9.1 Objectives achievement

The main objective of this thesis was to enable the detection of cyber attacks in the cloud
under complex, dynamic and heterogeneous environments, and to also enable the detection
under limited and/or incomplete information about intrusions. More specifically, the following
objectives were attained :

— Enabling intrusion detection in the cloud under changing and heteroge-
neous environments. In Chapter 4, we presented a framework to achieve this ob-
jective. The proposed framework consists of two important tracks. In the first track,
we monitor and analyse the effect of changing and heterogeneous environments on
the collected data, in order to remove irrelevant run-time details. To this end, we
propose an algorithm based on a low overhead monitoring based tool (i.e., LTTng).
The algorithm allows us to determine to which extent the collected data have been af-
fected with respect to the changes applied (e.g., granting/revoking resources to/from
the VMs). The output of the algorithm is a filter that reflects to which extent the
parameters/metrics are affected due to the changes that have occured. This filter is
then used before the prediction process, to get rid of the “noise” that may show up on
the collected data (e.g., due to the new changes). The filtering process enables us to
remove the effects and irrelevant run-time details from the data in order to provide a
robust and generic data to be used to enhance the detection at any environment. The
proposed framework paved the road for a generic IDS in the cloud.

— Creating trustworthy multi-cloud cooperative IDS. This objective has been
achieved in Chapter 5. We proposed a framework for achieving a trust-based coopera-
tive IDS in a multi-cloud environment. We devised a Bayesian-based algorithm for this
purpose. In this algorithm, when a cloud-based IDS consults another IDS regarding
a suspicious attack, the received feedback and the revealed result (i.e., attack or not)
are used to update the trust value of the consulted IDS. We devised a bootstrapping
mechanism to determine the initial trust values. The trust value can be promoted if
the IDS successfully diagnosed the consultation request about a suspicious intruder

151

and it can be demoted otherwise. The trust value here represents and shows the accu-
racy of the IDS diagnosing suspicious attacks. Thereafter, we devised a novel coalition
formation algorithm, that is based on the coalitional game theory. The algorithm en-
ables IDSs to set their preferences and allow them to leave or join a given coalition in
such a way that enhances their ability to work with trusted IDSs. We proved that the
proposed algorithm converges also to a Nash-stable situation ; that is, no cloud-based
IDS has an incentive to leave its current coalition to move to another coalition.

— Enabling trust-based feedback aggregation. Also, in Chapter 5 we proposed a
trust-based feedback aggregation. The output of the coalition formation algorithm
(illustrated above) is a set of coalitions, where each coalition consists of a set of cloud-
IDSs that prefer to work with each other. The proposed feedback aggregation method
enables an IDS inside a coalition to aggregate feedbacks received from other IDSs
based on the DST for feedback aggregation. The proposed aggregation method has
two advantages : (1 unlike other aggregation models, such as the Bayesian aggregation
model, that demand complete information of prior probabilities, DST can handle a
lack of complete information (i.e. uncertainty), and (2 it has the property of preven-
ting collusion attacks, which occur when several malicious IDSs collaborate to give
misleading judgments.

— Creating trustworthy federated clouds. This objective has been achieved in
Chapter 6. To this end, we proposed a framework for the formation of trustworthy
clouds. Two approaches were proposed to evaluate the CPs trust values : objective and
subjective trust evaluations. In the former, we proposed an objective trust evaluation
model based on Bayesian inference. In this model, the trust value is evaluated based
on the history of interactions (i.e. experience). In the latter, we devised a subjective
trust evaluation method based on the DST of evidence integrated with the Bayesian
inference. The proposed model allows us to evaluate the trust value in the absence of
previous interactions. Thereafter, we devised a novel a federation formation algorithm,
based on the coalitional game theory, that allows a set of CPs to cooperatively set up
their federations in order to maximise the trust of the formed federations. We proved
also that the proposed federation formation algorithm converges also to a Nash-stable
situation, i.e. no CP has a motivation to go out from its current federation and move
to another federation.

— Enabling fairness-assurance in multi-cloud cooperative IDS. In Chapter 7, we
proposed a fairness assurance mechanism, in order to prevent (or at least minimize the
probability of) well-behaving cloud-based IDS to deal with selfish IDSs when forming
a community. The proposed fairness assurance mechanism is modeled as a Stackelberg

152

game in which each well-behaving cloud-based IDS plays as the leader of the game
and the selfish cloud-based IDS is the follower. The strategy of the selfish cloud-based
IDSs is to maximise their consultation rates and at the same time minimise their
response rates. The well-behaving IDSs know this strategy and choose the optimal
response rates that are fairly compatible with their consultation rates. The optimiza-
tion problem was solved using the backward induction reasoning, through binding at
the beginning the best response of the selfish IDS to the well-behaving IDSs consul-
tation rate strategy, and then merging this information into the well-behaving IDSs
optimization problem. The outcome of the game is the optimal response rate for the
well-behaving IDS. We also proved that the proposed fairness assurance mechanism
can achieve fairness among cloud-based IDSs

— Enabling proactive multi-cloud cooperative IDS. This objective has been achie-
ved in Chapter 8. We proposed a deep learning detection approach that consists of
multiple layers to learn the representation of the data with multiple levels of abstrac-
tion. This allowed us to learn how to obtain a “good” representation of the data, to
be used later as inputs to supervised machine learning techniques, in order to achieve
better detection accuracy. The proposed deep learning model is based on Stacked De-
noising Autoencoders (SDAE), where a denoising autoencoder is used as a building
block to train a deep network. The proposed model exploited the fact that a denoi-
sing autoencoder can learn how to reconstruct the original inputs, given incomplete
data inputs, by allowing the deep neural networks to learn (during unsupervised pre-
training stage) how to extract features that are robust to incomplete IDSs feedback.
Such robust features can be seen as useful representations of data to yield a better
intrusion detection accuracy in real-time environments, where decisions about intru-
sions need to be taken fast, to effectively apply the required measures at the right
time.

9.2 Limitation

While it is desirable to use realistic trust values for our implementation, we were unable
to find a dataset that contains IDS and CPs trust values. For this purpose, we adopted
two approaches to calculate trust values for IDSs and CPs. As for IDSs, we used a Beta
density function to reflect the intrusion detection capability of each IDS. As for CPs, we
experimentally derived trust values using Cloudsim. To simulate an untrusted non-malicious
CPs, we made the CP accept more tasks (i.e. referred as Cloudlets in Cloudsim) in such a way
to largely exceed its capacity. Thus, the CP becomes unable to achieve other CPs Cloudlets

153

within the expected time. On the other hand, in order to simulate a malicious CP, we made
the CP intentionally remove resources (i.e. VMs) given to other CPs. Then, we followed the
Bayesian inference to derive trust values. For each CP, a default trust value was set. For
each Cloudlet it receives, the new trust value is computed from the old one according to
the regularized incomplete beta function. The trust value is promoted if the cloud achieves
the task successfully (i.e. the task is accepted and achieved within the expected time) and it
is demoted otherwise. The trust value for each cloud is calculated after performing several
Cloudlets.

