1,913 research outputs found

    The heuristic strategies for assessing wireless sensor network: an event-based formal approach

    Get PDF
    Wireless Sensor Networks (WSNs) are increasingly being adopted in critical applications. In these networks undesired events may undermine the reliability level; thus their effects need to be properly assessed from the early stages of the development process onwards to minimize the chances of unexpected problems during use. In this paper we propose two heuristic strategies: what-if analysis and robustness checking. They allow to drive designers towards optimal WSN deployment solutions, from the point of view of the connection and data delivery resiliency, exploiting a formal approach based on the event calculus formal language. The heuristics are backed up by a support tool aimed to simplify their adoption by system designers. The tool allows to specify the target WSN in a user-friendly way and it is able to elaborate the two heuristic strategies by means of the event calculus specifications automatically generated. The WSN reliability is assessed computing a set of specific metrics. The effectiveness of the strategies is shown in the context of three case studies

    The heuristic strategies for assessing wireless sensor network: an event-based formal approach

    Get PDF
    Wireless Sensor Networks (WSNs) are increasingly being adopted in critical applications. In these networks undesired events may undermine the reliability level; thus their effects need to be properly assessed from the early stages of the development process onwards to minimize the chances of unexpected problems during use. In this paper we propose two heuristic strategies: what-if analysis and robustness checking. They allow to drive designers towards optimal WSN deployment solutions, from the point of view of the connection and data delivery resiliency, exploiting a formal approach based on the event calculus formal language. The heuristics are backed up by a support tool aimed to simplify their adoption by system designers. The tool allows to specify the target WSN in a user-friendly way and it is able to elaborate the two heuristic strategies by means of the event calculus specifications automatically generated. The WSN reliability is assessed computing a set of specific metrics. The effectiveness of the strategies is shown in the context of three case studies

    A Survey of Smart Grid Systems on Electric Power Distribution Network and Its Impact on Reliability

    Get PDF
    This paper presents an excerpt of a more comprehensive survey of smart grid systems on electric power distribution networks and its impact on reliability. The survey was carried out as part of the feasibility study in Nigeria to determine its enhance-ability on the smartness of a conventional (traditional) distribution network. A smart grid is not a single technology but multiplex technologies in which the combination of different areas of engineering, communication and energy management systems are done. Consequently, a comprehensive review of various approaches and their impact on reliability of the network is presented. Furthermore, this paper introduces the smart grid technology and its features, reliability impacts and emerging issues and challenges that arise from the smart grid system applications. The benefit of this comprehensive survey is to provide a reference point for educational advancement on the recently published articles in the areas of smart grid systems on electric power distribution network as well as to stimulate further research interest

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    A hierarchical AI-based control plane solution for multitechnology deterministic networks

    Get PDF
    Following the Industry 4.0 vision of a full digitiSation of the industry, time-critical services and applications, allowing network infrastructures to deliver information with determinism and reliability, are becoming more and more relevant for a set of vertical sectors. As a consequence, deterministic network solutions are progressively emerging, albeit they are still bounded to specific technological domains. Even considering the existence of interconnected deterministic networks, the provision of an end-to-end (E2E) deterministic service over them must rely on a specific control plane architecture, capable of seamlessly integrate and control the underlying multi-technology data plane. In this work, we envision such a control plane solution, extending previous works and exploiting several innovations and novel architectural concepts. The proposed control architecture is service-centric, in order to provide the necessary flexibility, scalability, and modularity to deal with a heterogenous data plane. The architecture is hierarchical and encompasses a set of management platforms to interact with specific network technologies overarched by an E2E platform for the management, monitoring, and control of E2E deterministic services. Furthermore, Artificial Intelligence (AI) and Digital Twinning are used to enable network predictability and automation, as well as smart resource allocation, to ensure service reliability in dynamic scenarios where existing services may terminate and new ones may need to be deployed

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Technical principles for institutional technologies

    Get PDF

    Protection of Active Distribution Networks and Their Cyber Physical Infrastructure

    Get PDF
    Today’s Smart Grid constitutes several smaller interconnected microgrids. However, the integration of converter-interfaced distributed generation (DG) in microgrids has raised several issues such as the fact that fault currents in these systems in islanded mode are way less than those in grid connected microgrids. Therefore, microgrid protection schemes require a fast, reliable and robust communication system, with backup, to automatically adjust relay settings for the appropriate current levels according to the microgrid’s operation mode. However, risks of communication link failures, cyber security threats and the high cost involved to avoid them are major challenges for the implementation of an economic adaptive protection scheme. This dissertation proposes an adaptive protection scheme for AC microgrids which is capable of surviving communication failures. The contribution is the use of an energy storage system as the main contributor to fault currents in the microgrid’s islanded mode when the communication link fails to detect the shift to the islanded mode. The design of an autonomous control algorithm for the energy storage’s AC/DC converter capable of operating when the microgrid is in both grid-connected and islanded mode. Utilizing a single mode of operation for the converter will eliminate the reliance on communicated control command signals to shift the controller between different modes. Also, the ability of the overall system to keep stable voltage and frequency levels during extreme cases such as the occurrence of a fault during a peak pulse load period. The results of the proposed protection scheme showed that the energy storage -inverter system is able to contribute enough fault current for a sufficient duration to cause the system protection devices to clear the fault in the event of communication loss. The proposed method was investigated under different fault types and showed excellent results of the proposed protection scheme. In addition, it was demonstrated in a case study that, whenever possible, the temporary disconnection of the pulse load during the fault period will allow the utilization of smaller energy storage device capacity to feed fault currents and thus reduce the overall expenditures. Also, in this dissertation we proposed a hybrid hardware-software co-simulation platform capable of modeling the relation between the cyber and physical parts to provide a protection scheme for the microgrid. The microgrid was simulated on MATLAB/Simulink SimPowerSystems to model the physical system dynamics, whereas all control logic was implemented on embedded microcontrollers communicating over a real network. This work suggested a protection methodology utilizing contemporary communication technologies between multi-agents to protect the microgrid
    corecore