Another limitation of the proposed solution is the context of simulated (i.e., Cloudsim) cloud
federations. While it may be desirable to implement the proposed model using an open source
cloud management system such as OpenStack, CloudStack or OpenNebula, we preferred to
use Cloudsim due to the setup needed to validate the model on a large scale, with 100 CPs.
Each CP is supposed to provide a computing power similar to a public cloud (e.g., Amazon).
This large-scale setting cannot be easily achieved in a local setup. Moreover, it cannot be
achieved using public clouds either, because of some restrictions and regulations regarding
large-scale testing [2]. This is why many research groups (e.g., [148], [149] [150]) use Cloudsim
in their setup. Cloudsim allows the simulation of realistic large-scale CPs and the study of
federations and their corresponding policies in terms of jobs migration, automatic scaling
and reliability of services/applications [148], [149] [150].

154

CHAPTER 10 CONCLUSION AND RECOMMENDATIONS

In this thesis, we proposed a new framework for intrusion detection in the cloud that ad-
dresses 1) the detection under heterogeneous and changing environments and 2) the detection
under limited and incomplete information about attacks. We conducted a literature review
to ensure the originality of our methodologies and solutions and to ensure filling the gap in
the state-of-the-art work. In particular, we designed a generic cloud-based IDS that allows
the detection under changing and heterogeneous cloud environments. Experiments conduc-
ted on a real dataset show that the proposed solution enhances the detection, compared
to other detection approaches, under largely changing environments. Second, we proposed
the first trust-based cooperative IDS in multi-cloud environments. Experiments reveal that
the proposed model largely reduces the number of untrusted (malicious or not) cloud-based
IDSs in the communities, and dramatically enhances the detection accuracy compared to
the existing approaches. Third, we advanced the first fairness-assurance mechanism between
the well-behaving cloud-based IDSs and the selfish ones that frequently send consultation
requests and do not answer other IDSs consultation requests, with the aim of saving their
own resources. Experiments show that the proposed mechanism enables well-behaving IDSs
to play the optimal strategy that minimises the chances of cooperating with selfish IDSs,
that frequently send consultation requests and not answer other IDSs consultation requests,
with the aim of saving their own resources. Finally, we proposed a proactive multi-cloud
cooperative IDS that can be efficiently used in real-time environments. Experiments show
that the proposed model can effectively make decisions about suspicious intrusions, even in
the absence of complete feedback from the IDSs.

The following points summarize the main contributions of this thesis :

— We proposed a framework for achieving a generic cloud-based IDS in order to detect
intrusions or attacks under complex, changing and heterogeneous environments.

— We designed a framework that enables a low-overhead monitoring and analysis of
changes (e.g., resource scaling) in the cloud in order to understand the effects of these
changes on the data used for IDS. We proposed an algorithm that allows us to filter out
these effects and remove irrelevant run-time details from the collected data, in order
to provide a robust feature that can then be integrated into the proposed detection
algorithm.

— We proposed a trust-based multi-cloud cooperative IDS. We introduced the first trust
framework that enables a cloud-based IDS to evaluate other cloud-based IDSs trust-

155

worthiness using Bayesian inference. Thereafter, we devised a novel algorithm, based
on a hedonic game theoretical model, that is combined with Bayesian inference. The
proposed algorithm allows us to establish trustworthy cloud-based IDS communities
and to ensure Nash stability, that is no community member has an incentive to leave
its current community and join another one.

— We proposed a new approach for achieving the trust-based cooperation among CPs.
Thus, a CP can outsource some of its workloads to other CPs. This, in turn, serves
a dual purpose, reducing the extra overhead during the monitoring and detection
process, and secondly exploiting the power of other cloud-based IDS in handling so-
phisticated and severe attacks, since other clouds may have better investments (in
terms of hardware and software security) in their intrusion detection solutions.

— We devised a trust-based aggregation method for preventing collusion attacks in the
federated cloud-based IDSs. We elaborated a Dempster-Shafer theory-based approach
which enables a cloud-based IDS to prevent collusion attacks, which occur when several
malicious IDSs collaborate to give misleading judgments.

— We proposed a fairness-assurance multi-cloud cooperative IDS. We designed a fairness-
assurance mechanism based on the Stackelberg game, between the well-behaving
cloud-based IDSs and the selfish ones that frequently send consultation requests, and
do not answer other IDSs consultation requests, with the aim of saving their own re-
sources. The proposed model enables a cloud-based IDS to play the optimal strategy
that minimises the chances of joining and cooperating with selfish IDSs.

— We proposed a proactive multi-cloud cooperative IDS. We devised a machine learning-
based cooperative IDS that efficiently exploits the historical feedback data to provide
the ability of proactive decision making. The machine learning model has been formu-
lated as a Denoising Autoencoder, which is used as a building block for constructing a
deep neural network, which allows us to proactively make decisions about suspicious
intrusions, even in the absence of complete feedback from the IDSs.

The above contributions are effective in addressing some interesting research gaps in the
literature. However, some points still need further study and investigation. The following
research avenues could be further explored based on the contributions presented in this thesis
and our literature review :

— Although we have paved the road for a generic cloud-based IDS through allowing
a low-overhead monitoring on the collected data, and removing irrelevant run-time
details from it, the solution still needs to reduce human interaction. Thus, an auto-
mated system is required to take the data and automatically abstract and extract
robust features from it. For this purpose, deep learning techniques could be the best

156

candidate to replace the existing detection approaches. The solution can be designed
and implemented using different Deep Learning architectures (e.g., Generative Adver-
sarial Networks, Stacked Denosing Autoencoder, Restricted Boltzman Machine, and
Variational Autoencoder) for auto-abstraction and extraction of robust features to
significantly enhance the detection under heterogeneous, changing and noisy environ-
ments. The solution should able not only to accommodate unknown variants of known
attacks but also to accommodate unknown variants of unknown attacks.

— Since the direction of the recent research is to automate the process of intrusion de-
tection in single and cooperative settings, we must design automated IDS solutions
that are robust against adversarial examples, which are inputs designed by an atta-
cker to fool the machine learning models and make it generate erroneous decisions
(e.g., making malware analysis tools unable to detect malicious code). It has been re-
cently seen that Machine Learning models, including Deep Neural Networks, are very
vulnerable to adversarial examples. It is easy for an attacker to create “adversarial
examples” [178] to fool a machine learning model by simply perpetuating parts of
the inputs. Although some work addresses this problem, these solutions are mostly
based on adversarial training [179] and are not mature enough to combine the ex-
traction of robust and useful features and preventing the system against adversarial
examples. The solution should not only be robust against complex and noisy data but
also against adversarial examples.

— The power of most IDSs is largely based on the amount of knowledge that they have
about dangerous attacks. In fact, Supervised Machine Learning algorithms such as
SVM, used by IDS, are heavily dependent on labeled data to learn how to effectively
classify malicious and normal behaviours. However, obtaining malicious behaviours
data is challenging and dangerous, especially if we are required to launch real attacks
on production systems and put users, applications and systems at risk. Therefore,
generative models, that are able to learn the underlying distributions of these complex
attacks, in order to generate such sophisticated data and then train machine learning
algorithms with it, can improve the detection accuracy. Deep Generative Models such
as Generative adversarial Networks (GANS)[180] can be a good candidate to achieve
that.

— Moreover, it is important to enable multi-cloud cooperative IDS under a privacy-
preserving setting. To this end, generative models will be harnessed to convert the
original data available to new data that is similar to the original one logically but
not synthetically. This allows us to hide private information in the original data. The
quality of the results produced by GANs will allow us to extract useful and robust

157

features and to share knowledge with other actors without the need to use true data
points. The same results can be achieved using generated synthetic data points.

158

REFERENCES

[1] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A survey of in-
trusion detection techniques in cloud,” Journal of Network and Computer Applications,
vol. 36, no. 1, pp. 42–57, 2013.

[2] R. Shea and J. Liu, “Understanding the impact of denial of service attacks on virtual
machines,” in Proceedings of the 2012 IEEE 20th International Workshop on Quality
of Service. IEEE Press, 2012, p. 27.

[3] H.-Y. Tsai, M. Siebenhaar, A. Miede, Y. Huang, and R. Steinmetz, “Threat as a ser-
vice ? : Virtualization’s impact on cloud security,” IT Professional Magazine, vol. 14,
no. 1, p. 32, 2012.

[4] Q. Wong, Salesforce Pushed Silicon Valley into the Cloud, 1998 (accessed July 11,
2016), http://www.newsfactor.com.

[5] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in the domino
overlay system.” in NDSS, 2004.

[6] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen, “Collaborative internet worm
containment,” IEEE Security & Privacy, vol. 3, no. 3, pp. 25–33, 2005.

[7] X. Liu, P. Zhu, Y. Zhang, and K. Chen, “A collaborative intrusion detection mecha-
nism against false data injection attack in advanced metering infrastructure,” IEEE
Transactions on Smart Grid, vol. 6, no. 5, pp. 2435–2443, 2015.

[8] A. Patel, H. Alhussian, J. M. Pedersen, B. Bounabat, J. C. Júnior, and S. Katsikas,
“A nifty collaborative intrusion detection and prevention architecture for smart grid
ecosystems,” Computers & Security, vol. 64, pp. 92–109, 2017.

[9] N.-F. Huang, C. Wang, I.-J. Liao, C.-W. Lin, and C.-N. Kao, “An openflow-based
collaborative intrusion prevention system for cloud networking,” in Communication
Software and Networks (ICCSN), 2015 IEEE International Conference on. IEEE,
2015, pp. 85–92.

[10] H. Sedjelmaci and S. M. Senouci, “An accurate and efficient collaborative intrusion de-
tection framework to secure vehicular networks,” Computers & Electrical Engineering,
vol. 43, pp. 33–47, 2015.

[11] C. J. Fung and Q. Zhu, “Facid : A trust-based collaborative decision framework for
intrusion detection networks,” Ad Hoc Networks, vol. 53, pp. 17–31, 2016.

 http://www.newsfactor.com

159

[12] A. Abusitta, M. Bellaiche, and M. Dagenais, “A trust-based game theoretical model
for cooperative intrusion detection in multi-cloud environments,” in 21st Conference
on Innovation in Clouds, Internet and Networks (ICIN 2018). IEEE, 2018 (to appear
soon).

[13] N. Briscoe, “Understanding the osi 7-layer model,” PC Network Advisor, vol. 120, no. 2,
2000.

[14] A. Josang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th bled
electronic commerce conference, vol. 5, 2002, pp. 2502–2511.

[15] J. H. Dreze and J. Greenberg, “Hedonic coalitions : Optimality and stability,” Econo-
metrica : Journal of the Econometric Society, pp. 987–1003, 1980.

[16] G. Shafer, “Dempster-shafer theory,” Encyclopedia of artificial intelligence, pp. 330–
331, 1992.

[17] H. Von Stackelberg, Market structure and equilibrium. Springer Science & Business
Media, 2010.

[18] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising
autoencoders : Learning useful representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 1096–1103.

[20] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tordsson,
C. Ragusa, M. Villari, S. Clayman et al., “Reservoir-when one cloud is not enough,”
Computer, vol. 44, no. 3, pp. 44–51, 2011.

[21] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud architectures to
enable cross-federation,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. IEEE, 2010, pp. 337–345.

[22] M. Guazzone, C. Anglano, and M. Sereno, “A game-theoretic approach to coalition
formation in green cloud federations,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. IEEE, 2014, pp. 618–625.

[23] C. J. Fung, D. Y. Lam, and R. Boutaba, “Revmatch : An efficient and robust decision
model for collaborative malware detection,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–9.

[24] A. M. Lonea, D. E. Popescu, and H. Tianfield, “Detecting ddos attacks in cloud com-
puting environment,” International Journal of Computers Communications & Control,
vol. 8, no. 1, pp. 70–78, 2013.

160

[25] D. Dittrich, “The ‘stacheldraht’distributed denial of service attack tool,” 1999.

[26] A. Bakshi and Y. B. Dujodwala, “Securing cloud from ddos attacks using intrusion
detection system in virtual machine,” in Communication Software and Networks, 2010.
ICCSN’10. Second International Conference on. IEEE, 2010, pp. 260–264.

[27] S. Gupta and P. Kumar, “Vm profile based optimized network attack pattern detec-
tion scheme for ddos attacks in cloud,” in International Symposium on Security in
Computing and Communication. Springer, 2013, pp. 255–261.

[28] I. Gul and M. Hussain, “Distributed cloud intrusion detection model,” International
Journal of Advanced Science and Technology, vol. 34, no. 38, p. 135, 2011.

[29] T. Karnwal, S. Thandapanii, and A. Gnanasekaran, “A filter tree approach to protect
cloud computing against xml ddos and http ddos attack,” in Intelligent Informatics.
Springer, 2013, pp. 459–469.

[30] T. Karnwal, T. Sivakumar, and G. Aghila, “A comber approach to protect cloud com-
puting against xml ddos and http ddos attack,” in Electrical, Electronics and Computer
Science (SCEECS), 2012 IEEE Students’ Conference on. IEEE, 2012, pp. 1–5.

[31] O. Osanaiye, K.-K. R. Choo, and M. Dlodlo, “Distributed denial of service (ddos)
resilience in cloud : review and conceptual cloud ddos mitigation framework,” Journal
of Network and Computer Applications, vol. 67, pp. 147–165, 2016.

[32] M. Ficco and M. Rak, “Stealthy denial of service strategy in cloud computing,” IEEE
Transactions on Cloud Computing, vol. 3, no. 1, pp. 80–94, 2015.

[33] M. Masood, Z. Anwar, S. A. Raza, and M. A. Hur, “Edos armor : a cost effective eco-
nomic denial of sustainability attack mitigation framework for e-commerce applications
in cloud environments,” in Multi Topic Conference (INMIC), 2013 16th International.
IEEE, 2013, pp. 37–42.

[34] A. Koduru, T. Neelakantam et al., “Detection of economic denial of sustainability using
time spent on a web page in cloud,” in Cloud Computing in Emerging Markets (CCEM),
2013 IEEE International Conference on. IEEE, 2013, pp. 1–4.

[35] H. Kwon, T. Kim, S. J. Yu, and H. K. Kim, “Self-similarity based lightweight intrusion
detection method for cloud computing,” in Asian Conference on Intelligent Information
and Database Systems. Springer, 2011, pp. 353–362.

[36] F. Palmieri, U. Fiore, and A. Castiglione, “A distributed approach to network anomaly
detection based on independent component analysis,” Concurrency and Computation :
Practice and Experience, vol. 26, no. 5, pp. 1113–1129, 2014.

161

[37] J. Choi, C. Choi, B. Ko, and P. Kim, “A method of ddos attack detection using http
packet pattern and rule engine in cloud computing environment,” Soft Computing,
vol. 18, no. 9, pp. 1697–1703, 2014.

[38] N. Jeyanthi and P. Mogankumar, “A virtual firewall mechanism using army nodes to
protect cloud infrastructure from ddos attacks,” Cybernetics and Information Techno-
logies, vol. 14, no. 3, pp. 71–85, 2014.

[39] N. Jeyanthi and N. Iyengar, “Escape-on-sight : an efficient and scalable mechanism for
escaping ddos attacks in cloud computing environment,” Cybernetics and Information
Technologies, vol. 13, no. 1, pp. 46–60, 2013.

[40] A. Chonka and J. Abawajy, “Detecting and mitigating hx-dos attacks against cloud
web services.” in NBiS, 2012, pp. 429–434.

[41] A. Chonka, Y. Xiang, W. Zhou, and A. Bonti, “Cloud security defence to protect cloud
computing against http-dos and xml-dos attacks,” Journal of Network and Computer
Applications, vol. 34, no. 4, pp. 1097–1107, 2011.

[42] O. A. Wahab, H. Otrok, and A. Mourad, “A dempster–shafer based tit-for-tat stra-
tegy to regulate the cooperation in vanet using qos-olsr protocol,” Wireless Personal
Communications, vol. 75, no. 3, pp. 1635–1667, 2014.

[43] N. C. S. N. Iyengar, G. Ganapathy, P. Mogan Kumar, and A. Abraham, “A multi-
level thrust filtration defending mechanism against ddos attacks in cloud computing
environment,” International Journal of Grid and Utility Computing, vol. 5, no. 4, pp.
236–248, 2014.

[44] R. A. Michelin, A. F. Zorzo, and C. A. De Rose, “Mitigating dos to authenticated
cloud rest apis,” in Internet Technology and Secured Transactions (ICITST), 2014 9th
International Conference for. IEEE, 2014, pp. 106–111.

[45] W. Dou, Q. Chen, and J. Chen, “A confidence-based filtering method for ddos attack
defense in cloud environment,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1838–1850, 2013.

[46] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine under test,” Neuro-
computing, vol. 55, no. 1, pp. 169–186, 2003.

[47] P. Negi, A. Mishra, and B. Gupta, “Enhanced cbf packet filtering method to detect
ddos attack in cloud computing environment,” arXiv preprint arXiv :1304.7073, 2013.

[48] P. Shamsolmoali and M. Zareapoor, “Statistical-based filtering system against ddos
attacks in cloud computing,” in Advances in Computing, Communications and Infor-
matics (ICACCI, 2014 International Conference on. IEEE, 2014, pp. 1234–1239.

162

[49] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions on
Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[50] T. Vissers, T. S. Somasundaram, L. Pieters, K. Govindarajan, and P. Hellinckx, “Ddos
defense system for web services in a cloud environment,” Future Generation Computer
Systems, vol. 37, pp. 37–45, 2014.

[51] M. I. Ribeiro, “Gaussian probability density functions : Properties and error characte-
rization,” Institute for Systems and Robotics, Lisboa, Portugal, 2004.

[52] A. K. Marnerides, P. Spachos, P. Chatzimisios, and A. U. Mauthe, “Malware detection
in the cloud under ensemble empirical mode decomposition,” in 2015 International
Conference on Computing, Networking and Communications (ICNC). IEEE, 2015,
pp. 82–88.

[53] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “Detecting flooding based
dos attack in cloud computing environment using covariance matrix approach,” in
Proceedings of the 7th international conference on ubiquitous information management
and communication. ACM, 2013, p. 36.

[54] A. Girma, M. Garuba, J. Li, and C. Liu, “Analysis of ddos attacks and an introduction
of a hybrid statistical model to detect ddos attacks on cloud computing environment,” in
Information Technology-New Generations (ITNG), 2015 12th International Conference
on. IEEE, 2015, pp. 212–217.

[55] M. Zakarya, “Ddos verification and attack packet dropping algorithm in cloud compu-
ting,” World Applied Sciences Journal, vol. 23, no. 11, pp. 1418–1424, 2013.

[56] H. S. Bedi and S. Shiva, “Securing cloud infrastructure against co-resident dos attacks
using game theoretic defense mechanisms,” in Proceedings of the international confe-
rence on advances in computing, communications and informatics. ACM, 2012, pp.
463–469.

[57] C. N. Modi, D. R. Patel, A. Patel, and M. Rajarajan, “Integrating signature apriori
based network intrusion detection system (nids) in cloud computing,” Procedia Tech-
nology, vol. 6, pp. 905–912, 2012.

[58] B. Cha and J. Kim, “Study of multistage anomaly detection for secured cloud com-
puting resources in future internet,” in 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing. IEEE, 2011, pp. 1046–1050.

[59] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in The elements
of statistical learning. Springer, 2009, pp. 485–585.

163

[60] M. Ficco, “Security event correlation approach for cloud computing,” International
Journal of High Performance Computing and Networking 1, vol. 7, no. 3, pp. 173–185,
2013.

[61] S. Teng, C. Zheng, H. Zhu, D. Liu, and W. Zhang, “A cooperative intrusion detec-
tion model for cloud computing networks,” International Journal of Security and its
applications, vol. 8, no. 3, pp. 107–118, 2014.

[62] C.-C. Lo, C.-C. Huang, and J. Ku, “A cooperative intrusion detection system framework
for cloud computing networks,” in Parallel processing workshops (ICPPW), 2010 39th
international conference on. IEEE, 2010, pp. 280–284.

[63] N. D. Man and E.-N. Huh, “A collaborative intrusion detection system framework for
cloud computing,” in Proceedings of the International Conference on IT Convergence
and Security 2011. Springer, 2012, pp. 91–109.

[64] D. Singh, D. Patel, B. Borisaniya, and C. Modi, “Collaborative ids framework for
cloud,” International Journal of Network Security, vol. 18, no. 4, pp. 699–709, 2016.

[65] S. Ghribi, “Distributed and cooperative intrusion detection in cloud networks,” in Pro-
ceedings of the Doctoral Symposium of the 17th International Middleware Conference.
ACM, 2016, p. 7.

[66] Z. Chiba, N. Abghour, K. Moussaid, M. Rida et al., “A cooperative and hybrid network
intrusion detection framework in cloud computing based on snort and optimized back
propagation neural network,” Procedia Computer Science, vol. 83, pp. 1200–1206, 2016.

[67] Á. Dermott, Q. Shi, and K. Kifayat, “Collaborative intrusion detection in federated
cloud environments,” Journal of Computer Sciences and Applications, vol. 3, no. 3A,
pp. 10–20, 2015.

[68] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo, “Towards collabora-
tive security and p2p intrusion detection,” in Information Assurance Workshop, 2005.
IAW’05. Proceedings from the Sixth Annual IEEE SMC. IEEE, 2005, pp. 333–339.

[69] C. G. Cordero, E. Vasilomanolakis, M. Mühlhäuser, and M. Fischer, “Community-based
collaborative intrusion detection.” in SecureComm, 2015, pp. 665–681.

[70] Q. Zhu, C. Fung, R. Boutaba, and T. Basar, “A game-theoretical approach to incentive
design in collaborative intrusion detection networks,” in Game Theory for Networks,
2009. GameNets’ 09. International Conference on. IEEE, 2009, pp. 384–392.

[71] ——, “Guidex : A game-theoretic incentive-based mechanism for intrusion detection
networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 11, pp.
2220–2230, 2012.

164

[72] C. Fung, Q. Zhu, R. Boutaba, and T. Başar, “Smurfen : A system framework for
rule sharing collaborative intrusion detection,” in Proceedings of the 7th Internatio-
nal Conference on Network and Services Management. International Federation for
Information Processing, 2011, pp. 248–253.

[73] Q. Zhu, C. Fung, R. Boutaba, and T. Başar, “A game-theoretic approach to rule sharing
mechanism in networked intrusion detection systems : Robustness, incentives and se-
curity,” in Decision and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on. IEEE, 2011, pp. 243–248.

[74] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud : Utility-oriented federation
of cloud computing environments for scaling of application services,” in International
Conference on Algorithms and Architectures for Parallel Processing. Springer, 2010,
pp. 13–31.

[75] M. Fazio, A. Celesti, M. Villari, and A. Puliafito, “How to enhance cloud architectures
to enable cross-federation : Towards interoperable storage providers,” in Cloud Engi-
neering (IC2E), 2015 IEEE International Conference on. IEEE, 2015, pp. 480–486.

[76] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation for enhancing provi-
ders’ profit,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. IEEE, 2010, pp. 123–130.

[77] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya, “Resource provisioning
policies to increase iaas provider’s profit in a federated cloud environment,” in High
Performance Computing and Communications (HPCC), 2011 IEEE 13th International
Conference on. IEEE, 2011, pp. 279–287.

[78] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads,” in Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. IEEE, 2010, pp. 228–235.

[79] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning cost in
cloud computing,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 164–
177, 2012.

[80] D. Bruneo, “A stochastic model to investigate data center performance and qos in iaas
cloud computing systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 3, pp. 560–569, 2014.

[81] X. Yang, B. Nasser, M. Surridge, and S. Middleton, “A business-oriented cloud federa-
tion model for real-time applications,” Future Generation Computer Systems, vol. 28,
no. 8, pp. 1158–1167, 2012.

165

[82] M. Salama and A. Shawish, “A qos-oriented inter-cloud federation framework,” in Com-
puter Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual.
IEEE, 2014, pp. 642–643.

[83] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in the sky : Formation
game and mechanism,” IEEE Transactions on Cloud Computing, vol. 3, no. 1, pp.
14–27, 2015.

[84] M. M. Hassan, B. Song, and E.-N. Huh, “Distributed resource allocation games in
horizontal dynamic cloud federation platform,” in High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on. IEEE, 2011,
pp. 822–827.

[85] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated clouds,” in
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing. IEEE Computer Society, 2010, pp. 513–517.

[86] H. Li, C. Wu, Z. Li, and F. C. Lau, “Profit-maximizing virtual machine trading in a
federation of selfish clouds,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp.
25–29.

[87] N. Samaan, “A novel economic sharing model in a federation of selfish cloud providers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 12–21, 2014.

[88] C. Ngo, Y. Demchenko, and C. De Laat, “Toward a dynamic trust establishment ap-
proach for multi-provider intercloud environment,” in Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE, 2012, pp.
532–538.

[89] F. Messina, G. Pappalardo, D. Rosaci, C. Santoro, and G. M. Sarné, “A trust model for
competitive cloud federations,” in Complex, Intelligent and Software Intensive Systems
(CISIS), 2014 Eighth International Conference on. IEEE, 2014, pp. 469–474.

[90] M. M. Hassan, M. Abdullah-Al-Wadud, A. Almogren, S. Rahman, A. Alelaiwi,
A. Alamri, M. Hamid et al., “Qos and trust-aware coalition formation game in data-
intensive cloud federations,” Concurrency and Computation : Practice and Experience,
2015.

[91] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Towards trustworthy multi-cloud
services communities : A trust-based hedonic coalitional game,” IEEE Transactions on
Services Computing, vol. 11, no. 1, pp. 184–201, 2018.

[92] M. Desnoyers and M. R. Dagenais, “The lttng tracer : A low impact performance
and behavior monitor for gnu/linux,” in OLS (Ottawa Linux Symposium), vol. 2006.
Citeseer, 2006, pp. 209–224.

166

[93] N. Ezzati-Jivan and M. R. Dagenais, “A stateful approach to generate synthetic events
from kernel traces,” Advances in Software Engineering, vol. 2012, p. 6, 2012.

[94] Markus-Go, BoNeSi - the DDoS Botnet Simulator, 2015 (accessed July 6, 2016), https:
//github.com/Markus-Go/bonesi.

[95] A. Bogomolnaia and M. O. Jackson, “The stability of hedonic coalition structures,”
Games and Economic Behavior, vol. 38, no. 2, pp. 201–230, 2002.

[96] C. J. Fung, J. Zhang, I. Aib, and R. Boutaba, “Robust and scalable trust management
for collaborative intrusion detection,” in Integrated Network Management, 2009. IM’09.
IFIP/IEEE International Symposium on. IEEE, 2009, pp. 33–40.

[97] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim :
a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software : Practice and experience, vol. 41, no. 1,
pp. 23–50, 2011.

[98] A. Perea, “Backward induction versus forward induction reasoning,” Games, vol. 1,
no. 3, pp. 168–188, 2010.

[99] D. Gonzales, J. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods, “Cloud-trust-a
security assessment model for infrastructure as a service (iaas) clouds,” 2015.

[100] Control Groups Resource Management, 2016 (accessed July 6, 2016), https://libvirt.
org/cgroups.html.

[101] P. M. L. R. S. D. O. Peter, M. Eva, Managing system resources on Red Hat Enter-
prise Linux 6, 2016 (accessed July 6, 2016), https://access.redhat.com/documentation/
en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/.

[102] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “I know you are watching
me : Stackelberg-based adaptive intrusion detection strategy for insider attacks in the
cloud,” in IEEE International Conference on Web Services (ICWS). IEEE, 2017, pp.
728–735.

[103] ——, “Optimal load distribution for the detection of vm-based ddos attacks in the
cloud,” IEEE Transactions on Services Computing, 2017.

[104] S. Yu, Y. Tian, S. Guo, and D. O. Wu, “Can we beat ddos attacks in clouds ?” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 9, pp. 2245–2254, 2014.

[105] G. Somani, A. Johri, M. Taneja, U. Pyne, M. S. Gaur, and D. Sanghi, “Darac : Ddos
mitigation using ddos aware resource allocation in cloud,” in International Conference
on Information Systems Security. Springer, 2015, pp. 263–282.

https://github.com/Markus-Go/bonesi
https://github.com/Markus-Go/bonesi
https://libvirt.org/cgroups.html
https://libvirt.org/cgroups.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/

167

[106] N. Ezzati-Jivan and M. R. Dagenais, “A framework to compute statistics of system pa-
rameters from very large trace files,” ACM SIGOPS Operating Systems Review, vol. 47,
no. 1, pp. 43–54, 2013.

[107] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, “One class support vector
machines for detecting anomalous windows registry accesses,” in Proc. of the workshop
on Data Mining for Computer Security, vol. 9, 2003.

[108] T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly de-
tection,” Information Sciences, vol. 177, no. 18, pp. 3799–3821, 2007.

[109] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Misbehavior detection frame-
work for community-based cloud computing,” in Future Internet of Things and Cloud
(FiCloud), 2015 3rd International Conference on. IEEE, 2015, pp. 181–188.

[110] O. A. Wahab, A. Mourad, H. Otrok, and J. Bentahar, “Ceap : Svm-based intelligent
detection model for clustered vehicular ad hoc networks,” Expert Systems with Appli-
cations, vol. 50, pp. 40–54, 2016.

[111] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and modeling resource
usage of virtualized applications,” in Proceedings of the 9th ACM/IFIP/USENIX In-
ternational Conference on Middleware. Springer-Verlag New York, Inc., 2008, pp.
366–387.

[112] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive
resource provisioning in the cloud,” Future Generation Computer Systems, vol. 28,
no. 1, pp. 155–162, 2012.

[113] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual machines for
cloud computing environment,” IEEE Transactions on parallel and distributed systems,
vol. 24, no. 6, pp. 1107–1117, 2013.

[114] J. Bognár, Indefinite inner product spaces. Springer Science & Business Media, 2012,
vol. 78.

[115] L. Auria and R. A. Moro, “Support vector machines (svm) as a technique for solvency
analysis,” 2008.

[116] A. Konar, U. K. Chakraborty, and P. P. Wang, “Supervised learning on a fuzzy petri
net,” Information Sciences, vol. 172, no. 3, pp. 397–416, 2005.

[117] S. Fine and K. Scheinberg, “Efficient svm training using low-rank kernel representa-
tions,” Journal of Machine Learning Research, vol. 2, no. Dec, pp. 243–264, 2001.

[118] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines : Fast svm training
on very large data sets,” Journal of Machine Learning Research, vol. 6, no. Apr, pp.
363–392, 2005.

168

[119] J.-x. Dong, A. Krzyzak, and C. Y. Suen, “Fast svm training algorithm with decom-
position on very large data sets,” IEEE transactions on pattern analysis and machine
intelligence, vol. 27, no. 4, pp. 603–618, 2005.

[120] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale : Surviving organi-
zed ddos attacks that mimic flash crowds,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2. USENIX
Association, 2005, pp. 287–300.

[121] Kernel Virtual Machine, 2016 (accessed July 6, 2016), http://www.linux-kvm.org/
page/Main_Page.

[122] E. A. K. C. P. Hick and J. Polterock, The CAIDA DDoS Attack 2007 Dataset, 2007
(accessed July 10, 2016), http://www.caida.org/data/passive/ddos-20070804_dataset.
xml.

[123] M. Arlitt and T. Jin, 1998 World Cup Web Site Access Logs, 1998 (accessed July 10,
2016), http://www.acm.org/sigcomm/ITA/.

[124] S. Bhatia, D. Schmidt, G. Mohay, and A. Tickle, “A framework for generating realistic
traffic for distributed denial-of-service attacks and flash events,” Computers & Security,
vol. 40, pp. 95–107, 2014.

[125] LTTng analyses, 2016 (accessed July 6, 2016), https://github.com/lttng/lttng-analyses.

[126] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for additive kernel svms,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp.
66–77, 2013.

[127] R. Kohavi and J. R. Quinlan, “Data mining tasks and methods : Classification :
decision-tree discovery,” in Handbook of data mining and knowledge discovery. Oxford
University Press, Inc., 2002, pp. 267–276.

[128] Z. Al-Mousa and Q. Nasir, “cl-cidps : A cloud computing based cooperative intrusion
detection and prevention system framework,” in International Conference on Future
Network Systems and Security. Springer, 2015, pp. 181–194.

[129] H. A. Kholidy and F. Baiardi, “Cids : A framework for intrusion detection in cloud
systems,” in Information Technology : New Generations (ITNG), 2012 Ninth Interna-
tional Conference on. IEEE, 2012, pp. 379–385.

[130] D. Ray, A game-theoretic perspective on coalition formation. Oxford University Press,
2007.

[131] H. Yahyaoui, “A trust-based game theoretical model for web services collaboration,”
Knowledge-Based Systems, vol. 27, pp. 162–169, 2012.

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
 http://www.caida.org/data/passive/ddos-20070804_dataset.xml
 http://www.caida.org/data/passive/ddos-20070804_dataset.xml
 http://www.acm.org/sigcomm/ITA/
https://github.com/lttng/lttng-analyses

169

[132] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Towards trustworthy multi-cloud
services communities : A trust-based hedonic coalitional game,” IEEE Transactions on
Services Computing, 2016.

[133] K. R. Apt and A. Witzel, “A generic approach to coalition formation,” International
Game Theory Review, vol. 11, no. 03, pp. 347–367, 2009.

[134] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé, “Coalition structure
generation with worst case guarantees,” Artificial Intelligence, vol. 111, no. 1-2, pp.
209–238, 1999.

[135] P. K. Sinha, Distributed operating systems : concepts and design. PHI Learning Pvt.
Ltd., 1998.

[136] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.
[137] A. D. Kshemkalyani and M. Singhal, Distributed computing : principles, algorithms,

and systems. Cambridge University Press, 2011.
[138] B. Yu and M. P. Singh, “An evidential model of distributed reputation management,”

in Proceedings of the first international joint conference on Autonomous Agents and
Multiagent Systems : Part 1. ACM, 2002, pp. 294–301.

[139] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “A survey on trust and reputa-
tion models for web services : Single, composite, and communities,” Decision Support
Systems, vol. 74, pp. 121–134, 2015.

[140] A. Abusitta, M. Bellaiche, and M. Dagenais, “An svm-based framework for detecting
dos attacks in virtualized clouds under changing environment,” Journal of Cloud Com-
puting, vol. 7, no. 1, p. 9, 2018.

[141] S. Bu, F. R. Yu, X. P. Liu, P. Mason, and H. Tang, “Distributed combined authentica-
tion and intrusion detection with data fusion in high-security mobile ad hoc networks,”
IEEE transactions on vehicular technology, vol. 60, no. 3, pp. 1025–1036, 2011.

[142] Y. Liu, Y. L. Sun, S. Liu, and A. C. Kot, “Securing online reputation systems through
dempster-shafer theory based trust model,” IEEE TRANSACTIONS ON INFORMA-
TION FORENSICS AND SECURITY, vol. 8, no. 6, 2013.

[143] Z. Wei, H. Tang, F. R. Yu, M. Wang, and P. Mason, “Security enhancements for mobile
ad hoc networks with trust management using uncertain reasoning,” IEEE Transactions
on Vehicular Technology, vol. 63, no. 9, pp. 4647–4658, 2014.

[144] S. Liu, A. C. Kot, C. Miao, and Y.-L. Theng, “A dempster-shafer theory based wit-
ness trustworthiness model,” in Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 3. International Foundation for
Autonomous Agents and Multiagent Systems, 2012, pp. 1361–1362.

170

[145] A. Brandenburger, “Cooperative game theory,” Teaching Materials at New York Uni-
versity, 2007.

[146] K. Ritzberger et al., “Foundations of non-cooperative game theory,” OUP Catalogue,
2002.

[147] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjorungnes, “Hedonic coalition for-
mation for distributed task allocation among wireless agents,” IEEE Transactions on
Mobile Computing, vol. 10, no. 9, pp. 1327–1344, 2011.

[148] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud
computing environments and the cloudsim toolkit : Challenges and opportunities,” in
High Performance Computing & Simulation, 2009. HPCS’09. International Conference
on. IEEE, 2009, pp. 1–11.

[149] M. Aazam and E.-N. Huh, “Advance resource reservation and qos based refunding
in cloud federation,” in Globecom Workshops (GC Wkshps), 2014. IEEE, 2014, pp.
139–143.

[150] G. F. Anastasi, E. Carlini, and P. Dazzi, “Smart cloud federation simulations with
cloudsim,” in Proceedings of the first ACM workshop on Optimization techniques for
resources management in clouds. ACM, 2013, pp. 9–16.

[151] Amazon Web Services (AWS) - Cloud Computing Services, 2018 (accessed may 10,
2018), https://aws.amazon.com/.

[152] S. M. Habib, S. Ries, and M. Muhlhauser, “Cloud computing landscape and research
challenges regarding trust and reputation,” in Ubiquitous Intelligence & Computing and
7th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2010
7th International Conference on. IEEE, 2010, pp. 410–415.

[153] W. Fan, S. Yang, and J. Pei, “A novel two-stage model for cloud service trustworthiness
evaluation,” Expert Systems, vol. 31, no. 2, pp. 136–153, 2014.

[154] M. Alhamad, T. Dillon, and E. Chang, “Sla-based trust model for cloud computing,” in
Network-Based Information Systems (NBiS), 2010 13th International Conference on.
IEEE, 2010, pp. 321–324.

[155] S. G. Grivas, T. U. Kumar, and H. Wache, “Cloud broker : Bringing intelligence into
the cloud,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. IEEE, 2010, pp. 544–545.

[156] B. Rashidi, C. Fung, and E. Bertino, “A collaborative ddos defence framework using
network function virtualization,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 10, pp. 2483–2497, 2017.

https://aws.amazon.com/

171

[157] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.
436, 2015.

[158] G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive sciences,
vol. 11, no. 10, pp. 428–434, 2007.

[159] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[160] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[161] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” in Advances in neural information processing systems, 2007, pp.
153–160.

[162] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to net-
work intrusion detection,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[163] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion detection system
based on deep learning,” in Machine Learning and Applications (ICMLA), 2016 15th
IEEE International Conference on. IEEE, 2016, pp. 195–200.

[164] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion detection using deep
neural network,” in Big Data and Smart Computing (BigComp), 2017 IEEE Interna-
tional Conference on. IEEE, 2017, pp. 313–316.

[165] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for network
intrusion detection system,” in Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies (formerly BIONETICS).
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2016, pp. 21–26.

[166] S. Potluri and C. Diedrich, “Accelerated deep neural networks for enhanced intrusion
detection system,” in Emerging Technologies and Factory Automation (ETFA), 2016
IEEE 21st International Conference on. IEEE, 2016, pp. 1–8.

[167] C. G. Cordero, S. Hauke, M. Mühlhäuser, and M. Fischer, “Analyzing flow-based ano-
maly intrusion detection using replicator neural networks,” in Privacy, Security and
Trust (PST), 2016 14th Annual Conference on. IEEE, 2016, pp. 317–324.

[168] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning
approach for network intrusion detection in software defined networking,” in Wireless
Networks and Mobile Communications (WINCOM), 2016 International Conference on.
IEEE, 2016, pp. 258–263.

172

[169] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, “Autoencoder for words,” Neu-
rocomputing, vol. 139, pp. 84–96, 2014.

[170] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind se-
paration and blind deconvolution,” Neural computation, vol. 7, no. 6, pp. 1129–1159,
1995.

[171] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[172] S. Haykin and N. Network, “A comprehensive foundation,” Neural networks, vol. 2, no.
2004, p. 41, 2004.

[173] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Procee-
dings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[174] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evalua-
tion of deep architectures on problems with many factors of variation,” in Proceedings
of the 24th international conference on Machine learning. ACM, 2007, pp. 473–480.

[175] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural net-
work classification models : a methodology review,” Journal of biomedical informatics,
vol. 35, no. 5-6, pp. 352–359, 2002.

[176] KDD Cup 1999 Data, 2018 (accessed may 10, 2018), http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.

[177] A. Zee, “Emergence of grandmother memory in feed forward networks : Learning with
noise and forgetfulness,” Connectionist models and their implications : Readings from
cognitive science, p. 309, 1988.

[178] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”
arXiv preprint arXiv :1607.02533, 2016.

[179] N. Carlini and D. Wagner, “Audio adversarial examples : Targeted attacks on speech-
to-text,” arXiv preprint arXiv :1801.01944, 2018.

[180] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Cour-
ville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information
processing systems, 2014, pp. 2672–2680.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	DEDICATION
	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Problem definition
	1.2 Research objectives
	1.3 Main contributions and their originality
	1.4 Thesis structure

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 Definitions and basic concepts
	2.1.1 Cloud Computing
	2.1.2 Cloud Federation
	2.1.3 Intrusion Detection System
	2.1.4 Cooperative Intrusion Detection System

	2.2 Cloud-based Intrusion Detection Systems
	2.2.1 Signature-based Detection
	2.2.2 Anomaly-based Detection
	2.2.3 Hybrid detection

	2.3 Cloud-based Cooperative Intrusion Detection System
	2.4 Cloud Federation
	2.5 Literature review analysis

	3 RESEARCH METHODOLOGY
	3.1 Phase 1: Intrusion detection under complex and changing environments
	3.1.1 Monitoring and analysing the effects of changing and heterogeneous environments
	3.1.2 A generic cloud-based IDS
	3.1.3 Evaluation

	3.2 Phase 2: Trust and fairness assurance in multi-cloud cooperative IDSs
	3.2.1 Trust-based multi-cloud cooperative IDSs
	3.2.2 Trust-based Feedback Aggregation
	3.2.3 Formation of trustworthy federated clouds
	3.2.4 Fairness-assurance in multi-cloud cooperative IDSs

	3.3 Phase 3: Proactive multi-cloud cooperative IDSs

	4 Article 1: An SVM-based Framework for Detecting DoS Attacks in Virtualized Clouds under Changing Environment
	4.1 Introduction
	4.1.1 Motivating Example
	4.1.2 Our Proposed Solution
	4.1.3 Paper Outline

	4.2 Related Work
	4.3 The Proposed Framework
	4.3.1 Data Analysis
	4.3.2 Detection Component

	4.4 Security Analysis of the Proposed Framework
	4.4.1 Flash Events
	4.4.2 DoS Attacks
	4.4.3 Robustness against Compromised VMs

	4.5 Experimental Results and Analysis
	4.5.1 Experimental Setup
	4.5.2 Training Phase
	4.5.3 Testing Phase
	4.5.4 Experimental Results

	4.6 Conclusion

	5 Article 2: A Trust-based Game Theoretical Model for Cooperative Intrusion Detection in Multi-cloud Environments
	5.1 Introduction
	5.2 Related Work
	5.3 The Proposed Trust-based Cooperative IDS
	5.3.1 Trust Evaluation
	5.3.2 A Trust-based Coalition Formation
	5.3.3 Feedback Aggregation

	5.4 Experimental Evaluation
	5.4.1 Experimental Setup
	5.4.2 Experimental Results

	5.5 Conclusion

	6 Article 3: On Trustworthy Federated Clouds: A Coalitional Game Approach
	6.1 Introduction
	6.2 Related Work
	6.3 Trust Model and Assumptions
	6.3.1 Definition of Trust
	6.3.2 Trust Model

	6.4 The Proposed Trust-based Federation Formation Framework
	6.4.1 Objective Trust Evaluation: Direct Observation
	6.4.2 Subjective Trust Evaluation: Indirect Observation
	6.4.3 Trust-based Federation Formation Algorithm

	6.5 Simulation Results and Analysis
	6.5.1 Simulation Setup
	6.5.2 Simulation Results

	6.6 Conclusion

	7 Article 4: Multi-cloud Cooperative Intrusion Detection System: Trust and Fairness Assurance
	7.1 Introduction
	7.2 Background and Related Work
	7.3 The Proposed Trust-based Cooperative IDS
	7.3.1 Trust Evaluation
	7.3.2 A Trust-based Community Formation
	7.3.3 Feedback Aggregation

	7.4 Fairness Assurance
	7.5 Experimental Evaluation
	7.5.1 Experimental Setup
	7.5.2 Experimental Results

	7.6 Conclusion

	8 Article 5: A Deep Learning Approach for Proactive Multi-Cloud Cooperative Intrusion Detection System
	8.1 Introduction
	8.2 Background and Related Work
	8.3 The Proposed Proactive Multi-cloud Cooperative IDS
	8.3.1 System Model
	8.3.2 The Traditional Autoencoders
	8.3.3 The proposed IDS-based Denoizing Autoencoders
	8.3.4 The proposed IDS-based Stacked Denoising Autoencoders
	8.3.5 The proposed IDS-based Fine-tuning and Detection

	8.4 Experimental Evaluation
	8.4.1 Experimental Setup
	8.4.2 Experimental Results

	8.5 Conclusion

	9 GENERAL DISCUSSION
	9.1 Objectives achievement
	9.2 Limitation

	10 CONCLUSION AND RECOMMENDATIONS
	REFERENCES

